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Abstract: The design of heterogeneous catalysts is necessarily surface-focused, generally achieved via optimization of
adsorption energy and microkinetic modelling. A prerequisite is to ensure the adsorption energy is physically meaningful
is the stable existence of the conceived active-site structure on the surface. The development of improved understanding
of the catalyst surface, however, is challenging practically because of the complex nature of dynamic surface formation
and evolution under in-situ reactions. We propose therefore data-driven machine-learning (ML) approaches as a
solution. In this Minireview we summarize recent progress in using machine-learning to search and predict (meta)stable
structures, assist operando simulation under reaction conditions and micro-environments, and critically analyze
experimental characterization data. We conclude that ML will become the new norm to lower costs associated with
discovery and design of optimal heterogeneous catalysts.

1. Introduction

Heterogeneous catalysis is important in the chemical
industry, especially in the context of energy conversion,
carbon neutrality, and environment protection, and under-
scores sustainable development. A consensus amongst
researchers is that catalytic reactions occur on the surface of
heterogeneous catalysts. The surface structure of the catalyst
at the gas/solid, or liquid/solid, interface during the catalytic
reaction has therefore been subject to extensive investiga-
tion to understand reaction mechanisms and design catalyst
materials.

Surface science began to develop rapidly in the 1970s.[1]

Technical approaches to observe catalyst surface structure
resulted rapidly in the development of catalysis. With the
development of experimental technology, research in elec-
trochemical surface science began in the 1990s.[2] Theoretical
developments lagged behind experimental developments,
until the advent of quantum chemical computations based
on density functional theory (DFT) and application of the
generalized gradient approximation (GGA) functional in
the mid-1980s.[3] DFT computations are powerfully advanta-
geous in computing the energy of surface structures from
first principles and, importantly, to corroborate experiments
and characterizations. This combined interdisciplinary fusion
of experimental techniques and theoretical computations
has become a distinguishing feature of the field.

A growing understanding of catalyst surface structures,
computational design and screening of catalysts based on
the structure of catalytic active sites led to a number of
developments beginning in the early 2000s, for example, the
work of Nørskov et al.[4] A key question, however, was
whether theoretical computations could be relied on to
successfully predict experimental outcomes. Surface struc-
ture consists of several atomic layers on the surface, and
there are significant geometrically possible configurations
and elemental compositions that will vary with reaction

condition(s) and micro-environment. Surface structure com-
plexity therefore can lead to significant computational costs
and practical difficulties in operando theoretical simulation.

Machine learning (ML) has been applied at the inter-
section of multiple disciplines because of its capability to
handle complex systems and make testable predictions.
Although ML methods, including neural networks (NN),
were proposed as early as the 1950s to 1970s, significant
knowledge barriers existed to application in other disci-
plines. However, over the past decade the development of
practical tools including the Torch library, Scikit-Learn,[5]

and the Tensorflow library has reduced professional thresh-
olds for users and boosted the application of ML in fields of
physics and chemistry (Figure 1).[6] As a result, machine
learning interatomic potentials (MLIP)[7] and machine
learning force field (MLFF)[8] emerged and have been used
to accelerate DFT computation and gain increased precision
in large systems. Interpretable ML methods[9] are being used
to understand multiple physical quantities on target proper-
ties and have led to suitable descriptors to make predictions.
Additionally, the inverse design approach[10] is being applied
to derive theoretical structure(s) from experimental charac-
terizations with improved accuracy and efficiency.

In this Minireview, we summarize state-of-the-art re-
search progress in data-driven ML applications to study
heterogeneous catalyst surface structure. For “ideal” surface
structures, ML can be applied to predict and explain the
thermodynamic and kinetic stability of complex structures.
For “actual” surface structures, ML can be combined with
DFT, molecular dynamics (MD) and Monte Carlo (MC)
simulations to enable molecular scale modelling of large and
complex systems. From an experimental view, ML can be
used advantageously to analyze and interpret experimentally
obtained surface structure information and to construct
increasingly accurate surface models for theoretical compu-
tation. ML will significantly accelerate conventional theoret-
ical and experimental methods to rationally design surface
structures in heterogeneous catalytic reactions.

2. Ideal Catalyst Surface Structures

Molecular modelling is important because it can be relied on
to provide atomic level insight for experimental measure-
ments in surface science. Significantly, computational and
experimental studies have achieved good correspondence in
model systems with (relatively) simple structures, including
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metal single-crystal surfaces. However, the complexity of
actual catalyst structures presents a potential practical
difficulty for theoretical modelling.[12] With alloy catalysts,
for example, as the number of metal elements increases
from binary, ternary, to high-entropy alloys with five or
more components, the number of possible surface structures
increases exponentially (Figure 2a). Compared with the
highly symmetrical crystalline bulk, the surface structure has
significantly increased possibilities because of its symmetry
breaking at the edges, and the interaction of surface atomic
layers.[13] Given that stable structures with minimum energy,
and metastable structures with energy at the local minima,
can be obtained experimentally, it is necessary to compare
many possibilities to ensure all key data. Additionally, ionic
compounds with non-metallic element components and

composite structures at the interfaces of different species,
and amorphous phases add further complication (Figure 2a).
In practice, however, modelling software including Atomic
Simulation Environment (ASE)[14] can be used to build a
significantly large number of models. However, the massive
computational cost to calculate these models is hardly
affordable. It is expected that ML can obviate these
difficulties.

2.1. Thermodynamic Stability of Surface Structures

Thermodynamic surface free energy (γ) is a direct descriptor
for comparing structures, i.e. the surface structure with
lowest energy is selected. DFT is a quantum chemical
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Figure 1. A crude timeline for developments in machine learning (ML), surface science, and computational chemistry. The ML part is reproduced
with permission.[11] Copyright 2020, Elsevier. Developments in surface science and computational chemistry (marked in green) are summarized in
this work.
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computation method with a good balance between speed
and accuracy, and has therefore has been widely used. The
Gibbs free energies of the surface structures (Gsurf) are
approximated by the respective total energies (Esurf)

[15]

[Eq. (1)],

Gsurf � Esurf (1)

where surface free energy is computed from total energy,
surface area (A), and chemical potentials (μ) for each
component I [Eq. (2).

g ¼
1
A
ðEsurf�

X

i

miÞ (2)

Thermodynamic selection of stable and metastable sur-
face can then be simplified to directly compare the DFT-
computed atomic potential energy value. It should be noted
that for different reactions, the reference molecules of the
chemical potential μ vary (Figure 2b), so different surface
structure stability relationships can be obtained through
computations using Equation (2). In this way, the effect of
reactions on the ideal surface structure is determined.

A comparison between conventional and data-driven
research methodology is shown in Figure 3. The conven-
tional method is to perform theoretical modelling of
empirical structures based on experimental findings. This
method is limited, however, by experimental working
efficiency, computational speed, and possible human error.
With the introduction of emerging ML methods, the data-
driven programming and sampling algorithms provide
improved efficiency and accuracy. This is achieved by
replacing human experience in evaluating the entire dataset,
examining all local minimum data points, and determining
stable and metastable structure(s). In this way, new knowl-
edge about the physical meaning of structural stability is
gained, adding understanding to the discipline of surface
science.

Several ML methods have been applied to identify stable
or metastable surface structures. To search for energy local
minima on the potential energy surface from a large

modelling dataset, random sampling (RS) and uncertainty
sampling (US)[16] from active learning[17] methods are used to
select structures for computation. Bio-inspired sampling
genetic algorithms (GA)[18] and evolutionary algorithms
(EA)[19] have been used to find optimized structures along
the potential energy surface. These sampling methods can
be combined with ML regression to accelerate energetic
data generation. Jennings et al.[20] used Gaussian process
regression (GPR)-accelerated GA on PtAu alloy nano-
particles to give a 50-fold reduction in the number of
required energy computations (Figure 4a). Jacobsen et al.[21]

used kernel ridge regression (KRR)-guided EA to analyze
the stability of local motifs in SnO2(110) surface reconstruc-
tion and reported significant speedier searching. Sampling
methods, including EA, have been combined with neural
networks (NNs) to investigate multicomponent alloy
nanoparticles.[22] The GOFEE[23] algorithm based on GPR
has been developed to sample from the energy landscape
and to generate structural candidates that correspond to the
results of STM and AFM experiments for oxide overlayer
structures on Pt3Sn(111)

[24] (Figure 4b).
The generation of new knowledge as feedback for

experiments is another significant advantage with ML. This
requires the use of interpretable ML models and the

Figure 2. a) Catalyst surface structures with significant complexity. Numerous possibilities for surface morphology, alloying or non-metallic element
composition, and crystalline state, present practical difficulties in computational modeling and simulation. b) Because different reactions have
different references to chemical potential (μ), these affect the stability of the surface structure under reaction.

