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Francois-Xavier Briol, Chris J. Oates, Mark Girolami, Michael A. Osborne and

Dino Sejdinovic

Abstract.

This article is the rejoinder for the paper “Probabilistic Integra-

tion: A Role in Statistical Computation?” (Statist. Sci. 34 (2019) 1-22). We
would first like to thank the reviewers and many of our colleagues who helped
shape this paper, the Editor for selecting our paper for discussion, and of
course all of the discussants for their thoughtful, insightful and constructive
comments. In this rejoinder, we respond to some of the points raised by the
discussants and comment further on the fundamental questions underlying
the paper: (i) Should Bayesian ideas be used in numerical analysis? and (ii)
If so, what role should such approaches have in statistical computation?
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BAYESIAN PROBABILISTIC NUMERICAL
METHODS

Numerical analysis is concerned with the approxi-
mation of typically high or infinite-dimensional math-
ematical quantities using discretisations of the space
on which these are defined. Examples include inte-
grands, and as a consequence their corresponding inte-
grals, or the solutions of differential equations. Differ-
ent discretisation schemes lead to different numerical
algorithms, whose stability and convergence properties
need to be carefully assessed. Such numerical methods
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have undeniably played, and continue to play, an im-
portant role in the implementation of statistical meth-
ods, from the computation of intractable integrals in
Bayesian statistics to the computation of estimators us-
ing optimisation routines in frequentist statistics.

In essence, a Bayesian numerical method models the
quantity of interest as a latent variable. A prior model
is posited on this quantity, then the discretisation of the
space is used as data to turn the prior distribution into a
posterior distribution. The prior models used are often
constructed over functions spaces, and the literature on
Bayesian numerical methods therefore draws much in-
spiration from the work on Bayesian nonparametrics,
such as Gaussian processes.

Since their inception in the seventies and eighties,
Bayesian numerical methods have initiated much de-
bate as to the foundations of computation and approxi-
mation of unknown functions. In this regard, Bayesian
numerical methods have initiated fresh considerations
of what it means to “know a function” (Diaconis,
1988). Several important questions have been raised—
many of which are highlighted by the discussants of
this paper. Are Bayesians simply reinventing the bread
and butter of numerical analysis using a different sci-
entific language? How should a prior model on such
an abstract quantity be selected? What interpretation
should be given to the posterior?
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These types of questions have a different emphasis
depending on the priorities of the varying scientific
communities that are engaged in this debate. We hope
that the Briol et al., 2019 and contributed comments
can bring some focus to this discussion, and help clar-
ify the advantages and disadvantages of the approach.
The answer from the discussants to our first central
question can be summarised as “Yes, but...”, which we
believe is representative of the overall thoughts of the
various research communities represented in this field.
There are of course many caveats with these methods,
and they are not reasonably expected to supplant nu-
merical analysis, but we will argue that some of their
advantages can be significant for certain application ar-
eas.

THE QUANTIFICATION OF UNCERTAINTY IN
NUMERICAL PROBLEMS

One motivation for the use of Bayesian methods in
numerical analysis is the possibility of quantifying un-
certainty emanating from discretisation error. Indeed,
the posterior provides an entire distribution over the
solution of the numerical problem which reflects any
uncertainty remaining due to the fact that we have ac-
cess to a finite amount of data, or in other words, that
our observations of the quantity of interest are limited
to the discretisation of the space. This is particularly
appealing since this distribution can be used for sev-
eral tasks, including to decide whether to refine the
discretisation, and if this is of interest, to construct an
experimental-design strategy to do so.

However, there are several technical challenges re-
maining to guarantee that our quantification of uncer-
tainty is valid. First, we must justify our choice of prior
model using knowledge of the function derived from
domain expertise. This can clearly be a difficult task.
Second, we also need to verify the consistency of the
method, a problem which, unlike in finite-dimensional
spaces, can be technically challenging (Diaconis and
Freedman, 1986, Owhadi, Scovel and Sullivan, 2015).
Finally, even though the confidence intervals are valid
from a Bayesian viewpoint (in the sense that they re-
flect our remaining uncertainty given our prior and the
data), we may want to verify that the posterior is cali-
brated from a frequentist viewpoint; once again a non-
trivial matter (Cox, 1993).

