

2nd Advanced Optical Metrology Compendium

Advanced Optical Metrology

Geoscience | Corrosion | Particles | Additive Manufacturing: Metallurgy, Cut Analysis & Porosity

WILEY

The latest eBook from Advanced Optical Metrology. Download for free.

This compendium includes a collection of optical metrology papers, a repository of teaching materials, and instructions on how to publish scientific achievements.

With the aim of improving communication between fundamental research and industrial applications in the field of optical metrology we have collected and organized existing information and made it more accessible and useful for researchers and practitioners.

EVIDENT OLYMPUS

Confined Tri-Functional FeO, @MnO₂@SiO₂ Flask **Micromotors for Long-Lasting Motion and Catalytic Reactions**

Yangyang Yang, Lei Shi, Jingkai Lin, Panpan Zhang, Kunsheng Hu, Shuang Meng, Peng Zhou, Xiaoguang Duan,* Hongai Sun, and Shaobin Wang*

H₂O₂-fueled micromotors are state-of-the-art mobile microreactors in environmental remediation. In this work, a magnetic FeO, @MnO2@SiO2 micromotor with multi-functions is designed and demonstrated its catalytic performance in H₂O₂/peroxymonosulfate (PMS) activation for simultaneously sustained motion and organic degradation. Moreover, this work reveals the correlations between catalytic efficiency and motion behavior/mechanism. The inner magnetic FeOx nanoellipsoids primarily trigger radical species ("OH and O2") to attack organics via Fenton-like reactions. The coated MnO₂ layers on FeO_x surface are responsible for decomposing H₂O₂ into O₂ bubbles to provide a propelling torque in the solution and generating SO₄⁻⁻ and 'OH for organic degradation. The outer SiO₂ microcapsules with a hollow head and tail result in an asymmetrical Janus structure for the motion, driven by O2 bubbles ejecting from the inner cavity via the opening tail. Intriguingly, PMS adjusts the local environment to control overviolent O_2 formation from H_2O_2 decomposition by occupying the Mn sites via inter-sphere interactions and enhances organic removal due to the strengthened contacts and Fenton-like reactions between inner FeO_x and peroxides within the microreactor. The findings will advance the design of functional micromotors and the knowledge of micromotor-based remediation with controlled motion and high-efficiency oxidation using multiple peroxides.

1. Introduction

Y. Yang, J. Lin, K. Hu, X. Duan, S. Wang

Artificial self-propelled micromotors with an asymmetrical structure can swim in a liquid solution under physical/chemical

School of Chemical Engineering and Advanced Materials The University of Adelaide North Terrace, Adelaide, South Australia 5005, Australia E-mail: xiaoguang.duan@adelaide.edu.au; shaobin.wang@adelaide.edu.au L Shi Joint International Research Laboratory of Biomass Energy and Materials College of Materials Science and Engineering Nanjing Forestry University Nanjing 210037, China

The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/smll.202207666.

© 2023 The Authors. Small published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

stimuli (e.g., light, ultrasound, magnetic field, temperature, H₂O₂, etc.).^[1] As a green chemical, hydrogen peroxide can be decomposed by various metal-based materials (e.g., Pt, Ag, MnO₂, etc.)^[2-4] and generate O₂ bubbles to drive micromotors. Owing to high catalytic activities (Equation (1)) and biocompatibility, MnO₂-based materials have shown advantages in the H₂O₂-fueled micromotors.^[5]

$$H_2O_2 \xrightarrow{MnO_2} H_2O + \frac{1}{2}O_2 \uparrow$$
(1)

However, H₂O₂ decomposition to O₂ is competitive in producing hydroxyl radicals in Fenton reactions:^[5] the higher conversion to O2, the fewer radicals produced from H₂O₂ decomposition for organic removal. Such side a reaction significantly limits the application of MnO₂ micromotors in environmental catalysis.^[6]

Recently, Fenton-active compounds (e.g., Fe_2O_3 , Fe_3O_4) have been considered in Mn-based micromotors via physical adsorption or chemical nucleation

growth to improve the catalytic activity.^[7-9] SiO₂/MnO₂ tubular micromotors decorated with Fe₂O₃ nanoparticles were tested in H₂O₂-based Fenton-like reactions under visible light.^[10] Magnetic MnO₂@pollen micromotors were also used to

P. Zhang School of Material Science and Engineering Jiangsu University Zhenjiang 212013, China S. Meng, P. Zhou College of Architecture and Environment

Sichuan University Chengdu 610065, China

H. Sun School of Science

Edith Cowan University

270 Joondalup Drive, Joondalup, Western Australia 6027, Australia

remove tetracycline.^[11] Although the oxidation of organics was enhanced via the assistance of Fenton-active compounds, the trade-offs between motion behavior (the torque) and oxidation efficiency (on-demand catalysis) are less investigated while both are peroxide-consuming processes.^[11–14] Thus, the self-propelled motions, in situ-induced micro-mixing environment, and intensified mass transfer of micromotors in water for oxygen and radical generation appeal to environmental catalysis. However, it is difficult to achieve the dual actions of simultaneously strong motion and high organic degradation of nanomotors unless increasing H_2O_2 input in the oxidation system.^[11,15,16] More recently, perxymonosulfate (PMS) has been suggested for sulfate radical-based Fenton-like reaction and MnO₂ exhibited excellent performance in PMS activation.^[11] Unfortunately, limit work has been applied by micromotors.

Meanwhile, various surfactants (e.g., Triton X, Tween 20, and sodium dodecyl sulfate) were generally applied to increase the hydrophilicity of micromotor surfaces for mobility.^[7,15] In the remediation system, surfactants are toxic chemicals and could decrease the oxidation efficiency of organics as they would consume free radicals.^[15] For avoiding the use of surfactants, porous SiO₂ or carbonaceous shells are applied to provide an open micro-environment to decompose H₂O₂ into O₂ in a solution.^[17–23] The controllable shapes (e.g., flask-like or tadpole-like structures) with a regulated opening will also provide an inner cavity to accommodate H₂O₂-sensitive seeds to accelerate the mass transfer of hydrogen peroxide.^[19,24,25]

In this work, we prepared a flask-like FeO_x@MnO₂@SiO₂ micromotor with self-propelling to degrade antibiotics in the PMS/H₂O₂ system. The micromotors with hollow tails of different lengths were developed to explore the relations between structure, velocity, and degradation efficiency. The motion behaviors of H₂O₂-fueled micromotors with different aging durations and solutions pH₀ as well as the pollutant (naproxen) degradation performance in the PMS/H2O2 system were comprehensively investigated to reveal the motion mechanisms. We found that PMS could not only provide extra free radicals to attack organics but also slow down the H₂O₂ decomposition, realizing a long-lasting motion during the remediation process. Through analyzing the generation and variation of reactive oxygen species (ROS) and detecting the change in solution pH, the mechanism of antibiotic removal was systematically unveiled. This work provides a new design of micromotors and their application in PMS-based Fenton reactions. Moreover, this work will provide an in-depth understanding of the complicated impacts of micromotor morphology and its components in regulating the torque, mass transfer of reactants, and peroxide concentration in the confined microenvironment to achieve long-lasting propelling and catalytic efficiency for antibiotic purification in water.