Figure 3. A comparison of workflow for conventional and data-driven
methods to assess surface structure(s) of heterogeneous catalysts.
Conventional methods are relatively empirical, whilst data-driven
methods permit processing significant data with higher efficiency and
potential for new knowledge.

Angewandte
ChemieMinireviews

Angew. Chem. Int. Ed. 2023, 62, e202216383 (4 of 13) © 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

 15213773, 2023, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/anie.202216383 by U

niversity of A
delaide A

lum
ni, W

iley O
nline L

ibrary on [01/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



selection of appropriate physical quantities as features. One
set of physical quantities, including the cohesive energy
(ΔE), lattice parameters (a and c), bulk modulus (B), and
vacancy formation energy (Ef) was used as features for a
KRR model to evidence relationships between the metal
surface energy and physical parameters.[25] Another set of
physical quantities, the Mendeleev Python Library,[26] pro-
vides a series of quantifiable features from physical and
chemical properties classified by elements. For selection of
physical quantities/features, the least absolute shrinkage and
selection operator (LASSO)[27] and sure independence
screening (SIS)[28] are used to rank coefficients of different
features to boost t accuracy of prediction and interpret-
ability of the resulting statistical models. Feature extraction
and classification principal component analysis (PCA)[29] are
used as a dimensional reduction tool to accelerate the
generation of new knowledge. These methods are integrated
into CatLearn[30] for graphical-based atomic structure enu-
meration in surface science and catalysis. To summarize the
features selected by the ML process and the descriptors
composed of features, knowledge graph (KG)[31] is a
potential method to extract, organize, and represent phys-
ical-inspired knowledge from data across surface
structures[32] for use with advanced applications.

2.2. Dynamic Stability of Surface Structures

In addition to comparing thermodynamic surface energies,
the kinetic energy barrier for interconversion between
different structures is an important indicator for the stability
of surface structures. The nudged elastic band (NEB)[33]

method, based on the DFT computation, is suitable for
searching transition states during transformation of different
surface structures because it is more accurate and reliable
than dynamic methods based on classical force field.
However, because of the need to search for multiple points
on the potential energy surface, the highly significant
computations needed are a practical difficulty in applying
this method to complex structures.

ML acceleration is applied to push the limits in the
search for kinetic transition states and energy barriers. Yoon
et al.[34] applied deep reinforcement learning (DRL)[35] to
iteratively change the positions of atoms in the near-surface
region to generate kinetic pathways to accessible local
minima involving changes in the surface compositions (Fig-
ure 4c). As the surface atoms move in each time-step, the
energy and atomic coordinates of the structure are used as
features and fed into the actor network of DRL to
determine the next surface structure. The highest energy

Figure 4. a) Left: Number of homotops as a function of composition; inset: randomly ordered PtAu 147-atom icosahedron. Right: Convex hull
located with ML-accelerated genetic algorithm (GA) using DFT calculations. Reproduced with permission.[20] Copyright 2019, Springer Nature.
b) Left: Model for lowest-energy Sn11O12 structure corresponding to the observed (4×4) phase. Right: Computed free energy for different structures
under experimental conditions (10� 5 mbar, 600 °C) relative to Sn11O12 structure. Reproduced with permission.[24] Copyright 2022, Wiley-VCH. c) Left:
Example energy pathway to global minimum from deep reinforcement learning (DRL). Right: A minimum energy pathway created by NEB to same
global minimum. Reproduced with permission.[34] Copyright 2021, IOP Publishing. d) Transformation of a hollow pyramid to an elongated
structure. Lowest-energy path is shown in blue, whilst the pathway resulting from minimizing the 2-norm mapping is shown as reference in green.
Top and bottom panels show images of side and top view of the initial state, transition states, and final state for the two pathways. Reproduced
with permission.[36] Copyright 2018, American Physical Society. e) Graph theory based algorithm to generate graphs for a given atomic model.
Determining unique structures for multidentate adsorbate CHCH3 on a PdIn(021) stepped surface. Reproduced with permission.[40] Copyright
2020, Springer Nature. f) Clustering analysis with six target clusters and relative coherence criterion with functional groups explored. Reproduced
with permission.[44] Copyright 2018, American Chemical Society.
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point obtained between the two metastable structures is the
ML-predicted transition state structure. Kinetic pathways in
surface reconstruction obtained with this method agree well
with NEB computational findings, and demonstrate the
accuracy of ML based methods. Kolsbjerg et al.[36] used an
NN-enhanced EA sampling to find kinetic transition states
between different configurations of Pt nanoparticles sup-
ported on an MgO surface (Figure 4d). Through EA parent
for certain structural candidates, the success rate for locating
the global minimum rises to a satisfactory level to screen for
“best” pathway mapping between different particle shapes
to replace high-cost optimizations for the transition barriers.
Good computational speed enabled the screening of hun-
dreds of different pathways.

2.3. Representing Complex Surface Structures

For complex surface structures, especially composite or
amorphous surfaces, conventional modeling and identifica-
tion are difficult in practice because of surface irregularities.
ML methods can determine specific atomic structure
descriptors to address this, however. A typical method uses
graph neural networks (GNN)[37] to transform the atomic
structure into graphs with atoms as the nodes, and bonds as
the edges. The physical/chemical properties for each atom
are added to each node as features to represent different
elements. In this way, each surface structure can be trans-
formed into a matrix of specific data, which, together with
its computed surface energy, can be used as a training set for
neural network (NN) algorithms to predict the surface
energy of new structures. Based on GNN, Palizhati et al.[38]

used a modified crystal graph convolutional neural network
(CGCNN) on a dataset of ca. 3000 surface structures to
predict surface energies of intermetallic alloys across 36
elements and 47 space groups. The graph theory (GT) was
also applied to predict the initial structures with surface
adsorbates[39] and with different intermediate coverages[40] to
significantly reduce computational time for geometry opti-
mization (Figure 4e).

Another method to read and identify the atomic
structures for complex surfaces is smooth overlap of atomic
position (SOAP).[41] This provides an “intuitive” measure of
dissimilarity between atomic environments and transforms it
into a numerical descriptor that can then be fed to ML
algorithms. This can combine Gaussian approximation
potential (GAP)[49] frameworks to learn and predict the
energy of an arbitrary atomic configuration. In this way,
more irregular and amorphous surface structures than flat
alloy surfaces are resolved. Bartók et al.[43] used SOAP-GAP
to predict silicon surfaces with distortions during the
reconstruction. Caro et al.[44] applied SOAP-GAP to conduct
a comprehensive and systematic assessment of various
atomic motifs for carbon material surfaces to resolve
flexibility and amorphous matters (Figure 4f).

3. Actual Catalyst Surface Structures

In addition to intrinsic stability, surface structure can under-
go significant change under experimental conditions, espe-
cially during reactions. In-situ experiments in catalysis are
nearly always difficult to perform because of the interfer-
ence of temperature and atmospheric pressure surrounding
the actual system,[2,45] together with voltage and solvent in
the electrochemical system.[46] With conventional DFT
computations, the incorporation of these factors is possible
via numerical correction. Ab initio thermodynamics adds
temperature (T) and atmospheric pressure (P) to chemical
potential (μ) computation [Eq. (3)].[47]

mðP, TÞ ¼ m0 þ kBTln
P
P0

� �

(3)

With the computational hydrogen electrode (CHE),[48]

potential (U) and pH are introduced to the electrochemical
potential of protons [Eq. (4)].

mHðU, pHÞ ¼ EH þ eU� kBT log10ðpHÞ (4)

In addition, the simulation of the solvent at the solid–
liquid interface is difficult in practice because of the
significantly large number of atoms that need to be
considered. Therefore, operando computational methods
that build experimental conditions and micro-environment
into modelling, whilst meeting the need for greater accuracy
rather than simple numerical methods, have significant
practical difficulty in theoretical research.

