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Abstract

ULTI-agent systems (MAS) consist of interacting entities, which can
work together to solve complex problems that are difficult for an in-
dividual agent to possibly achieve. Formation control is a way to
achieve collaborations in MAS by changing the motions of each agent and the distri-

bution of the relative positions between agents.

In recent years, formation control for MAS, especially for heterogeneous MAS with
different entities, has been intensively studied due to its wide range of applications in
aerospace, intelligent transportation, and smart logistics. However, truly distributed,
and reliable operations of MAS formations are difficult in practice with multiple con-
straints from interaction and physical systems. For instance, their interactive infor-
mation is commonly locally incomplete and unreliable due to limited communication
capabilities and potential cyber-attacks, and their physical systems are inevitably sub-
ject to unmodeled dynamics, dynamic barriers, etc. Therefore, the distributed and
robust formation control for MAS is significant, and the transformation from control

theoretical discoveries to real-world applications is essential.

In this thesis, a series of distributed formation control strategies are developed for het-
erogeneous multi-agent systems to ensure reliable operations, optimised performance,
and flexible collaborations under interaction and physical system constraints. To eval-
uate the impacts of new strategies in practical systems, these discoveries are applied
to autonomous vehicles in time-varying formations for target tracking and patrolling,

collaborative collision avoidance, and area scanning.

First, formation control problems and methods for MAS are reviewed under two-
layer constraints: 1) interaction layer constraints include local information, switching
topologies, limited communication resources, cyber-attacks, etc. 2) physical system
layer constraints include complex heterogeneous dynamics, multiple disturbances, un-
certain even unknown model, limited real-time optimization and computing capabil-
ities, physical barriers, etc. Then, we propose novel distributed adaptive observers,
event-triggered mechanisms, and resilient control methods to guarantee the stability
and resilience of MAS at the interaction layer. For physical system layer constraints,

robust heterogeneous formation control, optimal collision avoidance algorithm, and
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Abstract

reinforcement learning-based model-free control strategies are provided to ensure safe
operations, optimized performance, and flexible collaborations among different agents
in dynamic environments. To address the practical collaborative problems, the devel-
oped control methods are applied in autonomous vehicles to perform collaborative
tasks by dynamic formations. The results demonstrate the effectiveness, robustness,

and resilience of the proposed strategies.
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Chapte

Introduction

HIS chapter presents a brief background of multi-agent systems,
formation control problems and applications of multi-agent for-
mations. It is followed by the research motivation of this work
and the original contributions of the thesis. At the end, the structural orga-

nization of the thesis is outlined.
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1.1 Background

1.1 Background

1.1.1 Multi-agent systems

The concept of an agent emerged after the rise of artificial intelligence [1]. It refers to
an entity operating in an environment, which is capable of autonomous action in the
environment in order to meet its design goals [2,3]. The agents can be of any type, such
as software [1], vehicles [4], drones [5], robotic arms [6], etc. There are three points
worth noting from the concept: (1) autonomy means that an agent controls its own
actions; (2) goal-directed behavior emphasizes that an agent changes its behavior to
achieve its goals; and (3) the environment can be physical environment (e.g. in control
engineering filed) or computing environment (e.g. in computer science filed). This

thesis focuses on agents in control engineering.

Multi-agent systems (MAS) are systems composed of multiple interacting agents, which
can work together to solve complex problems that are difficult for an individual agent
to possibly achieve [2]. The advantage of MAS is delivered through (1) interactions
between agents, and (2) collaborations in their actions to achieve some common goals.
In control engineering, MAS can be considered as involving interaction and physical
system layers (or levels) [7]. At the interaction layer, information is exchanged between
individual agents through communication networks or/and sensor perception. At the
physical system layer, each agent is a control system with physical characteristics, and

it has its own influence areas in the shared environment [7].

From the composition of the physical system layer, MAS can be divided into homo-
geneous MAS [8-11] and heterogeneous MAS [12-16]. If the system is composed of
identical agents, it is called homogeneous MAS. On the contrary, different agents with
different dynamics consist of heterogeneous MAS. For example, a homogeneous MAS
consisting of a group of Coachbots (V2.0) is developed to perform dynamic collabo-
rative tasks by a task swapping algorithm, as shown in Fig. 1.1 (a) [8]. A heteroge-
neous MAS demonstrated in Fig. 1.1 (b) is composed of drones and ground-based
self-assembling robots [12]. Drones use their privileged view of the environment to
determine and communicate information to groups of robots on what morphologies to
form to carry out upcoming tasks. Compared with homogeneous MAS, heterogeneous
MAS show greater flexibility in collaborations because different agents have different
capabilities to perform a collaborative task with less cost. From the engineering aspect,

sometimes it is too difficult to equip the same agent with all the necessary modules.
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Chapter 1 Introduction

(a) A homogeneous MAS consisting of Coachbots  (b) A heterogeneous MAS consisting of drones and
at Northwestern University, United States robots at Université Libre de Bruxelles, France

Figure 1.1. Examples of MAS. (a) A homogeneous MAS consisting of Coachbots at Northwestern
University, United States [8] (b) A heterogeneous MAS consisting of drones and robots at Université
Libre de Bruxelles, France [12].

However, heterogeneous agents inevitably increase the complexity of multi-agent con-

trol system design.

1.1.2 Formation control problems

Formation control is a way to achieve collaborations in MAS by driving agents to main-
tain and move as desired geometric shapes without collisions [17-20]. Inspired by
biological behaviors such as bird migration, MAS in formations increase the task ex-
ecution efficiency, the adaptability to dynamic environments, and the survivability of

the entire system.

The formation control problems involve how to control agents to reliably form geomet-
ric shapes, and how to ensure system safety without collisions. According to whether
the desired geometric shape changes with time, the formation control problems can
be divided into the fixed formation control problem [21,22] and the time-varying for-
mation (TVF) control problem [23-26]. TVF control for MAS improves the flexibility
of their collaborations for executing dynamic tasks. From the structure of controller
design, formation control problems can be classified as centralized and distributed for-
mation control problems. As we can see from Fig. 1.2 (a), there is a control center in
the centralized structure, which uniformly coordinates the actions of agents according

to the collected global information and the centralized calculation [27]. As shown in
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1.1.3 Applications of multi-agent formations
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(a) Centralized formation control (b) Distributed formation control

Figure 1.2. Formation control structures. (a) Centralized formation control (b) Distributed

formation control.

Fig. 1.2 (b), the distributed formation control problem is to design a distributed control
strategy for each agent to achieve some common formations only based on local in-
formation from their neighbors [11,28,29]. Distributed formation control enhances the
resilience and robustness of MAS as the number of agents grows. This thesis focuses on

distributed formation control problems for MAS, especially for heterogeneous MAS.

1.1.3 Applications of multi-agent formations

Multi-agent formations have a wide range of potential applications in aerospace [30,
31], robotics [32], intelligent transportation [33] and smart logistics [34]. For exam-
ple, satellite formation flying based on System F6 in Fig. 1.3 (a) [30] aims to expand
the overall coverage area and increase real-time performance, which can be used for
positioning and navigation, weather monitoring, terrain exploration, etc. As shown
in Fig. 1.3 (b), connected ground vehicles save energy in formations [34], which can
be applied in smart logistics and intelligent transportation systems. Formation con-
trol is also being applied to unmanned vehicles, such as unmanned aerial vehicles
(UAVs) [35], unmanned ground vehicles (UGVs) [36] and autonomous underwater ve-
hicles (AUVs) [37] for collaborative area search, scanning, target tracking, monitoring,
patrolling, 3-dimensional (3D) light display, disaster relief, search and rescue, etc. It

reduces human investment and risks in some severe environments.
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Chapter 1 Introduction

(a) Satellite formation flying based on
System F6 framework

(b) Connected vehicles in formations

Figure 1.3. Multi-agent formation applications. (a) Satellite formation flying based on System

F6 framework [30] (b) Connected vehicles in formations [34].

1.2 Motivation

As an attractive research area in control engineering and artificial intelligence, dis-
tributed formation technology contributes to efficient, flexible, fast, and powerful col-
laborations of MAS. However, fully distributed, and reliable operations of multi-agent
formations are difficult in practice with multiple constraints from interaction and phys-

ical systems.

As shown in Fig. 1.4, the interaction layer constraints mainly include (1) incomplete lo-
cal information as the communication capabilities of agents and the number of equipped
devices are limited [29,38], (2) dynamic switching topologies on account of their bounded
interaction range [39], (3) limited network resources and communication bandwidth
[40], (4) unreliable cyber-environments due to potential cyber-attacks [41], and other

network-induced issues.

Furthermore, there are inevitable constraints from the physical system layer of MAS,
such as (1) complex heterogeneous dynamics because the agents in MAS may have dif-
ferent motion modes and state orders, (2) multiple disturbances from uncertain envi-
ronments, (3) uncertain even unknown model information in practical systems, (4) lim-
ited real-time optimization and computing capabilities, (5) dynamic barriers in threat

environments, etc.
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1.2 Motivation
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Figure 1.4. Two-layer constraints.

Multiple two-layer constraints threaten the stability, resilience, and robustness of MAS.
Additionally, the distributed controller design involves coupling between the integra-
tion layer and the physical system layer, because the controller of each agent requires
the dynamics of neighboring agents, and the action of each agent under the controller
affects each other in a shared environment. These constraints make the coupling prob-

lem more complicated.

Therefore, the research on distributed formation control for MAS under multiple con-
straints is significant. The transformation from control theoretical discoveries to real-
world applications is essential. The distributed robust and resilient control technology
is also of great significance to the research of cyber-physical systems [42] and human-
machine collaborative control [43]. Together with communication and artificial intelli-

gence technologies, it will promote the development of Industry 5.0 [44].
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Chapter 1 Introduction

1.3 Summary of original contributions

This work aims to design distributed formation control strategies to ensure stability, ro-
bustness, and resilience of MAS under multiple constraints from interaction and phys-
ical system layers. Applying the control strategies to applications such as multi-UGV
and UAV-UGV MAS is also our objective.

The original contributions of this work can be summarized as

1. A novel distributed robust control strategy is proposed for uncertain hetero-
geneous MAS to achieve TVF under switching topologies and multiple distur-
bances. Compared with existing methods for mixed-order heterogeneous MAS
(e.g. a MAS composed of first-order integrators and second-order integrators),
we propose a TVF control strategy for a unified linear heterogeneous MAS with
different orders and dynamics to adapt to complex tasks. An adaptive observer
is developed under switching topologies to estimate the state information of a
reference exosystem only based on local information, which is used for decou-
pling the heterogeneous dynamics from networks. Considering the physical sys-
tem layer constraints of uncertainties, homogeneous disturbances, and heteroge-
neous disturbances, a robust L, controller is designed for unified heterogeneous
MAS to achieve TVE. A case study of a UAV-UGV TVF for bushfire edge track-
ing and patrolling is presented. Comparative simulation results demonstrate that
our solution has significant advantages in the case of the MAS against multiple

disturbances.

2. Abrand-new dual adaptive TVF control scheme is proposed for nonlinear hetero-
geneous MAS to deal with limited network bandwidth constraints. Compared
with linear MAS, a more general system, unified nonlinear heterogeneous MAS,
is considered subject to uncertainties and disturbances. To reduce the frequency
of data transmission, a distributed dual adaptive event-triggered observer is pre-
sented for exosystem estimation, which removes the global communication in-
formation in both observer design and Zeno-free event-triggered strategy design
while saving network resources. A nonlinear p-copy internal model-based for-
mation controller is designed with a dynamic distributed compensator for uncer-
tainties and disturbances, which solves the robust nonlinear heterogeneous TVF
problem. The scheme has been applied to a UAV-UGV MAS and a multi-UGV

MAS for simulation and experimental verification. The results verify that the
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1.3 Summary of original contributions

proposed scheme can significantly reduce communication frequency under the

premise of ensuring the robustness of multi-agent formations.

3. Considering unknown heterogeneous MAS with an unknown exosystem, a novel
reinforcement learning (RL)-based distributed formation optimization is provided
to achieve TVF without collisions. Three new off-policy RL algorithms are pro-
posed to learn the optimal policies of each agent in real time. An observed model-
based RL algorithm or a model-free RL algorithm can be used to estimate the
dynamics and states of a reference exosystem. Another model-free RL algorithm
is integrated with a collision-free formation controller to solve TVF optimization
problems in dynamic environments. Compared with most existing studies fo-
cusing on quadratic objective functions, the developed control method addresses
the non-quadratic optimization problem when the system model is completely
unknown. Comparative simulations demonstrate the real-time learning perfor-
mance and dynamic collision avoidance capability of a UAV-UGV heterogeneous
MAS.

4. Considering one of the typical cyber-attacks, the denial-of-service (DoS) attack,
we propose a novel resilient and robust two-layer controller design with a brand-
new RL condition to address TVF problems for unknown heterogeneous MAS.
The design is distributed and model-free at the cyber-layer and the physical sys-
tem layer. We specify the interaction layer as the cyber-layer as we focus on
network interaction rather than sensing interaction. An event-based resilient ob-
server is provided at the cyber-layer to remove global information of communi-
cation and deal with DoS attacks. The communication load can be reduced under
attacks, and the Zeno behavior can be avoided. In the physical system layer, an
RL rank condition for the TVF controller is developed for unknown heteroge-
neous MAS. Compared with most existing works on off-policy RL for hetero-
geneous MAS, the new rank condition can automatically adjust online data col-
lection time, thereby improving online learning and optimization performance.
Experiments of multi-UGV area scanning formations are conducted. The com-
parative experimental results verify the resilience of the proposed online event

and learning-based control method under different parameters of DoS attacks.
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Figure 1.5. Thesis outline.

1.4 Thesis structure

This thesis starts with introduction and literature review in the first two chapters and

ends up with a conclusive and foreseeing discussion in the last chapter. As illustrated

in Fig. 1.4, the main chapters in between focus on the original contributions of the

thesis, as described in detail in the following.

¢ Chapter 1 introduces the background of MAS, formation control problems and

applications of multi-agent formations followed by the motivation, the contribu-

tion summary and the outlines of the thesis.

¢ Chapter 2 provides a survey on intelligent control of MAS, where the distributed

formation control methods under two-layer constraints have been reviewed. Then,

a supplementary literature review on formation control with some new methods

since the published survey release is added.
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1.4 Thesis structure

* In Chapter 3, an adaptive observer-based robust L, formation control strategy
is proposed for uncertain heterogeneous MAS under multiple disturbances and
switching topologies. It has been applied to a UAV-UGV MAS to execute target

tracking and patrolling tasks with simulation verification.

¢ Chapter 4 provides a dual adaptive event-trigger-based robust formation control
for uncertain nonlinear heterogeneous MAS under limited network resources.
Both simulations and experiments are given for multi-vehicle TVF to verify the

effectiveness of the proposed strategy.

* In Chapter 5, an optimal model-free and collision-free formation control scheme
is developed for unknown heterogeneous MAS with unknown exosystem dy-
namics based on RL. It has been applied to a UAV-UGV MAS for simulation

verification.

¢ Chapter 6 presents an event and learning-based resilient formation control for
unknown heterogeneous MAS under DoS attacks. We apply the control method

to a multi-UGV system for area scanning TVF with experimental verification.
¢ Chapter 7 provides a conclusive summary of the thesis, as well as a prospective

view of the further work.

This thesis presented our original findings in a thesis by publication format. As such,

the next five chapters are the five scholarly publications that resulted from my Ph.D.
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Chapter 2 Literature Review

2.1 Introduction

This chapter first presents a survey on distributed intelligent control of multi-agent
systems (MAS) from the perspective of different constraints at interaction and physical
system layers (or levels). Multiple constraints from two layers such as incomplete local
information, system uncertainties, and limited interaction capabilities affect the perfor-
mance of the entire MAS. A review is conducted on the development of MAS intended
for intelligent control, including consensus problem, formation control, and flocking
control. Based on the two-layer constraints, the research results on intelligent control
are categorized into limited sensing-based control, event-based control, pinning-based
control, resilient control, collaborative control for homogeneous MAS and collabora-
tive control for heterogeneous MAS. The applications of intelligent control for MAS

are reviewed and a discussion about the challenges is presented.

Then, a supplementary literature review on formation control with some new methods

since the publication release is provided with evaluations.

2.2 Publication

P. Shi and B. Yan, “A survey on intelligent control for multiagent systems,” IEEE Trans-

actions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 1, pp. 161-175, 2021.
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A Survey on Intelligent Control for
Multiagent Systems

Peng Shi ', Fellow, IEEE, and Bing Yan

Abstract—In practice, the dual constraints of limited
interaction capabilities and system uncertainties make it difficult
for large-scale multiagent systems (MASs) to achieve intelligent
collaboration with incomplete local relative information. In this
article, a review is conducted on the recent development of MASs
intended for intelligent control, including consensus problem,
formation control, and flocking control. Based on the limita-
tions of the interaction level and the constraints of the individual
system level, the published results on intelligent control are cat-
egorized into limited sensing-based control, event-based control,
pinning-based control, resilient control, and collaborative con-
trol under system constraints. Also, the applications of intelligent
control for MASs are presented, especially for robotics, complex
networks, and transportation. Finally, a discussion is given about
the challenges and future directions of research in this field.

Index Terms—Consensus problem, flocking control, formation
control, intelligent control, multiagent systems (MASs), multilevel
constraints.

I. INTRODUCTION

ULTIAGENT collaborative intelligence technology has

led to revolutionary changes for the practical appli-
cations of robotics, complex networks, and transportation in
recent years [1]-[3]. In the meantime, however, it also presents
challenges as distributed and reliable intelligence technol-
ogy is required to perform cooperation tasks for large-scale
multiagent systems (MASs) in the context of incomplete
local relative information. Inspired by the collaborative behav-
iors observed in nature, such as bird migration in groups
and flocking behaviors of fish schools, collaborative aware-
ness, task assignment, and intelligent control of MASs have
attracted much attention from various fields over the past
decades [4]-[6]. As the fundamental way to ensure the suc-
cessful collaborative missions for MASs, advanced intelligent
control strategies are the focus in this survey article.

From the perspective of computer science, an agent refers
to a computing system operating in an environment with cer-
tain levels of autonomy and capability of sensing, decision
making, and acting [1]. As shown in Fig. 1, there are four
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features commonly used to describe an agent, including auton-
omy, reactivity, sociality, and proactiveness. Autonomy means
that an agent is capable to operate without the direct inter-
vention of other entities and exercising control over its own
actions. Reactivity is defined as the capability of an agent to
make a response to the changes in the environment and con-
vert its sensory inputs to actions. Sociality means that an agent
has the capability to make communications with others, while
proactiveness stands that an agent can do more than acting
in response to the environment. However, the capability of
a single agent is limited, especially in dealing with complex
tasks.

A MAS refers to a group of agents. It is capable to inter-
act, coordinate their behavior, and cooperate to achieve some
common goals [1]. In comparison with single-agent systems,
MASs provide a more effective and robust way to solve
various complex problems by means of collaborative intelli-
gence. As shown in Fig. 2, a MAS consists of an information
interaction level and a physical system level. At the interaction
level, information is exchanged not only between individual
agents but also between agents and their ambient environment
through either communication networks or sensor perception.

2168-2216 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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In practice, the range of communication capabilities and per-
ception is limited for a single agent. At the physical system
level, constraints, such as uncertainties and complex heteroge-
neous dynamics, can have a severe impact on the performance
of MASs.

As for the work on intelligent control of MASs, it focuses on
three major problems, including consensus problem, formation
control problem, and flocking/swarming problem. As the foun-
dation of research on collaborative intelligence, the consensus
problem of MASs has now been extensively investigated for
all agents to achieve a common goal [3], [7]-[11]. As an exten-
sion to consensus problems, formation control aims at driving
intractable agents to maintain and move as desired geometric
shapes to perform predefined tasks, such as effective search,
patrol, and exploration [6], [12], [13]. As a self-organizing
behavior, flocking or swarming is derived from small-size ani-
mals with lower intelligence [14]-[16], for example, bees, fish
school, and bird swarms, in the process of migrating, cruising,
or avoiding enemies. Swarming is also extended to describe
the behavior of lifeless agents, such as robots. Swarm intelli-
gence not only expands individual capability but also improves
the overall level of survivability.

Depending on different control structures, the approaches
taken for the intelligent control for MASs can be classified
into centralized control [17] and distributed control [18]. In
respect of centralized control, there is a control center or host
in place to coordinate the information transmission and the
final process of task completion. However, the failure of the
control center will hinder the entire system from functioning
as normal. To improve the robustness of the whole MASs, dis-
tributed control approaches have been widely studied, where
all agents determine their behavior separately based on local
information. The design of distributed intelligent control that
only relies on incomplete local information has been a study
focus in recent years [2], [7], [18].

Information interaction and system dynamics play a vital
role in the intelligent control for the entire MASs. At the
interaction level, the information interaction between agents
relies on the capabilities of each agent to carry out sens-
ing and communication. In general, the information level of
practical MASs is subject to a limited range of perception
without communication, limited bandwidth with communica-
tion, limited network resources, and other network-induced
issues. According to the different limitations on the interaction
level, the recently proposed methods to solve MAS collabo-
rative control can be categorized into limited sensing-based
control [19], event-driven control [20], pinning control [21],
and resilient control [22].

At the system level, an overview of theoretic advancements
in consensus, formation control, and flocking control has
been presented for MASs with single-integrator and double-
integrator dynamics under fixed and switching topologies
in [11] and [23]-[25]. In addition to linear MASs, a large
number of works on reliable intelligent control have been
intensively investigated for homogeneous nonlinear MASs
under systems uncertainties and disturbances [7], [26]-[28].
Compared with homogeneous agents, heterogeneous agents
show greater flexibility in task allocation depending on
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different capabilities in cooperative operations. As one of the
basic heterogeneous systems, hybrid-order MASs consist of
different order integrator systems were described in [29]-[32].
However, the less restrictive heterogeneous systems with dif-
ferent orders and different dynamics are more commonly
applied in practice. In recent years, the robust output regu-
lation control exercised by general heterogeneous MASs has
attracted a great number of attention [33]-[36]. Subsequently,
it was extended to solve the formation control problem and the
flocking problem encountered by heterogeneous systems. The
challenge still arises from the systems due to the limitations
of uncertainties and heterogeneous dynamics.

In this article, a survey is conducted on the recent study
of MASs in intelligent control considering the constraints of
information interaction level and system level. We try our best
to summarize the relevant research work in recent years, and
apologize for missing some contributions on the topic, if any.

The overall structure of the article is shown in Fig. 3. The
background and basic concepts are introduced in Section I.
Preliminaries and three major problems with intelligent con-
trol for MASs are described in Section II, including consensus,
formation, and flocking problems. In Section III, the recent
advancement of the methodologists to tackle the underlying
problems is described with the constraints of the interaction
level and system level. Then, a review is presented on the
main applications of robotics, complex networks, and trans-
portation in Section IV. The conclusion and challenges ahead
are discussed in Section V.

II. PRELIMINARIES AND KEY PROBLEMS OF INTELLIGENT
CONTROL FOR MASS

In this section, preliminaries about graph theory and three
key issues of intelligent control are recalled, including con-
sensus problem, formation control, and flocking or swarming.

In general, the information exchange among agents is mod-
eled by a directed or undirected graph [37]. In a graph
G = (V,E), V represents a finite nonempty set of nodes and
E is an edge set, which contains ordered pairs of nodes in
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Fig. 4. Graphs with different features. (a) Directed graph. (b) Undirected
graph. (c) Spanning tree. (d) Connected graph.

(b)

a directed graph and unordered pairs of nodes in an undi-
rected graph. For example, (i1, i2) € E indicates that iy obtains
the information from i; in a directed graph [Fig. 4(a)], and
i1 and i can obtain the information from each other in an
undirected graph [Fig. 4(b)]. The neighbor set of agent i is
N;i = {j € V|(j,i) € E}. A graph contains a spanning tree
if there is a path between one node and all other nodes
[Fig. 4(c)]; a graph is connected if there is a path between
every pair of distinct nodes [Fig. 4(d)]. For a graph G, an adja-
cency matrix A = [a;] specifies the interconnection topology
of MASs, where

{0 i=j, or (ji) ¢ E
ajj =

1 (,i)eE. M

The Laplacian matrix L of graph G is L = D — A where
D = diag(dy, da, ..., d,) is the degree matrix with diagonal
elements d; = ) ; a;;.

A. Consensus Problem

As one of the research foundations for intelligent con-
trol for MASs, consensus refers to all systems reaching an
agreement on certain interests regarding to their states and
the concept comes from distributed computing systems and
management science. A typical consensus theoretical frame-
work was presented in [11], and the framework established
some communication rules among the agent and their neighbor
agents in the networks in order to achieve a common goal. The
study also emphasized that graph theory and Laplace matrix
were the core means to solve the consensus problem. Another
work linked the minimum spanning tree theory in the graph
with the information consensus framework [23] and proposed
the minimum necessary and sufficient condition of information
consensus for MASs under changing topologies, which laid the
foundation for the research of dynamic topologies.

According to the theoretical frameworks, consensus prob-
lems can be divided into leaderless consensus problem and
leader—follower consensus problem.

Problem 1: A general leaderless consensus problem is to
design a controller for a MAS to meet

Jim [[z:(0) — 5] =0, jeN; )
— 00

where z;(f) € R™ and z;(f) € R™ represent the state or output
of ith agent and jth agent, respectively. N; is the neighbor set
of agent i.

Problem 2: A general leader—follower consensus problem
is to design a controller for a MAS to meet

lim ||z;(£) —z0®] =0, i=1,2,...,n 3)
—>00
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TABLE 1
RECENT WORKS ON CONSENSUS PROBLEMS

Features Classification References
From consensus | Leaderless consensus [38]-[40]
structure Leader-follower consensus 40]-[46]
From Event-based 9], [471-[57]

interaction level

Resilient control 61], [62]

Homogeneous linear 38], [39], [63]
Homogeneous nonlinear [71, [27], [40], [45], [64]
Heterogeneous linear [42], [65], [66]
Heterogeneous nonlinear [30], [67]-[69]

[

[
Pinning-based [53], [58]-[60]

[

L

From
system level

where z;(f) € R™ represents the state or output of agent i.
20(f) € R™ is a common desired trajectory for all agents to
track asymptotically.

Remark 1: Tt is worth noting that the leader can be a real
physical system, or a virtual reference system designed accord-
ing to the tasks. The final consensus of all agents without
reference to their initial conditions in the leader—follower con-
sensus problem. In terms of the leaderless consensus problem,
all agents finally reach a consensus, which is related to the
initial state of the system and the information interaction
topology.

A summary of recent works on Problems 1 and 2 is outlined
in Table I, corresponding to different features and constraints
from system level and interaction level.

B. Formation Control Problem

Formation control is designed to drive the moving
interacting agents to achieve or maintain a specified geom-
etry for a coordinated goal. The formation control problem
can be uniformly summarized into a consensus-based struc-
ture [70], after considering the reference formation dynamics
and the motion characteristics of the agent.

Most results on formation control have focused on two
main problems: 1) leaderless formation control problem and
2) formation tracking problem.

Problem 3: A general leaderless formation control problem
is to design a controller for a MAS to meet

Jim @0 - 50) = (=) =0. jeN @

where (f; — f;) represents the reference formation deviation
between agent i and agent j.

Problem 4: A general formation tracking problem is to
design a controller for a MAS to meet

lim ||zi(1) — fio =200 =0, i=1,2,....n &)
=00

where fjp € R™ is a referent formation deviation regards to
a desired trajectory zo(7) € R™. If fjp is a dynamic formation
variable, the problem is extended to a time-varying formation
problem.

Remark 2: Note that formation control Problems 3 and 4
can be viewed as extensions of consensus Problems 1 and 2,
respectively, with respect to a reference formation deviation.
For example, as shown in Fig. 5, the agent i needs to maintain a
diamond formation deviation (f; —f;) with its neighbor agent j,
in leaderless formation control Problem 3. Therefore, the main
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Fig. 5. Leaderless formation problem and formation tracking problem.

TABLE 11
RECENT WORKS ON FORMATION CONTROL

Features Classification References
Formation Leaderless formation [19], [74[77)
problems Formation tracking [781483]

Limited sensing-based [19], [75], [84]-86]
From Event-based [13], 122], [74], [83], [87]
interaction level | Pinning-based [87] [88]

Resilient control , [89], [90]

Homogeneous linear 91 , [92
From Homogeneous nonlinear 22], [74], [81], [88], [93]
system level Heterogeneous linear 32], [77], [82

Heterogeneous nonlinear | [79], [80], [94]{96]

focus of Problem 3 is to form a formation. As for formation
tracking Problem 4, there are a moving target zo(f) to track
and a formation deviation fjy to keep for agent i. In Fig. 5, a
MAS aims to track a desired trajectory zo(f) from a rectangle
to a parallelogram.

The approaches for formation control reported in the
literature include the leader—follower control [12], [71],
the behavior-based control [72], and the virtual structure
approach [73]. In the leader—follower approach, the controller
relies heavily on a single leader state. For the behavior-based
formation method, several basic control behaviors of the agent
are defined and weighted to obtain the final formation control
inputs for the group. However, group behaviors are difficult
to define. In the virtual structure approach, the formation of
agents is regarded as a single object in the virtual structure,
which limits the application domain as it only controls the
motion of one object. The existing results can also be divided
into position-based, displacement-based, and distance-based
control, according to the sensing capability and the interaction
topology of MASs [6]. Focusing on the constraints and fea-
tures from the system level and the interaction level of agents,
we list some related works on formation control in Table II.

C. Flocking or Swarming Control Problem

The flocking or swarming control problem of MASs is to
perform a macroscopic overall synchronization, such as aggre-
gate together and maintain the same direction, by using local
interaction and behavioral rules between agents. The Boid
model was first proposed based on computer simulation tech-
nology to describe bird swarms, which follows three rules:
1) cohesion: remain close to neighbors; 2) separation: avoid
collision with neighbors; and 3) alignment: match velocity
with neighbors [97]. The work in [98] simplified the Boid
model and described the behavior of birds as a discrete model,

# Velocity
g Lonsemus

‘d

\ Remain
\Avond collisions { close to
\ neighbors / ne!ghbors

Fig. 6. Flocking or swarming control problem.

the Vicsek model. Its advantage is to quantitatively analyze
the flocking behavior by changing the population density and
noise intensity, from the point of view of statistical mechanics.
These models provide a solid foundation for the research of
the flocking problem.

According to the model and rules, the flocking control
problem can be described as follows.