2. Results and Discussion

2.1. Design and Synthesis of FeO_x@MnO₂@SiO₂ Micromotors

Inspired by the free-mechanical motion of micromotors, we design a magnetic and multifunctional Fe-Mn-Si microcapsule. As shown in **Figure 1**a, α -Fe₂O₃, α -Fe₂O₃/Fe₃O₄ (defined as

FeO_x), FeO_x@MnO₂, and FeO_x@MnO₂@SiO₂ were well prepared by different methods.^[17,26,27] Specially, *α*-Fe₂O₃ nanoellipsoids (<500 nm, JCPDS No. 33-0664, Figure 1b) with a rough surface were obtained via the hydrolysis of iron chloride. Then, partial α -Fe₂O₃ was thermally reduced to magnetic Fe₃O₄ (JCPDS No. 26-1136) in H₂ atmosphere. FeO_x surface became smooth due to the lattice reconstruction (Figure 1c). After coating with lamellar δ MnO₂ (Figure S2, Supporting Information), FeO_x@MnO₂ nanoellipsoids were used as seeds to trigger the growth of amorphous silica shells on MnO₂ surfaces (Figure 1d). In Figure 1e-e5, the elemental mapping showed that the surface of FeO_x@MnO₂ nanoellipsoids was well coated by a SiO₂ shell. In addition, after dissolving the metal components with hydrochloric acid, the individual SiO₂ shell linked with other shells, resulting in a large cluster to trigger the nucleation of SiO₂ microcapsules (Figure S3, Supporting Information). Moreover, as illustrated in Figure 1f-f5, the indirect contact between SiO₂ and MnO₂ (a remarkable gap) was due to their heterogeneous characteristics, which was conducive to the mass transfer of the solution and reactants. Notably, the $FeO_x@$ MnO₂@SiO₂ clusters are located at the inner head of SiO₂ microcapsules (<2 μm) (Figure 1g-h4). This phenomenon may be related to the growth process of SiO₂ microcapsules.

To unveil the growth mechanism of SiO₂ microcapsules, we investigated the evolution of SiO₂ microcapsules with different synthesis factors, including H2O, sodium citrate, NH3·H2O, tetraethylorthosilicate (TEOS), and aging time. In a typical mutual-template-assisted method, SiO2 was derived from the hydrolysis of TEOS, and NH₃·H₂O acted as the catalyst.^[17,28] Sodium citrate would react with NH₃·H₂O to form ammonium citrate as the template to trigger the nucleation and growth of SiO2. The template was dissolved by water after the reaction, resulting in hollow SiO₂ microcapsules. The head sizes of microcapsules could be tailored by different solvents (e.g., ethanol, 1-propanol, and isopropanol), which may be due to the state of templates in various solvents.^[17] Particularly, SiO₂ microcapsules formed in ethanol demonstrated the biggest inner cavity, which was more conducive to mass transfer with the surrounding solution. Thus, we used ethanol as the solvent to manufacture SiO₂ microreactors. Besides, we found that H₂O, NH₃·H₂O, and TEOS can promote SiO₂ growth.^[17] As shown in Figure 2a, SiO₂ microcapsules change from condensed SiO₂ film to microcapsules with a rising content of H₂O from 1.7 to 4.7 mL, and their yield increases. Moreover, a higher loading of sodium citrate would consume more NH3·H2O, leading to a half-baked SiO₂ microcapsule due to the slower growth rate (Figure 2b). With the increased content of $NH_3 \cdot H_2O$, the template (ammonium citrate) experienced a variation in shapes or other physical features (e.g., solubility), affecting the connection between the head and tail. Finally, the structure of the tails was broken at a very high dose of $NH_3 \cdot H_2O$ (350 µL) in Figure 2c. More TEOS from 50 to 250 µL would accelerate the hydrolysis, resulting in a long tail (Figure 2d). Based on the above research, the optimal reaction conditions are 4.7 mL H₂O, 1 mL sodium citrate (0.06 м), 190 µL NH₃·H₂O, and 150 µL TEOS. We further investigated the influence of aging time in Figure S4, Supporting Information. The head of SiO₂ microcapsules formed an opening in 60 min; afterward, the hollow tail became longer with the increased aging duration.

Figure 1. a) XRD patterns of α-Fe₂O₃, δ-MnO₂, SiO₂, α-Fe₂O₃/Fe₃O₄, FeO_x@MnO₂, and FeO_x@MnO₂@SiO₂; SEM images of b) α-Fe₂O₃, c) α-Fe₂O₃/Fe₃O₄, and d) FeO_x@MnO₂; e–h) STEM images with EDS mapping analysis of FeO_x@MnO₂@SiO₂.

Based on the above investigation, the SiO₂ microcapsule growth process is summarized in Figure 3. *α*-Fe₂O₃ nanoellipsoids were first prepared via the hydrolysis of iron chloride. After H₂ treatment, partial *α*-Fe₂O₃ was transformed into magnetic Fe₃O₄, forming FeO_x nanoellipsoids with smooth surfaces. Then the FeO_x was coated by sheet-like MnO₂ layers. Due to the lower zeta potential, FeO_x (-31.7 mV) preferably adsorbs permanganate ions compared with α -Fe₂O₃ (-28.2 mV) and grows a thicker MnO₂ lamella, as shown in Figure S5, Supporting Information. Similar results of MnO₂ growth were observed in cubic *α*-Fe₂O₃ (Figure S6, Supporting Information). Afterward, the porous SiO2 shells were constructed on the MnO₂ surface via TEOS hydrolysis, which will not prevent the mass transfer and reaction between FeO_x@MnO₂ and reactants in the solution.^[18] With the sustained hydrolysis of TEOS, several FeO_x@MnO₂@SiO₂ nanoellipsoids were connected by porous SiO₂, forming a larger cluster for the growth of SiO₂ microcapsules. The templates (ammonium citrate) may adsorb on the seed surfaces via the electrostatic effect and attach to the head before 45 min.^[25] Then, the SiO₂ microcapsules develop a head with a cavity and a hollow tail with prolonged aging time (Figure 4a-f).