Molecular dynamics (MD) and Monte Carlo (MC) are
methods to extend the simulation from the microscopic to
mesoscopic scale (Figure 5a). However, the accuracy of the
classical MD and MC computation is limited because
quantum effects, such as tunneling and zero-point vibra-
tional energy, are neglected when the classical force field is
used. Another significant limitation with MD is inaccuracy
in modelling the making/breaking of chemical bonds. Ab
initio molecular dynamics (AIMD) uses quantum force
fields based on electronic structure, whilst ab initio Monte
Carlo requires parametrization of a significantly large
number of high-accuracy computations. Development is
limited because of high computational cost(s). The impor-
tant relevance of ML is in its ability to combine advantages
of DFT with MD and MC through predicting energy via
machine learning potential (MLP)[49] and force via machine
learning force field (MLFF),[50] for an accurate description
of chemical systems. In this way, ML can be used to obtain a
more accurate simulation for surface structure evolution in
larger time-/length-scale (Figure 5b, c). The ML method is
accurate for interpolation but less so for extrapolation. The
accuracy of MLP and MLFF frequently depends on
similarities in the training data and the simulation system. Δ-
machine learning (Δ-ML)[51] with confidence interval can be
used to solve this. Via learning the difference between the
basis potential and the reference to determine Δ-MLP,[52]

and similarly, for Δ-MLFF, MLP and MLFF can be updated
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instantly to simulate accurately the system with a 10-fold
increase in speed.[53]

Addressed in the following sections is how ML can:
1) incorporate temperature and pressure into the reaction
system, 2) include the solvation environment on the catalyst
surface, and 3) build surface phase diagrams of the catalyst
in operando.

3.1. Effect(s) of Temperature and Atmosphere

Both ab initio MD and MC have been used to model
heterogeneous catalyst surface structures for temperatures
greater than 0 K, where the addition of ML can make
calculations faster with guaranteed accuracy. AIMD permits
simulation of dynamic structures at higher temperatures,
including surface melting and transformation. Faraji et al.[55]

used a charge equilibration neural network technique
(CENT) to generate the MLP for MD on CaF2(100) surface
structures over a wide temperature range of 300–1200 K.
The CENT potential applies to ionic materials because it
describes charge transfer for ionic bonding,[56] and its
predicted structure was verified by DFT computation. Chap-
man et al.[57] applied MLFF for MD simulation of Al surface
melting at up to 1000 K. Halim et al.[58] used the Gaussian
process (GP) force field to reduce computational demand of

AIMD to simulate the complex process of migration and
structural transformation of Cu� Zn surface alloying on
Cu(997), and reported comparable results with STM experi-
ment.

MC can be applied to component segregation of particle
surface structure because it can accomplish larger size and
time scale simulation. Neural network potentials trained
with DFT-computed energies are alternatives for empirical
parameters in MC simulations to improve accuracy. Elias
et al.[59] used artificial neural network potential Monte Carlo
simulations to simulate experimental Cu/Ce oxide nano-
particles with sizes up to Cu54Ce405O834 and annealing
temperatures from 5000 to 300 K. Yang et al.[60] trained a
NN framework from >5000 DFT-computed slabs for a
larger-scale Monte Carlo simulation to investigate surface
segregation in a ternary Cu� Pd� Au alloy.

Gas-phase atmosphere can influence surface structure at
gas–solid interfaces. Dynamic simulation methods try to
bridge any “structure gap” between well-ordered metal
facets in surface science and defect-laden, real catalysts.
ML-based piecewise embedded atomic neural network
(PEANN) has been used to generate potential energy
surface for AIMD in molecule–surface systems, with numer-
ical savings of the order of 105.[61] Zhou et al.[62] applied this
for dissociative chemisorption of CH4 on defective Ir surface
structures. Liu et al.[63] performed a Semi-Grand Canonical
Monte Carlo (SGCMC)[64] simulation to assess surface
segregation and aggregation of bimetallic metal alloys
induced by surrounding acrolein molecules. Cheng et al.[65]

used MD with neural network potential (NN-MD) for the
oxygen-derived process for reduction of Cu2O(111) to Cu
surface with square sites. In addition, structures of addi-
tional species in the micro-environment at the interface,
including Re and Cs promoters, have been investigated with
MLP-accelerated MD.[66]

3.2. Effect(s) of Solvation Structure

The micro-environment at the solid–liquid interface of the
electrocatalysts has interactions between the surface and
solvent molecules. With an increase in complexity of solvent
components and surface structures, an explicit solvent model
that directly places solvent molecules on the catalyst surface
is needed for higher accuracy, rather than an implicit solvent
model. This inclusion of solvation, in principle, can be
modeled via traditional first-principle methods, such as DFT
for static, and AIMD for dynamic structures. However, DFT
and AIMD are computationally demanding because of
complex and variable liquid structure and interactions
including hydrogen bonding and chemical adsorption.

MLP significantly accelerates computation of solid–
liquid interface systems,[67] and has therefore gradually
become more widely used. Natarajan et al.[68] applied a
neural network potential (NNP) to provide the required
energies and forces at DFT level for MD simulation to
assess different water-molecule arranged-structures on a
series of Cu surface facets. Quaranta et al.[69] subsequently
extended this to more hydrophilic ZnO surfaces. As a

Figure 5. a) Operando computational methods at different length- and
time-scales in combination with ML. Insert for MC is reprinted with
permission.[54] Copyright 2019, American Chemical Society. b, c) Exam-
mples of surface structure study with greater accuracy using ML on a
large time-/length-scale: b) Cu/Au nanoparticle with 3915 atoms.
c) p(20×20) Pt(111) surface with differing O coverage. (b) Reprinted
with permission.[70] Copyright 2014, American Chemical Society. (c)
Reprinted with permission.[87] Copyright 2022, American Chemical
Society.
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larger-scale computation system, MC simulation based on
NNP has been used to investigate solvent effect(s) on
nanoparticles. Artrith et al.[70] combined DFT and accurate
NNP with MC to compute water-solvated Au/Cu alloy
nanoparticles. Additionally, a combination of SOAP struc-
tural descriptor and sketch map ML algorithm[71] has been
used to predict solvation energy to quantify the number of
explicit solvent molecules around local solvation
environments.[72]

3.3. Significance of the Surface Phase Diagram

The surface phase diagram of a catalyst system can be
obtained via summarizing a series of surface structures and
selecting the most stable. Surface phase diagrams are very
important for heterogeneous catalyst research, as they can
directly correlate first-principles computations with exper-
imentally available conditions, such as in-situ reaction
conditions and catalyst components. Therefore, it is an
important component of operando computation to establish
direct correspondence between theoretical and experimental
value(s). Despite having accuracy to match experimental
measurement, a significantly large number of possibilities
need to be considered so as to not miss key surface
structures. This requires high computational cost(s).[73] ML is
advantageous in predicting data because of reduced compu-

tational cost, and could produce surface phase diagrams for
wide application.

One way to address the significantly large number of
surface structures is to use ML methods to train DFT-
computed surface free energy datasets to predict the surface
phase diagram. Ulissi et al.[74] reconstructed the Pourbaix
diagram for IrO2(110), which relates differing surface
terminations to potential (U) and pH, from 20 DFT
relaxations using GPR. This compared with ca. 90 using
typical search methods. Ghanekar et al.[75] used adsorbate
chemical environment-based graph convolution neural net-
work (ACE-GCN) to present high *OH coverage on Pt(111)
and (211) surfaces, and trained on a fraction (�10%) of the
total DFT-relaxed configurations to obtain the complete
Pourbaix diagram (Figure 6a). Another is to perform
stochastic surface walking (SSW) on the global potential
energy surface obtained from NNP training from DFT
computations to search for local minima for energy. Li
et al.[76] applied this SSW-NN[77] method to search for the
low surface free energy for Pd1Ag3 surface with a series of H
coverages (Figure 6b). By including explicit charge on the
surface during DFT computation for the training dataset,
Fang et al.[78] used this method to simulate potential-depend-
ent Pt(110) surface phases under electrochemical condition.
This work provides a positive example of the role of ML in
combining DFT with operando computation.

