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Abstract 

Hydrocarbon field development plans outline the specific exploitation strategy with the aim of 

maximizing economic returns over the lifetime of the resource. These plans encompass a wide array of 

decision variables, including well location and trajectory, drilling schedule, well type, platform location, 

well control settings (injection/production rates and/or bottom-hole pressure), amongst other 

considerations. Given the highly nonlinear relationship between these development variables and the 

production volumes (and hence the economic returns), optimization techniques are applied to find the 

most optimal solution (i.e., field development plan).  

However, it is essential that any proposed technique is pragmatic and consider the 

computational cost of the optimization algorithms. Even with improvements in computing hardware, 

realistic reservoir models can still be computationally demanding. Hence, the implementation of 

optimization algorithms into reservoir engineering workflows may be hindered if optimization process 

is computationally intense. To this end, this thesis investigates the development and implementation of 

state-of-the-art techniques for the efficient optimization of well control settings and well location under 

geological uncertainty.  

To begin, the thesis develops and implements a novel gradient-based optimization algorithm, 

Adam-SPSA, for high-dimensional well control problems. The proposed algorithm combines the 

adaptive moment estimation framework with simultaneous perturbation stochastic approximation. The 

adaptive moment framework utilizes first-order gradient information to generate dimension-wise step-

sizes. This allows for faster convergence to an optimum. The proposed algorithm is applied to two well 

control problems. The first being a two-dimensional heterogeneous reservoir model produced under 

water-flooding with four producers and four injectors. The second problem is a three-dimensional 

model produced through 20 production wells and 10 injection wells. The developed algorithm, Adam-

SPSA, achieved improvements of up to 91% in convergence speeds and up to 5% improvements in 

objective function value when compared to the popular steepest descent framework. 
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The promising results of Adam-SPSA when applied to well control problems encouraged the 

investigation of applying the algorithm to the well placement and trajectory optimization problem. This 

investigation was done under the premise of a stringent computational budget and the availability of a 

heuristic-based initial guess. This takes advantage of the algorithm’s ability to efficiently converge to 

local optimum from a suitable starting point. The performance of Adam-SPSA was demonstrated 

through the application to two experimental problems. The first problem studied the placement of four 

vertical wells, resulting in a low-dimensional problem of only eight decision variables. The second 

problem was the placement of 20 nonconventional (i.e., deviated, horizontal and/or slanted) wells, 

resulting in a 120-dimensional optimization problem. The proposed algorithm, Adam-SPSA, 

consistently outperformed the steepest descent framework and a local derivative-free algorithm (i.e., 

generalized pattern search). The work was then expanded further with an in-depth discussion 

surrounding the effect of parameterization on optimization performance as well as constraint handling 

techniques within gradient approximations. 

An alternate approach was undertaken for the efficient optimization of well placement under 

strict computational budgets. The study investigated the use of a surrogate-based optimization approach, 

utilizing manifold mapping as a two-stage treatment, for well placement optimization. Manifold 

mapping was coupled with multiple surrogates including analytical – kriging and quadratic 

approximation – and a physics-based (reduced-order model) surrogate – local grid coarsening. The 

methodology was applied to two experimental problems, including the placement of four production 

wells in the presence of two pre-existing production wells and the placement of five production wells 

in a more complex three-dimensional model undergoing water-flooding. The proposed approach 

showed a reduction of computational costs of up to 80% compared to a local derivative-free algorithm. 

The results also gave insights into the most applicable scenario for the use of analytical surrogates and 

physics-based surrogates. It was shown that analytical surrogates are sufficient for simple reservoir 

models undergoing primary depletion. However, as the complexity of the reservoir models increases, 

such as secondary recovery through water-flooding, higher fidelity physics-based surrogates are more 

applicable as their accuracy is sufficient enough to model the trends of the full-physics simulations. 
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A natural progression was the joint optimization of well control settings and well placement 

concurrently. However, this type of problem is very computationally intensive as it requires a large 

number of full-physics reservoir simulations for convergence. As such, a novel technique was proposed 

which included the use of capacitance resistance models (CRM) to improve the efficiency of the 

optimization. This was implemented in a bilevel approach for the simultaneous optimization of well 

controls and well locations. The outer loop was the well placement optimization solved by particle 

swarm optimization. The inner loop was the well control optimization solved by Adam-SPSA assisted 

by CRMs. The proposed approach was tested against the full-physics approach on two reservoir models 

of varying levels of complexity. The proposed bilevel approach found solutions that were up to 22% 

higher in objective function value than the conventional full-physics approach and accompanied by a 

decrease of up to 99% in the number of required reservoir simulations. 

The last research gap investigated in this thesis relates to the efficient incorporation of 

geological uncertainty in field development optimization problems. Typically, a full set of geological 

realizations (in the order of 100s to 1000s) are available to do this, however; including the full ensemble 

into an optimization problem makes it intractable. It was argued that previous work focussed on an 

intermediate goal of ranking base-case scenarios, static properties or a combination of these to select a 

subset of realizations. A reformulation of the subset selection problem to one which aims at ensuring 

consistent ranking of development strategies between the full set and the selected subset of realizations 

was introduced. The developed technique is a more relaxed problem and is not restricted in application. 

An application to well placement under uncertainty resulted in a reduction of computational costs, on 

average, by a factor close to 9, compared to the full set optimization. This result did not compromise 

the quality of the solution either.  
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1. Introduction 

1.1 Problem Statement 

Once a resource has been evaluated to contain economic volumes of hydrocarbons, the next task 

involves designing the most cost-effective, sustainable, and profitable extraction plan. This culminates 

in a field development plan (FDP) which includes details regarding decisions on well locations, well 

trajectories, well control settings, production platform system and surface facility design, amongst other 

important considerations. All these various decisions have a substantial influence on the recovery of 

hydrocarbon fluid volumes from the reservoir.  

Reservoir simulation is an important predictive tool that is used to assist with the evaluation of 

proposed FDPs and is used to preform what-if analyses. The governing equations of reservoir 

simulation encompass the highly nonlinear relationship between the input parameters, such as the 

development parameters (e.g., well control settings and well locations) and reservoir fluid and rock 

properties, and the output parameters, such as produced fluid volumes. These simulations are 

computationally demanding, especially for more complex geological settings, with potential run-times 

in the order of hours to days for realistic reservoir models.  

The interaction and interdependency of the large number of decision variables makes designing 

and selecting an optimal FDP a non-trivial task. The problem is further complicated with the 

incorporation of geological uncertainty, which is typically done with the consideration of a large 

number (in the order of 100s to 1000s) of geological realizations. In essence, each proposed 

development strategy (e.g., well location and/or well control settings) is evaluated and averaged against 

all the geological realizations included in the set. For each development strategy, a full-physics reservoir 

simulation is needed to predict the associated fluid volumes. This increases the complexity and becomes 

for a large number of realistic reservoir models. 

Consequently, mathematical optimization techniques have been proposed to assist in proposing 

and evaluating potential FDPs that are robust and optimal in a systematic manner. This is accomplished 
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by transforming the field development planning task into a general optimization problem in which an 

objective function (e.g., oil recovery or net present value) is, without loss of generality, minimized for 

a given set of defined decision variables (e.g., well control settings and/or well locations/trajectories) 

and constraint functions. Depending on the defined field development optimization problem, the 

number of decision variables will vary. Typically, well location problems involve 10s to 100s of 

decision variables to define well placements in two-dimensional or three-dimensional. On the other 

hand, well control optimization problems are composed of 100s to 1000s of decision variables as they 

are usually defined at specified time intervals across the field’s lifetime. When these problems are 

considered in a joint manner, the decision variables may be different in nature (i.e., continuous and 

discrete) and be in the order of 1000s in number.  

The underlying premise for solving this problem is based on using optimization algorithms which 

seek iterative improvements in the objective function value as the solution space is traversed. The FDP 

optimization problem is simulation-based and as such each objective function evaluation entails running 

one or more computationally expensive reservoir simulation/s. This brings into question the feasibility 

of seamlessly implementing optimization techniques to the workflows of field development planning. 

Vitally, the computational efficiency of any proposed optimization technique for field development 

planning must be of focus. In other words, any proposed optimization technique should be able to 

propose optimal solutions for the FDP problem without becoming too computationally demanding.  

However, this must be done without compromising the quality of the proposed solutions. 

In this work, the aim is to develop and implement optimization techniques for various field 

development planning tasks with a specific focus on computational efficiency. Firstly, a gradient-based 

optimization algorithm, Adam-SPSA, is developed to accelerate the optimization of well control 

settings in high-dimensional solution spaces. This is done through the use of an adaptive moment 

estimation framework which utilises first-order gradient information to calculate dimension-wise search 

directions. The proposed algorithm was compared to contemporary methods, including a gradient-based 

algorithm and a local derivative-free algorithm.  
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 Next, two approaches were investigated for the efficient optimization of well placement and 

trajectories. Both these approaches were developed for situations where a stringent computational 

budget exists (e.g., limited number of software licenses, short time-frame, etc.). The first approach 

extended the use of Adam-SPSA to the well placement and trajectory problem to take advantage of its 

accelerated convergence to suitable solutions in a limited number of reservoir simulations. To do this 

efficiently, the application of Adam-SPSA is done under the premise of a heuristic (reservoir 

engineering) based initial guess.  

The second approach tackled the well placement problem by simplifying the use of reservoir 

simulations with fast-to-evaluate surrogates. In this way, a suitable solution is found using a lower 

number of reservoir simulation calls. Specifically, the use of a two-level surrogate-based technique, 

known as manifold mapping, was investigated. This technique is a surrogate correction technique that 

iteratively improves the quality of the surrogate before optimizing it. The use of various types of 

surrogates is investigated including analytical surrogates and physics-based surrogates.  

An intuitive progression is the consideration of both well control settings and well placement in 

a joint manner. Previous studies have shown an improved solution compared to the consideration of 

each optimization task separately. However, this comes at the expense of a significant increase in 

reservoir simulation calls. Consequently, the use of bilevel optimization approach with the outer loop 

consisting of the well placement problem and the inner loop consisting of the well control problem 

assisted by capacitance-resistance models (CRMs) was proposed.  

  Lastly, an adaptive rank-based subset selection technique for the efficient incorporation of 

geological uncertainty in field development optimization problems was developed. In this approach, the 

subset selection problem was reformulated to one which aims at ensuring consistent ranking of the 

development strategies between the full set and the selected subset of realizations. The developed 

technique is a more relaxed problem and is not restricted in application. 
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1.2 Thesis Structure 

This is a thesis by publication. Chapter 1 begins with a problem statement to provide context and 

describe the aim of this thesis. It also presents the contribution of each publication to the thesis. Chapter 

2 presented an in-depth literature review which encompasses well control optimization, well placement 

optimization, joint optimization of well control and well placement, and optimization under geological 

uncertainty. The subsequent chapters, including Chapters 3, 4, 5 and 6 are composed of published 

journal papers. The thesis is completed with Chapter 7 giving a summary and conclusions. Table 1 gives 

an overview of the Chapter numbers, their titles, the journal papers contributing to them and their 

publication status. 

Table 1: Thesis structure 

Chapter 

Number 

Chapter Title Paper 

number 

Status 

3 An accelerated gradient algorithm for well control optimization 1 Published 

4 Efficient techniques for well placement optimization 2 Published 

3 Published 

5 Bilevel optimization of well placement and well control 

settings assisted by capacitance-resistance models 

4 Published 

6 Adaptive rank-based selection of geological realizations for 

optimum field development planning 

5 Published 

 

1.3 Contributions of each publication to this thesis  

The overarching theme of this thesis is the investigation, development and implementation of 

optimization algorithms to large-scale field development problems with a key focus on computational 

efficiency. Various algorithms have been proposed in the literature to solve the well control 

optimization problem, however; there has been a greater focus on finding the best solution and less 

focus on the computational efficiency of the optimization frameworks. This thesis is comprised of five 

journal publications each with a specific contribution to the primary goal.  

In the paper titled “An accelerated gradient algorithm for well control optimization”, a gradient-

based algorithm, Adam-SPSA, is developed and implemented to large-scale well control optimization 

under uncertain conditions. This is the first application of Adam to reservoir engineering problems. The 
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optimization framework is based on estimates of the first (mean) and second (variance) moments of the 

gradient approximations. In addition, the variable-specific (dimension-wise) nature of the search 

direction ensures that the search progression is tailored for each variable. When applied to well control 

optimization problems, the novel algorithm (Adam-SPSA) was more computationally efficient than the 

popular steepest descent (SD) SPSA - without compromising the optimal solution found. Furthermore, 

an in-depth investigation into the effect of different constraint handling techniques on the optimization 

was undertaken. These investigations and findings constitute Chapter 3 of this thesis.  

Following from the success of the developed gradient-based algorithm in Chapter 3, its application 

was extended to well placement optimization in the paper titled “An adaptive moment estimation for 

well placement optimization”. The objective of this paper was to take advantage of the known 

characteristics of Adam-SPSA, including the fast convergence to a local optimum and the dependence 

on the initial starting point, for certain practical applications in well placement optimization. In practical 

scenarios, the availability of resources, whether that be human resources or hardware/software 

resources, is limited. This paper makes the underlying assumptions that there is a stringent 

computational budget (i.e., limited number of reservoir simulations) and there exists a reservoir 

engineering judgement that is a suitable starting point for the optimization procedure.  

In this paper, it is argued that for such scenarios it becomes vital to take advantage of the local 

efficiency of gradient-based algorithms to produce solutions which maximise the improvement on the 

initial guess within the allotted computational budget. An investigation is also presented detailing the 

reasons behind the improvements presented in the search directions of Adam compared to the steepest 

descent framework, visually showing the ability of Adam-SPSA to evade local minimums in search for 

a better optimum. To the author’s knowledge, this is the first time this has been done for gradient-based 

algorithms in well placement optimizations. In the paper the proposed algorithm (Adam-SPSA) is 

compared with a gradient-based algorithm (steepest descent SPSA) and a local derivative-free algorithm 

(generalized pattern search) for the placement of vertical and nonconventional wells to show the 

computational efficiency of the proposed methodology. This paper also included additional discussions 
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regarding nonconventional parameterization and the effect of constraint handling techniques on 

simultaneous perturbation gradient approximations.    

Another approach to improve the computational efficiency of well placement optimization is 

through the use of surrogates, as was investigated in the paper titled “A study of simulation-based 

surrogates in well placement optimization for hydrocarbon production”. Here, a surrogate-treatment 

method, manifold mapping, was used to iteratively correct a surrogate (or proxy) during the 

optimization procedure. The underlying aim is to optimize the corrected and fast-to-evaluate surrogate 

rather than using full-physics reservoir simulations, which are significantly more computationally 

demanding. As the optimization progresses, the surrogate is able to converge to a local optimum using 

a lower number of reservoir simulation calls. In this study, both analytical and physics-based surrogates 

were investigated to see the advantages and disadvantages of each type. It was found that in cases of 

simple recovery mechanisms (i.e., natural depletion), analytical surrogates (e.g., kriging and quadratic 

approximation) are sufficiently accurate to converge to a suitable solution more quickly than a local 

derivative-free algorithm. However, as the complexity of the recovery mechanism and the reservoir 

model increase, for example in water-flooding scenarios of three-dimensional models, a physics-based 

surrogate (e.g., local grid coarsening) provides the necessary accuracy to find an improved solution with 

a reduction in computational cost. These two papers make up Chapter 4 of this thesis.  

A natural progression for the research was to consider both well placement and well control 

optimization in a joint fashion. The main impediment of current approaches proposed in the literature 

for solving joint optimization problems is that they are very computationally demanding. That is, they 

require a prohibitive number of reservoir simulation calls, which can become intractable for large, 

complex reservoir models.   

In the paper titled “Bilevel optimization of well placement and control settings assisted by 

capacitance resistance models”, a nested approach using capacitance resistance models is proposed to 

solve the joint optimization problem. The proposed bilevel approach is composed of an outer loop for 

well placement optimization and an inner loop for well control optimization. In the proposed 

framework, capacitance resistance models are used as a surrogate for reservoir simulations in the inner 
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loop (i.e., well control optimization) to significantly reduce the number of required reservoir 

simulations. This paper is the first known use of capacitance resistance models as surrogates in the joint 

optimization problem. The proposed approach showed significant reduction in the number of required 

reservoir simulations to converge to the same solution as the contemporary approach. This paper 

comprises Chapter 5 of this thesis. 

An important aspect of field development planning is the incorporation of geological uncertainty 

in the optimization problem. However, the incorporation of uncertainty through the use of an ensemble 

of geological realizations, in the order of hundreds to thousands, becomes computationally prohibitive. 

To this end, in the paper titled “Adaptive rank-based selection of geological realizations for optimum 

field development planning”, a new subset selection technique for field development optimization under 

uncertainty is developed and implemented. It is argued that the ultimate goal of any subset selection 

technique is to ensure the proposed field development plans are consistently ranked compared to the 

ranking based on the full ensemble of realizations. This reformulation of the subset selection problem 

is expressed mathematically. A technique is proposed which selects a subset of realizations that 

minimizes the difference between the rankings of development strategies obtained by the subset and the 

full set. The underlying idea in the proposed technique is that a subset of realizations selected based on 

a small batch of development strategies (i.e., solutions) is accurate when ranking other development 

strategies. Comparison with other subset selection techniques and implementation for well placement 

optimization demonstrated the computational savings of the proposed approach. 

The five papers presented represent an effort to develop and implement computationally efficient 

techniques for large-scale field development problems including well control and well 

placement/trajectory optimization under uncertainty. The papers collectively provide insight into state-

of-the-art algorithms and approaches that focus on reducing the computational costs of field 

development optimization to allow practical implementation in everyday workflows.  
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2 Literature Review 

2.1 Well Control Optimization 

The well control optimization problem, also known in the literature as production optimization, is the 

assignment of injection/productions rates and/or bottom-hole pressures (BHPs) over pre-defined or 

adaptive time-steps (or control intervals) to maximize/minimise an objective function. The decision 

variables, injection/productions rates and/or BHPs, are continuous, piecewise and temporal. Typically, 

well control optimization problems are high-dimensional and composed of 100s and 1,000s of decision 

variables. The well locations are pre-defined and do not change throughout the optimization process. 

The objective function landscapes of well control optimization problems are characterized by long flat 

valleys and hence are relatively less rugged and smoother (Do and Reynolds, 2013, Fonseca et al., 

2014b, Zhao et al., 2013). The well control optimization problem can be formulated mathematically as 

the following:  

 

min
𝒖∈ℝ𝒏𝒖

𝑓(𝒖) 

subject to: 

𝑐𝑖(𝒖) < 0, 𝒊 ∈ 𝐾 

𝑐𝑖(𝒖) = 0, 𝒊 ∈ 𝐼, 

(1) 

 

where, 𝑓(𝒖) is the objective function to be maximized/minimized, 𝒖 is the vector of decision variables 

(i.e., well control settings), 𝑛𝑢 is the number of decision variables, 𝐼 and 𝐾 are the sets of indices for 

equality and inequality constraint function, 𝑐(𝒖), respectively. These constraint functions can include 

simple bound constraints as well as, linear and nonlinear constraints. Examples of bound constraints 

would be upper and lower limits on injection/production rates or BHPs based on field operational 

capacities. Examples of equality and inequality constraints include field rate constraints, total liquid 

production constraints, and total injection rate constraints. To solve the well control optimization 

problem both gradient-based algorithms and derivative-free algorithms – some assisted with surrogates 

– have been applied.  
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2.1.1 Gradient-based techniques  

The architecture of the objective function landscape for well control optimization problems lends 

themselves to be better suited for gradient-based algorithms, due to their relatively smoother landscapes 

(Zhao et al., 2013, Fonseca et al., 2014b, Do and Reynolds, 2013). A number of gradient-based 

algorithms have been applied to solve the well control optimization problem. They can be categorized 

by the type of gradients used and the optimization framework employed. 

The two major categories of gradients that have been utilized in well control optimization are 

adjoint gradients and gradient approximation methods. Adjoint formulations have roots in optimal 

control theory and are an efficient way to calculate gradients. The efficiency of adjoint-based methods 

comes from the fact that the Jacobian matrices from the forward simulation are used to find the 

sensitivities of the objective function to the control (decision) vector. This also means that the gradient 

calculation of the objective function is independent of the number of control variables (Jansen, 2011). 

Adjoint-based methods have been applied to tertiary recovery using surfactant flooding (Ramirez et al., 

1984, Fathi and Ramirez, 1984). Other early applications include carbon dioxide flooding (Mehos and 

Ramirez, 1989), steam flooding (Liu et al., 1993), and most commonly water flooding (Asheim, 1988).  

A resurgence of interest in adjoint-based well control optimization occurred after the invention 

and application of smart wells, which allowed the control of downhole well settings (Carvajal et al., 

2018). This includes the works of Brouwer and Jansen (2004), Sudaryanto and Yortsos (2001), Brouwer 

et al. (2004), Sarma et al. (2005), Suwartadi et al. (2012) and (Forouzanfar et al., 2013). Although they 

are efficient in calculating gradients, adjoint methods are considered intrusive as they require access to 

reservoir simulation source code, which may be unavailable for commercial simulators. In addition, 

adjoint gradients are not trivial to implement and maintain.  

As an alternative to the intrusive adjoint-based methods, other gradient approximations 

methods have been proposed. The simplest method used for well control optimization is the finite 

difference method (Yeten et al., 2004, Asadollahi et al., 2014, Isebor, 2009, Wang et al., 2009). 

However, such a technique is not computationally efficient for high-dimensional well control problems 
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as it requires 2n function evaluations (reservoir simulations), where n is the number of decision 

variables. Another gradient approximation which has found success in its application to well control 

optimization problems is the simultaneous perturbation stochastic approximation (SPSA). These works 

include Wang et al. (2009), Do and Reynolds (2013) and Foroud et al. (2018). Other techniques such 

as ensemble-based optimization (EnOpt) (Chen et al., 2009, Chen and Reynolds, 2017, Leeuwenburgh 

et al., 2010, Dehdari and Oliver, 2012, Chaudhri et al., 2009, Dehdari et al., 2012) and stochastic 

simplex approximate gradient (StoSAG) (Fonseca et al., 2017, Lu et al., 2017b, Liu and Reynolds, 

2020, Fonseca et al., 2014b, Silva et al., 2020) incorporate geological uncertainty in the gradient 

approximation. 

Applications of gradient-based algorithms can also be categorized into the optimization 

framework used, which includes steepest descent (ascent), conjugate method and sequential quadratic 

programming.  Due to its simplicity in implementation, the most common framework is the steepest 

descent (ascent) method (Chen et al., 2009, Leeuwenburgh et al., 2010, Brouwer and Jansen, 2004, 

Wang et al., 2009, Brouwer et al., 2004). This framework utilizes the negative of the gradient as the 

search direction to progress the search. In addition, backtracking line search is also coupled with 

steepest descent to find an appropriate step size (Nocedal and Wright, 2006). However, this introduced 

additional parameters and requires additional objective function evaluations which may become costly. 

Various gradient calculations/approximations have been combined with the steepest descent (ascent) 

framework, including adjoint formulations (Brouwer and Jansen, 2004, Brouwer et al., 2004), SPSA 

(Wang et al., 2009, Foroud et al., 2018, Do and Reynolds, 2013), finite difference (Wang et al., 2009) 

and EnOpt (Chen et al., 2009, Leeuwenburgh et al., 2010, Forouzanfar et al., 2013). 

Another optimization framework that has been implemented in well control optimization is the 

conjugate gradient framework (Yeten et al., 2004, Asadollahi and Naevdal, 2009, Chaudhri et al., 2009), 

however; improvements in computational efficiency over steepest descent have been modest. In this 

technique, a search direction is a weighted combination of the current gradient and the gradient in the 

previous iteration. Adjoint formulations (Asadollahi and Naevdal, 2009), EnOpt (Chaudhri et al., 2009) 
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and finite difference (Yeten et al., 2004) have been used as to approximate or calculate the gradient in 

the conjugate gradient framework. 

The sequential quadratic programming (SQP) framework has also been applied to well control 

optimization problems as a means to improve the handling of nonlinear constraints (Liu and Reynolds, 

2020, Dehdari and Oliver, 2012, Asadollahi et al., 2014, Lorentzen et al., 2009). In this method, at each 

iteration a quadratic sub-problem that incorporates a Lagrangian formulation is solved to obtain a search 

direction. Although this method incorporates nonlinear constraints through the use of the Lagrangian, 

it requires a large number of function evaluations, making it less computationally efficient than other 

methods. A number of different gradient approximations have been used within the SQP framework, 

including StoSAG (Liu and Reynolds, 2020), EnOpt (Dehdari and Oliver, 2012) and finite difference 

(Lorentzen et al., 2009, Asadollahi et al., 2014).  

2.1.2 Derivative-free techniques 

Derivative-free optimization (DFO) algorithms have also been applied – to a lesser degree – to well 

control optimization problems. These types of algorithms rely only on objective function values to 

search the solution space. Although they search more globally compared to gradient-based algorithms, 

it comes with an increased number of function evaluations to converge to a solution. This issue 

intensifies in high-dimensional settings as is typically the case in well control optimization. Derivative-

free optimization techniques can be classified into two main categories: deterministic methods and 

stochastic methods. Deterministic methods include stencil-based algorithms, such as Hooke-Jeeves 

direct search (HJDS) (Hooke and Jeeves, 1961), Nelder-Mead (or polytope) (Nelder and Mead, 1965) 

and generalized pattern search (GPS) (Torczon, 1997). Stochastic methods include particle swarm 

optimization (Kennedy and Eberhart, 1995), genetic algorithms (GA) (Srinivas and Patnaik, 1994) and 

covariance matrix adaptation – evolutionary strategy (Hansen, 2006).  

Various papers have compared different derivative-free algorithms for well control 

optimization. Ciaurri et al. (2010) compared HJDS, GPS, GA and SQP for the optimization of a 20-

dimensional well control problem with general constraints handled using either the penalty method or 
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filter method. The gradient-based approach (SQP using finite difference) performed efficiently, 

however; the authors claim the selection of a suitable perturbation size can be problematic. Hence, the 

authors recommended HJDS when distributed computing resources are not available. Asadollahi et al. 

(2014) compared HJDS, GPS, Nelder-Mead, SQP and HJDS with a gradient-based line-search hybrid 

for the well control optimization of the Brugge benchmark. Wang et al. (2019) compared GA, PSO and 

CMA-ES for the optimization of 128 well control variables using the PUNQ-S3 benchmark.  

2.1.3 Use of surrogates 

Surrogates, also known as proxy models or meta-models, have also been applied to well control 

problems to improve the computational efficiency of the optimization procedure. This is done by 

replacing expensive high-fidelity reservoir simulations with lower fidelity, but fast-to-evaluate, 

alternatives. There have been applications of both response surface modelling and reduced order 

modelling to well control optimization problems.  

Response surface surrogates are trained and calibrated based on a number of previously 

evaluated well control scenarios using reservoir simulations. Zhao et al. (2013) used approximated 

gradients from ensemble-based techniques and SPSA to optimize a quadratic interpolation model for 

well controls. Golzari et al. (2015) implemented an artificial neural network (ANN) in combination 

with GA to optimize the well controls of four production wells in the PUNQ-S3 benchmark. Echeverria 

Ciaurri and Wagenaar (2016) applied a corrective surrogate treatment, manifold mapping, in 

conjunction with surrogates based on generalized barycentric coordinates and quadratic approximation 

for well controls.  

Reduced order modelling is typically based on reducing the underlying physics or the numerical 

calculations. Proper orthogonal decomposition and its variants, such as missing point estimation 

(Cardoso et al., 2009), trajectory piecewise linearization (Cardoso et al., 2009, Jansen and Durlofsky, 

2017) and the discrete empirical interpolation method (Alghareeb, 2015, Suwartadi et al., 2015) have 

been applied to well control optimization. Other reduced order surrogates include streamline 

simulations and capacitance resistance models (CRMs). Streamline simulations have also been used to 

optimize well controls of mature fields in Wen et al. (2014). Capacitance resistance models have been 
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used to in conjunction with gradient-based ensemble techniques (Hong et al., 2017, Jafroodi and Zhang, 

2011). Jafroodi and Zhang (2011) applied CRMs to optimize the well controls of five injectors and four 

producers for a simple synthetic reservoir, whilst Hong et al. (2017) optimized the control settings of 

eight injectors and four producers. 

2.2 Well Placement and Trajectory Optimization 

The well placement and trajectory optimization, also known as well location optimization, is the 

determination of the optimal well locations/trajectories subject to physical field constraints that 

maximize an objective function. In these problems, the well control settings (i.e., injection/production 

rates and/or producer BHPs) are kept constant throughout the optimization process. Due to the highly 

nonlinear relationship between the well locations and the produced fluid volumes, the objective function 

landscapes are characterized by nonconvex and highly multimodal architectures. Typically, well 

placement optimization problems are low-dimensional relative to well control optimization, however; 

due to the increase nonlinearities they are expected to have more rugged objective function landscapes 

with more minima.  The well placement and trajectory optimization problem can be formulated as 

follows:  

 

min
𝒙∈ℝ𝒏𝒙

𝑓(𝒙) 

subject to: 

𝑐𝑗(𝒙) < 0, 𝒋 ∈ 𝐻 

𝑐𝑗(𝒙) = 0, 𝒋 ∈ 𝑉, 

(2) 

where, 𝑓(𝒙) is the objective function to be maximized/minimized, 𝒙 is the vector of decision variables 

(i.e., well locations/trajectories), 𝑛𝑥 is the number of decision variables, 𝐻 and 𝑉 are the sets of indices 

for equality and inequality constraint function, 𝑐(𝒙), respectively. The constraint functions for well 

placement optimization are fundamentally different than those for well control optimization.  

Bound constraints for well placement problems could include reservoir boundaries, however; 

more sophisticated reservoir boundaries can be included through piecewise polynomial functions to 

constrain the placement of well in regions within irregular-shaped boundaries. Other well placement 

constraints include minimum inter-well distances and maximum well lengths.  
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Another important consideration for well placement and trajectory optimization problems is the 

parameterization of the wells. When optimizing the placement of two dimensional wells (i.e., vertical 

wells) they can be parameterized using continuous x and y coordinates or discrete i and j indices, which 

largely depends on the reservoir simulators ability to handle one over the other (Güyagüler and Horne, 

2004, Bangerth et al., 2006, Badru and Kabir, 2003, Onwunalu and Durlofsky, 2010). When considering 

wells in three-dimensions, the parameterization can be done using spherical coordinates (i.e., x, y, and 

z for the heel and 𝐿, 𝜙, and 𝜃 for the length of the well, inclination angle and azimuth angle, 

respectively) or Cartesian coordinates (i.e., x, y and, z for each of the heel and toe)(Yeten et al., 2003, 

Ding, 2008, Alrashdi and Sayyafzadeh, 2019, Bouzarkouna et al., 2012, Forouzanfar and Reynolds, 

2013). 

Global derivative-free optimization algorithms have lent themselves to be better suited for well 

placement optimization problems given their ability to traverse the landscapes more effectively. 

Gradient-based algorithms and surrogate-based approaches have also shown promise for well 

placement optimization in computationally constrained scenarios. 

2.2.1 Derivative-free techniques 

Derivative-free optimization algorithms use objective function values to direct the search by updating 

the algorithmic parameters to propose new solutions at each iteration. A number of various derivative-

free algorithms have been applied to well placement optimization problems. Genetic algorithms (GA) 

have been popular for solving the well placement optimization problem for vertical wells (Bangerth et 

al., 2006, Güyagüler and Horne, 2004, Ozdogan and Horne, 2006, Sayyafzadeh, 2017, Montes et al., 

2001, Tupac et al., 2007) and nonconventional wells (Artus et al., 2006, Yeten et al., 2003, Emerick et 

al., 2009). 

Another popular derivative-free optimization algorithm for well placement problems is particle 

swarm optimization (PSO), first applied by (Onwunalu and Durlofsky, 2010). Their work implemented 

PSO to a number of example problems including the optimization of 20 vertical wells, four deviated 

wells and two nonconventional wells with an unknown number of laterals. Their work showed 
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promising results when compared to GA for the example problems. Ding et al. (2014) applied a 

modified PSO in conjunction with a quality map to improve the solutions for well placement 

optimization. Jesmani et al. (2016a) applied PSO and focussed on the incorporation of physical field 

constraints. Wang et al. (2012) combined PSO with a simplex method for the optimization of well 

placement using a retrospective framework that incorporated geological uncertainty. Nwankwor et al. 

(2013) implemented a hybrid procedure combining PSO and differential evolution (DE) for the 

optimization of vertical wells in two and three-dimensional models. 

Covariance matrix adaption – evolutionary strategy (CMA-ES) has been applied to well 

placement optimization in Ding (2008) and Bouzarkouna et al. (2012). Other algorithms applied to well 

placement optimization include simulated annealing (Bittencourt and Horne, 1997, Norrena and 

Deutsch, 2002), evolutionary strategy (Sayyafzadeh and Alrashdi, 2019, Alrashdi and Sayyafzadeh, 

2019), imperialist competitive algorithm (Al Dossary and Nasrabadi, 2016), Bound Optimization BY 

Quadratic Approximation (Forouzanfar and Reynolds, 2013), modified cuckoo algorithm (Alghareeb 

et al., 2014), a hybrid of cat swarm optimization and mesh-adaptive direct search (Chen et al., 2018) 

and metaheuristic bat algorithm (Naderi and Khamehchi, 2017). These derivative-free optimization 

algorithms are characterised as being computationally intensive which typically require 1,000s of 

objective function evaluations (reservoir simulations) to converge.  

2.2.2 Gradient-based techniques  

Although gradient-based algorithms are considered local search methods, various approaches have been 

applied to well placement optimization. This includes the adjoint-based method, which utilizes an 

indirect method to approximate the sensitivity of various vertical well locations on the objective 

function (Zandvliet et al., 2008, Sarma and Chen, 2008, Zhang et al., 2010). Vlemmix et al. (2009) 

extended this approach to well trajectories in three-dimensional spaces by utilizing pseudo-sidetracks. 

Volkov and Bellout (2018) used the adjoint formulation to find key partial derivative terms and then 

used the finite difference method to approximate these terms. Bangerth et al. (2006) applied an integer 

variant of SPSA for the optimization of vertical wells, whilst Jesmani et al. (2016b) applied a continuous 

variant of SPSA for the optimization of a single nonconventional well. Wang et al. (2007) compared 
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SPSA to finite difference methods for the optimization of a water injection well in a two-dimensional 

case. Leeuwenburgh et al. (2010) implemented EnOpt for the optimization of nine vertical wells in a 

two-dimensional model.  

2.2.3 Use of surrogates 

The use of surrogates, also known as proxy models or meta-models, can improve the computational 

efficiency of well placement optimization by reducing the number of required high fidelity reservoir 

simulations. Güyagüler et al. (2002) combined GA with artificial neural networks (ANNs) and kriging, 

whilst Yeten et al. (2003) combined GA with ANN for the optimization of nonconventional wells. 

Kwon et al. (2021) used convolutional neural networks (CNNs), an advanced type of ANNs, to predict 

the cumulative oil production at each possible well location. Artus et al. (2006) implemented a statistical 

proxy that was built using k-means clustering. Bouzarkouna et al. (2012) combined CMA-ES with a 

local quadratic surrogate built on the k-nearest points to optimize two unilateral wells. In Zubarev 

(2009), multiple analytical surrogates, including kriging, thin-plate splines and ANNs, were 

investigated for the optimization of two vertical wells, however; only very simple problems were 

considered (the areal location of two vertical wells).  

2.3 Joint Well Placement and Well Control Optimization  

The architectures of the objective function landscapes for well placement and well control optimization 

problems are intrinsically different. This has to do with the decision variables and their nonlinear 

relationship with the output from reservoir simulations (i.e., produced fluid volumes). Consequently, as 

presented thus far, these two problems have been considered in silo of one another. However, more 

recently, a number of works have presented arguments that such an approach may lead to sub-optimal 

results (Bellout et al., 2012, Sayyafzadeh and Alrashdi, 2019). It is argued that there is an inherent 

interdependency between the well locations and their associated well control settings and as such their 

joint consideration would lead to more optimal solutions. However, this comes at the increased cost of 

overhead from additional required computationally expensive reservoir simulations. 

The joint optimization of well placement and well control can be formulated as follows:  
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min
𝒙∈ℝ𝒏𝒙 ,ℝ𝒏𝒖  

𝑓(𝒙, 𝒖) 

subject to: 

𝑐𝑟(𝒙, 𝒖) < 0, 𝒓 ∈ 𝑊 

𝑐𝑟(𝒙, 𝒖) = 0, 𝒓 ∈ 𝑇, 

(3) 

where, 𝑓(𝒙, 𝒖) is the objective function to be maximized/minimized, 𝒙 is the vector of  well placement 

decision variables (i.e., well locations/trajectories), 𝑢 is the vector of  well control decision variables, 

𝑛𝑥 is the number of well placement decision variables, 𝑛𝑢 is the number of well control decision 

variables, 𝑊 and 𝑇 are the sets of indices for equality and inequality constraint function, 𝑐(𝒙), 

respectively.   

 In the literature, there are two main categories of implementation for the joint optimization of 

well placement and well control. The first category is the sequential optimization of well placement and 

well controls. In this approach, either the well placement or well control problem is solved followed by 

the other using the optimal solution found for the first optimization. For example, one may solve the 

well placement problem to obtain optimal well locations and/or trajectories. Then, using these optimal 

well locations and/or trajectories, the well controls settings are optimized. This can be done once or in 

an iterative manner until no improvement in objective function value occurs. 

 The second approach is the simultaneous optimization of well placement and well controls. As 

indicated by the name, both well locations and/or trajectories and the well control settings comprise the 

decision variable vector. By virtue of the curse of dimensionality, this increase in the number of decision 

variables will increase the complexity of the optimization problem (Bellman, 1966).  

Debate still exists in the literature regarding which implementation (sequential or simultaneous) 

provides more optimal solutions. There are several pieces of literature which argue that a sequential 

(usually iterative) approach is the preferred method over a simultaneous one (Humphries et al., 2014, 

Humphries and Haynes, 2015, Wang et al., 2016, Lu and Reynolds, 2020, Lu et al., 2017a). On the 

contrary, several pieces of work have argued that a simultaneous approach results in more optimal 

solutions as it incorporates all the decision variables concurrently (Isebor et al., 2014, Bellout et al., 

2012, Forouzanfar et al., 2016, Sayyafzadeh and Alrashdi, 2019). Various types of techniques have 
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been developed and used for joint optimization problem including gradient-based algorithms, 

derivative-free algorithms or a hybrid of these. 

2.3.1 Gradient-based techniques  

There has been a number of works which use gradient-based techniques to solve the joint optimization 

both sequentially and simultaneously. Li and Jafarpour (2012) implemented the gradient-based SPSA 

algorithm in an iterative sequential manner to optimize the well locations and well control settings for 

the top layer of the SPE10 model and the PUNQ-S3 model. Salehian et al. (2021) also used the SPSA 

algorithm for the iterative sequential optimization of well locations and well controls in a multi-solution 

framework for the Brugge benchmark model. Li et al. (2013) used the SPSA algorithm in a simultaneous 

fashion and incorporated geological uncertainty in their example problems. Lu et al. (2017a) 

implemented the stochastic simplex approximate gradient (StoSAG) algorithm in an iterative sequential 

manner for the optimization of three-dimensional well segments and their associated well controls. 

2.3.2 Derivative-free techniques 

Derivative-free optimization algorithms have also found success when implemented for joint 

optimization. Forouzanfar et al. (2016) tested CMA-ES and a hybrid of CMA-ES with an ensemble-

based technique for both sequential and simultaneous approaches. Their work found that CMA-ES 

using a simultaneous approach performed the best on both problem types (i.e., simultaneous or 

sequential). Wang et al. (2016) found that the use of a multilevel coordinate search algorithm was 

competitive against other derivative-free algorithms for the sequential and simultaneous problems. 

Sayyafzadeh and Alrashdi (2019) and Alrashdi and Sayyafzadeh (2019) used an evolutionary strategy 

(ES) for the simultaneous optimization of well placement in three-dimensions and well controls on 

various problems, including the three-dimensional Olympus benchmark.  Awotunde (2014) 

implemented a dimensionality reduction technique to the well control problem for the simultaneous 

optimization using differential evolution.  
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2.3.3 Hybrid techniques  

Hybrid optimization algorithms have found success in applications to joint optimization of well 

placement and well control. They have the ability to take advantage of both local and global search 

capabilities to traverse the solution space more efficiently than either gradient-based or derivative-free 

techniques separately. 

 Bellout et al. (2012) combined pattern search methods (HJDS and GPS) with sequential 

quadratic programming (SQP) with using adjoint gradients. They implemented joint optimization in a 

nested (i.e., bilevel) fashion, where each proposed well location underwent an inner loop of well control 

optimization. The outer well placement optimization was solved using the pattern search method and 

the inner well control optimization was solved using SQP. Another popular hybrid optimization 

algorithm is the combination of PSO with either mesh-adaptive direct search (MADS) or GPS, which 

has been implemented for both simultaneous and sequential joint optimization (Isebor et al., 2014, 

Humphries and Haynes, 2015, Humphries et al., 2014).  Isebor et al. (2014) and Humphries et al. (2014) 

considered only vertical wells whilst Humphries and Haynes (2015) studied the placement of three-

dimensional wells. Lu and Reynolds (2020) optimized well drilling path, drilling sequences and well 

type using a GA with mixed encodings combined with StoSAG for well control optimization. 

2.3.4 Use of proxies 

There is only a small number of literature which investigate the use of surrogates for joint optimization.  

Møyner et al. (2014) introduced the use of time-of-flight and tracer partition equations for the joint 

optimization on multiple synthetic reservoir models. The authors state that the aim of flow diagnostics 

isn't to achieve a fully automated framework that can find the true optimum, rather it is to provide a set 

of fast tools that can be used in existing workflows to improve on an initial configuration. Aliyev and 

Durlofsky (2017) introduced a multilevel framework for the joint optimization of well placement and 

controls. In this work, particle swarm optimization is used to optimize a sequence of models with 

increasing grid refinement at each iteration of the optimization. The upscaled models are obtained 

through a global single-phase method that generates upscaled well indices and transmissibilities. More 

recently, de Brito and Durlofsky (2021) implemented a nested approach, similar to the one presented in 
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Bellout et al. (2012), for the joint optimization using a set of surrogate treatments. The inner loop of 

well control optimization is divided further into two sub-problems each with a different objective 

function based on a different surrogate. 

2.4 Optimization under Geological Uncertainty 

The incorporation of geological uncertainty is an important consideration for reservoir optimization 

problems to ensure robust solutions are found and proposed. This is typically done through the use of 

an ensemble of geological realizations - in the order of hundreds or thousands. The evaluation of each 

proposed solution (i.e., development strategy) against the full ensemble of realization results in a 

cumulative distribution function (CDF) of the fitness metric. The fitness metric will depend on the 

decision-maker, but common ones are Net-Present-Value (NPV) or cumulative oil production, among 

others. The resulting CDF, and its associated probability distribution function (PDF), serves as a 

representation of the uncertainty needed for a robust optimization process. This CDF is then represented 

by a single decision metric value to allow the ranking of the proposed solutions and subsequent selection 

of the optimal solution.  

There has been a number of works which utilize the full set of geological realizations and 

optimize to maximize/minimize a single decision metric (e.g., expected value of NPV). Chen et al. 

(2009), Fonseca et al. (2017), Fonseca et al. (2015), Chen et al. (2012), Fonseca et al. (2014a), Dehdari 

and Oliver (2012), and van Essen et al. (2009) used the full set of realizations for well control 

optimization with an objective function represented by the expected value of NPV (i.e., the decision 

metric). Güyagüler and Horne (2004) implemented a decision analysis framework for well placement 

optimization over the full set of realizations using the expected utility as the objective function to 

account for the decision-maker’s risk attitude.  

However, using the full ensemble of realizations to evaluate each proposed solution (i.e., field 

development plan) makes the optimization problem intractable. Consequently, there has been literature 

that investigated techniques to reduce the computational cost of optimization under geological 

uncertainty. These techniques attempt to select the most representative subset of realizations from the 



21 

 

full set to propagate the geological uncertainty in a computationally efficient manner. Previous literature 

on subset selection techniques can be classified into four main categories: (1) random selection, (2) 

static property methods, (3) flow-response vector-based methods and (4) a combination of static 

property and flow-response vector-based methods.   

