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Abstract: Plastic waste pollution, including non-biodegradable landfills, leaching of toxic chemicals
into soil and waterways, and emission of toxic gases into the atmosphere, is significantly affecting
our environment. Conventional plastic waste recycling approaches generally produce lower value
materials compared to the original plastic or recover inefficient heat energy. Lately, upcycling
or the valorization approach has emerged as a sustainable solution to transform plastic waste
into value-added products. In this review, we present an overview of recent advancements in
plastic waste upcycling, such as vitrimerization, nanocomposite fabrication, additive manufacturing,
catalytic transformation, and industrial biotechnology, envisaged with technical challenges, future
developments, and new circular economy opportunities.

Keywords: plastic waste; upcycling; vitrimers; nanocomposites; 3D printing; aromatic products;
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1. Introduction

Plastics are synthetic or semi-synthetic materials made of polymers as a main ingre-
dient. In the 21st century, plastic has become an integral part of our daily life. It is used
in almost every sector, such as packaging, consumer products, medical devices, textiles,
transportation, building and construction, electrical and electronics industries, etc., ow-
ing to its low density, high strength-to-weight ratio, durability, high chemical resistance,
thermal and electrical insulation, mouldability, and low production cost [1]. Almost all
the plastics currently used today are produced from non-renewable fossil fuels (petroleum
byproducts) with a high carbon footprint (i.e., the total amount of greenhouse gases (GHG),
including carbon dioxide (CO2) and methane that are generated in its life cycle) [2]. Some of
the commonly used household plastic materials include polyethylene terephthalate (PET),
low-density polyethylene (LDPE), high-density polyethylene (HDPE), polyvinyl chloride
(PVC), polypropylene (PP), polyurethane (PU) and polystyrene (PS). These plastics are
generally used once and then disposed as landfills, recycled (denoted by the letter ‘r’ before
abbreviation), or incinerated due to their non-biodegradable nature [2]. In 2015, the global
life cycle GHG emissions of above plastics (excluding any carbon credits from recycling)
were estimated as 1.8 gigaton (Gt) of CO2-equivalent (Figure 1a), with the resin-production
stage generating the highest emissions (61%), followed by the conversion stage (30%) and
end-of-life (EoL) stage (9%) [3]. We generated about 7500 million metric tons (MMt) of
plastic waste by the year 2020, which is projected to reach 26,000 MMt by the year 2050
(Figure 1b) [4]. Today, only about 9% of the plastic waste is recycled and 12% is incinerated,
while the remaining 79% has accumulated in landfills, rivers, and oceans, which impacts
our environment and ecosystem [5]. To combat the escalating plastic waste problem and
achieve economic growth, environmental protection, and societal benefits, a circular econ-
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omy model with the 6R principles; including reduce, recover, reuse, recycle, redesign, and
remanufacture, has been realized lately in many countries [6].
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[8]. Therefore, as a sustainable approach towards a cleaner and healthier environment, 
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useful products. All plastic recyclables fall into three main types of recycling: primary, 
secondary, and tertiary [9]. Primary recycling refers to recovery and reuse (usually for the 
very same purpose) of plastic without altering its current state. Secondary recycling (or 
mechanical recycling) refers to reprocessing of plastics by physical means, such as shred-
ding, granulation, and extrusion, whereas tertiary recycling (chemical or feedstock recy-
cling) refers to decomposition of plastics to monomers or other valuable low molecular 
weight fragments [9], which has also led to the development of degradable plastics [10]. 
Comprehensive details of various recycling technologies can be found elsewhere [11]. 
However, traditional approaches of recycling plastic waste via the first two methods pro-
duce lower quality materials, in terms of thermal, optical, barrier, and mechanical prop-
erties, because of the repeated degradation of their polymeric chains with each recycling. 
On the other hand, specific chemical recycling is not efficient enough to be used for each 
polymer nor is it economically sustainable [12]. 
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lative plastic waste generation and disposal. Adapted from [4], which is licensed under CC BY 4.0.
(c) Publication trends over the last five years obtained from Web of Science using keywords “Plastic
waste recycling” and “Plastic waste upcycling”.

The plastic waste products commonly dumped in soil and waterways leach out toxic
chemicals, such as phthalates and bisphenol A, into the surrounding environment, which
pose serious health risks to soil, microorganisms, vegetation, marine life, and animals [7].
Conversely, incineration of plastic waste liberates halogens, dioxins, furans, and other
hazardous substances, which cause serious damage to the environment and ecosystem [8].
Therefore, as a sustainable approach towards a cleaner and healthier environment, recy-
cling and upcycling technologies have been developed to minimize accumulation and
achieve valorization of plastic waste. Recycling is the reprocessing of waste into new and
useful products. All plastic recyclables fall into three main types of recycling: primary,
secondary, and tertiary [9]. Primary recycling refers to recovery and reuse (usually for
the very same purpose) of plastic without altering its current state. Secondary recycling
(or mechanical recycling) refers to reprocessing of plastics by physical means, such as
shredding, granulation, and extrusion, whereas tertiary recycling (chemical or feedstock
recycling) refers to decomposition of plastics to monomers or other valuable low molecular
weight fragments [9], which has also led to the development of degradable plastics [10].
Comprehensive details of various recycling technologies can be found elsewhere [11]. How-
ever, traditional approaches of recycling plastic waste via the first two methods produce
lower quality materials, in terms of thermal, optical, barrier, and mechanical properties,
because of the repeated degradation of their polymeric chains with each recycling. On the
other hand, specific chemical recycling is not efficient enough to be used for each polymer
nor is it economically sustainable [12].
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Over the last decade, upcycling or creative reuse has emerged as a promising alterna-
tive to recycling plastic waste. In the upcycling approach, the plastic waste is reused in such
a way as to create a product of higher quality or value than the original, which provides
a technical solution for smarter waste management, new product development, and the
circular economy. State-of-the-art upcycling concepts (compounding, reforming, transfor-
mation, etc.) involve physical (extrusion, electrospinning, printing, etc.), chemical (pyrol-
ysis, gasification, hydrogenolysis, etc.), and biological (enzyme treatment, biosynthesis,
etc.) methods to convert plastic waste into polymers (depolymerization–repolymerization,
functionalization, etc.), molecules (monomers, fine chemicals, additives, etc.), and materi-
als (carbon-based nanomaterial, blend compatibilizers, etc.) [13]. However, plastic waste
upcycling is still in its infancy (Figure 1c). In this review, recent developments (the last four
years) in polymer waste upcycling approaches, including vitrimerization, nanocomposite
fabrication, additive manufacturing, catalytic transformation, and industrial biotechnol-
ogy for producing various value-added products are summarized, and their applications,
technical challenges, and future directions are discussed. Plastic waste upcycling generally
involves sorting or separation of specific plastic waste, followed by decontamination prior
to mechanical, thermal, chemical and/or biotechnological processing.