Problem 5: A general flocking/swarming control problem
is to design a controller for a MAS to meet the three following
rules.

1) Cohesion: Remain close to neighbors

lim 33 |pioy —po| <R, jeN;  (©)

i=1 j=1

where p;(f) € R™ and p;(f) € R™ represent the positions
of ith agent and jth agent, respectively. R is the max-
imum value of the sum of relative distances between
agents.

2) Separation: Avoid collision with neighbors

Jim [|pi() —pi(0| = dyj, j € N; ()

where dj; is the minimum safety distance between agent
i and agent j.
3) Alignment: Match velocity with neighbors

Jim [vi)) —vi0] =0, jenN; ®)

where v;(f) € R™ and v;(f) € R™ denote the velocities of agent
i and agent j, respectively.

To solve the problem according to the three rules shown in
Fig. 6, a theoretical framework was proposed for the design
of distributed flocking algorithms of second-order MASs [25].
The work in [99] analyzed the stability properties of flocking
algorithms for second-order MASs under switching networks.
We summarize some recent works on flocking and swarming
problems in Table III, corresponding to different features and
constraints from the system level and the interaction level.

ITI. METHODOLOGIES OF INTELLIGENT CONTROL FOR
MASS

In this section, we review the results reported for the collab-
orative intelligence of MASs and outline advanced methodolo-
gies based on the limitations of information interaction level
and the constraints of system level, respectively.

Passive sensing and active communication are the two
important means of information interactions. For example, if
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TABLE III
RECENT WORKS ON FLOCKING OR SWARMING CONTROL
Features Classification References
Limited sensing-based [15], [16], [100]
From Event-based [10T]-[106]
interaction level | Pinning-based [107], [108]
Resilient control [109]

110], [111
102], [112]117]

Homogeneous linear
Homogeneous nonlinear 101],
Heterogeneous linear 118
Heterogeneous nonlinear | [119], [120]

From
system level

each agent is equipped with advanced sensors, which make
them able to detect the location of neighbors, then commu-
nication is not required in formation control. However, the
detection range of a single agent is usually limited. It becomes
relatively easy for collaboration if agents can directly interact
with key information through the network, such as locations
and velocities. While communication networks are restricted
by limited bandwidth, limited resources, and other network-
induced issues. From the limitations of information interaction,
we focus on reviewing the following popular and impor-
tant topics: limited sensing-based control, event-based control,
pinning-based control, and resilient control.

A. Limited Sensing-Based Control

Under certain situations such as an electrostatic shielding
environment, the communication between agents is unavail-
able or very limited. Sensor-based perception is another
alternative to achieve multiagent collaboration. In fact, it is
beneficial to realize distributed control if agents can com-
pletely perceive neighbors and the environment independently.
Moreover, the system can be immune to any network prob-
lems due to the independence of the communication network.
However, for a single agent, the detection range of sen-
sors, such as cameras and infrared sensors, is locally limited.
Note that range-only sensing agents usually refer to robotics
rather than network agents. Therefore, most of the exist-
ing results on limited sensing-based control have focused
on solving formation control problems and flocking control
problems [25], [75]. As shown in Fig. 7, formation reference
denotes static or dynamic predefined displacement references
regard to different formation shapes, while flocking reference
refers to a moving rendezvous point as the group objec-
tive [25]. There are two key issues: 1) how does the agent
determine the most suitable position relative to its neighbors?
and 2) how to achieve collaboration actions without collisions?

In order to solve the two problems, a novel scalable forma-
tion control strategy was proposed to solve Problem 3, when
the communication network is completely unreachable [75].
Consider a first-order MASs under a control input u;(f)

pi() =ui(H), i=1,2,...,n
uj(t) = f(Ni, g(Ni, F)) ©)

where p; € R™ and ; € R™ present the position and control
input of the ith agent, respectively. Suppose the sensing range
is limited, the neighbor set is defined as

Ni={0.) € El |pitt) —pj(0)] < ri}
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Fig. 7. Limited sensing-based intelligent control.

where r; is the sensing range of the ith agent, which can be
different for heterogeneous agents. The control force f aims
to form a reference formation F, which is a set of scalable
displacement vectors F = {...,f_1,fo,f1,--.}. The element
fi € R™ is based on m linearly independent basis vectors,
where m = 2 or m = 3 indicates the reference formation
is in two dimensions or three dimensions. For instance, a
2-dimensional (2-D) scalable formation F is shown in Fig. 7,
where d, and dy are two linearly independent vectors. For any
fk € F, fx = adx + bdy, a,b € Z always holds. Note that the
basis vectors of F are known for all agents. The local mapping
function g is conducted on each agent to choose which vectors
in F are the suitable displacement according to the neighbor
set N;. Based on local optimization methods, multiobject map-
ping protocols without conflict and range control strategies
have been investigated in [19], [75], and [84]. In addition to
collision-free matching, obstacle avoidance algorithms have
also been extended to the formation control in Problems 3
and 4 without communication [121] and with limited com-
munication only on identities and mapping decisions [76]. In
order to reduce the computation burden and avoid the infinite
trajectory loop, the probability was introduced in mapping and
distributed control strategies [85], [86].

As for the flocking control in Problem 5, most of the works
have focused on the implementation of three rules for agents
subject to a limited range-based perception or interaction. A
theoretical flocking framework was proposed of a second-order
MASs [25]

pit) =vi(), Vi) =wi(t) i=12,...,n (10)
under the control force
wit) = fE + 18+
= > v(lpi —pil,) (mg) + D (5 — )
JeNi JjeN;
+ c1((po(?) — pi())) + c2((vo(1) — vi()) (11)

where the system state x;(t) = [pi(f), vi()]" consists of posi-
tion p; € R™ and velocity v; € R™ of the ith agent. To
implement the three rules, control input consists of three items:
1) gradient-based term fig ; 2) velocity consensus item f,-d; and
3) navigational feedback term f;, where v is a potential func-
tion based on o-norm of the relative distance for collision
avoidance. (njj) represents a vector connecting agent i and
agent j. Parameters ¢ and ¢, denote the position control law
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and velocity control law of the navigational feedback, respec-
tively. They are designed to meet ci,c> > 0. The flocking
reference position pg € R™ and velocity vp € R™ indicate a
rendezvous point, which can be viewed as a group objective.
The connectivity preservation of formation control was also
been discussed in [25].

Based on the basic flocking framework, flocking control
solutions to Problem 5 were provided based on potential
field [14] and learning-based approach [15], [16]. Without a
communication channel, learning vision-based flocking algo-
rithms was proposed for multidrone swarms [15]. Flocking
control was developed for a first-order MAS subject to limited
heterogeneous interaction range [100]. However, connectivity
preservation is still a challenge for high-order nonlinear MASs,
when the sensing capability of the agent is insufficient.

B. Event-Based Intelligent Control

The communication-based MASs make up for the lack of
perception of some agents and effectively realize collaboration
by directly interacting with the information of interest through
the network. However, limited network resources and commu-
nication bandwidth have largely restricted information trans-
mission between agents. Event-based distributed interaction
mechanisms were proposed to alleviate this limitation [9],
[47]-[57]. Without collecting the state information of all
agents at every moment, the distributed event-triggered strat-
egy can better save communication resources and effectively
reduce the frequency of information transmission between
agents and update of agent control protocols.

The structure of event-based distributed intelligent control
is shown in Fig. 8, where each agent independently determines
its own behaviors. The trigger determines the interaction time
interval of each agent according to the measurement error from
the sampler and the collaboration error from the controller. The
controller updates the local information and possible reference
information at each trigger moment. Note that the possible ref-
erence information here refers to the consensus reference, or
the formation reference, or the flocking reference information.
For the leaderless consensus problem in Problem 1, there is
no external reference information. The event-based distributed
trigger strategy mainly involves three key issues: 1) how to
determine the trigger time; 2) how to design the distributed
control laws; and 3) how to exclude the unlimited trigger phe-
nomenon, Zeno phenomenon [122]. We take the event-based
control for second-order MASs (10) as an example.

1) Trigger Mechanism: 1t is designed to determine the trig-
ger time in next step t;; +1- The recent works mainly focus
on two common mechanisms, event-triggered mechanism, and
self-triggered mechanism, as follows:

(1) gy = inf{t > g |f(er) > g(eir $i))

Q) thy =t+o (12)

where f(e;) and g(e;, ¢;)) are the trigger functions based on
measurement error e; and collaboration error ¢;. The next time
is triggered if the condition is met. Note that the trigger func-
tions are only based on local information without the prior
information of the topology matrix by adding adaptive laws in
f(e;) or gle;j, ¢;) [47]-[50]. The second mechanism is the self-
triggered strategy, where the time interval of next broadcast o;
can be calculated based on the information of the current trig-
ger time without the need to continuously monitor the changes
of events [104]. Although event monitoring costs are reduced,
additional computational costs are added.
There are two common designs of measurement error

(D) ei(t) = k(o) —xi(1) = xi(t) — xi(0)
@ eil) = &) — xi(t) = AV (1) —xi0) (13)

where t}; is the kth trigger time of agent i, and_fci(t) repre-
sents the estimation of x; in the time period 7 € [7;, #; 1) The
state value at the time of the last trigger is used in the first
strategy [48], [51]-[54]. The second approximation scheme of
xi(?) is based on the system state matrix A. System model-
based estimation more accurately approximates the state of
the system during the time period [49], [50].

The design of the collaboration error is based on differ-
ent intelligent control problems. For leader—follower consensus
Problem 2, formation control in Problem 4, and flocking track-
ing control in Problem 5, the collaborative errors are generally
formed as

(1) ¢i) =Y aj(%(0) — %)) + aio(fo(r) — %i(1) (14)

JEN;
@ i) =Y ay(({0) - 20) - (50 —ji0))
JEN;

+ ao((}o® =50 = (fo —2®)) (1)
3) i)=Y a;(9(t) = Di(1))
JEN;
+ c1((po(® = pi®)) + c2((bo® — %i(1))  (16)

where Xo(¢) is the state estimation of a real leader or a vir-
tual leader indexed by number zero, which can be regarded as
consensus reference. If the agent i is informed by the leader,
a;o = 1, otherwise, a;0 = 0. fi(t) is the estimation of formation
reference at time ¢ € [z};, tf{ " 1) [83]. As for leaderless consen-
sus Problem 1 and formation control without a reference leader
in Problem 3, the terms related to a;o are zero [51], [52]. For
flocking control in (16), the collaborative error composes of
the velocity consensus error and flocking tracking error, where
Xo(f) = [po(t), Vo(?)] is the estimation of a flocking reference
trajectory with position and velocity [103].
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2) Control Strategies: are also designed in terms of intel-
ligent control Problems 1-5. For consensus and formation
control problems, the controller aims to eliminate collaborative
errors by

u;(t) = K;¢i (1)

where K; is the control law matrix based on ARE (alge-
braic Riccati equation) [9], [47], [49] and LMI (linear matrix
inequality) [13], [48], [83]. Quantized event-triggered con-
trol is another improvement direction to save more network
resources under limited bandwidth by the quantized control
law

7)

ui(1) = Kiqu(i(1)

where ¢, is a quantized function to convert the collaborative
error into a discrete form [48], [53].

For flocking control in Problem 5, one form of control
protocol is

wi(®) = Y ¥ ([1B; = bil,) (m) + i 0)

JEN;

(18)

19)

where Y is a potential function [101]-[103] to remain
close to neighbors without collisions. Another control strat-
egy is based on the distributed model predictive control
by solving optimization problems to satisfy the flocking
rules [104], [106].

3) Proof That the Zeno Phenomenon Is Excluded: 1f an
event is triggered infinitely within a finite time, the phe-
nomenon is called Zeno phenomenon [122]. In the study of
an event-based mechanism, one of the key tasks is to exclude
Zeno phenomenon. One widely used method is to prove that
there must be a positive lower bound on the interval length
between any two trigger moments [57], [105], [106]

fro1 — 1, =7>0 (20)

where T is a positive constant that ensures the Zeno phe-
nomenon is excluded.

The work in [123] also looked at the issue, and proposed
another method. That is, if Zeno’s behavior is assumed to exist,
then there is at least a gathering point for the time-triggered
sequence. By verifying that this assumption contradicts the
existing attributes of the system, it is proved that Zeno’s
behavior can be excluded.

In addition to deal with the limited bandwidth of commu-
nication networks, event-based strategies are used to solve
other problems subject to time delay [55], [56], [123],
network attacks [22], [57], [74], switching topologies [9], and
multiplicative faults [47]. However, to the best of our knowl-
edge, there is a lack of fully distributed trigger strategies and
methods to effectively exclude Zeno behavior, which does
not involve any global information (such as the number of
agents, Laplace matrix, etc.), especially for generalized linear
and complex nonlinear MASs.

C. Pinning-Based Intelligent Control

The realization of information collaboration for MASs usu-
ally requires the assumption of the original connectivity of
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Fig. 9. Pinning-based intelligent control.

the communication topology [23]. However, this assumption is
difficult to be satisfied especially for MASs under time-varying
topologies. Moreover, for real-world large-scale MASs, such
as complex power grids and multidrone light show systems,
there are generally a large number of nodes or control points
in their communication networks. It is usually difficult and
expensive to put controllers to all nodes to control the whole
system. Pinning-based control is one of the effective solutions
for the issues. The basic idea of pinning control is by adding a
pinner to control a small fraction of agents so that the whole
MASs can achieve collaborative performance. As shown in
Fig. 9, a pinner (or virtual leader) is added to the system and
defines its desired trajectory, according to different intelligent
control Problems 1-5. The pinner only controls some pinned
agents (agent 2, agent 3, and agent 7) from different groups
(G1, G, and G3) to ensure global collaboration, and the choice
of pinned agent to inform the reference information is via the
pinning strategies. Therefore, the realization of global collab-
oration and the design of pinning strategies are two key issues
of the pinning-based intelligent control.

1) Global Collaboration: Pinning control is widely used to
solve the synchronization of complex dynamic networks [58],
[59], which is also a special case of leader—follower consensus
problems defined in Problem 2 [53], [60]. The general first-
order MASs composed of n agents under pinning control are
modeled as

n
(D) = fa@), D + ¢ ) ayT (5(0) — xi(0))
j=1

+ cdil'(s(7) — xi(1)) 2y

where x;(1) € R™ and f(x;(r), f) are the state and nonlinear
dynamic function of the ith agent, respectively. Coefficients
¢ and d; are the coupling strength and pinning control gain,
respectively. I' € R"*" represents the inner coupling matrix.
s(t) € R™ denotes the state of a pinner modeled as

5(n =f(s@), 0

where f(s(?), t) is a nonlinear continuously differentiable func-
tion related to dynamic characteristics of the pinner [21].
One way to ensure consensus for whole MASs is to design
suitable coupling strength, pinning control gain, and inner
coupling matrix based on the Laplacian matrix, including
the extension of the Laplacian matrix and the submatrix of

Authorized licensed use limited to: University of Adelaide. Downloaded on July 08,2022 at 04:35:19 UTC from IEEE Xplore. Restrictions apply.



168 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 51, NO. 1, JANUARY 2021

the Laplacian matrix (see [21] for details). However, this
approach depends on the properties of the global commu-
nication matrix. The global information is difficult to obtain
when the Laplacian matrix is time varying or stochastic due
to the random selection of pinned agents. In order to over-
come this drawback, adaptive pinning consensus strategies
have been proposed for the first-order system without relying
on any global information. At the same time, by introducing
the adaptive rate in the coupling strength and control gain,
the conservativeness of the Laplacian-based method has been
reduced [21], [59].

In addition to the consensus problem, pinning-based control
is also extended to solve formation tracking in Problem 4 [88]
and flocking control in Problem 5 [107], [108]. A pinner or
a virtual leader is used to provide the reference path for the
agents to perform a collaborative task, such as the task of
multidrone formation to reach a designated location with the
desired trajectory. The relative formation reference respect for
the virtual leader is also considered. The work in [88] provided
a pinning-based control for nonlinear multidrone formation.
Although a pinner describes the desired path of MASs, agents
usually do not strictly follow the pinner when they encounter
obstacles to avoid in the environment. In terms of the flocking
problems defined in Problem 5, the pinner can be regarded
as the flocking center with the desired trajectory. Pinning-
based strategies for the flocking motion of a MAS have been
developed under switching topologies [107] and sampled-data
frameworks [108] to minimize the total cost considering pinner
tracking, velocity consensus, and obstacle avoidance functions.

2) Pinning Strategies: They are investigated to determine
the minimum number of nodes to be controlled and the spe-
cific pinned agents. Existing pinning strategies mainly include
the random pinning strategy and the specific pinning strategy.
The strategy of random selection first searches for strongly
connected components [21] to assign groups of agents, and
then randomly selects one agent in the group for control.
Another method is to first arrange the nodes in descending
order according to the difference between the out-degree and
the in-degree, and select the first / nodes for control [60]. Both
methods need to verify that the pinner is the root node, and
there is at least one directed spanning tree in the entire MASs.
It is difficult to ensure the connectivity of the original network,
especially for arbitrary or changing topologies. Through a rea-
sonable selection of pinned agents, the connectivity under the
dynamic topology can be guaranteed at each moment. Many
works have pointed out that the specific pinning strategy is
more effective than the random pinning strategy in reducing
the number of pinned agents [58], [60], [107].

Pinning-based control has been also introduced into some
methodologies in control theory, such as the impulsive con-
trol [124], robust Hy control [125] and finite-time con-
trol [126] to improve the system performance under time delay
and disturbances.

D. Resilient Control

MASs are likely to suffer from malicious attacks and cor-
ruption of sensory data or manipulation of actuators inputs,

which can severely and adversely affect system performance.
For example, in a denial-of-service attack (DoS), the attacker
intends to deny access to the data by making it unavailable to
systems. Recently, considerable efforts have been made based
on resilient control to detect and defend against attacks for
MASSs in terms of consensus, formation control, and flocking
control defined in Problems 1-5.

A novel event-based resilient control was proposed in [61],
which controlled the input signal rather than the state measure-
ment error to solve leaderless consensus in Problem 1 under
DoS attacks. For leader—follower consensus in Problem 2
under DoS attacks, the work in [62] provided a distributed
fixed-time observer and an improved resilient observer to accu-
rately estimate the leader’s information, thus eliminating or
weakening the influence of DoS. Reliable formation track-
ing control for MAS under quantized communication and
false data injection (FDI) attacks was investigated in [89]
based on a distributed filter with adaptive attack compensator.
Both the system reliability in the attacked case and original
performance in a no-attack case can be guaranteed with the
developed filter. It can also achieve cooperative output regu-
lation of MAS when the communication is not quantized but
with potential attacks. For the unbounded malicious attacks, a
fully distributed attack-resilient control protocol was proposed
in [90] to solve the time-varying formation tracking problem
defined in Problem 4. The bounded system stability and uni-
formly ultimately bounded synchronization performance have
been guaranteed. Considering the presence of noncooperative
robots, Saulnier ef al. [109] developed a resilient flocking con-
trol approach for Problem 5. The proposed dynamic connec-
tivity management and switching control strategies restricted
the communication topology within the resilient threshold and
allowed the mobile robots to achieve consensus along with the
motion.

To the best of our knowledge, there are still a lack of effec-
tive detection and deference theoretical frameworks for MASs
under multiple attacks.

E. Intelligent Control for Homogeneous MASs

MASs can be divided into homogeneous and heterogeneous
systems, depending on whether the system dynamics are the
same or not. In addition to the limitations of the interaction
level, the constraints of the system level include nonlin-
ear dynamics, heterogeneous dynamics, system uncertainties,
external interference, and actuator and sensor failures.

For linear homogeneous MASs, there are a large number
of works on consensus Problems 1 and 2 [38], [39], [63],
formation control Problems 3 and 4 [91], [92], and flock-
ing control Problem 5 [110], [111]. However, in practical
applications, an agent is always subject to nonlinear dynam-
ics, such as the fight control for multidrone formation [88]
and flocking control for robots [102]. Various nonlinear con-
trol approaches have been developed for nonlinear MASs
under uncertainties and bounded external disturbances, includ-
ing adaptive control [64], backstepping scheme [88], sliding
mode control [7], [93], neural network [27], [93], and fuzzy
control [115]. Sliding mode control has been widely used to
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control nonlinear systems with uncertainties and unknown dis-
turbances, as the controllers can be designed to compensate
for the uncertainties and disturbances.

Unforeseen threats may occur in system components, such
as sensors, actuators, and controllers. Passive fault-tolerant
control is one of the popular methods for managing phys-
ical faults or damages, with adaptive strategies. The work
in [127] investigated a H, consensus protocol together with
an adaptive compensator to tolerate sensor and actuator faults
for Problem 1. In [128], a cooperative adaptive fault-tolerant
fuzzy control was proposed to solve leader—follower consen-
sus Problem 2 of networked MASs with time-varying actuator
faults. Adaptive formation control laws for Problem 4 were
designed for unmanned aerial vehicles (UAVs) to tolerate actu-
ator faults [129]. As a typical method of fault-tolerant control,
adaptive controllers are used for compensating physical faults
and passively tolerate system failures without changing the
controller structure. However, the fixed structure has conser-
vative problems and cannot optimize the system performance.
To overcome the shortcomings, active fault-tolerant control
strategies have been proposed for MASs. The active strate-
gies usually include two functions: 1) fault detection and
2) control reconfiguration [128], [130], [131]. However, most
of the existing research results assume that the system will
not diverge during the time period of fault detection. This
assumption is limited to multiple failures and severe physical
damage.

F. Intelligent Control for Heterogeneous MASs

During the past decades, research on intelligent control has
gradually shifted from homogeneous MASs to heterogeneous
MASSs. One reason is that it is difficult to equip the same
agents with all the necessary sensing and computing equip-
ment. Even for the same agents with the same equipment, it
is not truly homogeneous MASs due to asynchronous clocks
and uncertainties. Most important of all, heterogeneous MASs
have more advantages in terms of formation flexibility and
complex task decomposition because of the different functions
of individuals.

The primary research on heterogeneous MASs is focused on
hybrid-order MASs, such as consensus Problem 1 of first-order
and second-order hybrid MASs [66] and formation Problem 3
of first-order and fourth-order hybrid MASs [77]. Graph
theory-based matrix methods and Lyapunov theory are used
to solve intelligent problems of hybrid-order MASs, but the
global communication matrix is required especially for high-
order hybrid MASs. Another approach for hybrid-order MASs
aims to convert the mixed-order MASs into the same-order
MASs and achieve the state consensus of the corresponding
order by adding virtual zero states [30]. However, expanding
the dimensions of agents may increase the computational load.
State consensus is almost impossible for the general heteroge-
neous systems with different orders and different dynamics.
Therefore, the output regulation for a single system is the
focus, which can be extended to solve the output consensus
problem of heterogeneous MASs [65]. Under the assumption
that there exists a solution to the regulation equation [132],
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Fig. 10. Output regulation-based intelligent control for heterogeneous MASs.

the output consensus of heterogeneous MASs is solvable.
Subsequently, the approach was promoted to solve the prob-
lems of formation control Problems 3 and 4 [79], [82], [133]
and flocking control Problem 5 [118].

A general intelligent control framework of heterogeneous
MASs is shown in Fig. 10, where the output of exosystem
v includes reference information that needs to be tracked and
disturbances need to be rejected. Since only a part of the agents
can be informed by the exosystem, an observer is designed
to estimate the output of the exosystem ¥ through collabora-
tive error ¢;. The intelligent control problem of heterogeneous
MAS:s is transformed into the stabilization problem of dis-
tributed augmented systems by a regulator. The regulator is
composed of a stabilizer and p-copy internal model to stabi-
lize the system and compensate for uncertainties, receptively.
Augmented systems consist of a real agent and an internal
model compensator. This method fundamentally uncouples the
dynamics of heterogeneous agents and realizes the regulation
of exosystem in a distributed manner.

A unified uncertain heterogeneous MAS with n agents of
different orders can be modeled as

Xi = AwiXi + Byitti + Eyiv

yi = Cwixi + Dyiui + Fyiv,
where x; € R", u; € R", and y; € RP represent the
state, input, and output variables of the ith agent, respectively.
Matrices *,,; = x;+ Ax; are the corresponding system matrices

with uncertainties Ax;, where x =A,B,C, D, E, F.
The dynamic of an exosystem can be described as follows:

(23)

i=1,2,....n (22

v=2_Sv

where v € R represent the state/output variables of the
exosystem, which contains the reference information accord-
ing to different intelligent Problems 1-5. For example, the
dynamic of a time-varying formation [82] is considered as ﬁ =
A;}f,-, and the signal of exosystem v includes the information
of virtual leader xg, time-varying formation dynamics f;, and
disturbance .

In order to achieve intelligent collaboration, the general
stabilizer and internal model compensator are designed as
follows:

wp = Kixi + Kz
zi = X1z + Xae; (24)

where z; is the state of the dynamic compensator. (X1, X7) is
the p-copy internal model pair of S, based on the internal
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model principle [132]. The control law K; = (K}, KI.Z) is
obtained by the Lyapunov stability theory [82], [132]. The
controller aims to eliminate regulation error, which is defined
according to different intelligent control Problems 1-5. For
example, for the leader—follower consensus in Problem 2, the
error is defined as e¢; = y; — ¥; for time-varying formation
tracking in Problem 4 [79], [82], ¢; = y; — V — f;.

It should be noted that the observer converts the collabora-
tive error ¢; to regulation error ¢; based on the observation .
Therefore, the design of observers is the core of decoupling
heterogeneous dynamics and realizing distributed architec-
ture. In [82], the adaptive distributed observer was proposed
under the assumption that the exosystem dynamics S were
globally known. Note that the design of the p-copy internal
model system also required a known exosystem dynamic
matrix. Model-based adaptive controls still involve global
information, until an off-policy reinforcement learning strategy
was investigated to make up the disadvantages [134].

The intelligent control for linear heterogeneous systems
can also be extended to nonlinear systems to deal with
consensus problems [30], [67], [68], formation control
problems [79], [80], [94]-[96], and flocking control prob-
lems [120]. It is worth noting that this method is only
applicable to leader-involved Problems 2, 4, and 5. For the
leaderless problems as defined in Problems 1 and 3, it will
raise a big challenge to discover the common internal model
in heterogeneous systems in the absence of the exosystem.
Learning-based approaches may be a possible way to address
the problems.

IV. APPLICATIONS OF INTELLIGENT CONTROL FOR MASS

In this section, we present the achievements of intelligent
control for MAS applications in the following directions:
robotics, computer networks, transportation, and others. A
summary of these applications is outlined in Fig. 11 and
Table IV.

A. Robotics

The application of MASs on robotics has received exten-
sive attention, especially on UAVs, unmanned ground vehicles
(UGVs), and autonomous underwater vehicles (AUVs). The
work in [135] proposed a modular architecture of multiUAV

TABLE IV
APPLICATIONS OF INTELLIGENT CONTROL FOR MASS

Applications Feature-specific MAS | Refinance
UAVs [135]-[139]

Robotics UGVs [140]-[144]
AUVs [145], [146]
Smart grid systems [1471-[149]

Complex networks

Internet of Things
Traffic light systems
Smart driving systems

[150], [151]
[152]-[154]
[155]

Transportation

collaboration system for search and rescue missions. The
framework has been verified and evaluated by outdoor exper-
iments of four prototype UAVs. A multiUAV collaborative
approach in disaster management and civil security appli-
cations has been validated with real UAVs and wireless
sensor networks [136]. Formation protocols and consensus
approaches were used to achieve time-varying formations,
which were tested and verified by distributed outdoor exper-
iments with five quadrotors [138]. Relative information of
neighboring UAVs can be used to construct a time-varying
formation control protocol for swarm systems. An outdoor
target enclosing experiment was carried out for three follower
quadrotor UAVs to enclose a leader quadrotor UAV by time-
varying formations [139]. In [140], a life support robot system
was developed to perform domestic services that are useful
to the well being of the elderly with walking disabilities.
A frequent task during life support is the fetching of daily
containers, such as serving drinks and food [140].
Furthermore, a large number of results on the forma-
tion control for hardware multivehicle platforms have been
verified under laboratory conditions. A distributed forma-
tion control approach for multirotor UAVs was proposed and
embedded into the onboard computational units to make them
able to keep a balanced formation in 2-D and three dimen-
sional environments [137]. The proposed formation control
approach was proved to be feasible for arbitrary formation
by both simulations and real-system experiment. In order to
lead the UGVs moving into the desired formation quickly, a
cooperative coevolutionary algorithm-based distributed model
predictive control was proposed in [144], which can greatly
improve the performance of formation control as performed
by three mobile robots. An adaptive self-organizing map neu-
ral network was applied to keep the formation when agents
move along the desired path [145]. Both simulations and real
AUV systems demonstrated the fault-tolerant characteristic in
obstacle avoidance and the benefit of balancing the workload
and energy. A modified constrained adaptive controller was
proposed to resolve the communication delay and actuator sat-
uration [146]. Simulation and experimental validation showed
that the method can effectively compensate for the effects of
state delay in 2 and 5 s, respectively. Follower AUVs were
able to follow the desired path within the accuracy of 5 cm.

B. Complex Networks

The resource-aware consensus theory of the MASs provides
a theoretical reference for smart grid applications. In [147],
the MAS-based algorithm has been applied to control voltage
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and capacitor to optimally set the system. An event-triggered
strategy is proved to be an effective method to reduce the
communication burden of a network. The two-level reinforce-
ment learning-based controller was proposed in [148], where
the parameters were optimized by particle swarm. The results
verified the feasibility of the proposed method. Within the
decentralized system integrity protection set up, data-driven
anomaly detection, and adaptive load rejection were studied
in [149]. Anomaly detection has been converted to a multiclas-
sification problem and can be performed by individual agents,
but all the interconnected agents devoted to the final decision.
Meanwhile, the proposed adaptive load rejection strategy can
reduce the DoS attacks.

The application of MASs can be extended to the Internet
of Things (IoT) where objects range from sensors to wearable
devices. Agent-based resilient control plays a vital role in IoT
networks. It is essential to effectively identify the malicious
node and prevent further damage. A combined multiagent
and multilayered game formulation was proposed in [150],
which incorporated a trust model to assess the node/object.
The proposed model can significantly improve the accuracy of
intrusion detection by experimental test. IoT inevitably intro-
duces a vast amount of real-time data. A multiagent-based real-
time scheduling architecture was presented to optimally assign
tasks according to the real-time status of machines [151].