The random subset selection technique has been widely implemented in the literature, mainly 

due to its simplicity. As the name suggests, in this technique a pre-defined number of realizations are 

randomly selected from the full set to form the subset. Lorentzen et al. (2009) utilized the random 

selection technique within a closed loop reservoir management framework for well control optimization 

of the Brugge benchmark model. Li et al. (2013) applied the random selection subset selection technique 

at each iteration of the joint optimization of well control and well location. Jesmani et al. (2020) and 

Jesmani et al. (2016b) implemented the random selection technique in a similar manner for well 

placement optimization. The authors argued that this would help ensure that all the realizations in the 

subset are utilized in the optimization and improve the results.  

Several works investigated the use of static property based methods for subset realization 

selection. These techniques rely on the selection of a static geological property, such as average 

permeability, average porosity, original oil in place (OOIP), or even a combination of these. Once the 

property is selected, a single value is calculated to represent each realization. This allows the realizations 

to be ranked accordingly, usually in an ascending order.  

Deutsch and Begg (2001) proposed that once the realizations are ranked, the aim should be to 

select realizations which are equally spaced. The authors argued that this would preserve the quantiles 

of the full set. McLennan and Deutsch (2005) proposed the combination of a number of static properties 

including OOIP, averages of water saturation, permeability and porosity, as well as local and global 

connectivity measures. Li et al. (2012) followed this work up by using a connected hydrocarbon volume 

measure based on well locations and types. Rahim and Li (2015) used an optimized-based method to 

find a subset of realizations that minimized a probability distribution distance metric compared to the 

full set. The technique was then applied to well placement optimization and compared to the ranking 
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method and the random selection technique. The authors argued that this would ensure the subset would 

have a similar statistical distribution characteristics to the full set. 

Another category of realization selection techniques aims at approximating the CDF of the 

output (flow-response) for a base case field development plan. In these flow-response vector methods, 

an inherent assumption is made: the approximated CDF of the base case is representative of the CDFs 

from all other possible development strategies. In Ballin et al. (1992), fast-to-evaluate alternatives were 

used to run the full ensemble for a base case development strategy. The realizations were then ranked 

and selected based on the output from the base case to form a subset of realizations. Mishra et al. (2002) 

and Odai and Ogbe (2011) used a similar technique, but instead used streamline simulations to evaluate 

a base case development strategy for the full ensemble of realizations. In Chen et al. (2012), a base case 

of well control settings was used to create a CDF of NPVs. Then, 11 reservoir models that corresponded 

to P1, P10, P20, P30… P90 and P99 were selected as the subset. The selected subset was then used for 

the full well control optimization procedure.  

Another implementation of flow-response vector-based subset selection techniques are those 

that use distance-based clustering. To find the distance between the realizations in the full set a distance 

(or dissimilarity) matrix is calculated. Each element in the matrix represents the pairwise distance 

between two realizations based on a defined characteristic. The characteristic could be the recovery 

factor, cumulative oil production and water breakthrough time. The distance matrix is then converted 

into the Euclidean space using multidimensional spacing (MDS). A following step is then undertaken 

using kernel methods to map the data points to a feature space. This allows the application of principal 

component analysis (PCA) and k-means clustering to select a subset of realizations. This technique was 

implemented in Scheidt and Caers (2009), Scheidt and Caers (2008) and Alpak et al. (2010) using 

streamline simulations to obtain the flow-response vectors used to calculate the difference matrix.  

The last category of subset selection techniques is one which combines both the static property 

methods and the flow-response vector methods. In Wang et al. (2012), static measures and flow-

response vectors are combined and projected into a two-dimensional space after which a clustering 

technique is used to select the subset of realizations. The flow-response vectors were based on the 
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cumulative oil production for an initial set of well locations. The subset was then used within a 

retrospective optimization framework for well placement optimization.  Haghighat Sefat et al. (2016) 

then used a similar approach to Wang et al. (2012) for well control optimization with the dissimilarity 

measure being based on the well water cut curves. In Shirangi and Durlofsky (2016), flow-response 

vectors (from selected well configurations) and static measures were combined in a weighted fashion 

resulting in a feature vector that can be used for clustering. The technique was then applied for well 

control optimization for a simple channelized two-dimensional reservoir model. Salehian et al. (2021) 

also used the technique introduced in Wang et al. (2012) for joint optimization of well control and well 

placement. The static measure used was permeability and the flow-response vector was the cumulative 

oil production for the initial well configuration. 
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demanding iterative optimization problem which can be time- 
consuming for real life problems. Consequently, the development of 
an algorithm that is suitable for such problems has been a matter or 
research. 

There are two broad categories of optimization algorithms: gradient- 
based and derivative-free optimization (DFO) algorithms. These algo-
rithms attempt to improve the fitness value by iteratively exploring and/ 
or exploiting the solution space. Gradient-based algorithms rely on first 
and/or second-order information about the objective function with 
respect to the variables to direct the search in each iteration. Conversely, 
derivative-free algorithms solely rely on the objective function values as 
a means of guiding the search progression and are typically aided by a 
form of stochasticity. This makes them more suitable for low- 
dimensional problems with multimodal landscapes (Nocedal and 
Wright, 2006). However, as the number of control variables increases, 
DFO algorithms become computationally inefficient as they require a 
large number of function evaluations to converge (Hou et al., 2015). 
Hence, gradient-based algorithms have been popular for use in pro-
duction optimization due to their ability to traverse the search space in a 
computationally efficient manner (Do and Reynolds, 2013). In addition, 
it is thought that the objective function search space is relatively 
smooth, characterized by long flat valleys (Do and Reynolds, 2013; 
Fonseca et al., 2014; Zhao et al., 2013). 

Many gradient-based algorithms have been applied to production 
optimization problems which typically differ in the method of gradient 
calculation/approximation. One such method is the adjoint method, 
which efficiently computes the gradient of the objective function with 
change in the input regardless of the number of control variables (Jan-
sen, 2011). It was first implemented to optimize the tertiary recovery 
process of surfactant flooding (Fathi and Ramirez, 1984; Ramirez et al., 
1984). Subsequent studies investigated its application in carbon dioxide 
flooding (Mehos and Ramirez, 1989), steam flooding (Liu et al., 1993), 
and water flooding (Asheim, 1988; Brouwer and Jansen, 2004; Brouwer 
et al., 2004; Sarma et al., 2005; Sudaryanto; Yortsos, 2001; Virnovsky, 
1991). Adjoint-based methods are considered intrusive, as they require 
access to the source code of the reservoir simulator, which is unavailable 
for the abundantly used commercial simulators. Furthermore, the effort 
required for the development and maintenance of adjoint-based opti-
mizers is not trivial (Jansen, 2011). A detailed review of adjoint-based 
optimization is given by Jansen (2011) for the interested reader. 

Accordingly, other methods have been proposed in the literature 
which do not require access to the simulator source code. The simplest 
method is the finite-difference gradient approximation. This method 
requires 2n function evaluations (reservoir simulations), where n is the 
number of variables, to approximate the gradient vector for one itera-
tion. As such, for typical problems which involve many control vari-
ables, this technique becomes inefficient. Other gradient 
approximations which have been implemented in production optimi-
zation and are computationally less demanding include the simulta-
neous perturbation stochastic approximation (SPSA), introduced by 
Spall (1992) and applied to production optimization by Wang et al. 
(2009) and Foroud et al. (2018), ensemble-based optimization (EnOpt) 
(Chen et al., 2009) and the stochastic simplex approximate gradient 
(StoSAG) (Fonseca et al., 2017). These techniques approximate the 
gradient by a simultaneous perturbation of all the variables, whereas the 
finite-difference only perturbs one variable at a time. The EnOpt and 
StoSAG techniques are gradient approximations which aim to incorpo-
rate geological uncertainty (noise in the objective function) more effi-
ciently. Do and Reynolds (2013) investigated the theoretical similarities 
between G(Gaussian)-SPSA, a SPSA-type gradient approximation, sim-
plex gradient, and EnOpt within a steepest descent (SD) framework. 
They concluded that there were minimal differences between gradient 

approximations, including SPSA. 
A common feature of many gradient-based methods employed in 

production optimization is that these gradient approximation tech-
niques have been utilized within the SD framework. The SD framework 
utilizes first-order information about the objective function to direct the 
search in the direction of descent (Nocedal and Wright, 2006). In 
addition, a line search is typically implemented within the SD frame-
work to find a suitable step size which controls the magnitude of 
movement in the search direction (Nocedal and Wright, 2006). Majority 
of research in production optimization has focused around improving 
the gradient approximation techniques with little emphasis on the 
framework which utilizes the approximated gradients. Asadollahi and 
Naevdal (2009) compared the SD and conjugate gradient frameworks 
for water-flooding optimization of the Brugge model using the adjoint 
method for gradient calculation. Chaudhri et al. (2009) also compared 
the SD and conjugate frameworks using EnOpt for gradient approxi-
mation. Both these studies reported slight improvements in optimal 
values over SD. Other studies have aimed at improving the handling of 
nonlinear constraints through the use of the Sequential Quadratic Pro-
gramming (SQP) framework. This method aims at using the Lagrangian 
formulation to iteratively solve quadratic sub-problems. Asadollahi et al. 
(2014) implemented SQP for the production optimization of the Brugge 
model and compared it to Hooke-Jeeves direct search (HJDS), the 
Nelder-Mead (NM) method, and the generalized pattern search (GPS) 
method. Dehdari and Oliver (2012) also implemented SQP for the pro-
duction optimization of the Brugge model with EnOpt as the gradient 
approximation. Although the SQP framework can handle nonlinear 
constraints, the additional computational requirement is considerable. 

This study presents the development of a first-order optimization 
algorithm with application to production optimization. The developed 
algorithm is a combination of SPSA as a gradient approximation within 
an adaptive moment estimation framework. The adaptive moment 
estimation framework has found significant success in optimization 
problems in machine learning applications. This is due to the incorpo-
ration of additional information from previous gradients to calculate 
variable-specific search directions. The search direction in the proposed 
framework is a vector composed of an average of previous gradients that 
is normalized element-wise by an estimated variance. As a result, this 
assists the search progression to be adjusted further for each control 
variable and allow a convergence speed-up. The developed algorithm is 
compared to the original SD-SPSA on two production optimization 
problems of increasing complexity. 

The outline of the paper is as follows. The problem statement, 
including the formulation of the optimization problem, as well as the 
objective function are presented in Section 2. Section 3 begins by 
introducing the steepest descent (ascent) framework and the adaptive 
moment estimation framework. Then, the development of a new algo-
rithm, Adam-SPSA, is presented. The selection of algorithm-specific 
parameters is also discussed. Section 4 begins by studying the effect of 
bound constraint handling techniques on both algorithms. Following 
this, numerical results for production optimization on two different case 
studies of differing complexity are presented. The significance and 
implication of these results are discussed in Section 5. A summary and 
final conclusions are made in Section 6. 

2. Problem statement 

2.1. Optimization problem formulation 

The optimization problem involves the maximization of a defined 
objective function where the well controls are the variables of interest. 
Typical variables considered in the literature are the liquid rates and/or 
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the bottom-hole pressure (BHP) of wells over a predefined or an adap-
tive set of control intervals. Other approaches have been studied, 
including explicit switching times (Sudaryanto and Yortsos, 2001), the 
halving-interval method (Hasan and Foss, 2013), and switching time 
intervals (Fonseca et al., 2015). The more common method is to use 
liquid rates and/or BHP values as the control variables. These well 
controls are piecewise constant between two control intervals which are 
typically pre-determined. 

The production optimization problem can be formulated as a general 
optimization problem as follows: 

min
x2ℝn

f ðxÞ
subject to :

ciðxÞ � 0; i 2 Κ
ciðxÞ 0; i 2 І;

(1)  

where, fðxÞ represents the objective function (defined later) to be opti-
mized, x is the vector of control (decision) variables, n is the number of 
control variables, I and K are sets of indices for equality and inequality 
constraint functions, cðxÞ, respectively. These constraint functions may 
include linear and nonlinear constraints, as well as bound constraints. 
The control variables considered are continuous bottom-hole pressures 
(BHP) with upper and lower bounds for a pre-determined number of 
control intervals. 

2.2. Objective function 

In this paper, we consider the objective function to be the negative of 
the Net-Present-Value (NPV) for a given lifespan. The NPV is defined as: 

f ðxÞ NPVðx;mÞ
XNt

t 1

roQotðx;mÞ þ cwpQwptðx;mÞ þ cwiQwitðx;mÞ
ð1þ bÞt

;

(2)  

where Nt is the reservoir lifespan in years, ro is the price of oil (per unit 
volume), Qot , Qwit and Qwpt are cumulative oil production, cumulative 
water injection and cumulative water production, over time t and tþ 1, 
respectively. cwp and cwi are the cost of handling produced water and the 
cost of water injection (per unit volume), respectively, b is the discount 
rate (%), and t is the number of years passed since start of production. To 
obtain an objective function value for a specific set of control variables x, 
a reservoir simulation must be run for a specified reservoir model, m. 
When no geological uncertainty is incorporated into the optimization 
problem, the deterministic objective function is defined as above for a 
specific reservoir model, m. On the other hand, when geological un-
certainty is incorporated the expected value of an ensemble of reservoir 
models is used as the objective function. The robust objective function 
for Ne equally probable geological realizations can be formally stated as: 

E½NPV�
PNe

i 1 NPVðx;miÞ

Ne
; (3)  

where, mi represents a reservoir model. Previous literature investigated 
incorporating risk attitude and other statistics when determining the 
objective function value (Chen et al., 2017; Yeten et al., 2004), however; 
these are not the focus of this paper. Furthermore, to ensure a compu-
tationally efficient implementation a subset of realizations is used to 
calculate the robust objective function value, which is discussed in more 
detail later. 

3. Methodology 

We first present the two optimization frameworks that are the focus 
of this paper and then outline the gradient approximation utilized. The 

combination of each framework with the gradient approximation leads 
to the two optimization algorithms that are investigated in this study. 
The formulations and modifications made to each algorithm are also 
presented and discussed. 

3.1. The steepest descent framework 

The steepest descent (ascent) framework is the simplest and most 
widely implemented framework. This framework utilizes the gradient as 
the search direction to progress the optimization (Nocedal and Wright, 
2006). The movement of the search depends on the value of the gradient 
in the direction of the local downhill (uphill) gradient. The search di-
rection can also be the approximated gradient normalized by its infinity 
norm. This enables a more appropriate guess for the initial step size (Do 
and Reynolds, 2013). The framework is presented in Framework 1.   

Framework 1  
0. Initialize iteration counter, k 0  
1. Select initial guess xk¼0  
2. Approximate the gradient as the search direction, gk  
3. Calculate proposed iterate: xkþ1 xk � a� gk , where a is a pre-defined step size.  
4. Return to step 1 and repeat until the stopping criterion is met.   

This framework has been abundantly used within production opti-
mization while utilizing different methods for computing or approxi-
mating the gradient in step 2. Brouwer and Jansen (2004) implemented 
the adjoint method within the steepest descent framework to optimize 
the water-flooding in three two-dimensional reservoir models. Chen 
et al. (2009) utilized an ensemble-based gradient approximation to 
incorporate geological uncertainty within a steepest descent (ascent) 
framework for the production optimization of a two-dimensional model. 
Other gradient approximations implemented within a steepest descent 
framework include stochastic simplex approximate gradient (Fonseca 
et al., 2017) and finite difference (Wang et al., 2009). 

3.2. The adaptive moment estimation framework 

The adaptive moment estimation (Adam) framework was first 
introduced by Kingma and Ba (2014) as a stochastic gradient-based al-
gorithm which utilizes first-order information. Although the framework 
was built for general stochastic optimization in science and engineering, 
its main application has been in computer science, including Google’s 
translation system (Wu et al., 2016) and image processing (Gregor et al., 
2015; Ledig et al., 2017). To the best of the authors’ knowledge, 
application of Adam to engineering applications, in particular produc-
tion optimization, has yet to be investigated. 

The efficiency of Adam comes from its requirement for only first- 
order gradient information and its ability to compute unique search 
directions for different control variables (dimension) (Kingma and Ba, 
2014). Adam adaptively calculates the search direction at each iteration 
depending on the approximation of first-order information, which al-
lows the search progression to be adjusted with regards to each control 
variable. The proposed search direction can be thought of as the 
signal-to-noise ratio (SNR), where a small SNR value represents a greater 
uncertainty about whether the approximated gradient corresponds to 
the direction of the true gradient (Kingma and Ba, 2014). As the search 
progresses and an optimum is approached, the SNR will typically 
approach a value closer to zero. The Adam framework is based upon two 
algorithms previously used in machine learning: AdaGrad (Duchi et al., 
2011) and RMSProp (Hinton et al., 2012). AdaGrad introduced the idea 
of utilizing per-parameter search directions, whilst RMSProp bases these 
search directions on the average of the magnitudes of recent gradients (i. 
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e. how quickly these gradients are changing). Adam not only combines 
these ideas, but the adaptive per-parameter search direction are also 
calculated based on an estimate of the second moment, too. 

The adaptive nature of Adam is dependent on the calculation of two 
main values: estimation of the first and second moment. By definition, 
the mean is the first moment of a random variable X about the origin 
defined (Lefebvre, 2006). The random variable is the gradient approx-
imation. Hence, the estimation of the first moment is an estimation of 
the expected value of the gradient. In addition, the second central 
moment of X is the variance about the mean (Lefebvre, 2006) and is 
defined by: 

VarðXÞ Diag
�
E
�
ðX E½X�Þ2

��
(4)  

with simple algebraic manipulation, the variance formula above can be 
also defined element-wise, as below, in which it is assumed variables of 
X are independent: 

VarðXÞ Diag
�
E
�
X2� ðE½X�Þ2

�
(5) 

In the long-run during optimization, the mean of the gradients tends 
to approach zero as a local optimum is found. As a result, the second 
term in Equation (5) provides no additional information leading to the 
uncentred variance: 

unVarðXÞ Diag
�
E
�
X2�� (6) 

Hence, since the random variable is the gradient approximation, the 
uncentred variance is the expected value of the element-wise gradient 
squared. Adam uses an exponential moving average to estimate the first 
moment and the second raw moment of the gradient, defined in 
Framework 2 (Kingma and Ba, 2014). By using an exponential moving 
average greater emphasis is put on the most recent approximated 
gradient to guide the search, yet utilizing previous gradients as addi-
tional information. The convergence theory for Adam is presented in 
Kingma and Ba (2014), whilst Chen et al. (2018) go into further detail of 
the convergence of adaptive gradient algorithms in general.   

Framework 2  
0. Initialize iteration counter, select initial guess x0, assign nonnegative constant 

parameters: step size a and exponential decay rate for moment estimates β1; β2. 
Typical values for β1; β2 are 0.9 and 0.999, respectively (Kingma and Ba, 2014). A 
small positive value ε 10 8, is used to avoid the division by zero (Kingma and Ba, 
2014).  

1. Initialize first and second moment vectors, m0 and v0, which are n � 1 column 
vectors  

2. Approximate the gradient  
3. Update the first moment vector using update rule:   

a. mk β1 � mk 1 þ ð1 � β1Þ� bgk, where mk , mk 1, and bgk are n� 1 column 
vectors  

b. bmk
mk

1 � βk
1
, where bmk is a n� 1 column vector  

4. Update the second raw moment vector:  
a. vk β2 � vk 1 þ ð1 � β2Þ� ðbgk �bgkÞ, where � is the element-wise multiplica-

tion and vk and vk 1 are n� 1 column vectors  

b. bvk
vk

1 � βk
2
, where bvk is a n� 1 column vector  

5. Update the iterate: xkþ1 xk � a�
bmk

bvk
p

þ ε   

It should be noted that all operations are done in an element-wise 
manner. The � represents the element wise multiplication of two vec-
tors. The approximated average gradient was used when calculating vk 
for a perturbation number greater than 1. Also, the operation on the 
hyper-parameters (βk

1;β
k
2) are denoted as β1 and β2 raised to the power k 

(iteration number). The gradient approximation method was not 

explicitly stated in Kingma and Ba (2014). Also, to the best of the au-
thors’ knowledge, there is no investigation on the effect of bound 
constraint handling techniques on the performance of Adam. 

3.3. Gradient approximation by SPSA 

The SPSA gradient approximation was presented as an efficient 
alternative for problems whose analytical derivative are unavailable and 
measurements are considered to have noise (Spall, 1992). The efficiency 
of SPSA lies in its requirement of only two function evaluations (for the 
central-difference method) to calculate a gradient approximation. This 
property allows the gradient approximation to be very efficient for high 
dimensional problems, as is typically the case in production optimiza-
tion. SPSA has also been compared to other leading optimization algo-
rithms, including simulated annealing, evolution strategies, and genetic 
algorithms (Spall et al., 2006). The stochastic gradient approximation is 
based on a central finite-difference written as: 

bgkðxkÞ

2

6
6
6
6
6
6
6
6
4

f ðxk þ ckΔkÞ f ðxk ckΔkÞ

2ckΔk1

⋮

f ðxk þ ckΔkÞ f ðxk ckΔkÞ

2ckΔkp

3

7
7
7
7
7
7
7
7
5

f ðxk þ ckΔkÞ f ðxk ckΔkÞ

2ck
�
h
Δ 1

k1 ; Δ 1
k2 ; …; Δ 1

kp

iT
;

(7)  

where the mean-zero p -dimensional random perturbation vector Δk

½Δ� 1
k1 ; Δ� 1

k2 ; …; Δ� 1
kp �

T, has a user-specified distribution and ck is a posi-
tive scalar. Other finite difference methods, such as forward and back-
ground difference, can also be used (Do, 2012; Spall, 1992). The 
convergence theory of the SPSA algorithm can be found in Spall (1992). 
A major argument is the conditions of the user-specified distribution 
used to select the perturbation vector. The convergence condition re-
quires the randomly sampled perturbation vectors to be independent for 
all k, identically distributed at each k, symmetrically distributed about 
zero and uniformly bounded in magnitude for all k (Spall, 1992). As a 
result, Normal (Gaussian) and Uniform distributions are not valid for use 
in SPSA, according to Spall (1992). Do and Reynolds (2013) utilized the 
Gaussian distribution in their SPSA implementation and reported suit-
able results. However, a distribution which does satisfy these conditions, 
and the one used in Spall (1998), is the Bernoulli distribution. The 
implementation of SPSA as a gradient approximation is presented in 
Gradient Approximation 1.   

Gradient Approximation 1  
0. Initialize non-negative coefficients ( α and c) based on guidelines provided in Spall 

(1998)  
1. Generate the p -dimensional random perturbation vector Δk based on the Bernoulli 

distribution.  
2. Use the perturbation vector to calculate the forward and backward steps at xþk

xk þ ckΔk and xk xk � ckΔk.  
3. Calculate the corresponding objective function values: fðxþk Þ and fðxk Þ

4. Compute the stochastic gradient approximation: bgkðxkÞ

fðxþk Þ � fðxk Þ

2ck
½Δ 1

k1 ;Δ
1

k2 ; …;Δ 1
kp �

T   

Furthermore, the accuracy of gradient approximation can be 
improved with by averaging a number of individual stochastic gradients 
(Spall, 1992), as shown in Equation (8). This is referred to as the 
perturbation number and is investigated in the remainder of this paper. 
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An increase in the number of averaged gradients could lead to a more 
accurate gradient approximation that requires a lower number of iter-
ations, hence leading to a faster convergence to the optimum. However, 
an increase in perturbation number may not necessarily lead to an in-
crease in computational efficiency. This occurs if the associated increase 
in function evaluations outweighs the increase in gradient accuracy. As 
such, if there little or no increase in accuracy, the search is not neces-
sarily going to progress faster. 

Wang et al. (2009) compared one gradient and an average of 10 
gradients in SD-SPSA on a simple synthetic model made up of an 11 by 
11 grid with 32 control variables. The results showed that an average of 
10 gradients converged to a higher optimum value. They also tested an 
average of 10 and 20 gradients on a 25 by 25 synthetic reservoir model 
with a total of 48 control variables. In this case, the results showed that 
using an average of 20 gradients outperformed using an average of 10 
gradients. Do and Reynolds (2013) compared an average of 5 and 10 
individual gradients for their SPSA-type gradient approximation on a 25 
by 25 reservoir model with 130 control variables. The results showed 
that an average of 5 gradients outperforms 10 for their simple 
two-dimensional model. These results reflect the problem dependency 
with regards to the optimal number of perturbations to be used. As such, 
this is investigated for each of the case studies of this paper. 

gkðxkÞ
1

Np

XNp

j 1
bgðjÞðxkÞ (8)  

3.4. The steepest descent SPSA algorithm 

The algorithm presented in Spall (1992) utilizes the SPSA gradient 
approximation within a steepest descent framework. The combination of 
these two components results in the steepest descent SPSA (SD-SPSA) 
algorithm, Algorithm 1. This algorithm uses a gain sequence to deter-
mine the step size within each iteration using Equation (9). In addition, 
typical implementation of gradient-based algorithms are accompanied 
by a backtracking line-search to help with the determination of the step 
size (Do and Reynolds, 2013; Fonseca et al., 2017). This aims to ensure 
an increase in the objective function value at each iteration (Nocedal 
and Wright, 2006). A backtracking line-search involves reducing the 
step size by a constant factor, typically by half, if a decrease in objective 
function value is not obtained. A backtracking line-search with a 
maximum of 5 cuts was employed in this paper. If the line-search is 
unsuccessful, the gradient is recalculated and the backtracking is 
repeated. The backtracking line-search is used in addition to the gain 
sequence mentioned above, leading to the following update formula: 

xkþ1 xk ρak � bgkðxkÞ; (9)  

where, ρ represents the step size reduction factor. For each iteration, the 
gain sequence (Spall, 1992) is used to calculate the step size ak, before 
the backtracking line-search is undertaken.  

Algorithm 1  
0. Initialize iteration counter, select initial guess x0 and nonnegative coefficients ( α 

and c) based on guidelines provided in Spall (1998)  
1. Calculate gradient approximation using Gradient Approximation 1  
2. Calculate proposed iterate: xkþ1 xk � ak � bgkðxkÞ

3. Update ak and ck according to Spall (1998)  
4. Return to step 1 and repeat until stopping criterion is reached.   

The SD-SPSA algorithm has been utilized for production optimiza-
tion problems of varying levels of complexity. Wang et al. (2009) 
implemented SPSA within a closed-loop reservoir management work-
flow for a low order 2-dimensional model. More recently, Foroud et al. 

(2018) compared the performance of gradient-based algorithms to DFO 
algorithms for production optimization of the Brugge model. The results 
showed that gradient-based algorithms outperformed the DFO algo-
rithms (GPS, particle swarm optimization, covariance matrix adaptation 
evolutionary strategy, differential evolution and self-adaptive differen-
tial evolution). 

The application of SD-SPSA to constrained optimization problems 
has also been investigated. SD-SPSA has been paired with the projection 
method as a means to deal with constraints (Fu and Hill, 1997; Sadegh, 
1997). This technique maps proposed solutions back into the feasible 
domain if they are infeasible. This technique is typically implemented 
when the constraints are bound constraints, with lower and upper 
bounds. Another approach presented by Wang and Spall (2003) is the 
penalty function. Briefly, the objective function is modified with the 
addition of a penalty term that accounts for any constraint violations by 
penalizing the objective function value. This technique is typically used 
to handle inequality constraints, which are not considered in this paper. 

3.5. The Adam-SPSA algorithm 

In this paper, the gradient approximation of SPSA is combined with 
the framework of Adam to produce an algorithm that aims to be more 
efficient than the steepest descent (ascent) framework. A modification 
was made to the original Adam (Kingma and Ba, 2014) to make it more 
efficient when combined with SPSA. Our experiments, not shown, found 
that as the number of perturbations used to calculate the average SPSA 
gradient increased, there was no effect on the initial iteration of Adam 
while there was a considerable effect on steepest descent (ascent). This 
was because Adam does not use the approximated gradient to direct the 
search, rather it used the search direction vector made up of �1. To 
overcome this deficiency, the first iteration was altered to an iteration of 
steepest descent (ascent). This ensures the first proposed solution is 
directed by the search direction of SPSA and the subsequent iterations 
are based on the Adam update rule. As opposed to SD-SPSA, this algo-
rithm does not require a backtracking line-search, as the results (not 
presented) showed no improvements. The proposed algorithm, 
Adam-SPSA, is presented in Algorithm 2.  

Algorithm 2 
0. Initialize iteration counter. Select initial guess x0. Assign nonnegative constant 

parameters: initial step size α and exponential decay rate for moment estimates 
β1;β2, and ck. Typical values for β1; β2 are 0.9 and 0.999, respectively (Kingma 
and Ba, 2014). A small positive value ε 10 8, is used avoid the division by 
zero (Kingma and Ba, 2014).  

1. Initialize first and second moment vectors, m0 and v0  

2. Compute the gradient approximation ðbgkÞ using Gradient Approximation 1  
3. If k 1, proceed with steepest descent search direction   

a Calculate proposed iterate:  
xkþ1 xk � akbgkðxkÞ

Elseif k > 1   
b Update the first moment vector using update rule:  

(i) mk β1 � mk 1 þ ð1 � β1Þ� bgk  

(ii) bmk
mk

1 � βk
1  

4. Update the second raw moment vector:  
a vk β2 � vk 1 þ ð1 � β2Þ� ðbgk �bgkÞ

b bvk
vk

1 � βk
2  

5. 
Update the iterate: xkþ1 xk � α�

bmk

bvk
p

þ ε  
6. If termination condition not met, return to Step 2 and continue  

We efficiently parallelize the gradient calculation using the on- 
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premises cluster by enabling the reservoir simulation to run on as many 
cores as there was perturbations. Since Adam-SPSA does not have a 
backtracking line-search, parallelization is more effective than SD-SPSA. 
Furthermore, each experiment was run 5 times to account for the sto-
chastic nature of the algorithms. 

3.6. Selection of parameters 

There are multiple parameters which need to be set. The main 
parameter which relates to the gradient calculation is the parameter ck, 
which is the perturbation size when taking the forward and backward 
difference. This parameter has a decreasing sequence given by the 
following equation (Spall, 1998): 

ck
c

ð iteration number þ 1 Þγ
; (10)  

where c is the initial value that is chosen by the user, and γ is typically 
equal to 0.101 (Spall, 1998). A sensitivity analysis was done to select a 
suitable value for c (in the normalized domain). It was found that an 
initial value of c 0:1 resulted in a perturbation size in the range of ~1 
psi. Arguably, the effect of a perturbation size that is infinitesimally 
small may not be captured properly by the numerical simulation. 

Another parameter that is utilized by SPSA is the step size gain 
sequence, ak (Spall, 1998). The formula is given by: 

ak
a

ðiteration number þ 1þ AÞα
; (11)  

where A 0:1*maximum number of iterations α 0:602, and a is 
defined by the user. These values are suggested by Spall (1998), how-
ever choosing the maximum number of iterations and a are problem 
dependent. For the purpose of our research, we elected to keep the 
maximum number of iterations constant regardless of the perturbation 
number. This allowed us to perform a sensitivity analysis on the value of 
a. This value can have major impact on the search progression, as it 
controls the step size used at each iteration. As such, an ideal step size is 
one which ensures that the search does not swing from one bound to 
another. The average of the absolute difference between the first two 
iterations was taken as an indication of this movement towards the 
bounds. A suitable value of a 10 for SD-SPSA was found, whilst the 
step size of a 0:3 gave a similar effect in Adam, in terms of update step, 
which allows delivering a fair comparison between the two. This is an 
initial step size that is constant throughout the optimization run. The 

decay factors used for β1 and β2 are taken from Kingma and Ba (2014) as 
0.9 and 0.999, respectively. 

4. Numerical experiments 

This section presents two numerical experiments used to evaluate 
and compare the performance of the SD-SPSA algorithm and the pro-
posed Adam-SPSA algorithm for production optimization. The first case 
study under investigation is a simple two-dimensional (2D) heteroge-
neous model (Isebor, 2009), with a high water handling cost to motivate 
efficient water-flooding. In addition, we investigate the effect of 
perturbation number and constraint handling technique. The second 
case study is a more complex three-dimensional (3D) reservoir model, 
known as the Brugge model, that was utilized to test the robustness of 
the proposed algorithm by incorporating geological uncertainty (Peters 
et al., 2010). The second case study has different economics parameters 
to test the response of the proposed algorithm to different situations. 
Both these models are readily used for benchmarking production opti-
mization algorithms. 

4.1. Case study 1 – two-dimensional heterogeneous reservoir 

4.1.1. Problem description 
The first case study involves a 2D channelized reservoir model dis-

cretized into 40 � 40 � 1 grid with four injectors and four producers 
(Isebor et al., 2014). Fig. 1 shows the line drive pattern and the x -di-
rection permeability field. This reservoir involves two-phase flow of oil 
and water. The objective is to maximize NPV through finding the 
optimal BHP settings of the injectors and producers. The project lifespan 
is assumed to be 3000 days and is divided into 100 control steps, with 
the well’s BHPs being updated every 30 days. As a result, the dimension 
of this problem is 800, composed from 100 controls steps for 8 wells. The 
reservoir and economic parameters are given in Table 1. The optimi-
zation variables are normalized and bounded between 0 and 1. To 
handle this bound constraint, we investigate both the projection method 
and the logarithmic transformation method. In addition, a full sensi-
tivity analysis on the effect of the number of perturbations is also 
presented. 

4.1.2. Algorithm parameter settings and constraint handling 
As previously presented, parameters related to the SD-SPSA algo-

rithm need to be selected. The results of this preliminary study are 
presented in Table 2. 

The optimal value of a for this case study seems to be between 10 and 
100. From the results of the last row in Table 2, it is clear that a value of 
100 leads to a large movement towards to boundary indicated by Δx. If 
this occurs, the gradient-based techniques may have difficulty moving 
away from the boundaries and are more inclined to get stuck without 
thoroughly searching the landscape. On the other hand, using a value of 
1 leads to small movement, which slows down the search considerably. 
As such, all optimization runs were conducted using a value of 10 for a. 
As discussed in Section 3.6, the step size used in the Adam-SPSA is 0.3. 

The first investigation undertaken using this case study examined the 
effect of the bound constraint handling technique on production opti-
mization. There are two common methods that are utilized to deal with 
bound constraints: projection method (Asadollahi et al., 2014; Dehdari 

Fig. 1. Two-dimensional channelized heterogeneous model.  

Table 1 
Economic and reservoir parameters for case study 1.  

Porosity 0.3 
Oil Price (USD/STB) 80 
Water injection costs (USD/STB) 36 
Water handling costs(USD/STB) 18 
Injector BHP range (psi) 6000–9000 
Producer BHP range (psi) 2500–4500  
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et al., 2012; Fonseca et al., 2017) and the logarithmic transformation 
method (Do and Reynolds, 2013; Lu et al., 2017; Wang et al., 2009). The 
projection method involves projecting control variables which are 
outside the bounds to their closest respective bound. Furthermore, the 
problem can be made simpler by normalizing the bounds to a hypercube 
to have bounds of ½0; 1�n, where n is the number of control variables. On 
the other hand, the logarithmic transformation method aims at con-
verting a bounded constrained optimization problem to an uncon-
strained optimization problem. This is achieved through a 
transformation of variables using the following equation: 

si ln
�

xi xlower

xupper xi

�

; (12)  

where si is the i th transformed control variable, xi is the i th control 
variables, xlower is the lower bound, and xupper is the upper bound. As a 
result, the bounds are extended to ½ ∞; ∞�, essentially making the 
problem unconstrained. As such, as the control variables in the un- 
transformed form xi, approaches the lower bound, xlower, the trans-
formed variable, si, approaches ∞. On the other hand, as the control 
variable xi, approaches the upper bound xupper, the transformed vari-
able, si, approaches ∞. When implemented, all operations are done in 
the transformed domain, and when required, the original control 

variables are obtained through the inverse function: 

xi
expðsiÞ � xupper þ xlower

1þ expðsiÞ
(13) 

To investigate the effect of the two bound constraint handling 
techniques, three different values for perturbation number were used: 1, 
5 and 10. All experimental runs were obtained using the mid-point of the 
hypercube, i.e. ½0:5�n, as the initial guess. The results are presented in 
the appendix. The results reflect a detrimental impact on the conver-
gence speed and the final optimal value of both algorithms, steepest 
descent SPSA (SD-SPSA) and Adam-SPSA, when using the logarithmic 
transformation method compared to the projection method. This result 
is common irrespective of the perturbation number used. There were 
differences of up to 4.8%, 4.9%, and 5.2% between the optimal values 
when using projection method and the logarithmic method for pertur-
bation values of 1, 5, and 10, respectively. 

Although these results are not extensive with regards to the problems 
tested, they give an indication that there can be a significant effect on 
the performance of the algorithm (SD-SPSA and Adam-SPSA) when 
using different constraint handling techniques. Based on the results 
presented, the logarithmic transformation method may induce gradient- 
based algorithms into getting entombed on the bounds. Consequently, 
the projection method is employed throughout the remainder of the 
paper. 

4.1.3. Results of case study 1 
An extensive set of experiments were conducted to assess the per-

formance of Adam-SPSA against SD-SPSA. Firstly, three different initial 
guesses were used to investigate the robustness of the algorithms with 
regards to the starting point. The three initial guesses used were ½0:25�n, 
½0:5�n and ½0:75�n, where in this case n is equal to 800 control variables. 

Table 2 
Sensitivity analysis on SPSA step size.  

a  0.1 1 10 100 

a0  0.00621 0.0621 0.621 6.21 
Δx  0.0020 0.0217 0.2034 0.4601  

Fig. 2. Results of production optimization for an initial guess of 0.5 using (a) 1, (b) 5, (c) 10, (d) 50, (e) 100, and (f) 200 perturbations.  
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For each initial guess, the number of perturbations used to calculate the 
gradient was also altered. Six different values were used: 1, 5, 10, 50, 
100, and 200. This range of values was used to test the effect of 
perturbation number on the improvement in accuracy of the gradient 
approximation. The results are presented in Figs. 2-5. The results shown 
are an average of 5 individual optimization runs. The stopping criterion 

for all the experiments, unless otherwise stated, is a maximum number 
of function evaluations of 5000. 

In Fig. 2, the Adam-SPSA algorithm outperforms SD-SPSA for all 
values of perturbation number. The difference between Adam-SPSA and 
SD-SPSA ranges from, on average, 4.6% for one perturbation to less than 
1% for 200 perturbations. However, it is clear that in all six perturbation 
numbers, Adam-SPSA outperforms SD-SPSA with regards to 

Fig. 3. The effect of initial guess on the performance of Adam-SPSA (solid line) and SD-SPSA (dashed line).  

Fig. 4. Oil recovery as a function of total water production for reactive case 
and Adam-SPSA. 

Fig. 5. Oil recovery as a function of total water injection for reactive case and 
Adam-SPSA. 
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convergence speed. That is, for any desired value of NPV, Adam-SPSA 
requires a lower number of function evaluations. For example, in 
Fig. 2f, for a desired NPV of 36 MM USD Adam-SPSA requires 1203 
function evaluations whilst, SD-SPSA requires 1604. This is a 25% 
reduction in the required computation to achieve a similar NPV. Similar 
trends are achieved for 50 and 100 perturbations with reductions of 12% 
and 43%, respectively. It is also evident that SD-SPSA is more prone to 
converging to a local minimum as depicted in Fig. 2a and b, when a 
small number of perturbations is employed. On the other hand, Adam- 
SPSA does not converge to the same local solution, rather it is able to 
find a higher NPV at the end of 5000 function evaluations. Also, Adam- 
SPSA does not seem to fully converge after 5000 function evaluations. 

Similar results were obtained when utilizing two other initial values 
of ½0:25�n and ½0:75�n. That is, regardless of the initial guess Adam-SPSA 
is able to outperform SD-SPSA in regards to convergence speed and 
optimal value. As an example, Fig. 3 shows the results for all three initial 
values for a perturbation number of 5. These results reflect the consis-
tent robust performance of Adam-SPSA across all three initial guesses 
used. These three initial guesses were selected to test the performance of 
the two algorithms when they are close to the upper and lower bounds, 
as well as in the center of the feasible domain. In addition, all three 
initial guesses see a similar trend with regards to the perturbation 
number. As the perturbation number increases, the difference in optimal 
value between the two algorithms decreases. This indicates that Adam- 
SPSA performs well even with a low number of perturbations. 

The reactive case NPV for Case Study 1 is 25.66 MM USD. The oil 
recovery factor (%) is plotted against the total water production (STB) 
for the reactive case, Adam-SPSA using perturbation of 1, and Adam- 

SPSA using a perturbation of 200 in Fig. 4. These results represent the 
best solution found from the optimization runs. Both solutions from 
Adam-SPSA are much more efficient than the reactive case, as they 
obtain higher oil recoveries for the same volume of produced water. For 
Adam-SPSA using perturbation number of 200, to reach an oil recovery 
of 25%, 122,385 STB of water is produced. On the other hand, for the 
same oil recovery the reactive case produces a volume of 229,538 STB of 
water. This solution results in a reduction of water production by 47%. 
By the same token, when using a perturbation number of 1, the opti-
mized solution results a reduction of 36% in total volume of produced 
water when compared to the reactive case. This indicates that the results 
when using a higher perturbation number are slightly higher. Yet, both 
optimized solutions are significantly superior to the reactive case. 

These observations are supplemented by the results shown in Fig. 5, 
which depicts oil recovery (%) as a function of water injection total 
(STB). The solution obtained by Adam-SPSA using 200 perturbations 
resulted in a 12% reduction in the total water injected (838,394 STB) for 
a 25% oil recovery. Fig. 5 also shows that for any volume of injected 
water, Adam-SPSA results in a higher oil recovery regardless of pertur-
bation number. This indicates that Adam-SPSA is able to find a solution 
that results in a more efficient water-flooding by reducing the volumes 
of produced and injected water. This is owing to the economics of the 
case study which has relatively high water injection and handling costs. 
As such, it is more favorable to reduce these volumes, which the reactive 
case does not consider. This indicates that the water-flooding is more 
efficient with the optimized solution as it is delaying water break-
through and reduces the volume of produced water, hence reducing the 
costs associated with handling the produced water. 

Fig. 6. Oil saturation for case study 1 for the (a) reactive case, (b) Adam-SPSA using a perturbation number of 1, and (c) Adam-SPSA using a perturbation number 
of 200. 
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The improved efficiency of the optimization solutions can be seen on 
a field scale in Fig. 6. Fig. 6a shows the sweep efficiency of the reactive 
case once it reaches an oil recovery of 25%. This allows the comparison 
to Fig. 6b and c which represent the field at the end of the reservoir 
lifespan when using perturbations of 1 and 200, respectively. The 
increased water production seen in Fig. 4, can be attributed to the dif-
ferences in sweep efficiency between Fig. 6a–c. The sweep efficiency 
between injectors 1 and 2 are at various stages in all three figures. The 
section of bypassed oil increases in size from Adam-SPSA using 200 
perturbations, to 1 perturbation, and then reactive case. This indicates 
that the optimized solutions ensure a more efficient water-flood is un-
dertaken to allow for a better sweep of the field. 

A trend between the number of perturbations and the final optimal 
value can be extracted from the results. Fig. 7 shows the coefficient of 
variation for the results presented in Fig. 2 for both algorithms. The 
coefficient of variation (CV) is defined as the ratio of standard deviation 
to the mean (average). The points used to calculate the CV are the final 
optimal solutions obtained by each algorithm for each of the 5 indi-
vidual runs. The results indicate that for a low number of perturbations, 

SD-SPSA illustrates the effect of having a stochastic gradient approxi-
mation which results in a high coefficient of variation. As the number of 
perturbations increases, the coefficient of variation decreases. This is 
expected as the approximation of the gradients tends to be closer to the 
true gradient for higher perturbation numbers. On the other hand, 
Adam-SPSA has a relatively low coefficient of variation even for a low 
number of perturbations. Similarly, it shows a decreasing trend with an 
increase in the number of perturbations. This reflects that the Adam 
update rule, which takes into account the variances in gradients for each 
variable has a positive effect on the search progression. From Fig. 7, it is 
evident that the update rule utilized by Adam-SPSA, which includes 
estimating the first and second order moments of the gradient help 
improve the gradient approximation. As a result, the stochasticity de-
creases, yet this improves the optimum NPV, as reflected in Fig. 2. 

In addition, as the number of perturbations increases the final opti-
mum tends to increase up until a ‘turning point’. At this turning point, an 
increase in number of perturbations does not necessarily result in a 
higher optimum NPV due to a decrease in efficiency. Fig. 8 summarizes 
these results by reflecting the percent difference between the best op-
timum NPV (of the 5 individual runs) for each number of perturbations. 
For example, the percent difference between the optimum NPV using 1 
perturbation and 200 perturbations when using SD-SPSA is almost 10%. 
Conversely, the percent difference for the same comparison for Adam- 
SPSA is 5.6%. This indicates that Adam-SPSA is a superior algorithm 
since for any number of perturbations it is closer to the most optimum 
NPV. By contrast, SD-SPSA results reflect it is more sensitive to the 
number of perturbations, which cannot be ascertained beforehand. This 
is revealed by the lower slope in Fig. 7 for Adam-SPSA compared to the 
slope for SD-SPSA, especially for lower values of number of 
perturbations. 