Figure 6. Summary for surface phase diagrams studied with ML. a) Ab initio Pourbaix diagram for OH* configurations on Pt(111) and (221)
surfaces. Reproduced with permission.[75] Copyright 2020, Springer Nature. b) Pd� Ag� H surface contour maps for Pd� Ag� H/Pd1Ag3(111) at 25 °C
and P(H2)=0.05 atm. Reprinted with permission.[76] Copyright 2021, American Chemical Society. c) Surface phase diagram for Ag(111) exposed to
O2 atmosphere, generated via GCMC. Reprinted with permission.[83] Copyright 2022, American Chemical Society. d) Free energy per Pd atom �G(eV)
as a function of temperature and CO pressure. Colour indicates absolute value for �G for stability. Reprinted with permission.[54] Copyright 2019,
American Chemical Society. e) Size- and composition-dependent melting phase diagram for large CuZn alloy nanoparticles as a function of content
of Zn (xZn) and number of atoms (N). Reprinted with permission.[86] Copyright 2021, American Chemical Society.
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MD simulation, which can model dynamic changes at
high temperature and at solid–liquid interfaces, was used for
computation of the surface phase diagram following combi-
nation with ML with improved accuracy. Timmermann
et al.[79] trained an ML-GAP for high-temperature MD
simulation for annealing across all symmetry-inequivalent
low-index surfaces for IrO2 to get a surface phase diagram
with dependence on temperature that was confirmed with
STM, LEED, and XPS experiments. Artrith et al.[80] used
artificial neural networks (ANNs) to interpolate the atomic
energy from DFT for MD simulation and constructed first-
principles phase diagrams for amorphous LixSi1� x associated
with Li atomic ratio x, based on �45000 structures. Li
et al.[81] reported that an MLFF-based MD-simulated surface
phase diagram for Fe3O4(111) achieved results similar to
DFT and simulated the structure of the aqueous solvent
environment at the interface concurrently. Rosenbrock
et al.[82] proposed using SOAP descriptor on liquid-phase
structure for an active learning dataset for MTP to perform
MD simulation of the liquid–solid transition phase diagram
for Ag� Pd alloy.

MC simulation was used to construct a phase diagram
for larger surface structures to automate discovery of
realistic surfaces to overcome the insufficient exploration of
all possible surfaces and the bias of human-selected
structures pool. Wexler et al.[54] combined DFT and grand
canonical Monte Carlo (GCMC) into an “ab initio GCMC”
to determine oxide overlayer structures on Ag(111). More
than 6000 structures were sampled to obtain the surface
phase diagram for oxidation (Figure 6c), and random forests
(RF) regression was used to determine the structural
features that govern surface stability. Wang et al.[83] per-
formed this ab initio GCMC simulation on CO-adsorbed Pt
clusters supported on CeO2(111) surface (Figure 6d), and
applied a cluster genetic algorithm (CGA)[84] to predict low-
energy structures to obtain the surface phase diagram as a
function of temperature and CO pressure. Additionally,
because of the advantage in simulating large nanoparticles,
MC-based high-dimensional neural network potentials
(HDNNPs)[85] have been used to compute the melting phase
diagram for CuZn alloy nanoparticles with up to N=100000
atoms, corresponding to an approximate diameter of
12 nm[86] (Figure 6e). Recently, Xu et al.[87] developed a
pipeline to model metal surface oxidation during catalysis
using large-scale MLP-based GCMC. These large-scale
simulations were demonstrated as useful tools to study
formation mechanism(s) of complex surface systems.

4. Characterization of Surface Structures

In addition to accelerating theoretical computation, ML is
increasingly being used in conjunction with experimental
characterizations to analyze experimental data and to
improve the nexus between experiment and computation.
For the conventional process, from theoretical design of
catalyst structures to experimental characterization and
confirmation, it is practically difficult to find designed
structures in experiments. Additionally, there are practical

difficulties to an efficient analysis of experimentally ob-
served surface structures to provide timely feedback to
model constructions. Advanced ML will reduce the human
work-component and improve experimental design effi-
ciency via automation of artificial intelligence, and shift the
research workflow to permit theoretical models directly
from experimental findings. Significantly, this will bridge the
“material gap”[88] between experiment and theory, and
deepen understanding of the mechanism(s). This has signifi-
cant potential for development of surface science experi-
ments, especially for in-situ experimental techniques that
can continuously generate significant amounts of data during
catalytic reaction(s).

4.1. Identifying Microscopic Images

Researchers have developed ML applications for automati-
cally recognizing images. These can be combined with
experimental characterizations that generate images to give
automated structure identification. The main benefits are
the: 1) savings in manpower and reductions in human error,
and 2) potential to obtain more rational segmentation
results than with conventional methods.

Microscopic images of rock-minerals have been auto-
matically classified and identified though deep learning NN
because of its automatic extraction feature in image
analyses.[93] More advanced transmission X-ray microscopy
(TXM) was applied to make phase contrast tomography for
active particles, and a mask regional convolutional neural
network (Mask R-CNN)[94] has been used in identification
and segmentation of every individual particle for reconstruc-
tion of a (3D) volume.[95] Atomic precision scanning probe
microscopy (SPM), including scanning tunneling microscopy
(STM) and force in atomic force microscopy (AFM), with
ML architecture based on ANNs was used to detect nematic
order in STM images and other forms for symmetry
breaking.[96] Krull et al.[89] demonstrated DeepSPM, an
autonomous system capable of continuous SPM image
acquisition, to distinguish a “good” from a “bad” probe
(Figure 7a). It was trained using a classifier convolutional
neural network (CNN) model from a dataset of 7589
constant-current STM topography images of MgPc mole-
cules on Ag(100) surface classified by human operation.

4.2. Spectra Analyses

The combination of ML and spectral characterization
experiments generally uses the spectra dataset determined
from theoretical simulation as an intermediate bridge to
establish a relationship between the spectra and the
structure, and to achieve improved analyses and under-
standing of the experimental data. ML: 1) better reflects the
mathematical relationship between theoretical simulations
and experimental spectra, 2) provides a more rational
theoretical basis for the assignment and interpretation of
spectral peaks, and 3) is expected to find a reasonable
structure for uncertain signals. Current interdisciplinary
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research with ML on surface structure of catalysts focuses
on X-ray absorption near-edge structure (XANES) spectro-
scopy, and vibrational spectroscopy including infrared (IR)
and Raman spectra. However, wider application of more
spectral methods combined with ML can be expected.

XANES spectroscopy findings establish the coordination
environment around atoms, such as coordination number
(CN), which can be simulated by ab initio codes including
FEFF[97] and FDMNES[98] in addition to experimental
measurement. Timoshenko et al.[90] trained ANN with theo-
retical XANES data to predict the CN for Pt, which was
then related to the 3D structure of supported Pt nano-
particles (Figure 7b). This methodology permits solution of
the structure of a metal catalyst from experimental XANES
via reconstructing average size, shape, and morphology of
well-defined nanoparticles. The structure for Cu nano-
particles supported on a ZrOx surface,[91] and CN of Cu in
CuOx catalyst

[99] was solved in this way.
To address increased structural complexity of transition-

metal oxides, Carbone et al.[100] proposed a robust method
combining a CNN model and PCA analysis to establish
relationships between XANES spectra and the local chem-
ical environment surrounding an atom. Guda et al.[101] used
LASSO and ridge regression in an interpretable ML assess-
ment of descriptors for XANES spectra of Fe(SiO4)N
clusters based on structural parameters.

