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Thesis Summary 
Verification of geographical origin, grape variety, and year of 

production of wine is essential in validating quality, identifying fraud, and 

improving the economic value of wine according to those important extrinsic 

factors. The identity of a wine is influenced mainly by its origin, as reflected in a 

wine’s composition. Therefore, analytical methods that identify authentication 

markers to discriminate wine according to the origin (or other variables) are 

required. 

Over the years, numerous methods for wine authentication have been 

identified, from traditional analytical methods to rapid advanced instrumental 

techniques. However, there is a lack of a robust but simple technique that gives 

rapid results and is sensitive enough to discriminate wines accurately. This forms 

the topic of the thesis, which begins with a published book chapter that covers 

current aspects of wine authenticity and traceability in terms of technological 

and consumer perspectives (Chapter 1). Different   spectroscopic approaches 

and chemometric methods used in   wine authentication in the past decades 

have been evaluated for their characteristics in the next chapter, published as a 

review paper (Chapter 2). 

As a rapid, straightforward, selective, and sensitive method that yields a 

molecular fingerprint of wine, fluorescence spectroscopy was identified upon 

reviewing the literature as a promising method to investigate wine 

authentication. Several original research studies were subsequently performed 

with the aim of understanding the potential of applying fluorescence 

spectroscopy in combination with multivariate data analysis for wine 

authentication (Chapters 3 to 6). Finally, the conclusions and future directions 

of the study are included in the final chapter (Chapter 7). 

In the initial research publication using spectrofluorometric analysis 

(Chapter 3), a method based on absorbance-transmission and fluorescence 

excitation-emission matrix (known as the A-TEEM technique) was 
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Thesis Summary 

investigated as a tool for regional authentication of commercial Australian 

Cabernet Sauvignon wines from three different Geographical Indications (GIs) in 

comparison to wines from Bordeaux, France as an international benchmark. The 

potential of A-TEEM spectroscopy for wine authentication was assessed in 

comparison to elemental profiling using inductively coupled plasma-mass 

spectrometry (ICP-MS) as a reference method for geographical authentication. 

Among other multivariate algorithms used for classification of the wines, a 

novel machine learning technique known as extreme gradient boosting 

discriminant analysis (XGBDA) yielded 100 % correct classification for all tested 

regions using the fluorescence data, and overall 97.7 % for ICP-MS. This result 

emphasised the possibility of applying A-TEEM and XGBDA for accurate 

authentication of wines. 

With these encouraging GI authentication results, a further study was 

undertaken to verify the origin of wine according to both geographical and 

varietal variations. A wide range of commercially-produced but unreleased 

wines from ten different Australian GIs and three varieties (Shiraz, Cabernet 

Sauvignon, and Merlot) were studied in the second research publication 

(Chapter 4). This study identified the effectiveness of combining absorbance and 

fluorescence data from A- TEEM as a multi-block data set to maximise the 

model’s robustness. Excellent results were obtained in relation to cross-

validation for each class (100 % for variety and 99.7 % for region of origin), again 

highlighting the effectiveness of A- TEEM data with XGBDA. In addition, A-

TEEM data was interrogated using partial least squares regression (PLSR)  models to 

rapidly quantify 24 phenolic compounds of relevance to red wine (i.e., 

anthocyanins, flavonols, flavan-3-ols, hydroxycinnamates). Principal component 

analysis of the phenolic compound concentrations revealed differences among 

the varieties and regions, helping to understand the chemical markers that were 

important in classification.  These findings further strengthen the potential of 

using the A-TEEM technique for differentiation of wine, not only from GIs at state level 

but also those from adjacent regions such as Clare, Barossa, and Eden Valleys within a 

state. 
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Thesis Summary 

Further testing the A-TEEM technique for its ability to discriminate wine at a 

sub-regional level, research-scale and commercial unreleased Shiraz wines from five 

different areas within the Barossa Valley GI along with Eden Valley GI were 

analysed to explore their intra-regional variations. The samples were from three 

consecutive years, which allowed for authentication testing according to the 

vintage, as reported in the third original research study submitted for 

publication (Chapter 5). The sensitivity of the A-TEEM technique allied with 

XGBDA facilitated 100 % accuracy in classifying Shiraz wines according to the 

sub-region of origin and year of production. Additionally, A-TEEM data were 

modelled with PLSR  in comparison to reference method data to predict basic 

chemical parameters of the samples (i.e., pH, alcohol %v/v, titratable acidity), which 

enhances the utility of the A-TEEM technique as a rapid method for deployment 

in the wine industry. 

In wine authentication, it is important to understand the impact of 

winemaking processes on chemical markers at different stages of production. 

Hence, variations in molecular fingerprint of wines throughout the process such as after 

primary fermentation, after malolactic fermentation, and before blending were 

determined with the A-TEEM technique. XGBDA discriminated wines 

according to their origin (variety and region) with 100 % accuracy, eliminating 

the influence of stage of processing on spectral signature. Also, blending 

different grape varieties or wine from different GIs (as permitted by relevant 

regulations) is crucial in winemaking. However, it is important to determine 

whether blending a small proportion (up to 15 % of other varietal or 

regional wine as per Wine Australia regulations) can be detected for 

authentication purposes. Unreleased commercially-produced monovarietal 

wines were prepared with a series of blends containing Shiraz with Cabernet 

Sauvignon and Shiraz with Grenache and analysed with regression. XGB 

regression precisely predicted the percentage in the blend, achieving R2 CV of 

1.00 and RMSECV of 0.00028 in comparison to PLSR, which did not perform as 

well. The results of this final study of the thesis were submitted for publication 

as a short communication (Chapter 6). 
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In summary, this PhD thesis has been devoted to the development 

of a rapid analytical method to accurately authenticate wine according to 

geographical origin, variety, and vintage. The use of absorbance and/or 

fluorescence spectroscopy in conjunction with machine learning classification 

proved to be highly promising for this purpose. The outcomes of this thesis not 

only contribute to enriching scientific research but also offer opportunities for 

potential commercial application in the wine industry as a powerful tool for 

wine analysis, and in particular, validation of origin and composition. 
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Overall   conclusions   were   drawn   by   considering   the   research  studies 
conducted based on A-TEEM technique in combination with machine learning. 
Future  perspectives  of  wine  authenticity were  discussed  in  terms  of  the 
potential of employing the A-TEEM method in the wine industry. 

Thesis Structure 
The thesis is composed of chapters including publications and manuscripts. As 
outlined below, it begins with a published book chapter consisting of an 
overview of the research area followed by a review paper, and four 
original research papers. Finally, conclusions and future directions of the study 
are contained within the last chapter. 

Chapter 1 

The first chapter comprises a broad view of literature related to the 
wine authenticity and traceability within the scope of analytical 
techniques and consumer perspectives. 

Chapter 2 

This chapter specifically explores the spectroscopic approaches as rapid 
techniques that have been applied in wine authentication in the 
past decades. Their characteristics were reviewed along with 
the application of chemometrics. At the end of the chapter, research 
questions and a summary of research aims are included. 

Chapter 3 

Application of fluorescence spectroscopy in conjunction with chemometrics to 
build robust authentication models for wine was investigated using A-TEEM 
technique and compared to the effectiveness of ICP-MS as a reference 
method. 

Chapter 4 

A combination of absorbance and EEM data from A-TEEM technique was 
analysed in a multi-block setting with XGBDA for regional and varietal 
authentication of Australian red wine. To understand the chemical markers 
relevant for classification, phenolic concentration predictions were carried out. 

Chapter 5 

The ability of A-TEEM technique to discriminate wine at a sub-regional level 
was explored using Shiraz wines from five different areas within the 
Barossa Valley GI, South Australia. Further authentication according to the 
vintage was conducted as the wines were produced in three consecutive years. 

Chapter 6 

As a preliminary study, the impact of winemaking processes on the molecular 
fingerprint of wine at different stages of production and the blending 
percentages of different wines were identified by applying A-TEEM technique. 

Chapter 7 

xii



Nothing in life is to be feared, it is only to be understood. 

 Now is the time to understand more, 

so that we may fear less. 

- Marie Curie
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Abstract: In a global context where trading of wines involves considerable economic value, the
requirement to guarantee wine authenticity can never be underestimated. With the ever-increasing
advancements in analytical platforms, research into spectroscopic methods is thriving as they offer
a powerful tool for rapid wine authentication. In particular, spectroscopic techniques have been
identified as a user-friendly and economical alternative to traditional analyses involving more
complex instrumentation that may not readily be deployable in an industry setting. Chemometrics
plays an indispensable role in the interpretation and modelling of spectral data and is frequently
used in conjunction with spectroscopy for sample classification. Considering the variety of available
techniques under the banner of spectroscopy, this review aims to provide an update on the most
popular spectroscopic approaches and chemometric data analysis procedures that are applicable to
wine authentication.

Keywords: authenticity; multivariate analysis; wine fingerprinting; spectral data; machine learning

1. Introduction

Wine is a historic alcoholic beverage that has evolved to be of high commercial
importance. It can be identified as a luxurious commodity and is produced and consumed
in many countries around the world. Wine consists of innumerable compounds spanning
various concentration ranges, many of which are essential to its evolution and quality, as
well as for human health benefits in the case of red wine [1]. In general, the composition of
red wine can be broadly represented on a w/w basis as 86% water, 11% ethanol, and 3% for
the remainder, which includes glycerol, sugars, polyols, phenols, minerals, organic acids,
and volatile compounds [2]. The composition of wine mainly depends on certain factors
that define the wine’s identity, including grape variety, geographical origin, the biophysical
environment of the vineyard, vintage conditions, and winemaking inputs [3]. Different
types of fraud related to those factors have been encountered in wine over the years,
including counterfeiting of labels and brands, adulteration through the use of unauthorised
additives or practices, and substitution based on grape variety or region of origin [4].
Therefore, to confirm the genuineness of wine and protect its value, analytical techniques
need to be applied to explore the chemical constituents of wine that aid in the development
of models for authenticity.

Classical techniques such as gas chromatography-mass spectrometry and high-
performance liquid chromatography are advancing continuously, facilitating wine analysis
with high sensitivity [5]. Considering the applicability in an industrial setting, however, as-
pects such as rapidity, user-friendliness, and cost-effectiveness have become of paramount
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importance in recent times [6]. Spectroscopic techniques provide a great solution due to
their relative simplicity, speed of analysis, simple sample preparation, and environmental
friendliness [7], and have been well-utilised for different wine and grape research stud-
ies, such as for targeted and non-targeted chemical analyses [8], prediction of sensory
attributes [9], and wine authentication [10,11]. A snapshot of selected research outcomes
identified from the Web of Science Core Collection over the past three decades using ‘wine
authentication’ and ‘spectroscopy’ as the search keywords is visualised in Figure 1 to pro-
vide some understanding of the trends in the literature. Aside from those specific keywords,
the terms classification, chemometrics, and geographical origin also feature prominently
and are variously linked upon closer inspection to a range of terms associated with spec-
troscopic (e.g., near-infrared, mid-infrared, NMR, UV–visible, Raman, fluorescence) and
chemometric (e.g., partial least squares discriminant analysis, feature selection, support
vector machines, artificial neural networks, principal component analysis, discriminant
analysis, data fusion, pattern recognition) techniques.

Figure 1. Bibliometric map of wine science-related research visualised from 222 publications
(from 1990 to 2021) recovered from Web of Science Core Collection using ‘wine authentication’
and ‘spectroscopy’ as keywords. Literature analysis and figure construction were facilitated with
VOSviewer [12]. Different colours are used to define the clusters that terms belong to. The biblio-
metric relationship between terms is indicated using curved lines and the relative size of the words
reflects the number of publications in which the terms occurred.