4.2. Case study 2 –Brugge model 

4.2.1. Problem description 
The Brugge model is a synthetic three-dimensional (3D) reservoir 

model analogous to those found in the North Sea (Peters et al., 2010). 
The field is characterized by an elongated half-dome stretching East to 
West bounded by a large fault on the northern edge. An internal fault is 
also present with a throw angle of 20� to the boundary fault. The 
up-scaled reservoir model is composed of 60,048 grid blocks with 44, 
550 active cells. The field’s dimensions are roughly 10 km � 3 km with 
an average thickness of 50 m. The reservoir is composed of four strati-
graphic units, from top to bottom: Schelde, Mass, Waal, and Schie. The 
field is populated with 30 wells, 20 producers and 10 injectors. All in-
jectors are perforated and have open completions in all nine layers. On 
the other hand, producers are perforated in the top eight layers and have 
completions detailed in Table 3. The reservoir structure and well loca-
tions are shown on the oil saturation distribution in Fig. 9. The leasing 
life of the field is 30 years. A suite of 104 geological realizations were 
generated as a part of the available data set provided by TNO to allow for 
the incorporation of geological uncertainty into the optimization prob-
lem. Further information regarding the details of the Brugge model can 
be found in Peters et al. (2010). 

The Brugge model was created as part of an exercise focusing on 
closed-loop reservoir management. As such, the exercise was composed 

Fig. 7. The coefficient of variation for both algorithms at different values 
perturbation number. 

Fig. 8. Percent difference between the best found NPV and best NPV at each 
perturbation number for each algorithm. 

Table 3 
Brugge model well completions.  

Well Stratigraphic Units 

Schelde, 
layers 1-2 

Mass, 
layers 3-5 

Waal, 
layers 6-8 

Schie, 
layer 9 

Producers 
1–4,6–8,11–13,16–20 

Open Open Open Closed 

Producers 5,10,14,15 Open Open Closed Closed 
Producer 9 Open Closed Closed Closed 
Injectors Open Open Open Open  
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of two individual tasks: a history matching of the model for 10 years of 
production followed by production optimization for 20 years based on 
these updated models. However, as this paper’s focus is on production 
optimization, the history matching task was not considered. Conse-
quently, the reservoir lifespan considered in the production optimiza-
tion problem encompassed a total of 30 years. 

The production optimization problem involves the optimization of 
the BHP’s of the 30 wells over a period of 10,800 days (~30 years). The 
control variables are controlled every 180 days (~6 months) during the 
simulation lifespan leading to a total of 60 control steps. As a result, 
there are a total of 1800 (30 wells * 30 years * 2 steps/year) optimiza-
tion (decision) variables. The optimization variables are bounded by 

lower and upper limits. The lower and upper limits for the producers are 
50 bars (725 psi) and 100 bars (1450 psi). On the other hand, the lower 
and uppers limits for the injectors are 100 (1450 psi) and 180 bars (2611 
psi). These values were chosen based on the initial reservoir pressure of 

Fig. 9. Brugge model in 2D (top) and 3D (bottom) views showing initial oil saturation distribution with 20 producers and 10 injectors.  

Table 4 
Economic and reservoir simulation parameters for Brugge model.  

Parameter Value 

Initial conditions 170 bars (2611 psi) at 1700 m (5577 ft) depth 
Free water level: 1678 m (5505 ft) 

Pore compressibility 3.5 � 10 6 1/psi 
Fault multiplier 1 
Liquid rate constraints Producer: 477 m3/day 

Injector: 636 m3/day 
BHP Range Producers: 50–100 bars 

Injectors: 100–180 bars 
Economic parameters Oil price: $503/m3 ($80/bbl) 

Water cost (injection and handling): $31.45/m3 ($5/bbl) 
Discount rate: 10%  

Fig. 10. Cumulative distribution function of the reactive case for all 104 
geological realizations. 
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Fig. 11. Permeability fields in x-direction of the top layer for the 11 selected geological realizations.  
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170 bars (2466 psi). The production wells are constrained by a liquid 
production rate of 477 m3=day (3000bbl=day), whilst the injectors are 
constrained by a liquid injection rate of 636 m3=day (4000bbl= day). The 
reservoir simulation and economic parameters are summarized in 
Table 4. 

The aim of this problem is to investigate the application of Adam- 
SPSA to a situation where multiple geological realizations are avail-
able. To decrease the effect of the stochastic nature of the algorithms, the 
results are an average of 5 individual optimization runs. To allow this, 
the computational demand was reduced by selecting a subset of 11 
geological realizations from the suite of 104 that are available. 
Furthermore, the aim was to compare the algorithms behavior across a 
wide array of geological scenarios in order to challenge the algorithms. 
As such, the selection process was not random, rather based on the cu-
mulative distribution function (CDF) of the NPV from the reactive case 
of all the 104 realizations. The reactive case in Peters et al. (2010) used a 
water-cut of 94%. The liquid rate constraints are similar to those listed in 
Table 4. Fig. 10 shows the CDF of the reactive case NPVs. The re-
alizations corresponding to P1, P10, P20, P30, P40, P50, P60, P70, P80, P90 
and P99 were selected. This is similar to other ranking methods in the 
literature used to reduce the number of geological realizations (Ballin 
et al., 1992; Deutsch and Begg, 2001; McLennan and Deutsch, 2005). 

These 11 percentiles were chosen to reflect the full spectrum of NPVs 
and geological realizations, including the maximum (P99) and minimum 
(P1) percentiles. The 11 selected geological realizations are shown in 
Fig. 11, where the x-directional permeability field in the top layer are 
shown. Note the palette to the left of the permeability field is the cor-
responding color map. As is reflected visually from Fig. 11, there is a 
wide array of permeability fields of varying levels. 

4.2.2. Algorithm parameter settings and constraint handling 
A similar sensitivity analysis was undertaken for the second case 

study to find suitable values for the step sizes in SD-SPSA and Adam- 
SPSA. Values of a 1 for SD-SPSA and a 0.03 for Adam-SPSA were 
selected. The value for the perturbation size is similar to the previous 
case. The projection method was used as the constraint handling tech-
nique. The results shown are an average of 5 individual optimization 
runs. The stopping criterion for all the experiments, unless otherwise 
stated, is a maximum number of function evaluations of 5000. 

4.2.3. Results of case study 2 
The numerical experiments that were run for the Brugge model 

consisted of a sensitivity analysis with regards to the number of per-
turbations for a given initial guess. As before, five individual optimiza-
tion runs are averaged to account for the stochastic nature of the 
optimization algorithms. The reactive case defined in Peters et al. (2010) 
was used for comparisons in this study. This resulted in a NPV of 
$ 6:14� 109 USD for the reactive case for the subset realizations and an 
NPV of 6:22� 109 USD for the full set. All NPVs that are stated in this 
section are an average NPV for the 11 selected realizations, unless 
otherwise stated. 

It is important to note that all results presented in Peters et al. (2010) 
that used one inflow control valve (ICV), albeit for a shorter reservoir life 
span, resulted in NPV values lower than the reactive case. Also, it is 
evident from the results presented for the production optimization in 
Peters et al. (2010) that the reactive case is already close to the optimal. 
As such, the initial guess selected for this study is, on a normalized scale, 
0.8 for injectors and 0.2 for producers. It should also be noted that a 
stopping criterion of 10,000 function evaluations was used for all the 
following numerical experiments, given this study has more variables. Fig. 12. Production optimization for Brugge Model using a perturbation 

number of 1. 

Fig. 13. Production optimization for Brugge Model using a perturbation 
number of 5. 

Fig. 14. Production optimization for Brugge model using a perturbation 
number of 10. 
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Subsequently, the results of the production optimization using the 
Adam-SPSA and SD-SPSA algorithms are presented in Figs. 12-16. 
Fig. 12 presents the results when using only 1 perturbation for the 
gradient calculation for both algorithms. It is clear that the proposed 
algorithm, Adam-SPSA, outperforms the standard SD-SPSA algorithm 
with regards to both optimal value obtained and convergence speed. The 
optimal value found for Adam-SPSA is $ 6:19� 109 USD, whilst for SD- 
SPSA this value is $ 6:08� 109 USD. This indicates that Adam-SPSA, on 
average, outperformed SD-SPSA by almost 2% with regards to the 
optimal value. In addition, Adam-SPSA required 1903 function evalua-
tions to reach the optimal value found by SD-SPSA, which required 
10,000 function evaluations. For this problem, on average, one function 
evaluation requires 3 min to run. Hence, a reduction of 8097 function 
evaluations translates to a reduction of 404 CPU-hours. 

In Fig. 13, the result for the production optimization using 5 per-
turbations are presented. The difference in performance of both algo-
rithms has decreased in comparison to the results in Fig. 12, however; 
both algorithms have improved on their respective optimal values. The 
optimal value found by Adam-SPSA and SD-SPSA are $ 6:23� 109 USD 
and $6:21� 109USD, respectively. Although the difference is minimal, 
Adam-SPSA still outperforms SD-SPSA. With regards to convergence 
speed, Adam-SPSA reaches the optimal value found by SD-SPSA in 8129 
function evaluations. This takes SD-SPSA 10,120 function evaluations to 
reach this value. This is a speed up of 20% with respect to the required 
number of function evaluations. 

The results for production optimization of the Brugge model when 
using 10 perturbations are presented in Fig. 14. The optimal value found 
by Adam-SPSA is $6:25� 109 USD, whilst for SD-SPSA the optimal 
value is $6:22� 109 USD. This is a larger difference than the results for 
5 perturbations, however; the difference is still not as large as when 
using 1 perturbation. In addition, albeit minimally, there is an increase 
in the optimal value found for both algorithms compared to using 5 
perturbations. With regards to convergence, Adam-SPSA required 8338 
function evaluations to achieve the optimal value of SD-SPSA, which 
took 10,070 function evaluations, resulting in a 17% savings. 

It is evident from the results presented in Figs. 13 and 14 that a 
turning point with regards to the most optimal number of perturbations 
has been reached. Further experiments were conducted using an 
increasing number of perturbations, specifically 50, 100 and 200. 
However, it was evident that these large numbers of perturbation 

rendered both algorithms less efficient for this complex case study. As 
such, these results were omitted from this paper. 

The different production strategies can have a significant effect on 
the economic performance of the Brugge model. Contrary to case study 
1, the economic parameters in case study 2, such as oil price, water 
handling costs, and discount rate incentivize an increase in oil produc-
tion, especially at earlier times. The expected NPV of the optimized 
solution results in a 2% improvement over the reactive case subset NPV. 
However, it does not necessarily reflect an improvement in the NPV of 
each realization. The change in NPV across the individual realizations 
range from an increase of 23% to a decrease of 7%. It is interesting to 
note that the order of these changes matches the order of the reactive 
case NPV, i.e. from P1 to P99. This is an indication to the robustness of the 
solution across the 11 selected realizations. The changes in individual 
NPVs can be described with the aid of Fig. 15 and Fig. 16. 

Fig. 15 shows the oil production over the production life for the four 
cases of interest. Firstly, the realization which showed the largest 
decrease in NPV is represented by the yellow and purple lines for the 
reactive case and Adam-SPSA solution, respectively. It is clear that the 
decrease in NPV for this realization is a result of a 6% decrease in total 
oil production. On the other hand, the realization which showed the 
largest improvement consistently produces more oil under the opti-
mized solution (orange dotted line) when compared to the reactive case 
(blue dashed line). There is an 8% difference in the volume of total oil 
production between the two solutions. 

The water-flooding efficiency of the two solutions are compared in 
Fig. 16. As expected, there is an efficiency decrease between the solu-
tions for the realization that showed a decrease in NPV. On the other 
hand, there is a turning point when comparing the two solutions for the 
realization that showed an increase in NPV. As opposed to case study 1, 
the water injection costs are low in comparison to the oil price. This 
motivates the early production of oil even if it comes at the expense of 
sweep efficiency, as shown in Fig. 16. However, the final oil recovery 
(%) of the Adam-SPSA (orange line) is still greater than the reactive case 
(blue line). 

5. Discussion 

The selection of parameters used in optimization algorithms can 
have a major impact on the search progression and hence the results. 

Fig. 15. Oil production for the individual realizations which showed the 
greatest improvement and decrease for the reactive case and Adam- 
SPSA solution. 

Fig. 16. Oil recovery (%) as a function of total water injected (m3) for the 
realizations showing greatest change in NPV for reactive case and Adam- 
SPSA solution. 
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Our aim when comparing the two algorithms was to ensure a fair 
comparison, allowing solid conclusions to be made. As such, we wanted 
to ensure that the driving force of the optimization algorithms, which is 
the product of the step size and the search direction, are relatively 
similar. This allows the conclusions that are made to be an effect of the 
algorithm themselves rather than a difference in step size or perturba-
tion size. The first case study was used to perform preliminary sensitivity 
analysis on the driving force. To find the effect of the driving force on the 
proposed solutions, the average absolute difference between the second 
and third iterations was used. This gives an indication of the movement 
towards the boundaries at the beginning of the optimization run. If a 
step size accelerates the movement towards the boundaries, then it is 
considered to be inefficient since the search space is not explored before 
reaching the boundaries. The opposite is also true for a small step size 
which does not progress rapidly enough in the search space. This pre-
liminary study is not computationally expensive, yet can have signifi-
cant impact on the full optimization runs, especially when comparing 
the efficiency of the algorithms. 

Another significant finding was the difference in effect of the bound 
constraint handling technique on both algorithms. The logarithmic 
transformation method relies on transforming the search domain to 
infinite bounds from a lower and upper bound. Although this changes a 
constrained optimization problem into an unconstrained one, it comes 
with its significant challenges. Sisser (1981) introduced the Local 
Mapping Conditions to guarantee that a local minimum of the trans-
formed problem satisfies the first-order necessary conditions for the 
local minimum of the original problem. One of these conditions is the 
requirement for the transformed variable to be greater than or equal to 
zero for the search space domain. However, this condition is not met 
when utilizing the logarithmic transformation method since its lower 
bound is negative infinity. 

Furthermore, if the Local Mapping Conditions are assumed to be met, 
there is still the possibility that the search would get stuck at the 
boundary and converge to a non-optimal stationary point even if indeed 
the solution does not lie on the boundary (Sisser, 1981). Based on our 
experiments there are two reasons this can occur when using the loga-
rithmic transformation method. Firstly, as the search approaches the 
boundaries a large perturbation size is required when approximating the 
gradient that will reflect a reasonable change in objective value. If the 
perturbation size is too small, this leads to no considerable change in 
objective value, which results in the gradient prematurely approaches 

zero. Secondly, if the search direction is steered towards the boundaries, 
it will then require a very large step size to return from the boundaries. 
This is indicated in Fig. 17 by the sharp increase in the slope of the curve 
closer to the bounds. Although both algorithms were negatively affected 
when using the logarithmic transformation method, Adam-SPSA was 
still able to outperform SD-SPSA for all runs. As a result, the projection 
method resulted in improvements of up to 5% with Adam-SPSA and up 
to 4% with SD-SPSA over the logarithmic method. This indicates that the 
adaptive search direction employed in Adam-SPSA can help limit the 
negative effect of the logarithmic transformation method, but not 
completely eliminate it. On the other hand, when using a projection 
method, both algorithms have the ability to search the boundaries 
without the same risk of getting trapped. Hence, the optimization runs 
utilizing the projection method outperformed those of the logarithmic 
transformation method. Although this may be problem dependent, it 
indicates the importance of selecting an appropriate bound constraint 
handling technique. 

The advantages of Adam-SPSA over SD-SPSA are reflected in the 
results presented for both case studies. Adam-SPSA outperforms SD- 
SPSA in both case studies, especially when the perturbation number is 
small. As the perturbation number increases, the approximation of the 
gradient improves leading to a significant improvement in convergence 
speed. However, this improvement is less significant for Adam-SPSA 
than it is for SD-SPSA. In other words, the effect of changing perturba-
tion number is less substantial when using Adam-SPSA. This can be 
accredited to the fact that Adam-SPSA accounts for previous gradients, 
as well as variances, before computing the next search direction. This in 
itself can act as an averaging of gradients, albeit not a replacement for it, 
which seems to produce more representative search directions which 
improve the results over SD-SPSA. This indicates that regardless of the 
perturbation number used for Adam-SPSA, it is more likely to find a 
similar quality solution to the most optimal solution when compared to 
SD-SPSA. The percent difference between the optimum value using 1 
perturbation and 200 perturbations when using SD-SPSA is almost 10%. 
Conversely, the percent difference for the same comparison for Adam- 
SPSA is 5.6%. This can be especially useful when resources are limited 
and preliminary experiments cannot be performed to find the most ideal 
number of perturbations. In addition, the optimal value for perturbation 
number can be problem dependent as shown by the differences in results 
for the case studies presented. These results are in line with literature 
(Do and Reynolds, 2013; Wang et al., 2009). As such, the insensitivity of 
Adam-SPSA to perturbation number, when compared to SD-SPSA, be-
comes a pivotal advantage when selecting a preferable optimization 
algorithm. 

Fig. 17. Typical shape of the logarithmic transformation method.  

Fig. 18. Computational time reduction per iteration due to parallelization.  
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In addition, the proposed algorithm outperformed the reactive cases 
for each of the case studies. The economics of the first case study 
required a more efficient water-flooding scenario, to increase the oil 
recovery for a given volume of injected water. On the other hand, the 
second case study rewarded solutions which prioritized early oil pro-
duction over sweep efficiency. The superior performance of Adam-SPSA 
was reflected by up to 5% improvement over SD-SPSA for case study 1 
and up to 2% for case study 2 with regards to optimal value. In addition, 
Adam-SPSA almost always required a lower number of function evalu-
ations to reach a predefined objective value. Adam-SPSA showed an 
improvement of up to 91% and 81% in convergence speeds for case 
studies 1 and 2, respectively. Furthermore, Adam-SPSA constantly out-
performed the reactive cases by 44% and 2% for case studies 1 and 2, 
respectively. However, SD-SPSA was not able to outperform the reactive 
case of case study 2 for low values of perturbation number. 

Another advantage of Adam-SPSA is its ability to be easily paral-
lelized. As previously mentioned, all gradient approximations were 
parallelized. Hence, each iteration of Adam-SPSA was an equivalent of 
only 2 reservoir simulations, one for the forward and backward 
perturbation in the gradient approximation, and one for evaluating the 
new iterate solution. On the other hand, due to the presence of a line- 
search, each iteration of SD-SPSA had an equivalent of up to 7 reser-
voir simulations. Fig. 18 shows the number of reservoir simulations for 
each iteration as the optimization progresses. This figure is an optimi-
zation run for case study 2 when using 5 perturbations. At the beginning 
of the optimization run, SD-SPSA did not require a line-search as indi-
cated by the overlap of both lines. This indicates that the approximated 
gradients were in an uphill direction, hence not requiring any change to 
the step size. However, as the search progresses, there is a deviation of 
the lines around iteration number 30. This divergence is a clear symp-
tom of the SD-SPSA algorithm requiring a backtracking line-search to 
find a better objective function value. This divergence gap widens as 
backtracking line-search is consistently undertaken at the later stages of 
the search. Since the reservoir simulations that are conducted during a 
backtracking line-search are dependent, this section of the process 
cannot be parallelized. 

Although the Adam framework was applied to the SPSA gradient 
approximation, there is no reason for it not to show similar results with 
other aforementioned gradient approximations. Do and Reynolds (2013) 
showed the theoretical similarities between common gradient approxi-
mations, including SPSA, and as such it is not a stretch to assume that the 
advantages of Adam would be seen with other gradient approximations. 

6. Conclusions 

This work introduced an accelerated gradient descent framework to 
solve well control optimization problems for which approximated gra-
dients are required. In this work, the gradients are approximated by 
SPSA. The proposed framework utilized estimates of the first and second 
moments of gradient approximations to improve progression during the 
optimization process. This study compared the proposed algorithm 
(Adam-SPSA) with the conventional steepest descent SPSA (SD-SPSA) 
using two case studies. The comparison included studying the effect of 
different settings on the performance of each algorithm. The following 
settings were investigated: (i) the number of perturbations, (ii) initial 
guess, (iii) bound constraint handling technique and (iv) randomness 
(seed number). The following conclusions can be made from the study.  

� Adam-SPSA consistently outperformed SD-SPSA, both in terms of 
optimal value, up to 5% for case study 1 and up to 2% for case study 
2, and computational savings, up to 91% and 81% for case studies 1 
and 2, respectively.  

� Furthermore, Adam-SPSA outperformed the reactive strategy by 
44% and 2% for case studies 1 and 2, respectively.  
� Both algorithms improved with an increase in perturbation number 

up to a turning point. However, SD-SPSA was more sensitive to the 
increase.  
� The results showed that the optimal number of perturbations is 

problem-dependent, and given the optimal number cannot be known 
priori, Adam-SPSA is a more superior choice.  
� Results also showed that neither algorithm was sensitive to the initial 

guess. However, Adam-SPSA outperformed SD-SPSA regardless of 
starting point.  
� Both algorithms performed better with projection constraint 

handling technique compared to the logarithmic transformation 
technique.  
� Adam-SPSA was less sensitive to the randomness of the gradient 

approximation reflected by values of the coefficient of variation 
(CV). The CV of Adam-SPSA for low values of perturbation number 
was half of those for SD-SPSA. 
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Appendix 

A.1 Comparison of constraint handling techniques 

In Fig. A-1a, the optimal value obtained by Adam-SPSA using pro-
jection method was 35.02 MM USD, whilst this value was 33.42 MM 
USD when using the logarithmic transformation. This is around a 4.8% 
difference between the optimal values. When considering the results of 
SD-SPSA, optimal values of 33.33 MM USD and 32.98 MM USD were 
obtained for projection method and logarithmic transformation method, 
respectively. This represents, on average, a 1% difference between the 
two methods when using only 1 perturbation for gradient 
approximation. 

A similar trend is reflected in the results presented in Fig. A-1b when 
using a perturbation number of 5. The optimal values of Adam-SPSA 
when using the projection method and logarithmic transformation 
method are 35.51 MM USD and 33.84 MM USD, respectively. Although 
these individual values are an improvement to results in A-1a, the 
percent difference is still around 4.9%, on average. In regard to SD- 
SPSA, the results of optimal values have also improved to 34.19 MM 
USD and 33.3 MM USD for the projection and logarithmic trans-
formation methods, respectively. However, this is a difference of 2.7% 
between the two bound constraint handling techniques. 

Fig. A-1c displays the results when using a perturbation number of 
10. Again, there is a slight improvement with regards to the optimal 
values obtained by Adam-SPSA of 35.76 MM USD and 34.00 MM USD 
when using the projection and logarithmic transformation methods, 
respectively. Based on these average results, this is a 5.2% difference 
between the constraint handling techniques. Similarly, the results of SD- 
SPSA show a 3.8% difference between the results obtained when using 
the two methods. An optimal value of 34.85 MM USD was obtained 
when applying the projection method. On the other hand, an optimal 
value of 33.59 MM USD was obtained when utilizing the logarithmic 
transformation method. 
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Fig. A-1. Investigation into the effect of bound constraint handling methods for (a) 1, (b) 5 and (c) 10 perturbations for SPSA and Adam-SPSA   
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application of these global optimizers to well placement
problems. These techniques stochastically explore the
search space using a pool of solutions (known as the
population). Through learning parameters, solutions which
are more promising undergo selection and stochastic
manipulation which results in a new population. As such,
in the case of heuristic initialization, it is difficult to ensure
that the initial solutions based on reservoir engineering
considerations are used or exploited adequately. As a result,
such solutions may be absent in future generations and
replaced by completely different ones. Although these
generational mechanisms can be fruitful for global search,
they inevitably increase the computational demand.

In these situations, local optimizers may provide suitable
solutions in a more computationally efficient manner.
Given the nature of local optimization methods, they are
more likely to converge to a local optimum near the
starting point. Consequently, their performance is heavily
affected by the quality (location in the search space) of
the initial guess. In an attempt to overcome this limitation,
methods such as multi-start [11] and restart techniques [12]
have been introduced. As their name suggests, multi-start
methods initialize the algorithm from multiple different
initial guesses which will (ideally) converge to different
optimums. The aim is then to select the most optimal
solution from all starting points. On the other hand,
restart techniques execute the algorithm for a number
of iterations before restarting the algorithmic parameters
and using the last solution found as the initial guess.
Although these approaches may succeed in delaying the
convergence to an optimum, they inevitably reduce the
computational efficiency of local approaches. This becomes
counter-productive for optimization problems that are
computationally constrained as is commonly the case for
practical scenarios. By contrast, a less burdensome approach
is to utilize prior knowledge to improve the quality of the
initial guess. In this undertaking, the aim is to leverage the
advantages of local methods to increase the convergence
speed to an improved solution. It should be noted that
this approach assumes the initial guess is based on sound
knowledge, as is the case for the optimization problem
under consideration. However, this does not preclude the
use of local optimization methods to improve lower quality
initial guesses either.

Optimization of well location using local methods has
received some attention in the literature. These techniques
can be categorized into two groups, gradient-based and
pattern-search methods. Pattern-search algorithms have
been used for well placement optimization, typically as
local optimizers within hybrid approaches [13–16]. These
methods provide a gradient-free procedure that relies
on the direct search of the solution space. This search
occurs through the use of a stencil, which is typically

a collection of points obtained by perturbations of equal
size in all directions. The center of the stencil moves
when there is an improvement in the objective function
value. If no improvement occurs, the stencil size is
reduced and the procedure is repeated. However, in high-
dimensional optimization problems (e.g., placement of
multiple nonconventional — deviated, horiztonal and/or
slanted — wells) the need to search perturbations in all
directions may become a computational limitation.

Gradient-based approaches involve the utilization of a
gradient computed through either an adjoint system [17–
20] or approximation techniques [21, 22]. The adjoint
method has been applied in several pieces of literature
regarding vertical well placement optimization [19, 20, 23].
These methods rely on indirect approaches, which derive
the well location sensitivity through gradients based on
well control. Vlemmix et al. [23] extended this method
to nonconventional wells by placing pseudo-sidetracks
in grid blocks adjacent to the well path at specified
trajectory points. However, this method is limited to only
modifying the well along these trajectory points and not its
overall location in the reservoir. More recently, Volkov and
Bellout [24] use a combined technique for the optimization
of nonconventional wells. The method uses the adjoint
formulation to find key partial derivative terms that are
then approximated using finite difference methods. The
practical application of methods which rely on either adjoint
formulations or adjoint-based gradients can be limited as
they are not readily available in all commercial simulators
in well placement optimization contexts. In addition, finite
difference-based methods may lose efficiency when scaled
to large dimensional problems, as they require one or two
function evaluations for the perturbation in each dimension.

On the other hand, approximating the gradient, using
simultaneous perturbation, provides an alternative. These
methods rely on only objective function values and act as
black-box methods. Bangerth et al. [21] applied an inte-
ger variant of the Simultaneous Perturbation Stochastic
Approximation (SPSA) algorithm to well placement prob-
lems, including placing seven vertical wells in a simple
two-dimensional model. Leeuwenburgh et al. [25] applied
an ensemble method (EnOpt) to optimize the areal loca-
tions (x and y-coordinates) of nine vertical wells in a
two-dimensional model. Li et al. [26] applied the inte-
ger variant of SPSA to the joint optimization of well
controls and well placement on three case studies, includ-
ing the benchmark PUNQ-S3 model. Jesmani et al. [22]
applied continuous variants of SPSA to optimize the loca-
tion of a single nonconventional well in the presence of
four pre-existing injection wells. Simultaneous perturba-
tion methods can provide an approximated gradient with
only two function evaluations (if central), regardless of the
number of decision variables. This makes the algorithms,
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which employ simultaneous perturbation gradient approxi-
mation, computationally efficient for nonconventional well
placement optimization problems.

Another important consideration is the parameteriza-
tion of the decision variables in the problem formulation.
Various parameterizations have been utilized in the litera-
ture. The simplest kind is the placement of vertical wells,
which requires only two variables for each well location.
In such a case, the well locations are defined either by
the continuous Cartesian coordinates (x and y) or by the
cell indices (i and j) [27]. In nonconventional wells (devi-
ated, horizontal, slanted), the completion trajectory can be
defined as two (heel and toe) points in space connected
by a straight line. There are two common parameteriza-
tions for nonconventional wells: Cartesian coordinates and
spherical coordinates. When using spherical coordinates,
the completion trajectory is defined by the heel point using
Cartesian coordinates (x, y and z), and spherical coordi-
nates to define the length of the well (L), the inclination
angle (φ) and the azimuth angle (θ) in the horizontal plane
[7, 28, 29]. In such parameterization, a well length con-
straint can be handled through simple bounds. On the other
hand, when using Cartesian parameterization, both the heel
and toe are defined by Cartesian coordinates [9, 30]. In
Sayyafzadeh and Alrashdi [9], the implemented parameter-
ization represents the heel and toe by x and y-coordinates
and the z-coordinate is defined as a percentage between
the bounding surfaces of the reservoir. The selection of
parameterization can be important when approximating gra-
dients using simultaneous perturbation. This is because the
decision variables need to have similar sensitivities to the
perturbation size in the gradient approximation. If this is not
the case, the sensitivity to some parameters will be masked
by others.

In practice, field development planning is a multi-
disciplinary task, which includes an understanding of
suitable well locations based on reservoir engineering
judgement. To this end, we argue in situations under
computational constraints, local methods can be leveraged
to improve on these initial guesses in an efficient manner.
These local methods will be able to produce improvements
that are in line with considerations accounted for in the
initial guess. In this study, we focus on the development
of a first-order algorithm based on the adaptive moment
estimation (Adam), for application to constrained well
placement optimization. The algorithm is a combination
of SPSA as a gradient approximation within an adaptive
moment estimation framework. It is referred to as Adam-
SPSA.

The adaptive moment estimation framework introduces
the idea of using dimension-wise step-sizes in gradient-
based algorithms. This allows the search direction to be

tailored for each dimension accordingly. In addition, this
framework considers the accuracy of the approximated
gradient by estimating the first and second order moments.
As a result, these estimations aid the algorithm in guiding
the search to more promising areas. The adaptive moment
estimation (Adam) framework has found significant success
in optimization problems in machine learning applications,
including Google’s translation system [31] and image
processing [32, 33]. In these applications, the objective
function is considered noisy as it is the summation
of a random subset of cost (or loss) functions, from
which a gradient is approximated. Although the objective
function in well placement optimization using Adam-
SPSA is not noisy (even if geological uncertainty is
incorporated), stochasticity is still introduced by the random
and simultaneous perturbations used in SPSA. This enables
the extension of Adam to well placement optimization
problems. More recently, olkov and Bellout [3] successfully
applied the technique to well control optimization and
shows its applicability to such problems.

In this study, we investigate the application of Adam-
SPSA to vertical and nonconventional well placement
optimization. This includes a two-dimensional visual
example to compare the search directions of the adaptive
moment estimation framework and the steepest descent
framework. Additionally, Adam-SPSA is employed to two
well placement optimization problems in the PUNQ-S3
model. The results are compared to the conventional
steepest descent SPSA algorithm (SD-SPSA) and a pattern
search technique, generalized pattern search (GPS).

The outline of the paper is as follows. The problem
statement, including the formulation of the optimization
problem, as well as the objective function are presented
first. Next, the adaptive moment estimation framework
is introduced. Following this, we begin the numerical
results with a visualization of the gradient-based methods
using a simple two-dimensional problem to reflect the
improved search directions of the proposed algorithm.
In addition, the numerical results for well placement
optimization on two numerical case studies of increasing
complexity are presented. The significance and implications
of these results are then discussed, followed by concluding
remarks.

2 Problem formulation

2.1 Problem statement

The optimization problem involves the minimization of a
defined objective function where the well locations are
the variables of interest. The well placement optimization
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problem can be formulated as a general optimization
problem as follows:

min
x∈Rn

f (x)

subject to :
ci(x) ≤ 0 i ∈ K

ci(x) = 0 i ∈ I,

(1)

where, f (x) is the objective function, x denotes the vector
of decision variables, n is the number of decision variables,
I and K are sets of indices for equality and inequality
constraint functions, ci(x) , respectively. These constraint
functions may include linear and nonlinear constraints, as
well as bound constraints.

2.2 Objective function

Here, we consider the objective function to be the negative
of the NPV for a given lifespan. The objective function is
defined as

f (x) = −NPV(x)

=
Nt∑

i=1

−ro,i Qo,i(x)+cwp,iQwp,i(x)+cwi,iQwi,i(x)
(1 + b)ti

,

(2)

where ro,i , cwp,i and cwi,i are the sale price of oil and costs
of water separation and injection, respectively, all of them
per unit volume and defined from time ti to ti+1 (there are
Nt such intervals), Qo,i , Qwp,i and Qwi,i denote the field oil
production, field water production and field water injection
volumes during the mentioned output interval and b is the
discount rate.

3Methodology

3.1 Gradient approximation

The gradient approximation utilized in this study is SPSA.
SPSA was first introduced by Spall [34] for problems whose
analytical derivatives are unavailable. SPSA only requires
two function evaluations to approximate a gradient using
the central-difference method. This allows SPSA to be very
efficient for high dimensional problems. The stochastic
gradient approximation is:

ĝk(xk) =

⎡

⎢⎢⎣

f (xk+ck�k)−f (xk−ck�k)
2ck�k1

...
f (xk+ck�k)−f (xk−ck�k)

2ck�kp

⎤

⎥⎥⎦

= f (xk + ck�k) − f (xk − ck�k)

2ck

×
[
�−1

k1 , �−1
k2 , . . . , �−1

kp

]T

, (3)

where, the mean-zero p-dimensional random perturbation
vector, �k = [�−1

k1 , �−1
k2 . . . �−1

kp ]T , has a user-specified
distribution and ck is a positive scalar. The convergence
theory of the SPSA algorithm can be found in Spall [34].
An important consideration for this theory is that Spall
[34] recommends the use of the Bernoulli distribution.
The selection of the optimal distribution perturbation
vector was studied in Sadegh and Spall [35]. The
gradient approximation is calculated using SPSA with the
parameters following the recommendations given in Spall
[36]. These are used to calculate the proposed perturbation
size from the following gain sequence:

ck = c

(k + 1)γ
, (4)

where, k is the iteration number, γ is a positive scalar
constant and c is the initial perturbation size. Readers
are referred to Spall [36] for additional implementation
guidelines.

3.2 Adaptivemoment estimation framework

Kingma and Ba [37] first introduced the adaptive moment
estimation (Adam) framework as a gradient-based optimiza-
tion algorithm which utilizes first-order information. The
framework computes distinct progression steps for each
decision variable (dimension) based on estimates of the first
and second moments extracted from the gradient approx-
imations [37]. In comparison, the steepest descent frame-
work utilizes the approximated gradient as the progression
step and, as such, the same step is taken for all decision
variables.

The two pieces of information Adam extracts and utilizes
are estimates of the first and second moments. For a random
variable, X, the first moment is defined as the mean, or
expected value, E[X], about the origin [38]. This random
variable, X, is taken to be the gradient approximation.
Consequently, the estimation of the first moment is in fact an
estimation of the expected value of the gradient. Following
this, the definition of the second central moment of the
random variable X is the variance about the mean, defined
by Lefebvre [38]:

V ar(X) = Diag(E[(X − E[X])2]), (5)

This can be further simplified with algebraic manipu-
lation while assuming the variables of X are independent.
Additionally, in the long-run, the mean of the gradients
tends to approach zero as a local optimum is approached.
This results in the following definition of the uncentred
variance:

unV ar(X) = Diag(E[X2]), (6)

Given that the random variable, X, is the gradient
approximation, the uncentred variance is the expected value
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of the element-wise gradient squared. The Adam framework
then uses an exponential moving average to put greater
weighting on the most recent approximated gradients when
estimating the first and second moments. Details of the
convergence theory for the adaptive moment estimation
framework is presented in Kingma and Ba [37]. Framework
1 presents the steps of Adam.

Framework 1 - Adaptive Moment Estimation

0. Initialize iteration counter, select initial guess, x0, assign
nonnegative constant parameters: step-size ω and exponential
decay rate for moment estimates β1 and β2

1. Initialize first and second moment vectors, m0 and v0, which
are n × 1 column vectors

2. Approximate stochastic gradient
3. Update the first moment vector using update rule:

(a) mk = β1 × mk−1 + (1 − β1) × ĝk , where mk , mk−1 and
ĝk are n × 1 column vectors

(b) m̂k = mk

1−βk
1
, where m̂k is a n × 1 column vector

4. Update the second raw moment vector:

(a) vk = β2 × vk−1 + (1 − β2) × (ĝk � ĝk), where � is the
element-wise multiplication and vk and vk−1 are n × 1
column vectors

(b) v̂k = vk

1−βk
2
, where v̂k is a n × 1 column vector

5. Update the iterate:

(a) xk+1 = xk − ω × m̂k√
v̂k+ε

It should be noted that all operations are done in an
element-wise manner. The � represents the element-wise
multiplication of two vectors. Also, the operation on the
hyper-parameters (βk

1, βk
2) are denoted as β1 and β2 raised

to the power k (iteration number). Typical values for β1, β2

are 0.9 and 0.999, respectively [37]. A small positive value,
ε = 10−8, is used to avoid the division by zero [37].

In machine learning applications, the objective function
is typically in the form of a loss function representing a
sum of differences over a set of observations. For example,
a common loss function is the summation of the squared
differences, f (x) = ∑N

i=1(yi − ŷi )
2, where N is the

number of observations and yi and ŷi are the true value
and predicted value for observation i, respectively. In many
occasions, instead of calculating the gradient as ∇kf (x) =∑N

i=1 ∇k(yi − ŷi )
2, a random set of observations is used

in each iteration instead of all the observations (∇kf (x) ≈∑n
i=1 ∇k(yi − ŷi )

2), where n is smaller than N . This gives
an approximate gradient in each iteration. If these gradient
approximations are averaged, the result is in the same
direction as the true gradient.

In contrast, the objective function in well placement
problems is not of similar form to a loss function and the
gradient approximation can be computationally expensive.
That is, the objective function, f (x) = −NPV (x),
requires reservoir simulations to obtain a objective value. To
reduce the computational costs of gradient approximations,
we use a simultaneous perturbation approach. It is
worth mentioning that, in both cases (subset of objective
functions or simultaneous perturbations), the gradient
approximation accuracy increases if averaged over a
number of approximations. That is, let g(x) = ∇kf (x)

then the averaged gradient approximation is given by
ĝ(x) = ∑s

j=1 gj (x), where s is the number of gradient
approximations. Additionally, the theory of simultaneous
perturbation suggests the approximated gradient is an
unbiased estimator of the true gradient within a bias bound
[34]. Adam has been shown to work reasonably well in
such stochastic optimization problems, and because of the
similarities, we use this framework with a simultaneous
perturbation to address computational intensity of well
placement problems.

3.3 Parameter selection

In this section, we present the rationale for the parameter
values selected for perturbation size and step-size for
each algorithm. The selection of appropriate parameter
values for perturbation size and step-size are pivotal
in the convergence of local algorithms. Previous work
has investigated this topic for well control optimization
problems [3].

3.3.1 Perturbation size

The perturbation size determines the amount of perturbation
taken in a direction when calculating the gradient. In
this work, we use a central difference to approximate the
gradient using SPSA. As such, the perturbation is done
in the forward and backward directions from the current
solution. The gradient aims to capture the sensitivity of
the objective function to changes in the solution. For well
placement problems, such as those under consideration,
this is guided by the grid block size. Considering this,
the numerical simulation may not properly capture the
sensitivity if the perturbation is too small. Similarly,
a perturbation too large will not be representative of
the local landscape. Due to spatially varying property
values (e.g., saturations and permeabilites), there is an
inherent discontinuity in the landscape. The selection of an
appropriate perturbation becomes important as it is one of
the remedies for this issue, to some extent.

Consequently, an initial perturbation size (c) value of
0.05 was found to be suitable for a perturbation of
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approximately one grid block. Adam-SPSA and SD-SPSA
both employ the decaying sequence given by Eq. 4 to update
the perturbation size at each iteration. A value of 0.101 was
used for γ as recommended by Spall [36]. It is important to
note that although Eq. 4 represents a decaying sequence the
sensitivities are still captured by the gradient.

Firstly, this work is focused on optimization under
practical computational constraints. As such, the decay
of the perturbation size is limited for the computational
budget considered. In addition, in this work we employ a
continuous parameterization for well location for vertical
and nonconventional wells. Lastly, the wells are not
necessarily at the centre of the grid blocks as the search
progresses.

In turn, this rationale was used to guide the selection
of an initial stencil size for optimization using GPS. The
stencil size in GPS represents the perturbation taken in each
direction (decision variable) that forms the search points of
the stencil at the current solution. For this reason, a stencil
size that represents a perturbation of approximately one grid
block is suitable. Consequently, the selected initial stencil
size for GPS optimization runs is similar to the perturbation
size value for Adam-SPSA and SD-SPSA.

3.3.2 Step-size

The step-size determines the progression of an algorithm
from the current solution to the next proposed solution in the
search direction. The effective step-size can be thought of
as the step-size multiplied by the search direction. In other
words, this is the difference between the current solution
and the proposed solution. As such, a suitable effective
step-size is one where the search does not swing from one
bound to another as this may result in overstepping local
minimums. On the other hand, an effective step-size that is
too small may cause a prohibitive slowdown in convergence.
Accordingly, for this work an effective step-size which
represented approximately one grid block was used. To do
this, the first two iterations of Adam-SPSA were used to find
a suitable value for ω (step-size) that gave an effective step-
size of one grid block. In Adam-SPSA, the selected ω value
is constant throughout the optimization run (i.e. the step-
size does not change as the search progresses). In addition,
previous studies have shown that Adam-SPSA does not
require a backtracking line-search given its adaptive search
direction [3].

A similar routine was undertaken to find a similar
effective step-size for SD-SPSA. SD-SPSA updates the
step-size based on Eq. 7, where a is the initial step-size, A

is a stability constant, and α is a positive scalar constant.
From Spall [36] we use the recommended values of 0.602
and 0.1 × maximum number of iterations for α and A,
respectively. Additionally, for SD-SPSA a backtracking

line-search is implemented to help guide the search to an
improved objective function value. In this work, a cut-back
value of 0.5 and a maximum of 5 cut-backs are used, after
which the gradient is re-calculated and the line-search is
repeated.

ak = a

(A + k + 1)α
, (7)

3.3.3 Constraint handling

The consideration of physical field constraints is an
important aspect for practical application of optimization
in well location problems. In this work, three nonlinear
constraints are considered to ensure the proposed solutions
do not violate engineering principles. In addition, the
decision variables are normalized between 0 (lower bound)
and 1 (upper bound) for which simple bound constraints
are applied. The first constraint considers a minimum inter-
well distance between any pair of wells. When placing
three-dimensional nonconventional wells, this constraint
considers the minimum distance between any two points
on the line segments representing the two wells. The
second constraint is a polygon reservoir bound. In this
constraint, the reservoir bound is approximated using a
polygon shape to ensure any proposed well (both heel and
toe for nonconventional wells) lies within this polygon. The
third constraint considered relates to a maximum well length
for nonconventional wells.

The violation of any of these nonlinear constraints
is treated through the projection of an infeasible point
onto the feasible domain. This projection is formulated
into an optimization problem where a distance metric,
the Euclidean distance, with respect to the infeasible
point is minimized. That is, the distance between the
original violating set of well location/s and a set of
proposed well location/s is minimized. This optimization
problem is subject to the same constraints as in the
original problem. In this work, the constraint handling is
implemented through MATLAB’s fmincon function, which
is a nonlinear programing solver. The solver is set to use
a sequential quadratic programming (SQP) algorithm to
solve this optimization problem. Details can be found on the
MathWorks reference manual [39].

3.3.4 Constraint handling in gradient approximation

A sensitivity analysis was undertaken to gain insights into
the effect that different types of constraints in gradient
approximation had on the algorithm’s performance. All
parameter values were kept constant for each method.
The difference between each method is the constraints
considered when approximating the gradient using SPSA.
This means once the forward (xk + ck�k) and backward
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(xk − ck�k) perturbations are proposed they are subjected
to the assigned constraints.