2. Upcycling of Plastic Waste
2.1. Vitrimerization

In recent years, vitrimerization has emerged as a promising novel approach to repro-
cess and recycle intractable waste via dynamic chemistry, which involves dynamic covalent
bonds, a special type of covalent bond. Dynamic bonds can be dissociative or associative
under external stimuli. Materials synthesized with dynamic covalent bond crosslinks are
commonly referred to as covalent adaptive networks (CANs) [14]. Vitrimerization is the
process of creating ‘vitrimers’, a new class of plastic materials with associative dynamic co-
valent bond crosslinks, where the network integrity is maintained during bond exchanges,
whereas the network topology is constantly rearranged. Therefore, vitrimers combine the
property advantages of thermoplastic and thermoset materials, such as re-processability,
healability, recyclability, shape-memory behavior, and self-adhesion [15]. The vitrimer
concept developed for commercial plastic materials can be potentially applied for their
recycled waste, including polyesters, such as PET (or any thermoplastics containing es-
ter bonds can be upgraded to vitrimers), and polyolefins (HDPE and PP) [16]. Vitrimer
based on commercial PET has been developed by incorporating polyol (containing a ter-
tiary amine structure) into the chain of PET (to furnish reactive hydroxyl groups) and
reacting it with diepoxy to obtain the dynamic crosslinked networks [17]. The obtained
vitrimer exhibited improved thermal and mechanical properties compared to neat PET,
and demonstrated excellent re-processability via extrusion, compression, and injection
molding suitable for large-scale industrial production. Caffy et al. [18] synthesized vit-
rimer from commercial HDPE via a single-step reactive extrusion by combining nitroxide
chemistry (for radical grafting of 2,2,6,6-Tetramethyl-4-((2-phenyl-1,3,2-dioxaborolan-4-yl)-
methoxy)piperidin-1-oxyl (TEMPO-BE) onto polyethylene) and boronic ester metathesis
(as an associative exchange reaction). On the other hand, Saed et al. [19] developed a new
extrudable vitrimer from PP, which was functionalized with maleic anhydride (MA) and
dynamically crosslinked through thiol–thioester bond exchange using a transesterification
catalyst 1,5,7-triazabicyclo[4.4.0]dec-5-ene. The PP vitrimer was demonstrated to be readily
re-processable (recycled, remolded, rewelded, and 3D printed) multiple times, and exhib-
ited 25% higher mechanical strength compared to the original PP, with a maximum gel
fraction reaching about 55%.

Recently, Kar et al. [20] demonstrated the upcycling of PP bottle waste (PPb) and
PE packaging waste (PEp) into re-processable high-performance vitrimers (with a gel
fraction of 58% and 66%, respectively) using melt extrusion processing. The vitrimers
were synthesized by first grafting the plastics with MA, followed by crosslinking with
bisphenol A diglycidyl ether (DGEBA) using zinc acetylacetonate hydrate (Zn(acac)2) as the
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transesterification catalyst (Figure 2a). The vitrimers exhibited thermo-reversible associative
bond exchange (Figure 2b), thermally triggered shape-memory behavior (Figure 2c) (with
90% recovery after multiple cycles), and superior mechanical stability compared to the
original materials (Figure 2d) [20]. Moreover, development of vitrimer-based composite
materials has also been realized, where an increase in filler concentration generally increases
vitrimer temperature, mechanical properties, and self-healing properties [21]. These newly
developed vitrimer systems have potential applications in a wide range of industrial sectors,
including automotive, aerospace, electronics, and biomedical fields [22].
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sion. The PPb is first grafted with MA using DCP as free radical initiator, followed by crosslinking
of MA-grafted rPP with a di-functional epoxy (DGEBA) using Zn(acac)2 as catalyst. (b) Thermo-
reversible associative bond exchange in the rPP vitrimer through transesterification. (c) Picture
showing shape-memory effect in the rPP vitrimer with response to temperature. Scale bar is 5.0 mm.
(d) Thermomechanical properties of the PPb and PE packaging waste (PEp) vitrimers compared
to the original materials. Reproduced with permission from [20]. Copyright 2020, Royal Society
of Chemistry.

2.2. Nanocomposite Fabrication

In nanocomposite fabrication, advanced functional materials with tailored properties
are developed by incorporation of functional nanofillers into the plastic waste matrix at
desired concentrations. The cost, quality, and application of these nanocomposites depend
on the type of plastic waste, property, and quantity of the incorporated nanomaterial, as
well as the processing route used for composite fabrication. The fabricated composites can
be used as such (this section) or can be thermochemically transformed into carbonaceous
composites (see Section 2.4). A summary of value-added nanocomposite structures fabri-
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cated using plastic waste is provided in Table 1. Waste plastic-based composites fabricated
using waste wood, rubber, and crushed glass are generally considered recycled composite
materials rather than upcycled materials. Nanocomposites can be fabricated by thermal,
mechanical, and solution processing methods.

Table 1. Value-added composite materials made from plastic waste.

Composites Processing Method Obtained Properties Applications References

rPET/CuO NPs
Electrospinning and
chemical precipitation
techniques.

Photocatalytic activity efficiency for
removing the methylene blue dye up to
99%.

Water treatment
and filtration [23]

rHDPE/CuO NPs Melt mixing and
compression molding.

Increased electron density, mass
attenuation coefficient, and effective
atomic number for γ-ray energies with
point sources 356 keV from 133Ba, 662 keV
from 137Cs, and 1332 keV from 60Co.

Radioactive
source shielding [24]

rLDPE/SiO2/TiO2 NPs
Melt extrusion,
granulation, and
compression molding.

Tensile strength of 8.4 MPa, and UV
protection factor of 1500+. UV shielding [25]

rLDPE/PET/Al/
Graphite NPs

Shear milling, melt
extrusion, and injection
molding.

Thermal conductivity of 1.7 W/mK, and
electrical conductivity of 10−10 S/cm.

Electronic
packaging [26]

rLDPE/PA/Al
nanoflake

Powder mixing and
compression molding.

Thermal conductivity in the range of
1.4–4.8 W/mK, and electrical conductivity
of 10−13 S/cm.

Electronic
packaging [27]

rPS/SnO2 NPs Thermally induced
phase separation.

Photodegradation efficiency of rhodamine
B dye
under UV irradiation up to 98.2%.

Water treatment
and filtration [28]

rPS/TiO2 NPs/Al
microparticles

Solution mixing and
electrospinning.

Water contact angle of 157◦

(superhydrophobic), and daily water
productivity of >1.35 L/m2.