Among the different spectroscopic methods that are available, techniques such as
nuclear magnetic resonance (NMR), near-infrared (NIR), mid-infrared (MIR), Raman, and
fluorescence have been prominent in past research studies. Moreover, it is clear from
Figure 1 that chemometric techniques (i.e., multivariate data analyses) have been an in-
tegral part of these spectroscopic techniques to draw meaningful conclusions regarding
sample classification and differentiation. Taking these aspects together, this review em-
phasises the application of spectroscopic techniques and chemometrics to authenticity
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in the field of wine research using examples from the past 15 years. The strengths and
weaknesses of different spectroscopic methods for wine authentication are presented and
various chemometric methods applied to address specific requirements in classification are
discussed. Finally, future trends and directions for wine authentication with spectroscopic
approaches have been identified.

2. Spectroscopic Techniques Applied in Wine Authentication

Wine authentication verifies that the label description is in compliance with the content
of the package through an analytical process [13], which can be carried out through targeted
or non-targeted methods. In targeted analyses, variations of a specific marker compound or
certain metabolites are considered for differentiation of samples, whereas in non-targeted
analyses, a chemical ‘fingerprint’ of the sample is obtained and similarities/differences
in fingerprint are used for classification with the aid of chemometrics [14]. Spectroscopic
techniques are frequently utilised for non-targeted wine fingerprinting.

In spectroscopic analysis, chemical and physical (structural) information within sam-
ples is exploited according to the interaction of atoms and molecules with electromagnetic
radiation (Figure 2), which related to the wavelength or frequency spectrum of either
absorbed or emitted energy [14]. For instance, ultraviolet-visible (UV–Vis) absorption
and fluorescence spectroscopy is based on changes that occur in electronic states. In an-
other way, infrared (IR) and Raman spectroscopic techniques are based on vibrational
variations in the molecules. Moving further along the electromagnetic spectrum to longer
wavelengths past the microwave region, NMR involves changes in rotational state, with
nuclear spin being affected within the radiofrequency range. Data obtained from these
methods typically needs to be analysed through multivariate techniques to obtain useful
information hidden in the spectra. For authentication purposes, data can then be further
classified using statistical approaches as outlined in Section 3. Firstly though, the main
spectroscopic techniques applied for wine classification (as identified from Figure 1) are
reviewed, which necessarily involves some mention of chemometrics.
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Figure 2. The electromagnetic spectrum and its relevance to different spectroscopic methods. FIR, far-infrared; MIR, mid-
infrared; NIR, near-infrared; Vis, visible; UV, ultraviolet. Techniques in this review that are applied for wine authentication
are indicated in light blue font. Conceptualised from [15].

2.1. UV–Vis Spectroscopy

UV–Vis spectroscopy is a fast, low-cost, and reliable analytical method that has been
used in the analysis of wine for many decades [16]. Spectra recorded at UV and visible
wavelengths (typically 190–800 nm, Figure 2) provide information about compounds in
wine containing a chromophore, such as hydroxybenzoic (280 nm) and hydroxycinnamic
(320 nm) acids, flavan-3-ols (280 nm), flavonols (370 nm), and anthocyanin glucosides
(520 nm) [17]. As summarised in Table 1, UV–Vis spectroscopy has been applied in
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wine discrimination according to the region of origin [18,19], grape variety and ageing
process [20,21]. Although the specific chemical markers are not necessarily identified,
as a non-targeted method combined with appropriate chemometric techniques such as
linear discriminant analysis (LDA) and partial least squares discriminant analysis (PLS-
DA), Azcarate et al. were able to correctly classify Argentinian Sauvignon blanc wine
samples with 100% accuracy according to their geographical origin [19]. In their study,
Philippidis et al. achieved 97.5% correct classification of grape variety and showed that
the latent variables resulting from orthogonal projections to latent structures-discriminant
analysis (OPLS-DA) could be related to the absorption of aromatic compounds such as
phenolic acids and flavonols [21]. In comparison to other spectroscopic methods, however,
UV–Vis spectroscopy provides a limited number of spectral features; therefore, it could be
used as a screening approach with more sophisticated techniques being implemented for
further analysis. In addition, the combination of other spectroscopic methods like IR and
fluorescence with UV–Vis spectroscopy can improve the accuracy of classification models
used for authentication by fusion of the datasets [22,23].

Table 1. Examples of UV–visible spectroscopy in combination with chemometrics for wine authentication.

Spectroscopic
Technique

Spectral
Range

Parameters for Authentication Classification Method 1 Remark Reference

UV–Vis 200–800 nm Geographical origin (Spanish
denomination of origin) SVM

Correct
classification rates

above 96%
[18]

UV–Vis 200–500 nm Geographical origin of
Argentinian regions PCA, LDA, PLS-DA

Correct
classification with
LDA and PLS-DA
methods of 100%

[19]

UV–Vis 300–800 nm Discrimination by origin, grape
variety and ageing process PCA, SIMCA

Correct
classification of

90% for
geographical

origin, and 75% for
variety and ageing

process

[20]

UV–Vis 240–700 nm
Discrimination according to
grape variety, ageing process

and barrel/container type
OPLS-DA

Correct
classification of
97% for variety,
73% for ageing

process and 100%
for container type

[21]

1 SVM, support vector machine; PCA, principal component analysis; LDA, linear discriminant analysis; PLS-DA, partial least squares-
discriminant analysis; SIMCA, soft independent modelling of class analogy; OPLS-DA, orthogonal projections to latent structures
discriminant analysis.

2.2. IR Spectroscopy

IR spectroscopy has been used in wine analysis for several decades [24] and has
become the most frequently applied spectroscopic technique in comparison to other meth-
ods [25]. It is a user-friendly and rapid technique that provides information on many
components in a wine matrix, and can be used for determination of parameters such as
alcohol content, pH, volatile acidity, organic acids, reducing sugars, and polyphenols [26].
Two main IR-based techniques are applied according to the range in the spectral region:
near-infrared (NIR) from 14,000 to 4000 cm−1 and mid-infrared (MIR) from approximately
4000 to 400 cm−1 (Figure 2). NIR spectra contain less intense bands than MIR and it is
difficult to assign chemical groups specifically with NIR due to overlapping signals with
water and ethanol around 1950 nm. In MIR, there is a ‘fingerprint region’ (1500–400 cm−1)
that includes unique absorption patterns of compounds such as phenolics that are mainly
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applied for discrimination purposes, and signals associated with various functional groups
can be assigned, such as C=O related to organic acids at 1700 cm−1, and combinations of
C–H vibrations and overtones related to ethanol and sugars at around 2300–2100 cm−1 [27].
Applicability of IR methods to wine analysis increased with the introduction of techniques
such as Fourier transform (FT), which has improved data collection speed and reproducibil-
ity [28], and the application of attenuated total reflectance (ATR), which simplifies the
sample handling process and is advantageous in routine analysis [29]. Classification of
wine with IR has often been complemented by the use of UV and/or visible spectroscopy
to enhance the accuracy of the classification [30]. Table 2 includes some examples of the
application of IR spectroscopy (with or without UV–Vis) to wine authentication, along
with the spectral region and classification method used.

Table 2. Examples of IR spectroscopy in combination with chemometrics for wine authentication.

Spectroscopic
Technique

Spectral Range
Parameters for
Authentication

Classification
Method 1 Remark Reference

MIR 5012–926 cm−1
Discrimination of red and

white varieties from
Australian regions

PCA, LDA
Correct classification of
red varieties, 96% and
white varieties, 94%

[26]

UV–Vis, NIR
and MIR

400–2500 nm
(UV–Vis and

NIR) and
4000–400 cm−1

(MIR)

Geographical origin of
Sauvignon blanc wines

from Australia and
New Zealand

PCA, SIMCA,
PLS-DA

Correct classification
using PLS-DA with:

UV–Vis, 67%; NIR, 76%;
MIR, 90%; and combined

IR spectra, 93%

[23]

UV–Vis/NIR 190–2500 nm

Discrimination of white
wines (Albariño cultivar)

from Rías Baixas
subzones in Spain

PCA, LDA,
SIMCA, SVM

Correct classification
using: LDA, 86%; SIMCA,

56%; and SVM, 84%
[30]

NIR and MIR
1750–1000 cm−1

and
4555–4353 cm−1

Geographical origin of
Cabernet Sauvignon

wines from Australia,
Chile, and China

PCA, SIMCA,
DA

Correct classification
using: SIMCA, 97%, 97%,
and 92% for Australian,
Chilean, and Chinese

wines; and DA, 86%, 85%,
and 77%, respectively.

[31]

1 PCA, principal component analysis; LDA, linear discriminant analysis; SIMCA, soft independent modelling of class analogy; PLS-DA,
partial least squares-discriminant analysis; SVM, support vector machine.

In another study, Bevin et al. discriminated Australian red wine (Cabernet Sauvignon,
Shiraz and Merlot) and white wine (Chardonnay, Riesling, Sauvignon blanc and Viognier)
according to grape variety with 96% and 94% accuracy, respectively, using LDA with MIR
spectra [26]. Although subtle variation in wine composition contributed to these varietal
discriminations, MIR signals are highly sensitive to temperature and pH, which needs to be
considered in the application. For geographical authentication, Cozzolino et al. combined
NIR and MIR techniques for Sauvignon blanc wines from Australia and New Zealand,
achieving an overall 93% correct classification with PLS-DA, which was higher than for
the individual IR techniques or for UV–Vis [23]. Similarly, the feasibility of differentiating
subzones within a denomination of origin (DO) has been evaluated by Martelo-Vidal et al.,
who achieved their highest overall correct classification of 86% with LDA in comparison to
soft independent modelling of class analogy (SIMCA, 56%) and support vector machine
(SVM, 84%) for combined UV–Vis and NIR spectra [30]. Hu et al. applied MIR and NIR
to classify Cabernet Sauvignon wines with SIMCA and correctly classified Australian,
Chilean, and Chinese wines with 97%, 97%, and 92% accuracy, respectively [31]. Although
these works yielded an accuracy of > 90% for classification, IR spectroscopy has limitations
in quantitative analysis when measuring low abundance components (<0.5 g L−1) [32].

40

Chapter 2 | Spectroscopic approaches for wine authentication | Review article



Molecules 2021, 26, 4334 6 of 15

2.3. Raman Spectroscopy

In comparison to other spectroscopic techniques, Raman spectroscopy has not been
exploited much for wine analysis until recently [33]. This spectroscopic method involves
detecting the inelastic scattered light emitted from molecular vibrations of a sample, ap-
proximately in the range 200–3600 nm (Figure 2). The Raman effect produces a weak signal,
but the development of optimised detection capability provides the opportunity to obtain
rich information regarding the chemical composition and dynamics of the sample [34].
There are two different regions in Raman spectroscopy, with Stokes Raman scattering
having more dominant ethanol, sucrose and water peaks, and anti-Stokes Raman scattering
from minor components such as aromatic compounds, including various phenolics, which
can be more applicable to wine discrimination [35]. Indeed, for analysis of water dominant
samples such as wine, Raman spectroscopy has an advantage over IR techniques because
of the relatively weak signals from water molecules in the vibrational fingerprint range [36].
Two types of Raman technique are applied in food analysis: FT-Raman spectroscopy and
surface-enhanced Raman spectroscopy (SERS). Both of these methods have been developed
for the purpose of wine authentication, as shown in Table 3.

Table 3. Examples of Raman spectroscopy in combination with chemometrics for wine authentication.