Three different combinations were tested. The first
considered simple bound constraints to ensure the proposed
forward and backward perturbations are within the lower
and upper bounds. The second implemented a refined bound
constraint which included simple bound constraints and
the reservoir polygon constraint. That means if a forward
or backward perturbation proposed well locations outside
the defined reservoir polygon, they are projected back into
the reservoir. This was to ensure the number of wells was
consistent throughout the gradient approximation. The third
set-up considered all three nonlinear constraints (mentioned
in Section 3.3.3) as well as the bound constraints.

The results showed the worst performing combination
was the simple bound set-up which considered only bound
constraints for the forward and backward perturbation. This
could indicate that although the perturbations are within the
bounds, they are not corrected enough to result in a useful
gradient. On the other hand, including all the nonlinear
constraints could be over-correcting the perturbations. This
may result in a gradient that is not representative of the
local landscape causing it to perform worse than the refined
bounds set-up. The best performing combination is the
refined bound case containing bound constraints and the
reservoir polygon constraint. This insight shows that the
constraint handling considered for the perturbations has an
effect on the quality of the gradient approximation. It is
worth mentioning that only one simultaneous perturbation
is used for gradient approximation.

4 Case studies

This section begins with a simple two-dimensional example
to illustrate the differences in search direction between
Adam-SPSA and SD-SPSA. Next, the results for a case
study investigating the placement of four infill vertical

production wells are presented. The third case study
considers the placement of 20 nonconventional wells
considering three physical field constraints. All case studies
use the three-dimensional PUNQ-S3 benchmark model,
shown in Fig. 1 [40]. The model is an oil-saturated
heterogeneous reservoir with a small gas-cap and strong
aquifer support with bottom-drive and side support on
two sides. The other two sides are defined as no-flow
boundaries. The model is discretized into 19 by 28 by 5 grid
blocks, in which 1,761 are active. The areal extent of the
model is 17 × 106m2, with varying thicknesses between 20
and 30 meters. The reservoir has a lifespan of 10 years.

4.1 Case study 1 - two-dimensional visual example

In this case study, we visually compare the search direc-
tions from Adam-SPSA and SD-SPSA. The optimization
problem is the placement of one vertical production well,
resulting in 2 decision variables (x- and y- coordinates).
Figure 2 shows the search steps undertaken by Adam-SPSA
and SD-SPSA for three different initial starting points (rep-
resented by the cross). In Fig. 2a, both Adam-SPSA and
SD-SPSA are able to reach the closest local minimum to the
initial guess. However, Adam-SPSA only requires 4 itera-
tions to do so while SD-SPSA requires 6. Figure 2b shows a
different result where only Adam-SPSA is able to reach the
closest local minimum after 6 iterations, whilst SD-SPSA
converges after 5 iterations to a lower quality solution. It
must be noted that SD-SPSA was allowed to continue for
3 additional iterations without any improvement. Similarly,
Fig. 2c shows that Adam-SPSA was able to reach the clos-
est local minimum in 3 iterations, whilst SD-SPSA did not
converge to the same solution after 3 iterations.

As shown in Fig. 2 the search directions of SD-SPSA
are always 45 degrees from the previous solution. This is
attributed to the use of the Bernoulli distribution in the
gradient (when using only one gradient approximation),
which is directly used as the search direction. This problem

Fig. 1 Top view of Layer 1 and
three-dimensional
representation of the PUNQ-S3
benchmark model showing the
ternary saturations. Red is gas,
green is oil and blue is water
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Fig. 2 Visual representations of search steps of optimization of one
vertical well using three different initial starting points (pink cross).
The numbers inside the box indicates the number of iterations needed

to reach final value for each algorithm. Yellow is high objective
function value and blue is low objective function value

is more severe when the number of dimensions is greater
and/or the sensitivity to variables is not similar. Unlike SD-
SPSA, Adam-SPSA uses a dimension-wise adjusted search
step which gives the algorithm more control and flexibility
over movement in both x and y directions.

4.2 Case study 2 - four vertical infill production wells

In this case study, two producers are considered pre-
existing. These wells are PROD5 and PROD6 with x and y-
coordinates of (2970,1890) and (1890, 4230), respectively,
shown in Fig. 3. The objective is to minimize the function
given by Eq. 2 by placing four vertical infill producers,
resulting in a total of 8 decision variables. The wells are
controlled by bottom-hole pressure (BHP) with a pressure
of 2900 psi (200 bars) and a maximum liquid rate of
5660 STB/day (900 sm3/day). The economic parameters
are given in Table 1. Since the number of wells are fixed
(i.e., is not a decision variable) and all wells are vertical,
there is no impact of drilling and completion costs on NPV
calculation. As such, the drilling and completion costs are

not considered in this case study, and the associated values
in Eq. 2 are equated to zero. The optimization variables were
normalized and bounded between 0 and 1. In this case study,
a minimum inter-well distance of 300 meters is used. A box
constraint was used to represent the reservoir bounds by
placing upper and lower bounds on the x and y-coordinates.

As previously discussed, the step-sizes were used to
ensure a similar effective step was taken in each algorithm.
Adam-SPSA had parameter values of 0.07 and 0.05 for ω

and c, respectively. SD-SPSA had parameter values of 0.2
and 0.05 for a and c, respectively. To reduce the effect of
the stochastic nature of the SPSA gradient approximation,
both Adam-SPSA and SD-SPSA results were averaged over
10 optimization runs from the same reservoir engineering
initial guess. Since GPS is a deterministic method, it was
only run once. That is, for the same initial guess, GPS
will result in the same solution. GPS was implemented
using MATLAB’s pattern search optimization tool [39].
The polling method used was the Positive basis 2N with
an initial and maximum mesh size of 0.05. An incomplete
polling was employed where the first search direction at
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Fig. 3 Initial oil saturation of Layer 1 in two-dimensions with two pre-
existing production wells (PROD5 and PROD6). Red represents high
oil saturation and blue represented low oil saturations

each iteration is the direction which gave the best solution
in the previous iteration. The stopping criterion was set to
a maximum number of function evaluations of 100 in this
case study. For all optimization runs, the initial guess was
taken to be an example of a possible solution based on
reservoir engineering judgement, represented by the initial
well locations from the PUNQ-S3 benchmark model. These
wells are located around the gas/oil contact (GOC) to ensure
that the water breakthrough is delayed whilst maximizing
oil production.

Figure 4 shows the convergence plot for the results of the
well location optimization for case study 2. The results show
that SD-SPSA, on average, converged to a final optimum
NPV of 1,359 MM USD after 103 function evaluations.
In comparison, Adam-SPSA, on average, required only
30 function evaluations to achieve a similar NPV value
(1,361 MM USD). This represents up to a 71% decrease
in the required number of functional evaluations. Another
important consideration is the standard deviation of the
results from Adam-SPSA compared to SD-SPSA. The

Table 1 Economic parameters for the two example problems

Parameter Case study 2 Case study 3

Oil price (ro) $80 USD/bbl $40 USD/bbl

Water handling costs (cwp) $13 USD/bbl $5 USD/bbl

Discount rate (b) 0% 0%

Fig. 4 Convergence plot for the optimization of four vertical infill
wells comparing Adam-SPSA (solid line), SD-SPSA (dashed line),
and GPS (dash-dotted line). The results of Adam-SPSA and SD-SPSA
represent an average of 10 runs

standard deviation of the 10 runs for both these algorithms
gives an indication of the effect that the stochastic nature
of the gradient approximation has. Although an element
of stochasticity can be advantageous, it can become a
hindrance if an algorithm is susceptible to it. For case
study 2, Adam-SPSA had a standard deviation in the final
optimum value of 41.69 MM USD across the 10 runs. In
comparison, SD-SPSA had a standard deviation of 51.22
MM USD across the 10 runs. This is up to almost a 19%
difference in standard deviation. That is, the optimization
runs of SD-SPSA showed a 19% more spread in the final
optimum values found when compared to Adam-SPSA.

The average results of Adam-SPSA and the result of GPS
are competitive with regards to the final optimum value.
The GPS optimization run results in a final optimum NPV
value of 1,409 MM USD after 100 function evaluations.
On the other hand, Adam-SPSA, on average, results in a
final optimum value of 1,401 MM USD. The convergence
plot of GPS exhibits a characteristic pattern of a local
optimizer with improvements occurring after searching the
local landscape. Given the stencil-based search of GPS, it
is not uncommon to see large increases in NPV after one
function evaluation. An example of this is shown in Fig. 4
where a significant jump in NPV occurs at 61 function
evaluations.

Although the one GPS run outperforms the average
runs of Adam-SPSA in terms of final NPV, it should
be mentioned that three of the 10 runs of Adam-SPSA
outperform GPS. An example is shown in Fig. 5, which
shows the best run of Adam-SPSA against the GPS run.
These results show that Adam-SPSA outperforms GPS in
terms of convergence speed and final optimum value. For
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Fig. 5 Convergence plot for the best run (out of 10) of Adam-SPSA
(solid line) and GPS (dash-dotted line) run for the optimization of four
vertical infill wells

example, GPS converges to an optimum value of 1,409
MM USD after 85 function evaluations, whilst Adam-SPSA
converges to similar value (1,399 MM USD) after only 51
function evaluations. This translates to a 40% improvement
in number of function evaluations to achieve a similar
NPV value. This Adam-SPSA optimization run converges
to a final optimum value of 1,476 MM USD after 66
function evaluations. On the other hand, after 66 function
evaluations, GPS reaches an NPV value of 1,378 MM USD,
which is a 7.11% reduction compared to Adam-SPSA. The
convergence plots shown in Fig. 5 are characteristic of local
optimizers. The staggered pattern represents the algorithms
traversing the local landscape in search of an improvement
in objective function value.

Figure 6 shows the final oil saturation maps for the
best optimized solutions of all three algorithms. The major
difference is seen when comparing the locations of the wells
relative to the gas cap, where the wells were initially located
(shown in top left map). Given this work investigates the
use of local optimization algorithms for well placement
problems, it is expected that the final solutions will be
relatively close (with respect to well locations) to the initial
guess. The aim is to improve on an initial guess that is
based on reservoir engineering judgement to maximize the
objective function. This is shown by the well locations from
the solutions of the three algorithms. The wells are slightly
moved away from the gas cap to produce more oil from the
northern and western flanks of the reservoir. However, this
needs to be balanced as a move too far north or westerly
would result in a large water influx from the strong aquifer
on either side. From the final oil saturations shown, the
Adam-SPSA solution produces a solution that best balances

Fig. 6 Oil saturation maps of Layer 1 at the end of the production
time for the initial guess (top left) and the three best solutions from
SD-SPSA (top right), Adam-SPSA (bottom left) and GPS (bottom
right). Red represents high oil saturation and blue represented low oil
saturations. Wells are represented by solid black circles

this as shown by the drainage of oil saturation in the western
side of the reservoir model.

4.3 Case study 3 - 20 nonconventional wells

The third case study investigates the placement of 20 non-
conventional wells in the PUNQ-S3 model. Consequently,
this problem has a total of 120 decision variables. The opti-
mization variables were normalized and bounded between
0 and 1. In this paper, we use a parameterization similar to
Sayyafzadeh and Alrashdi [9]. Each nonconventional well
is defined with 6 variables. The heel and toe are defined
using x and y Cartesian coordinates, while the z-coordinate
is defined as a percentage between the top and bottom
layer. For a proposed set of x- and y-coordinates, the cor-
responding z-coordinates of the top and bottom layers are
found using an interpolation surface. Then the proposed
z-coordinate is calculated using the proposed percentage
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(i.e. the decision variable) between these two z-coordinates.
This helps ensure that the full perforation length of the
well intersects the reservoir model in the z-direction. The
wells are defined as fully perforated straight lines between
the heel and toe. Lastly, this parameterization allows the
nonconventional wells to be defined as vertical, slanted or
horizontal.

The objective is to place 20 nonconventional wells. As
in case study 2, the wells are controlled by BHP with a
pressure of 2900 psi (200 bars) and a maximum liquid rate
of 5660 STB/day (900 sm3/day). The economic parameters
used in this case study are given in Table 1. As previously
mentioned, three nonlinear constraints are considered in this
case study. This includes a maximum well length of 500
meters, an inter-well constraint (in three-dimensions) of 200
meters and a reservoir polygon bound (Fig. 7) constraint.

The GPS employed is the same as that employed in
case study 2, with an initial stencil size of 0.05. Adam-
SPSA had parameter values of 0.1 and 0.05 for ω and c,
respectively. SD-SPSA had parameter values of 0.25 and
0.05 for a and c, respectively. In this case study, an initial
guess was used based on possible reservoir engineering
considerations. The wells were placed in a manner that
would take advantage of the added contact with the reservoir
when using nonconventional wells. However, the effect of

Fig. 7 X-directional permeability of Layer 1 showing the reservoir
polygon boundary (solid black lines) used to define the piecewise
linear polynomials for boundary constraint. Red represents a high
permeability value and green represents a low permeability

the strong aquifer needed to be considered to ensure the
water breakthrough did not force wells to be shut-in. The
stopping criterion was set to a maximum number of function
evaluation of 200.

Figure 8 compares the performance of Adam-SPSA to
GPS and SD-SPSA for case study 3. Similar to case study
2, Adam-SPSA and SD-SPSA were run with the same
initial guess using 10 different seeds. On average, SD-SPSA
required 203 function evaluations to converge to a final
optimum NPV value of 719.9 MM USD. In comparison,
Adam-SPSA required 87 function evaluations to reach a
similar NPV value (721.7 MM USD). This translates to a
convergence speed-up of up to 57% to reach the SD-SPSA
final optimum value.

An interesting insight shown in Fig. 8 is the behaviour
of Adam-SPSA and SD-SPSA in early iterations. Between
0 and 50 function evaluations SD-SPSA, on average,
seems to be performing slightly better than Adam-SPSA.
However, after this initial period, the convergence speed of
Adam-SPSA increases, while SD-SPSA slows significantly,
resulting in a noticeable difference in the average final
optimums. This initial difference can be attributed to
the nature in which the search directions are calculated
by Adam-SPSA, where a running exponential average is
used to estimate the first and second moments. As such,
in order to improve the search direction, Adam-SPSA
requires first-order information from a number of iterations.
Once this is achieved, Adam-SPSA is able to perform
significantly better based on this extracted information. This
is a noticeable difference compared to case study 2 where
only 8 dimensions were considered where Adam-SPSA was
able to update the dimension-wise search directions more
efficiently.

Fig. 8 Convergence plot showing the results of Adam-SPA (solid
line), SD-SPSA (dashed-dotted line) and GPS (dashed line) for the
placement of 20 nonconventional wells
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The large difference in performance of the best run of
SD-SPSA and its average over 10 runs is the stochastic
nature of the gradient calculation. As such, the standard
deviation can give insights into the spread of optimization
results. For case study 3, Adam-SPSA has a standard
deviation in the final optimum value of 15.90 MM USD. On
the other hand, SD-SPSA has a standard deviation over 10
runs of 26.38 MM USD, which represents up to 40% more
spread in final optimum values. From a practical standpoint,
Adam-SPSA results in a more consistent solution with
respect to the final optimum NPV.

The comparison of the GPS and Adam-SPSA results is
a reflection of the “curse of dimensionality” that pattern
search methods are susceptible to. For a 120-dimensional
problem, as in case study 3, it is computationally inefficient
to traverse the local landscape using a stencil-based
approach. Even when employing an incomplete polling
approach, this search technique may result in prolonged
periods of no improvement in function value, as shown
in Fig. 8. The outperformance of GPS by Adam-SPSA
(and SD-SPSA) gives insight into the advantage that a
stochastic element (i.e., in gradient approximation) can

Fig. 9 The well locations for
initial guess (top left) and initial
oil saturation maps with the
optimal well locations found by
Adam-SPSA (top right), SD-
SPSA (bottom right), and GPS
(bottom left) in two-dimensions.
Circles represent well head
location and triangles represent
a connection. Red represents
high oil saturation and blue
represents low oil saturation
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have, in addition to the simultaneous perturbation. Although
these local methods are still susceptible to the same
dimensionality curse, having a stochastic element gives
these methods an opportunity to traverse the landscape
more efficiently. This results in a more computationally
efficient search and hence final optimum value. It is worth
mentioning that there is potential for these advantages to
extend to larger models containing finer grid cells. However,
in such cases careful consideration would need to be given
when selecting appropriate step-sizes and perturbation
sizes. As a step-size and perturbation size too small may
have an affect on the convergence of the algorithm.

The well locations of the initial guess as well as selected
optimization results for the three algorithms are presented
in Fig. 9. The first observation is the similarity of the well
locations from the initial guess to each of the algorithm
results. This is what is expected with the use of local
methods, which exploit the initial guess and progress to the
closest minimum. The well locations exhibited in Fig. 9
show that placing wells closer to the gas cap assists in
lowering the water production due to aquifer encroachment.
However, placing too many wells in (or too close to) the
gas cap, as in the SD-SPSA solution, may undermine the oil
production total and as such reduce the objective function
(NPV) value. Overall, the solution found by Adam-SPSA
is able to balance these two aspects of water production
and oil production to improve NPV over the initial guess.
This gives an indication that local methods, both gradient-
based and pattern-search (although to a lesser degree)
type algorithms can be used to improve on initial guesses
for well location optimization. Furthermore, although the
well locations are similar to the initial guess, it reflects
the ability for local methods to handle nonconventional
well trajectory placement. In computationally constrained
practical scenarios, these methods may provide suitable
solutions within the budget.

Another important aspect of practical application for
nonconventional wells is the ability for algorithms to

navigate the local landscape in the presence of physical
field constraints. As mentioned earlier, three nonlinear
constraints were considered: a maximum well length,
a minimum three-dimensional inter-well distance and a
reservoir polygon bound. The local methods were still
able to improve on the initial guess whilst operating with
the nonlinear constraint handling employed. The constraint
handling technique is successful in ensuring the proposed
solutions are not violating the physical constraints.

Additional insight can be obtained when reflecting on
the oil and water production totals, presented in Fig. 10,
for the Adam-SPSA solution presented in Fig. 9. These
totals give an indication of the reasons for the differences
in the objective function value, NPV, obtained from Adam-
SPSA compared to the initial guess. The placement of the
wells plays a pivotal role in the volume of fluids produced
from a field. As previously mentioned, this solution places
more wells closer to the gas cap, with a number of wells
directly on top of the dome structure. By the same token,
this means that the wells in this solution are further away
from the strong aquifers that are present on the outer
boundaries. After 10 years of production, the Adam-SPSA
solution and the initial guess have similar oil production
totals of 4.00 ×106sm3 and 3.87 ×106sm3, respectively.
However, there are more substantial differences between
the water production totals. Specifically, the Adam-SPSA
solution results in a water production total of 7.02 ×104sm3

compared to 1.03 ×106sm3 produced in the initial guess,
which is more than a magnitude difference. Given there are
no associated costs with gas handling, the key driver for
the difference in NPV between the Adam-SPSA solution
and the initial guess is the significant reduction in water
production. This gives additional insight to possible field
development considerations with regards to water handling
costs. Although not considered in this study, further analysis
of these results in practical applications may lead to
the consideration of the gas production. This could be
limited through additional constraints or the introduction

Fig. 10 Oil (left) and water
(right) production totals for the
best Adam-SPSA (solid lines)
solution compared to the initial
guess (dashed line)
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of gas handling costs into the objective function. In such
a scenario, it is suitable to expect the solutions from the
optimization will look different.

5 Discussion

In practical scenarios under computational constraint
the use of optimization algorithms may be limited by
a number of expensive reservoir simulation calls. As
such, the employment of local optimization algorithms
to these problems, such as well location optimization,
may provide suitable improvements to proposed solutions.
Often in practice an in-depth understanding of the reservoir
dynamics is available. This may culminate itself through
multiple possible development plans or potential infill
well locations. This provides an ideal starting point for
local optimization techniques to exploit and fine-tune
these development plans to improve returns and highlight
potential bypassed opportunities. Previous applications of
local optimization algorithms have shown promise for
vertical well placement problems. A limited number of
studies have also shown applications for local optimization
algorithms for nonconventional well placement.

In this study, we compare a derivative-free local algo-
rithm, GPS, and two gradient-based algorithms, Adam-
SPSA and SD-SPSA (with some form of stochasticity)
for well placement optimization under a limited compu-
tational budget. For problems of relatively low dimen-
sions, as in case study 2 (8 dimensions), the perfor-
mance of the algorithms was competitive as the local
landscape could be exploited efficiently. However, as the
dimension increases to more realistic problems, as in
case study 3 (120 dimensions), the simultaneous pertur-
bation stochastic nature of SPSA offers some advantages.
The element of randomness introduced by SPSA, espe-
cially when using one approximation, increases the prob-
ability of the search covering the local landscape more
efficiently.

In addition, by simultaneously perturbing all the decision
variables at once the progression may occur in all
dimensions. On the other hand, the deterministic nature of
pattern search methods, such as GPS, makes this type of
progression less likely. In addition, pattern search methods
employ perturbations to each dimension individually, which
is computationally inefficient for problems with a large
number of decision variables. The decrease in performance
of GPS from case study 2 to case study 3 reflects
this inefficiency and susceptibility to the dimensionality
curse. This further becomes an issue under computational
constraint where an incomplete polling is more favourable,
which may result in more promising directions being
overlooked.

Although Adam-SPSA and SD-SPSA both employ
SPSA as the gradient approximation, the first-order
information extracted and utilized differs. The steepest
descent framework employs the gradient as the search
direction to progress the search in each dimension.
However, the step-size taken is identical across all
dimensions. A backtracking line-search was employed for
SD-SPSA to improve the search progression by adjusting
the step-size. On the other hand, Adam-SPSA, utilizes an
adaptive framework that allows dimension-wise steps. This
is done by estimating the first and second order moments
of the gradients, which represents the accuracy of the
gradient in each direction. The search direction in Adam-
SPSA is the ratio of the first moment (mean) to the second
moment (variance). This can be thought of as a signal-
to-noise ratio (SNR). A smaller SNR indicates that there
is substantial uncertainty as to whether the estimated first
moment corresponds to the true gradient. As a result, the
effective step in such a direction should be small. On the
other hand, a large SNR indicates that the estimated first
moment gives a better approximation of the true gradient
as the estimated second moment would be relatively low.
Consequently, this allows Adam-SPSA to adaptively change
the search direction for each decision variable to improve
the search. This is shown through the results for the two case
studies involving both the placement of vertical wells (case
study 2) and nonconventional wells (case study 3) where
Adam-SPSA outperformed SD-SPSA in both convergence
speed and final optimum value.

Another important consideration for gradient approxima-
tions which use simultaneous perturbation is the parame-
terization. A gradient approximation attempts to find the
sensitivity of the objective function to each decision vari-
able. In simultaneous perturbation methods, this is done for
all decision variables often using the same perturbation size
(namely, c in SPSA). However, if the decision variables do
not have the same sensitivity, this will result in the less sen-
sitive decision variables being masked by more sensitive
decision variables. As a result, the gradient approximation
will not be representative of the landscape.

In our nonconventional well placement studies, we
trialled both spherical coordinates and Cartesian coordinates
to define the well trajectory. Given the different types
of variables in spherical parametrization, the sensitivity
of the objective function to each will be varied. Our
results, which are not shown, found that when using
spherical parameterization for gradient approximations that
use simultaneous perturbation were susceptible to this
and performed very poorly. To further investigate this
difference in performance, we calculated the gradients
using finite difference for both parameterizations for 15
nonconventional wells. Figure 11 presents the histogram
showing the (finite-difference) gradient values across all
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Fig. 11 Histogram of gradient values calculated using finite difference
for all decision variables using a perturbation size (c) of 0.1 comparing
Cartesian and spherical parameterization

90 decision variables. The mean absolute deviation for
the Cartesian parameterization histogram is 36.44, whilst
it is 51.83 for the spherical parameterization histogram.
This indicates that the gradient values when using
spherical coordinates exhibit more spread when using the
same perturbation size. This additional sensitivity can be
attributed to the dependence of the location of the toe to
the location of the heel in spherical parameterization. When
a coordinate of the heel is perturbed, the physical location
of the toe will also move even though the values for the
decision variables related to the toe (φ, θ , L) are unchanged.
This gives insight into the effect that different types of
parameterization can have on gradient approximations.

Although the performance of simultaneous perturbation
gradients improve when utilizing a Cartesian parameteri-
zation, an additional nonlinear constraint for well length
needed to be considered. In addition, it is more difficult
to put constraints on the dogleg severity when using this
parameterization. This could be the reason why spherical
parameterization is popular in the literature as population-
based methods do not require a gradient approximation.

The practicality of optimized solutions is dependent on
their feasibility when physical constraints are present. This
further complicates the optimization problem, especially for
nonconventional wells where we considered three practical
field constraints. These included a minimum inter-well
distance, a maximum well length and a reservoir polygon
bound. These constraints were useful in obtaining final
optimum solutions that were plausible and in line with
general engineering knowledge (e.g. no intersecting wells).
Similar constraint handling techniques applied in this
work could be extended to deal with practical constraints
surrounding a minimum distance between a well and a fault.

In this case, the fault would need to be represented by a
plane in 3-dimensional space.

Furthermore, the role these constraints play when
approximating gradients and their effects on algorithm
performance was investigated. Although not extensive, the
preliminary results indicated that there is an ideal amount
of (forward and backward) perturbation correction needed
during gradient approximation. The correction needs to
keep the integrity of the underlying direction, yet ensure
the perturbations fulfil certain constraints. There is potential
to extend this investigation further by comprehensively
studying the available constraint handling techniques and
their effects on gradient approximation and algorithm
performance.

Also, the consideration of geological uncertainty in
gradient-based methods is an important extension. One
may extend the proposed method by simply using the
expected NPV across a number of realizations as the
objective function. Other more efficient, but less accurate,
approaches may approximate a gradient using an average
of gradient approximations which utilize stochastically
selected realizations. This requires additional research
to investigate the implications of such techniques on
convergence.

6 Concluding remarks

This study compared the proposed algorithm (Adam-SPSA)
with the conventional steepest descent SPSA (SD-SPSA)
and a derivative-free pattern search algorithm (GPS) for
constrained well placement optimization. The results pre-
sented showed the successful application of local optimiza-
tion algorithms to well placement optimization, including
vertical wells and nonconventional wells. These algorithms
leveraged local exploitation to improve the objective func-
tion value from an initial guess. The gradient-based meth-
ods (Adam-SPSA and SD-SPSA) performed effectively in
both the low-dimensional and high-dimensional case studies
by significantly improving on the initial objective func-
tion value. However, the derivative-free method (GPS) was
not competitive in the high-dimensional case. This can
be attributed to the simultaneous perturbation used in the
gradient-based methods, which allows for the progression
in all dimensions during one step. When comparing the
gradient-based methods, Adam-SPSA consistently outper-
formed SD-SPSA in both case studies investigated. This
can be ascribed to the adaptive nature of the search direc-
tion, which incorporates estimates of the first and second
moment. This allows the search direction to be calculated in
a dimension-wise manner leading to more suitable progres-
sion steps for each decision variable. Lastly, the decision
variables must have a similar sensitivity to the objective
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function for the parameterization employed. For nonconven-
tional wells, the Cartesian parameterization showed lower
sensitivity compared to the spherical parameterization.
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Fig. 1. NPV associated with the optimization of the areal location of one vertical well
for a given reservoir model.

optimization problem where the values for certain variables are set with
the aim of, without the loss of generality, minimizing (or maximizing)
a predefined objective function (or more than one, if multi objective
criteria are considered), while meeting a number of constraints.

In this paper we study the well placement component of FDP op
timization, which, due to the heterogeneity of rock properties and
their impact on fluid flow, is nontrivial and yields multimodal and
nonconvex objective function landscapes. Fig. 1 illustrates the NPV
associated with the optimization of the areal positioning of just one
vertical well for a given reservoir model. The number of peaks in
the cost function is expected to increase with the number of op
timization variables. Hence, optimization problems that include the
selection of well locations are often addressed using global search
techniques. The global approaches typically applied to these problems
are derivative free optimization algorithms (see, e.g., Kramer et al.
2011, Conn et al. 2009). Examples of global, derivative free methods
used in well placement optimization are genetic algorithms (GAs; see,
e.g., Emerick et al. 2009, Guyaguler and Horne 2001, Sayyafzadeh
2017), evolution and covariance matrix adaptation evolution strategies
(see, e.g., Sayyafzadeh and Alrashdi 2019, Bouzarkouna et al. 2012,
Ding 2008), and particle swarm optimization (see, e.g., Ding et al.
2014, Onwunalu and Durlofsky 2010, Arouri et al. 2022b). Although
the application of global search algorithms to field development studies
is promising, they arguably rely on a prohibitive number of compu
tationally expensive reservoir simulations. Indeed, global exploration
suffers from the curse of dimensionality: note that, for example, a box
in a space of 𝑛 dimensions has 2𝑛 vertices and that a thorough search
within that box may generally entail evaluating more points than these
vertices.

Solutions in practice are often required in a relatively short time
frame few days, which typically translates to a computing budget of
a few hundred simulations. Instances of such scenarios may be given
when a solution has to be computed, for example, in one week with
only one software license for a simulation model that takes approxi
mately 30 min (this yields a computational budget of 300 400 simula
tions). In another case, a solution may need to be determined within a
weekend for simulations that, provided the required software licenses
are available, clock in at roughly 15 min when parallelized on multiple
cores/nodes (for a computing budget of about 200 simulations).

Local optimization of well placement may provide, in some situ
ations, acceptable solutions readily. Gradient based methods, with the
gradient computed precisely through adjoint procedures (see,
e.g., Jansen 2011, Sarma and Chen 2008, Wang et al. 2007, Zandvliet
et al. 2008) or approximated (see, e.g., Arouri et al. 2022a, Bangerth
et al. 2006, Jesmani et al. 2016), can be alternatives in these situations.
Note that adjoint based methods are simulator invasive and for that

reason very often not applicable when commercial software is used.
Numerical gradients may need certain amount of tuning with respect
to the perturbation size. Additionally, in some simulators this size
cannot be (for well placement optimization) smaller than one grid
block. In these circumstances one could resort to simplex gradients
(see, e.g., Wang et al. 2012) or to pattern search algorithms (see,
e.g., Bellout et al. 2012). Local methods can incorporate mechanisms
that, to some extent, aim at avoiding convergence to solutions that
might not be satisfactory regarding cost function value. Examples of
these mechanisms are heuristics for the initial guess in the optimization,
gradient estimation using a random direction in simultaneous pertur
bation stochastic approximation (see, e.g., Spall 1992) and the use of
varying stencils in mesh adaptive direct search (see, e.g., Audet and
Dennis 2006) or of large stencils in initial iterations of pattern search
methods. Hybridization of global and local procedures (see, e.g., Arouri
et al. 2022b, Alghareeb 2015, Bittencourt and Horne 1997, Isebor
et al. 2014a, Nwankwor et al. 2013) represents a tradeoff between the
benefits (and sometimes the drawbacks) of the two types of approaches.
In this paper we focus on acceleration of local, simulator noninvasive
methods for optimal well placement.

The performance of all algorithms can be improved by means of
surrogates, also known as proxies or meta models. We can distinguish
two major families of surrogates. In the first instance, surrogates can be
constructed using analytical techniques based on previous simulation
results or measurements. In essence, these surrogates are constructed by
generating a set of data points that are used to ‘‘train’’ and calibrate the
model, which is then used to predict. Most of these techniques perform
interpolation or approximation in some form or another. Examples
of these analytical surrogates and of their use include polynomial
approximation (see, e.g., Peng and Gupta 2004, Yeten et al. 2005,
Zubarev 2009), kriging (see, e.g., Peng and Gupta 2004, Yeten et al.
2005, 2003), thin plate splines (see, e.g., Li and Friedmann 2005), and
artificial neural networks (ANNs; see, e.g., Yeten et al. 2003, Cullick
et al. 2006, Sayyafzadeh 2017).

The second type of surrogates are based on simplifications of sci
entific laws (and/or of their respective numerical solution) present
in the full order models. These approximate models, which will be
referred to here as physics based surrogates, frequently require domain
knowledge and, for comparable computational cost, are normally more
accurate than the first type of surrogates mentioned (or, equivalently,
they require a smaller computing effort for similar precision). On
the other hand, surrogates built upon analytical techniques are of
more straightforward implementation (this easier construction may be
translated to time savings as well). Examples of physics based surro
gates in reservoir fluid flow are decline curve analysis (see, e.g., Li
and Horne 2005), capacitance resistance models (see, e.g., Sayarpour
et al. 2009, Yousef et al. 2006), and the use of the Buckley Leverett
equation (see, e.g., Buckley and Leverett 1941), of streamlines (see,
e.g., Batycky et al. 1997, Datta Gupta and King 2007), of single phase
flow (see, e.g., Wolfsteiner et al. 2000) and of component lumping for
compositional simulation (see, e.g., Alavian et al. 2014).

There are surrogates that could be considered a combination of
the two types just introduced. These surrogates are computed us
ing analytic procedures, such as linearization and projection from
high dimensional to low dimensional spaces, to reduce the number of
degrees of freedom related to the state variables. The implementa
tion of these models also requires some domain knowledge. In these
approaches the surrogates refer to the simulator itself and not only
to the cost and constraints functions, and in that manner they may
capture model trends that could be difficult to detect through variation
of one or few scalar quantities. Examples of techniques used for these
surrogates are proper orthogonal decomposition (see, e.g., Alghareeb
2015, Cardoso et al. 2009, Jansen and Durlofsky 2017, van Doren
et al. 2006), missing point estimation (see, e.g., Cardoso et al. 2009),
trajectory piecewise linearization (see, e.g., Cardoso et al. 2009, Jansen
and Durlofsky 2017) and the discrete empirical interpolation method
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(see, e.g., Alghareeb 2015, Suwartadi et al. 2015). Since linearization
is a cornerstone of these methods, we can expect that if applied to the
optimization of well placement, due to the significant nonlinearities
often present in these problems, the accuracy of the surrogates obtained
may not be high. However, as proposed in Alghareeb (2015), this type
of surrogates, when iteratively corrected, can still be used to accelerate
local search.

Surrogates that aim at the approximation of the entire search space,
if constructed using previous simulation runs, may demand excessive
computational cost (these surrogates, as global exploration, can be
expected to suffer from the curse of dimensionality). In the applications
addressed in this work, the computational budget, which could be
just a few hundred simulation runs, precludes targeting accurate and
global surrogates. Nevertheless, a surrogate based on a relatively small
number of data points can still capture some global trends and detect
promising regions in the search space, which may be later explored lo
cally through refinement of the surrogate. That is our approach, which
consists of first performing optimization based on an initial surrogate
that is later progressively corrected as the search advances. The initial
optimization includes some amount of global exploration, consistent
with the computing budget available. The surrogate correction is also
paired with local, efficient optimization of the improved surrogate. This
iterative correction and optimization of the surrogate is accomplished
through manifold mapping (see, e.g., Echeverría Ciaurri 2007, Echever
ría and Hemker 2005), a multi level optimization technique with solid
theoretical foundations that has been successfully applied in multiple
disciplines, including reservoir engineering (see Echeverría Ciaurri and
Wagenaar 2016, Echeverría Ciaurri et al. 2021 for examples in well
control optimization). This work is the first application of manifold
mapping to well placement optimization problems.

Optimization of well placement aided by surrogates built on simula
tion runs has received noticeable attention in the last two decades. For
the reasons already mentioned regarding nonlinearities in the problem,
the majority of the methods resort to global exploration. In Yeten et al.
(2003) and in Guyaguler et al. (2000) a GA was combined with ANNs
and, in the latter work, also with kriging. In both cases the global
search method was hybridized with a local optimization procedure. The
approach presented in Artus et al. (2006) incorporates specific treat
ment of geological uncertainty and also relies on a GA but in this case
the (statistical) proxy is constructed using k means clustering. Although
all these GA based techniques yield solutions in a relatively efficient
manner, due to the global nature of the optimization approach and
surrogate used, it is unclear how performance will scale in problems
with more variables (curse of dimensionality). In Bouzarkouna et al.
(2012) they coupled a covariance matrix adaptation evolution strategy,
a local optimization algorithm, with quadratic surrogates based upon k
nearest points. However, this surrogate based approach still requires a
few thousand simulation runs for optimizing two unilateral wells (12
optimization variables). Multiple analytic surrogates (i.e., kriging, thin
plate splines, and ANNs) are considered in Zubarev (2009); nonetheless
the problems solved in that work (optimization of areal location of at
most two vertical wells) are somewhat too simple to draw meaningful
conclusions. In all these works on surrogate based well placement op
timization, the surrogate, although iteratively improved, only refers to
the cost function and not to other richer simulation output that may
be leveraged to obtain more precise approximations. The methodology
presented in Alghareeb (2015) relies on local optimization enhanced
with some global exploration and resorts to surrogates for the simulator
itself. These surrogates are of the hybrid type discussed above and
require knowledge of the particular system of equations and implemen
tation of its numerical solving (which in certain cases can be far from
trivial). In our work, we opt for ease of implementation and flexibility
with respect to the simulator used at the expense of some additional
computing effort (still within the budget given).

As noted earlier, the approach followed here for the optimization
of well location is based on local search with some amount of global

exploration (consistent with computing resources that allow around
few hundred simulation runs in total). The optimization method is of
derivative free (simulator noninvasive) nature and is combined with a
surrogate that is initially constructed either upon a number of previous
simulation runs or by simplifying the underlying physics. The surrogate
is later corrected locally in every iteration to improve the current
best solution. Uncertainty, which is outside the scope of this work,
poses additional challenges and can be handled, for example, by means
of the retrospective optimization framework presented in Wang et al.
(2012) or using a rank based subset selection technique introduced
in Arouri et al. (2022a) or as in Sayyafzadeh and Alrashdi (2019) for the
OLYMPUS challenge (Fonseca et al., 2020). As we will see later in the
paper, we have found evidences within optimal well location of possible
limitations of the use of surrogates built on a relatively small number of
simulation runs. To the best of our knowledge, these limitations have
not been identified in FDP for other similar methodologies published.
The use of physics based surrogates may be, as also shown in one
example in this research, an alternative to efficiently optimize well
locations in practical scenarios.

To begin, the definition of the optimization problem for well place
ment is presented. Next, the different optimization methodologies uti
lized, including manifold mapping, a multi level approach for iterative
correction of the surrogate, are described. Following this, the results
for two case studies are presented and discussed. Finally, we end the
paper with some concluding remarks and future work directions.

2. Problem definition

In this section we frame the optimization problem mathematically
and introduce the objective function that is used in the remainder of
the paper.

2.1. Problem statement

The optimization problem considered is aimed at minimizing a
defined objective function, where the decision variables 𝐱 refer to
well locations. In this study, we parameterize the well locations as
continuous areal Cartesian coordinates (𝑥 and 𝑦) since the (commercial)
simulator used allows the positioning of wells anywhere in each dis
cretization grid block. Parameterizations based on cell indices (𝑖 and 𝑗)
are often used when wells can only be located at the center of the
blocks. We formulate the well placement optimization problem using
a single objective function as follows:

min
𝐱∈R𝑛

𝑓 (𝐱) subject to 𝐜(𝐱) ≤ 0 , (1)

where 𝑓 (𝐱) is the objective function, 𝐱 denotes the vector of decision
variables, 𝑛 is twice the number of wells whose location is optimized
and 𝐜(𝐱) ∈ R𝑚 represents the problem constraints.

Here, we consider the objective function to be the negative of the
NPV for a given lifespan. Note that in the remainder of the paper NPV
will be plotted in the figures. NPV is an economic metric that, for
the problems studied in this paper, takes into account oil price, pro
duced water handling expenses and water injection costs. The objective
function is defined as

𝑓 (𝐱) = −NPV(𝐱)

=
𝑁𝑡
∑

𝑖=1

−𝑟𝑜,𝑖 𝑄𝑜,𝑖(𝐱) + 𝑐𝑤𝑝,𝑖 𝑄𝑤𝑝,𝑖(𝐱) + 𝑐𝑤𝑖,𝑖 𝑄𝑤𝑖,𝑖(𝐱)
(1 + 𝑏)𝑡𝑖

, (2)

where 𝑟𝑜,𝑖, 𝑐𝑤𝑝,𝑖 and 𝑐𝑤𝑖,𝑖 are the sale price of oil and costs of water
separation and injection, respectively, all of them per unit volume and
defined from time (in years) 𝑡𝑖 to 𝑡𝑖+1 (there are 𝑁𝑡 such intervals), 𝑄𝑜,𝑖,
𝑄𝑤𝑝,𝑖 and 𝑄𝑤𝑖,𝑖 denote the field oil production, field water production
and field water injection volumes during the mentioned output inter
val and 𝑏 is the annual discount rate. The production and injection
volumes are obtained from the reservoir simulation for a defined set
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of optimization variables (well locations) and for a specified reservoir
model. Since the number of wells to be drilled (and their respective
type) and the drilling sequence are not subjected to optimization in
these problems, the cost and timing associated with drilling future wells
is not included in the NPV (see, e.g., Isebor et al. 2014b for a definition
of NPV that incorporates this cost in the context of generalized field
development, a broader set of optimization problems). Other possible
objective functions may include cumulative oil production or, in the
presence of uncertainty, risk attitude considerations (see, e.g., Yeten
et al. 2004).

The constraint functions, in the case studies presented in this paper,
incorporate bounds for the drilling locations and for the minimum
distance between any two wells. The bounds for the drilling locations
prevent the wells from being located in certain (undesirable) regions.

3. Optimization methodology

As indicated earlier, the optimization methodology studied in this
research relies on local, simulator noninvasive, surrogate based meth
ods in order to obtain solutions rapidly, with implementations that
can be applied, in principle, to any simulation software. Next, we will
provide more details on the basic components of the methodology.

3.1. Pattern search optimization

Pattern search optimization represents a family of derivative free
methods that have solid theoretical foundations (see, e.g., Torczon
1997, Kolda et al. 2003) and deliver fairly efficient performance.
The gradient free nature of these methods makes them suitable to
be used with any simulator. In essence, pattern search unconstrained
optimization proceeds in each iteration as follows. A stencil, which is
a collection of points in the (𝑛 dimensional) search space, is centered
at the best solution found so far. The stencil is required to satisfy
certain properties (see Kolda et al. 2003), in particular it needs to
have at least 𝑛 + 1 points. A popular stencil is the compass, that is,
a collection of points obtained via positive and negative perturbations
of equal size and in all coordinate directions in the search space (that
yields 2 𝑛 points, besides the stencil center). If the objective function
value of a stencil point improves the best solution, the stencil can
be centered at that point for a new iteration (the stencil size could
also be increased although usually it is not modified). Otherwise, the
stencil size is reduced and the new smaller stencil is considered in
the next iteration. Convergence theory requires that the stencil size
progressively tends towards zero (see Kolda et al. 2003). The stencil
size being smaller than a given threshold (that minimum size can
be related to actual application tolerances such as resolution in the
well drilling coordinates) can be used as stopping criterion in the
optimal search process (this criterion is often combined with a budget
for the number of simulation runs). Since the points in the stencil
can be evaluated in parallel, pattern search methods are amenable to
distributed computing implementations that can be very efficient in
terms of wall clock time. Alternatively, when computing resources are
scarce (this includes licenses for commercial software) the stencil points
can be polled in opportunistic fashion, i.e., the basic iteration is finished
as soon as a new point improving the current best solution is found.
Pattern search methods may also incorporate some degree of global
exploration, for example, by means of a relatively large initial stencil
size or, as in mesh adaptive direct search (see, e.g., Audet and Dennis
2006), through random variation of the stencil in each iteration.

The pattern search method applied in this study is Hooke Jeeves
direct search (HJDS; see, e.g., Hooke and Jeeves 1961). HJDS has
been already applied to FDP, concretely to the well control optimiza
tion component, and can be an attractive alternative when computing
resources are modest (see Echeverría Ciaurri et al. 2011a). In HJDS,
the basic pattern search iteration described above, which is referred

to as the exploratory move in HJDS lexicon, is followed by a so
called pattern move. The stencil points in the exploratory move are
evaluated opportunistically. However, upon success in this evaluation,
the poll in the new stencil does not start from the first direction in
the stencil but from the next direction after the last one checked. This
continues until all search directions have been considered. As in the
basic pattern search iteration, if no improvement occurs within the
exploratory move, the stencil size is reduced. Otherwise, the pattern
move is undertaken, which is an aggressive step in the previous overall
successful exploratory direction. If this pattern move does not improve
the current best solution, a new exploratory move centered at this point
is performed (reduction of the stencil size follows when this move is
unsuccessful).