Fog water-
harvesting [29]

Yasin et al. [23] reported a facile strategy for fabricating PET waste into PET nanofi-
brous membrane embedded with copper oxide (CuO) nanoparticles (NPs) by electrospin-
ning, where the CuO NPs were synthesized using plant extract and mixed with PET waste
solution (Figure 3a). The authors demonstrated the photocatalytic efficiency of the fabri-
cated nanocomposite membrane for removal (99% efficiency) of methylene blue (MB) dye,
which has potential applications in water treatment and filtration. CuO NPs prepared by the
combustion method have also been used in the fabrication (melt mixing and compression
molding) of nanocomposite sheets with HDPE waste. The nanocomposite sheets exhibited
increased electron density, mass attenuation coefficient, and effective atomic number for
γ-ray energies, which have potential applications in enhanced radiation-shielding [24].
In a separate study, Fan et al. [25] demonstrated the application of PE film waste-based
porous nanocomposite membranes for UV shielding. The nanocomposites were fabricated
by mixing PE waste granules with silicon dioxide (SiO2) and titanium dioxide (TiO2) NPs
in liquid paraffin, followed by extrusion, granulation, and thermal compression molding.
The fabricated composite membrane exhibited tensile strength of 8.4 MPa and a UV pro-
tection factor of 1500+ [25]. Wang and co-workers [26] reported a facile route to produce
nanocomposites for electronic packaging applications using aluminum (Al)-plastic package
waste (APPW). The APPW comprising 70% LDPE, 15% Al, and 15% PET was first finely
powdered and mixed with graphite nanoplatelets (GNPs) using solid-state shear milling
(S3M) technology (Figure 3b), followed by extrusion and injection molding to obtain a
high thermally conductive (1.7 W/mK) and high electrically insulating (conductivity of
10−10 S/cm) nanocomposite. This work was further extended to fabricate nanocomposites
using multilayer plastic package waste comprising 80% LDPE and 20% polyamide, where
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surface-oxidized Al nanoflakes were powder mixed at different ratios and compression
molded into sheets exhibiting thermal conductivity in the range of 1.4–4.8 W/mK and high
electrical insulation (conductivity of 10−13 S/cm) [27].
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Conversely, Assis et al. [28] fabricated PS foams impregnated with tin oxide (SnO2) NPs
using a thermally induced phase separation (TIPS) method, which exhibited a photodegra-
dation efficiency of 98.2% for rhodamine B dye under UV irradiation and can be potentially
applied for water treatment and filtration applications. Recently, Uddin et al. [29] fabricated
superhydrophobic nanocomposites fibers using recycled expanded PS. The nanocomposite
membranes were electrospun from PS solutions comprising various proportions of TiO2
NPs and Al microparticles, which exhibited a water contact angle of 157◦. The fabricated
membranes were demonstrated for fog-harvesting capability with daily water productivity
of >1.35 L/m2. In addition, plastic waste-based transformed nanocomposites, where the
plastic is converted into carbonaceous material in the final composite product, have also
been reported. For example, Mir et al. [30] reported the synthesis of molybdenum carbide
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carbon (Mo2C) nanocomposites using plastic waste (pipette tips) and molybdenum trioxide
via an in-situ carburization route. The obtained Mo2C nanocomposite has potential for
hydrogen production and energy storage applications. However, such transformations are
considered as chemical upcycling rather than nanocomposite formulations.

2.3. Additive Manufacturing

Additive manufacturing, or three-dimensional (3D) printing, is a constructive tech-
nique for building 3D objects from digital models. The 3D printing of plastics has gained
increasing research attention in recent years due to its remarkable potential for fabricating
complex structures, customizing the product at will, and reduced lead time and waste,
which are advantages in comparison to many traditional manufacturing processes com-
monly used in industries [31]. Fused filament fabrication or fused deposition modeling
(FDM) is the most widely used extrusion-based 3D printing technology for fabrication
of value-added products from common polymer-based waste materials [32]. In FDM 3D
printing, thermoplastic filaments are heated to their melting point in a nozzle head and
deposited as polymer melt in a layer-by-layer fashion on a temperature-controlled bed.
Lately, a low-cost, closed-loop, and low-carbon-footprint recycling approach has been
realized for the circular economy by utilizing used thermoplastics as feedstock material for
fabrication of 3D printing filament using milling and screw extrusion techniques [33,34].
However, the quality of 3D-printed plastic material, such as crystallinity, morphology,
thermal, rheological, and mechanical properties, decreases with successive grinding and
extrusion events [35]. Therefore, to account for such changes and to improve the property,
quality, and value of printed structures, a variety of approaches, such as the addition
of additives to control crystallinity, micro-nano fillers or reinforcing agents to improve
mechanical/electrical property, rheology modifiers to improve printability, and blending of
recycled plastic with virgin material or with another polymer/polysaccharide, have been
explored [36]. These 3D printable blends or composite systems not only have the potential
to overcome the processability and property limitations of pristine polymer systems, but
also provide an opportunity to manufacture customized complex 3D engineering structures
and industrial products on demand. A summary of value-added structures that are 3D
printed by FDM using blend or composite filaments made from plastic waste is provided
in Table 2. While the manufacturing technology of composites remains the same when
natural polysaccharides and synthetic polymers are added, the processing conditions are
tuned to suit their physical properties.

Table 2. Summary of value-added structures that are 3D printed by FDM using composite or blend
filaments made from plastic waste.

Filament Material Extrusion Conditions 3D Printing Parameters Mechanical Properties of
Printed Structures References

rPET/biochar
composite

Single screw extrusion at
250 ◦C.

Bed temperature of 50 ◦C,
nozzle temperature of
270 ◦C, layer height of
0.4 mm, print speed of
50 mm/s, nozzle diameter
of 0.6 mm.

Tensile strengths in the
range of 46–52 MPa, elastic
modulus in the range of
0.7–0.9 GPa.

[37]

rPET/cellulose fiber
composite

Twin screw extrusion with
screw speed of 38–43 rpm,
feed port at 200 ◦C,
adjacent zone at 260 ◦C,
main zones at 240 ◦C, die
at 220 ◦C.

Nozzle temperature of
260 ◦C, print speed of
30 mm/s.

Impact resistance of
23.30 J/m, and impact
strength of 2268 J/m2.

[38]
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Table 2. Cont.

Filament Material Extrusion Conditions 3D Printing Parameters Mechanical Properties of
Printed Structures References

rPET/CCFs composite Co-extrusion.

Bed temperature of 80 ◦C,
nozzle temperature of
230 ◦C, layer height of
0.2 mm, print speed of
300 mm/s, nozzle
diameter of 0.4 mm.

Tensile strength of
604.5 MPa, flexural
strength of 318.6 MPa.

[39]

rHDPE/PP/PP-MAh
blend

Single screw extrusion
with screw speed of
20 rpm, feed port at 140 ◦C,
adjacent zone
at 150 ◦C, main zones at
160 ◦C, die at 155 ◦C.

Bed temperature of 105 ◦C,
nozzle temperature of
215 ◦C.

Tensile yield stress of
4.78 MPa, strain of 38.1%. [40]

rHDPE/CF composite

Twin screw extrusion with
screw speed of 30 rpm,
feed port at 180 ◦C,
adjacent zone at 185 ◦C,
main zones at 190 ◦C, die
at 200 ◦C.

Bed temperature of 80 ◦C,
nozzle temperature of
290 ◦C, nozzle diameter of
0.8 mm.

Tensile yield stress in the
range of 18–21 MPa, tensile
strengths in the range of
37–64 GPa.

[41]

rPP/cellulose
composite

Twin screw extrusion with
screw speed of 100 rpm,
feed port at 140 ◦C,
adjacent zone at 170 ◦C,
main zones at 180 ◦C, die
at 175 ◦C.

Bed temperature of 100 ◦C,
nozzle temperature of
220 ◦C, layer height of
0.2 mm, print speed of
20–50 mm/s, nozzle
diameter of 0.8 mm.