In Briol et al., 2019, we illustrated these issues for an
algorithm called Bayesian quadrature/cubature, which
tackles numerical integration by modelling the inte-
grand using a prior (usually a Gaussian process), and

using n function evaluations to obtain a posterior on
this integrand, which itself induces a posterior on the
value of the integral. Our paper studied the consistency
problem for this algorithm, and provided asymptotic
rates. It also studied the calibration of the algorithm on
some synthetic problems, where it was demonstrated
that the posterior had good frequentist coverage for
large n (but no theory for this was provided).

In his comment, Owen argues that Monte Carlo
methods are ‘unreasonably effective’ thanks to the con-
fidence intervals provided by the central limit theo-
rem (CLT), which can be estimated at a faster rate in
n than the integral of interest. However, we point out
that the CLT only provides confidence intervals which
are valid in an asymptotic regime where n — co. On
the other hand, the worst-case error results used in the
quasi-Monte Carlo (QMC) literature are also valid for
finite n, but as pointed out by Owen, Hickernell and Ja-
gadeeswaran, these are too pessimistic for most prob-
lems of interest. In comparison, contingent on a good
methodology for eliciting a prior (a nontrivial task), the
Bayesian approach can provide nonpessimistic uncer-
tainty quantification for finite 7.

Recent developments in the theory of Bayesian non-
parametrics also demonstrate that certain Bayesian
models can be well calibrated in a frequentist sense for
large classes of target functions (Szabd, van der Vaart
and van Zanten, 2015, Sniekers and van der Vaart,
2015). Interestingly, Stein and Hung pointed out fur-
ther work on calibration in the computer experiments
literature, where it was demonstrated that the data col-
lection mechanism was of importance for good cali-
bration (Zhu and Stein, 2006). Note that a common as-
sumption in these is that of noisy observations, which
is not common in numerical analysis where functions
are usually evaluated without noise (although the noisy
case may still be relevant for certain applications).
Nevertheless, these papers give us hope that similar
calibration results could also be derived for Bayesian
numerical methods.

BAYESIAN PRIORS, POSTERIORS AND THE
DIFFICULTY OF WORKING WITH MEASURES

The main premise required to justify the use of
Bayesian methods is that we are able to come up with
a good prior model which represents all our informa-
tion prior to observing any data. This is clearly some-
what unreasonable, and it is debatable to what extent
it is possible to construct such priors for the particu-
lar task of solving numerical problems. This issue is
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highlighted by Owen’s claim that credible intervals ob-
tained from Bayesian quadrature are ‘not anybody’s
belief’. Similar criticisms are of course also valid for
most Bayesian numerical methods, and it is clear that
much research is needed to help in the construction of
such priors.

In this paper, we studied the case of Gaussian pro-
cess priors, which is by far the most common choice for
Bayesian numerical methods. The main reason for this
choice is that working with general measures defined
on infinite-dimensional domains is a notably challeng-
ing problem and requires the use of advanced sampling
methods (Cotter et al., 2013). On the other hand, work-
ing with Gaussian processes is much simpler since lin-
ear operations preserve Gaussianity, and hence boil
down to linear algebra. As pointed out by Owen,
Hickernell and Jagadeeswaran, this may still usually
require O(n>) operations, but many approximation
schemes for Gaussian processes exist. Some cheaper
exact schemes based on particular choices of point sets
or covariance functions have also recently been devel-
oped for the specific case of Bayesian numerical meth-
ods (Karvonen and Sirkkd, 2018, Jagadeeswaran and
Hickernell, 2018). Furthermore, we believe that the ap-
proach based on Fourier transforms suggested by Stein
and Hung could also be fruitful.

Gaussian priors also lead to Bayesian numerical
methods which are closely related to traditional meth-
ods. Indeed, connections between the posterior vari-
ance of Bayesian methods using Gaussian measures
and worst-case results in reproducing kernel Hilbert
spaces (RKHS) are well known and studied in the
information-based complexity literature; see Ritter
(2000). One issue which often leads to much confusion
when making use of this connection, and which is high-
lighted by Stein, Hung, Hickernell and Jagadeeswaran,
is the fact that draws from the Gaussian process are not
in the space reproduced by the covariance function of
the Gaussian process. The connection between Gaus-
sian processes and RKHSs is nonetheless deep and of-
fers opportunities to transfer results between the two
frameworks, as highlighted by Kanagawa et al. (2018).
This may be extremely relevant to problems in numer-
ical analysis as demonstrated by the Brownian bridge
example of Stein and Hung, and by the recent work
of Kanagawa, Sriperumbudur and Fukumizu (2016) on
misspecified Gaussian process priors.