Vibrational spectroscopy captures details of most surface
vibrational modes and can be simulated with frequencies
and intensities through DFT computations of phonons.
Lansford et al.[92] computed a dataset for IR spectra for CO
adsorbed on Pt nanoparticles and implemented multinomial
regression via neural network ensembles to infer detailed
surface microstructure, including adsorption sites and cover-

age from experimental spectra (Figure 7c). Wang et al.[102]

established a quantitative spectrum–property relationship
based on sure independence screening and sparsifying
operator (SISSO)[103] predicted descriptors from simulated
IR/Raman spectra, from 70500 adsorption configurations
for CO/NO on metal and alloy. To establish the dynamic
structure of larger molecules and water solvent environment
on the surface, Hu et al.[104] developed a random, forest
protocol based on a large data set of AIMD computations
for surface-enhanced Raman spectroscopy (SERS) for a
trans-1,2-bis(4-pyridyl)ethylene molecule adsorbed on Au
surface.

4.3. Inverse Construction

Via application of the concept of “inverse design”[10] in ML,
the conventional, theoretical simulation of a characterization
image/spectrum can be inversed to deduce an atomic
structure. Its significance is to reverse the order from
theoretical model to experimental observation and confir-
mation, and change it to obtain a theoretical model from
experimental observation. This significantly speeds up the
exploration of mechanisms and materials design by signifi-
cantly reducing the number of candidates. Advanced ML-
based processing can exhibit faster convergence and better
stability in relatively difficult problems.[105] The workflow is
to train the ML model with theoretical simulated datasets
that have been benchmarked via experiment, so that it can
generate atomic structure from experimental characterized
image/spectrum. Application of this method to a series of
images/spectra obtained from in-situ experiments can yield
the operando dynamic structure of catalyst formation and

Figure 7. ML in experimental characterization of surface structures of heterogeneous catalysts. a) Schematic for DeepSPM, a ML-based
autonomous artificial intelligence system for autonomous-scanning probe microscopy. Reproduced with permission.[89] Copyright 2020, Springer
Nature. b) Top: Workflow to solve structure of a metal catalyst from experimental XANES. Bottom: Confirmation of NN accuracy with theoretical
particle-averaged XANES spectra, and with experimental data. Reprinted with permission.[90] Copyright 2017, American Chemical Society. Reprinted
with permission.[91] Copyright 2018, American Chemical Society. c) Workflow combining expert knowledge, ML, and spectroscopic data to close
materials gap via physics- and data-driven surrogate models for application in experimental IR spectra. Reproduced with permission.[92] Copyright
2020, Springer Nature.
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evolution, thereby solving “black box” problems in catalysis
(Figure 8a). An “inverting” of XANES spectra to catalytic
activity descriptors has been reported by Timoshenko
et al.[106] Additionally, practical tools to generate atomic
structures with Cartesian atomic coordinates were devel-
oped to push this inverse reconstruction to wider
application.[107]

5. Summary and Outlook

ML is increasingly applied to study the surface structure of
heterogeneous catalysts. From accelerating and combining
multi-scaling modelling methods, including DFT, MD, and
MC, to identifying, analyzing, and mining experimental
characterization data, advanced ML tools are replacing
empirical approaches and turning them into data-driven
methods. This dynamic is expected to address the present
poor understanding of the catalyst surface structure espe-
cially that for in-situ dynamic structural change(s) under
reaction conditions, and boost developments in catalysis.
Based on this, we conclude with the following outlook:
1. Although experimental characterization can give accu-

rate and intuitive cognition, it is not efficient in produc-
ing the sufficiently big dataset required for ML. Theoret-
ical computation and simulations based on experimental
findings can grow the database needed, however, for ML
training. Theoretical computation therefore will remain
important to assist ML and drive the growing under-
standing of the whole structure from initial physics and
chemistry knowledge (Figure 8b). In addition, there is
room for improvement in agreement between computa-
tional simulation and experiment under reaction con-
ditions such as light, electricity, plasma, and micro-
environments including solvents and promoters. ML
methods will provide a bridge between theoretical
simulation and experiment, and aid the development of
operando computation methodology.

2. The continuing study of catalyst surface stability will
serve catalyst development and become part of the
workflow for catalyst design. Designed catalysts need to
be assessed for stability during reaction. Conventional
computing methods are, however, not adequate to meet

the demands for significantly numerous modelling and
operando computations. ML will address this as part of
the workflow to predict and combine different simulation
scales. There are a number of reports[108] on using ML to
first screen stable surface structures, and then proceed to
catalyst design from these structures. This is expected to
become the established ML method and become wide-
spread in predicting catalyst surface structure. Impor-
tantly, when a catalyst stability window[109] does not
match the reaction conditions, physics-driven interpret-
able ML can be combined to tune the stability/activity
window, for example, via incorporating oxidative/reduc-
tive heteroatoms, selecting suitable substrates or support
materials, or changing reaction conditions with solvents/
micro-environments to rationally modify the catalyst to
maintain stability of the active site during reaction.

3. Innovative artificial-intelligence and ML methods will be
needed to develop catalysis and surface science. In
particular methods that provide design guidance. For
example, natural language processing (NLP)[110] can
extract knowledge of surface science from significant
literature via a search of (considered) keywords. It is
expected to underpin therefore more generalized ap-
proaches to stabilize a specific active site on catalyst
surfaces. Establishing a suitable transformation
language[111] for surface microstructures is practically
promising. Abstract grammars[112] will be developed that
underpin theoretical level guidance. With discovery of
structure–activity relationships and reaction mechanisms,
rational ML design will become the new norm to describe
surface behaviour and to design efficient heterogeneous
catalysts
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Angewandte
ChemieMinireviews

Angew. Chem. Int. Ed. 2023, 62, e202216383 (11 of 13) © 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

 15213773, 2023, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/anie.202216383 by U

niversity of A
delaide A

lum
ni, W

iley O
nline L

ibrary on [01/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Conflict of Interest

The authors declare no conflict of interest.

Keywords: Heterogeneous Catalysts · Machine Learning (ML) ·
Operando Computation · Surface Structures · In-Situ
Characterization

[1] C. B. Duke, Proc. Natl. Acad. Sci. USA 2003, 100, 3858–3864.
[2] a) M. J. Weaver, X. Gao, Annu. Rev. Phys. Chem. 1993, 44,

459–94; b) D. M. Kolb, Angew. Chem. Int. Ed. 2001, 40, 1162–
1181; Angew. Chem. 2001, 113, 1198–1220.

[3] A. D. Becke, J. Chem. Phys. 2014, 140, 18A301.
[4] J. K. Nørskov, T. Bligaard, J. Rossmeisl, C. H. Christensen,

Nat. Chem. 2009, 1, 37–46.
[5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.

Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V.
Dubourg, et al., J. Mach. Learn. Res. 2011, 12, 2825–2830.

[6] J. A. Keith, V. Vassilev-Galindo, B. Cheng, S. Chmiela, M.
Gastegger, K.-R. Müller, A. Tkatchenko, Chem. Rev. 2021,
121, 9816–9872.

[7] T. Zubatiuk, O. Isayev, Acc. Chem. Res. 2021, 54, 1575–1585.
[8] O. T. Unke, S. Chmiela, H. E. Sauceda, M. Gastegger, I.

Poltavsky, K. T. Schütt, A. Tkatchenko, K.-R. Müller, Chem.
Rev. 2021, 121, 10142–10186.

[9] J. A. Esterhuizen, B. R. Goldsmith, S. Linic, Nat. Catal. 2022,
5, 175–184.

[10] B. Sanchez-Lengeling, A. Aspuru-Guzik, Science 2018, 361,
360–365.

[11] J. S. Dramsch, Adv. Geophys. 2020, 61, 1–55.
[12] Y. Zheng, Y. Jiao, A. Vasileff, S.-Z. Qiao, Angew. Chem. Int.