C. Transportation

The large-scale intelligent transportation system is one of
the typical applications of MASs. Taking the dimension,
complicated dynamics, and uncertainties into consideration,
Lin er al. [152] proposed a centralized multiagent control
method with a serial framework. Agents communicate with their
neighbors through a model-based predictive control method.
Using the traffic data provided by the city of Toronto, an adap-
tive reinforcement learning-based traffic signal controller was
proposed in [153], which can work in two modes: 1) decentral-
ized and 2) centralized. However, the dynamic and complex
traffic conditions make it difficult for the model-based and
reinforcement learning-based models to make good decisions.
In [154], a multiagent recurrent deep deterministic policy gra-
dient algorithm was proposed to control the traffic light in land
traffic. Decisions were made independently by each agent, thus
avoiding the poor performance caused by an unstable environ-
ment. Autonomous driving is another application in intelligent
control, among the key complex problems, the formation will be
outstanding. Due to the formation changes with the traffic flow
and conditions, a dynamic coordination graph was proposed
to model the constantly changing topology to coordinate the
maneuvers of grouped vehicles in [155], which was proved to
be effective than some expert rules.

D. Others

The applications of MASs are not limited to the above-
mentioned fields. They have also been widely applied to
aerospace, agriculture, industrial production, and medical
treatment, to name but a few.
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V. CONCLUSION AND FUTURE RESEARCH CHALLENGES

In this article, we presented a survey of distributed intel-
ligent control for MASs. Focusing on the constraints from
the interaction level and system level, the recent results have
been reviewed in terms of consensus problem, formation con-
trol problem, and flocking control problem. However, this is
far from an exhaustive literature review and some important
results might be missed due to the limitation of our knowl-
edge. Furthermore, there still exist several challenges in this
area deserving further study.

1) Security is highly challenging for MASs. Most existing
works design resilient and robust strategies separately
on interaction level and system level. For instance,
distributed resilient control under attacks and commu-
nication problems tends to use network-level design,
where the individual agent with high-fidelity dynam-
ics is usually simplified, and fault-tolerance control
mainly focuses on homogeneous system-level robust-
ness. However, the separated security control design on
two levels fails to realize quick stability and recover
to optimal performance, which poses a threat to the
survival of MASs under multiple threats and unknown
environments. Therefore, high-reliability intelligent con-
trol under both two-level threats is still an open problem
to be solved in the future.

2) The design of fully distributed intelligent control and
its optimization is still considered as open issues.
Although many studies have focused on distributed con-
trol approaches, some global information, such as the
total number of the agents and the Laplace matrix of
the communication topology are still being involved
for high-order MASs in intelligent control designs.
Verification on global stability, connectivity preserva-
tion under dynamic topology, proof of nonZeno phe-
nomenon, and optimization of task assignments are
usually not designed with a fully distributed frame-
work. Adaptive control strategies and learning-based
techniques are used to resolve this imperfect. However,
they inevitably increase the computational load. In real-
world applications, agents subject to limited computing
capability need to perceive, make decisions, and take
actions independently, which raises higher requirements
for fully distributed algorithms and optimization tech-
niques.

3) The research on intelligent control for heterogeneous
MASs should be enhanced, especially in both theoretic
research and applications of heterogeneous multive-
hicle systems. Although the works on heterogeneous
MASs have received extensive attention in the past
decades, most of them focused on the fundamental
consensus problems and theoretic research. In fact,
it is difficult to build truly homogeneous MASs in
practical applications. The intelligent control of hetero-
geneous vehicles, such as UAVs, UGVs, and AUVs,
is more promising in practical applications to achieve
multidimensional collaboration under complementary
capabilities.
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4) Verifications for distributed intelligent control strate-
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gies in large-scale practical application scenarios are
urgently needed. Most existing results are obtained
under laboratory conditions with centralized structures.
For large-scale MASs, very few studies are carried out
in the actual application environment, which leads to
the urgent requirements of verifications in the actual
application environment.
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2.3 Supplementary literature review

2.3.1 Learning-based formation control

With the development of machine learning and computing technologies, learning-
based formation control approaches have attracted the attention of many researchers in
recent years. In practice, the system model is usually uncertain or even completely un-
known, and traditional model-based or partial model-based control methods [45] are
not adequate to solve control problems of complex unknown MAS. Learning-based
control, also known as data-driven control, offers possible solutions to deal with un-
known dynamics by designing the controller based entirely on experimental data col-
lected from the plant [46]. Existing data-driven control methods includes model-free
adaptive control (MFAC) methods [47—49], reinforcement learning (RL)-based control
approaches [50,51], etc.

* MFAC methods have attracted significant attention in the field of MAS because
they provide control systems with the ability to automatically learn and improve
from experience [47-49]. A data-driven distributed formation control algorithm
has been proposed for an unknown heterogeneous MAS based on MFAC to trans-
form the unknown MAS into an equivalent virtual dynamic linearization data
model [47]. The work in [49] developed an MFAC protocol for MAS to achieve
formations and construct the agent models dynamically based on a linearization
method only from input and output data. However, MFAC methods have lim-
itations in the estimation of complex unknown dynamics when uncertainty or

nonlinearity is too strong.

* RL has been proved to effectively achieve online optimization and remove com-
plex nonlinear model information as it can maximize agents’ reward in unknown
environments [50,51]. For instance, off-policy RL has been developed to deal
with formation control problems [51-53] and output regulation problems [54,55].
Off-policy RL means the target policy differs from the behavior policy in RL, oth-
erwise, it is called on-policy RL [56]. Compared with on-policy RL, off-policy
RL has a great advantage in learning efficiency due to its parallel learning strat-
egy. In recent years, off-policy deep RL algorithms are used to obtain the optimal
control decision for high-order complex systems [57]. It combines the advan-

tages of deep learning and reinforcement learning and directly allows the agent
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to make decisions through the deep neural networks without the need to manu-
ally design the state space [58]. However, complex deep RL algorithms, such as
deep deterministic policy gradient [59] and deep-Q-network [3], usually require
high-performance computers to train a large amount of data offline. The issue
on how to achieve real-time online performance when applying RL to practical
distributed MAS with limited computing capability and energy demands further

studies.

2.3.2 Collision-free formation optimization

Since the energy of agents is limited and collisions may occur in dynamic environ-
ments, optimal control with collision avoidance is another requirement that must be
considered in formation control. Considerable advancements have been made for dy-
namic path planning using such approaches as heuristic [60] and artificial potential
tield (APF)-based approaches [61-63]. APF-based approaches have been widely used
in multi-vehicle formations. In recent years, a control barrier function (CBF)-based
safety-critical control has been proposed to protect systems from accident risks, such
as avoiding collisions of autonomous vehicles [64]. In fact, the APF function has been
proved to be a special case of CBF [65]. Two designs are provided to solve safety-
critical problems. One is based on control Lyapunov function-control barrier function-
quadratic programming (CLF-CBF-QP) to guarantee stability and safety simultane-
ously. The other is adding a safety filter based on control barrier function-quadratic
programming (CBF-QP) after nominal controllers [66]. However, APF-based and CBF-
based methods are still partially model-based, and only quadratic objective functions
are considered in most existing optimization for collision avoidance. Therefore, how to
design an optimal collision-free scheme for fully unknown MAS under non-quadratic

objectives deserves further investigation.

Page 30



Chapter S

Robust Formation
Control for Multi-agent
Systems Based on
Adaptive Observers

Page 31



Statement of Authorship

Title of Paper

Robust formation control for multiagent systems based on adaptive observers

Publication Status

[v" Published [~ Accepted for Publication
r Unpublished and Unsubmitted work written in

I_ Submitted for Publication manuscript Sty'e

Publication Details

B. Yan, P. Shi, C. -C. Lim and C. Wu, “Robust formation control for multiagent systems based
on adaptive observers,” IEEE Systems Journal, vol. 16, no. 2, pp. 3139-3150, 2022.

Principal Author

Name of Principal Author (Candidate)

Bing Yan

Contribution to the Paper

Conceptualization, methodology, validation and writing-original draft

Overall percentage (%)

70%

Certification: This paper reports on original research | conducted during the period of my Higher Degree by
Research candidature and is not subject to any obligations or contractual agreements with a
third party that would constrain its inclusion in this thesis. | am the primary author of this paper.

Signature Date 25 Jul 2022

Co-Author Contributions

By signing the Statement of Authorship, each author certifies that:

i. the candidate’s stated contribution to the publication is accurate (as detailed above);

ii. permission is granted for the candidate in include the publication in the thesis; and

iii. the sum of all co-author contributions is equal to 100% less the candidate’s stated contribution.

Name of Co-Author

Peng Shi

Contribution to the Paper

Polishing, checking and verification

Signature Date 25 Jul 2022
Name of Co-Author Cheng-Chew Lim

Contribution to the Paper Review, refine and validate

Signature Date 25 Jul 2022

C LR




Name of Co-Author

Chengfu Wu

Contribution to the Paper

Review and editing

Signature

Date

26 Jul 2022




Robust Formation Control for Multi-agent Systems Based on Adaptive
Chapter 3 Observers

3.1 Introduction

This chapter provides a novel distributed robust control strategy for uncertain hetero-
geneous multi-agent systems (MAS) to achieve time-varying formations (TVF) under
switching topologies and multiple disturbances. Compared with mixed-order hetero-
geneous MAS (e.g. a MAS composed of first-order integrators and second-order in-
tegrators), a unified linear heterogeneous MAS with different orders and dynamics is
considered in this chapter. An adaptive observer is developed under switching topolo-
gies to estimate the state information of a reference exosystem only based on local in-
formation, which is used for decoupling the heterogeneous dynamics from networks.
Considering the physical system layer constraints of uncertainties, homogeneous dis-
turbances, and heterogeneous disturbances, a robust L, controller is designed for uni-
tied heterogeneous MAS to achieve TVE. Finally, a case study of a UGV-UAV TVF for
bushfire edge tracking and patrolling is presented. Comparative simulation results
demonstrate that our solution has significant advantages in the case of the MAS against

multiple disturbances.

3.2 Publication

B. Yan, P. Shi, C. -C. Lim and C. Wu, “Robust formation control for multiagent sys-
tems based on adaptive observers,” IEEE Systems Journal, vol. 16, no. 2, pp. 3139-3150,
2022.
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Robust Formation Control for Multiagent Systems
Based on Adaptive Observers

Bing Yan’, Peng Shi

Abstract—1In this article, a distributed robust control strategy is
proposed for heterogeneous multiagent systems subject to uncer-
tainties and disturbances to achieve time-varying formations under
static and switching topologies. Without prior knowledge of global
information on communication graphs, a distributed observer is
developed to estimate the state information of a reference system.
Internal model-based robust formation controllers for homoge-
neous disturbances, with and without unknown heterogeneous
disturbances, are designed using the Riccati equation approach.
Finally, a case study of bushfire edge tracking and patrolling is
presented, and the effectiveness and robustness of the formation
control developed strategy are verified by simulations.

Index Terms—Adaptive observers, heterogeneous multiagent
systems, robust formation control, uncertainties and disturbances.

I. INTRODUCTION

ECENT decades have witnessed the rapid development
Rof formation control for multiagent systems (MASs) in a
wide range of their potential applications such as environmental
monitoring, and disaster relief [1], [2]. Controlling formation
can be fixed formation [3] or time-varying formation (TVF) [4],
[5] depending on whether the reference formations change over
time or not. Having the ability to vary formation references offers
not only operational flexibility but also robustness in formation.
There has been significant progress made in TVF modeling [5]
and TVF controller designs [6] for MAS systems composed
of agents with the same dynamics. However, modeling TVF to
adapt to practical tasks and designing TVF controllers for MASs
with different types of agents remain to be fully addressed.

Heterogeneous MASs composed of agents with different dy-
namics have advantages in terms of formation flexibility and
complex task decomposition because of the different functions
of individuals. Some typical heterogeneous systems were inten-
sively studied, such as the mixed-order MASs [7]-[9], and the
same-order MASs with different dynamics [10]. In recent years,
the consensus problems on unified heterogeneous MASs with
different orders and dynamics has drawn much attention [11].
The output regulation control was first introduced to solve output
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date of current version June 13, 2022. This work was supported by Australian
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consensus problems for heterogeneous MASs by following a
common exosystem. The exosystem refers to an external gen-
erator of reference (and/or disturbance) signals for the output
of the plant to track (and/or reject) [12]. The output regulation
control theory has led to the investigation of the output consensus
problems [13] and formation control [14] for heterogeneous
MASs.

The approaches used for formation control are mostly cen-
tralized control [15] and distributed control [16], [17]. The
former requires a control center and global information. It lacks
robustness against a center failure and scales poorly. Distributed
formation control based on local information is more flexible in
scalability and better fault-tolerant toward partial failures. There
are a number of formation control methods that can be broadly
classified as distributed based on adaptive observers to esti-
mate the global information of the reference system [18]-[21].
However, some existing observer designs still require global
topology information to estimate the states or outputs of the
reference exosystems [21], [22]. Meanwhile, the communication
topologies are also required to have properties that enable the
use of a static graph for node-based adaptive observers [23],
or connected graphs for edge-based adaptive observers to track
marginally stable exosystems under switching topologies [24].
In particular, for large-scale systems under switching topologies,
global information of topologies is generally difficult to obtain,
and the topology properties required for the observer design
are also hard to guarantee in practical applications. Therefore,
more intensive research is requested on the observer design
for the distributed TVF control of heterogeneous MASs under
unavailable global communication information and switching
topologies, especially when tracking unstable exosystems.

Achieving robustness against uncertainties and disturbances
in formation control is important for MASs in real-world ap-
plications. Considerable efforts based on robust control have
been made for heterogeneous MASs [12], [23], [25], [26]. Since
disturbances are regarded as part of the exosystem in the output
regulation framework [12], existing methods in [23] and [26]
for heterogeneous MASs are only applicable to the situation
in which each agent is subject to the same disturbance. We
call it homogeneous disturbance for all agents in a common
environment. In addition to it, the local disturbances on each
agent are generally heterogeneous, unknown and unmodeled,
and we call them heterogeneous disturbances. Using the bushfire
tracking and patrolling task as an example, the direction of the
main wind in the fire area will affect the movements of the
whole MASs, which can be regarded as a homogeneous dis-
turbance. Meanwhile, disturbances of heterogeneity and model
uncertainties occur due to different fluctuations of local temper-
ature and air pressure. As the model information of exosystems
is required to be known at least by a subset of agents [18],

1937-9234 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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unknown and unmodeled disturbances cannot be observed as
part of exosystems, and there are not as trivial to handle them in
the output regulation framework. To the best of our knowledge,
the robust formation control problem for heterogeneous MASs
under multiple disturbances has not been fully investigated,
which motivates us for the current article.

Overall, this investigation has the following main
contributions.

1) Compared with mixed-order heterogeneous MASs [7], [8],
a TVF control strategy is presented for a more general linear
heterogeneous MAS with different orders and dynamics to adapt
to complex and realistic tasks such as those found in bushfire
tracking and patrolling.

2) Compared with the research conducted in [7] and [22], a
distributed adaptive observer is designed to estimate the states
of the reference system without requiring the global information
of the communication topology, so that the dynamics of n agents
can be decoupled from the network. The design is expanded and
is applicable to any switching topologies under the spanning tree
assumption (Assumption 2) with an average dwell time-based
condition.

3) Differing from [23] and [26], both homogeneous distur-
bance and heterogeneous disturbances are considered in the
proposed bounded Lo controller for heterogeneous uncertain
MASs. Comparative simulations demonstrate that our solution
can effectively improve the robustness under unknown hetero-
geneous disturbances.

The notation used is standard throughout this article. ® stands
for the Kronecker product. || X || is the norm of a matrix X or a
vector X . Matrices 0 and I are all-zeros matrix and unit matrix
with corresponding dimensions. diag(v) represents a diagonal
matrix constructed by the vector v. blkdiag(Aq, As, ..., Ay)
denotes the block diagonal matrix created by aligning the input
matrices. col(z1, 2, . . ., &) is the column vector consisting of
vector 1 to Vector x,.

II. PROBLEM FORMULATION

A heterogeneous MAS with n agents of different orders and
dynamics can be modeled as

@ = Ajzi + Biug, yi =Ciry,  i=1,2,...,n (1)

where x; € R™ u; € R™ andy,; € RP? represent the state, in-
put, and output variables of the ith agent, respectively. Matrices
A;, By, and C; are the system state, input, and output matrices,
respectively. When system uncertainties and disturbances are
taking into account, system (1) has the following form:

#; = Aiwi + Biu; + Diw + E;w;

y’L:C’LIN 2:17277”’ (2)

where matrices
A; = A; + AA;, B; = B;+ AB;, D; = D; + AD;

refer to the system matrices *;, consisting of the normal matri-
ces x; and uncertainty matrices Ax; of the ith agent, where
*=A, B, D. The uncertainty matrices are assumed to be
bounded, and belong to an open neighborhood W of the original
point. Note that the set of W does not need to be small. Similar
assumptions have been found in [12] and [25].

The disturbance considered here is homogeneous disturbance
w € R? and heterogeneous disturbance w; € R%. When the

IEEE SYSTEMS JOURNAL, VOL. 16, NO. 2, JUNE 2022

dynamics of the disturbance like environment disturbance acts
identically on n agents, we call it the homogeneous disturbance
which generated by

w = Aww (3)

where the state matrix A,, is amused to be known as its dynamics
can be approximated by a Fourier series. The input matrix of w
in (2)is D;.

When the disturbance acting on n agents is different, it is
called the heterogeneous disturbance ;. The input matrix of
the heterogeneous disturbance is F;. For some highly nonlinear
unknown disturbances, we regard them as heterogeneous dis-
turbance wo; which is assumed to be unknown and unobservable
but bounded.

In the desired formation, a virtual leader which acts as the
root node of the formation graph is modeled as

Yo = Coxo “4)

where zo € R™ and yo € RP° denote the system state and
output variables, respectively, with A and Cj being the system
state and output matrices, respectively. Note that there is no
external control input to the virtual leader, and it is assumed that
only a subset of agents can get access to the virtual leader.

To define the shape of the formation for n agents, it requires
n TVF systems to output the time-varying displacement of each
agent relative to the virtual leader. The n TVF systems are
designed as

fi=Alf,

where f; € R™/ and ylf € RP7 are the state and output variables

of the TVF, respectively. Matrices A{ and Cif are the state
and output matrices, respectively. Note that each TVF is only
designed for each agent, it is assumed that every agent knows
its respective TVFE.

Remark 1: Although the agents have different orders and
different dynamics, they can still send their variables of common
interest such as positions as their outputs. Since it is difficult to
ensure that the states with different orders achieve consensus, it
is more practical to investigate, for the heterogeneous MASs, the
output consensus problems than the state consensus problems.
Therefore, we assume that the dimension of the position outputs
pi = po = py of systems (1), (2), (4), and (5) is the same. The
assumption is pertinent to formation control problems of MASs
when completing different tasks. An example of a tracking and
patrolling task is given in the simulation section to illustrate the
design of the virtual leader and the TVF.

We introduce the following definitions, control problems and
assumptions for developing the main result given in Section III.

Definition 1: For any initial condition, system (1) with a
virtual leader (4) is said to achieve output consensus if the
following condition holds:

&0 = Aoxo,

yl=cln, i=12..n 05

lim||Cixi—Coac0||:O, i:1,2,...,n. (6)
t—o00

Definition 2: For any initial condition, system (1) with a
virtual leader (4) and a reference formation (5) is said to achieve
formation output consensus if the following condition holds:

tILm||Ci$i_00$0_0iffi||:()a i:1,2,...,n. (7)
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Problem 1: Robust formation output control problem is to
design a controller to meet the following condition:

i=1,2,...,n (8)

Jim [le;[[ =0,
where ¢; = Cyx; — Cozg — C’if fi is the formation error, for
system (2) with a virtual leader (4) and a reference formation (5),
when w; = 0,and Ax; € W, where W is an open neighborhood
of A*i =0.

Problem 2: Bounded Lo robust formation output control
problem s to design a controller to meet the following condition:

/eiTeidtSfyf/ wlwdt, i=12,....,n (9
0 0

for system (2) with virtual leader (4) and reference formation
(5), when w; € L]0, +0o0] [27], and Ax; € W, where W is an
open neighborhood of Ax; = 0.

The information flow among the MAS composed of n agents
and the virtual leader is generally described based on graph
theory [28]. We consider two cases: (a) The graph of the MAS
G is a static direct graph G; and (b) G, is a dynamic direct
graph G?(®) that is switched among {G*, G2, ..., G™} under a
switching signal o(t) : [0, +00) — {1,2,.., M} [29].

Assumption 1: Matrix AY = blkdiag(Ao, Aw, A{ ) has no
eigenvalues with negative real part.

Assumption 2: (a) [21]If G5 = G, assume that graph G has
a spanning tree and the virtual leader is the root node.

(b) [29] If G5 = G, assume that there exists an infinite
sequence of uniformly bounded, nonoverlapping time intervals
[tk,tkr1) with ¢, — g < g for some positive g, over which
the graph is time-invariant. Each graph G, i € {1,2,..., M}
has a spanning tree and the virtual leader is the root node.

Assumption 3: The pair (A;, B;) is stabilizable.

Assumption 4: For any A € o(AY),

A; — ML, B
0

rank { c,

:|:7’Li—|-pi, 1=1,2,...,n
where o (AY) denotes the spectrum of AY.

Remark 2: Note that Assumption 1 is to avoid collisions
among agents caused by tracking stable virtual leader and TVF
to zero, and ensure no disturbances will automatically disappear.
We can see similar assumptions in [23]. Different requirements
for information consensus under static and switching topologies
are given in Assumption 2 [21], [29]. Note that the existence of
the common internal model dynamics of heterogeneous agents
is guaranteed by Assumptions 4 [12], [30].

III. MAIN RESULTS

In this section, a distributed adaptive observer is proposed
for a common reference exosystem to decouple the dynamics of
the agents from static and switching communication topologies.
Then, two robust formation control strategies are designed to
solve Problems 1 and 2, respectively.

A. Distributed Adaptive Observer

For the robust formation output control problems, a common
reference exosystem consists of the virtual leader and the ho-
mogeneous disturbance as

£ = A%,

yt = C%¢ (10)

3141

where the state variable is & = col(zg,w), and AS =
blkdiag(Ag, A,) and C¢ = [Cp, 0] are the system state and
output matrices, respectively. The formation error is rewritten
as

e; = Ciz; — C%¢ — C fi. (1)
By Assumption 2, we index the virtual leader by number 0,
and the Laplacian matrices of G and G°®) are

0 01><n

00 .
“"] L = [Laa) La(t)} (12)
0 1

Ln+1 = |:LO L

where L = L + A,,, and L‘f(t) =1 4 Azgt). The Lapla-
cian matrices only for n agents under G and G°®) are L and
L™ respectively. The Laplacian matrices between the virtual
leader and 7 agents under G and G°*) are L and Lg(t), respec-
tively. The adjacency matrices corresponding to Laplacian ma-
trices (L, Lg) and (L”(t),Lg(t)) are (Ap, = [aij], Ano = [aio])
and (A7Y) = [a;; (1)), A% = [aio(t)]). respectively.

We design a distributed adaptive observer to estimate states
of virtual leader and homogeneous disturbance as

& = A% — (RIP) (0, + ¢4) i,

v = iaij (éz
=1

i=1,2,...,n

*éj>+aio(£i*§), Gs=G

Yi = zn:aij(t) (éz - ég) + ajo(t) (éz - f) , Gy=G°0
j=1

0; =] (PR™'P)y;
¢i = U] Py;

0;(0) >0

13)
where &; denotes the estimation of £ for :th agent. Matrix P is a
positive definite matrix that satisfies the inequality

(AHTP+PA*— PR 'P <0 (14)

and R is a given symmetric and positive definite matrix.

We define the observation error as &; = é, — ¢ for ith agent,
and denote the related vectors and matrices of the MAS by

§: In ®§a é: COl(élaé%"'aén)a 'g: COl(éla'wi'wgn)
®:diag(91792,"'79n)a (b:dia'g(d)lad)Qw'wd)n)
W:C01(¢1,w2,...,¢7L), gp:col(qﬁl,gbg,...,(bn).

It follows from (12) that

V= (LioDi+(Lioli= (Lol G =G

= (LY e i+ (LY o 1g = (179 9 DE G, = 671,
(15)
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Based on (13), the derivatives of variables 5 , U, and ¢ under
static and switching topologies are

(I, ® A* — (0 + ®)L; ® R'P)E
(I,® A* — (@ +®)L; ® R™'P)¥
(Ll & 1)57 Gs =G

Ul I, ® (PAS 4 (A%TP)

—(L{ + L) (©+9)® PRT'P| T

£ =
b

°® o RIP)E, Gy = GO
W @ R-1P)w

(I, ® AS — (@ + ®)L]
(I, ® A* = (© + ®)L]
= (L7 ® L8, G =Gt € [ty th1)

g =0T | (LT +17V) 0+ @) PRP
® (PA5 + (Aﬁ)TP)]\I;’GS:GU t),t S [fk7tk+1)
(16)

¢
¥

Remark 3: Note that observer (13) can still be applied in
the absence of disturbance by setting w = 0. The matrix C¢ =
[Co, 0] in (10) is designed to ensure that the error signal (11) used
for formation control is not affected by disturbance. Therefore,
the observer is suitable for controller design with or without
disturbance.

We recall the following results in order to derive our main
results in the sequel.

Lemma 1 [31]: Under the

eigenvalues of L; and L‘f(t) have positive real parts,

Assumption 2, all

and there exist symmetric positive definite diagonal
matrices M = diag(mq, ma, ..., my), m; >0 and
M) = diag(m (t) (t), . ,mz(t)) U(t) > 0 satistying

MLy + LTM > AOI and MeOLIW 4 (L‘l’ YT ppo®) >
Ag(t)I, where 1o > 0 and Ag(t) > 0 are the minimum eigen-
values of MLy + LTM and MWL 4 (L9T pro),
respectively.

Lemma 2 [32] (Young’s inequality): Assuming that a, b, p,

1
and ¢ are positive real numbers, and p and ¢ are such that — +
p

1 P b
- =1, thenab<a—+—
q

Lemma 3 [12]: The pair (X4, %) incorporates the p-copy
internal model of any given square matrix A with any given
integer p > 0, if the pair satisfy the form

5-1[3)

=T [Sl 52} 7! 5 17)
2

03

where 7T is any nonsingular matrix, S7, S2, and S35 are any
constant matrices,

il = blkdlag(ﬂu, . ,611,) andig = blkdlag(ﬂgl, .

76219)'

If the minimal polynomial of A is expressed as

AT + al)\(”—l) + o+ a(n—l))" + ap,
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then (31, B2;) is stabilizable for j = 1,2,..., p in the form of

[0 1 . 0] [0]
0 0 - 0 0
Bij =1 : : : S| By = (18)
0 0 - 1
| —Qn  —Q(p-1) —aq | _1_

B. Robust Formation Output Control Problems

Based on the distributed adaptive observer (13), the robust for-
mation output controllers are designed under system uncertain-
ties and homogeneous disturbance, with and without subjecting
to additional heterogeneous disturbance.

When heterogeneous disturbance w; = 0, the heterogeneous
MAS (2) is simplified to

€T, = fL‘.’L‘i + Biui + .D~Z'UJ
yl:Cixi, 7;:1,2,...,7?, (19)

Considering the n TVF in (5), the n extended exosystems are
defined as

v; = Ajvi,  yi = Cv; (20)

where the system state variable is v; = col(¢, f;), with AY =
blkdiag(AS, A{) and CY = [C*, sz] representing the system
state and output matrices, respectively.

The augmented system of (19), (20), and (11) is

T; = A~Z$Z + Biui + Fivi

y; = Cixy, 1=1,2,....n
e; = Cix; — Siv; 1)
where
F; =0,D;,0], S; = [Cy,0,C]]
The state feedback control law is designed as
=Kz + K[z
4 =iz + 27 (Cowi — C°& — CI fi) 22)

where z; is the state of the dynamic compensator, K and K}’
are the control laws for x; and z;, and (3}, ¥?) is the p-copy
internal model pair of A} constructed by Lemma 3, based on the
internal model principle [12]. Construct the Riccati equation as

(AT P+ P A‘S——P BYR7N(B))Pi+ (i1 + €2)Qi=0

(23)
where
A, 0 B;
Ar = {z?lcizg}v B} = [0]
The control law is chosen as
1
K; =[KF K7] = ~3 —R;'BI'p, (24)
€i1

where matrix P; is the symmetric positive definite solution of the
Riccati (23), for given €¢;; > 0, ¢;2 > 0 and symmetric positive
definite matrices Q; and R;.
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In the presence of additional heterogeneous disturbance, the
heterogeneous MAS is recast as

yi = Ciz, i=1,2,...,n

€, = Cll‘l — Sﬂjl (25)
The structure of the robust control law is the same as that in
(22)—(24), but matrix P; is the solution of the associated Riccati
equation

1 1
(ADT P+ A} = —P.BIR7(BY)" P+ — REE] P,
€il Vi

7

1
+ ?Ofci + (i1 +€2)Qi =0 (26)

for given €;7 > 0, €;20 > 0, 0 < ; < 1 and symmetric positive
definite matrices @); and R;.

The main result of this article follows.

Theorem 1: Consider systems (2)—(5) satisfying Assump-
tions 1-4. (a) When w; = 0 and G4 = G, Problem 1 is solvable
by distributed observer (13) and state feedback controller (22),
if conditions (14) and (23) are satisfied.

(b) When w@; =0 and G5 = G°), Problem 1 is solvable
by distributed observer (13) and state feedback controller (22)
under conditions (14) and (23), if the average dwell time of each
agent is longer than a positive threshold that can be decreased
by choosing a sufficiently large initial value of 6;.

Proof: (a) For the situation that co; = 0 and G5 = G, substi-
tuting (24) into (23) gives

(AT P + PAS < —(e51 + €2)Qi < 0 (27)

where
A; + B;K} B;K?
Cc __ Ad S ) iy NG
A=A} + B)K,; = $20, ol
Thus, A{ is Hurwitz from (27). From [12, Lemma 1.20], if Af

is Hurwitz, then A is also Hurwitz under Assumption 4, for any
A*i ew.

Substituting of state feedback law (22) into uncertain hetero-
geneous MAS (21) yields

€; = Cféz — Sﬂ)i (28)

where §; = col(z;, 2;), and

Re F; 5 0 c _
Bf = [—E?Cf:| i = [—EfCi] , Cf =C; 0].