Tensile strengths in the
range of 13–18 MPa, elastic
modulus in the range of
1100–1500 MPa.

[42]

rPP/harakeke fibers,
and rPP/hemp fibers
composites

Twin screw extrusion with
screw speed of 50 rpm,
feed port at 150 ◦C,
adjacent and main zones at
170 ◦C, die at 180 ◦C.

Nozzle temperature of
230 ◦C, print speed of
50 mm/min, nozzle
diameter of 1.0 mm.

PP/harakeke fibers
exhibited tensile strength
and Young’s modulus in
the range of 27–39 MPa
and 1612–2767 MPa,
respectively, whereas
PP/hemp fibers were in
the range of 28–38 MPa and
1683–2681 MPa.

[43]

rPP/CBS composite

Twin screw extrusion with
screw speed in the range of
6–13 rpm, feed port at
175 ◦C, and the die at
190 ◦C.

Bed temperature of 90 ◦C,
nozzle temperature of
250 ◦C, layer height of
0.25 mm, print speed of
60 mm/s, nozzle diameter
of 0.8 mm.

Tensile strengths in the
range of 8–15 MPa. [44]

rPP/RH composite

Twin screw extrusion with
screw speed of 9 rpm, feed
port at 180 ◦C, adjacent
zone at 185 ◦C, main zones
at 190 ◦C, die at 195 ◦C.

Bed temperature of 80 ◦C,
nozzle temperature of
240 ◦C, print speed of
60 mm/s, nozzle diameter
of 0.8 mm.

Tensile strengths in the
range of 5–14 MPa. [45]

rPP/rPET, and rPP/rPS
blend

Twin screw extrusion with
screw speed of 25 rpm,
feed port at 140 ◦C,
adjacent zone at 170 ◦C,
main zones at 240 ◦C, die
at 245 ◦C.

Bed temperature of 100 ◦C,
nozzle temperature of
260 ◦C, layer height of
0.2 mm, print speed of
20–50 mm/s, nozzle
diameter of 0.5 mm.

PP/PET exhibited
maximum tensile strength
and elastic modulus of
24 MPa and 980 MPa,
respectively, whereas
PP/PS exhibited 23 MPa
and 1459 MPa.

[46]
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Incorporation of biochar has been recognized to improve mechanical, thermal, and
electrical properties of polymer composites [47]. Idrees et al. [37] reported the fabrication
of melt-compounded recycled PET (rPET)/biochar composite filaments by single-screw
extrusion at 250 ◦C, where the biochar was derived from pyrolysis of packaging waste.
The 3D-printed structures from a 5 wt% biochar composite filament (Figure 4a) showed
about 60% increase in tensile modulus over neat PET. Carrete et al. [38] fabricated melt-
compounded rPET/cellulose fiber composite filaments by twin-screw extrusion, where the
cellulose fibers were derived from denim textile waste. The composite filaments were then
3D printed, where a 10 vol% loading of cellulose fibers showed a 62% increase in impact
resistance and 64% increase in impact strength over neat PET. Conversely, Bex et al. [39]
reported the 3D printing of rPET/continuous carbon filament fibers (CCFs) composite using
a co-extrusion-type fused filament fabrication (FFF) printer, where a 25 wt% loading of CFFs
showed more than a 10-fold increase in tensile strength over neat PET. For semicrystalline
plastics like HDPE, crystallization-induced shrinkage (warpage) is a problem during 3D
printing. To overcome this issue, Gudadhe et al. [48] compounded waste-derived HDPE
with 10% LLDPE and 0.4% dimethyl dibenzylidene sorbitol (DMDBS) using a twin-screw
extruder at 190 ◦C. The extruded blend filaments were 3D printed at 230 ◦C, which showed
a significant decrease in warpage (<0.6 mm for the 10 mm tall bar). Mejia et al. [40]
compounded waste-derived HDPE (90%) with 5% PP and 5.0% PP grafted with maleic
anhydride (PP-MAh) using a single-screw extruder at 160 ◦C. The blend filaments were
then 3D printed, which exhibited a 39% increase in tensile yield stress, and a 2.7-fold
decrease in strain over neat HDPE. Conversely, Borkar et al. [41] reported the fabrication of
melt-compounded rHDPE/carbon fibers (CF) composite filaments by twin-screw extrusion
at 200 ◦C, where the CF was derived from dry offcut fabric (Toray T300 grade). The 3D-
printed structures from a 29.5 vol% CF composite filament showed about 11% increase
in tensile yield and 188% increase in tensile strength over neat HDPE. Zander et al. [42]
reported the fabrication of rPP/cellulose composite filaments by single-screw extrusion
at 180 ◦C, where the cellulose sources were wastepaper, cardboard, and wood flour. The
tensile strength and elastic modulus of 3D-printed composites were obtained in the range of
13–18 MPa and 1100–1500 MPa, respectively, where a 10 wt% cellulose composite filament
showed about 38% increase in elastic modulus over neat PP.

Conversely, Stoof et al. [43] fabricated rPP/harakeke fiber and rPP/hemp composite
filaments by twin-screw extrusion at 180 ◦C, where the harakeke and hemp fibers were
obtained by alkali digestion. A 30 wt% harakeke composite 3D-printed structure exhibited
a tensile strength and Young’s modulus of 39 MPa and 2.8 GPa, respectively, which is about
a 74% and 214% increase from neat PP. Lately, other composite systems, such as rPP/cacao
bean shell (CBS) particles [44] and rPP/rice husk (RH) [45], have also been investigated.
CBS addition reduced the characteristic warping effect in 3D printing of rPP by 67% and
improved the tensile strength and fracture strain of rPP specimens printed at 90◦ (compared
to 0◦), where higher particle fracture, filler–matrix debonding, and matrix breakage were
observed for samples printed at 0◦ (Figure 4b) [44]. Conversely, rPP/RH composite that
was 3D printed at 0◦ exhibited a relatively higher tensile strength compared to the 90◦

3D-printed sample [45]. In a separate study, Zander et al. [46] processed blends of waste
PP, PET, and PS into filaments for 3D printing, and studied the effect of styrene ethylene
butylene styrene (SEBS) and maleic anhydride-functionalized SEBS as the compatibilizer
on the resulting mechanical and thermal properties. The 3D-printed rPP/PET and rPP/PS
blends exhibited the highest tensile strength of 24 MPa and 22 MPa, respectively, which
is about 26% and 16% increase from neat PP. Recently, post-processing heat treatment of
3D-printed parts has also been shown to enhance the mechanical properties [49]. Moreover,
the 3D-printed products can also be reprocessed for nanocomposite formulation after the
desired use.
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2.4. Catalytic Transformation of Waste Plastic for the Production of Fine Chemicals and
Carbon Materials

Plastic waste can be used as an important feedstock material for the preparation of
value-added platform chemicals. Conventional approaches used for chemical recycling of
plastic waste include pyrolysis (typically using inert atmosphere at 400–800 ◦C), gasification
(typically using air, oxygen, or steam at >700 ◦C), and solvolysis (typically using solvent
medium at 80–280 ◦C) [50]. However, these techniques are energy intensive and face several
challenges, including higher temperature, lower control over product selectivity, longer
duration, etc. To overcome such difficulties, researchers have explored the application of
different catalysts for transformation of plastic waste into various value-added products
under milder conditions (i.e., upcycling) [51]. A summary of catalysts applied for plastic
waste upcycling is given in Table 3.
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Table 3. Summary of catalysts applied for the valorization of plastic waste.