For this reason, a central question is the following:
How should we pick a prior for such an abstract quan-
tity as an integrand? Clearly certain choices can be
made based on prior knowledge of properties of the

function, such as smoothness or periodicity, but we of-
ten still need to set certain amplitude or lengthscale pa-
rameters. These can be set using objective priors, as
demonstrated in the paper and extended by Hickernell
and Jagadeeswaran, or inferred using empirical Bayes
approaches. These choices are clearly not easy to make
and can have significant influence on the resulting al-
gorithm.

The other option is of course to consider more com-
plex priors. We agree with Stein and Hung that non-
stationary priors could be a way forward, and are cur-
rently working in this direction. Another alternative to
construct expressive priors would be the recent work
on deep Gaussian process priors; see Dunlop et al.
(2018). Finally, we could move away from Gaussianity,
allowing us more flexibility in the choice of functions
on which to assign mass (Cockayne et al., 2017). Un-
fortunately, many of these alternatives come at the cost
of additional computational requirements which may
be prohibitive or require resorting to approximations
which may not faithfully quantify uncertainty.

SO, SHOULD WE BE BAYESIANS FOR
NUMERICAL PROBLEMS?

Regardless of the choice of prior, what is clear is that
working in the space of measures is significantly harder
than working in many of the function spaces com-
monly used in numerical analysis. As a consequence,
the uncertainty quantification provided by Bayesian
methods will usually come at a cost, and one should
weigh this cost with the potential benefits before mak-
ing a decision on whether to use a Bayesian numerical
method.

A first application area where this may be useful is
the field of inverse problems or computer experiments.
The models studied here are often computationally ex-
pensive and based on systems of differential equations.
The most popular algorithms for inference rely on re-
peated solution of numerical tasks such as interpola-
tion, integration, linear algebra and optimisation. As
pointed out by Stein and Hung, many of the issues fac-
ing Bayesian numerical methods, such as the choice of
a prior, are also common in this literature.

Machine learning also offers many opportunities for
the deployment of Bayesian numerical analysis since
it is highly reliant on numerical methods and there has
been a recent focus on better explaining the workings
and failure modes of algorithms (that is, to provide
interpretability and quantification of uncertainty). The
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difficulty of selecting priors can also be somewhat al-
leviated since we have an excellent source of prior in-
formation: the source code of the problem.

On the other hand, there is clearly no point provid-
ing uncertainty quantification for applications where
uncertainty can be made negligible without excessive
amounts of computation. For integration, this will usu-
ally be the case when the integrand and sampling
mechanism are cheap. In this case, we would argue that
being Bayesian about the numerical problem may not
be necessary, or desirable.

SOME PROMISING RESEARCH DIRECTIONS

With these application areas in mind, we conclude
by highlighting areas which we believe could benefit
the Bayesian approach to numerical analysis.

The first is the ability to jointly model the solution
of several quantities of interest, for which data can be
obtained simultaneously or sequentially. This could for
example be the solutions of several related integrals, as
was considered in Xi et al. (2018), but could also in-
clude other problems such as solving differential equa-
tions, linear systems, optimisation or a mixture of these
problems. In such cases, data from one of the problems
could be leveraged to improve the accuracy of the algo-
rithms approximating the other problems. Such infor-
mation sharing is extremely natural within a Bayesian
framework and currently underexplored in the numeri-
cal analysis literature.

Another advantage which comes out of the Bayesian
viewpoint is that of chains of computations and the
ability to condition on all sources of uncertainty. Take
for example some of the complex Bayesian inverse
problems present in the computer experiments litera-
ture. There, it is common to have to sequentially solve
numerical problems in both the forward and inverse
problem. Here, reducing the discretisation error in each
of these problems to a negligible level may not always
be possible due to computational cost. Being Bayesian
about numerical problems allow us to condition jointly
on the uncertainty coming from the inverse problem
and the uncertainty inherent due to numerical error
using Bayes’ theorem. We can hence obtain posteri-
ors which are reflect our combined uncertainty due to
all sources of discretisation (Cockayne et al., 2017,
Oates, Cockayne and Aykroyd, 2017). The numerical
analysis of large scientific codes is not straightforward
in general, but Bayesian numerical analysis provides a
coherent overarching framework.
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