Ed. 2018, 57, 7568–7579; Angew. Chem. 2018, 130, 7690–7702.
[13] G. Li, C. Felser, Appl. Phys. Lett. 2020, 116, 070501.
[14] A. Hjorth Larsen, J. J. Mortensen, J. Blomqvist, I.E. Castelli,

R. Christensen, M. Dułak, J. Friis, M. N. Groves, B. Hammer,
C. Hargus, E. D. Hermes, P. C. Jennings, P. B. Jensen, J.
Kermode, J. R. Kitchin, E. L. Kolsbjerg, J. Kubal, K.
Kaasbjerg, S. Lysgaard, J. B. Maronsson, T. M. T. Olsen, L.
Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt,
M. Strange, K. S. Thygesen, T. Vegge, L. Vilhelmsen, M.
Walter, Z. Zeng, K. W. Jacobsen, J. Phys. Condens. Matter
2017, 29, 273002.

[15] K. Reuter, Catal. Lett. 2016, 146, 541–563.
[16] D. Lewis, W. Gale, In Proceedings of the ACM SIGIR

Conference on Research and Development in Information
Retrieval 1994, ACM/Springer, pp. 3–12.

[17] B. Settles, Morgan & Claypool 2012.
[18] S. Katoch, S. S. Chauhan, V. Kumar, Multimed Tools Appl.

2021, 80, 8091–8126.
[19] a) A. R. Oganova, C. W. Glass, J. Chem. Phys. 2006, 124,

244704; b) L. B. Vilhelmsen, B. Hammer, J. Chem. Phys.
2014, 141, 044711.

[20] P. C. Jennings, S. Lysgaard, J. S. Hummelshøj, T. Vegge, T.
Bligaard, npj Comput. Mater. 2019, 5, 46.

[21] T. L. Jacobsen, M. S. Jørgensen, B. Hammer, Phys. Rev. Lett.
2018, 120, 026102.

[22] S. Hajinazar, E. D. Sandoval, A. J. Cullo, A. N. Kolmogorov,
Phys. Chem. Chem. Phys. 2019, 21, 8729.

[23] M. K. Bisbo, B. Hammer, Phys. Rev. Lett. 2020, 124, 086102.
[24] L. R. Merte, M. K. Bisbo, I. Sokolović, M. Setvín, B. Hagman,

M. Shipilin, M. Schmid, U. Diebold, E. Lundgren, B.
Hammer, Angew. Chem. Int. Ed. 2022, 61, e202204244;
Angew. Chem. 2022, 134, e202204244.

[25] Y. Zhang, X. Xu, Mater. Chem. Phys. 2021, 267, 124622.

[26] L. M. Mentel, mendeleev—a Python resource for properties
of chemical elements, ions and isotopes, 2014—. Available at:
https://github.com/lmmentel/mendeleev.

[27] R. Tibshirani, J. R. Stat. Soc. Ser. B 1996, 58, 267–288.
[28] J. Fan, J. Lv, J. R. Stat. Soc. Ser. B 2008, 70, 849–911.
[29] I. T. Jolliffe, J. Cadima, Philos. Trans. R. Soc. A 2016, 374,

20150202.
[30] M. H. Hansen, J. A. G. Torres, P. C. Jennings, Z. Wang, J. R.

Boes, O. G. Mamun, T. Bligaard, arXiv:1904.00904v1.
[31] D. Fensel, U. Şimşek, K. Angele, E. Huaman, E. Kärle, O.

Panasiuk, I. Toma, J. Umbrich, A. Wahler, Knowledge
Graphs, Springer, Berlin, 2020.

[32] A. J. Medford, M. R. Kunz, S. M. Ewing, T. Borders, R.
Fushimi, ACS Catal. 2018, 8, 7403–7429.

[33] G. Henkelman, B. P. Uberuaga, H. Jonsson, J. Chem. Phys.
2000, 113, 9901.

[34] J. Yoon, Z. Cao, R. K. Raju, Y. Wang, R. Burnley, A. J.
Gellman, A. B. Farimani, Z. W. Ulissi, Mach. Learn.: Sci.
Technol. 2021, 2, 045018.

[35] a) M.-P. V. Christiansen, H. L. Mortensen, S. A. Meldgaard,
B. Hammer, J. Chem. Phys. 2020, 153, 044107; b) S. A.
Meldgaard, H. L. Mortensen, M. S. Jørgensen, B. Hammer, J.
Phys. Condens. Matter 2020, 32, 404005.

[36] E. L. Kolsbjerg, A. A. Peterson, B. Hammer, Phys. Rev. B
2018, 97, 195424.

[37] a) F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, G.
Monfardini, IEEE Trans. Neural Netw. 2009, 20, 61–80; b) T.
Xie, J. C. Grossman, Phys. Rev. Lett. 2018, 120, 145301.

[38] A. Palizhati, W. Zhong, K. Tran, S. Back, Z. W. Ulissi, J.
Chem. Inf. Model. 2019, 59, 4742–4749.

[39] J. R. Boes, O. Mamun, K. Winther, T. Bligaard, J. Phys.
Chem. A 2019, 123, 2281–2285.

[40] S. Deshpande, T. Maxson, J. Greeley, npj Comput. Mater.
2020, 6, 79.

[41] A. P. Bartók, R. Kondor, G. Csányi, Phys. Rev. B 2013, 87,
184115.

[42] A. P. Bartók, M. C. Payne, R. Kondor, G. Csányi, Phys. Rev.
Lett. 2010, 104, 136403.

[43] A. P. Bartók, S. De, C. Poelking, N. Bernstein, J. R.
Kermode, G. Csányi, M. Ceriotti, Sci. Adv. 2017, 3, e1701816.

[44] M. A. Caro, A. Aarva, V. L. Deringer, G. Csányi, T. Laurila,
Chem. Mater. 2018, 30, 7446–7455.

[45] E. M. Stuve, A. Krasnopoler, D. E. Sauer, Surf. Sci. 1995, 335,
177–185.

[46] Y. Jiao, Y. Zheng, M. Jaroniecb, S. Z. Qiao, Chem. Soc. Rev.
2015, 44, 2060–2086.

[47] K. Reuter, M. Scheffler, Phys. Rev. B 2002, 65, 035406.
[48] J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R.

Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B 2004, 108,
17886–17892.

[49] J. Behler, Chem. Rev. 2021, 121, 10037–10072.
[50] R. Jinnouchi, F. Karsai, G. Kresse, Phys. Rev. B 2019, 100,

014105.
[51] a) R. Ramakrishnan, P. O. Dral, M. Rupp, O. A. v. Lilienfeld,

J. Chem. Theory Comput. 2015, 11, 2087–2096; b) M.
Bogojeski, L. Vogt-Maranto, M. E. Tuckerman, K.-R. Müller,
K. Burke, Nat. Commun. 2020, 11, 5223.

[52] A. Nandi, C. Qu, P. L. Houston, R. Conte, J. M. Bowman, J.
Chem. Phys. 2021, 154, 051102.

[53] J. Xu, X.-M. Cao, P. Hu, J. Chem. Theory Comput. 2021, 17,
4465–4476.

[54] R. B. Wexler, T. Qiu, A. M. Rappe, J. Phys. Chem. C 2019,
123, 2321–2328.

[55] S. Faraji, S. A. Ghasemi, B. Parsaeifard, S. Goedecker, Phys.
Chem. Chem. Phys. 2019, 21, 16270–16281.

[56] S. A. Ghasemi, A. Hofstetter, S. Saha, S. Goedecker, Phys.
Rev. B 2015, 92, 045131.