3.2. Surrogate models

In this work the surrogates do not approximate the objective func
tion 𝑓 (𝐱) but a vectorial model response 𝐦 (𝐱) ∈ R𝑝 related to it:

𝑓 (𝐱) = U (𝐦 (𝐱)) , (3)

where U ∶ R𝑝 → R denotes a functional that connects objective function
and model response. While in the physics based surrogate used in this
work we approximate 𝐦 (𝐱) directly, for the analytical surrogates we
construct an independent surrogate for each of the vector components
𝑚𝑖 (𝐱). For the sake of clarity in the notation, in the remainder of the
paper we will refer to any of these components as 𝑚 (𝐱). The ratio
nale behind targeting a vector in the approximation is that surrogate
corrections may be then improved due to a larger use of information
than if only a scalar is considered. Specifically, the model response
represents a times series of NPV contributions for different intervals and
the functional is the negative of the sum of all the vector components.
The number of time intervals 𝑁𝑡 are the same for the surrogate and the
full physics simulation model. Note that other magnitudes such as field
and well injection/production rates may be selected as model response.

We reiterate that our applications are constrained by computa
tional budgets that are common in practice, frequently of few hundred
simulations. These budgets include the construction of the analytical
surrogates employed. In order to make economic use of simulation runs
required in the surrogate generation stage we will leverage design of
experiments (DoE; see, e.g., Santner et al. 2003, Koehler and Owen
1996). The DoE techniques tested are central composite design (CCD;
see, e.g., Khuri and Cornell 1996) and Latin hypercube sampling (LHS;
see, e.g., McKay et al. 1979). The DoE procedures used aim at perform
ing some global exploration of the search space so that the surrogate
obtained captures overall trends to better drive the optimization. Once
a promising region is identified, local correction of the surrogate may
facilitate exploitation within the optimal search. Next, we will briefly
describe the surrogate methods applied.

3.2.1. Polynomial approximation
Polynomial approximation of the function 𝑚 (𝐱) can be formulated

as the fitting of 𝑁𝑠 polynomial basis functions 𝑝𝑗 (𝐱)

𝑚 (𝐱) ≈ �̃� (𝐱) =
𝑁𝑠
∑

𝑗=1
𝛽𝑗 𝑝𝑗 (𝐱) , (4)

where 𝜷 =
[

𝛽1 𝛽2 … 𝛽𝑁𝑠

]𝑇
is a vector of parameters determined

by means of a regression problem built upon 𝑁 evaluations of the
function 𝑚 (𝐱). It is important to note that 𝑁𝑠 increases exponentially
if all polynomials up to a given order are considered. This, within
the applications targeted in this work, can lead to a large number of
evaluations of 𝑚 (𝐱) even for relative small search spaces. For example,
if a full quadratic (cubic) is used, 𝑁𝑠 would be between 66 (286) and
231 (1771) for values of 𝑛 between 10 and 20. Since these (or larger)
values of 𝑛 are common in real life problems, for example, when the
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drilling areal locations of 5 to 10 vertical wells are optimized, full
cubic expansions may lead to prohibitive implementations. We note
that quadratic approximation, the one tested in this work, is suggested
as a companion of CCD (see Khuri and Cornell 1996). The computa
tional cost associated with the evaluation of a polynomial surrogate is
negligible when compared with reservoir fluid flow simulation.

3.2.2. Kriging
Kriging (see, e.g., Journel and Huijbregts 1981, Kleijnen 2009) is

an interpolation technique based on Gaussian processes (see, e.g., Ras
mussen and Williams 2006) where the function of interest 𝑚 (𝐱) is
assumed to be composed of a regression model M (to remove possible
trends) and a stochastic function Z (residuals):

𝑚 (𝐱) ≈ �̃� (𝐱) = 𝑀(𝐱) +𝑍(𝐱) = 𝐠(𝐱)𝑇 𝜷 +𝑍(𝐱) , (5)

where 𝐠(𝐱) ∈ R𝑁𝑠 is a vector of known functions and 𝜷 ∈ R𝑁𝑠 are the
unknown regression parameters. The stochastic function 𝑍 represents
a Gaussian process with mean zero and covariance matrix

𝛴𝐱𝐰 = 𝜎2 𝑅 (𝜽, 𝐱,𝐰) , (6)

where 𝑅 is a correlation model with an unknown vector of parame
ters 𝜽. In this work the following linear correlation model was consid
ered:

𝑅 (𝜽, 𝐱,𝐰) =
𝑛
∏

𝑖=1
max{0, 1 − 𝜃𝑖|𝑥𝑖 −𝑤𝑖|} . (7)

The kriging surrogate was obtained by means of the toolbox Design
and Analysis of Computer Experiments (DACE) in MATLAB (see Nielsen
et al. 2002).

3.2.3. Two dimensional reservoir model approximation
As a physics based surrogate we employ a two dimensional

reservoir model approximation that relies on local grid coarsening
(LGC). LGC reduces the number of grid blocks in the model with
the aim of decreasing the run time associated with the solution of
the underlying system of partial differential equations. The particular
implementation in this study is based on a coarsened discretization
where the cell dimensions in the horizontal directions are equal to the
respective average over each direction whilst the cell dimension in the
vertical direction is the sum. With regards to the rock properties, such
as permeability and porosity, for each coarsened grid block we take
the value of the pore volume weighted average of the corresponding
original scale cells. Note that initial conditions for the differential
equations have to be treated as well. Initial pressure is also averaged
and, as far as the initial saturation is concerned, the centermost block
of the selected original cells is taken as representative. Therefore,
in a model, for example, with nine layers, the fifth layer will be
representative of the coarsened grid blocks. In this study, an LGC
implementation was available in the commercial reservoir simulator
used (tNavigator). This LGC implementation arguably preserves areal
heterogeneity in the model, which has significant impact on vertical
well placement. Since solution methods are, in general, at a minimum
of linear computational complexity with respect to the number of grid
blocks, we can expect that the implementation will provide speed up
factors at least on the order of the reduction in the number of cells.
LGC was used as it is readily accessible and simple to implement. More
sophisticated upscaling techniques may be used and would be expected
to produce more accurate output relative to the full physics simulation.

3.2.4. Surrogate correction through manifold mapping
The solution of (1) is initially approximated using the surrogate

�̃� (𝐱). Thereafter, a sequence of corrections of this surrogate, together
with the corresponding optimization runs, are performed using the
manifold mapping technique. Manifold mapping (MM; see, e.g., Echev
erría Ciaurri 2007) is a multi level optimization technique that belongs

to a larger family of methods named space mapping (SM; see, e.g., Ban
dler et al. 2004, Koziel et al. 2006). In MM (and also in SM) the
optimization problem of interest is formulated in terms of the so called
fine model. The fine model is assumed to be satisfactorily accurate but
computationally expensive. The coarse model, on the other hand, is of
much faster evaluation but less precise. With the notation introduced
earlier in this section, 𝐦 (𝐱) represents the fine model and �̃� (𝐱) the
coarse model.

The 𝑘th iteration in MM is based on the following corrected model

�̃�𝑘 (𝐱) = 𝐦
(

𝐱𝑘
)

+ S𝑘
(

�̃� (𝐱) − �̃�
(

𝐱𝑘
))

, (8)

where 𝐱𝑘 is the current solution of the optimization problem and S𝑘
is a 𝑝 × 𝑝 matrix that aggregates all components of the response in the
correction and is constructed using previous evaluations of the fine and
coarse models. Specifically, we define S𝑘 for 𝑘 ≥ 1 as

S𝑘 = 𝛥𝐦𝑘𝛥�̃�+
𝑘 , (9)

where 𝛥𝐦𝑘 and 𝛥�̃�𝑘 are the 𝑝 × min{𝑘, 𝑛} matrices defined as

𝛥𝐦𝑘 =
[

𝐦
(

𝐱𝑘
)

−𝐦
(

𝐱𝑘−1
)

⋯ 𝐦
(

𝐱𝑘
)

−𝐦
(

𝐱max{𝑘−𝑛,0}
)]

, (10)

𝛥�̃�𝑘 =
[

�̃�
(

𝐱𝑘
)

− �̃�
(

𝐱𝑘−1
)

⋯ �̃�
(

𝐱𝑘
)

− �̃�
(

𝐱max{𝑘−𝑛,0}
)]

, (11)

with + being the pseudo inverse operator (see Golub and Van Loan,
2013).

The next solution 𝐱𝑘+1 is obtained by solving the optimization
problem formulated for the corrected model �̃�𝑘 (𝐱)

𝐱𝑘+1 = min
𝐱∈R𝑛

U
(

�̃�𝑘 (𝐱)
)

subject to 𝐜(𝐱) ≤ 0 . (12)

The MM iteration is usually started at 𝑘 = 0. The starting point 𝐱0,
if not given, could be the optimal solution based on the coarse model
�̃� (𝐱) and S0 is generally taken as the identity matrix. When the coarse
model has negligible computational cost, the choice of the initial guess
is less relevant, especially if the cost function is not expected to present
strong nonlinearities (as is often the case for a corse model built with
quadratic approximation).

In this optimization one can use the same methods as in the op
timization based on the original surrogate �̃� (𝐱) since the additional
computational cost associated with the correction is in most cases
negligible. The correction in (8) can be interpreted as a translation
and a rotation of the coarse model response and, upon convergence,
yields first order consistency with the fine model response. That is,
not only both responses but also their Jacobians coincide in the limit
(see Echeverría Ciaurri 2007). MM and SM are supported by rigorous
convergence theory for least squares optimization (see, e.g., Echeverría
Ciaurri 2007) and have been successfully applied to other objective
functions such as NPV (see, e.g., Echeverría Ciaurri and Wagenaar
2016, Echeverría Ciaurri et al. 2021), the one considered in this work.
The MM iteration can be stopped using criteria related to the best
solution found so far (i.e., when the value of the objective func
tion is acceptable), to the variation between changes in the solution
(i.e., when the difference between latest updates for the objective
function and/or solution is small) and/or to the number of function
evaluations performed (i.e., when the computing budget is exhausted).
Different enhancements of the basic MM algorithm have been proposed.
For example, in Hemker and Echeverría (2007) the MM iteration in
cludes a trust region strategy to avoid searching regions where the cor
rected surrogate is not sufficiently accurate, and in Echeverría (2007)
the method is extended to deal with constraint functions 𝐜(𝐱) that are
expensive to evaluate. We would like to add that MM and SM usually
perform satisfactorily with surrogates �̃� (𝐱) that (at first sight) may
appear to be inaccurate for practical applications (see, e.g., Echeverría
Ciaurri 2007, Bandler et al. 2004, for the use of equivalent circuits
as coarse models in optimization problems where the fine models are
determined through solution of partial differential equations). The in
terested reader is referred to Echeverría Ciaurri (2007) and Echeverría
(2007) for examples of pseudo codes for MM.



Journal of Petroleum Science and Engineering 216 (2022) 110639

6

Y. Arouri et al.

Fig. 2. Top view of the first layer and a three-dimensional representation of the
PUNQ-S3 model showing the two preexisting production wells, PROD5 and PROD6,
and initial saturation distribution (red, green and blue indicate gas, oil and water,
respectively). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

3.3. Constraint handling

General constraints can be handled in most optimization techniques
(that includes pattern search algorithms) by means of the filter method,
which is essentially an add on (see, e.g., Fletcher and Leyffer 2002,
Echeverría Ciaurri et al. 2011a). However, the nonlinear constraints
in the problem solved in this work, that is, bounds for the minimum
distance between any two wells, unlike, for example, limits for field
water production and injection rates, do not require evaluation of
computationally expensive functions. For that reason, they can be
treated in a somewhat more specific manner than through the filter
method. In pattern search optimization we resort to a projection op
erator to determine feasible alternatives to stencil points that violate
constraints for well location and for inter well distance. The projection
of an infeasible point onto the feasible domain is formulated as an
optimization problem where a distance metric (Euclidean) with respect
to the infeasible point is minimized subject to the same constraints
as in the original problem. In this work, when used within HJDS
the inter well constraint handling is implemented using Sequential
Quadratic Programming (see, e.g. Nocedal and Wright 2006) and in
MM optimization via an interior point algorithm (see, e.g., Byrd et al.
1999).

4. Results and discussion

In this section we present the results for the application of the
aforementioned methods to two realistic, but synthetic, well location
optimization problems. The first case investigates the problem of find
ing the optimal location of four additional production wells in the
PUNQ S3 model. The second case involves the placement of five pro
duction wells in the presence of five preexisting injection wells for a
model based on the Brugge benchmark. We used commercial software
(tNavigator) to represent the fine model (i.e., reservoir fluid flow
equations) in both cases.

4.1. Example Problem 1: PUNQ S3

The three dimensional PUNQ S3 model (see, e.g., Floris et al. 2001)
represents a heterogeneous reservoir with a gas cap and a strong
aquifer, which provides bottom water drive and pressure support. The
model is discretized into a 17 × 28 × 5 grid, of which 1761 are active
cells (i.e., cells that are relevant regarding fluid flow). The reservoir
covers an area of approximately 17 km2 with layer thickness varying
between 20 and 30 m. In this example problem we have consid
ered the preexistence of two (fully penetrating, vertical) production

Table 1
Economic parameters for the two example problems.

Parameter Problem 1 Problem 2

Oil price (𝑟𝑜) $80 USD/bbl $40 USD/bbl
Water handling costs (𝑐𝑤𝑝) $13 USD/bbl $5 USD/bbl
Water injection costs (𝑐𝑤𝑖) – $5 USD/bbl
Discount rate (b) 0% 2.34%

wells, namely PROD5 and PROD6, which are located close to the gas
cap. In Fig. 2 we show a cross section of the top layer alongside a
three dimensional representation of the PUNQ S3 model and initial
saturation distribution together with the two preexisting wells (red,
green and blue indicate gas, oil and water, respectively).

This problem has a total of eight decision variables for the areal
location corresponding to the four (fully penetrating, vertical) pro
duction wells. Note that in both problems studied in this work the
decision variables are normalized and bounded between 0 and 1. The
production wells are operated by bottom hole pressure (BHP) with
settings of 200 bars (approximately 2900 psi) and a maximum liquid
rate of 900 sm3/day (approximately 5660 STB/day). In addition, the
production wells are operated in a reactive manner under an economic
water cut limit of 85% (i.e., if the water cut of a production well
exceeds this limit it is shut in). The distance between wells has to be
larger than 300 m. The optimization time frame is equal to 10 years
and the economic parameters considered in the objective function are
summarized in Table 1.

4.1.1. Surrogate accuracy
In order to assess the accuracy of the surrogates for this example

problem, we utilized 1000 random points in the feasible solution space
and computed the corresponding responses of the fine and coarse
models. As previously mentioned, the model response represents a
time series of NPV contributions for different intervals. The two coarse
models investigated in this section are based on kriging and quadratic
approximation, using 50 sample points obtained with CCD in both
cases. The means of the responses associated with the fine and coarse
models over the 1000 random points are shown in Fig. 3. In this figure
we also include a plot with the root mean square error (RMSE) cal
culated for the coarse model responses with respect to the fine model
responses. The RMSE is calculated using:

𝑅𝑀𝑆𝐸 =

√

∑𝑁
𝑖=1(𝑚(𝐱𝑖) − �̃�(𝐱𝑖))2

𝑁
, (13)

where, 𝑚(𝐱𝑖) is the reservoir simulation output, �̃�(𝐱𝑖) is the surrogate
output, 𝐱𝑖 denotes each of the sample points used, and 𝑁 is the number
of sample points.

The average of the NPV during the 10 year time frame (negative of
the objective function) for the fine model responses is 956.5 MM USD
whilst for the kriging and quadratic surrogates is 895.8 MM USD
and 1073.3 MM USD, respectively. This translates to an average error
of 60.7 MM USD and −116.8 MM USD for those approximations,
respectively (i.e., a relative error of 6.4% and 12.2%). These results
are summarized in Table 2. Although there are some differences be
tween the average fine and coarse responses, especially in the early
time intervals, the coarse responses are able to reproduce the general
(decreasing) trend seen in the fine model. The coarse models considered
may appear relatively inaccurate for modeling purposes but, as can be
seen next, yield satisfactory performance when used in optimization.

4.1.2. Optimization results
The optimization based on surrogates and on their correction

through MM was solved using an interior point algorithm with stopping
criterion given by a threshold equal to 10−9 for changes in solution
and function value. MM was terminated when a maximum number of
350 reservoir fluid flow simulations, or equivalently, evaluations of the
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Fig. 3. Left: Average of responses of fine and coarse models for 1000 random points in the feasible solution space. The two coarse models are based on quadratic approximation
and kriging, using CCD with 50 sample points. All responses represent time series of NPV contributions during a 10-year production period. Right: RMSE of the two coarse-model
responses with respect to the fine-model responses. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Left: Optimization results of HJDS for the first example problem using different techniques for the choice of the initial guess: reservoir-engineering considerations, sample
in CCD with highest NPV and random selection (in this case, the average of 10 points is shown). Right: Optimization results comparing the performance of HJDS with multiple
surrogate-based methods. The surrogates rely on quadratic approximation and kriging, are built on CCD and LHS and are corrected through MM. The experimental-design techniques
CCD and LHS have 81 and 50 samples points, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Table 2
Comparison of the accuracy for different surrogates used in Example Problem 1.

Model Average NPV Relative error

Fine-model (full-physics simulation) 956.5 MM USD –
Kriging 895.8 MM USD 6.4%
Quadratic approximation 1073.3 MM USD 12.2%

objective function 𝑓 (𝐱), was reached. Note that in this example the
computational cost associated with the surrogates and corresponding
correction via MM is negligible when compared with a reservoir
simulation. The samples sizes for the experimental design techniques
CCD and LHS were 81 and 50, respectively. Tests of LHS with 50 and
81 sample points on a similar optimization problem were inconclusive
regarding the choice of the sample size. We opted in this case for 50
sample points in order to provide results for additional algorithmic
configurations. Due to the stochastic nature of LHS, the results reported
for this technique were determined with the average of 5 optimization
runs using different LHS samples.

The surrogate based methods will be compared with HJDS (this
latter applied directly to the objective function). The initial stencil size
for HJDS was 0.25 (the decision variables are normalized between

0 and 1) and the maximum number of function evaluations (sim
ulation calls) allowed was 350. Given the local optimizer nature of
HJDS, two initial guesses were considered. The first initial guess was
obtained through reservoir engineering considerations, in particular,
by distributing the new (production) wells around the gas oil contact
(GOC). This distribution aims at some degree of synchronization of
the water breakthrough from the strong aquifer so that oil production
below the GOC is maximized. The sample point in CCD with the highest
NPV was taken as the second initial guess.

The results of HJDS starting from these two initial guesses are
presented in Fig. 4. The initial guess based on reservoir engineering
considerations has an NPV equal to 1235 MM USD, which, as one may
expect, is a relatively high value. The highest NPV for all the 81 sample
points in CCD is 1277 MM USD. However, the selection of the point
with the best objective function value within an experimental design
procedure requires additional computing cost (81 simulations in the
case of CCD studied here). In practical situations under computational
constraints, this may not be an efficient method for selecting an initial
guess. The initial guess based on reservoir engineering considerations
resulted in a higher final NPV (1404 MM USD) than the second initial
guess (1371 MM USD). Additional analysis was undertaken by perform
ing the optimization run using 10 random initial guesses. The average
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Fig. 5. Top-view and three-dimensional representation for realization 104 selected from the Brugge benchmark and considered in this study. The plots illustrate the average initial
oil saturation over the nine reservoir layers (red is high and blue is low oil saturation). The five preexisting injection wells are also included in both representations, together with
the five production wells that correspond to the initial guess used for HJDS as stand-alone solver and for the first iteration of MM with LGC (that is, 𝑘 = 0 in MM). The injection
and production wells are shown in the three-dimensional representation as blue and red pillars, respectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

evolution of the NPV for these 10 runs is shown in Fig. 4. While the
optimized NPVs in a number of the 10 runs are larger than the NPV
obtained in the run that utilizes reservoir engineering considerations, it
still outperforms the average result of the 10 runs. This outperformance
is in regard to the final NPV as well as the number of required function
evaluations (simulation calls) within the optimization. The optimized
NPV in one of the runs was only 1315 MM USD and the standard devi
ation of the optimized NPVs of the 10 runs is equal to 49.57 MM USD.
Although reservoir engineering judgement does not always guarantee
selection of an initial guess that yields satisfactory results in terms of
optimized objective function, we can expect that in many situations this
would be case. In the rest of the paper reservoir engineer considerations
will be used to determine initial guesses for HJDS.

Fig. 4 also illustrates the comparison of surrogate based methods
with HJDS. Please note that the presented NPVs have been computed
using the fine model (i.e., reservoir simulator) The simulations needed
to construct each surrogate are included in each plot. The optimiza
tion runs with the two surrogates built upon LHS and corrected via
MM yield similar NPVs after 350 function evaluations. The optimized
NPVs for quadratic approximation and kriging are 1345 MM USD
and 1344 MM USD, respectively (as indicated above, the LHS results
are an average of 5 runs). In comparison, the surrogates based on
CCD outperformed those based on LHS regarding final optimized value
and most intermediate NPVs during the run. For example, quadratic
approximation and kriging, both using CCD within the MM framework,
reach an NPV equal to 1400 MM USD after 115 and 225 function eval
uations, respectively. On the other hand, HJDS requires 254 function
evaluations to achieve this objective function value. This translates to
a 55% (12%) reduction in computational cost with respect to HJDS
when a surrogate based on quadratic approximation (kriging) is com
bined with MM. The final values for the optimization runs using
CCD with quadratic approximation and kriging are 1419 MM USD
and 1416 MM USD, respectively (remember that the optimized NPV for
HJDS with an initial guess determined through reservoir engineering
considerations was 1404 MM USD).

We also tested a surrogate based on generalized barycentric coordi
nates (see, e.g. Floater 2015). This type of surrogate relies strongly on
linearity assumptions and has been observed to deal successfully with
well control optimization (see, e.g., Echeverría Ciaurri and Wagenaar
2016). However, that surrogate did not perform satisfactorily in this
case example, possibly due to the strong nonlinear character of the
optimization problem.

4.2. Example problem 2: Brugge

The second example problem utilizes the synthetic Brugge bench
mark (see, e.g., Peters et al. 2010). This benchmark was constructed as
an analogue of the typical reservoir found in the North Sea. The three
dimensional model is discretized by means of a 139 × 48 × 9 grid, of
which 44,550 cells are active, and describes an oil water system where
geological uncertainty is quantified through 104 realizations. The areal
dimensions of the field are approximately 10 by 3 km and each grid
block in the oil bearing zone is around 120 by 100 by 7 m. In our
optimization problem we consider geological realization 104, which
was arbitrarily selected, and five (fully penetrating, vertical) initial
peripheral injectors. We illustrate in Fig. 5 a top view and a three
dimensional representation of the selected Brugge realization showing
the five preexisting injectors and the average initial oil saturation
across the nine reservoir layers (red and blue indicate oil and water,
respectively).

In this problem we seek to determine the optimal areal locations
of five (fully penetrating, vertical) production wells (i.e., there are 10
decision variables) during a production time frame of 30 years. As
a reminder, the decision variables are normalized and bounded be
tween 0 and 1. The injection wells were controlled by BHP, which
was set to 180 bars (approximately 2610 psi), subject to a maximum
water injection rate of 636 sm3/day (4000 STB/day). The produc
tion wells were also controlled by BHP, which was set to 50 bars
(approximately 725 psi), with a maximum liquid production rate of
477 sm3/day (3000 STB/day). Additionally, the distance between any
two wells cannot be smaller than 200 m. The economic parameters in
the optimization are summarized in Table 1.

4.2.1. Surrogate accuracy
We utilized 100 random points in the feasible solution space and

computed the responses of the fine and three different coarse models
in order to investigate the accuracy of the surrogates in this second
problem. Fig. 6 shows the responses averaged over the 100 points. The
two analytical surrogates, kriging and quadratic approximation, were
built using CDD with 100 sample points. We also considered LGC as
the basis for a physics based surrogate. Note that this surrogate does
not need fine model simulations for its construction and that its run
time is around 10 times faster than the fine model response (remember
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Fig. 6. Left: Average of responses of fine and coarse models for 100 random points in the feasible solution space. The three coarse models are based on quadratic approximation
and kriging, using CCD with 100 sample points, and on LGC. All responses represent time series of NPV contributions during a 30-year production period. Right: RMSE for the
three coarse-model responses with respect to the fine-model responses. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

that the analytical surrogates, once they are built, have a negligible
computational cost when compared to the fine model). The difference
in quality between the analytical and the physics based approximations
is apparent in the figure. More importantly, the trend in the response of
the coarse model based on LGC is similar to the trend in the fine model
response. This behavior may be crucial for guiding the optimization
effectively (as can be seen later in the results).

As in the previous example problem, we also illustrate the RMSE
that corresponds to each of the three surrogates relative to the fine
model response (Fig. 6). The RMSEs associated with the analytical
surrogates present clear oscillations. This behavior may be indicative
that the number of sample points in the design of experiments is not
large enough to sample the search space adequately. The average of
the NPV during the 30 year time frame for the fine model responses is
757 MM USD whilst it is 1933.6 MM USD, 1455.4 MM USD and 646.9
MM USD for kriging, quadratic approximation and LGC, respectively.
The relative error in the NPV during the 30 year time frame averaged
over the 100 random points for the surrogates based on LGC, quadratic
approximation and kriging is 14.5%, 92.3% and 155.4%, respectively.
These results are summarized in Table 3.

The relative error observed for the analytical surrogates in this
problem is noticeably larger than in the PUNQ S3 model. The manifest
discrepancy shown in Fig. 6 anticipates that the performance of these
surrogates in the optimization problem will be unsatisfactory. The
search space has now only two additional dimensions with respect to
the first problem and the number of sample points in the second case
has just doubled. Although the accuracy of analytical surrogates, in
general, can be improved with an increase in the number of sample
points used, the results obtained may indicate that this number still
needs to grow further (remember the existing relationship between
global exploration and the curse of dimensionality). Since the number
of points sampled in this problem is already equal to 100, it is un
clear how effective analytical surrogates can be in practical problems,
which very likely may have more than 10 optimization variables and,
not infrequently, computing budgets of few hundred simulations. The
performance deterioration (from the first to the second problem) of
the analytical surrogates tested can be also attributed to the difference
in complexity of the problems and of the underlying physical phe
nomena modeled. Although, as mentioned above, the second problem
has slightly more optimization variables, it also presents additional
changes with respect to the first problem such as a different geological
heterogeneity and the use of secondary recovery through water injec
tion wells. Physics based surrogates, in principle, are inherently more
suited to model these phenomena more precisely (usually at a higher
computational cost).

Table 3
Comparison of the accuracy for different surrogates used in Example Problem 2.

Model Average NPV Relative error

Fine-model (full-physics simulation) 757.0 MM USD –
Kriging 1933.6 MM USD 155.4%
Quadratic approximation 1455.4 MM USD 92.3%
Local grid-coarsening (LGC) 646.9 MM USD 14.5%

Fig. 7. Optimization results comparing the performance of HJDS with two surrogate-
based methods for the second example problem. One surrogate relies on quadratic
approximation that is built on CCD using 100 sample points and is corrected through
MM. The second surrogate relies on LGC and is also corrected by means of MM.

4.2.2. Optimization results
The optimization based on the quadratic approximation surrogate

and its iterative correction was handled, as in the previous problem,
with an interior point algorithm. The stopping criterion used was again
determined by means of a threshold equal to 10−9 for changes in
solution and function value. The sample size for CCD was 100 sample
points. Since LGC does not have negligible computational cost when
compared to the fine model response and the use of numerical gra
dients may be potentially problematic (e.g., selection of perturbation
size in the numerical derivative), the optimization runs based on that
surrogate and its corrections through MM were solved using HJDS, a
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derivative free method. In this case the initial stencil size for HJDS was
equal to 0.25 (remember that the decision variables are normalized
between 0 and 1) and the stopping criterion was a maximum of 50
function evaluations, that is, 50 executions of the LGC surrogate. Note
that the LGC surrogate did not require any simulations to construct.
However, the computational cost required to run this surrogate is ac
counted for in the results. To this end, equivalent function evaluations
(simulation calls) will be used: each 10 evaluations of LGC response are
counted as one evaluation of the fine model response.

The initial guess for the first iteration in MM with LGC as coarse
model, that is 𝑘 = 0 in MM, was determined through reservoir
engineering considerations because the results obtained in the first
example problem with this type of starting point were satisfactory.
These considerations aim now to achieve pressure support at the pro
duction wells through a low elevation on the dome structure and
their relative proximity to the existing injectors (see Fig. 5). For any
subsequent iteration in MM, the initial guess in (12) was 𝐱𝑘. The MM
algorithm was terminated when a maximum number of 350 equivalent
simulations was reached. This criterion, as we will see later, may not be
practical here because it is translated to a large number of simulations
without significant change in the objective function. Nevertheless, it
provides some information regarding asymptotic convergence that can
be useful in a comparative study as this one.

The surrogate based methods will be once more compared with
HJDS. The initial stencil size was taken equal to 0.25 and the starting
point was the same one taken in the first iteration for MM with LGC
and illustrated in Fig. 5. The maximum allowable number of function
evaluations (simulation calls) was 350.

The comparison of the performance between HJDS and the
surrogate based methods is represented in Fig. 7. Please note that the
presented NPVs have been determined using the fine model (i.e., reser
voir simulator). The simulations needed to build the quadratic surro
gate are included in the plot. The NPV found with HJDS after the 350
equivalent simulations was 3249 MM USD. MM based on LGC reached
a comparable value, 3216 MM USD, also after 350 equivalent simula
tions. The optimization solved at the first iteration of MM combined
with LGC, i.e., 𝑘 = 0 in MM, yielded an NPV equal to 3126 MM USD
and required 8 equivalent simulation calls. The MM iteration is able
to rapidly increase that value further afterward. We would like to
stress that in spite of LGC being a relatively coarse surrogate (it relies
heavily on averages of reservoir properties), the optimization results,
what matters in the end, are acceptable. On the other hand, the
NPV obtained with MM based on quadratic approximation after 350
equivalent simulations was only 2672 MM USD. While MM provides
certain improvement in this latter case as well, the solution obtained
has clearly lower objective function value than the other two runs. This
is in line with the results shown in Fig. 6, which may indicate the
inability of the quadratic approximation to capture general trends in
the search space for this problem.

Fig. 8 shows the well locations of the optimized solutions for HJDS
(left) and LGC using MM (right). The similarities in the solutions give
an indication that there is no disadvantage when using LGC with MM.
Interestingly, in both solutions a well (PROD3) is placed to target
the southern region while two wells (PROD1 and PROD5) are also
located at the top of the anticline structure (see Fig. 5). Note that these
wells adhere to the inter well distance constraint. The major difference
between the solutions is that in LGC a well (PROD2) is placed at the
dome structure on the northern side of the fault while in HJDS the well
(PROD2) is closer to the injectors.

We reiterate that the stopping criterion for MM is not practical and
that it was selected to make better comparisons between the methods.
In real applications this criterion should be adjusted in accordance
with the available computing resources and include additional metrics
(e.g., based on changes in the solution and objective function). The ini
tial guess determined by means of reservoir engineering considerations,
unlike in the first example problem, does not improve the sampling

performed by the DoE technique. We can expect that in real life sce
narios the use of experience and domain knowledge for determining a
baseline or initial guess is, in general, beneficial. However, there may
be situations where systematic analysis, such as the one performed by
DoE, can be advantageous.

Although the solution eventually determined by HJDS has slightly
higher NPV than the one found with MM combined with LGC, during
the first part of the run the surrogate based approach shows better
performance. For example, the optimization based on MM with LGC
reaches an NPV equal to 3210 MM USD after only 26 equivalent func
tion evaluations. In order to achieve a similar objective function value,
HJDS required approximately 132 equivalent function evaluations. This
translates to roughly an 80% reduction in computational cost when MM
is combined with LGC regarding HJDS.

We would like to add that optimization tests were also undertaken
for quadratic approximation using a sample size of 50 both for CCD and
LHS. Given the low performance observed regarding final optimized
NPV and for succinctness, we opt for not reporting these tests here.
One may increase the number of simulation runs used in DoE but,
judging from the results analyzed above, it is unclear if the surrogate
constructed upon these runs would be competitive with respect to HJDS
or MM based on LGC.

4.3. Discussion

The first optimization problem showcases the potential applicability
of analytical surrogates to well placement problems and FDP. The
results when using analytical surrogates, namely polynomial approx
imation and kriging, for a case involving a few optimization variables
and a relatively simple physical phenomenon (e.g., reservoir geology
without complex features and primary hydrocarbon recovery) give an
indication that these surrogates are able to approximate the general
trends seen in the optimization space and yield reasonably precise
solutions. The first problem also showed us that, when the analyt
ical surrogates exhibit acceptable accuracy, local improvements and
corrections may improve performance. In particular, we employed
corrections based on MM, which aimed at first order consistency of the
coarse model response with the fine model response.

In the second example problem we saw that a surrogate based on
polynomial approximation and iteratively corrected via MM clearly
underperformed stand alone HJDS and LGC combined also with MM.
This case was somewhat more involved than the first optimization
problem: there was one more well (areal) location to optimize, the
reservoir geology was to a certain extent realistic and production
was accomplished through water injection, that is, a secondary recov
ery mechanism. It may be argued that the quality of an analytical
surrogate, in principle, improves with additional sample points. This
strategy, besides defeating its purpose in time constrained scenarios,
may deteriorate performance in the optimization when compared to
methods that avoid a stage to construct a surrogate by performing a
number of simulation runs. Although alternative analytical surrogates
could be considered in this problem, we can expect that the observed
underperformance may very likely reappear in many other practical
problems that have more than just five (vertical) wells to optimize, and,
as a consequence, much more complex search spaces. This can be linked
to the curse of dimensionality as its effects take a more dominant role
when the number of dimensions of a space grows. The question remains
how one can explore (relatively) large optimization spaces effectively
and efficiently when no information about the behavior of a noticeably
nonlinear objective function in these spaces is available.

The analytical surrogates in this study were built upon few simu
lation runs (one hundred at most) in an attempt to model practical
scenarios where solutions are required in a very short time frame.
Moreover, in some real life situations, not only rapid turnaround is
required but also, to exacerbate the problem, computational resources,
this includes licenses for commercial simulators, are scarce or have
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Fig. 8. Left: Well locations of the optimized solution found with HJDS. Right: Well locations of the optimized solution found when using LGC in combination with MM. Both
figures show the average initial oil saturation over the nine reservoir layers (red is high and blue is low oil saturation). The producers are represented by black circles and the
injectors are represented by white circles. Note: wells adhere to the minimum inter-well constraint. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

to be shared. These constraints preclude the use in these scenarios
of surrogates that leverage immense sets of previous simulation runs.
This is the case, in particular, of approximations based on the recently
popularized ANNs. The evaluation of the training sets required by
most ANNs may entail, in the context of well placement and field
development, execution of a prohibitively large number of simulations
(many more than the numbers considered in this work). For example,
in the work described in De Paola et al. (2020), the network training
for a field development problem regarding only two additional new
wells needs around 10,000 simulations and the network constructed
yields relatively high error for reservoir engineering relevant magni
tudes. Nevertheless, in environments where resources are bountiful,
ANNs may be a promising option to approach surrogate based opti
mization. We would like to add that some other problems in FDP
optimization are less sensitive to adverse consequences of the curse of
dimensionality because the objective functions addressed are very often
relatively smooth. In that case, the construction of sufficiently precise
surrogates may require moderate and practical numbers of simulation
runs. A conspicuous example of one such problem is the optimization
of well controls, which has already been addressed successfully by
means of similar analytical surrogates to the ones applied here (see,
e.g., Echeverría Ciaurri et al. 2021).

Physics based surrogates, as exemplified in the second optimization
problem in this study, incorporate domain knowledge and problem
physics, and could be an alternative in some real world scenarios. The
results from that problem show the potential upside of utilizing a two
dimensional reservoir model approximation as physics based surrogate
for well placement. Physics based surrogates are expected to be more
precise than analytical surrogates and typically yield better optimiza
tion outcome. However, physics based surrogates also pose challenges.
The implementations of such surrogates are frequently more elaborate
and require a more in depth understanding of the underlying physics
and associated numerical computation. As a consequence, there is a
trade off that needs to be considered when applying surrogate based
optimization (to, in this case, well placement and field development
problems). On the one hand, we have the analytical surrogates, many
of them of straightforward construction but sometimes unacceptably
imprecise. Note that success in this optimization context is measured
in being able to yield a satisfactory solution to the problem. On the
other hand, there are physics based surrogates, nontrivial, more time
consuming (both in development and run time) and usually providing
higher levels of accuracy.

In view of this trade off, we may opt to employ a general strategy
to (attempt to) predict the suitability of using an analytical surrogate
(built on a limited number of simulations). If the surrogate is not
deemed satisfactorily precise, one could resort to incorporating domain

knowledge and experience through some physics based surrogate. A
metric that gives insight into the complexity of the model or of the
problem and that is determined running few simulations (consistent
with the computational budget) could be used to estimate the suit
ability of an analytical surrogate. Another procedure to validate the
surrogate accuracy may include a training and testing setup.

5. Concluding remarks

In this paper we studied the application of surrogate based op
timization to the well placement problem within hydrocarbon field
development planning (FDP). The problem was contextualized by con
sidering practical scenarios under tight computational budget (of at
most few hundred reservoir flow simulations). The employed method
ology is noninvasive regarding the simulator (i.e., derivative free) and
is combined with a surrogate to allow for efficient optimization. Two
main categories of surrogates, analytical and physics based, have been
investigated. The analytical surrogates included quadratic approxima
tion and kriging, both of them relying on two types of design of exper
iments: central composite design and Latin hypercube sampling. The
physics based surrogate used is a two dimensional reservoir approx
imation obtained through local grid coarsening (LGC). The surrogate
in all cases is iteratively and locally corrected with manifold mapping
(MM), a multi level optimization technique, to improve the current best
solution. The results from this work show the first application of MM
to well placement optimization problems.

The methodology was tested on two example problems: (1) the
placement of four production wells in the presence of two other
preexisting production wells in the PUNQ S3 reservoir model; and
(2) the placement of five production wells in the presence of five
water injection wells in a somewhat more realistic model based on the
Brugge benchmark. The results of the proposed methodology were com
pared against those obtained by Hooke Jeeves direct search (HJDS), a
derivative free optimization method without any explicit surrogate. It
is worth mentioning that HJDS had performed successfully in other FDP
problems and is especially suited to scenarios with modest computing
resources. For the first example problem, the two analytical surrogates,
quadratic approximation and kriging, were compared with HJDS. The
use of quadratic approximation and kriging translated to a reduction
in computing time of 55% and 12%, respectively, with respect to
HJDS to obtain an acceptable solution. The second example problem,
with a more complex search space due to the recovery mechanism
considered (i.e., waterflooding) and increased reservoir heterogeneity,
demonstrated the potential limitations of analytical surrogates for well
placement problems in time constrained decision making scenarios.
Quadratic approximation, which provided satisfactory results in the



Journal of Petroleum Science and Engineering 216 (2022) 110639

12

Y. Arouri et al.

first example, clearly underperformed HJDS. The optimization using
a physics based surrogate constructed upon LGC resulted in a reduc
tion of 80% in computational cost compared with HJDS to reach a
reasonably adequate solution.

In addition, the investigations into surrogate accuracy (for both
problems) gave insight into the importance of capturing the general
trends of the fine model especially when used within an optimization
framework. The results show that when the fidelity of the surrogate
is reasonably high, MM was able to bring improvement. This enables
MM to obtain solutions of similar accuracy to those determined by
means of a single level technique and with significant computational
savings. More specifically, the accuracy of the analytical surrogates in
the first example problem was sufficient to provide improvements with
the use of MM. However, this was not the case for the second example
problem, where the analytical surrogates were unable to help in the
optimization. This may be associated with their inability to capture
the general trends seen in the fine model response. The performance
in the optimization clearly improved when a physics based surrogate
was used as an alternative.

All in all, the findings in this study give valuable insights into the
applicability and shortcomings of analytical surrogates and the tradeoff
associated with alternatives, such as physics based surrogates. The
problems that can be found in real life well placement applications are
harder than those analyzed here, for example, they require positioning
of many more wells, hundreds in large hydrocarbon fields, so we can
expect that the issues identified here will emerge, magnified in some
cases, in those significantly larger optimization spaces.

The research in this study could be continued in multiple directions.
The surrogates used in the two examples were built on aggregate model
responses, in particular, time series of NPV contributions corresponding
to the production of the entire hydrocarbon field. We could expect that
a more granular approach to surrogate modeling, for example, based on
responses for individual well injection and production rates, may im
prove the quality not only of the overall approximation but also of the
MM correction due to the larger amount of information involved. Other
physics based surrogates, such as the ones indicated in the Introduction,
can be considered. The methodology may be enhanced by incorporating
ways to deal with uncertainty, for instance, through the retrospective
optimization framework introduced in Wang et al. (2012) or the use of
the adaptive rank based subset selection technique presented in Arouri
et al. (2022a). Typically, when incorporating geological uncertainty,
the objective function becomes the expected value of NPV (for a risk
neutral decision maker). Possible implementations could include an
analytical surrogate that approximates expected NPV as a function of
time or a physics based surrogate built for each realization separately.
Further tests have to be performed for more complex reservoir models
and optimization problems. In this regard, addressing generalized field
development, that is, extending the formulation of the well placement
problem with other decision variables relevant in FDP, such as the
number of wells, their type, respective controls and drilling times, may
be especially practical. Finally, as indicated above, a metric that, con
sistent with the computational resources available, aims to predict the
suitability of a given analytical surrogate will certainly be very useful
in order to help decide if dedicating time to develop an alternative
physics based surrogate is a worthy enterprise.
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Summary
Well control and well placement optimization have typically been considered as separate problems. More recently, there have been a 
number of works which have shown improved results when these two problems are considered in a joint manner. However, this joint 
optimization problem, whether in a sequential or simultaneous manner, is more computationally demanding. In light of this, we propose 
the use of capacitance- resistance models (CRMs) to assist the computational demand of the joint optimization of well controls and well 
placement. Specifically, we use a bilevel (or nested) approach, where the outer loop is the well placement problem and the inner loop is 
the well control problem assisted by CRMs. The well placement problem is solved using particle swarm optimization (PSO), and the well 
control problem is solved using Adam- simultaneous perturbation stochastic approximation (SPSA). The proposed approach is compared 
with the conventional implementation using only high fidelity full- physics simulations on two reservoir models of varying complexity. 
We also investigate the accuracy of the CRMs during the optimization procedure. The proposed approach resulted in solutions for the 
joint optimization problems with objective function values of up to 21.8% higher than the conventional approach and up to a 99.6% de-
crease in the number of required reservoir simulations.

Introduction
A field development plan outlines the specific strategy that aims at maximizing the economic returns from a hydrocarbon reserve over the 
course of its production lifetime. Typical details of a field development plan include well location, trajectory, drilling schedule, platform 
location (if offshore), well type and well control settings [injection/production rates and/or bottomhole pressures (BHPs)], among other 
considerations. All these aspects have an influence on the recovery of hydrocarbon volumes and hence on the monetary costs and returns. 
High fidelity full- physics reservoir simulations are typically used to perform what- if analyses to assess the suitability of any proposed field 
development plan.

Owing to the complex nonlinear relationships between the development decisions and the hydrocarbon production volumes, the appli-
cation of optimization techniques to field development planning has been an active arena of research over the past few decades. 
Traditionally, because of the differences in ruggedness of the objective function landscapes, well placement and well control optimization 
have been considered as separate problems and solved—for the most part—using different techniques.

Well placement optimization involves varying the well locations and/or trajectories subject to physical field constraints, such as reser-
voir boundaries and interwell constraints, to maximize an objective. Well placement optimization is typically characterized by a highly 
nonlinear relationship between the well locations/trajectories and the produced fluid volumes. This results in a rough, highly multimodal, 
nonconvex objective function.

Consequently, derivative- free optimization algorithms are applied to this type of problem in an effort to traverse the solution space in 
search of a global solution—albeit in a relatively low dimensional space. Examples of derivative- free optimization algorithms applied to 
well placement include PSO (Onwunalu and Durlofsky 2010; Arouri et al. 2022), genetic algorithms (GA) (Emerick et al. 2009; 
Sayyafzadeh 2017), evolutionary strategies (Sayyafzadeh and Alrashdi 2019; Alrashdi and Sayyafzadeh 2019), differential evolution 
(Ding 2008), covariance matrix adaptation- evolutionary strategy (Bouzarkouna et al. 2012), and simulated annealing (Beckner and Song 
1995). Such techniques use objective function values to direct the search by, either deterministically or stochastically, updating the algo-
rithmic parameters to propose a new population at each generation.