A similar result was also found for α -Fe₂O₃@MnO₂@SiO₂ micromotors (Figure S7, Supporting Information). Intriguingly, the MnO₂ coating was more conducive to forming SiO₂-framed seeds. As shown in Figure S8, Supporting Information, more

Fe₂O₃ individuals did not construct α -Fe₂O₃@SiO₂ micromotors but exposing the active compounds outsides, which may be due to the good dispersion and small sizes of α -Fe₂O₃ nanoellipsoids (Figure S9, Supporting Information). However, seed over-aggregation would affect the purity of FeO_x@MnO₂@SiO₂ micromotors. As shown in Figure S10, Supporting Information, further increasing the loading of FeO_x@MnO₂ nanoellipsoids led to severe aggregation and massive empty SiO₂ microcapsules. To achieve the optimal utilization of SiO₂ microcapsules, we added 0.13 mL of FeO_x@MnO₂ slurry (10 mg mL⁻¹) during the synthesis of FeO_x@MnO₂@SiO₂ micromotors.

2.2. Evaluation of Motion Behavior of $FeO_x@MnO_2@SiO_2$ Micromotors

The mobility of $FeO_x@MnO_2@SiO_2$ micromotors was examined by an optical microscope. MnO_2 is an effective catalyst for H_2O_2 decomposition (the fuel) to produce O_2 bubbles (the torque) via Equation (1). Upon reacting with H_2O_2 , massive O_2 bubbles are released into the solution from the surface of $FeO_x@MnO_2@SiO_2$ clusters in the microreactor. The SiO_2 microcapsules with an asymmetric structure direct the airflow through the opening at the tail. Then, generated O_2 bubbles propel the micromotors to move automatically in the solution. Due to the porous structures of amorphous SiO_2, no surfactant

Figure 2. SEM images of SiO₂ microcapsules with different growth factors: a) H_2O , b) sodium citrate, c) $NH_3 \cdot H_2O$, and d) TEOS.

(e.g., sodium dodecyl sulfate) was applied to enhance motion behaviors. Because the large opening is favorable for mass transfer, two micromotors prepared at an aging duration of 75 min (FeO_x@MnO₂@SiO₂-75 min (Figure 4c) and Fe₂O₃@MnO₂@SiO₂-75 min (Figure S7c, Supporting Information)) were selected to analyze the self-driven movement in 1 wt% H_2O_2 aqueous solution.

Figure 5a presents diverse locomotion trajectories of $FeO_x@MnO_2@SiO_2$ micromotors in the H_2O_2 solution, including linear, orbital, rotary, and helical modes (Video S1, Supporting Information). The non-directionality could be tailored by the magnetic Fe_3O_4 components in FeO_x . As shown in Figure 5b, O_2 -propelled micromotors can swim following the magnetic guidance in the solution (Video S2, Supporting Information). However, partial empty flask-like SiO_2 shells did not respond to the magnet due to the absence of the active core

(FeO_x@MnO₂).ThemeanvelocityofFeO_x@MnO₂@SiO₂-75minand Fe₂O₃@MnO₂@SiO₂-75 min samples were also evaluated at different H₂O₂ concentrations (1–15 wt%) without controlling solution pH₀. Figure 5c shows that Fe₂O₃@MnO₂@SiO₂ micromotors experienced an insignificant variation at increased H₂O₂ concentrations. In contrast, FeO_x@MnO₂@SiO₂ micromotors ran faster upon introducing more H₂O₂. The mean velocity of FeO_x@MnO₂@SiO₂ micromotors (44–66 μ m s⁻¹, Video S3, Supporting Information) was higher than that of Fe₂O₃@MnO₂@SiO₂ motors (22–27 μ m s⁻¹, Video S4, Supporting Information). This was attributed to the more violent O₂ generation by MnO₂ layers on the surface of FeO_x@MnO₂mono₂@SiO₂ nanoellipsoids (Figure S5, Supporting Information).

In addition, the relations between the motion speed and microstructures were further explored in 1 wt% H_2O_2 solution. As illustrated in Figure 5d and Video S5, Supporting

NANO . MICRO

Figure 3. Proposed growth process of FeO, @MnO2@SiO2 micromotors.

www.advancedsciencenews.com

Information, the mean velocity of FeO_x@MnO₂@SiO₂-75 min motors (45 μ m s⁻¹) was the highest among the micromotors with different aging periods, which was even much greater than $FeO_x@MnO_2@SiO_2-60$ min (35 µm s⁻¹) with the biggest opening (Figure 4b-f, Supporting Information). The slightly smaller opening of FeOx@MnO2@SiO2-75 min is beneficial to providing a stronger propulsion force. The moving speeds decreased to 27 μ m s⁻¹ with 90 min aging and 11 μ m s⁻¹ at 120– 180 min of aging, due to the long tails that prohibited sufficient solution exchange into the microenvironment of the cavity, as evidenced by the delayed movement of FeO_x@MnO₂@SiO₂-150 min in Video S5, Supporting Information.

Furthermore, the influence of solution pH₀ on the motion speed in the presence or absence of PMS was also considered. At pH₀ 4.0 without PMS, the velocity (5.0–21.0 μ m s⁻¹) halved compared to the uncontrolled tests but with a similar variation in speed for the micromotors with different aging times (Video S6, Supporting Information, Figure 5e). Moreover, the speed increased from 0 μ m s⁻¹ (pH₀ = 3.5) to 63 μ m s⁻¹ (pH₀ = 5.0), and then dropped to $0 \,\mu\text{m s}^{-1}$ (pH₀ = 6.0) (Video S7, Supporting Information), which may be attributed to the pH variation during the Fenton-like reaction of FeO_x@MnO₂@SiO₂-75 min/ H₂O₂ system. After adding PMS, the velocity declined dramatically, due to the complexation of PMS with active Mn sites (forming Mn^(II, III)(s)-(HO)OSO3⁻ complexes) via inner-sphere interactions, thus mitigating H₂O₂ decomposition as shown in Figure S11, Supporting Information.^[29]

2.3. Evaluation of Naproxen Degradation of FeO₂@MnO₂@SiO₂ Micromotors

Naproxen, an antibiotic, is a widely known drug to treat non-selective, non-steroidal anti-inflammation.^[30] However, naproxen usage in over 40 years has induced pharmaceuticalassociated wastewater pollution, which poses a threat to the ecosystem due to its hydrophilicity and resistance to microorganisms.^[30,31] Antibiotics could be removed from wastewater via adsorption or degradation by light irradiation or peroxides.^[31-33] In conventional Fenton/Fenton-like reactions, H2O2 will be activated to generate free radicals (e.g., $^{\circ}OH$ and $O_{2}^{\circ-}$) to oxidize the organic pollutants.^[34] PMS can be activated into 'OH, SO4or nonradical catalyst-PMS complexes.^[35] Therefore, H₂O₂ decomposition (to O₂) and Fenton/Fenton-like processes (to generate ROS) will compete for the peroxides. In this work, we aim to establish the correlations between motion velocity and oxidation capacity of micromotors. With the highest moving capability, FeO_x@MnO₂@SiO₂-75 min was used to examine the catalytic performance of naproxen degradation in the PMS/ H₂O₂ system without mechanical stirring. The micromotors did not swim in the solution below pH_0 4 and above pH_0 5.5 (Figure 5e). Thus, we compared the naproxen oxidation at pH_0 4.0-5.5. In Figure S12a, Supporting Information, the self-propelled micromotor attained the highest naproxen oxidation at pH₀ 4.0, thanks to its lower final solution pH (3.8) compared to final pH above 7 for pH₀ 4.5-5.5 (Figure S12b, Supporting

Figure 4. SEM images of FeO_x@MnO₂@SiO₂ micromotors at different aging time: a) 45, b) 60, c) 75, d) 90, e) 120, and f) 150 min.