Based on [12, Lemma 1.27], if A¢ is Hurwitz and (3}, X2)
incorporates a p-copy internal model of AY, the following equa-
tions:

P AY = (A; + B;K*)II? + B;K?1I? + F}

I} A} = SIII + X7 (GIII] — S5) (29)
have a unique solution (II¥, IT?), which satisfies
0= CiIIy — S;. (30)
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Constructing a new variable ITY = col(II¥, II#) and substitut-
ing it into (29) and (30) leads to

IV Ay = ASTIY + B¢

0=CCII’ — S, (€2))

From system (21) and (31), the dynamics of the state error 6 =
(Si — Hf?)z is
b; = ASo + Bivi + JOE — TV AV,
= Agdl + B;Ul + Jféz — ASH;}%‘ — BZCUl
= AS; 4 JUE;. (32)

Similarly, the formation error in Problem 1 and Problem 2 is
rewritten as

Under the controller in (22), closed-loop system (21) can be
expressed as

6 = (A7 + BIKD)S: + I3 = Acb + JJE,

ei:Cic(Si, i=1,2,...,n. (34)
We define Lyapunov functions as
V=WVi+V,+V; 35)
where
Vi= > (6:)" Py (36)
i=1
n m;
= ; - (20; + 6:) i (37)
Vo= (0 — a1 - as)? (38)

where m; is defined in Lemma 1, and a; and as are constants to
be decided later.
From (13) and (22), it follows:

m; >0,0, >0, ¢; >0, P, >0
Therefore, V' > 0.
Differentiating V; along the trajectory of (36) gives

Vo= S5 [(B5 + BIKDTP + P(E + BIKD)| 6

i=1
+Y IR+ Y o PIE
i=1 i=1

(39)
Substituting feedback control law (24) into (39) results in

) "o - - 1 . -
V= ZgZT [(Af)TPi + PA? — 261P,;BfR;1(Bf)TP¢
i=1 ¢
1 . . -
- PBYR; (BT P;| 6;
2¢€41
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n

Z (JHTPs; +Z§TPJ5§

i=1 i=1

(40)

From Lemma 2, using Young’s inequality obtains

n
i<y o) [(Af)TPi+Pi/~1f— BOR; (BT P,

i=1

PB5R YBHT P, +e,1QZ} ;

2621
ey [ Lymie o nr ] €
— '3 €1 1 7 7 (3 T

Substituting (13) and (16) into the derivation of V5 gives

(41

Vo= Z[mi(ei + i) + mib;i]
=1
= 0T [M(©+ @) ® (PA® + (A°)TP)
~M(©+®) (L] + L) (©+®)® PR 'P| V¥
+ 0" [M®® PR'P| V¥ (42)

Under Assumption 2 and Lemma 1, applying inequality Ly M +
MLy, > )oIto (42) yields

Vo < 07 [M(O + @) ® (PAS + (A%)TP)
~10(0@+®)*® PR 'P| ¥
+ " [M®® PR PV 43)

Similarly, taking the derivation of V3 along a trajectory in (38)
implies

=1

T[(MO —a1M — a; M) ® PR™'P] ¥

—ay — QQ)éi

T [(M@—al

M)® PR'P| ¥
—gT [CLQ ML{Ll ®PR71P] g (44)
Based on (41)—(44), we have

V=Vi+Vat Vs

1
PB)R; Y (B)TP,

€1

< ZS {A‘S )'P, + PAS —

1
5 PBR;YB)TP + €1Q;| 6
€i1

+ U7 [M(© + @) ® (PAS + (AT P)
—10(©+@)*® PR 'P| ¥
+ 0" [(MO+M®—a; M)® PR 'P)| ¥

121 5|2
IR @ {771]

—ay MLTL; ® PR'P] €. 45)
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If condition (23) is met, then

(ANT P, + PAS — —PB‘SR Y BHTR

11

+en1Qi = —€20Q; <0. (46)

From (46) and [12, Lemma 1.20], we can see that

(TP, + PAS —  PBR; (BT,
€i1
-3 L P BIR N BY)TP 4 en@Qi = —enQ: < 0. (47)
€i1

5m;

There exists a parameter a; to satisfy a; > — 7 , based on

condition (14) and Young’s inequality in Lemma 2, then we
have

2 2
M(®+<I>)\/]\)4T0f(@+<l>)_ ;\f\[o +M
and
T[M(©+ @)@ (PAS + (AYTP)

— (04 @)’® PR'P)| VU
+ 9" [(MO+M® —a; M)® PR'P)] U
<V [M(©+®)® (PA*+ (AP - PR'P)] ¥
< 0. (48)
Meanwhile, we select as to satisfy the following inequality:

1P Q] 1)

as > 2
€i1midmin (L] L1)||PI|” || R7Y|

then
. 1 -
& | IR Qi 172])* = as MLTL; ® PR'P| €

< 0. (49)

It turns out from (46)—(49) that V < 0, hence the error
lim & = 0, lim ¢; =0, lim §; = 0, lim ¢; = 0.
t—o00 t—o00 t—o00 t—o00

Therefore, Problem 1 is solved for systems (2)—(5) under the
static graph.

(b) Now, we discuss the situation when w; = 0 and G, =
G°®) . Under Assumption 2, graph G°() and matrix Lf(t) are
fixed on each interval [tx, tx+1). We chose the same V in (35)
as pairwise Lyapunov function and the same (a1, as), where
Ao = Ag(t) and L, = Lf(t). Similar to the proof of part (a), we
can obtain that V' < 0 on each interval [ty,t;41). Therefore,
each linear time-invariant subsystem of the following system is
asymptotically stable:

E=(

It turns out that state matrices Ag(t) of each closed-loop sub-
system are Hurwitz, and there exists a Lyapunov function
Vi = T P7(¢ with quadratic form that satisfies

Ag(t)po(t) + po®) (Ag(t))T <0

W ®AS — (04 @)L @ RIP)E = ATDE. (50)

(S
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on each interval [tg,tr41). If we define the piece-
wise Lyapunov function for observer error as V,, and
AW pa(t) 1 pa(®) (Ag(t))T —Wo® we can conclude that
Vi < —Amin(W7®)V, in each time interval, where Amin (W)
represents the minimum eigenvalue of W), As P7() is
a switching matrix, there exists a constant p > 1, such that
Pk < uPl k,1€{1,2,...,M}. Similar to the dwell-time-
based works in [31], it follows that lim;_, {1 = O if the average
dwell time of each agent is longer than a positive threshold

Inp
)‘-min (Wa(t) ) .

T>T =

(52)

Under Assumption 2, L‘f(t) is a bounded symmetric positive

definite matrix when ¢ € [0, +00). In view of (13), ® is not less
than zero, and O is an increasing function greater than zero when
t € [0, 400). We conclude that the threshold can be decreased by
increasing the initial value of adaptive parameter ©. Therefore,
7" becomes sufficiently small by choosing a sufficiently large
initial value of 6;, that is, 0;(0) fori =1,2,...,n

It can also be verified by Barbalat’s Lemma [33]. The piece-
wise Lyapunov function V satisfies

Vi>0,Vi<0

on each time inter'val. Similar to the analysis in [24], it follows

from (16) that ||£]| is bounded over [0,40c) by choosing a
sufficiently large 6;(0), and V} is also bounded. By Barbalat’s
Lemma
lim & = 0. (53)
t—o0
Note that V; can be designed as a common Lyapunov function

candidate for §; because no switching signal o (¢) is involved in
V1. It follows from (53) that

hm5 =0, hme,fO
t—00
Thus, Problem 1 is solved under switching topologies. |

The second result of this article is as follows.

Theorem 2: Consider systems (2)—(5) satisfying Assump-
tions 1-4. (a) When w; € L]0, 00] and G5 = G, Problem 2
is solvable by distributed observer (13) and state feedback
controller (22), if conditions (14) and (26) are satisfied.

(b) When w; € Ly[0,00] and G, = G°®), Problem 2 is
solvable by observer (13) with a sufficiently large 6;(0) under
condition (14) and controller (22) under condition (26).

Proof: (a) When w; € L2[0,00] and G4 = G, the closed-
loop error system with controller (22) is altered to

Design the Hamiltonian function with the same V in (35) as
n n
J=V+ Z ele; — Z’yfwlTwi
i=1 i=1

< ZS [A5 VP + PAS —

BOR; Y (BHT P

26 3R (BT P, +e11Qz} i
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+ i @, B{ Pidi + i 0] P,Eiwi + i sTestess;

i=1 i=1 i=1
+ 97 [M(©+ @) ® (PA* + (A9TP — PR™'P)| ¥
o LT R 5112
Bl ]

—ay MLTLy ® PRT'P] £ =Y i w;.

i=1

(35)

Inequality (55) can be written as

J< UT[M(©+ ) ® (PA* + (A5TP - PR'P)| ¥
1
+ €| 2Pl 11921

—ay MLTL; ® PR™'P] ¢

YT [(A?)TR LA

i=1

P,B)R; Y (BHT P
2621 ( )

PB5R YBY)TP + — PEETP
v:

26@1 i

1 _
+?CiTCi + 6i1Qi:| 0

Integratmg function J results in
o0 n 00
/ Jdt =V (c0) — 0)+Z/ (ele; — viw! w;)dt
0 = Jo
< / T (PAS + (AHTP — PR'P)| Wdt
0
Tl 2 -1 5112
o e e [P [ or (R P Al 2
0 €i1
—as MLYL, ® PR™'P] € dt

— Z/ SZTEZQQZ&L dt
i=1"0

S 1 ~ 1 ~
=1 /0 i i

< 0. (57)

1 -
ETP5)T 2(wi—?EiTPi6i). (56)

%

[M(©+®)®

Since the conditions in (14) and (26) are satisfied, V' < 0 with the
same value of a; and as. The integral of Hamiltonian function
meets [ .J dt <0. In view of (35) and (57), we have the
bounded L5 robust condition (58) holds fori =1,2,...,n

o0 oo
/ ele;dt < 'yf/ w! w; dt.
0 0

Therefore, Problem 2 is solved under the static graph.
(b) Similar to the analysis of Theorem 1(b), we can show that
the strategies can be extended to switching graph by choosing a

(58)
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sufficiently large 6;(0). Note that the observer can still decouple
the system dynamics from the network by selecting a large 6;(0)
under the switching signal by Barbalat’s Lemma. This completes
the proof. |

Remark 4: By treating disturbances as separable into homo-
geneous and heterogeneous disturbances, Theorem 2 provides a
solution for robust formation control problems under both types
of disturbances.

Remark 5: The proposed formation control strategy differs
from [7] and [22], in that it can automatically adapt to static
graph without requiring information of communication Lapla-
cian matrices. The strategy can be extended to the switching
graph by choosing a sufficiently large 6; (0) under Assumption 2.
It is a model-based strategy with known Ay and A,,. It should
be mentioned that an observer has been proposed to estimate
the state matrix of the exosystem in [21], but the knowledge
of minimum eigenvalues of the Laplacian matrix is required. It
is, however, technically challenging to remove both topology
and model information in controller design. A solution that we
are working on is to combine an adaptive observer with an
online iterative reinforcement learning algorithm to realize fully
distributed and model-free strategies [34].

Remark 6: Under Assumption 3 and the definition of p-copy
internal model in (18), the pair (A2, BY) in (23) is stabilizable.
Therefore, Riccati (23) admits a unique positive definite matrix
P; by given Qz = QT >0,R; = RZT >0,¢;1 >0,and€;o >0
[35]. Similarly, there exists a unique definite matrix P; satisfying
Riccati (26) by choosing parameters as Q; = QZ-T >0, R; =
RiT >0, €1 >0, €2 >0, and 0 < ~; < 1. For each agent, ~;
in (9) is a robust index, which indicates that the ratio of the Lo
function of output error to heterogeneous disturbances is less
than or equal to ;. When the index is less than 1 and closer to
zero, the system is more robust to heterogeneous disturbances.

IV. SIMULATION VERIFICATION

This section presents the design of a tracking and patrolling
formation for bushfire monitoring. Six heterogeneous unmanned
aerial vehicles (UAVs) are deployed to perform the tracking and
patrolling tasks under the proposed formation control strategy
that is subject to a homogeneous main wind disturbance. Ad-
ditional heterogeneous disturbances are introduced to further
verify the performance of the bounded L, robust formation
output controller.

A. Design of Tracking and Patrolling Formation

A generally accepted spread model for high-speed movement
and high-density free-burning bushfire is the ellipse model [36].
In the wind coordinate system, the bushfire range can be de-
scribed as an expanding ellipse after time ¢ from the ignition
point. With the homogeneous fuel bed and uniform terrain, the
length-to-width ratio of the ellipse is proportional to the wind
speed.

Following the wind direction and fire center provides a way
to track and patrol the edge of the spreading bushfires [30]. The
fire center can be regarded as a virtual leader with system state
o = col(Z¢, Ye, T, Ye) and output yo = col(z.,y.), where
(2, ye) and (Z, y.) denote the position and velocity of the fire
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center, respectively. Therefore, the system matrices are

00 10
000 1 1 0 0
A: =
=10 0 o o] [0100} (59)
0000

The initial state is given as 7o = [0 12 1]7.
In the wind coordinate system, a TVF to patrol the bushfire
boundary can be designed as follows:

fF = atcos (pt +d(6))
f7 = btsin (pt +d(6Y))
f* = acos (pt +d(67)) — atpsin (pt + d(67))

f! = bsin (pt +d(67)) + btpcos (pt +d(67)) (60

where fi = [f*, £, f¥, f/1¥ represents the state variable of ith
TVF, and p denotes the patrolling rate. Parameters a and b are the
spreading rates of the major axis and the minor axis, respectively.
Notation d(6?) is the initial mapping patrol angle based on the
formation mapping algorithms derived in our previous study [7],
[37].

Taking the reference frame into consideration, the system
matrices in the inertial coordinate system becomes

Al = (I, © D)AL (1, » DT, ¢! = ¢y

00 1 0
00 0 1 .
f_ 1 o 2ap _ |cosa —sina
Av=1p20 0 —==1, _[sina cosa] 61)
2b
0222 o
a

where D is the direction cosine matrix (DCM) [38] from the
wind coordinate system to the inertial coordinate system, and
« 1is the rotation angle between the two coordinate systems. We
choose the parameters as a = 0.2, b= 0.1, c=[21]T, p =1,
and a = 26.5°.

Remark 7: The system matrices of n reference formation
models in (5) can differ or be identical for n agents. For ex-
ample, the patrol angular rate p in (61) can be different for
agents operating at different altitude planes. We assume that
heterogeneous UAVs are flying at the same altitude plan with a
common patrol rate in the given task. Therefore, A{ is the same
for each agent. Based on the distributed observer design in [21],
an agent designs its own formation reference model by observing
the spread model information 3; = j1; Y_7_ ai;(t)(8; — Bi),
where p; > 0 and 3; = col(aq, g, ..., q,,) is the vector of
minimal polynomial coefficients of Aif . From the feature of
the internal model design in Lemma 3, the pair (A2, B?) with
observed 211 in (22) is still stabilizable. Therefore, Riccati
equations (23) and (26) always have solutions that choose
parameters satisfying the same conditions as those in Remark
6 [21]. Furthermore, the position output deviation of the refer-
ence formation is achieved through the initial mapping patrol
angle d(0?) from the formation matching algorithms based on
deviation reference 00y = 7/3. For the patrolling task, it is not
necessary for the agents to be evenly distributed on the edge
and there is no requirement to know the agent’s total number.
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Based on our previous study on scalable formation matching
algorithms [7], [37], we know that each agent can determine its
own optimal conflict-free mapping d(#9) based only on local
information. Therefore, the design of the TVF model and the
mapping of the initial state are realized in a distributed manner
for each agent.

B. Robust Formation Control Under Uncertainties and
Homogeneous Disturbance

A heterogeneous MAS is considered with six UAVs consisting
of three Qball-X4 [39] and three Qball2 [7]. Based on the quadro-
tor models in [7], the latitudinal model of UAVs is simplified to
the following linear fourth-order systems:

Py 01007 [p? 0
ol _J00go| et | O,
gr| ~ [0001| |67 U
di 0000] L s
= A¥x? + Bfu} (62)
»! 01007 [p! 0
o; 00-g0| | y
| oo o 1| |er|T| O |
Bs 00 0 0] [ps M
=AYz + BYu! (63)

where ¢ is the gravity acceleration. For the 7th agent, p; and
p? represent the horizontal positions in the = and y directions.
Variables 07, ¢!, ¢;, and p; donate the pitch angle, roll angle,
pitch angular rate, and roll angular rate, respectively. Parameters
k" and L; are the force coefficient and the lever arm, and I}
and I! indicate moments of inertia in x and y directions.
Expressing in terms of heterogeneous MAS (2), the system
states and matrices of heterogeneous multi-UAV systems are
T; = CO]-(LE:'E x"/) = COl(p?7 U;'E7 957 CIwP?a ’Ug/v ¢:J7pz)

(2 K2

A; = blkdiag(A?, AY) = blkdiag(A? + AA?, AY + AAY)

B; = blkdiag(B?, BY) = blkdiag(B? + AB?, BY + ABY).

For i =1,2,3, k* =12N, L; =0.2m, and [} =1 =
0.03kg.m?, while for i = 4, 5,6, k" = 120N, L; = 0.2m, and
I = IY = 0.03kg.m?. The initial positions of the six agents
are taken as (0.5,1)m, (—3,2)m, (—4,0)m, (—6,—1)m, (0,—3)m,
and (—2,0)m, respectively. We take the initial velocities of these
agents as (—0.3,—0.1)m/s, (0,0)m/s, (—3,—2)m/s, (—1,2)m/s,
(—0.3,)m/s, and (—1,1)m/s, respectively. The initial attitude
angles of UAVs are (0,0)rad, (0,0)rad, (0,—0.1)rad,(0,0)rad,
(0,0)rad, (0,—0.1)rad, and the angular rates are (0.1,0)rad/s,
(0.2,—0.1)rad/s, (—0.2,—0.1)rad/s,(0,0)rad/s, (0,0)rad/s, and
(0,0)rad/s, respectively. Note that the dynamic in z direction
of UAVs is not considered here. They are assumed to fly on the
same height plane with an altitude of 10 m.

Taking into account load changes and the unmodeled dy-
namics, the following system uncertainties are included in this
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Topology A

Topology B

Fig. 1.  Switching topologies of the heterogeneous MAS.

multi-UAV system:

0 01 0 O 0
. 0 -1 0 O 1
k k .
AA; 0 0 0 0 ,ADB; 1 0 2,3, k=x,y
0O 0 0 O 0
0 01 0 O 0
0 -1 0 0 0
AAF = JABF= 7| i=4,56, k=u1,y.
1 0 0 O 0 K3 1 1 ) ) x?:l/
1 0 0 0 0

We treat the main wind disturbance as homogeneous distur-
bance (3) with 4, = 0, wy = [w¥, w§]? = [2,1]. The homoge-
neous disturbance input matrices and uncertainties are chosen
as

D =11111]", ADf =[000.50]"
D; = blkdiag(Df, DY) = blkdiag(D{ + AD¥, DY + ADY).

Shown in Fig. 1 is the communication network of the MAS
that switches between topology A and topology B per second.
Note that both topologies A and B have a spanning tree with
node 0 as the root. Matrix R in the distributed adaptive ob-
server in (13) and (14) is set to 0.51, and the initial variables
0;(0) = 10. Taking into consideration the homogeneous distur-
bance and system uncertainties, we choose the parameters of ro-
bust controller in (22)—(24) as ¢; = [0.05,0.1,0.1,0.1,0.1,0.1],
e0=11,1,1,2,2,2]and R; = Q;, = I fori = 1,2,...,n.

The simulation results of the observation errors and formation
control of MAS are shown in Figs. 2 and 3, respectively.

We observe from Fig. 2 that the distributed adaptive observer
of each agent tracks the positions of fire center (z.,y.) and
its velocities (v, v,) within 10 s under switching topologies.
The observation errors of the homogeneous wind disturbance
converge to zero in 10 s. The 3 and 2D positions of agents
are updated every 10 s in Fig. 3. The trajectory of agent 1 is
also provided in Fig. 3. It can clearly be seen that the agents
can track the bushfire center and patrol along the edge of the
spreading ellipse. Regarding the formation errors of MAS (2)
with uncertainties and homogeneous disturbance when using
the adaptive observer in (13) and (14) and robust formation
controllers presented in (22)—(24), the errors converge to zero
within 25 s under switching topologies, as shown in Fig. 3.

C. Robust Formation Control Subject to Uncertainties and
Homogeneous/Heterogeneous Disturbances

When additional heterogeneous disturbances are consid-
ered, the disturbance input matrix is E¥ = [0 0 0 20] for
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Fig. 2. Observation errors for the fire center and wind disturbance.
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Fig. 3. TVF of the heterogeneous MAS subject to system uncertainties and

homogeneous disturbance.

1=1,2,...,6, k= x,y. As shown in Fig. 4, a band-limited
white noise w{ with 10-dB/Hz noise power and 0.1 s sample
time, and a bounded noise w} = 5sin(t) are added to the x
channel and the y channel of the first agent, respectively. Another
band-limited white noise wjy with 10 dB/Hz noise power and
0.05 s sample time is added to the y channel of the second
agent. Additional noise added to the x channel of the fifth agent
is wf = 10sin(t). The system parameters, initial states, uncer-
tainty matrices, homogeneous disturbance and parameters of the
distributed adaptive observer are chosen to be the same as above.
To illustrate the robustness of the proposed Lo controller for mul-
tiple disturbances, comparative simulations are conducted with
the robust output regulation method in [23]. The results using
the robust output regulation method in [23] are shown in Fig. 5.
Comparatively, the robust index in (26) of Ly robust controller
in (22) and (24) is set as v = [0.05,0.1,0.1,0.1,0.1,0.1]. The
simulation results under the Lo controller are shown in Fig. 6.
Fig. 5 shows that there are large fluctuations of errors in the
x direction of the first agent and in the y direction of the second
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agent by the method in [23], under additional heterogeneous
disturbances. After applying the proposed Lo robust formation
controller in system (2) with the same additional heterogeneous
disturbances, the formation errors almost converge to zero after
25 s in Fig. 6. The amplitudes of the error fluctuation have
been greatly reduced compared with that in Fig. 5. Note that
a smaller v; means that the sth agent has stronger abilities to
resist additional heterogeneous disturbances. For the bounded
white noise interference w{ and wy, the formation errors on
the corresponding channels are also bounded. For disturbances
w{ = 5sin(t) and wf = 10sin(t), the formation errors on the
corresponding channels converge to zero. This is because the
internal model dynamics of n extended exosystems in (20)
contain the internal model dynamics of the @ and w?, so the
error-free formation control can be realized on these channels.
Furthermore, the design decouples the heterogeneous dynamic
from communication topologies through distributed adaptive
observers and internal model-based formation controllers, it
improves the robustness of the entire system to individual un-
certainties or failures. Figs. 5 and 6 show that even if agents 1,
2, and 5 are disturbed, other agents will not be affected and can
continue to work under switching topologies.

V. CONCLUSION

In this article, a distributed robust formation control strategy
is proposed for an uncertain heterogeneous multiagent system
with multiple disturbances. A distributed observer is developed
to estimate the virtual leader and homogeneous disturbance
under static and switching topologies. Comparative simulation
studies on the bushfire edge tracking and patrolling verified the
effectiveness and robustness of the proposed strategy. Our future
work will consider the nonlinear formation control problems
for unified heterogeneous MASs based on fuzzy adaptive con-
trol [19], [40] and model-free deep reinforcement learning.
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Robust Formation Control for Nonlinear Heterogeneous Multi-agent Systems
Chapter 4 Based on Adaptive Event-triggered Strategy

4.1 Introduction

Based on the observer-based decoupling idea from Chapter 3, a brand-new dual adap-
tive time-varying formations (TVF) control scheme is proposed in this chapter for non-
linear heterogeneous multi-agent systems (MAS) to deal with limited network band-
width constraints. Compared with linear MAS, a more general system, unified non-
linear heterogeneous MAS, is considered subject to uncertainties and disturbances. To
reduce the frequency of data transmission, a distributed dual adaptive event-triggered
observer is presented for exosystem estimation, which removes the global communi-
cation information in both observer design and Zeno-free event-triggered strategy de-
sign while saving network resources. Then, a nonlinear p-copy internal model-based
formation controller is designed with a dynamic distributed compensator for uncer-
tainties and disturbances, which solves the robust heterogeneous TVF problem. Fi-
nally, both simulation and experiment are conducted for the tracking and patrolling
formation of multiple vehicles. The results verify that the proposed scheme can signif-
icantly reduce communication frequency under the premise of ensuring the robustness

of multi-agent formations.

4.2 Publication

B. Yan, P. Shi and C. -C. Lim, “Robust formation control for nonlinear heterogeneous
multiagent systems based on adaptive event-triggered strategy,” IEEE Transactions on
Automation Science and Engineering, doi: 10.1109/TASE.2021.3103877, 2021.
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Robust Formation Control for Nonlinear
Heterogeneous Multiagent Systems Based on
Adaptive Event-Triggered Strategy

Bing Yan", Peng Shi~, Fellow, IEEE, and Cheng-Chew Lim™, Life Senior Member, IEEE

Abstract—In this article, a distributed adaptive event-triggered
formation control strategy is proposed for unified nonlinear
heterogeneous multiagent systems under uncertainties and dis-
turbances to achieve time-varying formations. To reduce the
frequency of data transmission, a distributed dual adaptive
observer with an event-triggered strategy is developed to estimate
the states of a reference exosystem. Without incurring prior
global information about a communication graph, a novel robust
formation controller, with dynamic distributed compensators
for uncertainties and disturbances, is designed based on an
observer result and a nonlinear internal control principle. Finally,
both simulation and experiment are conducted for tracking and
patrolling formation to verify the effectiveness of the proposed
formation control strategy and its robustness.

Note to Practitioners—This article addresses the collaborative
formation problem of multiagent systems that has potential
applications in transportation and disaster relief. The design of
robust and energy-saving coordination strategies is challenging
in heterogeneous multivehicle systems. The proposed distributed
method is suitable for large-scale uncertain heterogeneous sys-
tems, and the use of the dual adaptive event-triggered strategy
reduces the data transmission rate.

Index Terms— Adaptive observer, event-triggered strategy, het-
erogeneous nonlinear multiagent systems (MASs), robust forma-
tion control.

I. INTRODUCTION

N UNCERTAIN environment, multiagent systems (MASs)

consisting of agents with environmental awareness, com-
munication, and self-organizing capabilities can not only over-
come the limitations of single agent in terms of load, coverage,
and fault tolerance but also improve the execution efficiency of
cooperative tasks and survivability of whole systems [1], [2].
The consensus problem is widely studied for agents to reach an
agreement, which is the fundamental problem of cooperative
control of MASs [3]-[5]. As one of the typical applications
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H. Gao upon evaluation of the reviewers’ comments. This work was supported
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Digital Object Identifier 10.1109/TASE.2021.3103877

of collaboration technology of MASs, formation control [6] is
designed to arrange the spatial position of multiple agents to
geometric patterns. The agents in a formation make their own
decisions to reach consensus according to reference formations
and adapt to cooperative tasks and uncertain environment.
In the fields such as search reconnaissance, environmental
monitoring, transportation, and disaster relief, formation con-
trol of MASs has potential application value due to the
effective expansion of the scope of operation and reduction of
the risks of human involvement under uncertain and hazardous
environment.

The methods of formation control can be divided into
the centralized methods [7], [8] and the distributed methods
[9]-[12] based on control structures. For formation control
with a centralized structure, there is a control center or a
host to coordinate information transmission and arrange tasks.
Although the structure is simple and easy to implement,
it heavily depends on the control center and is vulnerable
to a single point of failure. On the contrary, all the agents
in a distributed structure are independent of each other, and
decisions are made based only on local information of commu-
nication. Consequently, distributed formation control is more
flexible and robust when the structure is centerless. However,
most existing distributed control strategies are not fully dis-
tributed, because the design of control laws, especially for
high-order MASs, relies on global communication information
with prior knowledge. In practice, the global communication
matrix information is time-varying and difficult to obtain for
large-scale high-order MASs.

Compared with linear homogeneous agents, nonlinear
heterogeneous agents are more flexible in task allocation
according to different capabilities in cooperative operations,
such as unmanned aerial vehicle—unmanned ground vehicle
(UAV-UGV) collaboration MASs. One of the basic hetero-
geneous systems, hybrid-order MASs consisting of different
order integrator systems, was first studied in [13]-[15]. How-
ever, the less restrictive heterogeneous systems with different
orders and different dynamics are more common in practical
applications. Inspired by the output regulation control the-
ory for single system [16], the output regulation problems
have attracted increasing attention for linear unified hetero-
geneous MASs [11], [17], [18] and nonlinear heterogeneous
MASs [19], [20]. The work in [19] investigated a coopera-
tive output regulation problem for a group of heterogeneous

1545-5955 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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networked systems with nonlinear uncertainties. A class of het-
erogeneous MASs comprised of several first-order nonlinear
systems and second-order nonlinear systems was considered
in [20]. However, issues on unified nonlinear heterogeneous
MASs deserve more comprehensive investigations compared
with some typical systems. In addition to output regulation
problems, it remains a big challenge to resolve the conflict
between formation consensus requirements and high-order
nonlinear heterogeneous dynamics.

Furthermore, uncertain system parameters, external distur-
bances, and communication limitations affect the performance
of control systems. Considerable efforts have been made for
MASs under uncertainties and disturbances based on robust
control [21]-[24]. The work in [21] provided a nonlinear
robust control for homogeneous Euler-Lagrange systems to
achieve formation containment against uncertainties. A forma-
tion control for discrete-time uncertain multivehicle systems
was developed in [22] under disturbances. From a practical
point of view, network constraints, such as limited commu-
nication bandwidth and data loss, should also be considered
in the MAS design. Event-triggered control has been regarded
as an effective way to decrease communication load [4], [5],
[25] and robust to attacks/faults [18], [26]. In [4], a quan-
tized event-triggered control was proposed for the consen-
sus problem of homogeneous MASs with disturbances. The
work in [25] studied the robust cooperative output regulation
problem of linear heterogeneous MASs with additive distur-
bances via the celebrated internal model principle. However,
theoretical challenges arise from the formation control of
unified nonlinear heterogeneous MASs considering uncertain-
ties, disturbances, and communication limitations at the same
time. Furthermore, uncertain system parameters will also bring
significant difficulties when designing event-triggered control
strategies.

Motivated by the above observations, we have systemat-
ically studied the problem of robust formation control for
heterogeneous MASs, and the main contributions in this article
are as follows.

