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Introduction

Resource models are generally constructed from directly observed data

(e.g., grades of drill cores) that have relatively high accuracy. However,

the accuracy of resource models is therefore limited by the scale on

which the data are collected. As mining progresses, more information

becomes available on different scales from various types and sources of

data (e.g., blast hole samples, sensors on drill rigs, conveyor belts and

draw points). This continuous stream of production data can be used to

update resource knowledge in near real-time.

The ensemble Kalman filter (EnKF) has been successfully applied to

update resource and grade control models [1, 2]. However, due to

the Gaussianity assumption, EnKF must be combined with some kind

of Gaussian transformation, such as a normal score transform. Multi-

Gaussian transformations can yield better results in terms of reproduc-

ing relationships between multiple grade variables. This poster presents

a case study demonstrating the application of the ensemble Kalman fil-

ter and the projection pursuit multivariate transform (PPMT) for sequen-

tial updating of multivariate geostatistical models.

Ensemble Kalman filter

The updating step of the EnKF can be expressed as:

Zt+1 = Zt + K(Yt − AZt), (1)

where Zt and Zt+1 are prior and posterior ensembles, respectively, K
is a Kalman gain matrix, Yt are observations and AZt are model-based

predictions.

The optimal Kalman gain matrix is given by:

K = Ct,tA
T (ACt,tA

T + P ), (2)

where Ct,t is the covariance matrix for state t, A is a production matrix,

and P is the precision of the observations.

Projection pursuit multivariate transform

The PPMTmethodology is based on iteratively searching for projections

with maximum departure from Gaussianity followed by a normal score

transformation along those projections [3]:

Y(i+1) = RPP
(i)

−1Ψ(i)(Y(i)R
PP
(i) ), (3)

where RPP
(i)

−1
is an orthogonal rotation matrix and Ψ(i) is a normal score

transformation applied to the first dimension of the rotation matrix.

Synthetic dataset

To demonstrate the performance of the proposed algorithm, a synthetic

dataset from [4] was used to produce 200 initial geostatistical realisa-

tions (Fig 1). To do so, PPMT was applied to the original 2,000 drill

hole samples, and the resulting factorswere individually simulated. Back

transformation of geostatistical realisations shows that the initial simu-

lations reproduced the complex multivariate relationships (Fig 2).

Fig 1. 3D view of (a) drill hole data and (b) e-type model from 200 geostatistical

realisations.

Fig 2. Cross plots of (a) drill hole dataset and corresponding PPMT factors; (b)

simulated realisation and PPMT back transformation results.

Data assimilation

Fig 3a shows the 10,000 synthetic observations produced with iden-

tical statistical properties to the original drill hole data. These obser-

vations were forward transformed to the multi-Gaussian space using

PPMT before applying the EnKF to update prior realisations. As seen

in Fig 3b, the e-type model from 200 updated realisations significantly

differs from the initial e-type model in Fig 1b.

The proposed approach helped to reduce the MSE and improve the R2

of model-based predictions by 70-75% and 75-96%, respectively (Fig

4). Moreover, the reproduction of multivariate relationships was not

affected by EnKF because of the multi-Gaussian transformation (Fig 5).

Fig 3. 3D view of (a) new observations and (b) e-type model from 200 updated

realisations.

Fig 4. Model-based predictions vs. actual observations before and after rapid

updating.

Fig 5. Cross plots of (a) observations and PPMT forward transformation results; (b)

updated realisation and PPMT back transformation results.

Conclusions

EnKF, combined with PPMT, can update multiple cross-correlated vari-

ables in near real-time without affecting their relationships. The pro-

cess of rapid updating can also be automated, providing mining engi-

neers and geologists with accurate and up-to-date resource knowledge

whenever needed. In future work, we will extend the rapid updating

process to other variables, such as geological domains and geometallur-

gical properties.
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