Information). The acidic environment is favorable for Fentonlike reactions to generate more ROS.^[36] Thus, pH_0 4.0 was used to evaluate naproxen degradation in the following experiments.

Both FeO_x@MnO₂@SiO₂ micromotors (Figure 6a) and H₂O₂ (Figure S13, Supporting Information) could not oxidize naproxen, and sole PMS removed 14% of naproxen in 60 min due to its stronger oxidation potential (1.82 V) (Figure S13, Supporting Information).^[37] With the co-existence of H₂O₂ and PMS, the oxidation efficiency of naproxen changed marginally (13%), suggesting that H_2O_2 did not react with or dramatically affect the oxidation capacity of PMS (Figure S13, Supporting Information). Only 14% of naproxen was removed after 60 min but with a higher reaction rate in the first 30 min in the micromotor/PMS systems, indicating that micromotors without the fuel (H₂O₂) for agitation cannot effectively oxidize naproxen (Figure 6a). Additionally, 7% of naproxen was oxidized by micromotors/H2O2, indicating that the system can generate a small number of ROS via Fenton-like reactions. The oxidation efficiency phenomenally increased in the FeO_x@MnO₂@ SiO₂/PMS/H₂O₂ system (77%), which was much higher than Fe₂O₃@MnO₂@SiO₂/PMS/H₂O₂ (40%).

To investigate the different catalytic activity for the two micromotors, we analyzed the degradation performances of different seeds (e.g., Fe₂O₃, Fe₂O₃@MnO₂, FeO_x, and FeO_x@MnO₂) in Figure S14, Supporting Information. Specifically, FeO_x removed more naproxen (50%) than Fe₂O₃ (37%) due to the presence of rich Fe(II) species that are active in H₂O₂/PMSbased Fenton-like reactions.^[38] This explains the better degradation performance of the FeO_x@MnO₂@SiO₂ micromotor. However, after coating MnO₂ layers, both Fe₂O₃@MnO₂ and FeO_x@MnO₂ oxidized less naproxen in the PMS/H₂O₂ system (17% and 21%, respectively). The declined degradation efficiency was due to the faster H_2O_2 decomposition into O_2 by MnO₂, thus decreasing ROS generation due to insufficient peroxides (Figure S15c,e, Supporting Information). Moreover, the generation of violent bubbles on MnO2 surface would inhibit the direct interaction between Fe_2O_3/FeO_x with peroxides. With the protection of outer SiO₂ microcapsules, FeO_x@MnO₂@SiO₂ micromotors consumed less H2O2 and generated more ROS for naproxen removal (Figure S15a, Supporting Information). In addition, these catalysts decomposed more H₂O₂ in the absence of PMS (Figure S15b,d, f, Supporting Information), leading to more powerful motion (Figure 5f). Thus, the mobility of micromotors was closely related to the catalytic performance of naproxen degradation.

Figure S16a,b, Supporting Information, demonstrates the naproxen removal by FeO_x@MnO₂@SiO₂ micromotors with different aging durations in the PMS/H₂O₂ system. The order of oxidation efficiency is FeO_x@MnO₂@SiO₂ was -75 min > -60 min \approx -90 min > -120 min \approx -180 min > -150 min. Notably, the micromotors experienced two-stage kinetics of naproxen degradation (Figure S16b, Supporting Information). The reaction rate at 5-15 min (*k*1) was much higher than that at 20-60 min (*k*2). The kinetics was affected by the pH variation (Figure S17, Supporting Information). Briefly, after adding FeO_x@MnO₂@SiO₂ micromotors, the solution pH sharply increased from 4.0 to 7.8 within 10 s in the presence of PMS and H₂O₂, and then declined to 4.0 at 20 min, finally reaching

Figure 5. a) Motion trajectories of FeO_x@MnO₂@SiO₂ micromotors at 1 wt% of H₂O₂ solution; b) time-lapse images of FeO_x@MnO₂@SiO₂ micromotors guided by a magnet in 1 wt% of H₂O₂ solution; c) mean velocity of Fe₂O₃@MnO₂@SiO₂ and FeO_x@MnO₂@SiO₂ micromotors at different H₂O₂ concentrations without controlling the solution pH₀; d) mean velocity of FeO_x@MnO₂@SiO₂ micromotors with different aging time at 1 wt% of H₂O₂ without controlling the solution pH₀; e) mean velocity of FeO_x@MnO₂@SiO₂ micromotors with different aging time in H₂O₂ (1 wt%) or H₂O₂/PMS (1 wt%/1 mM) solution with controlling the solution pH₀ 4.0, and different pH₀ (the aging time of the material was 75 min).

3.8 at 60 min. Thus, the higher speed at the stage of above pH₀ 4.0 would promote antibiotic removal (Figure 5e). However, in the solo H₂O₂ system, the solution pH increased to 7.7 after adding micromotors and remained a relatively steady platform (7.8–8.0). The mechanisms of the variations in pH and kinetics are discussed as follows^[39]

$$\equiv Fe^{2+} + H_2O_2 \rightarrow \equiv Fe^{3+} + OH + OH^-$$
(2)

$$\equiv Fe^{3+} + H_2O_2 \rightarrow \equiv Fe^{2+} + O_2^{-} + 2H^+$$
(3)

According to Equation (2), Fenton-like H_2O_2 decomposition will generate massive OH⁻ species, which will elevate the solution pH. Due to continuous H_2O_2 activation in the absence of PMS (Figure S15a,b, Supporting Information), the minor contribution of Equation (3) cannot consume the excessive hydroxide ions, thus reaching a high equilibrium pH 7.8; the process only exerted a 7% of naproxen removal in micromotors/ H_2O_2 (Figure 6a). However, more hydrogen ions would be generated via Equation (3) due to the sluggish H_2O_2 decomposition by PMS in micromotors/ H_2O_2 /PMS.