1) A time-varying formation control scheme is proposed
for unified nonlinear heterogeneous MASs with dif-
ferent orders and dynamics under uncertainties and
disturbances.

2) Compared with the works in [14], [18], and [19], the pro-
posed strategy based on a brand-new dual adaptive
observer and nonlinear internal model control principle
is distributed without requiring any global information
of communication topology.

3) A novel adaptive event-triggered strategy is designed
by the Riccati equation approach to overcome network
constraints and exclude the Zeno behavior. The strategy
can be applied to actual platforms to significantly reduce
the communication load.

The notation used in this article is standard. X! and
YT represent the inverse of nonsingular and square matrix
X and transpose of matrix Y, respectively. 0 is all-zero
matrix with corresponding dimensions. Notation ® denotes the
Kronecker product, and blkdiag represents the block diagonal

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

concatenation of matrix input arguments. For n vectors x;, i =
1,...,n, col(xy, x2, ..., x,) = [x],x3, ..., x]]"
II. PROBLEM FORMULATION
A heterogeneous nonlinear MASs with n agents can be
modeled as

Xp = filxi,u;, 0, Ay)

yizhi(xiauiapri)a i=192""7n (1)

where x; € R", u; € R™, and y; € R” represent system
states, input variables, and output variables of the ith agent,
respectively. Functions f;, h; are sufficiently smooth nonlinear
functions. The set of uncertain parameters is A;. The dynamics
of disturbance signal w € R" is described by

= Ayw. 2

Note that the linear system (2) we use to approximate
disturbances with its dynamics is assumed known. Generally,
the nonlinear function of disturbances can be expanded by
the Fourier series and approximated as a combined signal via
trigonometric functions. The state matrix A, can always be
found from the trigonometric functions to predict changes of
disturbance signals, especially for common disturbances, such
as the main wind environment disturbances.

To implement the distributed formation control for hetero-
geneous MASs, a virtual leader is designed in the desired
formation as

)'C() = AoXo
Yo = Coxo (3)

where xo € R™ and y, € R are state variables and output
variables of the virtual leader, respectively. The state matrix
and output matrix of the system are Ay and Cy, respectively.
Note that only some agents get the information from the virtual
leader.

In addition to a virtual leader, the shape of formation is
illustrated by time-varying formation (TVF) system

fi=Alf
v =Clfi i=12....n (4)

where f; € R" and y,:f € R?/ are the state and output of TVE,
respectively. The matrices A lf and Cl.f are the state matrix and
output matrix of TVF system, respectively.

Remark 1: As shown in Fig. 1, the output yy of system
(3) represents the trajectory changes with time of the virtual
leader, which determines the specific position of the whole
formation when performing tasks. Outputs of system (4)
represent the relative displacements of each agent relative
to the virtual leader. For example, with different values of
yif from time #; to time 3, the reference formation changes
from a diamond to a rectangle and then to a parallelogram
in Fig. 1. Therefore, the dynamics of the virtual leader and
TVF determines the desired movement process of MASs for
adapting to different tasks.

We introduce the following definitions to develop our main
results in Section III.
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TVF with a virtual leader.

Fig. 1.

Definition 1: We say that system (1) gradually reaches
output consensus if

(&)

Definition 2: We say that system (1) with (3) and (4)
gradually reaches formation consensus if

limy;, —yo=0, i=12,...,n.
—00

(6)

Remark 2: The difference between dynamics and state
dimensions of MASs (1) makes it difficult to ensure that
all states achieve the consensus. Assuming that the output
dimensions of systems (1), (3), and (4) are the same, that is,
Pi = Po = Py, then the output consensus becomes possible.
Inspired by the work in [16], the output consensus defined
in Definition 1 is intended to lead outputs of heterogeneous
systems to converge to the same value. The purpose of
Definition 2 for MASs is to maintain the TVF shapes and
track the specified trajectories.

To proceed with formation control design under system
uncertainties and disturbances, we describe the robust control
problems to be addressed as follows:

Problem 1: Nonlinear robust formation output control
problem is to design a controller to meet condition (7) for
system (1) with (3) and (4) when A; € W, where W is open
neighborhood of origin

tl_if&)’l—)’O—yif=0, i=1,2,-"7n'

@)
.
introducing the following

lime; =0, i=1,2,...,n
—00

where the formation error ¢; = h; (x;, u;, @, A;) —yo — y

We end this section by
assumptions.

Assumption 1: Matrix A} = blkdiag(Ao, A, A,f ) has no
eigenvalues with negative real parts.

Assumption 2: Assume that the communication graph G of
the heterogeneous MAS has a spanning tree, where the virtual
leader is the globally reachable root node, and the subgraph
G, except for the virtual leader is connected.

Assumption 3:  Assume that ((8fi)/(6x:)(0, 0,0, 0),
(8f1)/(6u;)(0,0,0,0)) is stabilizable, and the pair
((8h;)/(86x;)(0,0,0,0), (8f1)/(8x;)(0, 0,0, 0)) is detectable.

Assumption 4: Fori =1,2,...,nand [ =1,2,...,

d 7]
i(o, 0,0,0) — Al i(0, 0,0, 0)
rank ax‘ah; gz: =n;+ p;
A (0, O, Oa 0) _(0, 09 09 O)
ax, 6u1

for all A given by

q q
A|A=ZI,A,, zlt =1, Ii,...,l;=0,1,2,...,1
i=1 i=1

where 4y, ..., 44 are the eigenvalues of Aj.

Assumption 5: There exist sufficiently smooth functions
x; (v, A;) and u;(v;, A;) with x;(0,0) = 0 and u;(0,0) =0
satisfying

ox;(vi, Ay)
#Ai v; = fi(x;(vi, Ay), i (v;, Ap), v, Ay)

0 = hy(x; (o1, Ap), w01, Ar), 01, A) — yo— v/

i

®)

fori=1,2,...,n,v; € V and A; € W, where V and W are
some open neighborhoods of the origins.

Remark 3: Note that Assumption 1 ensures that no state of
the virtual leader, TVF, and disturbances will converge to zero
automatically. Otherwise, the agents with the same convergent
trajectory may collide, and the disturbances will automatically
disappear. Therefore, Assumption 1 is reasonable to track a
dynamic trajectory in a TVF without causing agent collisions
under disturbances. Similar assumptions can be found in [19]
and [27]. The existence of a common internal model system
for nonlinear heterogeneous MASs to achieve formation output
control is ensured by Assumptions 4 and 5, which are extended
by the solvable conditions of output regulation equations for
linear MASs [18] and nonlinear dynamic systems [16]. The
virtual leader and heterogeneous agents considered for the
formation control problem are all moving bodies that satisfy
Newton’s second theorem. Therefore, the existence of the
common internal model dynamics by Assumptions 4 and 5
is reasonable in reality.

ITI. MAIN RESULTS

In this section, a dual distributed adaptive observer with
an event-triggered mechanism is designed for an exosystem
without prior knowledge of the global communication graph.
Then, a robust formation control strategy is proposed for
nonlinear heterogeneous MASs to solve Problem 1.

A. Dual Adaptive Observer With Event-Triggered Strategy

Since only parts of agents get information from the virtual
leader, they share information through network communica-
tions. The distributed observer is necessary to estimate their
states for applying to large-scale systems under robust distrib-
uted structures. An exosystem consisting of virtual leader and
disturbance is recast as

&=A%

¥ = C¢ ©)

where ¢ = col(xo, w), A = blkdiag(Ao, Ar), and C¢ =
[Co, 0].

Remark 4: The concept of exosystem is proposed in the
theory of output regulation for a single plant [28]. It refers
to an external generator of reference (and/or disturbance)
signals for the output of the plant to track (and/or reject).

The role of the exosystem in output regulation for a single
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system has been thoroughly illustrated in [29]. The exosys-
tem has been expanded to the output consensus problem of
MAS:s to describe an external system that generating tracking
signals and disturbance signals. For heterogeneous MASs,
the exosystem represents an external common goal related to
collaborative tasks. For example, the exosystem in (9) means
that the common goal is to track the virtual leader under
disturbances.

Error system of robust formation output control problem is
rewritten as

e =yi—y —yi. (10)

Based on Assumption 2, the virtual leader can be indexed

by number 0, and the whole Laplacian matrix becomes

_ 0 O1><n
Ln—H = |: LO Ll :|
where L} = L + A, and L is the Laplacian matrix of
n heterogeneous MASs. The adjacency matrix between the
virtual leader and the multiagent is Ao = diag[a;o].

We design the distributed adaptive observer based on the
event-triggered strategy as

Y

& =A% — (R'P)Oy;
Vi = Zaﬂ (eAf(r_tik)é" (ttk) - eA;(t_tﬁ)gj (tf))
j=1

+aioeAi(t_t’k)(§i () = <) rerfor™)

0 =y (PR'P)y; (12)

where 0;(0) > 1. For a given positive definite matrices R and
0, symmetric positive definite matrix P is the solution to the
equation

(A) P+ PAS“—PR™'P+Q =0. (13)
The sequence of time {0, ¢, ... .5, . .]i =
1,2,...,n,k = 0,1,...} is the event-triggered instants

of agent i. The time tf is the latest time of agent j before
current time 7.
The measurement error of agent i can be constructed as

e =N DEEY =&, 1 e[ik, ). (14)
We give the adaptive event-triggered strategy as
t =inf{t > 1 | gibieles >yl wi} (15)
where the adaptive parameter ¢; is updated by
$i = eL0;(PR™'P)es, #:(0) > 1. (16)

Defining the o})server error variable as & (1) = & ) —<&@),
where &(r) = eA (=D E(tF), we denote related column vectors
of n agents by

E=1L,080), &=ci(&),&®),....50)

& =col(&), &), ..., E0)

Y = diag(y1, y2, ..., ¥n), O =diag(@,6,,...,6,)
O = diag(¢r, $2, ..., du), ec =col(eg, ez, ..., €s).
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From the definition of Laplacian matrix L,4; in (11),
it follows that
Y= (L QNE+ (Lo® IS+ (L1 @ Dee
= (L ®DE+ (L @ De;.
In view of (12), the derivatives of the variables are
E=(1L,®A —OL @ R'P)Z— (OL; ® R P)e;
=(L®A)—-(0®R'P)¥
¥ = (I, ® A°)¥
©=¥"(I,® PR™'P)¥
D =e"(@®PR'P)ec.

a7)

(18)

Recall the following results in order to derive our main
results.

Lemma 1 [30]: If the communication topology G contains
a spanning tree and the virtual leader is the root node,
the matrix L; in (11) is a nonsingular M-matrix. If the
subgraph G| without the virtual leader is connected, the matrix
L, is a nonsingular symmetric matrix.

Lemma 2 [16]: The pair of (£, X,) is the p-copy internal
model of square matrix A, if the pair has the form

zlzT[S‘ 52:|T", zzzT[i*‘] (19)

0 21 Z2

where T is any nonsingular matrix, S;, i = 1,2, 3, are any
constant matrices, and for any, p > 0,

X, =blkdiag(aii, ..., a1,), I = blkdiag(azi,...,02,).
If the minimal polynomial of A is
M+ a2 4+t agnd +a,
then (a;;, az;) is controllable in the form of
0 1 seues 0 0
0 0 seous 0 0
o= : : o a2 =
0 0 R |
—dp —Amu-1) ..., 4] 1

where j =1,2,..., p.

One of our main results of this article is given as follows.

Theorem 1: Consider systems (1), (3), and (4) satisfying
Assumptions 1-5. The observer error of distributed dual
adaptive observer (12) converges to zero under event-triggered
mechanism (15) and (16), if condition (13) is met. Further-
more, the Zeno behavior can be excluded.

Proof: We define the Lyapunov functions as

V=Vi+V,+V; (20)
where
Vi =& (L] ® P)E 21
"1
Vs = ; E(ei —a))? (22)
"
V; = ; 5(qﬁ,- —a)? (23)
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where a; and a, are constants to be designed later. According
to the design of observer (12) and adaptive law (16), the
following conditions hold:

0,'>1, ¢[>1,V>0.

Differentiating V; along the trajectory of (21) based on
Lemma 1 gives

v =& L @ (PaS+(49) P) —2L]0L @ 11)|E

—el (LTOL, @ M)E -7 (LTOL; @ Me:  (24)
where IT = PR~! P. Substituting (18) into derivation of V; in
(22) gives

V, = 2(91' — a))f;
i=1
=¥'((O — (@ — L) @Y - ¥ (I, @ Y
<Z"(LieL, @ M)é+el (LTOL, @ T)E
+E"(LTOL; ® M)es + el (L{OL; ® M)e:
(@ -1
2

EN(LTL @ TN)¢E
+(ar — Del (LTLy @ M)e: — ¥ (I,  MY.  (25)

Under the event-triggered schemes in (15) and (16), taking
the derivation of V3 along a trajectory in (23) implies

n

V=D (¢ —adi = D el (¢ — a2)0i(PR™'P)eg,

i=1 i=1
<Y (LMY —el (20 ® Mee. (26)
Therefore, the derivation of Lyapunov function V is
V=Vi+V,+ Vs

‘PT|:L1T ® (Pa*+(4%) P) - LlOL @ TI

C@-1
2

IA

LTL, ®H]‘I’
+€§T[(LIT®L1 — a2®) ® I+ ((l] - I)LlTLl ® H]ef
< \PT[L{ ® (PA‘f + (Af)TP) —LTLen
—1
__WIZ )L{L1®]T)]T

+el[(LTOL) — a0 + (a) — )LTOL)) @ M]e;

< TT[L{ ® (Pat+(49)"P)

L AL D ®(—H)]T
+el[(—ar+ a1dma (L] L1))© @ IT]e;. 27)
Choosing a; and a; to satisfy
a > %(Ll) —1, a > aidmx(L] L) (28)
then we have
V=[] e (Pat+ (a) Pom)]v. @9

From (13), it turns out that V < 0, and hence, the observer
error

lim & = 0.
=00

Furthermore, the adaptive variables y; and ¢; are bounded.

We now prove that the Zeno behavior can be excluded.
Under event-triggered condition (15), taking the derivations
of gibieles and y/ y;

d ¢i9i€T.€5,» . .
(Té’) S ¢i0,-egeg; =+ ¢i9ie£e@
+2¢,‘6i€£ (Age,fl — 0,' WP l//,')
< (¢ + 6 +24° + 1)pibel e,
+ (B0 IWe ) v wi (30)
d(y!w; .
M — 2Agl//iTl//i (31)
dt
where Wp = R™'P and ||Wp| is the norm of matrix Wp.

Defining function J; = (¢ieles)/(y] wi) and taking the
derivation of J;

d ¢[0ierezi
% vy — (diheles)

v vy v
(6 + 0+ 1) i+ @O IW )

d(y/ wi)
dt

IA

(32)

where the adaptive variables are bounded by ¢; < ¢ and
6; < ;. The solution of function J; is

< (élétBHWPHZ) (e(¢2i+0.i+l)’[ . 1)
(rﬁi +0; + 1)

where v < tfT! — ¢¥ is the smallest time interval and meets
the critical condition of (15)

(33)

| (6 +0+1)
T = — - In| —— +1)] >0.
(6 +0.+1) \ @FIWeP)
Therefore, the Zeno behavior can be excluded, which com-
pletes the proof. ]

Remark 5: Compared with the observers designed for a
single uncertain system in [31] and [32], the local interaction
information with an event-triggered mechanism of MASs is
considered in observer (12) for estimating the states of the
exosystem and overcoming network constraints. It should be
emphasized that although the design of parameters a; and a,
in (28) is based on the minimum eigenvalues of the global
Laplace matrix L, they only appear in the Lyapunov function
instead of the design of the observer.

B. Nonlinear Robust Formation Output Control

In this section, the robust formation output control is
designed for system (1) under uncertainties and disturbances
based on the observer in (12).

Since the output of TVF (4) is different for each agent, the n
exosystems considering the TVF dynamics are

v; = Alvi, y = Siv; (34)
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where v; = col(&, f;), AV = blkdiag(A°, A]), and S; =
[Ce, C,-f ]. The augmented system of (1) and (34) with the
formation output error in (7) is transformed to

xXi = filxi,ui, v, Ay)
l),' = A;)l),'

ej = hi(xi,u;,v;, A;) — S;v;. (35)

We give the following notations to approximate the nonlin-
ear functions of system (35) by the Taylor expansion series
approach in [16]. For any matrix A, A®™ is define as the
Kronecker product of n A

A(O)zl, A(l):A, A("):A®A---®A. (36)
For a vector v = col(vy, va, . . ., v,), notation v’ denotes
ol = [v{, 01711)2, e, Ulflvq, vifzvg, 1)11721)21)3,

_ T
...,vi 2vqu,...,v(l]] . (37
There exist matrices M; and N; satisfy

ol = Mlv”), o® = N/v[l]. (38)

The nonlinear functions can be written as
filxi ui 00, Ay)
= A;(A)x; + Bi(A)ui + Ei(An); + fi(xi, ui, vi, A)
hi(xXi,ui, v, Ay)
= Ci(A))x; + Di(Apui + Fi (Ao + hi(xiy ui, v, Ay (39)

where

0 i 0 i
Ai(A) = ai(O,O, 0,4, Bi(A)= ai((), 0,0,A))

Xi Ui
ah,- ahz
Ci(A) = Fr. 0,0,0,A;), Di(A) = ™ 0,0,0,A;)

ofi
Ei(Ai) = 87(09 03 ()7 Ai))

oh;
E(Al) = _(O’ 05 0, Al)
al),‘
The smooth nonlinear residuals are f; and /; that vanish at
(xis Ui, i, Al) = (O’ 05 ()> 0)

We design the control law for ¢ € [tl." R Il

) as
up = ki(xi, zi) = Kj'xi + Kz

zi = gilziney) = Tizi + Zhe,,
ey, = hi(xi,u;,vi, A) — S;d;

(40)

where z; is the state of the dynamic compensator. The obser-
vation of v; is &; = col(¢, f;), and (X}, X%) is the p-copy
internal model pair of matrix Af , which is defined as

Ao 0

o A® ... 0
k i > >
A; . X ) )

0o 0 ., AW
1
=M | D> 1V V@A @II™) | N
j=1

Al (41)

where notations Al[” and Iq(,j D are defined in (36) and (37)
and ¢; is the dimension of matrix A’. Matrices M! and N!
can be calculated based on (38).

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

The control laws K" and K ; meet condition that
Bi(A)K}
i+ ZIDi(A)KF
(42)

feoany — | Ai(A) + Bi(A)KT
A7 (Ai) = [EQ(C,-(A,-) + Di(A)KT)

is Hurwitz when A; = 0.

The second main result of this article on formation output
control is as follows.

Theorem 2: Consider systems (1), (3), and (4) under
Assumptions 1-5, and the solutions x;(v;, A;) and w; (v;, A;)
of the regulation equations in (8) are degree k > 0 polynomials
in v;. Then, the nonlinear robust formation output control
problem defined in Problem 1 is solved by dual adaptive
observer (12) under event-triggered mechanism (15) and (16)
and state feedback controller in (40), if conditions (13) and
(42) are satisfied.

Proof: Substitution of state feedback law (40) into uncer-
tain heterogeneous MASs (35) yields

51’ = ¢i(6;, vi, Ap)

= AL(ADG + ES(Avi + T (M) + 8 (G, 03, Ay
v; = Alv;
e; = pi(d;,vi, A;)

= hi(x;, ki(x;, zi), 0i, Ay) — Siv; (43)

where (5,' = COI(X,’, Z,’), 5,‘ = 13,' — U;

= N Ei(A))
ENA) = _siran - s,-(A,»))]
B _ I 0
P _ [ fixis kiCxiy zi),vis A)
&6, v, Ay) = | i xi ki (xis 200, 015 Ai):|

and A~§(A,-) is given in (42). Based on [16, Th. 1], we have

lim & =0, limd; =0, lim(e; —e,) =0
1—00 1—00 11— 00
where #; = col(0, &, 0).

Let
A;(0) + B:(0)K}

o B:(0)K;
A{(0) = [zé(ci(O) + Di(0)K})

50+ z;z),-(omf] 9

be the nominal part of A¢(A;) when A; = 0. Under
Assumptions 1 and 3, the pair

A; (0) 0 B;(0)
TIC(0) =i || ZiD;(0)

is controllable. Hence, we can choose appropriate (K}, K7)
such that matrices Af(O) for i = 1,2,...,n are Hurwitz.
Based on Theorem 2.33 in [16], the matrix Af(Ai) is also
Hurwitz, and the system (35) at (J;, v;) = (0, 0) is stable in
the sense of Lyapunov.

According to the center manifold theorem in [16] and
Assumptions 4 and 5, there exist a locally defined sufficiently
smooth function §; (v;, A;) with 5; (0, 0) = 0 that meets

38 (vi, Ay)
61),-

(45)

Ao =& (8; (vi, A)), viy A;) (46)
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fori =1,2,...,n. By partitioning
8:(vr, Ay) = col(X; (v;, A;), Zi (v, A))

under control law (40), then (46) can be written as

oxi(vi, Ai) vy

% {0 = fi(Xi(vi, Ap), 05 (i, Ay), 05, Ap)

i

0z; (v, Ay) |, _ i

oAl = Z{EE, A) + The, 0, A) - (@7)

where

u;(vi, Ap) = K['Xi(vi, M) + K Zi(vi, Ay)
e,,,.(vl, A;) = pi (31, Vi, A{).
Since X;(vi, A;) and u;(v;, A;) are assumed to be degree k

in v;, then for any k >1, functions X;(v;, A;), Z;(v;, A;), and
e,, (07, A;) can be uniquely expressed as

k
Xi(vi, Ay) = quv,{“
=1

k
_ 1
Zi(vi, A) = ZZuD,U
=1

k
e, (01, M) = D Yyl 48)
=1

where X;;, Z;, and Y; are consent matrices that may be
related to A; [16]. Substituting (48) into (47) and expanding
(47) into power series, we can see

XuAY' = (Ai(A) + Bi(A)K]) X
+B,(A,)KfZ” + Ei(A)

ZyA" = 21z, + 3y
Yu = (Ci(A) + Di(A)K]) Xu

+ Di(A)K Zy + Fu — S (49)

where (F};, S;;) can be approximated to [F;(A;), S;(A;)] based
on Theorem 1 and (Fj;, S;;) only depends on Z; [16], [22].

Based on the p-copy internal model in Lemma 2 and
kth-order output regulation in [16, Th. 5.7], (49) has a unique
solution (X, Zi), which meets Yy = 0. Defining

X = col(X, Zi, Xoty Zo, - .
Yo = col(Yyy, Yor, ..., Yor),
A" = diag(a}", AY',..., A)))
A(A) = diag(A{(Ay), A5(Ay), ..., A5(An))
E(A;) = diag(E{(A1), ES(A), - .., E5(An))
C(A) = diag((C{(A1), C5(A), ..., C5(An)
F(A;) = diag((Ff (A1), FE(AY), - .., FS(AR)

where C{(A;) = [Ci(A)) + Di(A)K}? D;(A)K}] and
Ff(A;) = Fi(A;) — Si(Ay). It implies

) an, an)

XaA"' = A(A)Xa + E(A)

Yo = C(A)Xa+ F(A;) =0. (50)

Head of fire

Back of fire

W,

Ignition point

)
_ion
a

[ X

Fig. 2. Bushfires spread model.

From (50) and Theorem 1, we can see fori =1,2,...,n
lim ¢, =0, lime =0, limy;, —y,—yr=0.
t—o0 —00 t—00

Therefore, the nonlinear robust formation problem is solved,
which completes the proof. [

Remark 6: Note that Theorems 1 and 2 provide a distrib-
uted robust solution to resolve the conflict between formation
consensus requirements and unified nonlinear heterogeneous
dynamics. The control law involves virtual leader observations
and internal model information, instead of the states or outputs
of neighbor agents. Hence, other agents can still work even
when an agent is disrupted. The distributed controller can be
extended to solve the consensus output problem in Definition 1
and formation control problem in Definition 2 if the formation
dynamics and uncertainties/disturbances are not considered.

IV. VERIFICATION
In this section, an example of the reference formation design
is given for tracking and patrolling tasks. Then, simulation and
experiment are conducted to verify the control performance of
the proposed robust strategy.

A. Reference Formation Design for Bushfire
Tacking and Patrolling

The occurrence of multiple bushfires is unfortunately not
uncommon in Australia. It has been observed that the shape
of the fire is approximately an ovoid, which becomes more
like an ellipse during the spread of the bushfires [33].

The ellipse model based on the main wind detection is
shown in Fig. 2. The position of the bushfire range after time
t from an ignition point is described as

x(@,t) = ct +at cosb

y(@,t) = btsind, 0<6 <2m (51)

where (W,, W,, Wy) is the wind coordinate system from
the origin (ignition point) and (X, O, Y) denotes the inertial
coordinate system. Coordinate (xc, yc) indicates the center of
fire, and ¢ is the moving rate of fire center in the direction
of wind. Parameters @ and b denote the linear fire spread
rates along the wind direction and vertical wind directions,
respectively. The angle of wind speed with respect to the
X-axis of the inertial system is a. When 0 < 8 < 2,
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the position set [x (0, 1), y(0,t)] represents the edge of the
bushfires. The length of (at, bt) of the ellipse increases with
time.

To perform the tracking task, a virtual leader is designed as
the moving center of the ellipse. Define the state and output
variables of the virtual leader as xo = col(x., y., X, ¥.) and

yo = col(x., y.), respectively. Based on the description of
model (3), the state and output matrices are obtained as
0010
00 0 1 1 00O
M=1000 0 Coz[o 10 0]' (52)
0000

In order to patrol the bushfire boundary, the TVF is designed
with the purpose of making agents track the moving fire
center and rotate around the edge of the ellipse. In the wind
coordinate system (W, W,, W,), a TVF based on the fire
spread model in (51) is designed as follows:

£ = atcos(wt +6))

£ = btsin(wr + 67)
f;." =a cos(wt + (9,»0) —atw sin(wt + 9,-0)
f;y = bsin(wt +607) + btewcos(wt + 6)) (53)

where (f7, f;) represents the positions of the ith points,
which are distributed over the ellipse, moving along the edge
of the ellipse at an angular rate . The initial patrol angle
is 67.

Hence, the dynamics of TVF in (53) satisfy

i 0o 0 1 0 i
i 0 0 0 1 j:iy

i 2aw i

M = 0 0 _— ix (54)
7 b f;

. 2b y
fly W 0 «? — 0 fi w

where the subscript W denotes that the vector is in the wind
coordinate system. Similarly, the subscript I represents that
the vector is in the inertial coordinate system. The direction
cosine matrices [34] between the two coordinate systems are

cosa —sina 0 0
sin a cosa 0 0
DCMyy; = .
0 0 coso —sina
0 0 sin a cosa

and DCMp2y = DCMy,,; = DCMY,,. o
If the state in (4) is taken as f; = [f5, f, f5 f 11,
the system matrices in the inertial coordinate system become

Al = DCMy»; Af DCM oy
0 0 1 0
0 0 0 1
f— 2aw f 1 0 0 O
Ay =le? 0 0——»C1—[0100
, 2bo
0 w — 0
a

(55)

Fig. 3 shows the tracking and patrolling movement of
the reference formation model regarding the bushfire spread
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Y

J—
. dd\fec“o“
A

. Fire edge

i * Fire center

N i . S i th agent |
'__,‘\-\’\\ N 7'7_/,/’ }\ --- Path of i th agem/}

Fig. 3. Modeling of time-varying reference formation in bushfire edge
tracking and patrolling tasks.

model. The fire center is regarded as the virtual leader, which
moves at the speed ¢ in the direction of the main wind.
Meanwhile, the flaming range is gradually expanding as an
ellipse. Under the virtual leader and TVF design, each agent
moves around the fire center at an angular rate  on the
moving and gradually expanding ellipse. The path of one of
the agents is also marked by a narrowed line at different times
in Fig. 3. At each moment, multiple agents are distributed on
the edge of the moving ellipse and patrolling around the edge.

B. Example 1—Simulation

An example is considered with a heterogeneous MAS
consisting of two Qball2, two Qball-X4 UAVs [35], [36], and
one Qbot2 UGV [10]. The nonlinear model of UAVs [36] is
given as

¢ly = Di
pi = K'"Liug, + (I} — I7)0} 7]/ 1
67 = qi
G = k"Liug, + (IF — 1) wi]/ I}
i =r;
Fi = K"Liuy, + (I} — I7) 0]/ I
pi =0

y _
p; =0;

0! = (—cos ;] sing! + sin y; sin6; cos ¢! ) g + d’ wy  (56)

v
o7 = (sin g sing + cos yi sin6;* cos ') g + d wy
v

where, for the ith agent, ¢[‘ ,0F, and wf and p;, g;, and r; are
the Euler angles (roll, pitch, and yaw) and Euler angular rates,
respectively. (p;, p;) and (v}, v;) represent the positions and
velocities of the ith agent, respectively. The input variables and
output variables of the UAV system are u; = [ug,, ug,, u V,[]T
and y; = [p7, p; 1", respectively. Note that the dynamic in
the z-direction is not considered here. The aircraft is assumed
to fly in a plane with a safe altitude of 20 m for the tasks.
Notations k7" and L; indicate force coefficient and arm of
force, respectively, and I, Ii“V , and I7 are moments of inertia
in the X-, Y-, and Z-directions, respectively. ® = [wy, wy] is
the disturbance, and (d7,d;) is the parameter indicating the
influence of disturbance on the system.

The dynamic model of Qbot2 ground robot with disturbance
o = [y, wy] can be modeled as

By = Vicos(y)
B = Visin(y)
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Vi = a; + cos(y)d o + sin(y;)d] ,

i =r— l sin(y;)d} oy + l cos(y/,)d,'vw_\. (57)
Vi Vi

where (p], p;") is the position of the ith UGV. Variables V; and

a; represent the forward velocity and acceleration, respectively.

The yaw angle and angular rate are y; and r;, respectively. Due

to the nonholonomic constraint in (57) that the UGV system

cannot slide, we can set

cos(y1)

sin(y;)
qu 1. P [W} (58)
ri _V, sin(y;) V;COS(WI) u;

The system in (57) is converted to

X X
pi =0

Y Y

pi =10

X X X
O; = uj +dj wy

0] =u) +d] wy (59)

where v} and viv represent the velocities in the X- and
Y-directions of the robot. The input variables and output
variables of UGV system are u; = [u},u}]" and y; =
[pF, p]1", respectively.