Plastic Catalyst Process Products Reference

HDPE HZSM-5 zeolite Pyrolysis Ethylene [52]

PE, PP, PS Fe/Al2O3 Pyrolysis
Amorphous carbon,
carbon nanotubes,
hydrogen

[53]

PP Ni-Cu/La2O3 Pyrolysis
Multiwalled carbon
nanotubes, carbon
nanofibers

[54]

LDPE Fe-Mo/MgO Pyrolysis Carbon nanotubes, carbon
nanofibers, graphene [55]

PET, PE, PP Ni/ZSM-5 Gasification Syngas [56,57]
HDPE Ni/CeO2–ZrO2 Gasification Hydrogen-rich syngas [58]
HDPE Ni-Fe/CNT-PC Gasification Hydrogen-rich syngas [59]
PP Ni/Al2O3 Gasification Hydrogen-rich syngas [60]
LDPE Pt/S-ZrO2 Hydrogenolysis Liquid fuels [61]
LDPE Pt/USY zeolite Hydrogenolysis Alkanes [62]
PE Pt/SrTiO3 Hydrogenolysis Lubricants [63]
HDPE Pt/SiO2/mSiO2 Hydrogenolysis Alkanes [64]
LDPE Pt/WZrO2 Hydrogenolysis Alkanes [65]

LDPE Pt/WO3/ZrO2/HY
zeolite Hydrogenolysis Liquid fuels [66]

PE, PP Ru/C Hydrogenolysis Alkanes, liquid fuels,
lubricants [67–69]

PE, PP Ru/CeO2 Hydrogenolysis Liquid fuels [70]
PP Ru/TiO2 Hydrogenolysis Lubricants [71]
LDPE Ru/WZrO2 Hydrogenolysis Alkanes [72]
PET, PS Ru/Nb2O5 Hydrogenolysis Arenes [73]
LDPE,
HDPE, PP Ru/ZrO2 Hydrogenolysis Alkanes, liquid fuels [74]

LDPE, PP, PS Ru/FAU zeolite Hydrogenolysis Grid-compatible gas
streams [75]

PET Co/TiO2 Hydrogenolysis Arenes [76]
PET CuNa/SiO2 Hydrogenolysis Alcohol, aromatics [77]

PET Pt/C, Ru-Cu/SiO2

Tandem
solvolysis–
hydrogeneration

Cycloalkanes, aromatics [78]

PE Pt/γ-Al2O3

Tandem
hydrogenolysis–
aromatization

Long-chain
alkylaromatics [79]

PP, PS TiO2 Photoreforming Hydroxyl, carbonyl, and
carbon-hydrogen groups [80]

LDPE ZnO2 Photoreforming
Hydroperoxides,
peroxides, carbonyl, and
unsaturated groups

[81]

PET CdS/CdOx Photoreforming Hydrogen [82]
PET CNx/Ni2P Photoreforming Hydrogen [83]

PE Pt/TiO2

Tandem
solvolysis–
photoreforming

Alkene, alkane [84]

PET Pd/NF Electroreforming Hydrogen [85]
PET CoNi0.25P Electroreforming Hydrogen [86]

2.4.1. Nanocatalyzed Pyrolysis

Raw materials can be produced via catalytic pyrolysis of plastic waste, which is per-
formed in presence of a Lewis acid catalyst or solid acid catalyst, where mostly aromatic
products or gases are produced by catalyzed carbocation, isomerization, aromatization,
or crackling [51]. For example, when a zeolite (HZSM-5) catalyst is used in HDPE waste
pyrolysis, the reaction occurs through carbocation formation, which enhances the formation
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of shorter hydrocarbon chains, thereby increasing the gas (ethylene) yield from 15 wt%
(conventional) to 77 wt% (catalyzed) at 600 ◦C [52]. The use of a catalyst not only increase
the reaction rate and product selectivity, but also decreases the production of harmful chem-
icals during pyrolysis. Carbon-supported Platinum (Pt) NPs’ catalyst can effectively reduce
(by decyclization and/or free-radical mechanism) the concentrations of toxic biphenyl
derivatives and polycyclic hydrocarbons produced during the pyrolysis of PET waste by
56% and 107%, respectively [87]. Nanocatalyzed pyrolysis carbonization of plastic waste
to produce carbonaceous nanomaterials and hydrogen (H2) can be potentially achieved
using transition 3d-metals (e.g., Fe, Co, Ni, and Mo) containing nanocatalysts. Cai et al. [53]
performed pyrolysis catalysis of polyolefin (PE and PP) and PS using an aluminum oxide-
supported iron (Fe/Al2O3) nanocatalyst, and they reported that more nanotubes and pure
carbon nanotubes (CNTs) can be produced from polyolefin, whereas more amorphous
carbon and H2 can be produced from PS. However, coke deposition and metal sintering
at higher temperatures affect the stability of the catalyst, particularly for Ni, which can be
resolved by using bimetallic catalysts [88]. Consequently, the composition of the bimetallic
nanocatalyst greatly influences the structure, electronic state, and coordination environ-
ment, which increases the quality of carbon formed and the co-production of H2 [51]. For
instance, Awadallah and co-workers [54] demonstrated the production of a mixture of
large-diameter multiwalled CNTs (MWCNTs) and carbon nanofibers (CNFs) by pyrolysis
catalysis of PP waste using a La2O3-supported Ni-Cu bimetallic nanocatalyst with a Ni:Cu
ratio of 4:1. The group also reported the production of nanostructured carbon materials
from LDPE waste using magnesium oxide-supported iron–molybdenum (Fe-Mo/MgO)
bimetallic nanocatalysts. An intermediate loading of Fe and Mo produced mainly CNTs,
accompanied with CNFs and graphene nanosheets (GNSs) as hybrid materials, whereas a
higher Fe or Mo loading promoted the formation of both CNTs and CNFs [55]. Furthermore,
the size and structure of the catalyst support is also reported to influence the quality of
CNTs produced from plastic waste [89].