Angewandte
ChemieMinireviews

Angew. Chem. Int. Ed. 2023, 62, e202216383 (12 of 13) © 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

 15213773, 2023, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/anie.202216383 by U

niversity of A
delaide A

lum
ni, W

iley O
nline L

ibrary on [01/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1073/pnas.0730358100
https://doi.org/10.1146/annurev.pc.44.100193.002331
https://doi.org/10.1146/annurev.pc.44.100193.002331
https://doi.org/10.1002/1521-3773(20010401)40:7%3C1162::AID-ANIE1162%3E3.0.CO;2-F
https://doi.org/10.1002/1521-3773(20010401)40:7%3C1162::AID-ANIE1162%3E3.0.CO;2-F
https://doi.org/10.1002/1521-3757(20010401)113:7%3C1198::AID-ANGE1198%3E3.0.CO;2-N
https://doi.org/10.1063/1.4869598
https://doi.org/10.1038/nchem.121
https://doi.org/10.1021/acs.chemrev.1c00107
https://doi.org/10.1021/acs.chemrev.1c00107
https://doi.org/10.1021/acs.accounts.0c00868
https://doi.org/10.1021/acs.chemrev.0c01111
https://doi.org/10.1021/acs.chemrev.0c01111
https://doi.org/10.1038/s41929-022-00744-z
https://doi.org/10.1038/s41929-022-00744-z
https://doi.org/10.1126/science.aat2663
https://doi.org/10.1126/science.aat2663
https://doi.org/10.1016/bs.agph.2020.08.002
https://doi.org/10.1002/anie.201710556
https://doi.org/10.1002/anie.201710556
https://doi.org/10.1002/ange.201710556
https://doi.org/10.1063/1.5143800
https://doi.org/10.1088/1361-648X/aa680e
https://doi.org/10.1088/1361-648X/aa680e
https://doi.org/10.1007/s10562-015-1684-3
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1063/1.2210932
https://doi.org/10.1063/1.2210932
https://doi.org/10.1063/1.4886337
https://doi.org/10.1063/1.4886337
https://doi.org/10.1039/C9CP00837C
https://doi.org/10.1016/j.matchemphys.2021.124622
https://github.com/lmmentel/mendeleev
https://doi.org/10.1111/j.1467-9868.2008.00674.x
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1021/acscatal.8b01708
https://doi.org/10.1063/1.1329672
https://doi.org/10.1063/1.1329672
https://doi.org/10.1063/5.0015571
https://doi.org/10.1088/1361-648X/ab94f2
https://doi.org/10.1088/1361-648X/ab94f2
https://doi.org/10.1021/acs.jcim.9b00550
https://doi.org/10.1021/acs.jcim.9b00550
https://doi.org/10.1021/acs.jpca.9b00311
https://doi.org/10.1021/acs.jpca.9b00311
https://doi.org/10.1021/acs.chemmater.8b03353
https://doi.org/10.1016/0039-6028(95)00454-8
https://doi.org/10.1016/0039-6028(95)00454-8
https://doi.org/10.1039/C4CS00470A
https://doi.org/10.1039/C4CS00470A
https://doi.org/10.1021/jp047349j
https://doi.org/10.1021/jp047349j
https://doi.org/10.1021/acs.chemrev.0c00868
https://doi.org/10.1021/acs.jctc.5b00099
https://doi.org/10.1063/5.0038301
https://doi.org/10.1063/5.0038301
https://doi.org/10.1021/acs.jctc.1c00261
https://doi.org/10.1021/acs.jctc.1c00261
https://doi.org/10.1021/acs.jpcc.8b11093
https://doi.org/10.1021/acs.jpcc.8b11093
https://doi.org/10.1039/C9CP02213A
https://doi.org/10.1039/C9CP02213A


[57] J. Chapman, R. Ramprasad, J. Phys. Chem. C 2020, 124,
22127–22136.

[58] H. H. Halim, Y. Morikawa, ACS Phys. Chem. Au 2022, 2,
430–447.

[59] J. S. Elias, N. Artrith, M. Bugnet, L. Giordano, G. A. Botton,
A. M. Kolpak, Y. Shao-Horn, ACS Catal. 2016, 6, 1675–1679.

[60] Y. Yang, Z. Guo, A. J. Gellman, J. R. Kitchin, J. Phys. Chem.
C 2022, 126, 1800–1808.

[61] B. Jiang, J. Li, H. Guo, J. Phys. Chem. Lett. 2020, 11, 5120–
5131.

[62] X. Zhou, Y. Zhang, H. Guo, B. Jiang, Phys. Chem. Chem.
Phys. 2021, 23, 4376–4385.

[63] M. Liu, Y. Yang, J. R. Kitchin, J. Chem. Phys. 2021, 154,
134701.

[64] D. P. Landau, K. Binder, A Guide to Monte Carlo Simulations
in Statistical Physics, 4th ed., Cambridge University Press,
Cambridge, 2014.

[65] D. Cheng, Z.-J. Zhao, G. Zhang, P. Yang, L. Li, H. Gao, S.
Liu, X. Chang, S. Chen, T. Wang, G. A. Ozin, Z. Liu, J.
Gong, Nat. Commun. 2021, 12, 395.

[66] B. W. J. Chen, B. Wang, M. B. Sullivan, A. Borgna, J. Zhang,
ACS Catal. 2022, 12, 2540–2551.

[67] C. Schrana, F. L. Thiemanna, P. Rowea, E. A. Müller, O.
Marsalekf, A. Michaelides, Proc. Natl. Acad. Sci. USA 2021,
118, e2110077118.

[68] S. K. Natarajan, J. Behler, Phys. Chem. Chem. Phys. 2016, 18,
28704.

[69] V. Quaranta, J. Behler, M. Hellström, J. Phys. Chem. C 2019,
123, 1293–1304.

[70] N. Artrith, A. M. Kolpak, Nano Lett. 2014, 14, 2670–2676.
[71] S. De, A. P. Bartok, G. Csányi, M. Ceriotti, Phys. Chem.

Chem. Phys. 2016, 18, 13754–13769.
[72] Y. Basdogan, M. C. Groenenboom, E. Henderson, S. De,

S. B. Rempe, John A. Keith, J. Chem. Theory Comput. 2020,
16, 633–642.

[73] C. Griesser, H. Li, E.-M. Wernig, D. Winkler, N. S. Nia, T.
Mairegger, T. Götsch, T. Schachinger, A. Steiger-Thirsfeld, S.
Penner, D. Wielend, D. Egger, C. Scheurer, K. Reuter, J.
Kunze-Liebhäuser, ACS Catal. 2021, 11, 4920–4928.

[74] Z. W. Ulissi, A. R. Singh, C. Tsai, J. K. Nørskov, J. Phys.
Chem. Lett. 2016, 7, 3931–3935.

[75] P. G. Ghanekar, S. Deshpande, J. Greeley, Nat. Commun.
2022, 13, 5788.

[76] X.-T. Li, L. Chen, C. Shang, Z.-P. Liu, J. Am. Chem. Soc.
2021, 143, 6281–6292.

[77] S.-D. Huang, C. Shang, P.-L. Kang, X.-J. Zhang, Z.-P. Liu,
Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2019, 9, e1415.

[78] Y.-H. Fang, D.-D. Song, H.-X. Li, Z.-P. Liu, J. Phys. Chem. C
2021, 125, 10955–10963.

[79] J. Timmermann, F. Kraushofer, N. Resch, P. Li, Y. Wang, Z.
Mao, M. Riva, Y. Lee, C. Staacke, M. Schmid, C. Scheurer,
G. S. Parkinson, U. Diebold, K. Reuter, Phys. Rev. Lett. 2020,
125, 206101.

[80] N. Artrith, A. Urban, G. Ceder, J. Chem. Phys. 2018, 148,
241711.

[81] X. Li, W. Paier, J. Paier, Front. Chem. 2020, 8, 601029.
[82] C. W. Rosenbrock, K. Gubaev, A. V. Shapeev, L. B. Pártay,

N. Bernstein, G. Csányi, G. L. W. Hart, npj Comput. Mater.
2021, 7, 24.

[83] Y. Wang, Y.-Q. Su, E. J. M. Hensen, D. G. Vlachos, Chem.
Mater. 2022, 34, 1611–1619.

[84] Y. Wang, Y.-Q. Su, E. J. M. Hensen, D. G. Vlachos, ACS
Nano 2020, 14, 13995–14007.

[85] J. Behler, M. Parrinello, Phys. Rev. Lett. 2007, 98, 146401.
[86] J. Weinreich, M. L. Paleico, J. Behler, J. Phys. Chem. C 2021,

125, 14897–14909.
[87] J. Xu, W. Xie, Y. Han, P. Hu, ACS Catal. 2022, 12, 14812–

14824.
[88] Y. Wang, C. Wöll, Chem. Soc. Rev. 2017, 46, 1875–1932.
[89] A. Krull, P. Hirsch, C. Rother, A. Schiffrin, C. Krull,

Commun. Phys. 2020, 3, 54.
[90] J. Timoshenko, D. Lu, Y. Lin, A. I. Frenkel, J. Phys. Chem.