Spectroscopic
Technique

Spectral Region
Parameters for
Authentication

Classification
Method 1 Remark Reference

FT-Raman

1700–0 cm−1

(Stokes),
−1000–0 cm−1

(anti-Stokes) (laser
emitting at 1064 nm)

Discrimination of
wines geographically,

varietally, and
by vintage

LDA

Correct classification of:
variety, 84%; geographical

origin, 100%; and
vintage, 95%

[37]

SERS 3350–200 cm−1 (laser
emitting at 532 nm)

Discrimination of
wines geographically

(Romanian and
French and different
Romanian regions),

varietally, and
by vintage

LDA

Correct classification of:
variety, 90%; geographical

origin, 83% among Romanian
wines and 100% between

countries; and vintage, 90%

[35]

SERS 1600–450 cm−1 (laser
emitting at 785 nm)

Discrimination of
wines according to

variety and producer
PCA, SIMCA

Correct classification of:
variety, 87%; and

producer, 93%
[38]

1 LDA, linear discriminant analysis; PCA, principal component analysis; SIMCA, soft independent modelling of class analogy.

The effectiveness of FT-Raman was shown in the work of Magdas et al., who dis-
criminated white wine according to variety (Sauvignon, Riesling, Chardonnay, Pinot Gris),
geographical origin (Romania and France), and vintage using LDA, achieving overall
correct classification of 84%, 100%, and 95%, respectively [34,37]. In another study, Magdas
and colleagues applied SERS to discriminate among white wines and compared it with
FT-Raman, identifying a few common marker compounds between the techniques, such
as ferulic and sinapic acids that resulted in differences among the wines. SERS was able
to enhance the signals of more minor compounds such as caffeic acid, p-coumaric acid
and resveratrol [35]. Applying the same SERS approach, Zanuttin et al. discriminated
wines according to variety and producer with SIMCA, deriving an overall correct classi-
fication of 87%. Moreover, they identified major metabolites such as purines, carboxylic
acids and glutathione that can be assigned to specific bands responsible for discrimina-
tion of wine [38]. The advantage of SERS over FT-Raman is the selectivity afforded by
specific molecules being adsorbed to metal nanostructures (mainly noble metals), which
enhances the intensity of Raman signals in SERS [39]. Complexity arises with the sam-
ple preparation step, however, as it is necessary to prepare a colloidal dispersion of Ag
nanoparticles to add to the sample, which can be a disadvantage. Raman spectroscopy
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requires spectral pre-processing such as multiplicative scatter correction (discussed in
Section 3) to avoid the effect of fluorescence that can obscure Raman scattering, especially
when analysing wine [40].

2.4. Fluorescence Spectroscopy

Fluorescence spectroscopy has been deemed as a useful tool in wine authentication
for some time and its application has been enhanced recently with improvements in the
chemometric analysis [41]. Because of the high sensitivity, selectivity, and rapidity of the
technique, fluorescence spectroscopy has an advantage as an analytical platform [42]. It
is based on the emission of longer wavelength light from a substance after absorption of
energy in the UV or visible range (as with UV–Vis spectroscopy, Figure 2). Fluorescence
typically occurs for aromatic molecules and can be well applied to wine analysis, with com-
mon fluorophores being a variety of phenolic compounds, vitamins, and aromatic amino
acids [43]. According to the fluorophoric molecular and macromolecular constituents in
the sample, a three-dimensional excitation-emission matrix (EEM) recorded over multiple
excitation and emission wavelengths can be obtained and considered as the ‘molecular
fingerprint’ of the sample [44]. Therefore, this approach in combination with chemometrics
can be utilised for authentication of wine. When undertaking spectrofluorometric analysis,
it is important to apply corrections for Rayleigh masking, Raman scattering, and inner filter
effects (IFE), as well as to maintain proper pH and temperature to avoid the consequence
of quenching, which can affect the fluorescence intensity. Several types of fluorescence
methods can be applied to wine analysis according to the manner of obtaining the spectrum
(i.e., total luminescence spectroscopy yielding an EEM or synchronous fluorescence spec-
troscopy) and by the geometry of sample illumination (i.e., right-angle for diluted samples
or front-face for bulk liquids or solids) [45]. Fluorescence spectroscopy has been applied in
several studies recently, in combination with chemometric techniques, for discrimination
of wine according to geographical origin or variety (Table 4).

Table 4. Examples of fluorescence spectroscopy in combination with chemometrics for wine authentication.

Spectroscopic
Technique

Spectral Region
Parameters for
Authentication

Classification
Method 1 Remark Reference

Synchronous
fluorescence
spectroscopy

λex = 250–350 nm and
λem = 250–500 nm

Discrimination of white
wines according to

variety in
Tokaj (Slovakia)

PCA, LDA Correct classification of
variety, 100% [46]

Total
fluorescence
spectroscopy

EEM
λex =240–800 nm and

λem 242–824 nm

Discrimination of
Cabernet Sauvignon

wines from Australia and
Bordeaux, France

SVMDA
XGBDA

Correct classification of
geographical origin using:

XGBDA, 100%; and
SVMDA, 85%

[11]

Total
fluorescence
spectroscopy

EEM
λex = 250–500 nm and

λem 275–600 nm

Discrimination of white
wine from Romania and
France for geographical

origin and variety

PARAFAC,
SIMCA

Correct classification of:
variety, 97%; and

geographical origin, 98%
[47]

Total
fluorescence
spectroscopy

EEM
λex =240–700 nm and

λem 242–824 nm

Discrimination of red
wine varieties from
different Australian

regions for variety and
geographical origin

XGBDA
Correct classification of:

variety, 100%; and
geographical origin, 99.7%

[48]

1 PCA, principal component analysis; LDA, linear discriminant analysis; SVMDA, support vector machine discriminant analysis; XGBDA,
extreme gradient boosting discriminant analysis; PARAFAC, parallel factor analysis; SIMCA, soft independent modelling of class analogy.

Sádecká and Jakubíková applied synchronous fluorescence spectroscopy to discrimi-
nate white wine according to variety (Furmint, Lipovina, and Muscat blanc) using LDA,
achieving an overall rate of 100% correct classification in validation and 93% for predic-
tion [46]. Using total luminescence spectroscopy for authentication, Suciu et al. classified
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white wine according to geographical origin (Romania and France) and variety (Chardon-
nay, Pinot Gris, Riesling and Sauvignon), obtaining correct classification rates of 98% and
97.1%, respectively, by applying parallel factor analysis (PARAFAC) and SIMCA algo-
rithms [47]. Based on an absorbance-transmission and fluorescence excitation-emission
matrix (A-TEEM) approach that also uses right-angle geometry with total fluorescence
spectroscopy, Ranaweera et al. classified Cabernet Sauvignon wines according to geograph-
ical origin with 100% accuracy using EEM data and a machine learning algorithm known as
extreme gradient boosting discriminant analysis (XGBDA) [11]. This was contrasted with
SVM as an alternative machine learning technique, which gave 85% correct classification
according to region. In a subsequent study, those authors used A-TEEM in conjunction
with XGBDA to classify over 200 commercially produced but unreleased Australian red
wines by origin and variety with 99.7% and 100% accuracy, respectively [48]. This method
involved multi-block data analysis of EEM and absorbance datasets, as well as PARAFAC
to extract components according to the major fluorophores differentiating the wines.

2.5. NMR Spectroscopy

Among the most mature forms of spectroscopy for food and beverage classification,
NMR has been applied to wine authentication for decades. Initially, site-specific natural
isotopic fractionation NMR (SNIF-NMR) spectroscopy was proposed as a tool for detecting
the biochemical origin of ethanol according to the natural distribution of deuterium [49],
which can reveal the unauthorised use of chaptalisation (sugar addition) in winemaking,
for example [50]. NMR spectroscopy can be applied for qualitative analysis to determine
molecular structures and for compositional profiling of a sample [51], as well as for quan-
titative analysis of analytes such as amino acids, alcohols, sugars, carboxylic acids and
their derivatives, and phenolic compounds [50]. NMR can be based on acquisition of 1H,
2H, or 13C spectra; for wine authentication, 1H NMR spectroscopy is most advantageous
as data acquisition is fast and highly reproducible compared to other techniques [33].
Moreover, NMR with advancements such as automation of analysis has been introduced
commercially and adapted to wine authentication (e.g., Bruker’s WineScreenerTM) [50].
Using the possibilities of NMR spectroscopy, different aspects of wine authenticity have
been addressed (Table 5).

Table 5. Examples of NMR spectroscopy in combination with chemometrics for wine authentication.

Spectroscopic
Technique

Spectral Range
Parameters for
Authentication

Classification
Method 1 Remark Reference

1H NMR 0.5–9.5 ppm

Discrimination of wines
geographically (German

wine regions), varietally, and
by vintage

PCA, LDA,
NCM

Correct classification of:
variety, 95%;

geographical origin, 89%;
and vintage, 96–97%

[52]

1H NMR 0.8–9.7 ppm
Varietal differentiation of red
and white wines produced in

different regions in China
PCA, LDA

Correct classification of:
red wines, 83%; and

white wines, 94%
[53]

1H NMR 0.0–10.0 ppm
Varietal differentiation of red
and white wines produced in

Czech Republic
PCA, RF

Correct classification of:
most varieties, ~70%;

and type of wine, 92%
[54]

1 PCA, principal component analysis; LDA, linear discriminant analysis; NCM, nearest class mean; RF, random forest.

Using the entire 1H NMR spectrum as a fingerprint in conjunction with LDA, Godel-
mann et al. classified German wines from five regions according to geography, variety
and vintage with overall correct classifications of 89% (geographical), 95% (varietal), and
96–97% (vintage) [52]. 1H NMR metabolomic data has also been applied for quantifica-
tion of a range of metabolites including sugars, amino acids, organic acids, alcohols, and
phenolic compounds, which were used for wine discrimination as a function of terroir
(encompassing biophysical and cultural factors of the production region) and cultivar [55].
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Moreover, Alexandra et al. explored the possibility of combining untargeted 1H NMR
analysis with targeted peptide based sensing arrays to classify Pinot noir wines on the basis
of characteristic metabolic signatures associated with variations in terroir [56]. Other recent
studies have also used 1H NMR as a nontargeted method for authentication. Fan et al.
subjected 99 red and 71 white wines from China to NMR analysis, subsequently using
segment-wise peak alignment followed by PCA and LDA for separating red and white
wine samples as well as different varieties [53]. Similarly, Mascellani et al. used NMR to
classify over 900 Czech wines according to type (based on colour and residual sweetness)
and variety using a random forest (RF) machine learning algorithm [54]. Correct classifi-
cation according to wine type was 92% or more for white wine styles (dry and medium
dry, medium, sweet) and > 99% for dry red, but the chosen model was unable to provide
correct classification for all varieties, with some varieties such as Sauvignon blanc, Pinot
Gris, Pinot blanc, and Pálava being below 50% accuracy. Overall, NMR is shown to be an
effective technique for authentication with rapid determination of range of metabolites,
even if it has become the most expensive spectroscopic approach [33].

In the selection of techniques, it is important to consider the various merits and
characteristics of the approaches and to evaluate these according to the question to be
addressed. Thus, despite the potential challenges, each of the reviewed methods prevail
due to their usability in wine authentication. A summary of the techniques including
perceived advantages and disadvantages is presented in Table 6.

Table 6. Summary of spectroscopic techniques applied to wine authentication [33,57].

Technique Chemical Marker Advantages Disadvantages

UV–Vis
Hydroxybenzoic acids,

hydroxycinnamic acids, flavan-3-ols,
flavonols, and anthocyanin glucosides

Simple analysis, low cost,
small volume

Difficulty in identifying
specific analytes

IR Organic acids, alcohols, reducing
sugars, and polyphenols

Rapid, simple, qualitative and
quantitative analysis

Sensitive to pH and temperature,
high interference of water (NIR)

Raman Organic acids, alcohols,
sugars, phenolics

Rapid, small volume, low
impact of water

Weak signals, extensive
pre-processing requirements

Fluorescence Phenolics, pigments, vitamins,
amino acids

Rapid, sensitive and selective,
qualitative and

quantitative analysis

Extensive pre-processing
requirements, quenching effect

NMR Phenolics, alcohols, organic acids,
amino acids, sugars

Rapid, selective, repeatable and
reproducible

Costly equipment, experienced
analyst required

3. Application of Chemometrics for Modelling with Spectroscopic Data

Spectroscopic methods rapidly produce an abundance of variables (peak intensities
and wavelengths) that need to be dealt with. Therefore, to analyse these high dimensional
sets of ‘big data’, integration with appropriate multivariate statistical analysis methods
(i.e., chemometrics) is essential for pattern recognition or modelling (see Figure 3 for an
overall approach).