To perform the tracking and patrolling tasks, heterogeneous
MASs with different dynamic and orders are considered,
where the first four agents (i = 1,2, 3, and 4) are UAVs for
patrolling around the moving and expending brushfire edge
and agent 5 is a UGV for tracking at the back of fire. For
1 and 2, k' = 12N + A", Li = O.2m+ AL;,
I =1} =0.03 kg-m?, and I} = 0.04 kg - m?, whereas for
i =3 and 4, k;”=120N+Ak"',L,_02m+AL,, =
I, = 0.03 kg - m?, and If =0.04 kg - m?, where the system
uncertainties are given as AkY',;, = (0.1,0,—0.1,-0.1) N
and AL,534 = (0.02,0.01,0,—0.05) m. The disturbances
are assumed to be the main wind disturbances with A, =
wy = [w},w)]" = [2,1] in (2), and d} = 0.1,d] = 0.1
when i = 1,2,3, and 4, while d¥ = 0.15 and d! = 0.15.
The dynamics of fire center regarding as virtue leader are
given in (52) with the initial state xp = [0 1 2 1]7. The
parameters in the design of TVF in (55) are chosen as ¢ =
211", a=02, b=0.1, ® =038, and a = 26.5°. For
the TVF of UGV, patrolling angular rate @ = 0 is to only
track the back of fire. The initial patrolling angles of TVF are

= (0,7 /2,m,37/2,0). The communication topology of
MAS with virtual leader is shown in Fig. 4(a). The parameters
of distributed event-triggered observer (12) are setas R =2 [
and Q = 0.1 I. Based on Theorems 1 and 2, the simulation
results of observation errors and formation control are shown
in Figs. 5 and 6 and Figs. 7 and 8, respectively.

As we can see from Fig. 5, the errors of the distributed adap-
tive observer for the fire center and the main wind disturbances
converge to zero within 15 s. Meanwhile, the event-triggered
instants of each agent are given in Fig. 6, where the average
trigger interval is 0.4099 s. The positions of agents are drawn
every 5 s in Fig. 7. The trajectory of UAV1 and UGV is
also plotted. It shows that the movements of agents match
the desired reference formation for bushfire edge tracking and
patrolling. Based on the adaptive observer in (12) and robust

i =

0‘: 0‘2

3)—) 0
(a) (®)

Fig. 4. Communication topologies of heterogeneous MASs. (a) Topology in
Example 1. (b) Topology in Example 2.
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Fig. 5. Observation errors for the virtual leader (fire center) and wind
disturbances.
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Fig. 6. Event-triggered instants of each agent.

formation controllers presented in (40), the formation errors
of nonlinear heterogeneous MAS (1) with uncertainties and
disturbances converge to zero within 20 s, as shown in Fig. 8.

C. Example 2—Experiment

For experimental verification, we give a simple example
involving only UGVs. As shown in Fig. 9, one of the four
Qbot2 is the fire center motion simulator; the other three are
mobile land vehicles labeled as UGV1, UGV2, and UGV3.
Each of the UGVs has equipped with a Gumstix DuoVero
Zephyr onboard computer with an integrated 802.11 b/g/n
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Fig. 7. Positions of heterogeneous MASs under system uncertainties and

disturbances with event-triggered strategy.
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Fig. 8. Formation errors of heterogeneous MASs under system uncertainties
and disturbances.

Wi-Fi module, while only UGV2 and UGV3 have onboard
Kinect RGBD depth cameras. The global OptiTrack system
with eight cameras and the onboard cameras of two Qbot2 are
used for detection and positioning. They can communicate
with each other by a local wireless network via TCP/IP
protocol. There is a control station with QUARC real-time
control software and Motive real-time software to monitor the
status of UGVs wirelessly. Their communication topology is
shown in Fig. 4(b).

Based on the size of the experimental site, we design the
parameters for TVF as C = [0.1 0", a=b= 0.001,w =
0.1,a = 0, and #° = (0,2r/3,4n/3). For disturbances,
wo = [0.1,0]7, and the disturbance coefficients in the UGV
system (57) are df , 5 = (1,1,0.1) and d; , 5 = (0.1,0.1, 1).
Observers and formation controllers are designed based on
Theorems 1 and 2 under R=2 [ and Q = 0.1 [ in (12). The
experimental results are shown in Figs. 9-16.

From Fig. 10, the error under the dual adaptive observer
converges to almost zero in 20 s, where the event-triggered
interval is shown in Fig. 11. There are some observer errors
due to the time delay. Because agent 2 is connected to all other
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Fig. 9. Experimental photographs of the TVFE.
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Fig. 11. Event-triggered instants of each agent.

nodes in their communication topology, it is reasonable that
the interaction frequency of UGV2 is the highest in Fig. 11
and the oscillation is large before 20 s in Fig. 10. Note that
the default interaction interval of the experimental platform
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Fig. 13. Yaw and yaw rate of agents.

is 0.01 s in the absence of the event-triggered strategy. After
adding the dual adaptive event-triggered strategy, the average
interval time of the entire MAS is 0.6578 s, which means
that the communication frequency is greatly reduced by more
than 60 times, and the propagation rate of cyber-failures or
attacks will also be significantly slowed down. Therefore, the
proposed strategy reduces the frequency of interaction while
ensuring a desired system performance.

The trajectories of UGVs are shown in Figs. 9 and 12, where
three UGVs patrol and track around the center of the fire
simulator, on a gradually expanding ellipse. Comparing Fig. 3
with Fig. 12, the movements of agents match the desired ref-
erence formation for the tasks. Figs. 14—16 show the changes
of yaw angles, yaw angular rates, velocities, and formation
tracking trajectories of agents. Compared with UGV1 and
UGV3, the states of UGV2 also have larger oscillations
before 40 s due to the results of the event-triggered observer.
From the formation tracking results, the positions of three
UGVs can almost track the formation reference command
within 40 s. Note that there are errors in formation control due
to the uncertainty of the experimental environment and time
delay.
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Fig. 14. Velocity and formation reference tracking of UGV1.
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V. CONCLUSION

In this article, a solution to the nonlinear robust for-
mation output control problem is provided for unified
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heterogeneous uncertain MASs. First, a distributed dual adap-
tive event-triggered observer is developed to estimate the states
of the virtual leader and disturbances that rely only on local
information. Then, a robust formation controller is designed
based on a nonlinear internal model compensator to tolerate
uncertainties and disturbances. Simulation and experimental
examples demonstrate that the proposed control strategies are
effective in providing a theoretical reference for the application
of formation control in cooperative tracking and patrolling
tasks in search and rescue operations. There are a number
of challenges remaining and deserving our future investiga-
tion, including fault-tolerant problems and performance opti-
mization for heterogeneous MASs. A possible solution is to
combine existing methods, such as event-based fault-tolerant
control [26], switched frameworks [5], [37], fuzzy logic [38],
neural network [39], and reinforcement learning [40] with our
robust formation control strategy.
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Optimal Robust Formation Control for Heterogeneous Multi-agent Systems Based
Chapter 5 on Reinforcement Learning

5.1 Introduction

Considering unknown heterogeneous multi-agent systems (MAS) and an unknown ex-
osystem, this chapter provides a novel reinforcement learning (RL)-based distributed
formation optimization to achieve time-varying formation (TVF) without collisions.
Three new off-policy RL algorithms are proposed to learn the optimal policies of each
agent in real time. An observed model-based RL algorithm or a model-free RL al-
gorithm can be used to estimate the dynamics and states of a reference exosystem.
Another model-free RL algorithm is integrated with a collision-free formation con-
troller to solve TVF optimization problems. Compared with most existing approaches
focusing on quadratic objective functions, the developed control method addresses
the non-quadratic optimization problem when the system model is completely un-
known. Comparative simulations demonstrate the real-time learning performance and

dynamic collision avoidance capability of a UAV-UGV heterogeneous MAS.

5.2 Publication
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1 | INTRODUCTION

Driven by the development of artificial intelligence and computer science, multi-agent collaborative intelligence has been
extensively studied in recent decades.!* As a typical multi-agent collaboration technology, formation control aims to
drive intractable agents to move as desired geometric shapes for better adapting to the tasks and environment.*® The
time-varying formation (TVF) has more advantages to deal with environmental changes,®’ including collision avoidance
and dynamical target tracking. However, the formation technology of large-scale multi-agents adapt to practical tasks
remains a challenge due to the constraints in the heterogeneity of the system, the locality of interactive information, the
unknown and uncertainties of the system model, and the complexity of the environment.

In practical multi-agent applications, there are almost no completely homogeneous agents with the same indi-
vidual parameters and the clock synchronization capability. Heterogeneous systems can involve different types of
agents, such as unmanned aerial vehicles-unmanned ground vehicles (UAVs-UGVs), and are required to be more flex-
ible in allocating tasks compared with homogeneous agents. One of the basic heterogeneous systems, mixed-order
MASs were studied on consensus problems® and formation control.>>!° For unified heterogeneous MASs with dif-
ferent state orders and dynamics, their common interest variables can be regarded as the outputs with the same

Abbreviations: HIB, Hamilton-Jacobi-Bellman; MAS, multi-agent system; RL, reinforcement learning; TVF, time-varying formation; UAV,
unmanned aerial vehicle; UGV, unmanned ground vehicle.

Int ] Robust Nonlinear Control. 2022;32:2683-2704. wileyonlinelibrary.com/journal/rnc © 2021 John Wiley & Sons Ltd. 2683



2684 | W“_.EY YAN ET AL.

dimensions. Therefore, the output consensus is more reasonable than the state consensus.!! Inspired by output regu-
lation problems for single systems to track a reference exosystem,!? the output consensus problems were studied for
heterogeneous MASs.'*!* The framework is extended to solve the formation control problems of unified heterogeneous
systems.®

Formation control can be categorized into the centralized methods!>!® and the distributed methods!”-'® based on
whether the agent relies on global information or local information. A great number of distributed methods have been
proposed to offer more flexibility and robustness. However, some existing distributed methods!®%° also involve prior global
communication knowledge. In order to overcome the drawbacks, adaptive observers have been introduced to estimate
the common references and decouple the system dynamics from communication networks.!*?! Although the restrictions
of communication knowledge are removed, the proposed observers are still based on the known models of both reference
and agent itself in most cases. To estimate the model of exosystem, an observer has been proposed to solve output regula-
tion problems recently,?? but the knowledge of minimum eigenvalues of the communication Laplacian matrix is needed
in the control law design. It is technically challenging to remove both topology and model information in fully distributed
formation control for unified uncertain heterogeneous MASs.

Furthermore, since the energy of agents is limited and collisions may occur in dynamic environments, optimal
control with collision avoidance is another requirement that must be considered in formation control. While consid-
erable advancements have been made for dynamic path planning using such approaches as heuristic** and artificial
intelligence.?* Most algorithms are still model-based, the optimal control design is still a challenge for agents to achieve
collision-free formation with optimization under unknown dynamics.

Therefore, it is necessary to develop optimal robust formation control technologies to deal with practical constraints
arising from uncertainties, disturbances, and unknown models. The robust internal model control was proposed to
achieve output consensus under uncertainties and disturbance without solving the output regulation equation.'>?> Tak-
ing the reference formation into consideration, this method has been extended to ensure the formation control stability
of closed-loop heterogeneous systems.?® In order to solve the system optimization problems, mature algorithms based on
the Hamilton-Jacobi-Bellman (HJB) equation are widely used when the system model is known.?”

In recent years, reinforcement learning (RL) algorithms have gained popularity in industrial communities to solve
optimization problems with unknown models.?®-*° RL is one of the machine learning algorithms that learn the optimal
strategies by observing the responses to the environment.!*> The approaches used for RL are mostly based on on-police
RL and off-policy RL.3* The target policy and behavior policy are the same in the former and different in the latter. The
first on-policy RL based on adaptive dynamic programming>* only required a partial understanding of system dynamics.
By contrast, off-policy RL with different policies has more advantages in mining data and stimulating the system.35-3¢
Therefore, off-policy RL has been more widely deployed to solve the problem of optimal control with unknown models
in MASs. Note that in most existing off-policy RL algorithms, only quadratic objective functions are considered.3¢-3® The
functions to describe collision avoidance cost usually cannot be written in quadratic forms. For large-scale multi-agent
systems, the issues about heterogeneity and unknowns of the system, the coupling of data interaction, and the uncertain
obstacles in the environment, all can pose challenges to the optimization of data-driven formation control and dynamic
obstacle avoidance.

Therefore, a learning-based robust formation control strategy under mentioned constraints is investigated in the
article. The main contributions in this article are as follows:

1. Design a TVF control strategy for a unified unknown heterogeneous MAS with different orders and different dynamics
to adapt to tasks such as tracking and patrolling.

2. Propose an adaptive observer with observed model-based and model-free iterative RL algorithms to estimate the
dynamics and states of a reference system consisting of a virtual leader and disturbance without requiring any global
information.

3. Develop a robust formation output controller to achieve the optimal collision-free heterogeneous formation control
based on off-policy RL, which is capable of solving the nonquadratic optimization problem without using any model
information.

The notation used in this article is standard. X! and Y7 represent the inverse of nonsingular and square matrix X and
transpose of matrix Y, respectively. || X|| is the norm of matrix X. Notation ® denotes the Kronecker product, and blkdiag
represents the block diagonal concatenation of matrix input arguments. col(x, X, ... , X,) is the column vector consisting
of vectors (x1,X,, ... ,X,). Function vec(X) reshape the elements in matrix X into a column vector.
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2 | PROBLEM FORMULATION

A unified heterogeneous uncertain MAS with n agents of different orders can be modeled as

Xi= A;x,- + Eiui + ﬁ,-w, yi= C‘,-xi, i=1,2,...,n, (6]

where x; € R", u; € R™:, and y; € RP represent the state, input, and output variables of the ith agent, respectively.
Matrices

Ai=Ai+AAi, §i=Bi+ABi, C‘i=Ci+ACi, D~j=Di+ADi

are the system state, input, output, and disturbance matrices with uncertainties Ax;, where x = A, B, C, D. The uncer-
tainty matrices are assumed to be bounded, and belong to an open neighborhood W of the original point.
The dynamics of disturbance signal @ € R"- is described by

@ = A,o. (2

Generally, the nonlinear function of disturbances can be expanded by the Fourier series and approximated as a combined
signal via trigonometric functions. The state matrix A,, can always be found from the trigonometric functions to predict
changes of disturbance signals.

To implement the fully distributed formation control for heterogeneous MASs, a virtual leader is designed in the
desired formation as

XO = AOXOs Yo = COan (3)

where x, € R™ and y, € R? are state and output variables of the virtual leader, respectively. The state matrix and output
matrix of the system are Ay and Cy, respectively. Note that only some agents get the information from the virtual leader.
In addition to a virtual leader, the shape of formation is illustrated by the TVF system

fi=Alf, Y =df, i=12,..,n (4)

where f; € R and y{ € RP are the state and output variables of the TVF, respectively. Matrices A{ and C‘lf are the state
matrix and output matrix of the TVF system, respectively. The dynamics of the virtual leader and the TVF determines the
desired movement process of the MAS, when completing different tasks.

The n augmented systems for cooperative heterogeneous formation control are given by

x; = Aix; + Biu; + Fyy;
b= Av;, i=1,2,...,n, ©)

e = Cix; — Cv;,

where v; = col(xy, w, f;) is the state variable of ith reference system, and e; is the formation output error for ith agent. The
system matrices in (5) are defined as F; = [0, D;, 0], A} = blkdiag(Ao,A,,,,A{ ), and C} = [C,,0, le 1.
Throughout this article, the following assumptions are needed.

Assumption 1. The eigenvalues of matrix A} lie on the imaginary axis.

Assumption 2. Assume that the communication graph G of the heterogeneous multi-agent system has a spanning tree,
where the virtual leader is the globally reachable root node.

Assumption 3. Assume that the pair (4;, B;) is stabilizable, and the pairs (Ao, Co) and (4;, C;) are all detectable.

Assumption 4. For any 4 € 6(A)),

A;—Al, B;
rank ' o =ni+p;, i=12,...,n,
C; 0

where 6(A]) denotes the spectrum of A}.
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Remark 1. Note that Assumption 1 can ensure that reference systems are marginally stable. Otherwise, the reference
trajectories for agents converge to the origin or increase exponentially to infinity. Assumption 1 is reasonable for MASs to
track practical trajectories in a TVF without causing agent collisions under disturbances. Similar assumptions have been
adopted in References 39-42. The necessary and sufficient conditions for information consensus of multi-agent systems
are given in Assumption 2. Assumptions 3 is made so that a dynamic state and output feedback control can be achieved.
The purpose of Assumption 4 is to ensure the existence of internal model systems to achieve the output consensus for
the heterogeneous MAS.'> Meanwhile, Assumption 4 indicates that there is a unique solution (IT/, U?) for the following
cooperative output regulation equation,

HTA‘: = Ale + BKU:) + F,',
HIZAY = Zul'lf +2n (C,Hf - C‘:) s (6)
0= Cinf - C;’,

where IT; = col(TT}, IT?), and (Z;, X;) is an internal model pair of A}."
To develop our main results in the next section, we introduce the following definitions and problems.

Problem 1. The optimal robust formation output control problem is to design a controller to minimize the objective
function

min  J; = / (SiTQiS,»+u,.TRia,-) dt, i=1,2...,n )
0

subject to system (5) under uncertainties and disturbance for given positive definite matrices Q; and R;, where §; =
col(x;,z;) is the augmented state variable with internal dynamics z;, and 6; = 6; — IT}v; and &; = u; — U}v; are the inter-
nal model-based augmented state error and augmented input variable for optimal robust formation output control,
respectively.

Problem 2. The optimal robust collision-free formation output control problem is to design a controller to minimize the
objective function

min J,-=/ (SiTQi&+ﬁiTRiﬁi+F(5i,Qi))dt, i=1,2,....n (8)
0

subject to system (5) under uncertainties and disturbance for given positive definite matrices Q; and R;, where F (5;, Q) is
the cost function for collision avoidance, and Q; = {0,, 03, ..., 0;} is the set of I colliding objects for i th agent. The set Q
includes other agents and obstacles in the environment.

Remark 2. Note that the quadratic objective function for formation control of heterogeneous MASs is considered in
Problem 1, which is extended by the cooperative optimal output regulation problem.*! Problem 2 involves nonquadratic
nonlinear objective function, as the cost function F(5;,9;) for collision avoidance is usually difficult to describe in a
quadratic form.

To achieve optimal robust formation control under constraints, the overview of the learning-based heterogeneous
multi-agent system design is illustrated in Figure 1. An exosystem consists of a virtual leader and a disturbance system is
considered. The so-called exosystem refers to an external system including reference signals to track and disturbances to
reject, which is first proposed in the output regulation problem.!? The exosystem considered here represents an external
common goal to track the trajectory of the virtual leader under disturbances. Generally, the information of the exosys-
tem is not known globally, and a distributed adaptive observer is proposed to construct an estimated exosystem based
on the collaborative error obtained from communication interaction. The observer parameters are found by either an
observed model-based or a model-free off-policy RL algorithm. Taking the formation deviation signal into consideration
for adapting to tasks, n designed TVFs and an estimated exosystem constitute n reference systems, which pass the refer-
ence output to the optimal robust formation controller of each agent. The optimal robust formation output controller is
designed with two functional modules, robust formation regulator and collision avoidance. Another model-free off-policy
RL algorithm is proposed to find the optimal parameters of the controller. The unknown heterogeneous MAS realizes the
optimal formation under the learning-based controller and interacts with the output information through the network.
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FIGURE 1 Overview of the learning-based heterogeneous multi-agent system design

3 | MAIN RESULTS

In this section, the distributed adaptive observer is proposed with two RL algorithms. Then, the two functional modules
with another RL algorithm are designed for heterogeneous MASs to solve Problems 1 and 2, respectively.

3.1 | Distributed adaptive observer by RL
The exosystem consisting of the virtual leader and disturbance is recast as

E=Afe, Z=C%, Yy =C%, ©)
where £ = col(x, w) € R™+%) 78 € R%, and )* € RP represent the state, measurement, and output variables. Matri-

ces A¢ = blkdiag(Ay, A,), C% = [Co,I], and C¢ = [Cy, 0] are the state matrix, measurement matrix, and output matrix of

exosystem, respectively.
Based on Assumption 2, the virtual leader can be regarded as Oth agent, and the whole Laplacian matrix becomes

Loy = [0 Ol""l , (10)

where L; = L + Ay, and L is the Laplacian matrix of n heterogeneous MASs. The adjacency matrix between the virtual

leader and the n agents is A,y = diag[a;o].
We design the distributed adaptive observer as

Xi = (AT + (€U = (AT - (T TPy ) Xi,
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yi = Z ajj (Cfél —é‘féj) + Qio (é',zéa —ZI’;) >
1
0 =dyyi, d>0,6;0)>1, (1)

where matrices Af, C'iz, and C‘f are the estimations of state matrix, measurement matrix, and output matrix of the exosys-
tem. Variable &; is the observation of &, and X; is a virtual auxiliary variable. The symmetric positive definite matrix P,; is
gained by Algorithm 1 or Algorithm 2 under given symmetric positive definite matrix Q.

Algorithm 1. The observed model-based off-policy RL algorithm to find matrix P,;

Step 1. Initialization (number of iterations k = 0): given an admissible policy U? = —é‘ngiXi
Step 2. Evaluate policy by finding Pz‘i using the following Bellman equation:

X[t + AT)PEX(t + AT) — X[ (PEXi(D)
t+AT
= / - (X[ (OQXi(0) + (UHTUf) dr. (12)
t
Update policy by
Ut = —C2PEX(D). (13)

Step 3. Check end condition:
If || P — P || < n, where 5 is a small constant
Set P,; = P’;i; Stop iteration.
else set k = k + 1 and go to Step 2.

Defining the observer state error variable as & = & — £, and dynamical error of system matrices as Af . Af — Af,
C‘f = C’f — (% and E’f = C‘f — C¢. We denote related column vectors and matrices of n agents by

é = In ® g’ E = COl(gl’EZ’ vgn)’ é = COI(EI’SZ’ ’én)’
A% = diag(A8, A%, ... A%), A° =diag(d}, AL, ... A5, A° = diagA3, AL, ... A},
C% = diag(C%, (%, ..., (%), C°=diag(C},C5, ... ,Ch), = diag(C%, 5, ... ,(3),

Ct = diag(C%, €5, ... %), CF =diag@. 5, ... .Ch), CF =diag(C.¢E, ... .00,

» Lo 12 ~2° *~n
Y = diag(wl, Y2, eens V/"), 0= diag(91, 01, cony 0")

Recall the following results in order to derive our main results.

Lemmal (43). Ifthe communication topology G contains a spanning tree and the virtual leader is the root node, the matrix
L, in (10) is a nonsingular M-matrix with positive eigenvalues.

Lemma 2 (12). The pair of (Z,,X,) is the p-copy internal model of square matrix A, if the pair has the form:

S, S S
¥ = V2, =T |0, (14)
0 21 22

where T is any nonsingular matrix, S;, i = 1,2, 3 are any constant matrices, and for any p > 0,

E] — blkdiag(au, aaey a]p), Ez = blkdiag(an, aney azp).
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If the minimal polynomial of A is

A+ @ A" 4 apep A+ ay

then (ayj, ay;) is controllable in the form of

0
alj = : : : : > azj =|:
0 0 1 0
—-a, —-Aaup-1 ... —I

wherej=1,2,...,p.
The first main result of this article is given as follows

Theorem 1. Consider systems (1)-(4) satisfying Assumptions 1-4. The observer dynamical error and state error for
exosystem ('9) converge to zero under observers (11) solved by Algorithm 1 or Algorithm 2.

Proof. We first prove the convergence of the dynamical error. Based on observer (11), differentiating the dynamical error
shows

vec(i'lg) = vec(ﬁg) - vec(ég) = —cL, ® Ivec(A%),

vec(é'z) = vec(é'z) - vec(gz) = —cL, ® Ivec(C%),

vec((f‘g) = vec(ég) - vec(gé )=—c[, ® Ivec(f'g ), (15)
where vec() represents the matrix to be reshaped into a variable by column.

From Lemma 1, the eigenvalues of L, have positive real parts. Since ¢ > 0, all the eigenvalues of matrix —cL, ® I locate
in the left half of the S plane. Therefore the dynamical error matrix after reshaping converges to zero as

tlim vec(A%) = 0, lim vec(A'.:) =0, tlim A =0,
‘lim vec(C%) =0, tllm vec(Cz) tllm C,z 0
tlim vec(C"g )=0, ‘llm vec(C‘f) =0, thm Cf 0. (16)

The dynamical errors converge to zero exponentially at least at the rate of cApin(L1), Where Apin(L,) represents the
minimum eigenvalues of matrix L,. The rate of convergence can be accelerated by choosing a sufficiently large c. Then,
for the convergence of the observation state error from (11), it follows that

N
&= Af‘fi —AfE+ oiKaiZ aj (C'sz, - C‘,z&;)
= ASE —ASE+ ASE - A% + OKO,Z ay ((Cf +C%) & - (T + %) &)

—A¢§‘+A¢¢.+0Ko,c‘2a., -§ +9Ko.2ay F(G+¢)-Ci(E+2)

Jj=0

= ASE + ACE + e+ 6, PO(CZ)TC‘Z aj (- &) +6; K,,,CZZ a; (&- &)
1—0 Jj=0
N
+9J<.,,Z a;j (CFE - CFE) +0,KO,Z a; (C7 - C7) &

Jj=0
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N N
=A% + 9iPo(Cz)TCZZ a;j (§-&) +A§§ + 9iKaiZ aj (C',z -C))e
4 =

Jj=0
N N
+AE + GiKoiCZZ aj (§-&)+ 9iKoiZ a; (C7& - C&)., 17)
j=0 j=0

where CQO = (%, 50 =& Koi = oi(C‘f)T — Po(C¥)T, and P, is the solution of the following Riccati equation
PoAf + (A%)TPy — Po(CHTC%Py + Q = 0. (18)

Note that the pair (A%, C?) in (9) is stabilizable under Assumption 3. Therefore, the Riccati equation (18) admits a unique
positive definite matrix P} by given a positive definite matrix Q = Q- > 0. However, both A% and C% are not known for
each agent as global model information. Although the dynamical model is estimated by (11), it is difficult to guarantee
that the observation pair (Af, C‘iz) is stabilizable at every moment.

In order to overcome the difficulties, a virtual dual system is introduced as

Xi = (AT + (€U = (AT - (€T TP ) Xi. (19)
The Bellman equation for system (19) is
X[t + AT)PEXi(t + AT) — X[ ()PEXi(1)
+AT . . T R . .

=[xt |l - @resy) e (T - <C§>TCfP’;)] Xi(de
t +AT

= / - (X[ 0QXi(t) + (UHTUF) dx. (20)
t

Based on Theorem 4* and Lemma 4,* the matrix P,; from Algorithm 1 converges to the solution P}, of the following
Riccati equation

PoA; + (AT Poi = P CH)TE%P, + Q= 0. (1)
To remove the model information @'z in Algorithm 1, the Bellman equation (20) can be rewritten as
X[ (t+ AT)PEXi(t + AT) — X[ (t)PEXi(D)
+AT T .
- / |- @ (@i + (KE) K ) Xith) + 20U + KEX)CPEXi(0)| de
t
t+AT T
- / [T (Qi+ (KE)KE ) Xi(0) + 2U; - UNTKE Xi(0)] de. 22)
t

From (22), the model-free algorithm is given by Algorithm 2 and the obtained P,; converges to the solution P, of the
Riccati equation (21).4%4

If lim; o Af =0, lim/ o C‘,Z =0, and P; is the unique, it can be extracted by Lemma 2.2 and Theorem 3.1 in
Reference 22 that lim;_, o, Po; = lim;_, o(Po; — P§) = 0. It implies that lim;_, o, Ko = 0.

The derivatives of state error & is

E= (IL,®A* - O (L ® (Po(CH)TC?))) &
+ (/i‘f — 0K, (L ® C%) — OK, (L, ®Iz)f?z)5

+ (A -0k L@ T)¢
— Fog + Flg-l- F,, (23)
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where
IZO = dlag (Kal,Koz, ,Ka") Ko = dlag (K017K027 sKon) N
Fo=I,® A* - © (L ® (Po(C%)"C?)),
F = A" - 0K, (L, ® C¥) - OK, (L, ® I,) C°,
F, = (/ﬁ — 0K, (L1 ® I) C‘) 3 (24)

Under Assumptions 1-3 and observer designed in (11), system & = Fo& is exponentially stable based on Lemma
2.1.22 Therefore, system (23) is input-to-state stable with F,& + F, as the input. Since lim,_, A= 0, lim,_, C° = 0and
lim,_, ., K, = 0 hold, functions F; and F, are bounded and decay to zero exponentially under Assumptions 1 and 2. Based
on Lemma 1,% if F; and F, tend to zero exponentially, so does &. It turns out that

tlim gi = 0.

This completes the proof. n

Algorithm 2. The model-free off-policy RL algorithm to find matrix P,;

Step 1. Data collection: For agent i, apply a fixed admissible control policy U,.k = —K. X; + eq, and collect the system
information such as input and output. eg; is a noise term.
Step 2. Date reuse for solution: Set k = 0

Step 2.1. Evaluate policy by solve P‘;i, K:;'I of the following Bellman equation using the information from Step 1.

X[(t+ AT)PEXi(t + AT) — X[ (DPEXi(D)

+AT T
- / |-xT@ (@i + (K5) " KE ) X0+ 2(Us - USTRE Xi(0)| . (25)
t

Step 2.2. Update control policy by
U = —KEX5(0). (26)

Step 2.3. Check end condition:
If ||P"ji+l - P';i || < n, where 5 is a small constant
Set P,; = PX. and K,; = KX; Stop iteration.
else set k = k + 1 and go to Step 2.1.

Remark 3. Note that the admissible policy can be achieved by choosing nonzero initial values of C’f and P, and the
Bellman equation (12) can be solved by the least-squares method under some persistence of excitation (PE) condition.*24
Algorithm 1 is based on estimated model information C’f, while Algorithm 2 is model-free. Note that the Assumption 1
can be relaxed if c and initial P9, are selected large enough.**#° The adaptive parameter 6 is to ensure system stability after
relaxing Assumption 1.4

Remark 4. Although a great amount of work has been devoted to the adaptive observer design to estimate the exosystem,
prior global knowledge on communication!®? or partial model information'3?! is usually involved in the observer design,
and it is difficult to guarantee the solvability of the Riccati equation (21) with estimated models at each time. Both global
topology information and model information is removed by the developed adaptive observer, and the Riccati equation (21)
can be solved by the RL-based iterative technology.