Given these optimization algorithms typically require a large number of function evaluations (reservoir simulation calls for conver-
gence), gradient- based algorithms have been shown to provide a suitable alternative for an improved local solution—particularly in 
computationally constrained scenarios (Arouri and Sayyafzadeh 2020b). In well placement optimization, the well control settings (i.e., 
injection/production rates and/or BHPs) are set to predefined values. Common control strategies include fixed settings (e.g., maximum 
injection rates and minimum producer BHP) or a reactive control strategy—where a production well is shut in once becoming 
uneconomic.

In contrast, well control optimization problems aim at maximizing a defined objective by assigning values for control settings (injec-
tion/production rates and/or BHP of each well) for a fixed set of well locations. This type of optimization problem presents a less rugged 
(i.e., smoother) objective function landscape, characterized by long flat valleys, which are influenced by the piecewise, temporal, contin-
uous variables (Do and Reynolds 2013; Zhao et al. 2013; Fonseca et al. 2014).

Given their computational efficiency in high dimensional settings, gradient- based algorithms have been favored for such problems. 
Gradient- based algorithms applied to well control optimization include SPSA (Wang et al. 2009; Foroud et al. 2018; Arouri and 
Sayyafzadeh 2020a), ensemble- based techniques (Chen et al. 2009; Chaudhri et al. 2009; Leeuwenburgh et al. 2010; Perrone and Rossa 
2015; Oguntola and Lorentzen 2021), simplex approximations (Fonseca et al. 2017; Lu et al. 2017b; Liu and Reynolds 2020; Silva et al. 
2020), and adjoint- based formulations (Sarma et al. 2005; Jansen 2011; Volkov and Bellout 2017). These algorithms rely on either an 
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approximation or a calculation of a gradient to determine the search direction. Derivative- free optimization algorithms, such as Hooke- 
Jeeves direct search and generalized pattern search, have also been applied to well control optimization (Echeverría Ciaurri et al. 2010).

More recently, research has shown that although the well placement and well control problems may present different objective function 
landscape architectures, the consideration of the two as separate problems may lead to suboptimal solutions (Bellout et al. 2012; 
Sayyafzadeh and Alrashdi 2019). As one would expect, there is an intrinsic interdependency between well locations and the associated 
control settings which leads to the expectation that their joint consideration would lead to better solutions. However, this would come at 
the expense of a significant number of computationally demanding reservoir simulations.

The implementation of joint optimization has been varied in the literature. A common implementation is the simultaneous optimization 
of well locations and well controls. As the name suggests, in this implementation the decision variable vector is composed of the variables 
relating to well location and well control, which are optimized concurrently. This increases the complexity of the optimization, as the 
dimensionality of the problem increases significantly and ruggedness arising from the well placement inclusion remains.

Another method is the sequential approach, in which either a well placement or well control optimization problem is solved followed 
by the other. The second problem is solved using the optimal solution found in the preceding problem. For example, if well placement 
optimization is solved first, the optimal well locations found are then used for well control optimization (or vice versa). In this approach, 
the two problems can be solved sequentially once or in an iterative manner until no additional improvements occur. An advantage of the 
sequential approach is the ability to apply problem- specific algorithms for each decision variable type.

There is still debate in the research community about which implementation (simultaneous or sequential) is preferred. Several works 
argue that simultaneous optimization produces higher quality solutions as it incorporates all the decision variables into one optimization 
problem (Bellout et al. 2012; Isebor et al. 2014; Forouzanfar et al. 2016; Sayyafzadeh and Alrashdi 2019). On the other hand, there is also 
research that shows the superiority of a (typically, iterative) sequential approach over a simultaneous one (Humphries et al. 2014; 
Humphries and Haynes 2015; Wang et al. 2016; Lu et al. 2017a; Lu and Reynolds 2020). The development and implementation of opti-
mization techniques for the solution of the joint optimization problem include gradient- based algorithms (Li and Jafarpour 2012; Li et al. 
2013; Lu et al. 2017b; Tanaka et al. 2018; Salehian et al. 2021), derivative- free algorithms (Awotunde 2014; Forouzanfar et al. 2016; 
Wang et al. 2016; Tanaka et al. 2018; Sayyafzadeh and Alrashdi 2019; Alrashdi and Sayyafzadeh 2019), or a combination of these (Bellout 
et al. 2012; Isebor et al. 2014; Humphries et al. 2014; Humphries and Haynes 2015; Lu and Reynolds 2020).

Given the nature of the joint optimization problem, hybrid algorithms attempt to take advantage of local and global capabilities to 
traverse the search space more efficiently than single- level optimization techniques. Bellout et al. (2012) used pattern search methods, 
including Hooke- Jeeves direct search and generalized pattern search for well placement, in combination with sequential quadratic pro-
gramming (using adjoint gradients) for well control optimization. They implemented joint optimization in a nested fashion, where each 
proposed well location underwent an inner loop of well control optimization. Isebor et al. (2014), Humphries and Haynes (2015), and 
Humphries et al. (2014) implemented a combination of PSO and pattern search methods (either mesh- adaptive direct search or general-
ized pattern search) for both the simultaneous and sequential optimization. Isebor et al. (2014) and Humphries et al. (2014) considered 
only vertical wells while Humphries and Haynes (2015) studied the placement of 3D wells. Lu and Reynolds (2020) implemented a 
sequential approach using GA with mixed encodings to optimize well drilling paths, drilling sequences, and well types and used stochastic 
simplex approximate gradient (or StoSAG) for well control optimization.

The computational costs of high fidelity (full- physics) reservoir simulations can be reduced with the effective use of surrogate models, 
also known as proxy models or metamodels. Surrogate models can be categorized into those based on response surface modeling and 
those which are based on reduced- order modeling. In the first category, a model is trained and calibrated using a number of previously 
simulated high fidelity measurements. The implementation of these surrogates tends to be straightforward. Examples of these surrogates 
and their implementation include artificial neural networks (Yeten et al. 2003; Cullick et al. 2006; Sayyafzadeh 2017), polynomial approx-
imation (Peng and Gupta 2004; Yeten et al. 2005; Zubarev et al. 2009), thin plate splines (Li and Friedmann 2005), and kriging (Yeten 
et al. 2003, 2005; Peng and Gupta 2004).

The second category is based on simplifications of the underlying scientific laws or the numerical computations. These surrogates tend 
to require an understanding of the governing equations and the underlying physics for proper implementation. Some examples of reduced- 
physics surrogates include streamline simulations (Batycky et al. 1997; Datta- Gupta and King 2007), component lumping for composi-
tional simulation (Alavian et al. 2014), single- phase flow (Christian et al. 2000), and CRMs (Yousef et al. 2006; Weber et al. 2009; 
Sayarpour et al. 2009; Jafroodi and Zhang 2011; Hong et al. 2017). Another type of reduced- order surrogates is the reduction of the system 
of equations in the numerical computation from high to low dimensional. These surrogates include proper orthogonal decomposition (Van 
Doren et al. 2006; Cardoso et al. 2009; Alghareeb 2015; Jansen and Durlofsky 2017), missing point estimation (Cardoso et al. 2009), 
trajectory piecewise linearization (Cardoso et al. 2009; Jansen and Durlofsky 2017), and the discrete empirical interpolation method 
(Alghareeb 2015; Suwartadi et al. 2015).

There have been numerous applications of surrogate models within well placement, well control, and joint optimization to improve the 
computational efficiency of solving these problems. Suwartadi et al. (2015), Alghareeb (2015), Van Doren et al. (2006), and Jansen and 
Durlofsky (2017) investigated the use of proper orthogonal decomposition and its variants for surrogate- based well control optimization. 
The proper orthogonal decomposition- based models are optimized by adjoint methods (Van Doren et al. 2006; Suwartadi et al. 2015; 
Jansen and Durlofsky 2017) or direct search methods (Van Doren et al. 2006; Jansen and Durlofsky 2017). Zhao et al. (2013) used approx-
imated gradients from ensemble- based techniques and SPSA to optimize a quadratic interpolation model for well controls. Wen et al. 
(2014) used streamline simulations alongside time- of- flight measurements to optimize well controls in mature fields. Echeverria Ciaurri 
and Wagenaar (2016) applied a corrective surrogate treatment (manifold mapping) in conjunction with surrogates based on generalized 
barycentric coordinates and quadratic approximation for well controls. Using CRMs, Weber et al. (2009) optimized the well controls for 
197 producers using real historical field data. Hong et al. (2017) and Jafroodi and Zhang (2011) also used CRMs; however, their works 
applied ensemble- based optimization techniques to CRM for well control optimization.

Surrogates have also been implemented for well placement optimization in various studies. Pan and Horne (1998) used least squares 
and kriging to build multivariate interpolation models for the optimization of well location, well patterns, and operations scheduling. 
Yeten et al. (2003) and Guyaguler et al. (2000) used an artificial neural network in conjunction with GA to improve the computational 
efficiency of well placement optimization. Similarly, Sayyafzadeh (2017) combined GA with a self- adaptive artificial neural network to 
reduce the computational time of well placement optimization. Artus et al. (2006) used a statistical proxy to incorporate uncertainty in the 
well placement problem within a GA framework. Zubarev et al. (2009) investigated and compared multiple analytical surrogate tech-
niques including kriging, artificial neural networks, quadratic approximation, and thin plate splines for the placement of two vertical 
wells. In Bouzarkouna et al. (2012), metamodels were coupled with covariance matrix adaptation- evolutionary strategy to optimize two 
wells that were represented in three dimensions.

D
ow

nloaded from
 http://onepetro.org/SJ/article-pdf/doi/10.2118/210562-PA/2691117/spe-210562-pa.pdf/1 by U

niversity of Adelaide user on 06 June 2022



2022 SPE Journal 3

Given the recent interest in joint optimization, there are a limited number of works (Møyner et al. 2014; Aliyev and Durlofsky 2017) 
which investigate the use of surrogates for such problems. However, the potential benefits for such a computationally intensive optimiza-
tion task can be significant. More recently, De Brito and Durlofsky (2020) implemented a nested approach for the joint optimization using 
a set of surrogate treatments. The inner loop of well control optimization is divided further into two subproblems each with a different 
objective function based on different surrogates.

In our work, we focus on using CRMs for the efficient joint optimization. The robustness of CRMs comes from the fact that they only 
require historical field data of injection and production rates and, when available, BHP from producers. In addition, their straightforward 
implementation and ability to provide accurate production forecasts for the fraction of the computational cost of a high fidelity grid- based 
reservoir simulation make them a potentially powerful tool for joint optimization. Our work develops a bilevel (nested) approach for joint 
optimization using the strengths of CRMs for lower level decision variable (well control settings) optimization within a PSO framework 
where the upper decision variables (well placement) are optimized.

Following the Introduction, we state the joint optimization problem as well as the objective function in Problem Formulation. Method 
provides an overview of the optimization method, including a detailed description of CRMs for well control optimization. Experimental 
Problems presents the 2D and 3D models used for the experimental studies. The applicability of the proposed approach is demonstrated 
and discussed in Results and Discussion. This is followed by the Concluding Remarks.

Problem Formulation
This section constructs the problem for joint optimization. We first present the joint optimization as a general optimization problem fol-
lowed by the definition of the objective function used for this work.

Problem Statement. The optimization problem involves the minimization of a defined objective function where the well locations and 
well control settings are the variables of interest. The joint optimization problem can be formulated as a general optimization problem as 
follows:

 

min
x2Rnx ,u2Rnu

f(x, u)

s. t. :
ci(x, u) � 0 i 2 K
ci(x, u) = 0 i 2 I,   

(1)

where  f(x, u)  is the objective function,  x  denotes the vector of well location decision variables,  u  denotes the vector of well control set-
tings, nx is the number of well placement decision variables, nu is the number of well control decision variables,  I   and  K   are sets of indices 
for equality and inequality constraint functions,  ci(x,u) , respectively. These constraint functions may include linear and nonlinear con-
straints, as well as bound constraints. The constraint functions, in the case studies presented in this paper, incorporate bounds for the 
drilling locations and for the minimum distance between any two wells. The bounds for the drilling locations ensure the wells are located 
in active gridblock cells. The well control settings ( u ) have lower ( ulb ) and upper limits ( uub ) based on operational constraints.

Objective Function. The objective function is the negative of the net present value (NPV) for a given reservoir lifespan. The objective 
function is defined as:

 
f(x, u) = �NPV(x,u) =

NtX
i=1

�ro,i Qo,i(x, u) + cwp,i Qwp,i(x,u) + cwi,i Qwi,i(x, u)
(1 + b)ti

,
  

(2)

where  ro,i ,  cwp,i , and  cwi,i  are the price of oil and costs of water separation and injection, respectively, all of them per unit volume and 
defined from time ti to  ti+1  (there are  Nt  such intervals);  Qo,i ,  Qwp,i , and  Qwi,i  denote the field oil production, field water production, and 
field water injection volumes during the output interval, and  b  is the discount factor.

In addition, although not considered in this work, one may incorporate geological uncertainty in the objective function through the use 
of multiple geological realizations (Arouri et al. 2022).

Method
In this section, we first present the overview of the bilevel optimization. Then, the individual components of the optimization method, 
including a global derivative- free optimization algorithm, PSO, and a gradient- based algorithm (Adam- SPSA) are outlined. We also 
describe the mathematical equations and analytical solutions that make up CRM, specifically the producer- based CRM (CRMP). Finally, 
we present the implementation of CRM in the bilevel (nested) approach.

Bilevel Optimization. To solve the joint optimization problem, we apply a bilevel (or nested) approach similar to the one proposed 
in Bellout et al. (2012). The outer loop is the well placement optimization and is solved using PSO, while the inner loop is the well 
control optimization and is solved using Adam- SPSA. While PSO and Adam- SPSA are used within the proposed CRM bilevel approach, 
any optimization algorithm(s) may be used. In other words, for every proposed solution (i.e., well location) from PSO, a well control 
optimization is undertaken by Adam- SPSA.

The algorithm begins with the initialization of the PSO parameters ( ! , c1, and c2), a randomly generated swarm (population), and the 
generation counter  k  . The particles are proposed solutions,  xj , for well locations only (i.e., the decision variables in PSO are the well 
locations). The feasibility of each proposed well location is checked, and, if a solution is infeasible, it is repaired as detailed in Arouri and 
Sayyafzadeh (2022). Next, for each particle (well location) in the swarm, a well control optimization is undertaken using Adam- SPSA to 
find optimal well control settings,  u

�
ij  , for the associated well location  xj  (i.e.,  u

�
ij = argminuij2Rnu f(xj,uij ) . This is what makes joint opti-

mization a computationally expensive problem to solve. In the remainder of this work, for the sake of brevity, we define  u
�
ij   as  u

�
i  .

The objective function values,  f(xj, u�
i ) , are used in PSO to propose the new particles for the following generation. This procedure is 

repeated until a stopping criterion is met (number of generations in our work). Fig. 1 shows the approach in a flow chart.
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PSO. PSO is a stochastic, global, derivative- free optimization algorithm that takes inspiration from the behaviors of biological swarms 
of animals (Kennedy and Eberhart 1995). The stochastic nature of the algorithm allows it to traverse the multimodal landscape of well 
placement problems. As previously mentioned, PSO has been applied to field development optimization problems and has shown to be 
successful in Onwunalu and Durlofsky (2010), Foroud et al. (2018), Alrashdi and Sayyafzadeh (2019), and Arouri et al. (2022).

PSO begins with a swarm (population) of (typically) randomly generated particles (solutions). The fitness value of each particle is 
evaluated using the objective function,  f(xj, u�

i ) . If there is an improvement in fitness value of the best global (swarm) solution and each 
particle’s best solution, then these are updated. Next, the position of each particle,  x , is updated based on its velocity vector,  v , as 
follows:

 xnew = x + v  (3)

The velocity vector is calculated based on a particle’s personal best and the neighborhood best. There are different possible neighborhood 
topologies, including star, ring, and global (Engelbrecht 2013; Liu et al. 2016). This study uses a global topology, so each particle is 
influenced by the global (swarm) best found in previous generations. Hence, the velocity equation for particle  x  is updated as follows:

 v = ! vold + c1 r1 (Pbest � x) + c2 r2 (Gbest � x) , (4)

where  ! , c1, and c2 are the algorithmic parameters known as the intertial, cognitive, and social parameters, respectively. r1 and r2 are 
random vectors between  0  and  1 , and Pbest and  Gbest are the personal best for particle  x  from previous generations and the global best of 
the swarm, respectively. The algorithmic parameters play a role in the balance between exploration and exploitation of PSO. For our work, 
we use values of 0.721 for  !  and 1.193 for c1 and c2, based on Onwunalu and Durlofsky (2010) and a population size of 20.

Adam-SPSA. Adam- SPSA was first introduced for well control optimization problems in Arouri and Sayyafzadeh (2020a) and has also 
been implemented for well placement optimization in Arouri and Sayyafzadeh (2022). It uses an adaptive moment estimation framework 
in conjunction with SPSA as the gradient approximation technique. It gives superior results to the typical steepest descent framework that 
is usually implemented for well control optimization.

The framework finds its success in the stochasticity and the incorporation of additional information from the approximated gradients 
in previous iterations to calculate variable- specific search directions. The search direction is a vector composed of an estimated exponen-
tial moving average of previous gradients that is normalized elementwise by an estimated uncentered variance. This allows the search 
direction to be adjusted for each control variable, resulting in convergence speedups (Arouri and Sayyafzadeh 2020a). The search direc-
tion can be thought of as a signal- to- noise ratio, where a small signal- to- noise value represents a lower quality search direction and hence 
greater uncertainty in its representation of the true gradient (Kingma and Ba 2014).

The gradient approximation uses the SPSA. Spall (1992) introduced this gradient approximation for problems where an analytical 
derivative could not be calculated. The advantage of SPSA is that it only requires two function evaluations to approximate a gradient using 
the central- difference method. This enables SPSA to be computationally efficient for high dimensional problems. The stochastic gradient 
approximation is:

 

Ogk(xk) =

2
666664

f(xk + ck�k) � f(xk � ck�k)
2ck�k1

...
f(xk + ck�k) � f(xk � ck�k)

2ck�kp

3
777775

=
f(xk + ck�k) � f(xk � ck�k)

2ck
� [��1

k1 ,�
�1
k2 , : : : ,��1

kp ]
T,

  (5)

Fig. 1—Flow chart presenting the bilevel approach for the joint optimization of well control settings and well locations.
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qprod,j(tn) = qprod,j(t0)

0
B@e

�
tn � t0

�j

1
CA +

0
B@1 � e

�
�tk
�j

1
CA

2
4

NinjX
i=1

�ijqinj,i(t)

3
5 .

  

(10)

To obtain oil and water production rates, we use the Koval model method used in Cao et al. (2015). To do this the water cut at producer 
 j  at timestep tn,  fw,j(tn) , is given from the following:

 

fw,j(tn) =

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

0, if tDj <
1

Kvalj
Kvalj �

p
Kvalj/tDj

Kvalj � 1
, if

1
Kvalj

� tDj � Kvalj

1, if tDj > Kvalj,   

(11)

where  Kvalj  is the Koval factor for producer  j ,  tDj  is the dimensionless time or the fraction of cumulative water injected into the movable 
PV of producer  j  and is defined as

 
tDj =

Pn
k=1

h�PNinj
i=1 �ijqinj,i(tn)

�
�tn

i

Vpj
.
  

(12)

This gives the summation of the total water injection contribution from all injectors to producer  j  during time interval  �tn . This assumes 
the water injection rate of an injector is constant over  �tn  (as is the case for piecewise constant injection rates). Once the water cut is 
known, the oil and water production for producer  j  can be calculated, respectively, as follows:

 qwj (tn) = qj(tn) � fw,j(tn) , (13)

 qoj (tn) = qj(tn) � (1 � fw,j(tn)) . (14)

Parameter Tuning. A least squares analysis is performed to tune the parameters of CRM based on simulation data (i.e., injection/pro-
duction rates and BHPs). That is, only one high fidelity reservoir simulation is needed to tune (or “train”) the CRM. The model parameters 
for CRMP when used in conjunction with the Koval model are the interwell connectivity between each injector- producer pair ( �ij ), the 
time constant for each producer ( �j ), the Koval factor for each producer ( Kvalj ), the movable PV for each producer ( Vpj ), and the PI for each 
producer ( Jj ). If the producer BHPs are unavailable or are kept constant, then the PI is not a model parameter. In this work, we define  p  as 
the vector which consists of the CRMP parameters to be tuned. The minimization problem is formulated as follows:

t
0

t
1

t
2

Time Step

In
je

ct
io

n 
R

at
e

t
n-1

t
n

 t1
 tn t2

qinj,i(tn)

qinj,i(t2)

qinj,i(t1)

Fig. 3—An example of piecewise constant injection rates ( qinj,i ) for each timestep interval  �tk   used to tune the CRMP.
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min
p

z

s.t.
�j � 0,
�ij � 0,
Kvalj � 1,
NprodP
j=1

Vpj � VpField ,

NprodP
j=1

�ij

(
� 1, if injection loss exists
= 1, if no injection loss occurs . 

In this work, we define  z  as

 
z =

nP
k=1

NprodP
j=1

��
qj(tk) � qobsj (tk)

�2
+

�
qo,j(tk) � qobso,j (tk)

�2�

 , 

where  n  is the number of timesteps,  Nprod   is the number of producers, the superscript  obs  represents the “observed” data (i.e., simulation 
output). In our work, we use a sequential quadratic programming algorithm in the nonlinear optimization package in MATLAB® to solve 
this problem (Nocedal and Wright 2006).

Once the CRMP parameters ( p ) are found, they can be used in Eq. 9 or Eq. 10 to predict production, depending on what information is available 
(i.e., injection/productions rates and/or producer BHPs). Although the well locations are not explicitly used when building a CRMP, the tuned 
CRMP is applicable for the well placements that were used to build it. In other words, if the well locations change, then a new CRMP will need to 
be built. However, as will be discussed later, this is still a fraction of the computational cost of a single high fidelity grid- based reservoir simulation. 
It should be noted that the assumptions made when deriving CRMs make them less applicable under certain conditions. This includes reservoirs 
with a gas cap, time- varying CRM parameters due to shut in of wells, and a constant number of wells. These assumptions are met in this study as 
the studied models are undergoing waterflooding by vertical wells in undersaturated reservoirs. The interested reader is referred to the extensive 
literature review in Holanda et al. (2018) for alternative CRM developments.

Bilevel Optimization Assisted by CRMs. To reduce the computational intensity of joint optimization, we propose the use of CRMPs in 
the inner loop for well control optimization. Specifically, when undertaking the well control optimization rather than using a high fidelity 
full- physics reservoir simulation ( f(xj, ui) ) to evaluate the proposed well control strategy,  ui , a CRMP,  f

0(xj, ui, p�
j ) , is used.  p

�
j   denotes 

the tuned CRMP parameters for  xj  well placement solution.
To do this, for each particle (well location) in the swarm, a CRMP is built using the method described in subsection Parameter Tuning. 

The well controls (i.e., injection rates and producer BHPs) used to tune CRMP are randomly generated for each particle. Once the CRMP 
is built, the quality is checked to ensure it is above a coefficient of determination value ( R2 ), which is calculated by

 
R2 = 1 �

P
n

�
dobstn � dCRMP

tn
�2

P
tn

�
dobstn �

Ndobs
�2 ,

  
(15)

where  d
obs
tn   is the “observed” production data at time tn from the simulation output,  d

CRMP
tn   is the predicted production data at time tn from 

the CRMP, and  dobs  is the mean of  d
obs
tn   over all timesteps tn (Hong et al. 2017).

If the CRMP does not meet the user- defined threshold  R2  value, then the tuning procedure is repeated using the same well locations 
but a different random sample of injection rates and producer BHPs. Each tuning procedure that is undertaken will require one high fidel-
ity simulation to obtain “observation” data. This is repeated for a predefined maximum number ( MaxCRMP ) of times after which the best 
fit is taken if the threshold value is still not reached.

Next, well control optimization is undertaken for each particle (well location) using the associated tuned CRMP (to obtain production 
rates). Adam- SPSA is the algorithm used to optimize the CRMP with the decision variables being the well control settings ( ui ).

The optimized solution ( u
�
i  ) from the well control optimization with the associated well locations ( xj ) is re- evaluated using the high 

fidelity reservoir simulation. This objective function value ( f(xj, u�
i ) ) is used to update the personal best (Pbest) and global best (Gbest) in 

PSO. The velocities are then updated using Eq. 4 followed by updating the particle positions using Eq. 3. This procedure is repeated until 
a stopping criterion is met. A pseudocode is presented in Algorithm 1.

Experimental Problems
This section presents the two reservoir models used for the numerical experiments. The first reservoir model is a 2D heterogeneous res-
ervoir undergoing waterflooding. The second reservoir model is a more complex 3D benchmark case, known as the egg model, which is 
also undergoing water- flooding.

Model 1: 2D Example. The 2D model is a channelized reservoir developed with two production wells and four injection wells (Isebor 
et al. 2014). The model is discretized into a 40×40×1 grid, with each gridblock having a size of 50 ft in the x- and y-directions. Fig. 4 
shows the x- directional permeability field.

In our work, the decision variables for well placements were the x- and y- coordinates of the 6 wells, resulting in 12 decision variables. 
The decision variables for the well control strategies were the injection rates for the four injection wells and the BHPs for the production 
wells. The well control settings were divided into 50 control steps which were 30 days each over the reservoir lifespan of 1,500 days. This 
resulted in a total of 300 decision variables for the well control optimization problem. The injection wells were operated with minimum 
and maximum rates of 0 and 630 STB/D, respectively. On the other hand, the producers were operated by BHP with lower and upper 
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Fig. 4—A 2D heterogeneous channelized reservoir model (Model 1) with two production wells (circles) and four injection wells 
(crosses) showing x- directional permeability field. Red represents high permeability values, and blue represents low permeability 
values.

limits of 1,000 and 2,500 psi, respectively. A minimum interwell distance of 600 ft is used for this problem. The economic parameters and 
their values can be found in Table 1.

Model 2: 3D Example. The egg model (see Fig. 5) is a synthetic 3D reservoir model introduced into the reservoir optimization research 
community by Jansen et al. (2014). The model was introduced with an ensemble of 100 permeability realizations to incorporate the 
subsurface uncertainty in reservoir description. For the purpose of our work, we utilized Realization 1 in a deterministic manner.

Algorithm 1—Bilevel optimization using CRMPs

1: Initialize a random swarm of particles; algorithmic parameters (ω, c1, c2); k = 0
2: while Termination condition(s) not met do
3:  for Each particle j do
4:   Check feasibility of particle
5:   if Infeasible then
6:    Repair
7:   Build CRMP for particle (well location) xj using “observation” data from high fidelity simulations
8:   if R2 < threshold value AND MaxCRMP < NCRMP then
9:    Obtain “observation” data from high fidelity simulation for new random injection rates and/or producer BHPs
10:    Repeat CRMP build using random injection rates and/or producer BHPs
11:    NCRMP = NCRMP +1
12:   else
13:    Use CRMP with highest R2 value
14:   Perform well control optimization for particle xj using Adam- SPSA with CRMP to find  u

�
i  

15:   Re- evaluate optimized well control settings and well location using high fidelity reservoir simulation
16:   if  f(xj, u

�
i ) < f(Pbestj )  then

17:   Pbestj ← xj
18:   if  f(xj, u

�
i ) < f(Gbest)  then

19:   Gbest ← xj
20:  Update velocities of each particle
21:  Update the positions of each particle
22:  k = k +1
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Parameter Value

Oil price, co 50 USD/STB

Water handling 
costs, cwp 

8 USD/STB

Water injection 
costs, cwi 

2 USD/STB

Discount rate, b 8%

Table 1—Economic parameters 
for experimental problems.

Fig. 5—A 3D benchmark case, the egg model, with eight injection wells (blue) and four production wells (red), showing the x- 
directional permeability field. Blue represents lower permeability values, and green represents higher permeability values.

The model is discretized into a 60×60×7 grid, or 25,200 gridblocks, with 18,553 being active (i.e., having nonzero property values). 
The permeability fields are characterized with high permeability streaks which meander, representing river patterns seen in typical fluvial 
deposition environments. Given there are no gas cap and no aquifer present, the reservoir requires secondary recovery through water-
flooding. This is accomplished with 12 vertical wells, of which 8 are injections wells and 4 are production wells.

In this work, the well placement strategies defined the x- and y- coordinates for the 12 vertical wells, resulting in a total of 24 decision 
variables. The well control strategies were defined as the injection rates for the eight water injection wells over the life span of the reser-
voir. These control settings were piecewise constant between each timestep, which are at 30- day intervals over a 10- year period. This 
results in a total of 960 decision variables. The lower and upper limit for the injection rates were 0 and 377 STB/D (60 std m3/D), respec-
tively. The BHP of the production wells was kept constant at 5,730 psi (395 bar).

Additionally, we considered two physical field constraints to ensure only practical solutions were proposed. The first constraint is a 
minimum interwell distance of 164 ft (50 m), which represents six gridblocks. The second constraint is a reservoir boundary. To ensure 
wells were placed only in active cells, a projection- type repair mechanism was used. The reservoir boundary was represented by a poly-
gon defined using piecewise linear functions. If a well is placed outside the defined polygon, the well is projected back onto a location on 
the boundary with the shortest distance to the violating well location. Further details of the constraint handling techniques can be found 
in Arouri and Sayyafzadeh (2022). The economic parameters and their values can be found in Table 1.

Results and Discussion
In this section, we present the experimental results for each model. This includes the results for examples of the built CRMPs, an example 
of well control optimization, and the results for the joint optimization for well placement and well controls.
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Experimental Results: Model 1. Evaluating CRM. The well locations presented in Fig. 4 were used to build the CRMP. Random 
producer BHPs (see Fig. 6a for an example for PROD1) and injection rates (see Fig. 7a) between the lower and upper limits were 
generated and used. Since only the BHPs of the producers are used, the CRMP parameters (i.e.,  p ) were the interwell connectivities ( �ij ) 
between each producer and each injector, time constant for each producer ( �j ), the Koval factor for each producer ( Kvalj ), the movable 
PV for each producer (Vpj), and the PI for each producer ( Jj ). This parameter tuning problem is solved using the procedure described in 
subsection Parameter Tuning.
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Fig. 6—The (a) training sample and (b) validation sample of random BHPs for PROD1 used to tune the CRMP parameters for the 
2D model.
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Fig. 7—The (a) training sample and (b) validation sample of random injection rates for INJ1 used to tune and test the CRMP for 2D 
model.

The output of the CRMP (using tuned parameters) is compared with the full- physics simulation in Fig. 8. The coefficient of determi-
nation values (Eq. 15 ) are 0.9859 and 0.9841 for oil and total production rates, respectively. Similar values of 0.9481 and 0.9618 were 
obtained for PROD2 for oil and total production rates, respectively. More importantly, as the objective function for the joint optimization 
was NPV, the difference between the CRMP and the full physics could potentially change the ranking of solutions in PSO. However, the 
absolute average percent difference between the NPV value for CRMP and full physics for this tuned model is only 2.96%. Although this 
value will change for each CRMP, it gives a promising indication of the quality that CRMP can provide.

The run- time computational savings of using a CRMP was significant. To run the grid- based reservoir simulation, it took around 3 
seconds, while the CRMP took less than 0.01 seconds. This represents a reduction of more than 2 factors of 10. This becomes pivotal in 
making joint optimization more computationally efficient through the use of CRMPs.
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Fig. 8—The output from the tuned CRMP for the two production wells compared with the output from the full- physics simulation. 
Top: Oil production rate plots against timestep for PROD1 (left) and PROD2 (right). Bottom: Total production rate against timestep 
for PROD1 (left) and PROD2 (right).

To gain insight into the ability of the CRMP to forecast production for random well control settings, we ran the CRMP and full- physics 
simulation for an ensemble of 100 different random samples of injection rates and producer BHPs as validation samples. As an example, 
one of the validation samples of random INJ1 rates and PROD1 BHPs used to predict oil and total production rates is in Figs. 6b and 7b. 
The associated oil and total production rate plots are in Fig. 9. The coefficient of determination values ( R2 ) for oil and total production 
rates for PROD1 are 0.9745 and 0.9815, respectively. For PROD2, the values are 0.9809 and 0.9228 for oil and total production rates, 
respectively. The absolute average percent difference in NPV between the CRMP and the full- physics simulation for the random sample 
of well control strategies is only 1.89%. This reflects a very promising trade- off between the fidelity of a model and its associated runtime. 
In other words, for this example, with a reduction in computational costs of more than 2 factors of 10 there is only 1.89% difference in 
NPV.

For the ensemble of validation samples, the  R2  values for the oil production rates for PROD1 and PROD2 are 0.9620 and 0.9681, with 
standard deviation values of 0.0140 and 0.0170, respectively. Similarly, the  R2  values for the total production rates of the ensemble of 
validation samples are 0.9761 and 0.9402 with standard deviations of 0.0048 and 0.0228 for PROD1 and PROD2, respectively. This 
shows that CRMPs are able to produce sufficiently large  R2  values for random sets of water injection rates and BHPs.

Well Control Optimization. We tested the applicability of CRMP as a surrogate for high fidelity grid- based reservoir simulations in 
well control optimization as a proof of concept. The well locations are as depicted in Fig. 4. The decision variables were normalized 
between 0 and 1. The optimization algorithm used was Adam- SPSA. The stopping criterion for the optimization is a maximum number of 
function evaluations (full- physics reservoir simulations) of 250. The algorithmic parameters, specifically step size and perturbation size, 
were used to ensure the solutions were not swinging from the lower to upper bounds and vice versa.

When using the CRMP- based approach, only one reservoir simulation is required to build the model. Then, it can be used for the entire 
optimization process since the well locations do not change. To test the robustness of the CRMP, five different random initial guesses were 
used. Table 2 presents the differences in the NPV between the CRMP and full- physics simulation for each of the five initial guesses. The 
absolute differences in NPV across the five different initial guesses are very promising, ranging from as little as 0.37% to a maximum of 
only 1.19%.

Seed 1 Seed 2 Seed 3 Seed 4 Seed 5

Initial guess (million USD) CRMP 33.16 (−1.19%) 33.74 (−0.18%) 33.32 (−0.92%) 32.38 (−0.37%) 32.85 (−0.42%)

Initial guess (million USD) Full- physics 33.56 33.8 33.63 32.5 32.71

CRMP optimum solution (million 
USD)

CRMP 36.92 (+7.20%) 36.92 (+7.43%) 36.89 (+7.32%) 36.89 (+7.37%) 36.88 (+7.52%)

CRMP optimum solution (million 
USD)

Full- physics 34.44 34.37 34.37 34.36 34.3

Table 2—Comparison of results for well control optimization of Model 1.

The results of the optimization using both the CRMP and full- physics approaches are also presented in Table 2. The optimum solutions 
found by the CRMP- based optimization were also re- evaluated using the full- physics simulation. This was done to ensure that a solution 
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Fig. 9—The CRMP output of the validation sample for the two production wells compared with the output from the high fidelity 
grid- based numerical simulation using a random sample of well control settings. Top: Oil production rate plots against timestep 
for PROD1 (left) and PROD2 (right). Bottom: Total production rate against timestep for PROD1 (left) and PROD2 (right).

which represents an increase in CRMP NPV is also an increase in NPV calculated by the full- physics simulation. As shown, this is the 
case for all the initial guesses.

However, there is around a 7% difference in the NPV values. This increase in percent difference can be attributed to the well control 
settings of the optimal solutions found for the optimization. The optimal solutions are “bang- bang” control settings, which, as found in 
Zandvliet et al. (2007), can be the case for some waterflooding problems—especially for smaller models. This means the injection rates 
(or injection BHPs) and producer BHPs are at (or close to) their upper and lower limits, respectively. Typically, this can be expected to 
occur when water injection and handling costs are relatively low, which induces early water breakthrough in return for higher oil produc-
tion rates initially. Consequently, the water cut of the producers approaches 100% (or close to it) relatively early in the reservoir’s lifespan. 
This has been shown in Cao (2014) to affect the quality of the CRMP when combined with the Koval model.

Joint Optimization. The results comparing the joint optimization of Model 1 assisted by CRMPs (Algorithm 1) and the approach 
using only full- physics simulations are shown in Fig. 10. To allow for a clearer comparison, the results are plotted on a semilog (x- axis) 
plot. Both implementations had a stopping criterion of 50 PSO iterations and the well control optimization (inner loop) of the full- physics 
implementation had a maximum of 100 function evaluations (for each particle). For the full- physics implementation, this results in a 
maximum number of function evaluations of 100,000. For Model 1, an  R2  threshold value (i.e., Line 8 in Algorithm 1) of 0.95 and a 
value of 5 for  MaxCRMP  are used.

The left plot in Fig. 10 shows the results for the joint optimization when using three different seeds. Both plots in Fig. 10 display the 
best solution found in each generation of PSO. As such, the plots do not cross the x- axis. This was done to ensure the results were robust 
to the stochastic nature of the optimization algorithms used. For each seed, the CRMP- based optimization and the full- physics optimiza-
tion begin from the same random population. From the results, it is evident that there is a significant reduction in computational cost of 
joint optimization when using CRMPs as surrogates.

Furthermore, this does not come at the expense of the quality of the solution found. The best solution (using Seed 3) found by the 
CRMP- based method is 49.42 million USD after only 1,854 full- physics simulations. On the other hand, the best solution found by the 
full- physics implementation is 48.68 million USD after 100,000 full- physics simulations. This represents a reduction of computational 
cost (in terms of the number of required full- physics simulations) of more than two orders of magnitude with an improvement in NPV of 
more than 1%. With respect to NPV, even the worst performing CRMP- based run (Seed 1) obtained an optimum NPV of 48.08 million 
USD, which is competitive with the NPV of the best run of the full- physics- based approach.

The right plot in Fig. 10 shows the average of the three runs for the two implementations. On average, the CRMP- based approach 
obtained an NPV value of 48.76 million USD after 2,126 full- physics simulations. On the other hand, on average, the full- physics 
approach obtained an NPV value of 47.37 million USD after 100,000 full- physics simulations. From a computational efficiency stand-
point, the CRMP- based approach required, on average, only 459 full- physics simulations to obtain the optimal NPV (47.37 MM USD) 
found by the full- physics approach. This translates to a reduction in the number of required high fidelity grid- based simulations by up to 
3 factors of 10.

Fig. 11 shows the well locations for the optimal solutions found by the CRMP- based (left) and the full- physics (right) approaches. 
There are a number of similarities between the well locations of the two solutions. For instance, in both solutions, the injection wells are 
placed on the boundary of the reservoir model. This delays the water breakthrough at the producers, which is in line with typical reservoir 
engineering judgment. Also, the solutions both place a production well (specifically, PROD1) in a similar location within the southern 
section of the reservoir model, in a high permeability streak. This shows that the joint optimization using CRMP proposed well locations 
which are in line with reservoir engineering concepts and are feasible for the given field constraint (an interwell distance of 600 ft).
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Fig. 10—Left: Convergence plots for the joint optimization of Model 1 comparing CRMP and full- physics- based approaches for the 
three seeds. Right: Average of the three seeds for joint optimization of Model 1 using CRMP and full- physics simulations.

Fig. 11—Left: Optimal solution found by CRMP- based joint optimization showing associated well locations. Right: Optimal solution 
found by full- physics joint optimization showing associated well locations.

The significant improvement in computational efficiency and resilience of the CRMP- based approach to obtain improvements in NPV 
is a reflection of its practicality for its given fidelity. The fidelity of any surrogate is expected to be lower than the full- physics simulation; 
however, its functionality (in this case for joint optimization) is more pertinent than the absolute difference. In other words, the attractive-
ness of a surrogate is a balance between its fidelity and computational efficiency. If a surrogate is very computationally efficient (i.e., a 
significantly lower runtime than the full- physics model) but its fidelity is too low, then its usefulness decreases. However, the results 
presented here show that the fidelity of the CRMP is sufficient to take advantage of the reduction in computational costs without the loss 
of accuracy (which would be reflected in lower optimal NPV).

Fig. 12 provides insight into the fidelity of the CRMPs during joint optimization for each of the three seeds. The y- axis shows the 
absolute average percent difference between  f(xj, u�

i )  and  f(xj, u�
i ,p

�
j )  (see Line 11 in Algorithm 1). The difference shown is the average 

absolute difference across the particles in the swarm (a swarm size of 20 is used). Although there are varying values for the 25th and 75th 
percentiles, the median values are relatively similar. Seeds 1, 2, and 3 have median values of 2.5, 5.1, and 6.7%, respectively. While there 
are outliers to these averages (e.g., a maximum of 57% for Seed 3 is not shown) which can be associated to the stochastic nature of the 
algorithm, these are relatively low values given the computational savings achieved.

Experimental Results: Model 2. Evaluating CRM. To build an example CRMP for Model 2, the well locations displayed in Fig. 5 were 
used. Additionally, for illustration, the training sample of random water injection rates for INJ1 is presented in Fig. 13a. For Model 2, the 
BHPs of the producers were assumed to be constant and as such Eq. 10 was used to tune the CRMP parameters. This means there was a 
total of 44 model parameters which were the interwell connectivities ( �ij ), the time constant for each producer ( �j ), the Koval factor for 
each producer ( Kvalj ), and the movable PV ( Vpj ) for each producer.

The output of the CRMP (using the tuned parameters) and the full- physics simulation is compared in Fig. 14. For conciseness, only 
the oil production rates of PROD1 are shown. The coefficient of determination ( R2 ) for each of the producers is 0.9787, 0.9236, 0.9789, 
and 0.9645 for PROD1, PROD2, PROD3, and PROD4, respectively. These high values, in addition to the visual inspection of Fig. 14, 
provide promising results for the application of CRMP for a 3D model. Furthermore, the average absolute percent difference in the result-
ing NPV is only 0.38%. Although this is only one development strategy (well control and locations), it provides an indication to the 
potential reduction of computational cost that can be achieved without consequential reduction in solution quality.
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Fig. 12—Box plots presenting the average of the absolute percent difference between  f(xj, u�
i )  and  f(xj, u�

i ,p
�
j )  for each of the 

three seeds. The red line within each box represents the median, and the bottom and top lines of each box represent the 25th 
and 75th percentiles, respectively. The lines above and below the boxes represent the most extreme data points which are not 
considered outliers. The outliers are plotted individually using the cross symbol in a red color.
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Fig. 13—The (a) training sample and (b) validation sample of random water injection rates for INJ1 used to tune and then test the 
CRMP of Model 2.

As Model 2 is a 3D model with a larger number of wells than Model 1, the runtime is significantly more. The simulation runtime of 
Model 2 was around 3 minutes. In comparison, the runtime of the CRMP was less than 0.01 seconds. This represents a computational 
saving of more than 4 factors of 10 with only an absolute average percent difference of 0.38% in NPV. Although the percent difference 
may not be expected to be this low throughout the joint optimization, the potential reduction in computation is substantial.

Similar to what was done for Model 1, an ensemble of 100 validation samples of random water injection rates was generated to validate 
the CRMP’s ability to forecast production rates for comparison to that of the full- physics simulation. An example of the validation sample 
of random water injection rates for INJ1 is shown in Fig. 13b. The resulting oil production rates are presented in Fig. 14b for PROD1. 
The associated values for the coefficient of determination ( R2 ) for the production wells are 0.9269, 0.8493, 0.9652, and 0.8420 for 
PROD1, PROD2, PROD3, and PROD4, respectively.
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Fig. 14—Oil production rates of PROD1 comparing CRMP and full- physics simulations when using a training sample (left) and a 
validation sample (right).

The average  R2  values across the ensemble of 100 validation samples produced by the CRMP for the oil production rates for PROD1, 
PROD2, PROD3, and PROD4 are 0.9618, 0.8579, 0.9691, and 0.9057, respectively. The associated standard deviation of these values 
across the 100 validation samples points are 0.0178, 0.0336, 0.0092, and 0.0370 for PROD1, PROD2, PROD3, and PROD4, respectively. 
Again, this reflects sufficiently large  R2  values for predicting oil production rates for random water injection rates. However, more impor-
tantly for this study, is how the CRMP will perform when combined in a bilevel approach as proposed here. This will be investigated in 
the following section in more detail when the proposed approach is applied to the joint optimization of Model 2.