As an exploratory technique that reveals underlying patterns in the data, principal
component analysis (PCA) is the most widely applied unsupervised method [33]. It ex-
plores the relationship between individual observations and reveals the trends, or groups
within the multivariate space [58]. PCA is also applied as a dimension reduction technique
that explains the variance of the data matrix in terms of principal components, those being a
small number of non-dependent factors containing important information from the original
set [59]. Other than differentiating among samples and potentially revealing clustering
according to region of origin, for example, data compression with PCA can also be useful
prior to other statistical treatments [58]. Notably, PCA is used for two-way array data. With
three-way data such as EEMs arising from total fluorescence spectroscopy, PARAFAC can
be used instead to decompose and extract the information into different components that
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describe the variability of the EEM data more specifically [47]. These aspects are revealed
in Figure 3 as early steps in the overall data analysis process.

Collect 
spectral data

Spectral pre-
processing

• Derivatives
• Smoothing
• Scatter 

correction

Component 
analysis

• PCA
• PARAFAC

Calibration
• Regression

PLSR
PCR

Classification
• Discriminant analysis

PLS-DA, LDA
• Class modelling

SIMCA
• Machine learning

SVM, RF, CART,
XGBDA, ANN, NCM

Model application

Validation
• Cross-validation
• Split validation

Data fusion Low-level Mid-level High-level

Figure 3. Schematic of the steps involved with chemometric analysis of spectroscopic data. Stages where data fusion can be
applied depending on the extent of processing are also presented in the diagram.

For classification purposes, supervised statistical approaches such as discriminant
analysis methods are widely applied in authentication of wine (Figure 3). Among spec-
troscopic studies, PLS-DA and LDA methods have mainly been considered. With LDA
(or canonical variate analysis), linear combinations of the original variables (i.e., canonical
variates) are estimated that provide maximum separation between classes (groups) while
minimising the variance within each class. However, for LDA, the number of training
samples needs to be larger than the number of variables, so variable selection by PCA needs
to occur with spectroscopic analysis prior to classification with LDA [60]. On the other
hand, PLS-DA uses regression to estimate the class of a sample from the variables obtained
from a spectral technique, whereby the entire data matrix is regressed on a binary-coded
response array and samples are classified according to their predicted values. In their
study, Geană et al. showed that LDA works well for classification according to variety with
UV–Vis data and PLS-DA improved the classification with FT-IR data [27]. The disadvan-
tage of PLS-DA is that a sample can remain unclassified if it does not belong to any of the
pre-defined classes [61].

Another commonly applied supervised technique for classifying wine involves class
modelling (Figure 3), and specifically SIMCA, in which similarities among samples belong-
ing to the same class are captured. As explained by Suciu et al., SIMCA is built around PCA
and is sensitive enough to identify false outliers to improve the robustness of the model [47].
The advantage of SIMCA over discriminant analyses is that it defines the acceptance area
around the target class, which enables delimiting of the target objects from any other objects
and classes, and allows assignment of a new sample if it locates in the assigned area of
the class [61]. However, due to overlapping of regions, some samples might be classified
in one or more classes, and as Rodionova et al. concluded, all classification tasks require
the use of an appropriate chemometric approach [61]. That will include the application
of new methods, and indeed in more recent years the development of machine learning
techniques has shown great potential as they offer advantages in classification compared
to conventional methods.

Machine learning started gaining attention in food analysis due to the possibility of
performing both linear and non-linear classifications [33]. Among the approaches (Figure 3),
SVM has been explored more for wine authentication [62], in conjunction with UV–Vis
(Table 1) and NIR (Table 2). SVM is an effective machine learning technique suitable for
both classification and regression analysis. It is based on a kernel extension of a binary
linear classifier that classifies samples in a hyperplane built according to the features [63].
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When a sample set is not balanced over the classes, however, the classification accuracy
from SVM may be affected. An alternative machine learning technique involves a decision
tree (DT) approach, of which there are several variations, with the most well-known being
classification and regression tree (CART). DT methods divide the samples into classes
based on the value of certain variables and can be boosted (iterative model) or bagged
(independent models including RF), whereby the DT modelling is repeated on random
subsets of samples combined into ensembles [64]. Such methods show higher accuracy
in classification, are unaffected by outliers or non-linear relationships, and can suitably
address class imbalance problems [64]. XGBDA is one such algorithm based on a boosted
DT that has recently been applied for the first time (Table 3) to geographical and varietal
authentication of red wine using fluorescence spectroscopy [11,48]. Another method for
non-linear classification is nearest class mean (NCM), which has rarely been applied in
spectroscopic analysis of wine. After dimension reduction of data (from NMR for example,
Table 5) with PCA followed by LDA to maximise class separation, NCM can then be
used to assign wines to a class with the minimum distance between the respective model
class mean and the test-set object [52]. Artificial neural network (ANN) is another option
that performs well in classifying samples with non-linear behaviour [65] and has shown
acceptable results in variety classification of grapes using FTIR [66]. Although ANN (and
CART) has been applied to classification of wine based on anthocyanins [67] or volatiles [68]
using chromatographic techniques, there did not appear to be any examples involving
spectroscopic data.

Steps of Chemometric Analysis

It is important to appreciate the key stages in any chemometric approach that need to
be followed to complete the process (Figure 3).

Apart from the modelling aspects mentioned in the preceding paragraphs, applying
a proper spectral pre-processing method depends on the nature of the data set. Noise
reduction and baseline offset are common for all spectroscopic techniques and mainly
involve smoothing using techniques like the Savitzky-Golay algorithm [69]. For vibrational
spectroscopic data, multiplicative scatter correction and standard normal variate methods
are utilised for applying corrections to the spectra by comparing signal intensities to a
reference signal. Instead for EEM data, correction of Rayleigh masking, Raman scattering,
and IFE corrections need to be used. Other than the analytical artefacts, issues can arise
with sample variations. For these, it is important to apply pre-processing methods such
as normalisation to remove differences due to dilution and for equalising the integral of
peaks of the spectra. Different scaling methods, such as autoscaling, and transformations
like mean centring are useful in identifying the important variables among others [69].

Data fusion is another practice that can be carried out to enhance the classification
of products and predict their properties. After data pre-processing, data fusion (usually
involving variables from complementary techniques) can be carried out in different ways.
As a relatively simple approach, low-level data fusion (Figure 3) uses measurements
directly from different techniques. In contrast, mid-level fusion uses features obtained from
the data sources such as PCA scores, which is important when data is diverse in size or
scale. In high-level fusion, the results of the different individual models of the data are
combined and applied to the classification problem [65].

Another essential aspect of the chemometric application is model validation (Figure 3).
After implementation, a classification model’s validity has to be verified with a validation
sample set, to avoid overfitting of the model and to assess its accuracy. It can be categorised
as internal validation when separated into calibration and validation sets, and external val-
idation when independent test sets are used. Cross-validation (CV) is the most commonly
applied validation method, consisting of different techniques such as leave-one-out CV,
multi-fold (k-fold)/Venetian blinds CV, contiguous blocks, and random subsets. There can
also be split validation, where the whole data set is divided according to different methods
such as random, duplex or Kennard-Stone, [64]. In selecting a suitable validation method,
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it is important to consider the number of samples in the set, otherwise validation can lead
to inaccurate results in prediction of new samples. For example, if the sample set is not
large enough, CV methods would be more suitable over split analysis [70]. Furthermore
when considering the sample size, classification methods have been identified as being less
susceptible to sample size variation, such as the RF technique [71]. However, it is difficult
to suggest which combination of classification/validation approaches would always give
significantly better results than any other [72].

Whichever methods are chosen, performance indicators are important parameters to
consider in the model validation process. In authentication applications, misclassification
and correct classification rates, expressed as a percentage of all samples in a class or an
overall average, are most commonly applied to evaluate the model performance in the
studies reviewed in this paper. Other than these measures of accuracy, sensitivity and
specificity can also be evaluated as performance indicators [48]. Measures of performance
specifically for multivariate regression models include coefficient of determination, which
represents the goodness of fit of the model based on the training set, and the root mean
square errors of calibration and prediction (RMSEC and RMSEP), which are used to
understand the predictive capability of the models [64].

4. Future Trends and Directions

Given the international nature of the modern wine trade, reliable methods for as-
sessment of wine authenticity are required to guarantee customer satisfaction of product
quality. Potential approaches need to satisfy a number of criteria, foremost of which is
having sensitivity to accurately classify non-authentic wines with a high degree of certainty
without misclassifying authentic wines as fraudulent. Ideally, a suitable method also needs
to be rapid and easily applied, even in a supply chain setting. Therefore, spectroscopic
techniques are destined to play a major role due to meeting criteria such as being rapid,
user-friendly, and cost-effective.

Among the range of current spectral tools, there have been a number of breakthroughs
in the application of spectroscopy for wine analysis. One exciting development is the
ability to undertake non-destructive wine measurements through-bottle using various
spectroscopic techniques (NIR-Vis, Raman, NMR) which has been successful to a certain
extent in identifying oxidation and illegal or hazardous contaminants [73]. Nevertheless,
improvements in available techniques or development of new ones to identify chemical
markers for geographical, varietal, or vintage authentication is ongoing. NMR provides
a powerful platform but is not readily deployable in the production or supply chains, in
contrast to things like NIR and UV–Vis. Most recently, great promise has been shown with
fluorescence spectroscopy with XGBDA modelling, and indeed, the application of powerful
chemometric methods such as machine learning algorithms along with spectroscopic data
could be exploited further. Improving the user-friendliness of the statistical techniques is
important, however, as that will permit non-specialists to apply them within industry. This
could conceivably be solved with the development of cloud-based processing and database
management, which could also provide accessibility for authorities for the construction
of a robust authenticity database containing rigorous details. Ultimately, integration
of innovative technology and modelling approaches will add a new dimension to wine
authentication and improve the functionality of the current processes. Importantly, this will
give consumers added confidence that the wines they purchase and consume are authentic.
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Research Questions 
As a luxury product, the economic value of wine is linked with culture and lifestyle, 

and consumers specifically demand reliable information about product origins. 

Considering the cost associated with wine fraud on a global scale, techniques that can 

authenticate wine based on provenance, variety, and vintage are necessary for brand 

protection as well as to enhance consumer confidence. Wine authentication has been a 

challenge for analytical chemists over the past few decades and despite the major 

advances, there is still a need for a robust technique that could be applied in an 

industrial setting rather than a specialised laboratory. On the other hand, 

understanding the influence of terroir and authenticating markers relevant to 

provenance will improve the value of regional wine. With a particular focus on 

Australian wine, understanding the unique characteristics inherent in wine regions 

and varieties by applying cutting-edge technology will help guarantee the provenance 

indicated on the label. In terms of practical application, it is desirable to consider a 

method that is rapid, accessible for in situ analyses, simple to operate, relatively low 

cost, and has high sensitivity and specificity. Therefore, upon reviewing the literature 

as presented in the preceding chapters, the following research questions were 

addressed by this thesis: 

1. Could fluorescence spectroscopy be used in the differentiation of Australian

wine according to geographical origin, variety, and vintage?