Lett. 2017, 8, 5091–5098.
[91] J. Timoshenko, A. Halder, B. Yang, S. Seifert, M. J. Pellin, S.

Vajda, A. I. Frenkel, J. Phys. Chem. C 2018, 122, 21686–
21693.

[92] J. L. Lansford, D. G. Vlachos, Nat. Commun. 2020, 11, 1513.
[93] Y. Zhang, M. Li, S. Han, Q. Ren, J. Shi, Sensors 2019, 19,

3914.
[94] K. He, G. Gkioxari, P. Dollár, R. Girshick, IEEE Trans.

Pattern Anal. Mach. Intell. 2020, 42, 386–397.
[95] Z. Jiang, J. Li, Y. Yang, L. Mu, C. Wei, X. Yu, P. Pianetta, K.

Zhao, P. Cloetens, F. Lin, Y. Liu, Nat. Commun. 2020, 11,
2310.

[96] J. B. Goetz, Y. Zhang, M. J. Lawler, SciPost Phys. 2020, 8,
087.

[97] J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen,
Phys. Chem. Chem. Phys. 2010, 12, 5503–5513.

[98] O. Bunău, Y. Joly, J. Phys. Condens. Matter 2009, 21, 345501.
[99] Y. Liu, N. Marcella, J. Timoshenko, A. Halder, B. Yang, L.

Kolipaka, M. J. Pellin, S. Seifert, S. Vajda, P. Liu, A. I.
Frenkel, J. Chem. Phys. 2019, 151, 164201.

[100] M. R. Carbone, S. Yoo, M. Topsakal, D. Lu, Phys. Rev.
Mater. 2019, 3, 033604.

[101] S. A. Guda, A. S. Algasov, A. A. Guda, A. Martini, A. N.
Kravtsova, A. L. Bugaev, L. V. Guda, A. V. Soldatov, J. Surf.
Invest. X-Ray Synchrotron Neutron Tech. 2021, 15, 934–938.

[102] X. Wang, S. Jiang, W. Hu, S. Ye, T. Wang, F. Wu, L. Yang, X.
Li, G. Zhang, X. Chen, J. Jiang, Y. Luo, J. Am. Chem. Soc.
2022, 144, 16069–16076.

[103] R. Ouyang, S. Curtarolo, E. Ahmetcik, M. Scheffler, L. M.
Ghiringhelli, Phys. Rev. Mater. 2018, 2, 083802.

[104] W. Hu, S. Ye, Y. Zhang, T. Li, G. Zhang, Y. Luo, S.
Mukamel, J. Jiang, J. Phys. Chem. Lett. 2019, 10, 6026–6031.

[105] K. Xu, E. Darve, J. Comput. Phys. 2022, 453, 110938.
[106] J. Timoshenko, A. I. Frenkel, ACS Catal. 2019, 9, 10192–

10211.
[107] V. Fung, S. Jia, J. Zhang, S. Bi, J. Yin, P. Ganesh, 2022,

arXiv:2207.13227.
[108] a) R. A. Flores, C. Paolucci, K. T. Winther, A. Jain, J. A. G.

Torres, M. Aykol, J. Montoya, J. K. Nørskov, M. Bajdich, T.
Bligaard, Chem. Mater. 2020, 32, 5854–5863; b) S. Ma, Z.-P.
Liu, Nat. Commun. 2022, 13, 2716.

[109] H. Li, K. Reuter, ACS Catal. 2022, 12, 10506–10513.
[110] V. Tshitoyan, J. Dagdelen, L. Weston, A. Dunn, Z. Rong, O.

Kononova, K. A. Persson, G. Ceder, A. Jain, Nature 2019,
571, 95–98.

[111] C. Edwards, T. Lai, K. Ros, G. Honke, H. Ji, 2022,
arXiv:2204.11817.

[112] J. T. Margraf, Z. W. Ulissi, Y. Jung, K. Reuter, J. Phys. Chem.
C 2022, 126, 2931–2936.

Manuscript received: November 7, 2022
Accepted manuscript online: December 12, 2022
Version of record online: January 9, 2023

Angewandte
ChemieMinireviews

Angew. Chem. Int. Ed. 2023, 62, e202216383 (13 of 13) © 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

 15213773, 2023, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/anie.202216383 by U

niversity of A
delaide A

lum
ni, W

iley O
nline L

ibrary on [01/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1021/acs.jpcc.0c05512
https://doi.org/10.1021/acs.jpcc.0c05512
https://doi.org/10.1021/acsphyschemau.2c00017
https://doi.org/10.1021/acsphyschemau.2c00017
https://doi.org/10.1021/acscatal.5b02666
https://doi.org/10.1021/acs.jpcc.1c09647
https://doi.org/10.1021/acs.jpcc.1c09647
https://doi.org/10.1021/acs.jpclett.0c00989
https://doi.org/10.1021/acs.jpclett.0c00989
https://doi.org/10.1039/D0CP06535H
https://doi.org/10.1039/D0CP06535H
https://doi.org/10.1063/5.0046440
https://doi.org/10.1063/5.0046440
https://doi.org/10.1021/acscatal.1c05419
https://doi.org/10.1039/C6CP05711J
https://doi.org/10.1039/C6CP05711J
https://doi.org/10.1021/acs.jpcc.8b10781
https://doi.org/10.1021/acs.jpcc.8b10781
https://doi.org/10.1021/nl5005674
https://doi.org/10.1039/C6CP00415F
https://doi.org/10.1039/C6CP00415F
https://doi.org/10.1021/acs.jctc.9b00605
https://doi.org/10.1021/acs.jctc.9b00605
https://doi.org/10.1021/acscatal.1c00415
https://doi.org/10.1021/acs.jpclett.6b01254
https://doi.org/10.1021/acs.jpclett.6b01254
https://doi.org/10.1021/jacs.1c02471
https://doi.org/10.1021/jacs.1c02471
https://doi.org/10.1021/acs.jpcc.1c02222
https://doi.org/10.1021/acs.jpcc.1c02222
https://doi.org/10.1063/1.5017661
https://doi.org/10.1063/1.5017661
https://doi.org/10.1021/acs.chemmater.1c03616
https://doi.org/10.1021/acs.chemmater.1c03616
https://doi.org/10.1021/acsnano.0c06472
https://doi.org/10.1021/acsnano.0c06472
https://doi.org/10.1021/acs.jpcc.1c02314
https://doi.org/10.1021/acs.jpcc.1c02314
https://doi.org/10.1021/acscatal.2c03976
https://doi.org/10.1021/acscatal.2c03976
https://doi.org/10.1039/C6CS00914J
https://doi.org/10.1021/acs.jpclett.7b02364
https://doi.org/10.1021/acs.jpclett.7b02364
https://doi.org/10.1021/acs.jpcc.8b07952
https://doi.org/10.1021/acs.jpcc.8b07952
https://doi.org/10.3390/s19183914
https://doi.org/10.3390/s19183914
https://doi.org/10.1039/b926434e
https://doi.org/10.1063/1.5126597
https://doi.org/10.1134/S1027451021050050
https://doi.org/10.1134/S1027451021050050
https://doi.org/10.1021/jacs.2c06288
https://doi.org/10.1021/jacs.2c06288
https://doi.org/10.1021/acs.jpclett.9b02517
https://doi.org/10.1016/j.jcp.2021.110938
https://doi.org/10.1021/acscatal.9b03599
https://doi.org/10.1021/acscatal.9b03599
https://doi.org/10.1021/acs.chemmater.0c01894
https://doi.org/10.1021/acscatal.2c01732
https://doi.org/10.1038/s41586-019-1335-8
https://doi.org/10.1038/s41586-019-1335-8
https://doi.org/10.1021/acs.jpcc.1c10285
https://doi.org/10.1021/acs.jpcc.1c10285