In addition, the pH variation of $\text{FeO}_x@\text{MnO}_2$ nanoellipsoids in different systems (H₂O₂, PMS, or H₂O₂/PMS) was detected (Figure S18, Supporting Information). The solution pH also increased to 8.2 within 5 min, with the rapid and complete consumption of H₂O₂ (Figure S15d, Supporting Information), and the pH decreased to 7.1 in the system of FeO_x@MnO₂/H₂O₂. Without the protection of SiO₂ microcapsules, FeO_x@MnO₂ nanoellipsoids directly reacted with H_2O_2 and generated massive O_2 bubbles on the MnO₂ surface, affecting the liquidsolid reactions between FeO_x and H_2O_2 in the FeO_x@MnO₂/ H_2O_2 /PMS system. In this process, Equation (3) was inhibited, resulting in the continuous increase of pH from 5.8 (15 min) to 7.0 (60 min) with only 21% naproxen removal (Figure S14, Supporting Information). In contrast, solution pH in PMS/FeO_x@MnO₂ (Figure S18, Supporting Information) and PMS/FeO_x@MnO₂@SiO₂ (Figure S17, Supporting Information) experienced negligible change, resulting from the negligible change of the acidic PMS, which stabilized the solution pH (Figure S19, Supporting Information).

To investigate the relation between the motions of micromotors and the oxidation efficiency of naproxen, we carried out the fitting analysis between mean velocity and reaction rate (Figure 6b). The reaction rate (*k*) increased with the rise of mean velocity. It is indicated that naproxen oxidation was increased due to the enhanced solution mass transfer at a relatively low speed. In addition, the gradual slowdown of self-motion during the degradation reaction (Video S8, Supporting Information) was due to the declined solution pH from 7.8 to 3.8, according to Equation (3) (Figure S17, Supporting Information), led to a higher k1 value than k2. The larger slope of the fitting line of k1 further indicated that more violent movement was beneficial for naproxen removal. In the batch experiment, the micromotor was swimming during the antibiotic degradation in the H₂O₂/ PMS solution for both FeOx@MnO2@SiO2 (Video S8, Supporting Information) and FeO_x@MnO₂ (Video S9, Supporting

NANO · MICRO

www.small-journal.com

www.small-journal.com

ADVANCED SCIENCE NEWS _____

Figure 6. a) Catalytic degradation performance of naproxen by micromotors; b) the correlation between first-order reaction rate constant and velocity upon the micromotors with different aging time in the H_2O_2/PMS system; c) effect of various quenchers on naproxen oxidation; d) scheme of radical generation in the H_2O_2/PMS system by FeO_x and MnO₂. Experimental conditions: [Naproxen]₀ = 5 ppm, [micromotors]₀ = 0.5 g L⁻¹, [PMS]₀ = 1 mm, [H₂O₂]₀ = 1 wt%, pH₀ = 4.0, [ethanol]₀ = [TBA]₀ = 500 mm, [p-BQ]₀ = 1.0 mm, and reaction time = 60 min.

Information). Although more H₂O₂ was decomposed, FeO_x@MnO₂@SiO₂ micromotor kept moving after 60 min in the presence of solo H₂O₂ (Video S10, Supporting Information). As shown in Videos S8-S10, Supporting Information, more giant bubbles formed at the bottom of the containers and then raised to the liquid level, which was also monitored by optical microscopy (Video S11, Supporting Information). This phenomenon was caused by the partially aggregated micromotors. These reactive aggregates would sink toward the bottom first due to the gravity and subsequently generate bigger bubbles to separate the micromotors and induce solution micromixing (Figure S20, Supporting Information). In the microreactor, SiO₂ microcapsules provided a confined environment for the oxidation reaction, and the FeO_x@MnO₂ seeds produced ROS and O₂ bubbles to promote the mass transfer of peroxides and pollutant between the microreactor and macroenvironment (surrounding solution). The self-motion and bubble-induced micromixing would accelerate faster solution exchange, achieving rapid antibiotic degradation in the micromotors/PMS/H₂O₂ system.

Further, to verify the catalytic mechanism of naproxen oxidation, we carried out quenching experiments in the micromotors/PMS/H₂O₂ system in Figure 6c (derived from Figure S21, Supporting Information). Ethanol, tert-butanol (TBA), and p-benzoquinone (p-BQ) as quenchers can respectively identify the contributions of (SO₄⁻⁻ and 'OH), 'OH, and O₂⁻⁻ species.^[40] About 77% of naproxen was oxidized by FeO_x@MnO₂@SiO₂ micromotors with the absence of quenchers. With additions of ethanol, TBA, and p-BQ, naproxen removals were at 21%, 24%, and 47%, respectively, implying that free radicals (e.g., SO₄⁻⁻, 'OH, and O₂⁻⁻) dominated naproxen degradation in the micromotors/PMS/H₂O₂ system. Electron paramagnetic resonance (EPR) tests also confirmed the formation of 'OH and O₂⁻⁻ (Figure S22, Supporting Information). However, the signals of DMPO-SO₄ were not detected due to the insignificant yield of SO₄⁻⁻. In the system of micromotors/H₂O₂, signals of DMPO-OH were found and the signals of DMPO-O₂⁻⁻ were not detected; seven typical peaks referred to 5, 5-dimethylpyrrolidone-2-(oxy)-(1) (DMPOX, the oxidation product of DMPO) were observed.^[41] Without H₂O₂, no radical peaks were detected for micromotors/PMS. We further perform the quenching experiments to confirm the ROS in different systems.

We used FeO_x@MnO₂ seeds, the active components, to investigate the potential ROS in the solo- or dual-peroxide(s) systems. As shown in Figure S23a, Supporting Information, the oxidation efficiency of naproxen in the FeO_x@MnO₂/PMS system (no motion, 29%) was slightly higher than that in the FeO_x@MnO₂/PMS/H₂O₂ system (self-motion, 21%). In addition, only 6% of naproxen was removed in the presence of FeO_x@MnO₂ and H₂O₂, further indicating that violent bubble generation on the catalyst surfaces prohibited the interaction with antibiotics and the subsequent degradation. With the additions of ethanol and TBA, the catalytic performances of naproxen oxidation declined in PMS/H₂O₂ and PMS systems, suggesting that PMS were decomposed to produce SO₄⁻⁻ or (SO₄⁻⁻ and 'OH) (Figure S23b,c, Supporting Information) via Equations (4) and (5).^[42]

$$\equiv \mathbf{M}^{n} + \mathbf{HSO}_{5}^{-} \rightarrow \equiv \mathbf{M}^{n+1} + \mathbf{SO}_{4}^{-} + \mathbf{OH}^{-}$$
(4)

$$SO_4^{-} + OH^{-} \rightarrow SO_4^{2-} + OH$$
 (5)

SCIENCE NEWS _____

IDVANCED

where M referred to metal oxides. In Figure S23d, Supporting Information, the naproxen removal decreased after adding ethanol (4%) and p-BQ (3%). The result suggests the contributions of 'OH and O_2 ⁻⁻ from H_2O_2 via Fenton/Fenton-like reactions. Notably, due to the PMS activation by p-BQ,^[43] more naproxen (40%) was degraded in the PMS/H₂O₂ system (Figure S24b, Supporting Information).