Fluorescence spectroscopy is known as a simple, non-destructive, non-invasive

and relatively inexpensive spectroscopic technique. Despite the potential

benefits, the application of total fluorescence spectroscopy in wine

authentication has been scarcely explored. In combination with the

advancement of instrument capabilities, the opportunity arose for the

development of a fast, reliable measurement approach and elaboration of

fluorescence molecular fingerprints for wine authentication purposes.
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2. What chemometric methods would be applicable for developing

classification models for wine authentication and regression models to

quantify wine chemical parameters?

As with other spectral approaches, chemometrics plays a vital role in modelling

fluorescence data. Unsupervised methods are useful for revealing underlying

patterns in the data as well as for dimension reduction. For classification,

supervised statistical approaches are essential, such as discriminant analysis

methods. Machine learning techniques are gaining in popularity and have

effectively been applied in discrimination studies. It was necessary to identify

suitable methods to develop classification models by considering factors such

as sample size, number of classes, and linearity of data. Spectroscopy can also

be used as a method for predicting chemical parameters such as pH, TA, alcohol

and the concentration of phenolic compounds. The possibility of applying

fluorescence data for modelling chemical parameters can be evaluated with

different regression methods.

3. Can the molecular fingerprint embedded in fluorescence spectra be applied

as evidence to understand the variation of terroir and explore underlying

chemical markers?

Having tangible evidence of the influence of geographical origin on fine wine

composition as a function of its terroir can provide fundamental scientific

understanding. Studies based on sensory analysis, climatic and topographic

indices, soil properties, and grape and wine chemistry have been undertaken to

assess region influences at various scales, with some being investigated to

understand subregional terroirs in South Australian wine regions. However,

the possibility of demonstrating variations ascribed to intraregional differences

in terroir through chemical analysis still remained unclear. Additionally,

understanding chemical markers or compositional variables that drive the

differences is important for the optimisation of regional expression of wine. The

capability of fluorescence spectroscopy to detect intraregional variation needed

to be determined.
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4. Can spectrofluorometric analysis be used to trace the origin of wine

throughout the winemaking process and identify the blending percentage of 

varietal wines?

When introducing a method for validating the origin of wine and detecting 

wine fraud, being able to trace a wine’s origin through production in 

conjunction with identifying small additions of other wine in a blend would be 

beneficial. To date, Australia has not developed a scientific approach to deal 

with this challenge in relation to the Label Integrity Program, which stipulates 

a “wine must contain a minimum of 85 % of grapes from a declared variety 

and GI”. Experiments were required to examine different stages of the 

winemaking process and wine blended with known percentages of a 

different variety, to evaluate the ability of fluorescence spectroscopy to 

address these challenges.
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Summary of Research Aims 
The overall aim of this project was to implement a reliable analytical method and 

develop robust models for the classification of Australian red wine according to region 

of origin. In addition, gaining an understanding of marker compounds encompassed 

within the chemical composition of wine was considered. The project will be beneficial 

for investigating chemical signatures in relation to regional expression in wine and 

developing a procedure that can offer a measure of protection against wine fraud in 

the global market.  

The aims will be addressed through the following objectives: 

1. Investigate spectrofluorometric analysis based on an absorbance-transmission

and fluorescence excitation-emission matrix (A-TEEM) approach and

undertake classification modelling for geographical authentication of

Australian Cabernet Sauvignon wines from different regions and from

Bordeaux as an international benchmark, and compare the effectiveness of the

approach with element composition determined by inductively coupled plasma

mass spectrometry (ICP-MS) as a reference method.

2. Verify the utility of the spectroscopic methodology for authentication with a

wide range of Australian red wines from different regions and varieties by

applying appropriate chemometric methods and machine learning techniques

to classify and validate models, further identify the chemical markers in relation

to wine provenance, and predict the concentration of chemical constituents

using spectral data.

54

Chapter 2 | Research questions and aims 



3. Explore the possibility of relating the molecular fingerprint of wine with the

variations of terroir at a subregional level within a South Australian wine region

to improve the understanding of the impact of terroir on intrinsic wine

properties, and identify the possibility of discrimination of samples according

to vintage using suitable chemometric methods.

4. Determine the feasibility of tracing the original fingerprint of wine throughout

the winemaking process and identify the blending percentage of varietal wines

in relation to Australia’s Label Integrity Program, thereby helping to establish

the provenance of wine through chemical traceability.
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Table S1. Least squares means and one-way ANOVA results of chemical measures for the different 
regions: Coonawarra (C), Margaret River (M), Yarra Valley (Y), and Bordeaux (B).a 

C Y M B Pr > F(Model) 

pH 3.56 c 3.59 bc 3.64 b 3.74 a < 0.0001 

TA 6.0 a 5.8 b 5.5 b 5.0 c < 0.0001 

Alcohol (% v/v) 14.2 14.0 14.0 13.8 0.19 
Total average 
phenolics (au) 69 a 66 ab 56 c 62 b < 0.0001 

Total average 
anthocyanins 

(mg L-1) 
126 b 120 b 130 b 169 a 0.007 

Average hue 0.87 0.87 0.87 0.85 0.83 

a Different letters within a row indicate statistically significant differences among the means according to Tukey 
HSD post hoc test (α = 0.05). 

Table S2. Least squares means and one-way ANOVA results of selected elements for the different 
regions: Coonawarra (C), Margaret River (M), Yarra Valley (Y), and Bordeaux (B).a 

a Different letters within a row indicate statistically significant differences among the means according to Tukey 
HSD post hoc test (α = 0.05). 

Element Units C Y M B Pr > F(Model) 
Li µg L-1 1.4 a 0.7 b 1.0 b 1.0 b < 0.0001 
Be µg L-1 0.03 b 0.06 a 0.03 b 0.05 a < 0.0001 
Na mg L-1 3.9 a 1.3 c 2.6 b 1.8 bc < 0.0001 
Mg mg L-1 20.2 b 21.5 a 20.6 ab 16.1 c < 0.0001 
Al µg L-1 38.9 ab 29.2 b 49.3 a 53.0 a 0.002 
K mg L-1 105.1 b 106.4 b 101.6 b 124.8 a 0.002 
Ca mg L-1 10.5 a 9.2 b 9.2 b 8.8 b 0.002 
Sc µg L-1 0.01 b 0.01 b 0.01 b 0.03 a 0.001 
Ti µg L-1 7.4 b 6.8 b 6.8 b 9.9 a 0.002 
V µg L-1 0.9 b 1.2 b 0.64 b 17.5 a < 0.0001 

Mn µg L-1 256.7 a 235.4 ab 184.4 bc 155.4 c 0.000 
Co µg L-1 0.56 b 0.72 a 0.47 b 0.46 b 0.010 
Ni µg L-1 2.7 b 4.1 a 1.72 c 4.1 a < 0.0001 
Ga µg L-1 0.03 b 0.03b 0.05 a 0.03 ab 0.000 
As µg L-1 0.5 b 0.22 b 0.21 b 1.1 a < 0.0001 
Se µgL-1 0.5a 0.24 b 0.21 b 0.31 b < 0.0001 
Rb µg L-1 329.2 b 409.9 a 472.4 a 304.9 b < 0.0001 
Sr µg L-1 222.0 a 112.0 c 169.5 b 42.2 d < 0.0001 
Mo µg L-1 0.70 ab 0.25 c 0.40 bc 0.99 a 0.005 
Cs µg L-1 0.4 b 2.3 a 1.8 a 0.78 b < 0.0001 
Ba µg L-1 30.3 b 66.5 a 19.4 c 20.0 bc < 0.0001 
La µg L-1 0.05 b 0.02 b 0.06 b 0.16 a 0.021 
Ce µg L-1 0.07 b 0.03 b 0.11 ab 0.23 a 0.035 
W µg L-1 0.16 b 0.23 b 0.10 b 0.63 a 0.009 
Pb µg L-1 0.78 b 0.71 b 0.66 b 2.4 a < 0.0001 
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Table S3. Confusion matrices showing the performance parameters of different cross-validated models 
for the wine regions showing (a) DA of ICP-MS data, (b) XGBDA of ICP-MS data, and (c) XGBDA of 
EEM data. 
a 

Region Sensitivity Specificity Precision F1 Score 
Bordeaux 1.0 1.0 1.0 1.0 
Coonawarra 0.92 0.94 0.91 0.94 
Margaret River 0.95 0.98 0.95 0.90 
Yarra Valley 0.95 0.98 0.95 0.95 

b 
Region Sensitivity Specificity Precision F1 Score 
Bordeaux 1.0 1.0 1.0 1.0 
Coonawarra 0.97 1.0 1.0 0.98 
Margaret River 1.0 0.98 0.95 0.97 
Yarra Valley 0.95 0.98 0.95 0.95 

c 
Region Sensitivity Specificity Precision F1 Score 
Bordeaux 1.0 1.0 1.0 1.0 
Coonawarra 1.0 1.0 1.0 1.0 
Margaret River 1.0 1.0 1.0 1.0 
Yarra Valley 1.0 1.0 1.0 1.0 

Fig. S3. XGBDA variable score plot for ICP-MS multi-element data giving a measure of a variable’s 
importance for building the model. 
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Fig. S4. SVMDA analysis of EEM data for wines of different regions showing (a) class prediction 
probability for each region and (b) class CV predicted for all regions. 
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Table S1. Summary of the different varieties and the regions (GIs) of the samples 
analysed in this study. 

No. of samples from each variety 

Region Shiraz Cabernet 
Sauvignon Merlot Shiraz/Cabernet 

Sauvignon Total 

Barossa Valley 28 0 0 0 28 
Clare Valley 8 0 0 0 8 
Eden Valley 12 0 0 0 12 
Frankland River 2 5 0 0 7 
Langhorne Creek 15 10 0 0 25 
Margaret River 0 17 0 0 17 
McLaren Vale 13 12 0 0 25 
Murray Darling 3 2 0 0 5 
Riverland 59 20 5 0 84 
Wrattonbully 4 5 0 1 10 

Total 144 71 5 1 221 

Table S2. Least squares means and one-way ANOVA results of basic 
chemical measures for the different varieties. Different letters within a 
column indicate statistically significant differences (  = 0.05). 

Variety pH 
Titratable 

Acidity (gL-1 of 
tartaric acid) 

Alcohol % 
(v/v) 

Shiraz 3.57 b 5.4 a 14.7 a 
Cabernet Sauvignon 3.54 c 5.4 ab 14.4 c 
Merlot 3.65 a 4.7 c 14.4 bc 
Shiraz/Cabernet Sauvignon 3.53 c 5.3 b 14.6 b 
p-value < 0.0001 0.007 < 0.0001 

Table S3. Least squares means and one-way ANOVA results of 
chemical measures for the different regions. Different letters within a 
column indicate statistically significant differences (  = 0.05). 

Region pH Titratable Acidity 
(gL-1 of tartaric acid) 

Alcohol 
(% v/v) 

Barossa Valley 3.57 ab 6.1 a 14.3 b 

Clare Valley 3.55 bc 5.4 cd 14.9 a 

Eden Valley 3.53 bc 5.7 bc 14.7 b 

Frankland River 3.44 d 5.0 ef 14.1 b 

Langhorne Creek 3.53 c 6.1 a 14.8 a 

Margaret River 3.53 c 4.9 f 14.1 b 

McLaren Vale 3.57 ab 6.0 ab 14.6 b 

Murray Darling 3.51 cd 5.2 de 14.7 ab 

Riverland 3.59 a 4.9 f 14.7 b 

Wrattonbully 3.52 c 5.6 bc 14.4 bc 

p-value < 0.0001 < 0.0001 < 0.0001 
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Table S4. Confusion matrix results for EEM data of XGBDA analysis of wines (in duplicate) 
according to region of origin. 