2.4.2. Nanocatalyzed Gasification

Catalytic gasification is another route to upcycling of plastic waste, which can be
performed in the presence of a solid acid-supported metal catalyst, where combustible
gases with high calorific value, such as H2, methane (CH4), and carbon monoxide (CO),
are produced by catalyzed pyrolysis, crackling, and reforming by oxygen [51]. The Ni-
based nanocatalyst is the most effective one for gasification/reform of plastic waste into
H2-rich syngas as it exhibits high ability for the coordination and activation of C–H and
C–C bonds, which suppresses coke deposition [90]. Asadi et al. [56] investigated the
production of syngas by gasification of plastic waste mixture (PET, PE, and PP) using the
Ni/zeolite (ZSM-5) nanocatalyst under a different ratio of nitrogen/oxygen, and in the
presence of a second promotor. An increase in oxygen ratio (10%) and the use of lanthanum
as a second promotor increased syngas production up to 130.7 mmol/gplastic at 850 ◦C.
Similarly, catalytic steam reforming of HDPE waste using the Ni/ZSM-5 nanocatalyst has
been reported to produced 100.72 mmol/gplastic of syngas at 850 ◦C [57]. On the other hand,
Wu et al. [58] designed and tested a catalyst comprising a Ni core and CeO2–ZrO2 shell for
H2-rich syngas (66.81 mol% of H2 at 800 ◦C) production from HDPE waste by gasification.
In a separate study, Zhang et al. [59] synthesized a carbon nanofiber (CNF)/porous carbon
(PC)-supported bimetallic (Ni-Fe) catalyst (Ni-Fe/CNT-PC) and demonstrated its potential
for production of syngas 63.17 mmol/gplastic) by gasification of HDPE waste. The gas
products largely consist of H2 (33.66 mmol/gplastic); a considerable amount of CO, CH4,
and CO2; and trace amounts of the C2+ component. Lately, the Al2O3-supported Ni
nanocatalyst has also been reported to enhance the production of syngas by gasification of
polyolefin waste. For instance, Arregi et al. [60] investigated the efficiency of the Ni/Al2O3
nanocatalyst for steam reforming/gasification of PP waste and reported a space time
of 16.7 gcatalyst min gplastic

–1 was required for full conversion and high H2 production.
Moreover, when metal oxides, such as lanthanum oxide (La2O3) and cerium oxide (CeO2),
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were used as the second promotor, a significant increase in H2 production was observed. In
addition, microwave, plasma, and supercritical water have also been reported to enhance
nanocatalyzed gasification [91].

Unlike nanocatalyzed pyrolysis and gasification, which produce value-added products
like CNTs and H2-rich syngas, solvolysis produces monomers by depolymerization of
plastic waste in the presence of solvent, which is largely used as feedstock for polymer
resynthesis. Moreover, solvolysis is largely targeted for depolymerization of hydrolysable
plastics like PET and PU, and it faces challenges like longer completion time, smaller batch
size, and difficulty in separating feedstock impurities including the catalyst used. Therefore,
solvolysis is commonly considered for plastic waste recycling and combined with other
techniques for upcycling [51].

2.4.3. Nanocatalyzed Hydrogenolysis and Hydrocracking

Catalytic hydrogenolysis of plastic waste has been performed in the presence of a
solid acid-supported metal catalyst, where the C–C or C–hetero atom bond of plastic is
cleaved by H2 to produce value-added hydrocarbons like alkanes, cycloalkanes, alkenes,
alkynes, and aromatics [92]. It is also the most extensively studied plastic waste upcycling
process in recent years [51]. Pt and ruthenium (Ru) are the two metal catalysts extensively
studied for hydrogenolysis of polyolefins. For example, Utami et al. [61] prepared the
sulfated zirconium oxide (ZrO2)-supported Pt catalyst (Pt/ZrO2) and studied the effect
of different Pt loading on hydrogenolysis of LDPE plastic waste into liquid fuels, where
an increase in activity and selectivity for catalytic hydrocracking was observed with the
increase in Pt loading. Jumah et al. [62] demonstrated fast hydrogenolysis (<15 min in
a batch system; at 330 ◦C under 20 bar H2) of LDPE waste for high yield (>95% conver-
sion) production of C4−C6 alkanes using a Pt-impregnated USY zeolite catalyst (Pt/USY).
In a separate study, the Pt/SrTiO3 catalyst fabricated by depositing (by atomic layer de-
position) Pt-NPs on hydrothermally synthesized strontium titanate (SrTiO3) perovskite
nanocuboids hydrogenolyzed (at 300 ◦C under 170 psi H2) PE waste to lubricants and
waxes, characterized by a narrow distribution of oligomeric chains [63]. Conversely, in-
spired by enzyme-catalyzed conversions of biomacromolecules, Tennakoon et al. [64]
fabricated a mesoporous silicon dioxide (mSiO2)-based ordered Pt/SiO2/mSiO2 catalyst
(core catalyst/active site/mesoporous shell architecture) and demonstrated its potential
for hydrogenolysis of HDPE into a narrow distribution of diesel and lubricant-range alka-
nes. A single pot catalyst strategy to branched products via adhesive isomerization and
hydrocracking of PE (at 250 ◦C under 30 bar H2) was also realized. The method used a Pt-
impregnated tungstated zirconia (WZrO2) catalyst (Pt/WZrO2) to produce alkanes, where
an increase in the metal-to-acid site molar ratio shifted the extractable product selectivity
(C1–C35) to heavier hydrocarbons and enhanced branching in the residual polymer [65].
Lately, hydrocracking of polyolefins to produce branched, liquid fuels including diesel, jet,
and gasoline-range hydrocarbons using a tungstate–zirconia-supported Pt NPs catalyst
(Pt/WO3/ZrO2) along with HY zeolite catalyst was reported by Liu et al. [66]. The 2 h reac-
tion (at temperatures as low as 225 ◦C under 30 bar H2) with a yield of up to 85% involved
tandem catalysis with initial activation of the polyolefins over Pt, followed by polymer
cracking over the acid sites of WO3/ZrO2 and HY zeolite, isomerization of hydrocarbon
over WO3/ZrO2 sites, and subsequent hydrogenation of olefin intermediates over Pt.

Ruthenium (Ru) NPs supported on a carbon (Ru/C) catalyst (at 5 wt%) have been
realized for hydrogenolysis of Csp3–Csp3 bonds of polyolefin waste into short-chain hy-
drocarbons (alkanes, liquid fuels, and lubricants with yield in the range of 45–68 wt%)
at a wide range of experimental conditions (in the range of 200–280 ◦C, 20–60 bar H2,
and 1–16 h) [67–69]. Improvements in yield of up to 90% have also been achieved for
hydrogenolysis of PE and PP waste, using different metal oxide supports for Ru, such
as CeO2 [70], TiO2 [71], WZrO2 [72] and niobium pentoxide (Nb2O5) [73]. The Ru/ZrO2
catalyst was reported to be more effective (3-fold higher activity) than Ru/CeO2 catalyst for
hydrogenolysis of LDPE [74]. Recently, Lee et al. [75] reported hydrocracking (at 350 ◦C us-
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ing near-stoichiometric amounts of H2) of PE, PP, and PS waste to grid-compatible methane
with high selectivity and purity (>97%) using a Ru-modified zeolite (Ru/FAU) catalyst.
Moreover, density functional theory (DFT) revealed a chain-end initiation process with a
Ru-dominated reaction pathway. On the other hand, Hongkailers et al. [76] demonstrated
a one-pot reaction combining PET waste depolymerization and hydrodeoxygenation (at
340 ◦C under 30 bar initial H2 pressure) via C–O cleavage to produce arenes (xylene and
toluene) using a Co/TiO2 catalyst. CuNa/SiO2 has been demonstrated to be able to con-
vert PET to para-xylene (with high yield) and ethylene glycol by using methanol as both
the solvent and H-donor resource [77]. Lately, high yield (85%) production of arenes by
hydrogenolysis of PET and PS waste over a Ru/Nb2O5 catalyst has also been reported [73].
Upcycling of PET waste into cycloalkanes and aromatics via an integrated tandem (com-
prises at least two consecutive reactions) solvolysis–hydrogeneration process has also been
reported [78]. In this process, the PET waste is first hydrolyzed to dimethyl terephthalate
(DMT) in the absence of any catalyst. Next, the DMT is liquefied to dimethyl cyclohexane-
1,4-dicarboxylate by solvent-free hydrogenation (over Pt/C catalyst) and subsequently
hydrodeoxygenated (over Ru-Cu/SiO2 catalyst) to valuable gasoline and jet fuel range
C7–C8 cycloalkanes and aromatics. Recently, Zhang et al. [79] demonstrated PE waste up-
cycling to valuable long-chain alkyl aromatics by a tandem hydrogenolysis–aromatization
process. In this process, the PE waste is first combined with the catalyst Pt/γ-Al2O3 in an
autoclave (without no added solvent or H2) and heated to 280 ◦C for 24 h (Figure 5a), where
aromatization reaction of short hydrocarbons generates in situ H2, which is compatible
with the hydrogenolysis of long hydrocarbon chains under a reductive environment. Next,
the obtained liquid/wax product (80% by mass) was dissolved in hot chloroform to obtain
the long hydrocarbons. In addition, the application of molybdenum (Mo)-based catalyst
for the production of terephthalic acid (TPA) and ethylene by hydrogenolysis (at 260 ◦C
under atmospheric H2) of PET waste has also been reported [93,94].