Generally, both MnO_2 and FeO_x were able to trigger the generation of SO_4 , OH, and O_2 in the presence of PMS or H₂O₂.^[6,44] Thus, the solo component in micromotors were investigated in different systems with the presence of different quenchers (Figures S24 and S25, Supporting Information). For MnO₂, similar naproxen removal efficiency (10%) was attained for PMS/H₂O₂ and PMS, which was higher than that of H₂O₂ (6%) (Figure S24a, Supporting Information). With the additions of ethanol and TBA, MnO2 exerted 4% and 7% of naproxen removal, respectively (Figure S24b, Supporting Information), indicating the generation of SO₄⁻⁻ and [•]OH in the co-presence of PMS and H₂O₂. In the MnO₂/PMS system, TBA (7% of naproxen oxidation) quenched more free radicals than ethanol (9%), indicating that a less amount of SO_4 and OH species were generated without the self-motion (Figure S24c, Supporting Information). In Figure S24d, Supporting Information, the addition of TBA decreased the efficiency of naproxen degradation in the MnO_2/H_2O_2 system. Yet, the oxidation efficiency experienced a marginal variation after adding p-BQ, which suggested that MnO2 would produce 'OH radicals according to Equation (2) without forming O_2^{-} species in the MnO₂/H₂O₂ system.

In regarding to FeO_x without self-motion in all systems, the catalytic efficiency of naproxen removal (H₂O₂/PMS) slightly increased in the first 40 min (H₂O₂) due to the contribution of PMS (Figure S25a, Supporting Information). In addition, the lower naproxen degradation after adding ethanol in FeO_x/PMS/ H_2O_2 and FeO_x/PMS systems indicated that minor or no SO_4 . was generated and more 'OH was formed to attack naproxen (Figure S25b,c, Supporting Information). In the FeO_x/H_2O_2 system, TBA and p-BQ dramatically decreased naproxen oxidation, indicating the co-existence of 'OH and O₂.- (Figure S25d, Supporting Information). Because p-BQ can activate PMS to generate ${}^{1}\text{O}_{2}$ and quench 'OH radicals rapidly (1 imes 10⁸ m^{-1} s⁻¹ for \cdot OH, 9.6 × 10⁸ M^{-1} s⁻¹ for O₂ \cdot -).^[45] Thus, we use chloroform $(5.4 \times 10^7 \text{ m}^{-1} \text{ s}^{-1} \text{ for } \cdot \text{OH}, 3.0 \times 10^{10} \text{ m}^{-1} \text{ s}^{-1} \text{ for O}_2 \cdot \text{-})$ as a more selective quencher of $O_2^{\bullet,[45]}$ As shown in Figure S26. Supporting Information, after adding 1.0 and 10 mм of chloroform, the naproxen oxidation experienced a slight variation in FeO_x@MnO₂@SiO₂/H₂O₂/PMS system, indicating the minor contribution of O₂⁻⁻ in Fenton-like reactions.

Figure 6d illustrates the proposed radical generation mechanisms in the presence of MnO_2 and FeO_x . The main ROS are SO_4 , \cdot , \cdot OH, and O_2 , \cdot radicals generated from both PMS and H_2O_2 triggered by MnO_2 (Equations (2), (4), and (5)) and FeO_x (Equations (2)–(5)) via Fenton-like reactions. Different from the dominant Fenton-like catalyst of FeO_x , the crucial role of MnO_2 is to decompose H_2O_2 to generate oxygen bubbles to propel the micromotors. Therefore, as shown in Figure S27, Supporting Information, $FeO_x@MnO_2@SiO_2$ is dual-functional in initiating microreactor self-motion and catalytic degradation of naproxen in the co-presence of PMS and H_2O_2 . Regarding the functions of each component, 1) FeO_x was mainly responsible for ROS generation; 2) MnO2 primarily decomposed H_2O_2 into O_2 bubbles, propelling micromotors in the solution; 3) the outer SiO₂ microcapsule provided an asymmetric vessel to trigger an unbalanced torque for self-motion; 4) the inner SiO₂ shells linked the seeds and attached them to the microcapsules. Besides, the SiO₂ shells of the seed clusters slightly blocked the interaction between MnO₂ and H₂O₂, which reduced the consumption of H₂O₂. In addition to generating radicals, PMS molecules partially occupy active Mn sites on the MnO₂ surfaces and form PMS-MnO2 complexes via inner-sphere interaction. The complexes on Mn sites prohibited H₂O₂ decomposition, which slightly reduces the motion of the motors but suppresses the instant generation of large volumes of gas for sustained motion and ROS generation. Also, the regulated H₂O₂ decomposition preserves more H₂O₂ for Fentonlike reactions inside the microreactor. Thus, there is a trade-off between ROS generation and bubble generation considering the multiphase reactions. Introducing a small amount of PMS provides more ROS and regulates the oxygen generation speed (H₂O₂ decomposition rate), killing two birds with one stone. The well-designated shape further intensifies the torque of the micromotors for fast velocity and mass transfer with the surrounding environment.

To evaluate the realistic application in wastewater purification, we applied the micromotors for catalytic degradation of various water matrices with PMS and H2O2 (Figure S28, Supporting Information). Roughly 77% of naproxen was removed in the Milli-Q water at pH₀ 4. The chlorine ions in the tap water are PMS activators^[46] which caused a sharp increase in naproxen oxidation (98%) in 60 min. Moreover, the pH (6.0-6.3) of the tap water experienced marginal variation during the antibiotic degradation (Figure S29, Supporting Information). Thus, we used a boric buffer to maintain the solution pH 6.3, which resulted in similar reaction kinetics to the Milli-O water. although boric buffer was reported to enhance PMS activation.^[47] In addition, the FeO_x@MnO₂@SiO₂ micromotors can still work in river water, attaining 20% of naproxen removal in 60 min. The declined efficiency was impacted by various background substances (e.g., inorganic ions and organic matters) that substantially consume ROS or block the active sites.^[29] Moreover, the magnetic micromotors could be collected by a magnet after the reaction (Figure S30, Supporting Information) for reuse.

3. Conclusions

We synthesized bubble-propelled and magnetically steerable $FeO_x@MnO_2@SiO_2$ micromotors via a multi-step strategy for effective self-motion and antibiotic oxidation in the PMS/H₂O₂ system. The inner lamellar MnO₂ surfaces coated on the magnetic FeO_x (α -Fe₂O₃/Fe₃O₄) nanoellipsoids were responsible for decomposing H₂O₂ to form O₂ to propel micromotors in the solution. The outer SiO₂ microcapsule with an opening covered the FeO_x@MnO₂ seeds and built an asymmetric Janus structure to steer the torque. The addition of PMS inhibited the violent bubble generation on the MnO₂ surfaces via partially occupying the Mn active sites and thus promoted the contact

www.small-journal.com

NANO · MICRO

between solution (PMS/H_2O_2) and inner FeO_x to generate more ROS via Fenton-like reactions. Thereby, shape-controlled and multiple-component micromotors can achieve self-motion and efficient purification at the expense of low peroxide usage.