Table S5. Confusion matrix results for EEM data of XGBDA analysis of wines (in duplicate) 
according to variety. 

Table S6. Summary of statistical results obtained from partial least squares regression of HPLC 
reference values (total per class of compound) with A-TEEM measures of wine samples. 

Correlation 
Coefficient (r) 

R2 (Adjusted) Slope Value Standard 
Error 

RMSECV/
RMSEC 

Flavan-3-ols 0.99909 0.99818 0.93692 0.00190 1.06 
Hydroxycinnamates 0.99931 0.99862 0.99128 0.00175 1.35 
Flavonols 0.99918 0.99836 0.95473 0.00184 1.20 
LMWP 0.99986 0.99973 1.00176 0.00079 1.19 
Anthocyanins 0.99955 0.99911 0.95739 0.00136 1.25 

Region N Sensitivity% Specificity% Error% Precision% F1 Score 
Barossa Valley 56 98.21 100.00 0.23 100.00 0.99 
Clare Valley 16 100.00 99.77 0.23 94.12 0.97 
Eden Valley 24 100.00 99.77 0.23 96.00 0.98 
Frankland River 14 100.00 100.00 0.00 100.00 1.00 
Langhorne Creek 50 100.00 100.00 0.00 100.00 1.00 
Margaret River 34 100.00 100.00 0.00 100.00 1.00 
McLaren Vale 50 98.00 100.00 0.23 100.00 0.99 
Riverland 168 99.41 99.64 0.45 99.41 0.99 
Wrattonbully 20 100.00 100.00 0.00 100.00 1.00 
Murray Darling 10 100.00 100.00 0.00 100.00 1.00 

Variety N Sensitivity% Specificity% Err% Precision% F1 
Cabernet Sauvignon 142 97.89 97.33 2.50 94.56 0.96 
Merlot 10 30.00 99.77 1.80 75.00 0.42 
Shiraz 288 97.91 94.80 3.17 97.24 0.98 
Shiraz/Cabernet Sauvignon 2 50.00 100.00 0.23 100.00 0.67 
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Table S7. Least squares means and one-way ANOVA results of concentrations of 
phenolic compounds (mgL-1) for the different varieties. Different letters within a row 
indicate statistically significant differences (  = 0.05). 

Cabernet
Sauvignon Shiraz Merlot Shiraz/Cabernet 

Sauvignon p-value

Total anthocyanins 333.4 a 244.9 b 217.6 b 247.7 b < 0.0001 

Cyanidin-3-O-gluca 1.3 a 0.7 c 0.7 c 1.0 b < 0.0001 

Delphinidin-3-O-gluc 14.1 a 8.5 c 7.6 c 9.9 b < 0.0001 

Malvidin-3-O-gluc 185.5 a 137.9 b 125.1 b 137.3 b < 0.0001 

Malvidin ac 70.9 a 54.9 b 45.8 c 45.9 c < 0.0001 

Malvidin coum 11.1 a 11.8 a 6.7 b 7.8 b < 0.0001 

Peonidin-3-O-gluc 4.3 4.3 2.5 3.5 0.094 

Peonidin ac 2.7 a 2.2 a 1.6 b 1.9 b < 0.0001 

Peonidin coum 0.9 a 0.8 a 0.5 b 0.6 b 0.008 

Petunidin-3-O-gluc 20.3 a 14.6 b 12.6 b 14.1 b < 0.0001 

Total LMWP 323.2 317.2 320.7 228.3 0.250 

Total flavan-3-ols 98.5 a 88.2 a 122.4 a 52.9 b < 0.0001 

Catechin  42.9 a 43.7 a 64.5 a 25.4 b < 0.0001 

Epicatechin 49.3 a 39.7 a 50.9 a 28.0 b < 0.0001 

Total flavonols 147.4 a 152.2 a 116.3 b 124.8 b 0.035 

Myricetin-3-O-gal 6.0 b 6.6 a 4.3 c 5.8 b 0.003 

Myricetin-3-O-gluc 33.0 a 28.9 b 24.2 c 24.2 c 0.002 

Myricetin 26.4 a 20.0 b 24.2 ab 12.3 c < 0.0001 

Quercetin-3-O-gal 24.3 b 28.3 a 17.9 c 25.7 b < 0.0001 

Quercetin-3-O-gluc 1.2 b 10.6 a -0.4 b 1.3 b < 0.0001 

Quercetin 28.3  29.5 30.1 21.6 0.082 

Laricitin-3-O-gluc 5.4 a 5.1 a 3.8 b 5.2 a 0.003 

Syringetin-3-O-gal 3.5 b 5.6 a 3.4 bc 1.9 c <0.0001 

Syringetin-3-O-gluc 13.5 a 8.4 bc 6.6 c 12.6 ab <0.0001 

Kaempferol 2.9 2.9 2.3 2.1 0.701 

Total hydroxycinnamates 81.9a 73.6 a 82.7 a 44.2 b < 0.0001 

Caftaric acid 60.3 58.1 60.6 39.3 0.068 

Caffeic acid 9.7 a 7.4 b 9.9 a 4.8 c < 0.0001 

Coutaric acid 10.0 a 8.4 a 11.0 a 3.2 b < 0.0001 

agluc, glucoside; gal, galactoside; ac, 3-O-acetylglucoside; coum, 3-O-coumaroylglucoside; 
LMWP, low molecular weight phenolic compounds 
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Ranaweera et al. Spectrofluorometry for authentication and prediction of phenolics in red wine

S-6

Table S9. Climatic data of the regions for season 2018-2019, sourced from Wine 
Australia Marketing Insights (https://www.wineaustralia.com/market-
insights/regional-snapshots).

Region Mean-January 
Temperature ( )

Annual Rainfall 
(mm)

Growing Degree 
Days (GDD)

Barossa Valley 24.8 366 2120
Clare Valley 25.5 391 2156
Eden Valley 24.4 347 2031
Frankland River 23.3 614 1610
Langhorne Creek 23.4 316 2087
Margaret River 19.4 898 1712
McLaren Vale 23.3 590 1989
Murray Darling 27.3 269 2845
Riverland 30.8 149 2496
Wrattonbully 21.9 496 1688

Fig. S1 Locations of the GIs for the samples collected from Australian regions: Margaret River and 
Frankland River from Western Australia; Clare Valley, Barossa Valley, Eden Valley, Riverland, 
McLaren Vale, Langhorne Creek, and Wrantonbully from South Australia; and Murray Darling
contained within the zones of New South Wales and North West Victoria.
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Ranaweera et al. Spectrofluorometry for authentication and prediction of phenolics in red wine

S-7

Fig. S2 Split-half analysis for (a) excitation and (b) emission of the 
five components in the non-negativity constrained PARAFAC model.

Fig. S3 Fluorescence loadings for (a) excitation and (b) emission of the five components in the non-
negativity constrained PARAFAC model. Tentative assignments: Comp. 1, catechin; Comp. 2,
anthocyanin; Comp. 3, epicatechin; Comp. 4, phenolic acids; Comp. 5: riboflavin.
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2 

Abstract 1 

Authentication of wine can be considered at different scales, with classification according to country, 2 

province/state, or appellation/wine producing region. An absorbance-transmission and excitation-3 

emission matrix (A-TEEM) technique was applied for the first time to examine intraregional 4 

differences, using Shiraz wines (n = 186) produced during three vintages from five subregions of 5 

Barossa Valley and from Eden Valley. Absorption spectra and EEM fingerprints were modelled as a 6 

multi-block data set for initial exploration with k-means cluster analysis and principal component 7 

analysis, and then with machine learning modelling using extreme gradient boosting discriminant 8 

analysis (XGBDA). Whereas some clustering was evident with the initial unsupervised approaches, 9 

classification with XGBDA afforded an impressive 100% correct class assignment for subregion and 10 

vintage year. Extending the utility and novelty of the A-TEEM approach, predictive models for 11 

chemical parameters (alcohol, glucose + fructose, pH, titratable acidity, and volatile acidity) were 12 

also validated using A-TEEM data with XGB regression. 13 

Keywords: 14 

Extreme gradient boosting, chemometrics, terroir, regionality, subregion, authentication, provenance 15 

16 
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1. Introduction117 

The ability to authenticate wines of provenance is an important consideration for the global 18 

wine industry, not only to prevent fraud but also to enhance consumer confidence and create value in 19 

the products being purchased. This can be bound with the concept of terroir, which relates to location-20 

specific interactions  among topography, climate, soil, viticultural practices, and winemaking 21 

traditions  that influence production of different grape varieties and wines (Sáenz-Navajas & Jeffery, 22 

2021; Souza Gonzaga et al., 2021). Considering the importance region and terroir, regulatory 23 

measures such as protected designation of origin (PDO) or protected geographical indication (PGI) 24 

have been introduced to preserve the authenticity, quality and typicity of wine from defined regions. 25 

In addition, fine wine regions have often gained their reputation for producing wines from well-suited 26 

grape varieties, such as Cabernet Sauvignon and Merlot blends from Bordeaux, Chardonnay from 27 

Napa Valley, Tempranillo from Rioja, Sauvignon Blanc from Marlborough, and Shiraz from Barossa 28 

Valley (Sáenz-Navajas & Jeffery, 2021). 29 

Aside from being used to define wine regions, the distinctiveness of different terroirs has also 30 

been recognised for vineyard sites, such as in Mosel and Burgundy, as well as for wine estates of 31 

Bordeaux (Bastian & Iland OAM, 2019). Despite not having the depth of wine production history of 32 

Europe, Australia understands the value that can be associated with unique terroirs, with interest in 33 

capitalising on Australian terroirs subregiona , which could enhance the sense 34 

of place upon linking wine distinctiveness to terroir (Bramley & Ouzman, 2021). Indeed, several wine 35 

regions in Australia have been identified by Wine Australia (2021) as subregions within the 36 

established Geographical Indication (GI) regions, such as High Eden in the Eden Valley GI and 37 

Frankland River in Great Southern GI, based on their distinctive terroir that influences wine 38 

characteristics. Continued research that verifies the connection between distinctive wines and unique 39 

1 Abbreviations: A-TEEM, absorbance-transmission and fluorescence excitation emission matrix; CA, cluster 
analysis; DA, discriminant analysis; GI, Geographical Indication; ICP-MS, inductively coupled plasma-mass 
spectrometry; LDA, linear discriminant analysis; PCA, principal component analysis; PLSDA, partial least 
squares discriminant analysis; SVM, support vector machine; PDO, protected designation of origin; PGI, 
protected geographical indication; XGB, extreme gradient boosting; XGBDA, extreme gradient boosting 
discriminant analysis. 
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4 

terroirs is required, however, to provide scientific evidence that could support intraregional terroir 40 

zoning among wines of a given grape variety, as in a data-driven approach mentioned by Bramley 41 

and Ouzman (2021). 42 

Highlighting some Australian research endeavours, projects have been established to 43 

understand the subregional terroirs in South Australian GIs. The Barossa Grounds project was based 44 

on Robinson and Sandercock (2014) having distinguished five subregions in the Barossa Valley: 45 

Northern Grounds, Central Grounds, and Southern Grounds, along with Eastern Edge and Western 46 

Ridge. Another project in McLaren Vale (Scarce Earth program) recognised nineteen different wine 47 

districts (Bekkers, 2012), and in Clare Valley, Werner and Roche (2016) defined five subregions 48 

(Rocks project). These projects were mainly based on climatic and topographic indices and soil 49 

studies, although other examples include research involving sensory analysis (Johnson et al., 2013; 50 

Kustos et al., 2020; Pearson et al., 2021; Souza Gonzaga et al., 2021) soil microbiology (Zhou et al., 51 