2.4.4. Nanocatalyzed Photoreforming

Another promising method for plastic waste upcycling is photoreforming, where
depolymerization of plastic is performed under atmospheric conditions using light and a
photoactive catalyst. UV-absorbing semiconductor nanoparticles are a promising photocat-
alyst for the depolymerization of PE and PS waste. For instance, Nabi et al. [80] studied the
efficiency of photocatalytic titanium oxide (TiO2) NP film for the depolymerization and
complete mineralization of PP waste. While CO2 was found as the main end-product of PE
photodegradation, the generation of hydroxyl, carbonyl, and carbon–hydrogen groups was
obtained from PS photodegradation. Conversely, Tofa et al. [81] demonstrated depolymer-
ization of LDPE waste using photocatalytic zinc oxide (ZnO2) nanorods, which produced
hydroperoxides, peroxides, carbonyl, and unsaturated groups. In a separate study, Reisner
and co-workers [82] produced H2 by the photoreforming of ground PET powder using
solar light-simulated cadmium selenide/cadmium oxide (CdS/CdOx) quantum dots. The
PET was first hydrolyzed in potassium hydroxide (KOH) solution to produce terephthalate,
ethylene glycol (EG), and isophthalate, where EG was then photoreduced to yield H2, and
the rest was photo-oxidized to produce formate, glycolate, ethanol, acetate, and lactate.
The group also utilized a carbon nitride/nickel phosphide (CNx/Ni2P) catalyst for visible-
light-driven PET reforming to produce clean H2 (Figure 5b), where PET acts as an electron
donor and is oxidized by the excited photocatalyst (CNx) to other organic molecules. The
photogenerated electrons are then transferred from the CNx co-catalyst (Ni2P) and reduce
water to H2 [83]. Lately, upcycling of PE waste into gaseous hydrocarbons via an integrated
tandem solvolysis–photoreforming process has also been realized [84]. In this process, the
PE waste is first oxidized to dicarboxylic acids (largely succinic and glutaric acid) using
nitric acid, followed by a photocatalysis step. Photocatalysis of succinic and glutaric acid
was performed using a UV light-absorbing Pt/TiO2 or platinized carbon nitride photocata-
lyst to obtain ethane/ethylene (with propanoic acid intermediate) and propane/propylene
(with butyric acid intermediate), respectively.
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2.4.5. Nanocatalyzed Electroreforming

Electroreforming is a relatively less explored method for plastic waste upcycling,
where depolymerization of plastic involves oxidative cleavage of the carbon–carbon bond
at the anode and H2 evolution at the cathode [96]. Shi et al. [85] reported successful elec-
trocatalytic reforming of PET waste into value-added chemical products (terephthalate,
carbonate, and H2) using a Pd-modified Ni foam (Pd/NF) catalyst (Figure 5c). The process
involved pre-treatment of PET in KOH to release terephthalate and EG, followed by electro-
catalytic oxidation of EG to H2 and carbonate (95% selectivity). Similarly, Zhou et al. [86]
demonstrated electrocatalytic reforming of PET waste into TPA, potassium diformate
(selectivity >80%), and H2 using a CoNi0.25P catalyst.

Among the various catalytic polymer processing methods developed, only catalytic
pyrolysis, gasification, and crackling have reached a technology readiness level of 8–9 (fully
developed and tested, and in commercial operation).

2.5. Industrial Biotechnology

Recent developments in biotechnology, such as enzyme-mediated biocatalytic de-
polymerization of plastic waste into value-added chemicals and utilization of depoly-
merized plastic waste as feedstock material for microbe-mediated biopolymer synthesis
have emerged as sustainable and efficient methods for plastic waste upcycling [97,98].



Polymers 2022, 14, 4788 16 of 23

The “green” nature of these transformations without the use of any hazardous substances
provides an eco-friendly route for plastic waste upcycling.

2.5.1. Enzymatic Depolymerization

To date, various plastic-degrading enzymes have been discovered from different micro-
bial sources (Figure 6a) and have been extensively studied and engineered for degradation
of both hydrolysable (e.g., PET, and PU) and non-hydrolysable (e.g., PE, PP, and PS) plastics.
Synthetic plastic with a relatively higher crystallinity is more resistant to enzymatic attack
compared to biogenic polymers. Therefore, protein engineering has been increasingly
utilized to design, engineer and synthesize plastic-degrading enzymes with better catalytic
efficiency [97]. The class of enzymes “hydrolases”, which are used for degradation of
hydrolysable plastics, include cutinases, lipases, carboxylesterases, esterases, and proteases,
which attack the hydrolysable bonds of plastics like esters or amides for depolymeriza-
tion [99]. The general reaction of a hydrolase enzyme for breakdown of a product (X-Y) in
the presence of water is given as [100]:

X-Y + H2O→ X-OH + Y-H

The depolymerization of plastic waste by enzymes is a two-step process, where
the enzyme first adheres to plastic surface by hydrophobic interaction, followed by the
hydrolytic cleavage of the long polymer chains of plastic by the active site of the enzyme
into smaller monomers or dimers, which can be accumulated or consumed by the microbial
organism as a carbon source [101]. On the other hand, non-hydrolysable plastics with an
inert C-C backbone are highly resistant to biological cleavage and can only be broken down
via high-energy oxidation reactions. Therefore, enzymatic degradation of non-hydrolysable
plastics is very limited, and often, catalytic-, photo-, and thermal-degradation mediated
by radical mechanisms are performed prior to enzymatic degradation [99]. While the
enzymatic attack on hydrolysable plastics is generally endo-type (random internal scission),
the enzymatic attack on non-hydrolysable plastics is exo-type (end of chain scission) [99].