4. Experimental Section

ADVANCED SCIENCE NEWS _____

Chemicals: All chemicals are of an analytical grade without further purification. OXONE (KHSO₅·0.5KHSO₄·0.5K₂SO₄, a source of PMS), ferric chloride hexahydrate (FeCl₃·6H₂O), potassium permanganate (KMnO₄), sodium dihydrogen phosphate (NaH₂PO₄), polyvinylpyrrolidone (PVP, average molecular weight 40 000), ethanol, sodium citrate, ammonium hydroxide solution (NH₃·H₂O, 28.0–30.0% NH₃ basis), tetraethylorthosilicate (TEOS), sodium hydroxide (NaO₄), sodium sulfate (Na₂SO₄), sodium bicarbonate (NaHCO₃), potassium iodide (KI), tert-butanol (TBA), p-benzoquinone (p-BQ), and 5,5-dimethyl-1-pyrroline N-oxide (DMPO) were purchased from Sigma-Aldrich. Milli-Q water (18.2 MΩ·cm) was used in all the experiments.

Synthesis Procedures: α -Fe₂O₃ nanoellipsoids were synthesized via a modified method.^[26] Specifically, 14 g FeCl₃ 6H₂O and 100 mg NaH₂PO₄ were dissolved in 2 L water under ultrasonication for 20 min. Then, the solution was placed in an oven at 100 °C for 48 h, yielding dark red precipitates (α -Fe₂O₃) via hydrolysis of iron chloride. α -Fe₂O₃ was collected by several centrifugations and dried overnight at 60 °C. α -Fe₂O₃/Fe₃O₄ (FeO_x) nanoellipsoids were obtained via calcination at 400 °C for 1 h with a heating rate of 2 °C min⁻¹ under a hydrogen atmosphere (5% of H₂/Ar). FeO_x@MnO₂ and α -Fe₂O₃@MnO₂ seeds were obtained via hydrothermal processes.^[27] Typically, KMnO₄ solution (0.237 g, 30 mL) and α -Fe₂O₃ or FeO_x suspension solution (0.26 g, 30 mL) were mixed and transferred into a Teflon-lined autoclave (100 mL) at 160 °C for 24 h. After filtration and washing with ultrapure water, the sample was dried overnight at 60 °C. FeO_x@MnO₂@SiO₂ or α -Fe₂O₃@MnO₂@SiO₂ micromotors were synthesized via a mutualtemplate-assisted method.^[17] In Figure S1, Supporting Information, 1 g polyvinylpyrrolidone (PVP) was dissolved in 30 mL of ethanol. First, sodium citrate solution and water were added to the PVP solution and stirred for 10 s (solution I). After adding NH₃·H₂O, the mixture (solution II) was stirred for 10 s to obtain a stable emulsion system. Then seed solution was mixed for 30 s (solution III). Finally, tetraethylorthosilicate (TEOS) was added into solution III. After stirring for 10 s, the solution IV was obtained at different aging durations. In the synthesis of SiO₂ microcapsules, no seed was added. Cubic α -Fe₂O₃ was synthesized with the presence of the morphology indicator, Na_2SO_4 .^[26] Specifically, NaOH (6.0 м, 45 mL, 10.8 g) and FeCl₃·6H₂O (2.0 м, 50 mL, 27.03 g) were stirred for 5 min. Then Na₂SO₄ (10 mM, 5 mL, 7.1 mg) was added to the precursors with stirring for 10 min. The obtained solution was transferred into a Teflon-lined autoclave (inner volume: 200 mL) and maintained at 100 °C for 8 days.

Materials Characterizations: X-ray powder diffraction (XRD) was performed on a Bruker AXS D8 Advance X-ray diffractometer under Cu K α radiation (λ = 1.54186 Å at 40 kV and 40 mA). The morphologies were characterized by an FEI Quanta 450 FEG environmental scanning electron microscope (SEM). The high-resolution transmission electron microscopy (HRTEM) images and scanning transmission electron microscopy (STEM) images with EDS mapping analysis were obtained from FEI Titan Themis incorporated in a JEOL 2100F microscope. Electron paramagnetic resonance (EPR) spectra were carried out using a Bruker EMX plus X-band CW ESR spectrometer.

Motion Characterizations: The solution was injected into a dish with a 12 mm diameter viewing area. The motion behavior was monitored by a Nikon Ti E live cell microscope. No surfactant was used in all experiments. Velocity tracking data were obtained from ten individuals to obtain the mean velocity by Image J software (Fiji).

Experimental Analysis: The solution samples were analyzed by ultrahigh performance liquid chromatography (UHPLC, Thermo

$$\ln\left(\frac{C}{C_0}\right) = -k_{obs}t \tag{6}$$

Where, C_0 is the initial concentration of the organic, *C* is the concentration of the organic at time *t* and k_{obs} is the first-order reaction rate constant. The model was evaluated by plotting $\ln(C/C_0)$ versus reaction time (*t*). The concentration of PMS in the solution was analyzed by an iodometric method (see Supporting Information).^[29]

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

The authors acknowledge the help from the analytical lab in the Faculty of Sciences, Engineering and Technology (SET) at The University of Adelaide. This work was supported by the Australian Research Council (DP190103548).

Open access publishing facilitated by The University of Adelaide, as part of the Wiley - The University of Adelaide agreement via the Council of Australian University Librarians.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords

hydrogen peroxide, micromotors, organic degradation, peroxymonosulfate, self-motion

Received: December 12, 2022 Published online:

- [1] L. Xu, F. Mou, H. Gong, M. Luo, J. Guan, Chem. Soc. Rev. 2017, 46, 6905.
- [2] T. Hou, S. Yu, M. Zhou, M. Wu, J. Liu, X. Zheng, J. Li, J. Wang, X. Wang, Nanoscale 2020, 12, 5227.
- [3] H. Ye, G. Ma, J. Kang, H. Sun, S. Wang, Chem. Commun. 2018, 54, 4653.
- [4] H. Ye, J. Kang, G. Ma, H. Sun, S. Wang, J. Colloid Interface Sci. 2018, 528, 271.
- [5] Y. Yang, K. Hu, P. Zhang, P. Zhou, X. Duan, H. Sun, S. Wang, Small 2021, 17, 2100927.