3.2 | Optimal robust formation output control
For the formation control considering the TVF dynamics in (4), the n estimated reference systems for n agents are

bi=Ab, P =C%, i=12,..,n, (27
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where §; = col(é;, ), A = blkdiag(4°, 4), and C¥ = [C%, /).
We design the state feedback control law as

u; = —Kix; — Kizz,-,
2= Zazi + Zié;,
& =yi— - df, (28)

where z; is the state of the dynamic compensator. (£;;, Z;) is the p-copy internal model pair of A;. From Theorem 1, it
turns out that

lim Al = }im(Af -A)=0, lim Cl = tlim(é';’ - =0,
lim £, = im(&; - %a) =0, lim v; = lim(®; —v;) =0, (29)
where K; = [K;‘,Kiz] is the optimal control law from Algorithm 3, and (Z;,X;;) is p-copy internal model pair of

blkdiag(A¢ ,A{ ). Note that ¥;, is constructed without observation error due to its definition in (14).
The second main result of this article is given as follows.

Algorithm 3. The model-free off-policy RL algorithm for optimization

Step 1. Data collection: For agent i, apply a fixed admissible control policy uf = —K?6; + egi,and collect the system
information such as input and output. ey; is a noise term.
Step 2. Date reuse for solution: Set k = 0

Step 2.1. Evaluate policy by solve P:‘, K{‘“, and Pf]?f of the following Bellman equation using the information
from Step 1.

8 (t + AT)Pf8i(t + AT) — 8] ()PE5i(t)

t+AT
= / [-6] @) (Qi + (KHTRK) () + 2(u; — uf) " RKH 5(t) + 20 (PEBO) 5] dr. (30)
t

Step 2.2. Update control policy by

uftt = K15 GD
Step 2.3. Check end condition:
If ||KF — Kf'|| < n, where  is a small constant
Set P; = P¥ and K; = KF; Stop iteration.
Else
set k = k+ 1 and go to Step 2.1.

Theorem 2. Consider systems (1)-(4) satisfying Assumptions 1-4. The optimal robust formation output control problem
defined in Problem 1 is solved by the adaptive observers in (11) using Algorithm 2 and the optimal controller in (28) by
Algorithm 3.

Proof. Substitution of feedback law (28) into the augmented system (5) yields
X; A; 0 X; T)’i F iVi
= - + u + Al
Z 22 Zal |z 0 —ZpCiv;

A~,' 0 Xi T))i Xi Fi n —P,'T)i
| - [K" K.Z] + i+ | I
ZpCi Za| | 0 R b+ -Z;C] Eazi — T (Civi + Ciy)
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A= Bin —PiKiz X + E; - 0
e i Zi -ZpC] U Sazi- 2 (C¥%; + Civi + Ciy) ’
e = [C’i 0 [xil -Cl; = ([C’i 0] lxil - é}’f)i) — (-0 - Clv) = & - & (32)
Zi Zi

Define augmented state variable as §; = col(x;, z;), system (32) is rewritten by

8i = A7 6 + Blu; + Bv; + Myy
= Aj6; + Bivi + Mp,
e = Ci6 — Clv,
& =—C; — G, (33)

~ A o . Bi| . F; —F;
a=|7 TlE=T =] | M= N
ZpCi Zi 0 —ZpC} Eazi — Zip (Civi + Cily)

A; — BK* -BiK? 0 . -
A= 00 TH Mp= | e e | Ci=ICi0L
ZpCi i £0zi — Zip (C9; + Civi + Ciy)

where

According to Lemmas 1.20 and 1.27 in Reference 12, if AY without uncertainties is Hurwitz, then A; is also Hurwitz
under Assumption 4, for any Ax; € W. If (Z;;, Z;;) is the p-copy internal model pair of A7, for any A*; € W, the following
equations

H‘:A:’ = (A, - B,Kf) Hf - BIKKZH:Z +F;, an:’ = Zqu + i (C‘ll'lf - C‘u) (34)

have a unique solution (T, Hf), which satisfies 0 = C‘iH’i‘ -C.
Constructing a variable I = col(l'[f,l'lf), and substituting it into (34) leads to

MA! = AT + B, 0=CiI -C. (35)

Equation (35) is equivalent to cooperative output regulation (6), when Ul =-KTIF - K‘zl'lf From system (5) and (35),
the dynamics of the state error §; = §; — ITv; is

8= Ais; + Bjvi + M, — II’AY; = A(; + My, (36)
Similarly, the formation output error is rewritten as
e; = Ci6; — Clv; = Ci6; + (CIITY — Cyv; = 6. 37)
The closed-loop formation error of the heterogeneous MAS can be expressed as
bi = A8+ My, e =Cibi.
From Theorem 1, it indicates that M;;, M;,, and &; converges to zero as t tends to infinity. The convergence rate is
accelerated by increasing c. It is easy to see that lim,_ o, ; = 0, lim,_ . ¢; = 0, and lim_,, &; = 0, if A; is Hurwitz.
Therefore, the optimization problem defined in Problem 1 can be regarded as equivalent to the optimization problem

of HIB equation*? for the following error system

bi= Afgi + Bfﬁz i = -Kib;, e =Ciéi
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uj =i + U}’v,» = —K;‘X'i - KKZZ, + U;’v,» = —foi - KlzZ, = —K;é; (38)

is consistent with the controller in (28). The optimal control law K; is the unique solution of the following generalized
algebraic Riccati equation

AD"Pi+ PA; - PBRT (B)'Pi +Qi=0, Ki=R'(B)'P, (39)

where R; and Q; are given symmetric positive definite matrices. As the model information is unknown for agents,
model-free policy iteration is obtained based on the following Bellman equation from system (33).

8 (t + AT)PESi(t + AT) — 8] (t)PE6i(0)

t+AT
= / |67 (A7 - ISP+ PACAT — BKE)) 6i0) + 20 — uh)TRKE61(0) + 26 (BYTPES | de
t
t+AT
= / [67(0) (Qi + KHTRKF) 8:(0) + 2(u; — ub) RKF15,(t) + 20] (B)"P¥ &y de
t

t+AT
= / [— (67 @ 67) vec (Qi + (KHTRKF) +2 (o7 @ 67) (1@ (KF)'R:) + (6T @ ul) U ® Ro) ) vec (KK
t
+2 (5lT ® f)lT) vec ((Ef)TPf‘)] dr, (40)

where M;, = 0 by selecting a sufficient large c.*! Expanded by Theorem 3** and Theorem 2,*! the matrices P; and K; from
Algorithm 3 converge to the optimal solutions P; and K} of the Riccati equation (39). The unique solution for Ki"“, Pf ,
and (B} )TP{‘ from the Bellman equation (40) can be solved by the least squares method under some PE condition for full
column rank, which can be achieved with enough samples in Step 1.

It can be seen from (39) that the solution of Algorithm 3 not only ensures that matrices A; is Hurwitz, but also mini-
mizes the objective function in (7). Furthermore, as lim,_,, §; = 0 and lim,_, . & = 0, the measured formation output error
lim;_, ., é = 0. Without knowing the uncertain system matrices Af and Bf , Algorithms 2 and 3 solve Problem 1, which
completes the proof. n

Remark 5. Note that the p-copy internal model-based variable z; in (28) is designed as a dynamic compensator to com-
pensate the influence of system uncertainties, assist the heterogeneous MAS to follow the virtual leader, and reject the
disturbance, where p is the dimension of outputs of systems (1) and (27). Consequently, the heterogeneous MAS achieves
the optimal formation even under system uncertainties and disturbances.

Remark 6. Itis worth noting that all Algorithms 1-3 are based on off-policy RL, in which the target policy differs from the
behavior policy. Observer-model based Algorithm 1 and model-free Algorithm 2 aim to achieve the stability of adaptive
observer (11), while model-free Algorithm 3 is designed to solve the formation optimization Problem 1. Compared with
Bellman equations and steps in the three algorithms, a noise term eg; is introduced in Algorithms 2 and 3 for stimulating
deviation of the Bellman equations (25) and (30) without requiring any model information. In addition to matrix P,; in
Algorithm 1, both matrices P,; and K,; are collected in Algorithm 2, and parameters (P;, K;, P;B) are all collected from
Algorithm 3. Therefore, Algorithm 3 has advantages in stimulating the system and mining data for further use in next
subsection.

3.3 | Optimal robust collision-free formation output control

Since multi-vehicle systems with physical sizes usually complete collaborative tasks in complex environments, obsta-
cle avoidance is another requirement that should be considered in robust formation control. In essence, the optimal
collision-free formation problem in Problem 2 is to find the optimal decision-making strategy for each agent under
information constraints.
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Our aim is to minimize the objective function in (8) with nonquadratic term F(§;, Q;). Detection range I'; and safety
range IT; are considered as

Ti={ylri+ra < |vi—oj| <Ri+rap}, Ti={yil|lyi—oj| = Ri+re}.
where R; and r; are the reaction range and size of agent i, r is the size of the colliding object 0; € Q;, wherej=1,2,...,1

and Q; includes other agents and obstacles in the environment.
Taking from our previous work,'® the penalty of collision avoidance for agent i is defined as

1 ((R,»wd,)z- =9 2)2
e\ bl )y y ey,

n
hi=2 2
=L o,y el
The cost function in (8) is designed as
~ N s~ 1., -
F(6.Q) = (WBR, P = ADb + BRI B)TH) (41)

where h! represents the derivation of h;.
The optimal control input can be designed as

u; = —Kjb; — %Kipi_lh:, (42)

where K; and P; are the solutions of Algorithm 3.
The third and final result of this article is given as

Theorem 3. Consider systems (1)-(4) satisfying Assumptions 1-4. The optimal robust collision-free formation output con-
trol problem defined in Problem 2 is solved by the controller in (42) based on the adaptive observers in (11) and Algorithms 2
and 3.

Proof. Based on Theorem 3 in our previous research,' if P* is the optimal solution of the generalized algebraic Riccati
equation (39), the model-based control input to minimize the nonquadratic objective function J in (8) with F(5;,Q;) in
(41) can be designed as

ok —1/D kT 1, 1,7
u; = ~R(B)Py8i~ SR B, 43)
Based on (38), the optimal input is
- 1 -
uj = —R7 ()" Pyoi - R B)H, (44)

where uncertain matrices (Af, 1?,5 ) are used for solving P! and u}. However, the uncertainties models are usually unknown.

From Theorem 2, we can see that K; and P; from Algorithm 3 converges to solutions K* and Pt of (39). Since K =
R;‘(Bf )TP;‘, it indicates K;Pi‘I from Algorithm 3 converges to unknown information Ri‘l(Bﬁs )T. Therefore, the controller
output u; in (42) converges to u; in (44), and Problem 2 is solved by controller (42) based on Algorithm 3 and observer in
(11) by Algorithm 2. This completes the proof. n

Remark 7. Note that the optimal control input in (42) can be regarded as a combination of two terms, formation regu-
lator control and collision avoidance control. The former decouples the heterogeneous system and obtains the optimal
formation tracking control policy, while the latter realizes the optimal formation decision under dynamic obstacle
avoidance.

Remark 8. Compared with the traditional RL-based algorithms involving a discount factor y for tracking
non-asymptotically stable reference systems,3>*? the optimal robust formation output control Problem 1 is solved by the
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FIGURE 2 Bushfires spread model

proposed algorithms without requiring the discount factor. Although the discount factor y is also removed in coopera-
tive optimal output regulation solutions in Reference 41, the communication couple information is still needed in the
design of the RL-based algorithms. It is worth noting that the observer and the optimization algorithms designed in
Theorems 1-3 are fully distributed and model-free, such that they decouple topology from system dynamics and do not
rely on any global or model information. Furthermore, differing from data-driven RL algorithms in References” and 49
with quadratic objective functions, Theorem 3 gives the optimal solution of the nonquadratic optimization to achieve the
collision-free formation for heterogeneous MASs.

4 | VERIFICATION

In this section, an example of the reference formation design is given for bushfire edge tracking and patrolling tasks.
Then an uncertain heterogeneous MAS consisting of four UAVs and one UGV is considered to perform the tasks by the
proposed formation control strategy.

The occurrence of multiple bushfires is unfortunately not uncommon in Australia. It has been observed that the shape
of the fire is approximately an ovoid, which becomes more like an ellipse during the spread of the bushfires.’%5!

The ellipse model based on the main wind detection is shown in Figure 2. The position of the bushfire range after
time ¢ from an ignition point is described as

x(0,t) =ct+atcosb,
y(0,t)=btsinf, 0<0<2nr, (45)

where (W, W, W,) is the wind coordinate system from the origin (ignition point), and (x, 0, y) denotes the inertial coor-
dinate system. Coordinate (x,,y.) indicates the center of fire, and c is the moving rate of fire center in the direction of
wind. Parameters a and b denote the linear fire spread rates along the wind direction and vertical wind direction, respec-
tively. The angle of wind speed with respect to the x-axis of the inertial system is a. When 0 < 6 < 2, the position set
(x(0,1),y(0,1)) represents the edge of the bushfires. The length of the major axes at and minor axes bt of the ellipse
increases with time.

To perform the tracking task, a virtual leader is designed as the moving center of the ellipse. Define the state and
output variables of the virtual leader as x, = col(x, y,%.,J,) and yo, = col(x., y.), respectively. Based on the description of
model (45), the state and output matrices are obtained as

Ao = N Co = ll 00 0] . (46)

S © © ©
S © © ©
S © O =
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In the wind coordinate system (Wy, W,, W;), a TVF based on the fire spread model in (45) is designed as follows

f?‘ = atcos (wt +67),
= btsin (wt +6)),
f¥=acos (wt +6)) — atwsin (wt +6;)
= bsin (wt + 6?) + btwcos (wt + 6;) (47)
where (f¥, fiy ) represents the positions of ith points, which are evenly distributed over an ellipse, moving along the edge

of the ellipse at an angular rate w. The initial patrol angle is 0?.
Hence, the dynamics of the TVF in (47) satisfies

fr 0 0 1 0 (|

bid o o o 1 ||f

o= AT (48)
A O 14

Yy Y

£ lw Oa’ZT 0 f|f Jw

where the subscript W denotes that the vector is in the wind coordinate system. Similarly, the subscript I represents that
the vector is in the inertial coordinate system.

Note that model (45) is presented in the wind coordinate system (W, W,, Wy). Using the following direction cosine
matrices (DCM)*? between the wind coordinate system (Wy, W, W,) and the inertial coordinate system (x, 0,y) yields,

cosa —sSina 0 0
sina cosa 0 0
DCMyyy = . )
0 0 cosa —Sina
0 0 sina cosa

and DCMpw = DCM;ZI = DCMvTsz
The TVF model in (47) is transformed to the inertial coordinate system as

f‘x Vs 0 O 1 0

i i

fy ; fy f 0 O 0 1

f_ = DCMy,1 A,, DCMpw f:x , A,= o 0 0 _ZaTco
i i

oy y 2b

) £l 0 o 22 o

If the state in (4) is designed as f; = [f;" fiy s f;" f;.y ]f, the system matrices in the inertial coordinate system become

1 0 0 O
Al = DCMyy; A, DCMpyw, ! = l l . (49)
01 0 0
A heterogeneous MAS is considered with two Qball-X4 UAVs,* two Qball2 UAVs,'® and one Qbot2 UGV.? Based
on the MAS models,’ the latitudinal dynamics of UAVs and dynamics of UGV can be simplified to the following linear
fourth-order system and second-order system, respectively.

pfl [0 1 o offpr| | O 1 g/l [o1 o oflp 0 1
vl lo o g offw| | 0 1 V| o 0o —g of|V 0 1
i|= g il u 4| |, = g e uf o, fori=1,2,3,4,
g5 [0 o o 1ffer 0 1 #|l [0 0o o 1]|¢) 0 1
kL, k"L;
qi 0 0 0 Of|lq: 'T 1 Di 0 0 0 O||pi - 1
= A'x' + Bu} + Dfo, = AX] + Bu) + D)o,



2698

where g is the gravity acceleration. For the ith agent, (p7, p}) and (v},1}) represent the horizontal positions and velocities
in the X- and Y-directions, respectively. For UAVs, (de ,6Y) and (p;, q;) denote the roll angle, the pitch angle, roll angular
rate, and pitch angular rate respectively. k" and L; are force coefficient and the lever arm, respectively, I and Iiy indicate
moments of inertia in the X- and Y-directions.

In terms of heterogeneous MAS (1), the system states, outputs and matrices are

x; = col(x¥,x)) = col(p?, v}, 6%, qi, P}, V), &, i), fori=1,2,3,4,
x; = col(x},x)) = col(p¥, v}, pl, V), fori=5, yi=col(p?,p)), fori=1,2,3,4,5,
A; = blkdiag(A], A)) = blkdiag(AT + AAY, AY + AA)), for i=1,2,3,4,5,
B; = blkdiag(B;, B)) = blkdiag(Bf + AB},B, + AB), fori=1,2,3,4,5,
D; = blkdiag(D;, D}) = blkdiag(D} + AD}, D] + AD)), fori=1,2,3,4,5.

Fori=1,2,k" =12N,L; =0.2m,and I = I! = 0.03 kg m?, while fori = 3,4,k = 120N, L; = 0.2 m,and I = I = 0.03
kg m2. Due to load changes and the unmodeled dynamics, the following system uncertalntles are considered in thls MAS.

0 01 00 0
0 -1 0 0 1 0
AAf= ,AB:C= ,ADf= ,l=1,2, k=xay’
0 00 1 05
0 00 0 0
[0 01 0 o] 0] [0 |
0 -1 0 0 0 0
AAF = LABf=| |, ADF = ,i=3,4, k=x,y,
0 00 1 0
1 00 0 05

0 01 0 0
AAf = ,ABf = ., ADf = ,i=5,k=x).
0 01 0.2 0.1

For the bushfire edge tracking and patrolling tasks, the disturbance is assumed to be the main wind disturbance with
Ay =0,wo = [w} wiw ]T [2,1] in (2). The dynamics of the fire center regarding as virtue leader is given in (46) with the
initial state x, = [O 1 2 1]7. The parameters in the design of the TVF are chosen asa = 0.2, b = 0.1,and @ = 0.8. For the
TVF of UGV, the intention of setting patrolling angular rate @ = 0 is to make the UGV only track the back of the bushfire
instead of patrolling on its edge. The initial patrolling angle of the TVF is §° = (0, /2, x, 37 /2,0). The obstacle is located
at (17,17) m with a radius of 1 m. The radius of UAV and UGV are 0.5 and 0.3 m, respectively. Note that the dynamics of
UAVs in Z-direction is not considered here. The aircraft is assumed to fly in a plane with an altitude of 20 m.

The communication topology of the MAS with a virtual leader is shown in Figure 3. The parameters of distributed
observer (11) are set as ¢ = 20 and d = 1. To verify the convergence of Algorithms 1-3, the parameters in the Riccati
equations (21) and (39) are set as R; = 2I, Q = Q; = 0.11. The iteration updates by least square technique in every 10
samples, each sampling interval is 0.1 s.

The simulation results of the observation and the formation control based on Theorems 1-3 are shown in Figures 4-9.
Table 1 lists the comparison of the three RL algorithms, and the convergence trends of each algorithm are displayed in
Figures 4,5, and 7, respectively. Based on partial model information, only P,; is solved by Algorithm 1 for observer (11),
and the norm errors between the optimal solution P;, of the Riccati equation (18) and obtained matrix P,; of the five
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FIGURE 5 Convergence trend of P,; based on Algorithm 2
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TABLE 1 Comparison of Algorithms 1-3

Convergence steps of iterations

Parameters to
RL algorithms Feature be solved Agent1 Agent 2 Agent 3 Agent 4 Agent 5
Algorithm 1 Observed model-based P,; 5 4 5 4 5
Algorithm 2 Model-free (Poi, Koi) 6 5 5 5 7
Algorithm 3 Model-free (P, Ki, PiB)) 7 6 7 7 5

agents converge to within the threshold after 5, 4, 5, 4, and 5 iterations, respectively. By adding noise term eg; to stimulate
systems, both solutions of P,; and K,; are collected by Algorithm 1 for observer (11) without requiring model information.
From Figure 5, the convergence steps of iterations for each agent are 6, 5, 5, 5, and 7, respectively. Similarly, Figure 7
illustrates the norm error between the solution K? solved by the Riccati equation (39) and the matrix K; in model-free
Algorithm 3, where three parameters are solved by the least squares technique. The norm errors converged within the
threshold after 7, 6, 7, 7, and 5 iterations, respectively. More iterations are needed to solve more parameters for model-free
algorithms, compared to the model-based algorithm. Unlike the existing works on the learning-based output regulation,>*
no discount factor is required in the developed algorithms to track the non-asymptotically stable reference systems. Note
that the convergence rates of all policy iteration algorithms are acceptable, which are faster than the traditional value
iteration algorithms.*! Due to the off-policy updating strategy, noise item not only has no effect on the convergence of the
solutions, but also enables the PE condition to be satisfied while stimulating the system.

The observer errors of each agent based on Algorithm 2 is shown in Figure 6. Observation errors for exosystem con-
verge to 0 within 15 s. The positions of agents are drawn every 6 s in Figure 8. The trajectories of UAV1 and UGV1 are
also plotted. Based on the adaptive observers in (11) and the formation controller presented in (42), the formation output
errors of heterogeneous MAS (1) with uncertainties and disturbance converge to zero within 30 s, as shown in Figure 9.
During the movements of all agents, the closest distance is 2.15 m between UGV1 and the obstacle, which is greater
than the safe distance of 1.3 m. It shows that the behaviors of agents match the desired tracking and patrolling reference
formations, and the agents can avoid collisions.

5 | CONCLUSION

In this article, a learning-based robust optimal formation control strategy is proposed for unified heterogeneous
MASSs subject to uncertainties, disturbance, and complex environments. Only using local information, a distributed
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observer is developed to learn exosystem information by the adaptive control and the off-policy RL method. To solve
the optimal robust collision-free formation problem, a model-free RL algorithm is proposed to minimize the non-
quadratic objective function, without the need for any model information. The results obtained from the simulation
study verify the effectiveness and robustness of the proposed distributed observer and robust formation strategies.
Our future work will consider the switching nonlinear virtual leader corresponding to dynamic collaborative tasks
for unknown nonlinear heterogeneous MASs under attacks based on resilient control’® and deep reinforcement
learning.*¢
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Event and Learning-based Resilient Formation Control for Multi-agent Systems
Chapter 6 under DoS Attacks

6.1 Introduction

Considering denial-of-service (DoS) attacks, this chapter presents a novel resilient and
robust two-layer controller with a brand-new reinforcement learning (RL) condition
to address TVF problems for unknown heterogeneous MAS. The design is distributed
and model-free at the cyber-layer and the physical system layer. An event-based re-
silient observer is provided at the cyber-layer to remove global information of com-
munication and deal with DoS attacks. The communication load can be reduced under
attacks and the Zeno behavior can be avoided. In the physical system layer, an RL rank
condition for the TVF controller is developed for unknown heterogeneous MAS. Com-
pared with the RL algorithms in Chapter 5, the new rank condition can automatically
adjust online data collection time, thereby improving online learning and optimization
performance. Experiments of multi-UGV area scanning formations are conducted. The
comparative experimental results verify the resilience of the proposed online event and

learning-based control method under different parameters of DoS attacks.

6.2 Publication

B. Yan, Y. Sun, P. Shi and C. -C. Lim, “Event and learning-based resilient formation

control for multi-agent systems under DoS attacks,” submitted, under review.
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Event and learning-based resilient formation
control for multi-agent systems under DoS

attacks

Bing Yan,Yuan Sun, Peng Shi*, Fellow, IEEE, and Cheng-Chew Lim, Senior Member, IEEE

Abstract

In this paper, a novel resilient time-varying formation control strategy is developed for multi-
agent systems under denial-of-service (DoS) attacks based on an event-triggered observer and online
reinforcement learning. The approach is distributed and model-free with a decoupled two-layer design
for the cyber-layer and the physical system layer. The event-based resilient observer is proposed to
estimate an exosystem under DoS attacks with dual adaptive laws to remove global information of a
communication topology at the cyber-layer. In the physical system layer, an optimal formation output
control is designed for multi-agent systems based on the output regulation framework and off-policy
reinforcement learning with a new rank condition. Finally, experiments with unmanned ground vehicles
for area scanning formations are conducted to verify the effectiveness and resilience of the proposed

online event and learning-based control method.

Index Terms

Resilient event-triggered strategy; reinforcement learning-based formation; multi-agent systems; denial-

of-service attacks

I. INTRODUCTION

Formation control is a way for multi-agent systems (MAS) to perform tasks towards the common
goal by changing the motions of each agent and the distribution of the relative positions between agents

[1]. Operating in complex communication environments, the cyber-layer between agents is threatened
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by malicious attacks [2], and the physical system layer is subjected to uncertain even unknown model
information and local incomplete information due to limited onboard sensors [3]. The multiple constraints
at the two layers impact the communication security, formation stability, and performance optimization
of the MAS. Therefore, achieving resilient formation control and optimization is a significant challenge
for unknown MAS.

Compared with homogeneous MAS [4], [5], heterogeneous MAS consisting of entities with different
dynamics have been intensively studied due to their flexibility in completing complex tasks [6], [7]. Output
regulation framework with internal model control has been proposed enabling different entities to achieve
output consensus by tracking a common reference system, called an exosystem [8]. The framework has
been extended to solve time-varying formation (TVF) control problems of heterogeneous MAS [9], [10].
However, most of the existing approaches focus on the stability of consensus-based formation systems
or output regulation-based formation systems. Formation performance optimization has not been fully
considered. Furthermore, how to design effective TVF that can execute collaborative tasks in real-world
applications also demands studies.

Since the agents communicate through a shared network, cyber-security issues arising from potential
malicious attacks should be considered. The denial-of-service attack (DoS) is a typical cyber-attack for
MAS in which the perpetrator seeks to block communication between agents and prevent the transmission
of measurement data to the controller [4]. A non-sampling output regulation approach has been provided
to deal with DoS attacks based on Linear Matrix Inequalities and data-driven algorithms [11]. As each
agent is commonly equipped with a certain number of devices, conserving network resources is as
important as ensuring reliable communication. Event-based sampling strategies have been proved to be
effective in improving communication resilience and reducing network load under DoS attacks [12],
[13]. Intensive works on Zeno-free event-triggered strategies have been proposed to solve consensus and
formation control problems for MAS [14], [15]. However, most of the existing resilient methods for DoS
attacks are not distributed due to the use of global graph information, and the dynamic global information
is generally difficult to obtain in real-world applications.

Furthermore, uncertain and even unknown system information challenges the robustness of MAS and
its capability for performance optimization. Although robust formation control approaches [16] can deal
with system uncertainties, it is not sufficient to solve model-free problems. Reinforcement learning (RL)
has been proven to effectively achieve online optimization and remove model information through data-
driven approaches [17]. For instance, off-policy RL has been developed to deal with consensus problems
[18] and output regulation problems [19] without attacks, where off-policy means the target policy differs

from the behavior policy in RL [19]. While RL is a viable solution, for practical use, the resilience and
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the online optimization performance of RL algorithms under attack are still challenging conundrums
deserving further studies.

Therefore, we present a novel event and learning-based formation control strategy in this paper, and
its main contributions are threefold:

1. A novel resilient event-triggered observer with dual adaptive laws is proposed for exosystem
estimation via communication networks under DoS attacks, and the Zeno behavior can be avoided.
Our design ensures efficient estimation under attacks, reduces communication frequency, and removes
the dependence on global communication topology information at the same time.

2. A robust and optimal formation control is provided for uncertain and unknown heterogeneous MAS
based on an off-policy RL algorithm with a new rank condition on the persistence of excitation to achieve
online optimization and automatically adjust online data collection time.

3. The resilient and robust strategy is a two-layer distributed and model-free solution for the time-
varying formation control problem. It can be applied to practical MAS to support safe and efficient

collaborations under DoS attacks when performing tasks via team formations.

II. PROBLEM FORMULATION

Consider a heterogeneous MAS of n agents, in which each agent can be described by
T; :fiixi—i—éiui—i—ﬁiw, Y; = éil‘i, 1=1,2,...n (1

where z; € R™, u; € R™, y; € RP, and w € R¥ are the ¢th agent’s state, input, output variables and
disturbance. Matrices *; = *; + Ax;, x = A, B, C, D represent corresponding system matrices and Ax;
is the uncertainties.

In order to decouple the heterogeneous agent dynamics from networks, an exosystem is introduced for
MAS to reach output consensus in the output regulation framework [8]. The exosystem can be regarded as
a common task system generating reference signals for tracking and disturbance signals for elimination.

Therefore, we define an exosystem as

n= A, y" = C"y, ()

where 7 = col(zg,w) € R" is the system state variable, function col denotes a column vector composed
of virtual leader = and disturbance w, and y" € RP is the output of exosystem. System state and output
matrices are A7 = blkdiag(Ag, Ay ), and C" = [Cy, 0], where blkdiag(Ay, A,,) denotes a block diagonal

matrix created by aligning matrices Ay and A,,. Note that not every agent has access to the exosystem
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information. For example, it is difficult to ensure that every agent in a large-scale MAS can directly
obtain global task information.

To perform tasks towards the common goal, ith time-varying formation systems for ith agent are

fi=Alf,  yl=clfi,  i=12...n (3)

where f; € R is ith TVF state and ylf € RP is its output. Its system matrices are AZf and C’if .
System (1) with n augmented formation reference systems consisting a common exosystem and n TVF

systems can be reconstructed as
i; = Az + Biu; + Fyv;
0 = Abv;, i=1,2,..,n “)
e; = Ciz; — C?v;
where F; = [0, D;, 0], AY = blkdiag(Ao, A, Af), and C? = [Cp,0,C/]. Variable v; = col(zo,w, fi) €
R™ is augmented state, where n;y =ny, +ny, and e; € RP denotes the formation output error.

Remark 1. Note that the system dynamics *; and orders n; can be different in heterogeneous MAS (1). A
common disturbance w is considered here for agents in their shared environment, such as the main wind

disturbance. Different disturbances for different agents have been studied in our previous work [10].

We introduce the following assumptions used in the paper.
Assumption 1. There are no eigenvalues with negative real parts in matrix Aj.
Assumption 2. The pair (A;, B;) is controllable.

Assumption 3. The MAS communication graph contains a spanning tree, where the exosystem is the

root node and other agent nodes are connected.

Assumption 4. For any )\ € o(AY),

A; — M, B; )
rank =n; + p;, i=1,2,...,n
C; 0
where A; is the known state matrix of agent i, and A} is the state matrix of the common exosystem.

o(AY) denotes the eigenvalues of AY.