Joint Optimization. The results of the joint optimization of Model 2 using the CRMP- based method and the full- physics simulation 
approach are presented in Fig. 15. Similar to the results presented in Fig. 10, a semilog (x- axis) plot is used to allow a clear comparison. 
As before, both plots in Fig. 10 display the best solution found in each generation of PSO. As such, the plots do not cross the x- axis. Given 
the runtime (around 3 minutes or more) of the full- physics simulation for Model 2, the stopping criterion for this problem was 25 PSO 
iterations. The inner well control optimization loop had a maximum of 100 function evaluations for the full- physics approach given the 
significantly longer runtime compared with Model 1. For the full- physics implementation, this results in a maximum number of function 
evaluations of 50,000. For Model 2, a  R2  threshold value (i.e., Line 8 in Algorithm 1) of 0.90 and a value of 10  MaxCRMP  were used.
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Fig. 15—Left: Convergence plots for the joint optimization of Model 2 comparing CRMP and full- physics- based approaches for the 
three seeds. Right: Average of the three seeds for joint optimization of Model 2 using CRMP and full- physics simulations.

The plot on the left shows the results for each of the three random seeds for both the CRMP- based optimization and the optimization 
using only full- physics simulations. The CRMP- based optimization significantly outperforms the full- physics optimization for all three 
seeds. Although marginal, Seed 3 resulted in the best NPV for the CRMP- based optimization compared with Seeds 1 and 2. Seed 3 
resulted in an NPV of 208.1 million USD after 4,175 full- physics simulations. In comparison, the best result (Seed 1) for the full- physics 
simulations is an NPV of 173.2 MM USD after 12,000 full- physics simulations. This translates to a 16.77% improvement in NPV.

Similar significant improvements are seen from a computational savings standpoint. For example, the CRMP- based optimization 
obtained an NPV of 178.5 million USD after only 168 full- physics simulations. This is almost 2 factors of 10 decrease in computational 
intensity without a decrease in the quality of the solution found.

Similar performance of CRMP- based optimization is seen when looking at the average results of the three seeds in the right plot of 
Fig. 15. On average, the CRMP- based optimization found an optimal solution of 204.8 million USD after 4,103 full- physics simulations. 
On the other hand, the full- physics optimizations found, on average, an optimal solution with an NPV of 168.2 million USD after 36,000 
full- physics simulations. This translates to an improvement of 21.8% in NPV using a magnitude less of full- physics simulations.

From a computational efficiency standpoint, the CRMP- based optimization required, on average, only 144 full- physics simulations to 
find a solution with an NPV of 167.6 million USD. On the other hand, the full- physics optimization required, on average, 36,000 full- 
physics simulations. This translates to a reduction of more than 2 factors of 10 in computational costs. In other words, if a runtime of 3 
minutes is taken for each full- physics simulation then a reduction of 35,856 full- physics simulations translates to 90 hours or almost 4 
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Fig. 16—Left: Optimal well placements found by the proposed CRMP- based optimization method. Right: Optimal well locations 
found by the full- physics approach. Producers represented by black circles, and injectors represented by cross symbols. Red 
indicates high permeability values, and blue indicates low permeability values.
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Fig. 17—Box plots presenting the average of the absolute percent difference between  f(xj, u�
i )  and  f(xj, u�

i ,p
�
j )  for each of the 

three seeds. The red line within each box represents the median, and the bottom and top lines of each box represent the 25th 
and 75th percentiles, respectively. The lines above and below the boxes represent the most extreme data points which are not 
considered outliers. The outliers are plotted individually using the cross symbol in a red color.

days of computation time. This is significant in considering the need for continuous access to software licenses, which may not be avail-
able or are shared across multiple teams and departments.

One may attempt to improve the full- physics approach by reducing the maximum number of allowed function evaluations in the inner 
loop of well control optimization. However, it would be expected that the quality of the optimal solution obtained would also decrease as 
the algorithm may not converge to a suitable solution within the limited number of function evaluations. From previous studies, namely 
in Arouri and Sayyafzadeh (2020a, 2022), it was found that Adam- SPSA is able to accelerate to an improved solution within the first 250 
function evaluations. As such, this was used as the basis for the maximum number of function evaluations in this work. This further high-
lights the advantages of using CRMP to assist the joint optimization by significantly reducing the number of full- physics simulations 
without compromising the quality of the solution. One should note that in the scenario where an unlimited amount of resources is avail-
able (i.e., time, human, and software resources), it is expected that using the full- physics simulation would ultimately result in a higher 
NPV.

Fig. 16 shows the well locations of the optimal solutions found by the CRMP- based approach (left) and the full- physics approach 
(right). There are a couple of similarities between the two. For example, the placements of PROD2, PROD3, and PROD4 are similar. 
PROD1 in both solutions is placed closer to the injection wells. A sensitivity was undertaken to manually move PROD1 away from the 
injectors to see if any improvements in NPV results. However, the solution found by the proposed approach was still the highest NPV. 
Apart from INJECT8 in the CRMP- based solution, the injection wells in both solutions are on the eastern flank of the model. This 
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represents waterflooding direction from the eastern side to the western side where the production wells are located. In such a well place-
ment scenario, the injection rates would be pivotal in attempting to ensure a high sweep efficiency.

Fig. 17 shows the absolute average percent difference between  f(xj, u�
i )  and  f(xj, u�

i ,p
�
j )  for each of the three seeds. The median val-

ues are 8.3, 11.7, and 9.5% for Seeds 1, 2, and 3, respectively. The maximum absolute average percent difference in all three seeds is only 
15.4% (Seed 2) and a minimum of 6.0% (Seed 1). As one would expect, for a more larger complex model, the median percent differences 
are larger than those seen in Model 1. These results coupled with the results presented in Fig. 15 show that the fidelity of the CRMP is 
sufficiently high enough to reap the significant computational benefits when used in a joint optimization problem.

Concluding Remarks
We proposed a CRMP- assisted approach for the joint optimization of well controls and well locations for general field development prob-
lems. The proposed method uses a bilevel implementation with the outer loop being the well placement problem solved by PSO and the 
inner loop being the well control problem solved by Adam- SPSA. In past work, only full- physics simulations have been used to evaluate 
the proposed general field development plans; however, this results in an intractable computational cost. To ameliorate this issue, we 
proposed and investigated the use of (producer- based) CRMs as a computationally efficient alternative. Specifically, the CRMPs were 
used within the inner loop of the optimization method which consisted of the well control problem. For each proposed well location, a 
CRMP was built and thereafter optimized to find the optimal well control settings.

The proposed technique was tested on two example problems of varying complexity. The first problem was a heterogeneous 2D reser-
voir model with four injection wells and two production wells. The second problem used the 3D egg model populated with eight injection 
wells and four production wells. For each model, we investigated the fidelity of the CRMP before implementing the proposed approach 
for joint optimization.

The results of the proposed method were compared against an implementation which used only full- physics simulations (as has typi-
cally been done in previous literature). To investigate the accuracy of CRMPs, we tuned the models using a sample of random well control 
settings (injection rates and/or BHPs). The tuned CRMP parameters were then used to validate the accuracy of the CRMP using a valida-
tion sample of well control settings. For both models, the validation resulted in coefficient of determination values above 0.92.

Promising results were also obtained when the proposed CRMP- based approach was used for the joint optimization of well controls 
and well locations. When implemented for Model 1, the CRMP- based approach resulted, on average, in computational savings of up to 3 
factors of 10 in the number of required full- physics simulations. More importantly, the computational reduction did not come at the cost 
of the optimal solution value (NPV).

Similar positive results were obtained when the CRMP- based approach was used for the joint optimization of Model 2. On average, 
the proposed method found solutions of up to 21.8% higher than the optimal found by the full- physics approach. In addition, on average, 
the computational savings were nearly 3 factors of 10. For the runtime of 3 minutes (on average) for Model 2, this translates to a runtime 
savings of almost 4 days. This is significant when considering the potential cost savings associated with software licensing and the likes.

We also investigated the fidelity of the CRMP when used within joint optimization. The fidelity of the CRMPs for Model 1 varied 
between 1.2 and 5% (apart from the first two iterations), while for Model 2 it varied between 8 and 15%. When considered in conjunction 
with the results from the joint optimization this indicates that these levels of fidelity are sufficient to encourage the use of CRMP without 
compromising the performance with respect to NPV.

The work in this study can be furthered through a number of avenues. The incorporation of geological uncertainty is an important 
aspect of general field development. To incorporate geological uncertainty in the CRMP- based approach, one will simply need to build 
CRMPs for each realization at each well location. We would expect the computational savings to be similar, if not greater than, those 
found for the deterministic case as the computational cost increases proportionally with the number of realizations considered. Another 
avenue of potential research could investigate the use of efficient surrogates for the outer well placement loop. It would be intriguing to 
investigate the interplay between the inner and outer loop, including the required fidelity of each to reap the computational benefits with-
out compromising the quality of the solution. Additionally, investigations into combinations of different optimization algorithms for the 
outer and inner loops could add value to literature.
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Summary
Uncertainties are present in many decision- making processes. In field development planning, these uncertainties, typically represented 
by a set of geological realizations, need to be propagated in response to any proposed alternative (solution). Incorporation of the full set 
of realizations results in the oil and gas field development optimization problem—where either an algorithm iteratively tries to find the 
best solution from all the possible alternatives or the best solution must be selected from a set of predefined engineering judgment- driven 
development scenarios (i.e., set of either well control or well placement settings)—becoming computationally demanding. As such, re-
alization subset selection techniques are required to reduce the computational overhead. We first introduce a reformulation of the subset 
selection problem to one that aims at ensuring consistent ranking of alternatives between those obtained by the full set and the selected 
subset. We argue that this should be the ultimate goal of any subset selection technique in such problems. In addition, we also propose a 
technique which selects a subset that minimizes the difference between the rankings obtained by the full set and subset, for a small batch 
of alternatives. The key idea, which we investigate thoroughly, is that there is a positive association between the goodness (in terms of 
ranking alternatives) of the subset selected using a small batch of alternatives and its fidelity in ranking other alternatives. Unlike previous 
methods, this technique does not depend on selecting subjective (static) properties to perform the subset selection nor does it rely only 
on flow- response vectors of a base- case scenario. In this work, the proposed technique is assessed using well placement and well control 
development alternatives to determine the applicability within field development planning. Additionally, the proposed subset selection 
technique is implemented in an adaptive scheme to solve a well placement optimization problem. The results are promising as the pro-
posed technique consistently selects subsets that are able to rank development alternatives in a similar manner to the full set regardless of 
the type of development strategy (well control settings or well placement). Furthermore, the implementation of the proposed technique in 
an adaptive scheme is able to reduce the computational costs, on average, by a factor close to 9 without compromising the solution found 
for well placement optimization.

Introduction
Decision- making is essentially the design and ranking of alternatives, based on their value to the decision- maker (Bratvold and Begg 
2010). Typically, a predetermined (discrete) number of alternatives are designed/proposed (through engineering judgment), assessed, and 
then ranked. The purpose of modeling in engineering studies, such as well placement optimization, is usually to make predictions that 
inform decisions by allowing the evaluation of each alternative and subsequently ranking them. It is worth mentioning that most algo-
rithms used in population- based optimization frameworks perform in a similar fashion to decision- making processes where, in each 
iteration, the algorithm ranks and selects solutions (alternatives) based on their fitness value.

An assessment of the uncertainty associated with a model’s prediction is vital because it impacts the rankings (and hence the decisions) 
that are made. An accurate recognition of the uncertainty is important, as it can enable decision- makers (or algorithms) to make different 
and better decisions, ones that have an increased chance of achieving the desired outcome. In the context of uncertainty, accuracy means 
that all possible outcomes have been identified and that the probability of each is consistent with our state of information and the extent 
to which our models are an approximation to reality. If we are unsure of the values of the input parameters, which describe the system and 
its conditions, or if the model is a crude approximation of the reality, these must be reflected and propagated in the uncertainty of the 
predictions. It is also important that the model inputs (and the structure of the model itself) are not biased (Welsh and Begg 2016).

When the uncertainty has been assessed, decision- makers (or algorithms) are tasked with ranking and selecting the most value- creating 
alternative. To do so, for each alternative, the decision- makers (or algorithms) construct a single value measure—the decision metric—
that incorporates the full spectrum of possible outcomes, their probabilities, and the decision- maker’s attitude to risk. Common decision 
metrics include expected value for a risk- neutral decision- maker (as assumed in this work) or expected utility for risk- averse or risk- 
seeking decision- making. Understanding the (correctly) propagated uncertainty can not only increase the chance of getting desired out-
comes, but it can also be exploited to create additional value (Begg et al. 2002) by building- in flexibility (future decisions contingent upon 
the resolution of uncertainty) to mitigate downside risk and capture upside opportunity. In this study, our focus is on the impact of uncer-
tainty on ranking of the alternatives (either within a decision- making context or a population- based optimization framework).

In field development planning, reservoir flow simulations provide the key input for decision- making when evaluating alternative 
development strategies against the objectives. This allows the investigation of system responses to various alternatives and carrying out 
what- if sensitivities to find the optimum solution (alternative/development strategy). If the input parameters describing the system and its 
conditions (i.e., geological model, fluid properties, development strategy, etc.) are considered to be known with reasonable certainty, then 
the output can be considered to be fully determined—assuming modeling errors are negligible. However, this is not the case, and nor-
mally, the geological models have a great deal of uncertainty. Hence, an ensemble of geological realizations is typically used to represent 
the current state of information and is used to propagate uncertainty in the prediction of fluid production volumes (because of the nonlin-
earity of flow equations, Monte Carlo simulation is used).
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Depending on the complexity of the subsurface and available information, the ensemble may be composed of 100s to 1,000s of reali-
zations. As such, when evaluating the fitness (against the objectives) of a development strategy, it must be assessed against the full ensem-
ble. This results in a cumulative distribution function (CDF) of the fitness metric—this could be an economic measure, such as net present 
value (NPV), but field production measures may also be used. The CDF (or its associated probability density function), corresponding to 
the fitness metric, serves as a mechanism to reflect the uncertainty needed for a robust decision- making process. As aforementioned, this 
then needs to be represented by a single value (i.e., the decision metric) to allow for the ranking of each development strategy. Such tech-
niques have been used within optimization frameworks to enable robust optimization of field developments (Yeten et al. 2003; Artus et al. 
2006; Onwunalu and Durlofsky 2010; Bouzarkouna et al. 2012; Sayyafzadeh and Alrashdi 2019).

However, the significant computational burden of evaluating (and subsequent ranking of) each development strategy against the full 
set of realizations becomes intractable. As a result, scenario reduction techniques are used for the selection of representative realizations 
from the full set. Once selected, this subset can then be used to perform field development studies at a significantly lower computational 
cost. The used subset selection technique must not alter the ranking of the solutions. In essence, this means that whether a full suite or the 
selected subset of realizations is used, the ranking of the solutions, based on the decision metric, should be consistent to ensure reliable 
and robust decisions.

Related Work. Previous literature has investigated multiple techniques for the selection of a representative subset of realizations from 
the full suite. We have categorized these techniques into four classifications. It includes techniques that are based on (i) random selection, 
(ii) static property methods, (iii) flow- response vector- based methods, and (iv) a combination of (ii) and (iii).

Because of its simplicity, the random subset selection technique is widely implemented. This technique involves randomly selecting a 
predefined number of realizations from the full ensemble to form a subset. Lorentzen et al. (2009) used the random selection technique 
within a closed- loop reservoir management framework for the Brugge benchmark model (Peters et al. 2010). Li et al. (2013) used the 
random selection technique at each iteration of the optimization procedure. The authors explained that this would ensure each realization 
would be used throughout the optimization process and hence improve the results. Jesmani et al. (2016, 2020) applied a similar technique 
for robust well placement optimization using a randomly selected subset of a predefined size at each iteration.

The approximated CDF of the output resulting from the randomly selected subset may not be representative of the full set CDF, 
because the relationship between input and output is highly nonlinear, and more importantly, the similarity between the subset CDF and 
full set CDF is solution (development plan) dependent. This may lead to an unintended shift in the decision. Although changing the 
selected subset at each iteration may overcome the solution dependency, it comes at the cost of changing the shape of the objective func-
tion landscape of the optimization problem. Hence, this can delay convergence, as it acts as a noisy objective function. Furthermore, the 
subset size to be chosen and the frequency of the subset selection procedure should occur are not known a priori.

The second category of subset selection techniques attempts to approximate the CDF of the input by collating geological realizations 
based on a static measure. A static measure is an easily computed prior feature, such as a geological property (e.g., porosity, permeability, 
connected PV, etc.), which is taken as a representative property of the full geological model. The static measure- based method consists in 
sorting the full set of realizations according to the static measure, in an ascending/descending order. Once the realizations are in order, the 
predefined number of subset realizations is selected to represent the low, medium, and high measure values.

Deutsch and Begg (2001) proposed selecting a predefined number of realizations that are equally spaced to preserve the quantiles of 
the full set. Other studies investigated the use of a static measure that is a combination of various properties for steam- assisted gravity 
drainage (McLennan and Deutsch 2005), as well as using connected hydrocarbon volume as a ranking measure (Li et al. 2012). More 
recently, Rahim and Li (2015) introduced an optimization- based subset selection technique employing probability distribution distances. 
The aim of this technique is to find the optimal subset that has similar statistical distribution characteristics to the full set.

Although these techniques have been shown to result in positive results for computational reductions, they do not consider the impor-
tance of ensuring a consistent ranking between the subset and full set for decision- making. In addition, as discussed earlier, there is an 
inherently nonlinear relationship between the geological model inputs and the reservoir simulation outputs. Therefore, successfully 
approximating the CDF of the input does not necessarily result in an approximated CDF of the output of similar quality. As such, the final 
decision made based on the subset may be inconsistent with the decision based on the full set.

The third category of subset selection techniques aims at approximating the CDF of the flow- response output for a base case field 
development plan. Once the CDF is approximated, it is then assumed that this CDF is representative of the CDFs from all other possible 
field development plan flow- response outputs.

The usage of this method first appeared in the reservoir engineering community by Ballin et al. (1992). In this work, faster alternatives 
to full- physics simulators were used to run the full ensemble of realizations (for a base case). Then, the realizations were ranked based on 
these flow- response outputs for selection. The selected realizations are then used to undergo full- physics simulation. A similar approach 
is used in Mishra et al. (2002) and Odai and Ogbe (2011), but in these works, a streamline simulator is used to obtain flow- response out-
puts for the full set of realizations. Chen et al. (2012) used flow- response outputs from an initial guess of well control optimization for 
ranking and selection of a subset of realization.

Another subset selection technique that also attempts to approximate the CDF of a base case flow response is the distance- based clus-
tering method. This is accomplished by computing a distance (dissimilarity) matrix for the full set of realizations. The matrix is then 
transformed into the Euclidean space using multidimensional spacing. Because of the nonlinear nature of the points produced by multidi-
mensional spacing, kernel methods are used to map the data points to a high- dimensional feature space. It is assumed that the feature space 
has a better linear variation than the multidimensional spacing Euclidean space. As such, techniques such as principal component analysis 
and k- means clustering can be applied in the resulting feature space. Consequently, based on an a priori defined number of centroids, the 
full set of realizations are grouped within clusters based on their distance to the centroid. These representative centroids are taken as the 
realizations in the subset. Scheidt and Caers (2009) and Alpak et al. (2010) both applied the clustering method to large full sets of reali-
zations using flow- based responses from streamline simulations.

Although suitable results can be obtained through flow- response- based techniques, it is crucial to accept that each unique field devel-
opment plan will have a unique associated CDF. As such, it is a fragile extension to assume an approximated CDF of the output from a 
base case flow response is representative of the full set output CDF for any development plan (solution). Duly, it is foreseeable that the 
rankings of the solutions when using the subset may show inconsistencies to the ranking based on the full set.

More recently, there has been an introduction of approaches that use a combination of these categories to improve the subset selection 
process. These approaches typically incorporate static measures (second category) and flow- response vectors (third category) in the sub-
set selection method. Wang et al. (2012) combine flow- response output and static measures through the projection into a 2D space for all 
realizations. A clustering technique is then used to select a predefined number of realizations. Haghighat Sefat et al. (2016) used this 
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approach for well control optimization by using the area between well water cut curves as the dissimilarity measure. Shirangi and 
Durlofsky (2016) also introduced a subset selection method based on the combination of static measures and flow- response output. The 
method is based on a weighted combination between the static measure and flow- response from selected well configurations. Salehian 
et al. (2021) applied the technique introduced in Wang et al. (2012) to the joint optimization of well control and well placement. In their 
work, the static measure is permeability and the flow- response output is cumulative oil production for the initial well configuration.

The main objective of any subset selection work should be to support the decision- making process (or algorithm in population- based 
optimization frameworks) by providing information to assist with the ranking of alternatives. However, previous subset selection tech-
niques, by design, do not necessarily ensure that consistent decisions are made as they are not aimed directly at that. To this end, we 
propose a reformulation of the subset selection technique to one which aims at ensuring consistent ranking to the full set when a subset 
of realizations is selected and used. Furthermore, we propose a subset selection technique that ensures a strong association between the 
solution ranking based on the subset and the full set using a small batch of solutions (development strategies). This study investigates the 
performance across different subset sizes and training set sizes for well control and well placement development strategies. The proposed 
technique is then implemented and tested within a population- based algorithm for a well placement optimization problem under 
uncertainty.

The outline of this paper is as follows. We begin by detailing the key mathematical concepts for the reformulation of the subset selec-
tion problem. Following this, we present the proposed subset selection technique methodology for the reformulated subset selection 
problem. We also present the implementation of the proposed method in an optimization under uncertainty problem. Next, the experimen-
tal setup, including a description of the benchmark model, (economic) fitness metric, and decision metric, is introduced. Then, we present 
the experimental results assessing the applicability of the proposed method for well control and well placement development strategies. 
We also present the performance of the proposed method when implemented for a well placement optimization problem. Finally, we 
discuss the implications of these results for subset selection and conclude the paper with a summary of the key findings.

Mathematical Formulation for Subset Selection
For a given geological model,  m , and field development strategy,  s , the solution of the set of partial differential equations that govern the 
fluid flow through porous media, represented by  g , gives the forecasts,  p . This is expressed mathematically with the following 
relationship:

 p = g(m, s).  (1)

The forecasts are used in combination with other (economic) parameters,  � , to calculate a (economic) fitness metric,  y , using  h  as the 
(economic) fitness function, expressed as follows:

 y = h(g(m, s), �).  (2)

To incorporate subsurface uncertainty, an ensemble of geological models is used. As such, the geological model is considered a random 
vector,  M  . Consequently, for a given field development strategy, the associated (economic) fitness metric will also be represented by a 
random variable/vector,  Y  :

 Y(s) = h(g(M, s), �) . (3)

 N  samples are taken from  M   to represent the suite of realizations (models) and each realization is denoted by mi. The CDF corresponding 
to  Y(s)  is obtained/approximated using a set of realizations which is composed of a large ensemble (with the size  N  ) of models mi, referred 
to as the full set of realizations in this study. The CDF corresponding to  s  is denoted as  FY(s) . The computational overhead required to 
generate  FY(sj) , for each development plan, sj, using the full set of realizations, will become computationally expensive. Consequently, a 
number of realizations,  n , are intended to be selected as a representative subset, from the full set with the size of  N  —where  n� N  .  FY(sj)  
corresponding to any sj can be approximated using the output of the subset. Consequently, the aim for any subset selection technique is to 
select a subset of realizations, denoted by  Xss , such that the resulting CDF of the output for any development strategy  F

0

Y(sj)(Xss)  is approx-
imately representative of the CDF of the output when evaluated using the full set for the same development strategies, FY(sj) 

 F0

Y(sj)(Xss) � FY(sj), j 8 1 : J  , (4)

where  J   is the total number of all the possible development strategies (solutions) that are either proposed based on engineering judgment 
and/or from an algorithm. Here, we define  Xss  as a binary vector [i.e.,  (x1, x2,…, xN) ] representing the selected combination of realizations 
in the subset. For example, using a full set size ( N  ) of 5 and  Xss = (1, 0, 0, 1, 0) , this means that the first and fourth realizations are selected 
to be in the subset. Because of the complex nonlinearities between the input—geological model and development strategy—and the out-
put—production forecasts, there is no closed- form solution for such a problem. Subsequently, it is not the aim of this work to solve this 
problem. A more relaxed and approachable aim is to approximate a decision metric (e.g., expected value), defined as  l , of  Y(s)  using a 
subset. This can be expressed mathematically as follows:

 

Let u = l(Y(s)),
u0

Y(sj)(Xss) � uY(sj), j 8 1 : J  
.
 

(5)

 u
0

Y(sj)(Xss) is the outcome corresponding to sj approximated by  Xss  subset of realizations, whereas  uY(sj)  is the outcome obtained by the full 
set of realizations. Herein, for brevity, we refer to  uY(sj)  and  u

0

Y(sj)(Xss)  as  u(sj)  and  u
0 (sj,Xss) , respectively.

These are the metric values used to rank solutions (development strategies). Therefore, the approximation in Eq. 5 is still an interme-
diate goal, and we argue that the ultimate goal of a subset selection technique should be to maintain a consistent ranking of the solutions. 
To this end, we propose the reformulation of the subset selection problem to one which aims at producing similar rankings of solutions 
between the subset and the full set. Specifically, we argue the aim should be to find a subset that produces similar ranks for the solutions 
(development strategies) measured by  u  and  u0 . This will help ensure that a consistent decision is made regardless of whether the subset 
or the full set is used. As such, with this ultimate aim, there is no requirement concerning the quality of CDF approximation nor the 

D
ow

nloaded from
 http://onepetro.org/SJ/article-pdf/doi/10.2118/209584-PA/2657891/spe-209584-pa.pdf/1 by U

niversity of Adelaide user on 09 M
arch 2022



2022 SPE Journal4

approximation of the decision metric values, as long as the ranks of the solutions do not change. This is a more relaxed approximation 
problem.

Methodology
In this section, we present the proposed methodology for selecting a representative subset from a full set of geological realizations. Next, 
we present the methodology for the usage of the proposed subset selection method within optimization under uncertainty.

Rank Correlation Method. The reformulation of the subset selection problem can be expressed mathematically. The difference,  d(Xss) , 
between the rankings of the full set and the subset can be defined as follows:

 d(Xss) =k r � r0 (Xss) k , (6)

where  r  and  r
0 (Xss)  are the rank vectors for  J   solutions obtained by the full set and the  Xss  subset, respectively. These two vectors,  r  and 

 r
0 (Xss)  , rank the output in vectors,  u  and  u0 , which are calculated for  J   solutions using the decision metric,  l , in Eq. 5. This can be 

expressed as an optimization problem:

 

min
Xss2ZN

2

d(Xss)

subject to :
NP
i=1

Xss(i) = n
 

.

 

(7)

This problem is equivalent to maximizing Spearman’s rank correlation coefficient:

 
R(Xss) = 1 �

�
6 d(Xss)
J3�J

�

 
,
 

(8)

where  J  , as before, is the total number of development strategies (solutions) being ranked. However, in reality, it would be pointless to 
evaluate all  J   development strategies (solutions) with the full set. As such, we present the following.

First, we select a batch (with the size of  JT  ) of development strategies from  J  , determined by the available computing resources. 
Accordingly, the difference in Eq. 6 becomes the following:

 dT(Xss) =k rT � r0

T(Xss) k , (9)

where  rT   and  r
0

T(Xss)  are the rank vectors for the selected batch of  JT   solutions obtained by the full set and the  Xss  subset, respectively. 
The effect that the value of  JT   has on the proposed method’s ability to select representative subsets is investigated in later sections. Next, 
the fitness metric (e.g., NPV) is calculated for each development strategy (i.e.,  s1, ..., sJT  ) against each realization ( N  ) in the full set. This 
will result in a matrix of size  JT � N  , which we will call the fitness metric matrix (FMM). Following this, the decision metric (e.g., 
expected value of NPV) for each development strategy is calculated to obtain a singular value that can be used to rank them. This will 
produce a vector of size  JT � 1 , where each entry represents the decision metric value for a development strategy. The decision metric 
values are then ranked to produce the vector  rT  .

Then, a subset size,  n , is defined and all possible combinations of  n  realizations from  N   are enumerated. As this can become a compu-
tationally expensive task for large full set and subset sizes, an optimization- based approach may be used. Next, for each  Xss  subset (i.e., 
combination of realizations), the corresponding columns in the FMM are extracted for each development strategy. As such, a smaller 
FMM for the subset, of size  JT � n , will result. Again, the decision metric value for each development strategy is calculated using the 
subset FMM which results in a vector of size  JT � 1 , corresponding to the subset. Similar to the full set, the decision metric values (cor-
responding to the  JT   development strategies) are ranked to produce the vector  r

0

T(Xss)  corresponding to  Xss  .
Finally, a distance, as shown in Eq. 9, can be calculated between the ranked subset,  r

0

T(Xss) , and full set,  rT  , vectors for that specific 
subset. The combination of realizations which produces the minimum  dT   (i.e., maximum Spearman’s rank correlation coefficient) is 
selected as the representative subset,  X�

ss , which can be found by an exhaustive search (if the number of possible combinations is not very 
large) or by an optimization process. For implementation and presentation purposes, we use Spearman’s rank correlation coefficient to 
obtain and relay results. Fig. 1 presents the flow chart for the proposed method.

Optimization under Uncertainty. The use of population- based algorithms has been a favored approach to solve reservoir engineering 
optimization problems, such as well placement (Yeten et al. 2003; Onwunalu and Durlofsky 2010; Bouzarkouna et al. 2012; Sayyafzadeh 
2017; Alrashdi and Sayyafzadeh 2019; Sayyafzadeh and Alrashdi 2019). Population- based algorithms rely on accurately ranking the 
proposed solutions in each iteration (generation). These rankings are vital for comparing the proposed solutions in the current iteration 
(generation) with other solutions in the current and past iterations. If, hypothetically, these rankings are inaccurate, it is possible that the 
information from higher quality solutions is not retained and is lost. Although the focus of this work is not the comparison of different 
algorithms, it should be noted that for high- dimensional well control optimization problems, gradient- based algorithms are more favorable 
[see, e.g., Chen et al. (2009), Fonseca et al. (2017), and Arouri and Sayyafzadeh (2020a)]. Given the proposed method works best when 
ranking is needed, application of the proposed method to gradient- based algorithms requires further investigation.

Implementation of Rank Correlation Method. In our study, we focus on the use of particle swarm optimization (PSO) as the 
population- based algorithm (Kennedy and Eberhart 1995). However, the subsequent implementation of our proposed subset selection 
method applies to any population- based algorithm given the presence of ranking/comparisons of solutions. PSO begins with the initial-
ization of a population of solutions (particles) and the algorithmic parameters (namely,  ! , c1, and c2). Next, during each iteration, the 
proposed solutions in the population are evaluated using the defined objective/fitness function. Next, a comparison is made between 
each proposed solution and its previous personal best, stored in  spj , as well as with the global best solution found so far, sg, based on the 
evaluated fitness values. If an approximate fitness value,  u0 , is used (which is the case when a subset of realizations is used), instead of the 
exact fitness value,  u  (when the full set is used), it is essential to ensure the comparisons/ranking will be made correctly. In other words, 
the difference between the approximated and exact fitness values is not important as long as the result of rankings/comparisons is in 
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agreement. Hence, we emphasize the difference in ranking for the selection of a subset which would allow the reduction in computational 
costs of optimization under uncertainty problems.

The implementation of our proposed subset selection method allows the use of an adaptive approach with respect to the realizations in 
the subset as well as the subset size. This is done by continuously assessing the performance of the selected subset throughout the optimi-
zation process to ensure the rankings are similar to those obtained by the full set, and if its fidelity drops, it will be substituted with a higher 
fidelity subset by reperforming the subset selection. More specifically, a prediction matrix,  Ap , is used to store the fitness value for the best 
solution found in each generation, denoted as  u(sgk) , that is evaluated using the full set of realizations. This is equivalent to the FMM in 
Fig. 1 and allows the calculation of a prediction rank correlation coefficient,  Rp , for the current selected subset. If the calculated  Rp  is 
below a predefined prediction threshold (i.e., below par performance in ranking),  Rpt , then a subset selection process is initiated. The 
effect of the threshold value  Rpt  will be investigated in later sections. Once subset selection is initiated, the  Ap  matrix is reset (i.e., set to 

Fig. 1—Flow chart of the proposed method for subset selection.
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an empty matrix). As such, the implementation of the proposed subset selection technique is adaptive with respect to the subset (i.e., the 
realizations in the subset may change) through the use of feedback from the optimization process.

Once the subset selection process is initiated, the procedure follows that described in Fig. 1, where the  JT   development strategies are 
the solutions (i.e., population) proposed by the optimization algorithm and are then evaluated by the full set to obtain the FMM. The FMM 
in Fig. 1 is denoted as the training matrix,  At , in this implementation. This matrix comprises all the fitness values that were previously in 
 Ap  and were used to calculate  Rp . Next, starting at a subset size ( n ) of 1,  At  is used to find the subset that maximizes the training rank 
correlation coefficient,  Rt . If this is above the predefined training threshold,  Rtt , then the selected subset is used in subsequent generations 
until the subset process is initiated again. Otherwise, the subset size is incremented by 1 and the procedure is repeated until the training 
threshold is met. Either an exhaustive search or an optimization- based approach can be used to find the subset that maximizes  Rt .

It is important to note that if a new subset is selected, the current personal best solutions, spj, and the current global best solution, sg, 
must be reevaluated using the newly selected subset. This is to ensure the ranking and selection of solutions are in comparable terms. The 
pseudocode of the described algorithm is presented in Algorithm 1.

Experimental Setup
In this section, we present the experimental setup used to test the proposed subset selection technique. We begin by introducing the bench-
mark model, the Egg model, which was used for all experimental problems presented here. Next, we present the (economic) fitness metric 
and the decision metric that are used to rank the development strategies.

The Egg Model. The benchmark model was introduced into the reservoir optimization community for the application of optimization 
algorithms to field development studies (Jansen et al. 2014). It is a synthetic 3D reservoir model consisting of 18,553 active grid cells, as 
shown in Fig. 2. The model is a two- phase (oil and water) model, with no aquifer (pressure) support. The geological uncertainty of the 
model is represented by 100 realizations (full set) of the permeability field. A sample of six x- directional permeability realizations from 
the full set ensemble is shown in Fig. 2.

Two types of development strategies that are typically studied in the reservoir optimization community were used to investigate the 
proposed method. The first type of development strategy considered is well placement solutions, which consist of the areal locations for 
a predefined number of wells. In this work, the well placement strategies define the x and y coordinates for 12 (8 injectors and 4 producers) 
vertical wells, resulting in a total of 24 decision variables. The second type of development strategy consists of the injection rates for eight 
water injection wells over the life span of the reservoir. These control settings are piecewise constant between each timestep, which are 
taken to be at 90- day intervals over a 10- year period. This results in a total of 320 decision variables. For example, the well control settings 
for one injection well are defined as ( q

1
wi,1, ...q

1
wi,NT ), where, for example,  q

1
wi,1  represents the water injection rate for well number 1 

during the first timestep and  Nt  is the total number of time step intervals.

Algorithm 1 —Rank correlation method with PSO.

1: Initialize a random population of particles; algorithmic parameters (ω, c1, c2); subset selection parameters  (Rpt,Rtt,Ap,At) ; k
= 0; initial subset ( X�

ss )
2: while Termination condition/s not met do
3:  for Each particle j do
4: Check feasibility of particle
5: if Infeasible then
6:  Repair
7: Evaluate fitness of particle  sj  using selected  X�

ss  subset
8: if  u

0 (sj,X�
ss) < u0 (spj,X�

ss)  then
9:  spj  sj 
10:  if  u

0 (sj,X�
ss) < u0 (sg,X�

ss)  then
11:    sg  sj 
12:  if  u

0 (sj,X�
ss) < u0 (sgk,X�

ss)  then
13:    sgk  sj 
14:  Ap = [Ap; u(sgk)] 
15: if  dim(Ap, 1) � 5  then
16:  Calculate rank correlation coefficient of current subset  (Rp)  using Ap
17:  if  Rp < Rpt  then
18:  n = 1 
19:  At = [At;Ap] 
20:  Ap = [] 
21: while  Rt < Rtt do
22:  n = n + 1 
23: Find  Xnewss   subset which maximizes  Rt  using either exhaustive search or optimization- based search
24:  if  Xnewss ¤ X�

ss  then
25:   Xnewss X�

ss 
26: Re- evaluate  u

0 (spj,X�
ss)  and  u

0 (sg,X�
ss)  using new subset

27:  Update velocities of each particle
28:  Update the positions of each particle
29:  k = k +1
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Fig. 2—Top: The Egg model displaying injection wells (blue) and producers (red). Bottom: Six realizations selected from the full 
set of 100 realizations showing the variability in the x- directional permeability across the ensemble. Blue color represents lower 
permeability values, and green color represents higher permeability values.

Fitness Metric. The (economic) fitness metric used in this study is the NPV of a given development strategy, s, for a given geological 
model, m. Other metrics, such as cumulative production totals, may also be used as the fitness metric. The values of the fitness metric for 
each development strategy against each realization form the FMM (see Fig. 1). For example, if there are 200 development strategies and 
100 realizations in the full set, this will result in an FMM of size  200 � 100 . The NPV is defined as follows:

 
y = h(g(m, s), �) = NPV(m, s) =

NtX
i=1

co,i Qo,i(m, s) � cwp,i Qwp,i(m, s) � cwi,i Qwi,i(m, s)
(1 + b)t

, (10)

where  co,i ,  cwp,i,  and  cwi,i  are the price of oil and costs of water separation and injection, respectively, all of them per unit volume and 
defined from time ti to  ti+1  (there are  Nt  such intervals),  Qo,i ,  Qwp,i,  and  Qwi,i  denote the field oil production, field water production, and 
field water injection volumes during the mentioned output interval, and  b  is the discount rate. The field production and injection volumes 
are obtained from the reservoir simulation for a defined set of decision variables (development strategy; i.e., well locations or well control 
settings) and for a specified geological model. To calculate the NPV value for a specific geological realization model and development 
strategy, a reservoir life of 10 years is used and the economic parameters considered are summarized in Table 1.

Parameter Value

Oil price, co 20 USD/bbl

Water handling 
costs, cwp

3 USD/bbl

Water injection 
costs, cwi 

0.8 USD/bbl

Discount rate, b 0%

Table 1—Economic parameters for 
the calculation of (economic) fitness 
metric.

Decision Metric. The decision metric is applied to the FMM to condense the information into a vector of decision values for each 
development strategy by which the decision- maker can rank the alternatives. The decision metric used in this study is the expected value 
of the NPV, assuming a risk- neutral decision- maker. An expected utility may be used for risk- averse or risk- seeking decision- makers. The 
expected value is used to efficiently incorporate the geological uncertainty exhibited by the ensemble of realizations. The expected value 
of NPV can be formally stated for the full set of realizations,  N  , and development strategy (solution), sj :

 u(sj) =
PN

i=1 NPV(mi,sj)
N ,  (11)

where  u  represents the decision metric output for the full set of realizations. Similarly, the expected value NPV for an  Xss  subset of  n  
realizations and development strategy (solution), sj, is defined as:

 u
0
(sj,Xss) =

PN
i=1 Xss(i)�NPV(mi,sj)

n ,  (12)
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where  u0  represents the decision metric output for the subset of realizations and  Xss  is the binary vector (1s and 0s) detailing the selected 
realizations. Various decision metrics have been used in the literature, including expected value (Fonseca et al. 2015, 2017) and risk- 
adjusted expected values (Yeten et al. 2003; Artus et al. 2006; Tilke et al. 2010). The selection of the decision metric is based upon the 
objectives of the decision- maker.

Experimental Results
In this section, we begin with the assessment of the rank correlation method for selecting representative realizations for well control and 
well placement development strategies. Following this, we present the results for a well placement optimization problem under uncer-
tainty using the rank correlation method.

Assessment of Rank Correlation Method. To investigate and assess the ability of the proposed method to select a representative 
subset, we use training and prediction sets. To do this, we assume a total number of development strategies (solutions),  J  , exist. These 
solutions can either be proposed through engineering judgment or an optimization algorithm. For the purpose of this assessment, they 
were generated randomly. Next, as per Fig. 1, a batch with a size of  JT   solutions is selected (from  J  ) and is designated as the training 
set. The remaining solutions (i.e.,  J � JT  ) are known as the prediction set, denoted by  JP . As such, for a specific value of  JT  , the split of 
 J   can be represented as  JT/JP .

For a specified subset size,  n , the procedure described in Fig. 1 is used to find a subset that minimizes the distance (Eq. 9) between the 
full set ( rT  ) and subset ( r

0

T(Xss) ) rankings using the development strategies in the training set ( JT  ). Once a subset ( X�
ss ) is found, it can be 

used to calculate the predicted rank correlation coefficient for the prediction set ( JP ). To assess the risk associated with the proposed 
method, the splitting procedure was repeated 10 times for every specified subset size. In other words, the strategies placed into  JT   and  JP  
were randomly shuffled 10 times.

The inherent assumption is made that the rank correlation coefficient calculated for a subset of development strategies (i.e., based on 
 JT  ) is representative of the rank correlation coefficient for the total number of development strategies ( J  ). The effect of the value of  JT   
on the performance of the rank combination method will be investigated in greater detail later in the study (i.e., to see if the conclusions/
observations hold regardless of the size of  JT  ). This will allow us to extend the observations to situations where a training/prediction set 
is not computationally justifiable.

In our assessment, we use random development strategies to correspond with possible solutions proposed by global stochastic search 
algorithms, such as PSO. The assessment of the proposed method considered multiple conditions. The first condition was the total number 
of development strategies,  J  . Two values were studied, 200 and 400. For all results presented, the full set ensemble was defined to have 
a total of 100 realizations.

In addition, the effect of the proportion of  JT   and  JP , for a given  J  , was also explored. Two splits between  JT   and  JP  were studied: a 
10/90% split and 30/70%. The assessment will be applied to development strategies focussed on well control settings (for fixed well 
locations) and well placement strategies (with fixed well control settings) separately.

Lastly, for the purpose of initially assessing the proposed method, we use an exhaustive search to select the subset to eliminate any 
error or noise that may enter when an optimization- based method is used.

Well Control Settings. Fig. 3 shows the results for the two different splits of the 200 well control setting strategies (i.e., water injection 
rates for each well at 90- day intervals over a 10- year period). Each box plot summarizes the statistics for the predicted rank correlation 
coefficients corresponding to the most representative subsets found in the 10 random shuffles for different subset sizes. A general trend 
is seen, regardless of percentage split, that increasing the subset size improves the statistics of the predicted rank correlation coefficient. 
First, as the subset size increases, the median predicted rank correlation coefficient increases until plateauing when going from a subset 
size of 4–5. For example, using 30/70 split (left plot), a median of 0.957 is observed for a subset size of 1 and increases to 0.993 for a 
subset size of 5. This means the proposed method is able to select a subset based on the training rank correlation coefficient that produces 
a predicted rank correlation coefficient value, on average, of 0.993 (where perfectly associated is represented by a value of 1) for well 
control strategies.

Additionally, the interquartile range (IQR, i.e., Q3–Q1; a measure of spread or variability) typically decreases as the subset size 
increases. For example, for the 30/70 split, a subset size of 1 has an IQR of 0.0235, while a subset size of 5 has a value of 0.00198. This 
is an order of magnitude decrease in the IQR. This indicates that for smaller subset sizes, there is a greater sensitivity to the way  JT   devel-
opment strategies are selected. Nonetheless, an interesting observation is that even using a single realization as a subset, a relatively high 
predicted rank correlation coefficient is achieved. For example, using a subset size of 1 gives minimum values (i.e., worst case of the 10 
runs) for predicted rank correlation coefficient of 0.911 and 0.892 for splits of 30/70 and 10/90, respectively. Consequently, this gives the 
decision- maker greater ability to shift the balance between computational savings (by using a smaller subset) and ranking accuracy.

Fig. 4 presents the results of subset selection when using  400  well control setting strategies. Similar observations can be made to those 
displayed in Fig. 3, such as the improvement of the median predicted rank correlation coefficient with an increase in subset size. For 
example, the median value (over 10 subset selection shuffles) increases from 0.941 for a subset size of 1 (using a split of 30/70) to a value 
of 0.994 for a subset size of 5. In a similar manner, there is a noticeable decrease in the IQR, regardless of split, when there is an increase 
in subset size. For example, for a 30/70 split, the IQR for a subset size of 1 is 0.0259; in comparison, it is 0.0009 for a subset size of 5. 
This is consistent with results in Fig. 3 and shows that the method in which the  JT   are selected is not important, especially for larger subset 
sizes.

An intriguing result is that the number of random development strategies ( J  ) does not have a substantial effect on the ability of the rank 
correlation method to select subsets that produce rankings of the development strategies similar to the full set. This is evident when com-
paring the results between  200  and  400  random development strategies, with similar trends being observed. This gives an indication that 
this method can be expected to perform relatively consistently for various numbers of well control strategies, as would be the case in 
decision- making contexts or optimization frameworks.