Yoshida et al. [103] first reported the unusual ability of a newly isolated bacterium,
Ideonella sakaiensis 201-F6, which could degrade PET and assimilate its monomers using
two enzymes, designated as PETase and MHETase. This later led to the development of
thermo-stable PETase from I. sakaiensis by rational protein engineering for highly efficient
PET degradation [104], where PET has a thermal glass transition temperature in the range
of 65–80 ◦C, at which wild-type enzymes are generally unstable. Genetically engineered
microorganisms, including Psedomonas aestusnigri, Thermobifida fusa, and Clostridium bo-
tulinum, have also been developed to produce hydrolases, such as PETase, cutinase and
esterase, for improved depolymerization efficiency [97]. The enzymatic degradation of
PET generates monomers TPA and EG, which can be further used to produce PET, be
converted into value-added chemicals or can be potentially used as feedstock for synthesis
of biodegradable plastics. For example, Tournier et al. [105] demonstrated PET depolymer-
ization (90% efficiency) using an engineered PET hydrolase, and the produced monomer
TPA was then used to synthesis PET, which was ultimately blown into bottles with bet-
ter lightness values (87.5%) than those of the minimal standard for PET bottles (>85%).
Conversely, Sadler and Wallace [106] demonstrated direct upcycling of PET-derived TPA
into value-added vanillin (with 79% conversion efficiency) in aqueous media (pH 5.5–7) at
room temperature using engineered E. coli. Kim and co-workers [102] reported the con-
version of five different higher-value aromatics and aromatic-derived compounds (gallic
acid (GA), pyrogallol, catechol, muconic acid (MA), and vanillic acid (VA), with yields
in the range of 32.7–92.5% from PET waste-derived TPA using engineered Escherichia coli,
whereas waste PET-derived EG was fermented to glycolic acid (GLA) using Gluconobacter
oxydans, as shown in Figure 6b. In a separate study, the authors also demonstrated depoly-
merization of PET waste to produce TPA (31.0 g/L, 62.8%, mol/mol) and EG (11.7 g/L,
63.3%, mol/mol) via a one-pot chemo-bioprocess integrating chemical glycolysis (using
a biocompatible catalyst, Betaine), enzymatic hydrolysis, and bioconversion of TPA and
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EG to protocatechuic acid (PCA) and GLA, respectively [107]. Recently, Kang et al. [108]
reported the synthesis of 2-pyrone-4,6-dicarboxylic acid (PDC) (a valuable monomer for
biodegradable plastics) from PET waste-derived TPA via a comprehensive chemo-microbial
hybrid process using two recombinant E. coli strains. On the other hand, Magnin et al. [109]
studied the poly(ester urethanes) and poly(ether urethanes) depolymerization efficiency of
a collection of 50 hydrolases and their mixtures, and they reported that esterase (E3576)
and amidase (E4143) enzymes were able to effectively hydrolyze a waterborne polyester
PU dispersion and the urethane bond of a low molar mass molecule, respectively. The
highest degradation (33% weight loss after 51 days) was reported for a polycaprolactone
polyol-based PU using the enzyme esterase, with 6-hydroxycaproic acid and 4,4′-methylene
dianiline recovered as hydrolysis products [109].
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2.5.2. Biopolymer Synthesis

Polyhydroxyalkanoates (PHAs) are biodegradable polyesters synthesized by vari-
ous microorganisms in the presence of an excess amount of carbon sources and lack of
macro elements such as phosphorus, nitrogen, trace elements, or oxygen [110]. Several
studies have reported the utilization of plastic waste-derived monomers as the carbon
source for the bacterial synthesis of PHAs. For example, Kenny et al. [111] reported the
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synthesis of PHAs using three bacterial strains, namely P. putida GO16, P. putida GO19,
and P. frederiksbergensis GO23, utilizing TPA (obtained from pyrolysis of PET waste) as
the sole source of carbon and energy. The strains GO16 and GO19 accumulated PHA
(predominantly of a 3-hydroxydecanoic acid monomer) at a maximal rate of approximately
8.4 mg PHA/l/h for 12 h, whereas the strain GO23 accumulated PHA (predominantly of
a 3-hydroxydecanoic acid monomer) at a lower maximal rate of 4.4 mg PHA/l/h [111].
Recently, Tiso et al. [112] demonstrated the synthesis of PHA (0.014 gPHA/gsubstrate) and
hydroxyalkanoyloxy-alkanoates (HAAs) using P. umsongensis GO16 KS3 utilizing EG and
TA (obtained by cutinase depolymerization of PET) as the carbon source. The authors also
reported chemo-catalytic synthesis of bio-based poly(amide urethane) (bio-PU) using the
obtained HAAs as monomers [113]. In a separate study, Franden et al. [113] synthesized
medium-chain-length PHAs (32% yield) using the P. putida KT2440 strain and utilizing EG
as the carbon source. Conversely, Johnston et al. [114] reported the synthesis of PHA (42%
yield) using the bacterial strain Cupriavidus necator H16 and utilizing oxidized PP waste as
an additional carbon source.

3. Conclusions and Outlook

In summary, separate or mixed plastic waste can be effectively converted into value-
added products by different upcycling approaches; including vitrimerization, nanocompos-
ite fabrication, 3D printing and chemical and microbial transformations. Vitrimerization,
nanocomposite fabrication, and 3D printing technologies can be potentially applied for the
fabrication of new products with desired structural, mechanical, and functional properties.
On the other hand, chemical and microbial transformation technologies can be adapted
to obtain a diverse range of products including carbon allotropes, syngas, H2, monomers,
liquid fuels, grid-compatible gas streams, lubricants, waxes, and biodegradable polymers.
Vitrimers, with their excellent re-processability and responsiveness, can be considered
as next-generation smart circular materials, which can be synthesized with affordable
technologies using conventional instruments that are operated in the polymer processing
industries. Nanocomposite formulations comprising biomass represent a promising ap-
proach for the development of sustainable and compostable products, which could be easily
implemented or adapted by polymer processing industries with the current infrastructure.
However, the adaptability of 3D printing for large-scale production is still a long way
away due to the slow build up speed. Emerging technologies like microwave, plasma,
and supercritical water could provide synergistic effects to address the limitations for the
further development of current technologies like pyrolysis, gasification, and solvolysis.
Although the application of nanocatalysts has largely reduced the energy required for
the chemical transformation of plastic waste, technological challenges related to the cost
and performance of the catalyst, such as reaction and/or product selectivity, durability
and/or recyclability, and removal and/or reusability, need to be addressed. Moreover,
enzyme-meditated catalysis for plastic degradation and the production of bioplastic from
non-conventional feed stocks using microorganisms will significantly reduce the carbon
footprint. The envisaged circular economy necessitates the utilization of waste by different
methods to minimize waste and ultimately carbon dioxide formation. Therefore, with the
goal of ‘sustainable development with closed loop waste management’, the upcycling of
plastic waste to biodegradable plastic needs to be part of the new thinking and should be
considered as a means of valorization of post-consumer plastic.
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