2021), grape and wine chemistry (Chen et al., 2019), and grapevine epigenetics (Xie et al., 2017), 52 

conducted in an attempt to understand the influence of terroir on subregional variations. Beyond these 53 

studies, the question remained whether variations ascribed to intraregional differences in terroir could 54 

be demonstrated through chemical analysis of wine for the purpose of authentication, especially 55 

considering the challenge of authenticating products that are produced in close proximity. 56 

Distinguishing wines at a subregional level has been approached by studying elements, which 57 

may be related back to vineyard soil. In their research, Coetzee et al. (2014) classified wines according 58 

to provenance from a single wine region in South Africa based on different estates, using inductively 59 

coupled plasma-mass spectrometry (ICP-MS). They identified several elements (B, Ba, Cs, Cu, Mg, 60 

Rb, Sr, Tl and Zn) as suitable indicators of wine origin and achieved about 80% correct classification 61 

with a combination of cluster analysis (CA) and discriminant analysis (DA). Also applying ICP-MS 62 

(and ICP-optical emission spectroscopy), a preliminary study by Aceto et al. (2020) aimed to 63 

authenticate Barbera d'Asti and Nizza wines from two geographically overlapping zones in Piedmont, 64 
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Italy, but concluded that the elemental profile of wine reflected oenological practices rather than soil 65 

variations, due to the proximity of the production zones. 66 

Although accurate classification with ICP-MS can be achieved when considering diverse GI 67 

(Martin et al., 2012; Ranaweera, Gilmore, et al., 2021a), difficulty can be encountered when 68 

discriminating wines from GI within a state (e.g., South Australia), indicating that this technique may 69 

lack the necessary sensitivity (Martin et al., 2012). In contrast, the improved accuracy afforded when 70 

using UV-Vis absorbance and fluorescence data from an absorbance-transmission and fluorescence 71 

excitation emission matrix (A-TEEM) approach in combination with machine learning classification 72 

offered the prospect of segregating wines from adjacent regions such as Clare, Barossa and Eden 73 

Valleys with 99.7 % accuracy, according to wine molecular fingerprints (Ranaweera, Gilmore, et al., 74 

2021b). Furthermore, the speed and ease of use of a spectral approach was appealing, with UV-Vis 75 

and fluorescence spectroscopy offering particular advantages in terms of sensitivity, specificity, and 76 

accuracy (Ranaweera, Capone, et al., 2021). 77 

To identify patterns among the samples and to condense the variables associated with 78 

spectroscopic data, exploratory data analysis is undertaken (Cozzolino et al., 2009) with unsupervised 79 

chemometric methods such as principal component analysis (PCA) and CA. For classification, 80 

however, supervised multivariate methods are often applied for wine authentication purposes, 81 

including partial least squares discriminant analysis (PLSDA), linear discriminant analysis (LDA), 82 

and support vector machine (SVM) (Ranaweera, Capone, et al., 2021). Additionally, an extreme 83 

gradient boosting (XGB) machine learning technique was recently applied to wine for the first time, 84 

achieving 100% accuracy in the classification of regional Cabernet Sauvignon wines using EEM data 85 

(Ranaweera, Gilmore, et al., 2021a). In contrast to classification, calibration models need to be 86 

generated for quantitative analysis, with PLS regression and principal component regression 87 

generally employed to avoid issues with noise and correlations in the data (Cozzolino et al., 2009). 88 

Following the previous work (Ranaweera, Gilmore, et al., 2021a, 2021b), this study aimed to 89 

test whether A-TEEM could be used discriminate wine at a subregional level for the first time based 90 
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on the hypothesis that differences according to terroir would be chemically evident. Shiraz wines 91 

from Eden Valley GI and from five different subregions within the Barossa Valley GI of South 92 

Australia produced in three consecutive vintages were analysed by A-TEEM for classification 93 

according to origin and year of production. Unsupervised chemometric analyses with PCA and k-94 

means clustering were undertaken as well as a classification modelling with extreme gradient 95 

boosting discriminant analysis (XGBDA). Additionally, A-TEEM data were modelled against 96 

reference methods in a novel approach to predicting basic wine chemical parameters using XGB 97 

regression. 98 

2. Material and methods99 

2.1 Chemicals 100 

101 

102 

103 

2.2 Wine samples 104 

unreleased commercially produced105 

2106 

107 

108 

2.3 Analytical procedures for basic chemical parameters 109 

110 

111 

112 

113 

2 Note that these subregions were not officially recognised in the Australian GI system. For simplicity, the 
term subregion is often used even if it relates to Eden Valley, which is defined as a region. 
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2.4 Analytical procedure for A-TEEM 114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

128 

129 

130 

2.5 Statistical analyses 131 

132 

133 

134 

135 

136 

137 

and multi-block variable M2V (combined value of EEM and absorbance) 138 

was selected in 139 
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140 

141 

142 

143 

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

154 

3. Results and Discussion 155 

3.1 Exploratory data analysis 156 

157 

158 

159 

160 

161 

162 

163 

164 

165 
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192 

193 

194 
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3.2 Classification of A-TEEM data with XGBDA 198 

199 
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244 

245 

246 

247 

248 

249 

250 

251 

252 

253 

254 

Specifically, when considering only the vineyards rather than whole 255 

area, analysis of soil properties yielded greater separation of subregions within the Barossa GI. 256 

257 

258 

259 

260 

3.3 Chemical data prediction models 261 

262 

263 

264 

265 

266 

267 

268 

269 
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4. Conclusion 286 
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296 

Indeed, the ability of A-TEEM molecular fingerprints to 297 

reveal subt298 

terroirs and provide novel understanding of distinctive sensory outcomes according to subregional 299 

variations in composition. 300 

301 

302 

303 

industry when analysing the 304 

basic parameters of numerous samples during vintage305 

models. 306 
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Figure Captions 

Fig. 1. K-means partitional cluster analysis (k = 3) of A-TEEM data for subregional Shiraz wines (n 

= 186) from three different vintages (Class 1: 2018 in green; Class 2: 2019 in red; Class 3: 2020 in 

blue). 

Fig. 2. Scores for the wine samples from PCA of multi-block data according to subregion for 

individual vintage years, showing a) 2018, b) 2019, and c) 2020. CG, Central Grounds (blue); EE, 

Eastern Edge (purple); EV, Eden Valley (green); NG, Northern Grounds (pink); SG, Southern 

Grounds (yellow); WR, Western Ridge (brown). 

Fig. 3. Class CV predicted with XGBDA classification using A-TEEM data for subregional Shiraz 

wines (n = 186) according to a) vintage year for wine produced in 2018 (orange triangles), 2019 

(purple triangles) and 2020 (green stars), and b) subregion within the Barossa Valley GI along with 

Eden Valley GI for all three vintages. CG, Central Grounds (blue triangles); EE, Eastern Edge (purple 

triangles); EV, Eden Valley (green stars); NG, Northern Grounds (pink circles); SG, Southern 

Grounds (yellow diamonds); WR, Western Ridge (brown squares). 

Fig. 4. Class CV predicted by region/subregion across three vintages (2018 2020) from XGBDA 

modelling of A-TEEM data for Shiraz wines (n = 186) from different subregions within the Barossa 

GI and from Eden Valley GI, South Australia. CG, Central Grounds; EE, Eastern Edge; EV, Eden 

Valley; NG, Nothern Grounds; SG, Southern Grounds; WR, Western Ridge. 

Fig. 5. XGB regression of measured vs predicted parameters using reference methods and A-TEEM 

data for subregional Shiraz wines (n = 186) showing a) alcohol (% v/v), b) glucose + fructose (g L-

1), c) pH, d) titratable acidity (g L-1), and e) volatile acidity (g L-1) along with calibration and 

validation statistics. 
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Fig. 1 
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a)

b)

c)
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Fig. 3
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Fig. 4
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Fig. 5
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Table 1 

Descriptive statistics for basic chemical parameters of Shiraz wines (n = 186) from Barossa 

subregions for vintages 2018, 2019, and 2020. 

Statistic 
Alcohol 
(% v/v) 

Glu + Fruc 
(g L-1) 

pH 
Titratable 

acidity (g L-1) 
Volatile 

acidity (g L-1) 

Minimum 13.2 0.05 3.42 4.5 0.13 

Maximum 16.4 2.10 4.15 7.4 0.87 

Range 3.2 2.05 0.73 2.9 0.75 

1st Quartile 14.6 0.23 3.60 5.6 0.38 

Median 14.9 0.30 3.66 6.0 0.50 

3rd Quartile 15.3 0.50 3.75 6.6 0.61 

Mean 14.9 0.458 3.68 6.1 0.50 

Variance (n 1) 0.39 0.117 0.02 0.48 0.03 

0.63 0.342 0.12 0.69 0.16 

0.04 0.747 0.03 0.11 0.33 

Chapter 5 | A-TEEM with machine learning for intraregional classification | Research article

122



Ranaweera et al. A-TEEM with machine learning for intraregional classification of Barossa Shiraz

S-1

APPENDIX A 

SUPPLEMENTARY DATA FOR 

Absorbance-transmission and fluorescence excitation emission matrix (A-TEEM) 

with multi-block data analysis and machine learning for accurate intraregional 

classification of Barossa Shiraz wine 

Ranaweera K. R. Ranaweeraa, Susan E. P. Bastiana,b, Adam M. Gilmorec, Dimitra L. Caponea,b, David W. 

Jefferya,b,

a Department of Wine Science and Waite Research Institute, The University of Adelaide (UA), PMB 

1, Glen Osmond, South Australia 5064, Australia 
b Australian Research Council Training Centre for Innovative Wine Production, UA, PMB 1, Glen 

Osmond, South Australia 5064, Australia 
c HORIBA Instruments Inc., 20 Knightsbridge Rd., Piscataway, NJ 08854, USA 

 Corresponding author. 

E-mail address: david.jeffery@adelaide.edu.au (D.W. Jeffery).

Table of Contents 

Page 

Table A.1. Summary of the different vintages and region/subregions of the Shiraz wines. S-2

Table A.2. Climatic data of the Barossa regions for year 2017-2020. S-2

Table A.3. Confusion matrix results for XGBDA analysis of multi-block data (EEM and absorbance) for 

Shiraz wines modelled according to subregion and vintage. S-2

Table A.4. Least squares means and one-way ANOVA results of basic chemical measures for the Shiraz wines.

S-3

Fig. A.1. Locations of the subregions for the samples collected from the Barossa GI, South Australia. S-3

Chapter 5 | Supplementary Information

123



Ranaweera et al. A-TEEM with machine learning for intraregional classification of Barossa Shiraz

S-2

Table A.1. Summary of the different vintages and region/subregion of the Shiraz wines from the Barossa GI 
analysed in this study. 

No. of samples from each vintageb 

Subregion 2018 2019 2020 Total 

Central Grounds (CG) 7 11 22 40 
Eastern Edge (EE) 9 9 11 29 
Eden Valley (EV)a 9 8 11 28 
Northern Grounds (NG) 7 11 11 29 
Southern Grounds (SG) 8 10 13 31 
Western Ridge (WR) 9 7 13 29 

Total 49 56 81 186 
aEden Valley is a region according to the Australian GI system. bUnreleased commercial wines included: 2 
SG and 3 EE in 2018; 3 SG, 5 CG, and 2 EE in 2019; 1 EV, 3 SG, 1 NG, 5 CG, and 1 WR in 2020. 

Table A.2. Climatic data of the Barossa and Eden Valley regions for years 2017-2020, sourced from Wine 
Australia Marketing Insights (https://www.wineaustralia.com/market-insights/regional-snapshots). 