The DoS attacks usually act on the communication channel between agents to prevent the transmission

of data. To describe the attack model [13], the cth DoS interval can be defined as

DS =[de,de +0.), c€Ny
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where d. and d.+ o, are the off-to-on and on-to-off transitions for DoS interval DS. During time interval
[s,T), the union of DoS intervals is

D (5,T) = { U D;}ﬂ[s,ﬂ

ceENy

The union of DoS inactive intervals is
Dy (s,T) = [s,T)\Dg (s,T)

where \ indicates that working communication intervals D, (s, T") is to remove attacked intervals D, (s, T’)

from interval [s,T).

Assumption 5. [11] The DoS duration satisfies

T—-s
[Da(s, T)| < €a +

&)

for T'> s >0, where €, is positive constant, Rg > 1, and |Dy(s,T)| is the time length of D,(s,T).

Remark 2. Note that Assumption 1 is reasonable for the exosystem and TVF with non-zero dynamics so
that agent does not collide when tracking the exosystem and forming formations. Similar assumptions
can be found in [10], [20]. Assumption 4 is the precondition for the output regulation to be solvable [8],

which ensures that the following equations have a unique solution (II, U})
YAV = ATIY + B;UY + F,
II; AY = S 1T + Sio(GII] — CF) (6)
0=CIIY —CY
where ITY = col(II¥, II?), and the pair (3;1, ¥;2) denotes p-copy internal model pair of A} [8]. Assump-

tion 5 means that the attacked duration is not larger than a proportion of the overall interval length, and

similar assumptions are used in the classical DoS attacks in [11].

The optimal resilient TVF control problem considered in this paper is to minimize the following

performance index
oo
min L:/EQQ@+ﬁR@MLi=LZMn (7
0

by designing a controller for system (4) under DoS attacks, where (); and R; are given positive definite
matrices, g; = col(z;, z;) is internal model-based state with compensation variable z;. u; = u; — Ul'v; is
the input of internal model-based TVF control and error ¢; = ; — IIYv; is equivalent to formation output

error e;, where (IIY,U}) is the unique solution of output regulation equation (6).
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Fig. 1. Overview of the cyber-layer design and physical system layer design

ITI. MAIN RESULTS

In this section, a two-layer resilient formation control approach is provided to solve the optimal resilient
TVF control problem in (7). The overview of the design is illustrated in Fig. 1. In the cyber-layer, an
event-based distributed resilient observer is designed to estimate the exosystem based on the interactive
data under DoS attacks, in which dual adaptive laws are used to remove global topology information
and adjust trigger intervals to counter attacks. An optimal formation output controller is presented at
the physical system layer to track augmented reference systems based on online off-policy RL without

requiring model information.

A. Event-based distributed resilient observer

Since the exosystem is not reachable to each agent, they share exosystem information through com-
munication networks. Distributed resilient observers are urgently needed to estimate shared information
as the networks are subject to DoS attacks, limited network resources, and local incomplete data. An
event-based observer is designed to ensure the resilience of observation and save network resources at
the cyber-layer as

i = A"y — KOs
n
An(t—t8) ok A(t—t5) ok
vi= Y aij (e (k) — ey (eF) )
j=1 ®)

+anet ) ((th —n(th)  teh g

0; = ¥l i, 0i(to) > 1
where 7j; is the estimation of exosystem state 7). 6; is the first adaptive law in the observer, and 6;(to)

represents its initial value. Indexed exosystem as number 0, a;o represents the element of the exosystem
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to MAS adjacency matrix Ao, and a;; denotes the element of the agent to agent adjacency matrix A,,.

The event-triggered instants of ith agent are represented by the time sequence {t,t,. .. ,tf, o i=
1,2,...,n, k=0,1,...}, and t? is the jth agent’s most recent triggered time. The adaptive event-based
strategy is given as

1 . _
tf* = inf{t > tf | gzbiﬁiegiem > T/JZ-TTZJi + me 72t} 9
where 1 > 0, 72 > 0, and e, is the measurement error constructed as

en, = eA"(t—tf)ﬁi(tf) — 7, te[th ¢ht ) (10)

: it
We update the second adaptive law ¢; in the observer by

di = el bien,  dilto) > 1 (11)
The observer error is defined as 7; = 7j; — 17, where 7 = A" (" #)5(¢¥). Defining the following variables

for the whole MAS as

ﬂ:In®77) "7]:(701(77/177727-“’77/71)
f} = COl(ﬁbﬁ?a s 77771)
W:C01(¢1,w2,...,¢n), @:diag(el,el,...,en)

¥ = diag(¢l7 (ZSQ? cee 7¢n)) €n = COl(emaenQa s 7e7),,)

where ® represents the Kronecker product, and diag() denotes a square diagonal matrix with the elements
of the input vector. If the Laplacian matrix of n agents is L, the Laplacian matrix for MAS with the

exosystem is

0 01 n
Lpi1 = * (12)
Ly L

where 4 = L + A, is a nonsingular symmetric matrix under Assumption 3 [21]. From (12), we can

get
U = (L1 ® I,)) + (Lo ® In, )1 + (L1 @ I, )ey o)
= (L1 @ In, )0+ (L1 @ Iy, ey
It can be obtained by taking the derivative of (8) that
ii= (I, ® A" — ©L ® K)i — (OL1 ® K])e,
=L, @AM — (O KV
(14)

U = (I, ® AU

o= enT(G ® In”)e?7
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Our first result in this paper is as follows.

Theorem 1. Consider MAS (1) with exosystem (2) and TVF system (3) under DoS attack satisfying
Assumptions 1-5. The observer error of event-based distributed resilient observer (8) with K Z7 =P lis
bounded under DoS attacks, if there is a nonsingular symmetric positive definite matrix P that satisfies

the conditions (15)-(17). Furthermore, Zeno behavior can be avoided.

(ANTP+ PAT— I, + 1P <0, a; >0 (15)
(AMTP 4+ PA" — ayP <0, ag >0 (16)
Rya1 > a1 + as (17

Proof. Considering the normal communication interval ¢t € D,,(0, 00), we define Lyapunov functions as

V=W+Wh+1 (18)
where
Vi= " (I, @ P)ij (19)
V, = anl(a» — )’ (20)
=1 2 l
V=3 o e @)
i=1 2 Z

where constants c¢; and cz will be designed later. From (8) and (11), it implies that
0;>1, ¢; >1,V >0

Differentiating V; in (19) yields
Vi=i"[I,® (PA"+ (A"'P) —20L, ® I,,,)] i}

(22)
— 27" (OL1 ® I,,,) ey
Differentiating of V5 in (20) based on (14) leads to
n
Vo => (6; — c1)bi
i=1
=00~ (a1 - 1)) ® I,V - ¥(I,® I, )V

(23)

=7 (L1(© — (c1 — V)I,)L1 & I, )iy — VT (I, @ I, )W
+ 277 (L1(O — (e1 — 1)) L1 @ I, ey,

+ e (L1(® = (c1 = D) I,) Ly ® I, ey,
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Taking the derivation of (21) under event-triggered schemes in (9)-(11), we obtain

n

Vs = (01— c2)di = Y 5 (i — co)biey,
= i=1 (24)

< ‘IIT(In ® I,V — 65(02@ ® I, )ey + e 72
It follows from (22)-(24) that
V="Vi+Va+ Vs
=i [I,® (PA"+ (A")'P) —20L, ® I, ] ij
+ 7 [L1(© = (e1 = 1)) L1 @ I, ]
(25)
— 27" (0L ® I,,) €y + 71677
+ 277 (L1(© — (e1 — 1)I,) L1 ® I, ey,
+ep (L1(® = (c1 = DI, Ly @ I, — 20 @ I, ey
With Young’s inequality, we get
— QﬁT ((@Ll — Ll@Ll) ® I”n) ey
=27 ((e1 = 1) L1 L1) @ I, ey
< i ((OL1 — LiOLy) ® I, ) i}
T (26)
+ € ((@Ll — L1@L1) X I”n) ey

T Cl—l

+n 5

LlLl X Inn) ’F]
-+ 63; (2(01 — 1)L1L1) X I”n) én
Substituting (26) into (25) yields

V < il [I,® (PA" + (AT)''P)

C1

—(OLy + 5

-1
1) ® Inn)} 7+ y1e 7 27)
+ 6; [((Cl - 1)L1L1 — 20 + L1@) & Inﬂ)] ey
Since © > I, we obtain
V< il [I, ® (PA" + (A")T P)

61—1

~(L1+ =

L) ® Inn)} i+ e (28)

+ 62 [((Cl — 1)L1L1 —cg + Ll) O® I”n)] €y
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Choosing c; and cy to satisfy
2(1 —2)\mm(L1)) 1
Amin(L1) (29)

co > (Cl — 1)A$nam(L1) + )\’maz(Ll)

c1 >

then we have
V < il [I, ® (PAT+ (AN)TP — I, )] ij + y1e ! (30)
From (15), it turns out that

V < =" (I, ® a1 P)ij + ye ! 31)

Inspired by Theorem 1 in [22], we define a new function W =V + %e"m and calculate its derivative
that W < 0. Hence, the dual adaptive laws 6; and ¢; are bounded. We calculate V+ a1V under (15) to

have
V+aV < il [I,® (PA"+ (AP — I, +a,P)]
(32)
+ajer + e < e
wheree; =Y 1", w, and 7 is also bounded when 6; and ¢; are bounded. g5 = 151+ >

0, and &; represents the upper bound of ¢;.

For t € D,(0,00) under DoS attacks, choosing the same Lyapunov function candidate in (18) implies

V-V =i [I,® (PA" + (AP — asP)] ij

(33)
- 65(62@ ® I, )en — aser +y1e "
Substitution (16) into (33)
V—asV < yie "t < gy (34)
Inspired by Lemma 2 in [11], if (32) and (33) hold then
T
Vi) < E2/ o0l Da(s.7) [ ~on | D (5.7)] g
to (35)
+ e~ 1| Duw(to,T)|+az|Da(to, 1)y, (to)
Assumption 5 leads to
|Dw(s,T)| =T — s —|Dqu(s,T)],
— o1 ’Dw(57T)|+a2|Da(svT)| (36)
<—=po(T—8)+ (1 + az2) €q
where p = a1 — %ﬁz. If R, satisfied (17), it obtains from (35) that
T
V(t) < elontaz)e <€2 / e PT=9)ds 4 e PT=9)y (t0)>
. (37)

_ lantan)e, (55 (1— e T) e VPT=9)y (to>) :
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Since given parameters a1, g and matrix P in Theorem 1 and known parameters €, and R4 in Assumption

5 are bounded, the observer error 7); is also bounded by

lim sup ||7i]% < —=> (38)
t—o0

~ Amin(P ),0
where e3 = elonton)eag, pel > €2 — pg; > 0, and g, representing the initial value of €1 is also the
lower bound of ¢7.

To demonstrate the Zeno behavior can be avoided, taking the derivations of ¢i9ie7€eni and ’IZJZTI/J,L' +

e 72t .
d(¢i;e, ep.) . .
— ;tm T = gibiey, en, + dibiey, en,

+ 200, (Aley, — 0; K1)

7

< (¢i + 0; + 2| A"|| + 1)¢i92’e£€m

(39)
+ (@2 | K1)l s
< (i +0; + 2| A7|| + 1)pibie] en,
+ (0| KNP (] s + e )
T,. —at
i i+ me™™) _ QAT Py — y1yee (40)

dt

pibie], en,
gt

0 in any finite time with or without DoS attacks. The derivation of ,z]Z under Assumption 1 satisfies that

d(¢ibicy, ex,) d(7!)

dt dt

where ||x|| denotes the norm of matrix x. Defining function J; = where Jif =l pitye 2t >

(J]) — (¢ibiel ey,
gl gl

Ji

IN

< (64 0+ 1+ 2 A7) J; + (667 | K71%) @)

(pibies, eq,) QAT i — y17ae™ )
gl

< (i + 0+ 1+ 2| A| +72) i + (067 | K]||)
It follows from (41) that
e GEIKIP)

< (GO 1420147 [42)r _ 1) 42)
(i + i + 1+ 2|| A7 + 72)

where 7 < tf“ — tf is the smallest time interval under condition of (9).

;, ;. n
" <¢2+92+1+2||A 1|+ 72 +1>
0

&b} |1 K2

T: = =
bi + 0; + 1+ 2[[A7]| 4 72
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Therefore, the Zeno behavior is avoided for any finite time, which completes the proof. OJ

Remark 3. Compared with the resilient observers designed under DoS attack, the eigenvalues of the
Laplacian matrix of global topology are required in [14], [15]. We remove this constraint to fully decouple
the two layers and broaden the application scopes of the proposed distributed resilient observer. Note
that the system matrices of the exosystem are removed in [11] by online learning when Assumption 1
is stricter such that the eigenvalues of matrix A7 lie on the imaginary axis. Based on our previous work

in [23], the exosystem system matrices can also be removed in the resilient observer.

B. Optimal TVF Control based on RL

We define n estimated reference systems consisting of the observed exosystem and TVF (3) as
b= AV, P =CP0;  i=1,2,...m (43)

where 0; = col(7);, f;) € R™ is estimated system state. A? = blkdiag(A", Azf ) and C? = [C}, C’if | are
system state and output matrices.
In the physical system layer, the optimal formation output controller is designed as
Uy = —Kf.%i — Kfzi
Zi = 212 + 2i06; (44)
éi =y — " — C/ f;
where z; and (21, X;2) are defined in (6) and (7). The optimal control law K; = [K7, K7] is obtained
by Algorithm 1. Inspired by the persistence of excitation (PE) condition [19] for online learning, a new

rank condition is given in Condition 1 for Algorithm 1.

Algorithm 1 Online off-policy RL algorithm

1. Apply an admissible control policy uf = —K%; + ey with a noise term eg; for agent i and collect
online data until the rank condition (45) is meet.

2.k+0

3. Repeat

4 k<—k+1

5. Evaluate policy by solve sz , K f“ from (57).

6. Until || K™ — K¥|| < ¢, where ¢ is a small constant.

7. Kf «+ KFH!

8

. Use u; = —KJ¢; as learned control policy
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Condition 1. There is a sufficiently large integer | > 0 such that
ng(n; +1)

rank () = 5

+ ming +nin; (45)
where ¢; = col(z;, z;) € R™,
By = [r%, T <I ® (Kf)T Rl) — 2L, (I®R),
—2I..]

[ t+AT to+AT
rg,igi: §z®<zt1 )§Z®<’Lt: P

T
t+AT
G®alt }

r t1+AT t2+AT
I = / G ® Gdt, / G ®gdt, ...,
LJ by to

t+AT T

[ ae gidt} (46)
t
t+AT ta+ AT

Iu, = [/ G ® uidt7/ G @udt, ...,

t1

ta
t+AT
/ G ® uidt:|
t

t1+AT ta+ AT
Lo, = [/ G @ @idt,/ G @ vdt, ...,
t1

ta
t+AT
/ G ® @idt]
t

Jor 0 <ty <ty <--- <1y, where Kf is ith agent’s update policy matrix of the kth step.

T

T

In Condition 1, [%1,%;] indicates the minimum data collection time interval that satisfies the PE
condition.

Now, we are ready to present our second result in this paper.

Theorem 2. Consider MAS (1) with exosystem (2) and TVF system (3) under DoS attack satisfying
Assumptions 1-5. The optimal resilient TVF control problem defined in (7) is solved by event-based
observers (8) at cyber-layer and optimal formation controller (44) with RL Algorithm 1 at physical

system layer.
Proof. Substituting controller (44) into augmented system (4) implies
éi = A5 + Bsu; + Bb; + M;
= AS; + Bfv; + My 47)

~e v
€; — Cz-g’i — Ci (3
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where
- A; 0 . B; ~ F;
Ag = - , Bf = 3 B pr—
YCi ¥a 0 —2pCY
- A; — BiK¥ —B;K? —Fy;
Ai = - ) il —
Y20 i 0
0 -
Mo = , CF =[C; 0]
—EZQCZU’F},

Based on Lemma 1.20 and Lemma 1.27 in [8], perturbed A¢ is Hurwitz if A is Hurwitz under Assumption

4. There is a unique solution (II?,II?) to equation

IIEAY = (/L» . Bin) I° — B,KIE + B

] (48)
The solution satisfies that
0=CII¥ —CY
Substituting a new variable IIY = col(II?,II?), into (48) yields
Ay = AT + B 0= C{IIy — CY (49)

Equation (49) and output regulation equation (6) are equivalent with U’ = —KFIIf — KZII?. Consider

system (4) and (49), the dynamics of the state error ¢; = ¢; — IIYv; and formation error e; are
& = ASG + BSvy 4+ My — IV A% = ASG + My (50)
e; = Cfq — CPvy = CSG + (CSTIY — CY Yy = C5 (51)
We rewrite the closed-loop formation error system as
§ = A5G + Mo, e; = C5§;

Since M;1, M;s and €; are bounded based on Theorem 1, the optimal resilient TVF control problem

defined in (7) can be addressed in terms of error system
G = A+ By, U= -KG,  e=Cf (52)
by solving the following RL policy iteration equation [24]

s (t + AT)PFg;(t + AT) — ¢! (1) PFe;(t)
t+AT
- / o7 (@it (YT REE) (53)
t

+2(u; — uf) 'R K G + Q@iT(Bf)TPik%} dt
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where AT is the time interval. Driven by continuously collected data, model information can be learned,
and control policies can be continuously optimized through iteration.
Note u; in (54) and (44) are consistent.
u; = U; + Uzv V;
Z—Kffi—Kfzi+UfU¢
(54)
= — szfz — Kfzi
== I
If the MAS model is known, the optimal control law is K; = R, 1(3; )T P;, where P; is the solution of
Riccati equation
(AP, + PA; — BB{R(Bf) P+ Qi = 0 (55)
for given R; = R > 0 and Q; = QT > 0 matrices. When the model information of MAS is unknown,
that is, no knowledge of flg and B‘f is available, then policy iteration RL provides a solution for (55)
based on the following equation from (53).
G (t+ AT)PfG(t+ AT) = ¢ (1) Pra(t)
t+AT
= [ e vee (i+ (b Rk
t
T T K\ T
i <(§Z- o) (I o (k) R,») (56)
(5 @ ul) (1o ) vee (KEH)
+2 (s @ 0} vec ((Bf)TPZkH dt

where notation vec of matrix X represents vec(X) = [X(1,:), X(2,:),...,X(n,:)]T.

From (56), we get
vee ()
5 | ovee (K| =Ty (57)
vec ((BZC)TPZI“)
where Yj, = —I, vec (Q; + (KF)TR;KF), and E;, is defined in (46).
Theorem 3 [24] and Theorem 2 [19] indicate that matrices P; and K; from Algorithm 1 converge to
the optimal solutions P and K of the Riccati equation (55). The unique solution for K f“, Pf and

(BZ-C)TPZ/“ from (56) can be solved by the least squares method under rank condition (45). The formation

output error is bounded, and it converges to zero when the observation error converges to zero. Therefore,
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Algorithm 1 minimizes the performance index in (7) of the optimal resilient TVF control problem, which

completes the proof. OJ

Remark 4. Note that z; is a dynamic compensator to improve system robustness against uncertainties and
disturbances. Algorithm 1 is an online off-policy RL to solve the optimal resilient TVF control problem
when the system model information is unknown. An initial admissible control policy is needed and a
noise term egy; is introduced for stimulating deviation of equation (56) to meet the rank condition given
in Condition 1. Compared to our previous work [23], the newly added rank condition can automatically

adjust online data collection time, thereby improving online learning and optimization performance.

IV. EXPERIMENTAL VERIFICATION
Experiments of the area scanning formation of three unmanned ground vehicles (UGVs) and one virtual
leader are conducted to verify the proposed strategies.
A virtual leader is designed with state xy = col(z¢, Ye, Z¢, Yc) and output yo = col(z., y.), where

(2¢, yc) is the position of virtual leader. The system state and output matrices are

010

0
00 01 1 000
Ay = ,Co = (58)
0 000 0100
0 000

The wind disturbance is considered along the virtual leader’s velocity direction with A,, = diag(0,0)
which represents a constant main wind dynamics. In order to scan the area in an ‘S’ shape, a TVF
system is designed for ith agent with state f; = [f¥, Y, f7, .iy, 1T, where f# =0 and fY = s; sin(wyt)
describe a uniform linear motion along the X-direction and a sinusoidal motion along the Y-direction with
an amplitude s; and scanning rate wy. To model an ‘S’ shape scan task along the movement direction

of the virtual leader, the TVF system matrices in (3) are given as

1 0 0 0 ¢f
Al =(I,®D) Al (I,® D), ¢f = ’
0100 ¢
0 0 1 00
0 0 010 (59)
f cosa —sina
Al=10 0 00 0], =
sina  cosa
0 —w7; 000
0O 0O 0 0 O




JOURNAL OF BTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 17

O
(O)—(2)—0)

UGV1 UGVv2 UGV3

Fig. 2. Communication topology

where « is the angle between the virtual leader’s velocity direction and the X-axis of the inertial system.
Parameter (cf,c}) is the displacement deviation based on the scanning range.

The nonlinear model of UGVs is given as

p; = Vicos(¥s), pi = Visin(), Vi=ai, bi=ri (60)

where (p¥,p}) is ith UGV’s position. Variables V;, a;, ¥; and r; denote its velocity, acceleration, yaw
angle and angular rate. Notice that the nonlinear UGV (60) is subject to the nonholonomic constraint.

By introducing the following auxiliary variables (u¥,uY)

a; cos(¢; sin(; u?
|| sy s | | o
Ti —% sin(v;) V%cos(z/),-) uf
UGV system (60) is converted to
BE = oF, B =0, F =+ dfuy, f = uf + dl, ()

where, (v7,v!) represent the components of velocity V; on the X and Y axes. w = [wy,w,] denotes

disturbance. The output defined in (1) is the position of ith UGV, that is y; = [p], pf]T.

The parameters for experiments are taking as zo(tp) = [0.2,0,0.01,0]7 for virtual leader, wy =
0.1, s123 =103, a=0, ¢fo3 =0, =0, =07 c§ =-0.7, y{,m(to) = [0,0,0.03,0]T for
TVE. For disturbances, wp = [0.1,0]”, and the disturbance matrix is df o 3 = (1,1,0.1) and df 5 3(to) =
(0.1,0.1,0.1). Only UGV2 and UGV3 are equipped with onboard cameras and all UGVs have wireless
communication modules. An OptiTrack camera system is used for localization. Their communication

topology is shown in Fig. 2, where the reference exosystem is indexed by the number 0, and agents 1-3

are real UGVs.
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UGv3 UGVl

Fig. 3. Experiment on three-UGV cooperative area scanning formation under DoS attack

TABLE I
PERFORMANCE OF EVENT-TRIGGERED OBSERVER UNDER DOS

DoS parameter R;  Average interval time  Frequency reduced

3.5 0.0884s 8 times
5 0.1077s 10 times
8 0.1345s 13 times
10 0.1779s 17 times

We use a typical DoS attack signal [13] as follows, which satisfies Assumption 5

do = (c+1)+05¢(c+1)— XD
Ha 63)
_(e+1)
e ="p-

where ¢ = 1,2,3, ..., and [d.,d. + o.) represents the cth DoS interval. The attack signal can be added
to the communications module of UGVs by a real-time control software that deploys and validates real-
time applications on hardware using Simulink. Note that we only consider DOS attacks on the observer
communication channel used to exchange exosystem information, as shown in Fig. 1. The parameters of
event-based observer (8) are set as a; = 0.1, ¢;(to) = 0i(to) = 1.5 and ap = 0.2. Based on Theorems
1, the bound for R4 should meet Rq > 3. The photos of the experimental process are shown in Fig. 3
and the results of observation errors are given in Fig. 5 when Rgq = 3.5. Table I also shows the results
of resilient event-triggered strategy with different DoS attack parameter R;. Figs. 6-10 demonstrate the
results of formation control under Ry = 3.5, R = 2I and @ = 0.1] based on RL Algorithm 1.

The event-triggered interval of each agent is presented in Fig. 4 under DoS attack when R; = 3.5.
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Fig. 5. Observation errors under DoS attack

The whole MAS has an average interval period of 0.0884 seconds. The error under the resilient observer
converges to practically zero after 20 seconds, as shown in Fig. 5.

Several sets of comparative experiments were carried out when the DoS attack parameter R; was
5, 8, and 10, and the event-triggered average interval times of the MAS were 0.1077 seconds, 0.1345
seconds, and 0.1779 seconds, respectively, as shown in Table 1. The observation errors under different DoS
attack parameters are all convergence to near zero within 20 seconds. The reduction in communication
frequency is also given in Table I. Compared to the resilient observer design in [11] that cannot reduce

the communication frequency, even in the worst case of the longest attack duration when R4 = 3.5 using
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20

the proposed observer, the frequency is still 8 times slower than the default communication frequency

of the physical system. Unlike event-triggered controllers under attacks in [14], [15], our design is fully

distributed and does not require global communication Laplacian matrix information. Therefore, the

proposed observer can not only effectively increase communication security and save communication

resources, but also remove the dependence on global communication information.

The UGV trajectories are shown in Fig. 3 and Fig. 6, where three UGV track an exosystem and TVF
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to move as an ‘S’ shape for area scanning. The online RL convergence trend of control law for each
agent is given in Fig. 7. The norm errors ||[K¥*! — K¥||, i =1,2,3 for UGVs converges to € = 0.01 at
11 seconds, 14 seconds and 12 seconds, respectively. The time-varying formation performance of three
agents is displayed in Figs. 8-10. The positions of UGVs can practically track the designed reference
formation system within 30 seconds under the DoS attack based on the resilient observer and online RL

algorithm.



JOURNAL OF BTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 22

I
N
W
<
<

X-direction velocity / m/s
< o !
Y-direction velocity / m/s

e
[

=}
@
o

o
&
o

o

o

50 100 150 200
tis
Formation track

Fig. 10. TVF performance of UGV3

V. CONCLUSION

In this paper, a resilient two-layer time-varying formation control is provided for uncertain and unknown
MAS under DoS attacks. For the cyber-layer, a fully distributed event-triggered observer is developed to
remove global graph information. For the physical system layer, an optimal formation output control is
proposed with off-policy RL to remove model information. Experiment results demonstrate the translation
of our theoretical discoveries to applications such as collaborative area scanning. Our future works will
consider various types of attacks such as false data injection attacks and zero-dynamics attacks, and
develop resilient RL solutions to collision-free formation problems for MAS under attacks based on

data-efficient RL and control barrier function [25].
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Chapter

Conclusion

HIS thesis addresses a series of distributed formation control
problems for heterogeneous multi-agent systems (MAS) under
multiple constraints from interaction and physical systems. Ap-
plications for autonomous vehicles are also presented to verify the effec-
tiveness of the proposed methods. This chapter summarizes the research

presented in this thesis and introduces possible future work.
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7.1 Summary

Formation control of MAS and its applications are considered in this thesis. The main

research works can be summarized as follows:

¢ Arobust L, bounded formation control strategy is proposed for uncertain hetero-
geneous MAS subject to switching topologies and multiple disturbances. Based
on an adaptive observer and an internal model control, the distributed time-
varying formation (TVF) tracking can be realized under switching topologies,
and the influence of homogeneous disturbances and heterogeneous disturbances
on the system performance can be compensated dynamically. The simulation
results show that the scheme can improve the robustness of the system under

multiple disturbances compared with the traditional control method.

¢ A solution of the nonlinear TVF control problem is provided for uncertain nonlin-
ear heterogeneous MAS under limited communication bandwidth. To save net-
work resources, a dual adaptive event-triggered observer is designed to estimate
the reference exosystem, and the Zeno phenomenon can be excluded. Nonlinear
formation control approaches are developed based on nonlinear output regula-
tion control for MAS to perform collaborative tasks. The method is applied to
a UAV-UGV MAS for simulations and a practical multi-UGV platform. Simula-
tion and Experimental results demonstrate that the proposed control strategies
are effective in providing a theoretical reference for the application of formation
control in collaborative tracking and patrolling tasks in search and rescue opera-

tions.

¢ To achieve TVF for unknown MAS with an unknown exosystem in dynamic envi-
ronments, a learning-based collision-free formation optimization strategy is pro-
posed. Two reinforcement learning (RL)-based distributed observers are devel-
oped to learn exosystem dynamics and outputs. An off-policy RL algorithm and
a collision-free optimization are proposed to minimize the non-quadratic forma-
tion objective function for unknown heterogeneous MAS. The results obtained
from the simulation study verify the effectiveness and robustness of the proposed

distributed observer and formation strategies.

¢ To deal with denial-of-service (DoS) attacks, a resilient two-layer formation con-

trol is provided for uncertain and unknown MAS. For the network layer, a fully
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distributed event-triggered observer is developed to improve communication re-
silience without global graph information under DoS attacks. For the physical
system layer, an optimal formation output control is proposed based on off-
policy RL to remove model information with a new rank condition. Experimen-
tal results after applying to UGVs demonstrate our theoretical discoveries can be

transformed into applications such as multi-vehicle collaborative area scanning.

7.2 Future works

There are a number of challenges remaining and deserving our future investigation:

1. Develop security and safety-critical collaborative control frameworks under

multiple attacks and failures

Together with DoS attacks, other types of cyber-attacks, network-induced prob-
lems, and physical faults need to be considered, such as false data injection at-
tacks [67], zero-dynamics attacks [68], network delay [69], packet loss [70], and
sensor failures [71]. Our future works will focus on developing collaborative
control and optimization frameworks to ensure communication security and for-

mation safety for MAS with multiple cyber-attacks and faults.

2. Enhance learning-based collaborative decision-making for heterogeneous sys-

tems

In addition to multi-agent formation control, collaborative decision-making [72]
is critical for heterogeneous MAS, even for human-machine heterogeneous sys-
tems. However, the unknown environments and unmodeled behaviors make the
collaborative problem more complex and difficult to analyze. Combining deep
RL with decision-making strategies makes it possible to explain unmodeled be-
haviors and achieve optimal decision-making in real-time [73]. Thus, deep RL-
based decision-making strategies will be future studied to achieve deep and har-

monious collaborations between heterogeneous entities.
3. Shorten the gap between collaborative control theories and their real-world
applications

Currently, there is still a gap in the transformations from collaborative control

theories into real-world applications, such as multi-vehicle autonomous driving
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technologies. In the future, I will continue to pay attention to the collaborative
control applications for multiple UAVs, UGVs, AUVs, and human-machine sys-
tems [74].
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