ADVANCED SCIENCE NEWS

www.advancedsciencenews.com

- [6] J. Ma, S. Zhang, X. Duan, Y. Wang, D. Wu, J. Pang, X. Wang, S. Wang, *Chemosphere* **2021**, 267, 129287.
- [7] W. Liu, H. Ge, X. Chen, X. Lu, Z. Gu, J. Li, J. Wang, ACS Appl. Mater. Interfaces 2019, 11, 16164.
- [8] R. Maria-Hormigos, M. Pacheco, B. Jurado-Sánchez, A. Escarpa, Environ. Sci.: Nano 2018, 5, 2993.
- [9] H. Ye, S. Wang, Y. Wang, P. Guo, L. Wang, C. Zhao, S. Chen, Y. Chen, H. Sun, S. Wang, *Appl. Catal. B* **2022**, *314*, 121484.
- [10] K. Villa, J. Parmar, D. Vilela, S. Sánchez, ACS Appl. Mater. Interfaces 2018, 10, 20478.
- [11] K. Wang, E. Ma, H. Wang, Adv. Mater. Interfaces 2022, 9, 2200271.
- [12] J. Yang, J. Li, X. Yan, Y. Lyu, N. Xing, P. Yang, P. Song, M. Zuo, ACS Appl. Mater. Interfaces 2022, 14, 6484.
- [13] C. Chen, E. Karshalev, J. Guan, J. Wang, Small 2018, 14, 1704252.
- [14] L. Soler, V. Magdanz, V. M. Fomin, S. Sanchez, O. G. Schmidt, ACS Nano 2013, 7, 9611.
- [15] J. Parmar, K. Villa, D. Vilela, S. Sanchez, Appl. Mater. Today 2017, 9, 605.
- [16] E. Ma, K. Wang, Z. Hu, H. Wang, J. Colloid Interface Sci. 2021, 603, 685.
- [17] C. Li, J. Zhang, S. Wang, Z. Zhu, H. Li, A.-B. Xu, Y. Yu, X. Wang, J. Yao, L. Wang, *Chem. Mater.* **2019**, *32*, 575.
- [18] M. Yan, L. Xie, J. Tang, K. Liang, Y. Mei, B. Kong, Chem. Mater. 2021, 33, 3022.
- [19] B. Qiu, L. Xie, J. Zeng, T. Liu, M. Yan, S. Zhou, Q. Liang, J. Tang, K. Liang, B. Kong, Adv. Funct. Mater. 2021, 31, 2010694.
- [20] C. Zhou, C. Gao, Z. Lin, D. Wang, Y. Li, Y. Yuan, B. Zhu, Q. He, Langmuir 2020, 36, 7039.
- [21] T. Gao, J. Lin, L. Xu, J. Guan, Nanomaterials 2022, 12, 2049.
- [22] T. Liu, L. Xie, J. Zeng, M. Yan, B. Qiu, X. Wang, S. Zhou, X. Zhang, H. Zeng, Q. Liang, ACS Appl. Mater. Interfaces 2022, 14, 15517.
- [23] C. Chen, H. Wang, C. Han, J. Deng, J. Wang, M. Li, M. Tang, H. Jin, Y. Wang, J. Am. Chem. Soc. 2017, 139, 2657.
- [24] Y. Ma, K. Lan, B. Xu, L. Xu, L. Duan, M. Liu, L. Chen, T. Zhao, J.-Y. Zhang, Z. Lv, Nano Lett. 2021, 21, 6071.
- [25] M. Yan, L. Xie, B. Qiu, S. Zhou, T. Liu, J. Zeng, Q. Liang, J. Tang, K. Liang, D. Zhao, ACS Nano 2021, 15, 11451.

[26] T. Sugimoto, Y. Wang, H. Itoh, A. Muramatsu, Colloids Surf. A Physicochem. Eng. Asp. 1998, 134, 265.

NANO · MICRO

www.small-iournal.com

- [27] L. Zhu, Z. Chang, Y. Wang, B. Chen, Y. Zhu, W. Tang, Y. Wu, J. Phys. Chem. A 2015, 3, 22066.
- [28] A. Kuijk, A. Van Blaaderen, A. Imhof, J. Am. Chem. Soc. 2011, 133, 2346.
- [29] Y. Yang, P. Zhang, K. Hu, X. Duan, Y. Ren, H. Sun, S. Wang, *Appl. Catal. B* **2021**, 286, 119903.
- [30] D. Wojcieszyńska, U. Guzik, Appl. Microbiol. Biotechnol. 2020, 104, 1849.
- [31] J. Wang, X. Duan, J. Gao, Y. Shen, X. Feng, Z. Yu, X. Tan, S. Liu, S. Wang, *Water Res.* **2020**, *185*, 116244.
- [32] Y. Shang, X. Xu, B. Gao, S. Wang, X. Duan, Chem. Soc. Rev. 2021, 50, 5281.
- [33] Y. Dong, C. Yi, S. Yang, J. Wang, P. Chen, X. Liu, W. Du, S. Wang, B.-F. Liu, Nanoscale 2019, 11, 4562.
- [34] X. Duan, H. Sun, S. Wang, Acc. Chem. Res. 2018, 51, 678.
- [35] X. Duan, H. Sun, Y. Wang, J. Kang, S. Wang, ACS Catal. 2015, 5, 553.
 [36] P. Zhou, W. Ren, G. Nie, X. Li, X. Duan, Y. Zhang, S. Wang,
- Angew. Chem., Int. Ed. **2020**, 59, 16517.
- [37] F. Ghanbari, M. Moradi, Chem. Eng. J. 2017, 310, 41.
- [38] Y. Zhu, R. Zhu, Y. Xi, J. Zhu, G. Zhu, H. He, Appl. Catal. B 2019, 255, 117739.
- [39] J. He, X. Yang, B. Men, D. Wang, J. Environ. Sci. 2016, 39, 97.
- [40] W. Ren, C. Cheng, P. Shao, X. Luo, H. Zhang, S. Wang, X. Duan, *Environ. Sci. Technol.* 2022, 56, 78.
- [41] Y. Yang, P. Zhang, K. Hu, P. Zhou, Y. Wang, A. H. Asif, X. Duan, H. Sun, S. Wang, *Appl. Catal. B* **2022**, *315*, 121593.
- [42] J. Wang, S. Wang, Chem. Eng. J. 2018, 334, 1502.
- [43] Y. Zhou, J. Jiang, Y. Gao, J. Ma, S.-Y. Pang, J. Li, X.-T. Lu, L.-P. Yuan, *Environ. Sci. Technol.* 2015, 49, 12941.
- [44] H. Zhou, J. Peng, J. Li, J. You, L. Lai, R. Liu, Z. Ao, G. Yao, B. Lai, Water Res. 2021, 188, 116529.
- [45] J. Huang, H. Zhang, Environ. Int. 2019, 133, 105141.
- [46] Y. Zhou, J. Jiang, Y. Gao, S.-Y. Pang, J. Ma, J. Duan, Q. Guo, J. Li, Y. Yang, *Water Res.* 2018, 138, 56.
- [47] Z. Chen, Q. Wan, G. Wen, X. Luo, X. Xu, J. Wang, K. Li, T. Huang, J. Ma, Sep. Purif. Technol. 2021, 256, 117841.