Well Placement Strategies. Fig. 5 presents the results for  200  well placement strategies (i.e.,  x  and  y  coordinates for 12 vertical wells) 
using two different splits for  JT   /  JP . Similar to the well control setting results, there is a general trend of an increase in the predicted rank 
correlation coefficient as the subset size increases. However, the predicted rank correlation values are generally lower than the well con-
trol results. More specifically, for example, when using a subset size of 1 with a 30/70 split, the maximum value (out of the 10 selection 
runs) is 0.80. Similarly, using a 10/90 split, the maximum predicted rank correlation coefficient is 0.739.

This gives an indication that the increased nonlinearities of well placement strategies when compared with well control settings render 
these types of development strategies more difficult to rank accurately with a smaller subset. In other words, a larger number of 
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Fig. 3—Box plots for  J = 200  random well control settings using different subset set sizes. Left: Using a  JT   /  JP  split of 30–70%. 
Right: Using a  JT   /  JP  split of 10–90%. The red line within each box represents the median, and the bottom and top lines of each 
box represent the 25th and 75th percentiles, respectively. The lines above and below the boxes represent the most extreme data 
points that are not considered outliers. The outliers are plotted individually using the cross symbol in red color.
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Fig. 4—Box plots for  J = 400  random well control settings using different subset set sizes. Left: Using a  JT   /  JP  split of 30–70%. 
Right: Using a  JT   /  JP  split of 10–90%. The red line within each box represents the median, and the bottom and top lines of each 
box represent the 25th and 75th percentiles, respectively. The lines above and below the boxes represent the most extreme data 
points that are not considered outliers. The outliers are plotted individually using the cross symbol in red color.

realizations are required to obtain a more representative subset when ranking well placement strategies. This is reflected in the significant 
improvement in results as the subset size increases to 5. For example, the median predicted rank correlation for 30/70 and 10/90 splits are 
0.911 and 0.906, respectively.

Unlike for well control strategies, there is not an obvious trend seen when looking at the IQR for either split. This may indicate that the 
nonlinearity of well placement development strategies overrides any possible effects that subset size may cause when selecting  JT   strat-
egies. It should be noted that the IQR values, even for well placement strategies, are still relatively low. For example, using a subset size 
of 5 with a 30/70 split, the IQR/median ratio is 0.0244/0.911, or 2.68%.

Fig. 6 summarizes the results for subset selection with a total of  400  random well placement strategies using two different splits against 
different subset sizes. Similar to the results presented in Fig. 5, overall, the predicted rank correlation coefficient values are lower than the 
results using  400  random well control strategies (see Fig. 4). Again, this can be attributed to the intrinsic differences in flow response of 
alternate well placement strategies compared with the differences between alternate well control settings. As such, finding a subset of size 
of 1 or 2 to represent a full set of 100 realizations may be unrealistic and counter productive. For example, when using a 30/70 split and 
a subset size of 1, the maximum predicted rank correlation coefficient (out of the 10 selection runs) is 0.754 and a median of 0.712. As the 
subset size increases to 5, the maximum rank correlation coefficient increases to 0.947 and a median of 0.914. A similar increase is seen 
for the 10/90 split going from a maximum predicted rank correlation of 0.723 (and a median of 0.682) for a subset size of 1 to a maximum 
value of 0.927 (and a median of 0.904) for a subset size of 5.

These results give insight into the difficulty of selecting a representative subset, especially for development strategies detailing well 
locations. It also indicates the importance of selecting representative subsets, rather than employing a random selection technique. 
Although randomly selecting a subset of realizations may result in the opportunity of a high- rank correlation coefficient, it is vital to 
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Fig. 5—Box plots for  J = 200  random well placement strategies using different subset set sizes. Left: Using a  JT   /  JP  split of 
30–70%. Right: Using a  JT   /  JP  split of 10–90%. The red line within each box represents the median, and the bottom and top lines of 
each box represent the 25th and 75th percentiles, respectively. The lines above and below the boxes represent the most extreme 
data points that are not considered outliers. The outliers are plotted individually using the cross symbol in red color.
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Fig. 6—Box plots for  J = 400  random well placement strategies using different subset set sizes. Left: Using a  JT   /  JP  split of 
30–70%. Right: Using a  JT   /  JP  split of 10–90%. The red line within each box represents the median, and the bottom and top lines of 
each box represent the 25th and 75th percentiles, respectively. The lines above and below the boxes represent the most extreme 
data points that are not considered outliers. The outliers are plotted individually using the cross symbol in red color.

consider the associated risk of selecting a subset with a low- rank value. This is exhibited in the range of the predicted rank correlation 
coefficients.

Analysis has shown that the proposed method is consistently able to select a subset that results in the predicted rank correlation coef-
ficient to be in the top quartile of the range. However, for conciseness, these results are not presented. For example, for a 10/90 split using 
 J = 400  and  n = 1 , the range in predicted rank correlation coefficient for one of the 10 runs is [0.242, 0.770] with Q1 and Q3 values of 
0.446 and 0.603, respectively. For this run, the proposed method, using only  10  % of  J   development strategies as  JT  , selects a subset with 
a predicted rank correlation coefficient value of 0.705.

If development strategies are ranked (whether in decision- making context or optimization framework) in a manner that is not consis-
tent with the full set of realizations, this may lead to the selection of a poor alternative.

It is also worth mentioning the importance of testing different combinations for each subset size. We found that although a realization 
may be selected in a smaller subset size (e.g.,  n = 1 ), it does not necessarily mean it will be selected for larger subset sizes. This was seen 
when using well placement or well control development strategies.

Realization Subset Selection for Well Placement Optimization. In this section, we compare the results of well placement optimization 
when using the proposed subset selection technique with the results using the full set of realizations. We first define the problem by 
describing the decision variables, fixed well control settings, and field constraints considered. Additionally, we present the experimental 
investigation undertaken into various subset selection schemes for the implementation of the rank correlation method.
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Problem Definition. In this problem, we consider well placement optimization, in which the areal locations (x and y coordinates) of 12 
vertical wells (8 injectors and 4 producers) that maximize the decision metric (i.e., expected NPV) are sought. We continue with the use 
of the Egg model (Fig. 2) for this optimization problem. Note that the decision variables are normalized and bounded between 0 and 1. 
The production wells are operated by bottomhole pressure with settings of 395 bars. The injection wells are controlled by a surface rate 
of 60 sm3/d and a maximum bottomhole pressure of 405 bars.

Additionally, two field constraints were considered to ensure practical solutions were proposed. First, an interwell distance constraint 
of 24 m (approximately three grid blocks) was used. Second, a projection- type repair mechanism was used to project the proposed well 
locations outside the reservoir bounds back into the reservoir. The reservoir boundary was approximated using piecewise linear functions 
to represent a reservoir polygon. If a proposed solution places a well outside this polygon, the well is projected back onto the location on 
the boundary with the shortest distance to the violating well location [details of the constraint handling can be found in Arouri and 
Sayyafzadeh (2020b)]. Table 1 presents the economic parameters used for calculating  u  and  u0  (i.e., expected NPV).

The optimization using the proposed subset selection method (see Algorithm 1) was undertaken using various values for  Rpt . This 
threshold value, in essence, gives an indication of the quality of the subset and its ability to rank well placement strategies. In turn, this 
determines if the subset selection process should be initiated or not (see line 17, Algorithm 1). Four values of  Rpt  were investigated: 0.8, 
0.85, 0.9, and 0.95. These values were selected based on the results presented in the previous section. Similarly, a value of 0.99 was cho-
sen for  Rtt  as the previous results showed that when a subset with a training rank correlation coefficient of 0.99 was selected, the predicted 
rank correlation coefficient (of that subset) was above 0.92 in 93% of the runs. This threshold value is important as it determines which 
subset size (and hence subset) is selected based on the training rank correlation coefficient in the selection process (see line 21, Algorithm 
1). This gives the subset size an adaptive nature and hence can play a role in producing an efficient optimization run (compared with a 
static subset size). The initial subset was chosen for all three seeds using a training threshold of 0.99, which had a size of three realizations, 
and was used for all subset optimization runs. It should be noted as the initial populations for different, each seed had a different initial 
subset. This selection was based on the first generation of optimization (i.e., using 50 random solutions representing  JT  ), where all the 
solutions are evaluated using the full set (which requires 5,000 reservoir simulations), creating the FMM, and these evaluations are 
accounted for in the convergence plot of the runs with the subsets.

In comparison, the full set optimization used all 100 realizations to calculate the exact decision metric,  u , at each generation. 
Unsurprisingly, this entails a large computational burden, hence the importance of using a subset. For the full set optimization, a maxi-
mum of 75,000 reservoir simulations was allowed. On the other hand, given the computational burden, a maximum of 25,000 reservoir 
simulations was allowed for the optimization runs using a subset. The values for the PSO algorithmic parameters, namely,  ! , c1 and c2, 
were taken as 0.721, 1.193, and 1.193 based on Onwunalu and Durlofsky (2010) using a population size of 50. In addition, to remove the 
effect of the stochastic nature of PSO, full set and subset runs used the same seeds.

Optimization Results. Fig. 7 presents the results comparing subset optimization using various subset selection schemes ( Rpt  values) 
against the full set optimization. To account for the randomness of PSO, the experiments were repeated using three different seeds. The 
presented expected NPV values in this figure and any subsequent figures are obtained by evaluating the development scenario using the 
full set [i.e.,  u(sg) ]. This allows the comparison of optimum development scenarios found in the subset and full set optimizations.

0 2 4 6 8

104

25

30

35

40

45

50

0 2 4 6 8

104

25

30

35

40

45

50

55

0 2 4 6 8

Number of reservoir simulations
104

30

35

40

45

50

55

E
xp

ec
te

d 
N

PV
, u

(s
g) 

[M
M

 U
SD

]

Full set Subset
85

Subset
90

Subset
95

Subset
80

0 2 4 6 8

104

25

30

35

40

45

50

(a) (b)

(c) (d)

Fig. 7—Well placement optimization results comparing subset optimization using the proposed method to the full set optimization 
for (a) Seed 1, (b) Seed 2, (c) Seed 3, and (d) average. Various training thresholds ( Rt ) were used to understand the effect on the 
progress of the optimization.

First, in all three seeds, the subset optimization runs are able to outperform the full set optimization with respect to computational 
efficiency and objective function value, regardless of the threshold value. More specifically for Seed 1 (see Fig. 7a), the full set optimi-
zation converges to an objective function value of 41.71 MM USD after 45,000 reservoir simulations. In comparison, all subset optimi-
zation runs, regardless of  Rpt  value, obtain a similar objective function value (41.64 MM USD) after only 9,000 reservoir simulations. 
This translates to a reduction in computational expense by a factor of 5 to achieve the same objective function value. Assuming each 
reservoir simulation takes 10 minutes (for a modest reservoir model) to execute, that is a savings of up to 6,000 hours when optimizing 
using subsets selected by the proposed method.

Similar comparisons can be made from the results of Seed 2 (Fig. 7b) and Seed 3 (Fig. 7c). For example, in the Seed 2 runs, the full 
set optimization obtains an NPV value of 37.19 MM USD after 75,000 reservoir simulations. In comparison, the best subset optimization 
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run (using an  Rpt  of 0.90) obtained an NPV value of 51.21 MM USD after only 20,910 reservoir simulations. Comparably, using Seed 3, 
the full set optimization obtained an NPV value of 41.21 MM USD after 75,000 reservoir simulations, while the best subset run (using an 
 Rpt  of 0.85) converged to an NPV value of 51.5 MM USD after 25,100 reservoir simulations.

Second, the results in Fig. 7 allow the comparison of the different subset ( Rpt  values) runs. Note that the subset runs using an  Rpt  of 0.8 
and 0.85 result in the same convergence plot and hence are overlapping in Fig. 7a. As a reminder, the  Rpt  value determines whether or not 
a subset reselection procedure is undertaken. Consequently, it is possible that an initial subset performs above this threshold throughout 
the optimization procedure. An example of this is reflected in the subset optimization runs using  Rpt  values of 0.80 and 0.85 in Fig. 7a. 
This means that the optimization occurred using the initial subset selected throughout the process (i.e., a static subset). However, this is 
still more computationally efficient than using the full set, as these runs converge to an expected NPV of 42.61 MM USD after 17,500 
reservoir simulations using Seed 1. This translates to up to a 61% reduction in computational costs with up to a 2% increase in expected 
NPV. Similar computational savings are seen for seeds 2 and 3 in Figs. 7b and 7c.

The optimization runs using higher  Rpt  values (namely, 0.90 and 0.95) typically outperform the other subset selection runs and the full 
set run significantly, except in Seed 3 where the performances are similar. For example, in Fig. 7a, the run using a value of 0.95 for  Rpt  
converged to an expected NPV value of 46.78 MM USD after 24,510 reservoir simulations, while the run using a value of 0.90 performs 
in a comparable manner as it converged to an expected NPV of 46.92 MM USD after 24,710 reservoir simulations. These results illustrate 
up to a 13% increase in expected NPV with a computational cost reduction of up to 52% compared with the full set run. Furthermore, 
when compared with the subset runs using  Rpt  values of 0.80 and 0.85, these results represent up to a 10% increase in expected NPV.

Fig. 7d presents the average of all three seeds. On average, it is clear the subset optimization runs all outperform the full set optimiza-
tion. For example, on average, the full set optimization converged to an NPV value of 36.69 MM USD, while the best performing subset 
run ( Rpt = 0.95 ), converged to an average of 49.21 MM USD. This represents, on average, an improvement of 24% in NPV value between 
the best subset run and the full set run. It is also evident from Fig. 7d that the subset runs are, as expected, much more computationally 
efficient, where a reduction of computational costs is close to a factor of 9.

Evolution of Rank Correlation Coefficient. Fig. 8 shows the subset optimization runs (left y- axis) alongside the evolution of the pre-
dicted rank correlation coefficient (right y- axis) for Seed 1. For succinctness, we focus on the results of Seed 1 as they are representative of 
the two other seeds. This figure gives insights into the effect of various  Rpt  values on the search progression. As previously mentioned, the 
optimization runs using values of 0.80 and 0.85 do not undergo subset selection throughout the optimization. This is reflected in the fact 
that the predicted rank correlation coefficient (i.e.,  Rpt ) for these runs does not fall below the threshold values (0.85 or 0.80, respectively). 
As the optimization progresses, the predicted rank correlation coefficient for these runs reaches a maximum value of 0.962 and then stabi-
lizes around 0.90. This stabilization is reflected in the optimization results with the convergence to an expected NPV of 42.61 MM USD.
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Fig. 8—Well placement optimization results comparing the evolution of the predicted rank correlation coefficient ( Rp ) for each 
threshold value ( Rpt ). Left y- axis is the expected NPV (MM USD) and the right y- axis is the predicted rank correlation coefficient. 
Inset figure is a zoom- in showing differences in the predicted rank correlation coefficient in the later stages of the optimization 
process.

In comparison, the other two subset runs have higher thresholds and as such undergo the subset selection procedure multiple times in 
the early stages of the optimization. This is reflected by the discontinuous rank correlation coefficient values. In the early stages, the subset 
selection results in the same subset as the initial subset, and hence the three convergence plots overlap. The first divergence between the 
subset runs occurs around 10,000 reservoir simulations which represents the selection of a different subset for the two runs ( Rpt =  0.9 and 
0.95). It is also important to note, that the proposed adaptive scheme allowed the reduction in the subset size from 3 to 2 (i.e., a reduction 
of 33% in computations per generation). A number of subset selections are undertaken (represented by singular predicted rank correlation 
values) until a subset with a predicted rank correlation coefficient of 1 is selected around 17,000 reservoir simulations (for both runs), 
shown in detail in the inset of Fig. 8. Soon after, a divergence between the 0.90 and 0.95 runs occurs as indicated by a predicted rank 
correlation value of 0.927. That is, the threshold is met for the 0.90 run; however, it is not for the 0.95 run and a subset selection procedure 
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is undertaken resulting in a new subset being selected. In subsequent generations, the differences in the predicted rank correlation values 
are shown in the inset of Fig. 8. In the later stages of these runs, the subset selection results in predicted rank correlation coefficients of 1. 
As the optimization progresses, these predicted rank correlation coefficient values gradually decrease, shown by continuous values, com-
pared with earlier stages that saw discontinuous values for the higher threshold runs.

Discussion
Decision- making processes rely on ranking a number of alternatives (solutions) using decision metrics with the aim of selecting the most 
value- creating option for the given objectives. In field development planning, this process is complicated with the incorporation of geo-
logical uncertainty as it increases the computational overheard required. As such, it is crucial to find subset selection techniques that 
reduce the required computation and yet maintain the rankings of possible development strategies (solutions). This helps ensure robust 
decisions can be made under uncertainty. We argue that a reformulation of the subset selection problem is needed to propose a technique 
that allows for robust decision- making. This entails refocusing the aim of subset selection to ensure the realizations are able to rank (and 
hence select) alternatives (development strategies in the case of field development) in a similar manner to the full set.

Assessment of Underlying Assumption. The overarching distinction between previous subset selection techniques and the proposed 
method is the underlying assumption. Methods utilizing static geological properties, such as the static ranking method, assume that the 
CDF of a geological static property is representative of the CDF of the output (e.g., production forecasts or NPV). Other methods use 
flow- based vector/s from a selected (few) base case development strategy (strategies). The underlying assumption in these methods is that 
the CDF of the output for a base case development strategy is representative of the CDF of the output for any other development strategy.

In the proposed method, the underlying assumption is that there is a positive relationship between the rank correlation coefficient based 
on  JT   development strategies and the rank correlation coefficient for the other strategies in  J  . Although this assumption cannot be directly 
assessed, a number of indicators can be examined. Fig. 9 shows the minimum predicted rank correlation coefficient for a specific training 
rank correlation coefficient. The results are presented for a number of test cases of full set size ( N  ), subset size ( n ), and split of  J  . A min-
imum predicted rank correlation coefficient represents the worst- case scenario for the associated training rank correlation coefficients. For 
example, selecting a subset with a training rank correlation value of 0.9, one could expect a minimum predicted rank correlation coeffi-
cient of 0.74 for the tested cases or even a minimum as high as 0.86.
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Fig. 9—Minimum rank correlation coefficient of predicted values for corresponding subsets at various training rank correlation 
coefficient threshold values.

The trend in Fig. 9 shows that as the training rank correlation coefficient increases, the minimum associated rank correlation coefficient 
also increases. This indicates a positive association between the training rank correlation coefficient and the prediction value for subsets. 
Such an association cannot be made using a random subset selection method as it is just as likely to select a subset with a low- rank cor-
relation coefficient as it is to select a subset with a high- rank correlation coefficient. Although the results in Fig. 9 are not expansive, they 
give insight into the validity of the assumption for the proposed technique.

Effect of Development Strategy. The comparison of the results between the two types of development strategies (well placement and 
well control settings) brings to light some important findings. Because of the relatively smoother objective function landscape of well 
control development strategies (Arouri and Sayyafzadeh 2020a), the subsets of realizations tend to have rank correlation coefficients 
close to unity, even for smaller subset sizes. This indicates that individual realizations inherently have a relatively close association to 
the full set (and one another) with regards to flow- response for different well control development strategies. In turn, this may indicate 
that the parameters that were deemed uncertain when generating the realizations do not have a significant impact across different well- 
operating conditions. In comparison, the well placement development strategies have a rougher landscape because of the highly nonlinear 
relationship between well locations and flow response. These findings are corroborated by Sayyafzadeh and Alrashdi (2019) and Shirangi 
and Durlofsky (2016) who found similar differences when selecting subsets for well control optimization compared with well placement 
optimization. Consequently, larger subset sizes are required to ensure the subset has a strong positive association with the full set.

However, as larger subset sizes are selected or larger full set sizes are used, the computational overhead required for exhaustive search 
using the proposed method becomes unjustifiable. To this end, the use of an integer- based population optimization algorithm will alleviate 
these computational costs without compromising in finding the subset which maximizes the training rank correlation coefficient. Two 
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population optimization algorithms were tested for this purpose: genetic algorithm (GA) and PSO. The underlying evolutionary formula-
tions of each algorithm are consistent with the common implementation. Details of GA and PSO can be found in Srinivas and Patnaik 
(1994) and Kennedy and Eberhart (1995), respectively. The integer GA implemented used a single- point crossover, a single gene muta-
tion, and a random tournament selection scheme. The PSO algorithm implemented a global (star) topology.

The optimization problem is formulated to minimize the distance between ranked vectors for the full set,  rT  , and subset,  r
0

T(Xss) . The 
decision variables are the ordinal numbers that represent the realizations in the full set. For example, using a subset size of 5 and a full set 
size of 100, one possible set of decision variables would be (1, 44, 23, 95). Once a new population is generated, the individuals are 
rounded to the nearest integer values. Next, to reduce redundant objective function evaluations, newly generated individuals are compared 
with each other as well as with previous generations. If a combination of integers (i.e., a subset) has been evaluated previously, a new set 
of integers is generated. This would allow the innards of PSO/GA to work as per usual without much change. Preliminary testing showed 
that for a subset size of 5, both algorithms were able to find the same subset that maximized the training rank correlation coefficient as the 
exhaustive search in a limited number of function evaluations.

As shown in Figs. 5 and 6, there is clearly a need for a larger subset size to improve the predicted rank correlation coefficient when 
using well placement strategies. This will provide further insight into the general trend seen in other results—that an increase in subset 
size will generally improve the predicted rank correlation coefficient. As such, integer GA was applied to well placement development 
strategies using  J = 400  with a split of 30/70. The results are presented in Fig. 10 and are a summary of the 10 shuffles of  JT   as was done 
before. The results show that it is possible to obtain high predicted rank correlation coefficients for well placement strategies. For exam-
ple, to obtain a predicted rank correlation coefficient of 0.96, a subset size ( n ) of 10 is required. A subset size of 10 represents a 90% 
reduction from the full set size of 100 realizations. As one would expect, as the subset size approaches the full set size, the predicted rank 
correlation coefficient approaches a value of unity (i.e., perfect association). In addition, similar to previously presented results (using 
exhaustive search), there is minimal sensitivity to the way  JT   development strategies are selected are represented by the small IQRs.
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Fig. 10—Box plots for  J = 400  random well placement strategies using different subset set sizes and a  JT   /  JP  split of 30–70%. 
These results are obtained using an integer- based GA using a population size of 100, a crossover probability ( Pc ) of 0.9, mutation 
probability ( Pm ) of 0.05, and tournament size of 4. The red line within each box represents the median, and the bottom and top lines 
of each box represent the 25th and 75th percentiles, respectively. The lines above and below the boxes represent the most extreme 
data points that are not considered outliers. The outliers are plotted individually using the cross symbol in red color.

Traversing the Objective Function Landscape. An interesting observation from the optimization results is the possible effect that 
selecting a subset has on the ability of PSO (and possibly any population- based algorithm for that matter) to traverse the objective 
function landscape. When the results in Fig. 7 are plotted against iteration number (for brevity not shown) rather than the number of 
reservoir simulations, there is a noticeable difference in convergence speeds between the subset and the full set. This gives an indication 
that there may be more at play than solely a computational difference because of the substantial reduction in the number of realizations 
used. One explanation may be that when using the full set (of 100 realizations), the landscape is more complex, with a larger number of 
local minimums, which results in a more rugged landscape. This makes it more difficult for PSO to traverse the landscape in search of the 
global minimum and hence slow down convergence when compared with the subset runs.

In addition, PSO and other population- based algorithms are characterized by the dichotomy of exploration and exploitation. A balance 
between these two aspects plays a significant role in the success of such algorithms. During the exploratory stages of optimization (spe-
cifically in the early iterations), the aim is to visit new regions in the search space. As such, it is important to traverse the landscape in a 
computationally efficient manner (i.e., using a low number of iterations). When using the full set, the increased complications and rug-
gedness of the landscape may cause a slow- down in the exploratory stage. This may be because of the increased number of local minima 
which act as speed bumps for the algorithm. On the other hand, when a subset is used, the landscape ruggedness is reduced and a lower 
number of local minima are present which allows faster exploration to take place.

In the early stages of the optimization, the importance lies in searching potential regions in the search space. As the optimization pro-
gresses, the population begins to converge, and the importance intrinsically shifts to searching previously visited successful regions, the 
selection of the subset is still crucial. The adaptive nature of the subset (discussed in detail in the next section) allows the selection of a 
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subset that closely mimics the major local minimums (i.e, has a high- rank correlation coefficient). This becomes pertinent during the 
exploitation of the search space as the populations converge.

Adaptive Nature of Subset Selection. The optimization results provide insight into the importance of an adaptive scheme for subset 
selection when implemented within an optimization framework. An adaptive approach uses feedback from the optimization process to 
determine whether or not a new subset selection process should be undertaken. This allows the realizations within a subset as well as 
the subset size to be updated. A possible drawback of using a subset of realizations for decision- making is the possibility of selecting a 
nonrepresentative subset (i.e., a subset of realizations that does not allow for consistent and robust decision- making, when compared with 
the full set). However, the proposed technique is able to ensure consistent ranking (and hence selection) of the proposed development 
strategies within an optimization framework. This is evident by the fact that all subset selection schemes (i.e., various  Rpt  values) were 
able to achieve an objective function value [evaluated by the full set -  u(sg) ] similar to that of the full set with significant computational 
savings. This means that the optimization algorithm (i.e., decision- maker) is able to decide (i.e., rank and select) at each generation the 
development strategies that are consistent with the full set.

Another interesting insight is the effect that the frequency of subset selection can have on the optimization progress. First, it is import-
ant to note that the frequency of an adaptive subset selection can distinguish between subset optimization runs; however, it is clear all 
subset runs outperform the full set optimization. In the proposed technique, the frequency of subset selection is not static (e.g., every five 
generations); rather, it is based upon feedback from the optimization process (i.e., using a threshold value). This means that a subset 
selection process (and hence possible subsequent change of subset) only occurs if the optimization process requires it. This in effect is a 
cost- saving measure in itself, as redundant subset selections may unnecessarily increase the number of evaluations of the full set.

The frequency of subset (re)selection within an optimization process can either be a hindrance or an advantage. As the subset is 
changed, the intrinsic objective function landscape that is being explored is changed. When using a static subset (i.e., one subset) through-
out the whole optimization process, it is only this subset that is being optimized. In other words, given the multimodal nature of field 
development objective landscapes, the search most likely converges to a local minimum/maximum of that specific subset. This local 
minimum/maximum may not be represented in the full set landscape and as such be suboptimal. An example of this is displayed when 
using a  Rpt  value of 0.85 (or 0.80) in Fig. 7a, where the initial subset was used for the whole optimization process. Similar results would 
be expected for subset selection techniques, such as static ranking and clustering techniques, which use a single subset throughout the 
optimization process. On the other hand, undergoing reselection too frequently may introduce additional unnecessary noise into the objec-
tive function. In such a scenario, the algorithm may be unable to converge to any local minimum/maximum. This would decrease the 
computational efficiency dramatically. Although randomness may be useful to escape local minima/maxima, excess stochasticity may 
become counter productive when under computational constraints—as is usually the case for decision- making scenarios.

The proposed adaptive technique, based on rank correlation coefficient, is not susceptible to these issues when suitable  Rpt  values are 
used. In actuality, the subset optimization runs which undergo reselection (i.e., have higher  Rpt  values) are able to find solutions with 
higher objective function values. This may be because as reselection occurs the more promising regions (i.e., local maxima/minima), 
which are consistently present in the selected subset realizations, are accentuated. This is aided by the use of feedback from the optimiza-
tion, formalized in the  Rp  value, which enables the algorithm to delay convergence by reselecting a subset of realizations as it approaches 
local subset optima. This is seen prominently in Fig. 8, where in later stages, a plateau arises but is soon overcome after a successful 
reselection. This feedback also ensures that the selection process is undertaken once the current subset is unable to rank the proposed 
development strategies in a manner similar to the full set.

Compared with other subset selection methods, another advantage of the proposed technique is the fact that it is problem independent. 
It does not rely on selecting a static property as is required for static ranking and clustering methods, nor does it rely on base case scenarios 
for flow- response vectors. Additionally, it is applicable to any type of development strategy (i.e., well placement or well control settings), 
without the need to change any weighting factors, simulate different base case scenarios, or reselect static properties. It should be noted 
that the proposed technique does require an initial computational investment to select an initial subset; however, this is not unusual for 
subset selection techniques that incorporate some form of flow- response vectors. If computational budgets are under stringent constraints, 
then it is reasonable to use proxy flow simulations, such as streamline simulations (Batycky et al. 1997) or capacitance- resistance models 
(Sayarpour et al. 2009) for the selection of the initial subset.

Lastly, the proposed technique works for any decision metric (i.e.,  l ) that may be used within a decision- making process. In addition 
to using expected NPV as the decision metric, we also assessed the proposed method using the expected utility for a risk- averse decision- 
maker. The insights obtained from these experiments are akin to those presented and as such, for conciseness, are not presented in this 
work.

Conclusions
In this work, we began by reformulating the subset selection problem to a more relaxed approximation with the aim of selecting a subset 
that can rank (and hence select) development strategies in a consistent manner with the full set. We also proposed a subset selection 
method to solve this problem that is based on finding the combination of realizations that maximizes the rank correlation coefficient for a 
selected number of solutions (development strategies).

Furthermore, a realignment of the aim to focus on the rankings of development strategies ensures a computational reduction without 
compromising the robustness of the decision. This work assessed the ability of the proposed technique to select representative subsets for 
various numbers of random development strategies and subset sizes. The results showed that the rank correlation subset selection tech-
nique is able to consistently select a subset that has a strong positive association with the full set of realizations, regardless of development 
strategy type (well placement or well control). The proposed method is able to select subsets that produce rank correlation coefficients of 
up to 0.993 for well control settings using a subset size of only 5 (for a full set size of 100). Furthermore, the proposed method is able to 
select subsets for well placement strategies with rank correlation coefficients of up to 0.947 for a subset size of 5. We found that smaller 
subsets are able to successfully rank well control development strategies, while well placement development strategies require larger 
subset sizes to obtain similar rank correlation coefficients. This is owing to the differences in flow response of geological models to dif-
ferent well placement strategies because of the underlying increased nonlinearities. We also found that the way in which ( JT  ) development 
strategies (from  J  ) are selected to be ranked has little to no bearing on the method’s ability to select a representative subset. For situations 
with larger subset sizes or larger full set sizes, we have shown the applicability of integer- based optimization algorithms (e.g., integer GA) 
for finding the best subset for the training set.
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Additionally, we applied the proposed technique within a population- based algorithm for the well placement optimization problem. 
This problem studied the placement of 12 wells (8 injectors and 4 producers) under geological uncertainty for the Egg benchmark. 
Implementing the proposed subset selection technique resulted, on average, in a computational reduction of close to a factor of 9 when 
compared with the full set optimization. Moreover, subset optimization runs that underwent subset reselection during the optimization 
procedure saw improvements in expected NPV of up to 24%, on average, compared with the final expected NPV found by the full set 
optimization. The adaptive nature of the proposed technique allows the update of realizations in the subset, as well as the subset size, to 
take advantage of potential additional computational savings without compromising on the achieved objective function value. Our results 
also showed that the frequency of subset reselection during an optimization procedure will affect the convergence rate. As reselecting a 
subset too often could introduce unnecessary noise into the objective function, an infrequent reselection may result in the premature con-
vergence to a subset local optima.

This research can take multiple different directions in the future. One direction would be to expand the application of the proposed 
technique to problems involving joint optimization of well placement and well control. The combination of these decision variables could 
mean a greater difference in flow response between realizations and as such result in more local optima. This would mean selection of 
suitable representative realizations would be more pertinent. It would also be interesting to compare the proposed technique with other 
subset selection techniques which use static properties, flow- response vectors, or a combination of both. Finally, the adaptation of the 
proposed technique for gradient- based methods would be of interest to the research community.

Nomenclature
 Ap = prediction matrix
 At = training matrix
 b = annual discount rate
 c1 = cognitive coefficient
 c2 = social coefficient
 co = oil price per unit volume from time ti to ti+1, USD/STB
 cwi = water injection costs per unit volume from time ti to ti+1, USD/STB
 cwp = water separation costs per unit volume from time ti to ti+1, USD/STB
 d(Xss) = difference between the rankings of the full set and the subset when J development strategies are used
 dT (Xss) = difference between the rank vectors of the full set and the subset when JT solutions are used
  FY(Sj )  = CDF corresponding to the evaluation of development strategy using N (full set) realizations

 
 
F0
Y(Sj )
(Xss) 

 = CDF corresponding to the evaluation of development strategy using Xss subset
 g = governing equations for fluid flow
 J = total number of all possible development strategies (solutions)
 JT = batch of selected development strategies
 l = decision metric function
 m = geological model
 M = random vector representing all geological models
 n = number of geological realizations in subset
 N = number of geological realizations in full set
 Nt = timestep intervals
 p = production forecasts
 Qo = field oil production volume from time ti to ti+1, STB
 Qwi = field water injection volume from time ti to ti+1, STB
 Qwp = field water production volume from time ti to ti+1, STB
 r = rank vector for J solutions obtained using the full set
  r0  = rank vector for J solutions obtained using the Xss subset
 rT = rank vector for batch of JT solutions obtained using the full set
  r

0
T(Xss)  = rank vector for batch of JT solutions obtained using Xss subset

 Rp = calculated predicted rank correlation coefficient
 Rt = calculated training rank correlation coefficient
 Rpt = threshold value for predicted rank correlation coefficient
 Rtt = threshold value for training rank correlation coefficient
 R(Xss) = Spearman’s rank correlation coefficient when using Xss subset
 s = field development strategy (well control settings or well locations/placements
 sg = global best solution
 sj = proposed solution (development strategy) in Algorithm 1
 sgk = best solution found in generation k
 spj = particle’s personal best solution
 t = time since start of production, years
 u = decision metric value
  uY(Sj)  = decision metric obtained by evaluating the development strategy using N (full set) realizations

 
 
u0
Y(Sj)
(Xss) 

 = decision metric obtained by evaluating the development strategy using the Xss subset
 v = economic parameters
 Xss = binary vectors of 0’s and 1’s defining which realizations (from the full set) are selected as the subset
 y = fitness (economic) metric
 Y = random variable/vector representing an uncertain fitness metric for given field development strategy s
 ω = inertia weight
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7 Summary, Conclusions and Future Work 

This thesis tackled different aspects of field development planning optimization through the 

development and implementation of computationally efficient techniques. The thesis explored well 

control, well placement and joint optimization as well as subset selection for optimization under 

geological uncertainty. For each of these different problems, a technique is proposed and studied with 

the aim of reducing the computational cost of optimization without compromising the quality of the 

solution.  

The thesis began by developing a novel gradient-based algorithm, Adam-SPSA, based on the 

popular optimization framework, Adam, which has seen significant success in machine learning 

applications. The newly developed algorithm was first implemented for the high-dimensional well 

control optimization problem with comparisons to its popular counterpart, the original formulation for 

SPSA using the steepest descent framework. The comparison was based on two experimental problems: 

a two-dimensional heterogeneous model and a three-dimensional benchmark model (Brugge). The 

problems were high-dimensional, consisting of 800 and 1,800 decision variables for the two and three-

dimensional models, respectively. This study also included a detailed examination into the effect of two 

common bound constraint handling techniques, logarithmic transformation and projection, on the 

algorithms convergence rate.  

The success of Adam-SPSA led to the implementation of the algorithm for well placement 

optimization for computationally constrained and practical scenarios. Here, the assumptions were made 

that a suitable reservoir engineering judgment-based initial guess is available, and a stringent 

computational budget is in effect. The aim was to use the algorithm’s fast convergence rate to find an 

improved solution without the excessive computational burden of running a large number of reservoir 

simulations. The problems also took into account physical field constraints including a reservoir 

boundary approximated by piecewise linear functions and inter-well distance constraints. Additionally, 

the study also included an in-depth investigation on the effect of constraint handling techniques, as well 

as three-dimensional well parameterization, on the gradient approximation. 
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The thesis then investigated another approach for improving the computational efficiency of well 

placement optimization by investigating the use of a surrogate-treatment technique, known as manifold 

mapping. The technique is a surrogate-based optimization, in which a surrogate is iteratively adjusted 

to improve its accuracy. The objective function using the surrogate is then optimized instead of using 

high fidelity reservoir simulations. This was the first application of manifold mapping to well placement 

optimization. A number of different surrogates were combined with manifold mapping to understand 

the effect of each method’s inherent accuracy on the ability of manifold mapping to improve the result 

of the optimization. Analytical surrogates, such as kriging and quadratic approximation, were used, 

whilst a local grid coarsening surrogate was used as a physics-based (or reduced-order model) surrogate. 

The first experimental problem implemented manifold mapping with kriging and quadratic 

approximation for the placement of four production wells in the presence of two pre-existing production 

wells in the PUNQ-S3 benchmark model. The second problem optimized the placement of five 

production wells for a model undergoing water-flooding with five injection wells.  

 As an intuitive evolution, joint optimization of well control and well placement was 

investigated next. To reduce the significant computational costs of joint optimization, the thesis 

developed and implemented a bilevel approach taking advantage of capacitance resistance models 

(CRMs). The bilevel approach is comprised of an outer loop for well placement optimization using 

particle swarm optimization and an inner loop of well control optimization using Adam-SPSA and aided 

by CRMs. The advantages of using CRM as a physics-based surrogate for well control optimization lie 

in the absence of a requirement for a geological model and the need for only one high fidelity full-

physics reservoir simulation to tune the parameters. The proposed framework was compared to the 

typical approach of solving joint optimization problems using only full physics simulations for both the 

inner and outer loops. The experimental problems included a simple two-dimensional model with two 

production wells and two injection wells and a three-dimensional problem with four production wells 

and eight injection wells. 

 The next chapter of the thesis tackled the subset selection problem to improve the computational 

efficiency of optimization under uncertainty. To do this, a reformulation of the subset selection problem 
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was presented which argued that any proposed technique should ultimately aim at ensuring consistent 

ranking of alternatives when evaluated using the subset and the full set of realizations. In addition, a 

framework was proposed which was based on minimizing the rank correlation coefficient between a 

selected subset and the full set. The proposed technique is adaptive, which means the number of 

realizations is not constant throughout the optimization process, rather it varies depending on feedback 

from the search. Furthermore, the technique does not rely on selecting a static measure or the output 

from a base case scenario. The ability of the proposed technique to ensure consistent ranking of the 

alternatives was compared to the static ranking and clustering techniques. The proposed technique was 

applied to the well placement optimization of four producers and eight injectors and compared to the 

full set approach. 

 The investigations undertaken into the development and implementation of computationally 

efficient techniques for field development optimization allow the following conclusions to be drawn:  

1. The developed gradient-based algorithm, Adam-SPSA, presents a computationally efficient 

option for well control optimization. Its noticeably faster convergence, of up to 91% when 

compared to the steepest descent framework, results from its use of approximated first and 

second moments to calculate dimension-wise search directions. This makes the algorithm 

applicable for high-dimensional problems such as well control optimization.  

2. The choice of constraint handling technique for bound constrained optimization problems has 

an effect on the convergence rate for gradient-based algorithms. The commonly-used 

logarithmic transformation poses challenges for problems whose optimal solution lies on either 

of the bounds. As the search approaches either bound, a larger perturbation size is required to 

take a reasonable step in the gradient direction. In addition, gradient-based algorithms are more 

likely to get trapped at the boundaries since a large step-size would be required to move away 

from the boundaries. On the other hand, for the problems tested, the projection method didn’t 

face the same risks of entrapment at the boundary. 

3. In practical scenarios under strict computational budgets, Adam-SPSA provides a suitable 

alternative for well placement optimization. When compared to a local derivative-free 



112 

 

optimization algorithm, generalized pattern search (GPS), and steepest descent SPSA, Adam-

SPSA resulted in improvements in convergence speeds of up to 57%. This advantage was 

especially evident for the high-dimensional problems, where the derivative-free algorithm 

struggled to be computationally efficient.  

4. When using gradient-based methods for well placement optimization careful consideration 

needs to be given to the type of parameterization used for three-dimensional wells. For the 

problems tested, gradient values calculated when using spherical coordinates exhibited 

additional sensitivity. This is due to the dependence between the toe of the well to the heel of 

the well in spherical parameterization. In addition, when applying constraint handling 

techniques with a gradient-based algorithm requires special attention to be given to the effect 

of constraint handling on the gradient approximation. Simple constraint handling, such as 

bound constraints, may not provide the required correction to the gradient perturbation to result 

in a useful approximation. On the other hand, incorporation of too many constraint handling 

techniques may over-correct the perturbations, leading to a gradient approximation that may 

not be representative of the local landscape. 

5. Manifold mapping provides a computationally efficient technique for surrogate-based well 

placement optimization. Analytical surrogates combined with manifold mapping are suitable 

for models undergoing primary depletion, with computational savings of up to 55% without 

loss of solution quality compared to a local derivative-free algorithm. For more complex 

recovery methods, such as secondary recovery in highly heterogeneous reservoir, physics-

based methods combined with manifold mapping are more suitable, providing up to 80% 

reduction in the computational cost compared to a local derivative-free algorithm.  

6. The developed bilevel approach combining PSO for well placement optimization in the outer 

loop and Adam-SPSA with CRM for well control optimization in the inner loop was found to 

be very computationally efficient. The proposed technique resulted in computational savings 

of up to 99% in the number of required reservoir simulations and improvements in the 

objective function values of up to 22% when compared to the conventional approach of using 

only full-physics simulations. The fidelity of producer-based CRM (CRMP) when used in joint 



113 

 

optimization showed variations from 1.2% to 15%, in some cases. However, this fidelity is 

sufficient to provide an advantage with the significant reduction in required full physics 

simulations without the loss of solution quality. 

7. The reformulation of the subset selection problem to one which focuses on consistent ranking 

of the alternatives is an important consideration for optimization under uncertainty. The 

proposed adaptive rank-based approach ensures that even if a subset of realizations is used the 

alternatives (i.e., field development plans) are ranked in a similar fashion to the full set. The 

results showed that the frequency of subset selection affected the ability of the algorithm to 

converge.  Reselection of a new subset too often would introduce unnecessary noise into the 

objective function, but on the other hand, infrequent reselection may result in the premature 

convergence to a subset local optima. 

8. The implementation of the adaptive rank-based subset selection technique for well placement 

optimization resulted in improvements of up to 24% in objective function value (NPV), on 

average, compared the optimization using the full set. More importantly, using the proposed 

subset selection technique resulted in a computational reduction of close to a factor of 9 when 

compared to the optimization using the full set. This showed that a significant reduction of 

reservoir simulations is possible without the loss in the quality of solution. 

This research answered important questions by developing and presenting computationally efficient 

techniques for field development optimization problems. However, this research can be extended in a 

number of ways.  

1. An extension of the Adam framework presented in this work by utilizing other gradient 

approximations such as EnOpt or StoSAG for well control optimization and comparing the 

efficiency of each implementation. Furthermore, a comprehensive comparison of the proposed 

Adam-SPSA with other optimization frameworks, including conjugate gradients, or even 

higher-order methods which use approximations of the Hessian, would be an opportunity to 

further provide evidence of the algorithm’s efficiency.  
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2. An in-depth investigation into the effect of constraint handling techniques on gradient 

approximations is missing in the literature. This could provide important insight for well 

placement and well control problems, where physical constraints are considered.  

3. The proposed adaptive rank-based technique for subset realization selection can be extended to 

joint optimization problems, where the consideration of different types of decision variables 

may make other subset selection techniques less efficient.  

4. An interesting research item would be the extension of the surrogate-assisted bi-level 

optimization approach proposed in this thesis to include proxy models for the well placement 

optimization problem, too. The interplay and interdependency of the surrogates for the well 

control and well placement levels would be fascinating. This could be implemented by using a 

surrogate for the well placement problem for a local region of the objective function space as 

the particles converge.  

5. In addition, it would be also a fascinating piece of research to compare the proposed bi-level 

approach using capacitance-resistance models (CRMs) with other proxy models of varying 

degrees of complexity. The alternative methods that could be used for comparison include 

quadratic approximation, kriging, artificial neural networks, fuzzy logic, amongst others. 

6. The example problems studied in this thesis involved conventional reservoir models 

undergoing water-flooding. Applications of the proposed optimization techniques to 

unconventional reservoirs, or reservoirs undergoing enhanced oil recovery processes such as 

chemical injection, gas injection or steam-assisted gravity drainage. In addition, the 

optimization techniques presented in this thesis could also be applied to carbon sequestration 

problems.  
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