Mean January 
Temperature ( ) 

Annual Rainfall 
(mm) 

Growing Degree 
Days (GDD) 

Year 
Barossa 
Valley 

Eden 
Valley 

Barossa 
Valley 

Eden 
Valley 

Barossa 
Valley 

Eden 
Valley 

2017-2018 23.7 22.8 466 495 2089 1918 
2018-2019 24.8 24.4 366 347 2120 2031 
2019-2020 21.0 21.1 420 386 1862 1744 

Table A.3. Confusion matrix results for XGBDA analysis of multi-block data (EEM and absorbance) for 
Shiraz wines modelled according to region/subregion and vintage.  

Classa No. Sensitivity% Specificity% Err% Precision% F1 

18_CG 7 100.00 100.00 0.00 100.00 1.00 
18_EE 9 100.00 100.00 0.00 100.00 1.00 
18_EV 9 100.00 100.00 0.00 100.00 1.00 
18_NG 7 100.00 100.00 0.00 100.00 1.00 
18_SG 8 87.50 100.00 0.54 100.00 0.93 
18_WR 9 100.00 99.43 0.54 90.00 0.95 
19_CG 11 100.00 100.00 0.00 100.00 1.00 
19_EE 9 100.00 100.00 0.00 100.00 1.00 
19_EV 8 100.00 100.00 0.00 100.00 1.00 
19_NG 11 100.00 99.43 0.54 91.67 0.96 
19_SG 10 100.00 100.00 0.00 100.00 1.00 
19_WR 7 100.00 100.00 0.00 100.00 1.00 
20_CG 
20_EE 
20_EV 
20_NG 
20_SG 
20_WR 

22 
11 
11 
11 
13 
13 

100.00 
100.00 
90.09 
90.09 
100.00 
100.00 

100.00 
100.00 
100.00 
100.00 
100.00 
99.42 

0.00 
0.00 
0.54 
0.54 
0.00 
0.54 

100.00 
100.00 
100.00 
100.00 
100.00 

92.8 

1.00 
1.00 
0.95 
0.95 
1.0 
0.96 

aRegion abbreviation as per Table A.1 along with vintage year corresponding to 2018, 2019, and 2020. 
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Table A.4. Least squares means and one-way ANOVA results (significant p-value in bold) of basic chemical 
measures for the region/subregion. Different letters within a column indicate statistically significant 
differences among the means for region/subregion ( .

Subregiona Alcohol
(% v/v)

Glu + Fruc
(g L-1)

pH Titratable
Acidity (g L-1)

Volatile
Acidity (g L-1)

CG 14.9 0.50 3.69 ab 6.3 0.49

EE 14.8 0.50 3.70 ab 6.2 0.44

EV 15.0 0.32 3.70 ab 5.8 0.45

NG 14.7 0.56 3.64 b 6.2 0.52

SG 14.9 0.46 3.61 b 6.1 0.52

WR 15.0 0.412 3.75 a 5.9 0.53

p-value 0.277 0.147 0.000 0.115 0.166

aAbbreviations as per Table A.1.

Fig. A.1. Locations of the region/subregion of the samples collected from the Barossa GI, South Australia
(Map based on Robinson, S., & Sandercock, N. (2014). An analysis of climate, soil and topographic 
information to aid the understanding of Barossa terroir. PIRSA Spatial Information Services, Government of 
South Australia, Adelaide. https://www.barossawine.com/vineyards/barossa-grounds/barossa-grounds-
toolkit/).
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12 

*corresponding author: david.jeffery@adelaide.edu.au13 

14 

ABSTRACT 15 

As a robust analytical method, the application of spectrofluorometric analysis with machine 16 

learning modelling has recently been used to authenticate wine from different regions, vintages 17 

and varieties. Whether the molecular fingerprint obtained with this approach is maintained 18 

throughout the winemaking process has been preliminarily investigated along with an 19 

assessment of different percentages of wine in a blend. Monovarietal wine samples were 20 

collected at different stages of the winemaking process and analysed with an absorbance-21 

transmission and fluorescence excitation emission matrix (A-TEEM) technique. Wines were 22 

clustered tightly according to origin for the different winemaking stages, with some clear 23 

separation of different regions and varieties based on principal component analysis. On the 24 

other hand, wines were classified with 100 % accuracy according to varietal origin using 25 

extreme gradient boosting (XGB) discriminant analysis. The sensitivity of the technique was 26 

such that it allowed for accurate modelling of wine blends containing as little as 1 % of Cabernet 27 

Sauvignon or Grenache in Shiraz wine when employing XGB regression, which performed 28 
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2 

better than partial least squares regression. The overall results indicated the potential for 29 

applying A-TEEM and machine learning modelling to wine chemical traceability through 30 

production to guarantee the provenance of wine or identify the composition of a blend. 31 

KEYWORDS 32 

Authenticity, excitation-emission matrix, traceability, chemometrics, vinification 33 

INTRODUCTION 34 

Wine is an attractive target for fraud due to it being a luxury product in a high value industry, 35 

worth hundreds of billion dollars globally. Wine fraud can occur in different forms, such as 36 

dilution, substitution, illegal addition, and mislabelling (Ranaweera, Souza Gonzaga, et al., 37 

2021). To ensure the provenance of wine and to combat wine fraud, it is important to verify the 38 

origin and identity of the product by applying proper authentication and traceability techniques. 39 

Even though a number of analytical methods have been developed for wine authentication, it is 40 

challenging to find a technique to verify the original fingerprint of the product that has been 41 

maintained throughout production, due to the complexity of the winemaking process (Aceto et 42 

al., 2013). 43 

At the very least, winemaking involves alcoholic fermentation, but can encompass other 44 

processes such as malolactic fermentation, use of permitted additives or maturation techniques, 45 

and blending of different varietals. Each of these processes imparts alterations to wine 46 

composition: alcoholic fermentation produces compounds such as higher alcohols, esters, 47 

glycerol, acetaldehyde, and acids (Styger et al., 2011); malolactic fermentation involves 48 

changes that impact wine aroma and flavour profiles beyond the conversion of malic acid into 49 

lactic acid (Lonvaud-Funel, 2010); and interactions of wine macromolecules such as 50 

polysaccharides with aroma compounds, tannins, and proteins also affect the wine matrix 51 

(Jones-Moore et al., 2022). Some components in wine do not change significantly during the 52 

vinification process, however, which offers the opportunity to identify chemical markers that 53 

could be applied for authentication purpose (Catalano et al., 2016; Versari et al., 2014). 54 

Few studies have been conducted to verify the possibility of tracing chemical markers during 55 

winemaking. Analysis of metal composition throughout the winemaking process has identified 56 

only a few elements that maintained constant concentrations (Castiñeira et al., 2004). In their 57 

study, Almeida and Vasconcelos (2004) have shown that 87Sr/86Sr isotope values were 58 

statistically identical and can be applied to the provenance of soil, and respective grape juice 59 

and wine. A study of wine phenolic profile during winemaking using Fourier-transform infrared 60 

spectroscopy has identified that total phenolic content did not change significantly after primary 61 
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and malolactic fermentations (Preserova et al., 2015). However, studies have shown that the 62 

blending process used to produce a finished wine can affect polyphenols and colour (Li et al., 63 

2020) and bentonite used for protein stabilisation can influence the distribution of various 64 

metals (Aceto et al., 2013). Furthermore, although blending is an important step for producing 65 

wine with appealing sensory properties (Dooley et al., 2012) that may underpin the reputation 66 

of a designated origin (DO), such as Bordeaux blends involving Cabernet and Merlot or 67 

Australian Shiraz and Cabernet blends (Souza Gonzaga et al., 2021; Wine Australia, 2017), it 68 

can introduce uncertainty for confirming authenticity. For example, there could be unauthorised 69 

blending of DO wine with a small percentage of non-DO wine to increase total volume, or there 70 

may be a need to identify blending proportions for labelling requirements, such as having 85 % 71 

or more of the variety or geographic indication stated on the bottle label in accordance with the 72 

label integrity programme in Australia (Wine Australia, 2018). Imparato et al. (2011) applied 73 

nuclear magnetic resonance (NMR) profiling to a range of red wine varieties and achieved a 74 

precision of about 10 % when differentiating wine blends. For authentication purposes, 75 

however, a robust (and preferably rapid) method with high accuracy was still required, to verify 76 

the blends of different grape varieties. 77 

Considering that fluorescence spectroscopy can offer a viable method for wine authentication 78 

(Ranaweera, Gilmore, et al., 2021a, 2021b), the present study used a spectrofluorometric 79 

technique (absorbance-transmission and fluorescence excitation emission matrix, or A-TEEM) 80 

in combination with machine learning modelling to test two hypotheses for the first time: 1) the 81 

molecular fingerprint of wine as a function of origin can be traced through steps of the 82 

winemaking process, and 2) the blending percentages of different wines can be detected. The 83 

effectiveness of the cross-validated models was evaluated and compared according to the score 84 

probabilities in the confusion matrix and root mean square error of cross-validation (RMSECV) 85 

along with coefficient of determination of cross-validation (R2 CV). 86 

MATERIALS AND METHODS87 

1. Chemicals and solvents88 

HPLC gradient grade absolute ethanol and analytical grade 37 % hydrochloric acid (HCl) were 89 

purchased from Chem-Supply (Port Adelaide, SA, Australia). High purity water was obtained 90 

from a Milli-Q purification system (Millipore, North Ryde, NSW, Australia). 91 

2. Wine samples92 

Two sets of wine samples were obtained to examine the stage of wine production and for 93 

blending experiments. For stage of production, five different monovarietal wines (Grenache 94 
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from Alverstoke vineyard and from Coombe vineyard at the University of Adelaide’s Waite 95 

Campus, Mataro from Coombe vineyard, Shiraz from Barossa Valley, and Nebbiolo from 96 

Southern Flinders Ranges) were collected in 2021 from the research and teaching winery at the 97 

Waite Campus at three different processing stages: post primary fermentation (PF) when 98 

glucose and fructose were less than 2 g/L; post malolactic fermentation (MF) when malic acid 99 

concentration was less than 0.1 g/L; and pre-blending (PB) from 225 L barrels. For blending 100 

experiments, three different commercially produced but unreleased monovarietal wines (Shiraz 101 

from Langhorne Creek, Cabernet Sauvignon from Langhorne Creek, and Grenache from 102 

Riverland) were obtained from a local producer in 2020. 103 

3. Analytical procedures for basic chemical parameters104 

Wine pH and titratable acidity (TA) were measured with an autotitrator and alcohol content 105 

(percentage by volume) was measured with a density meter by Commercial Services at the 106 

Australian Wine Research Institute. Analyses were undertaken in duplicate. 107 

4. Sample preparation and A-TEEM analysis for winemaking stages108 

Samples were obtained from fermentation vessels or barrels at PF, MF, and PB stages of 109 

production and stored in plastic containers in a freezer at −20 ℃ until required for analysis to 110 

inhibit fermentation. At the time of analysis, samples were defrosted at room temperature and 111 

prepared and analysed in duplicate as described by Ranaweera, Gilmore, et al. (2021b), 112 

undertaking two measurements of each replicate sample. Briefly, samples (1 mL) were 113 

centrifuged (Eppendorf 5415D, Adelab Scientific, Thebarton, SA, Australia) at 9300 × g for 10 114 

min and an aliquot (40 μL) was diluted 1:100 with 50 % aqueous ethanol that had been adjusted 115 

to pH 2 with HCl and degassed by vacuum filtration (0.45 μm PTFE membrane). The dilution 116 

factor of wine-to-solvent was determined by considering the absorbance values of samples 117 

according to Beer-Lambert law (Gilmore, 2014). Samples were mixed for 60 s using a benchtop 118 

vortex (Grant-bio, PV-1) and degassed by sonication for 10 min with a Unisonics ultrasonic 119 

cleaner (Rowe Scientific, Adelaide, SA, Australia). A-TEEM analysis was conducted with a 120 

HORIBA Scientific Aqualog spectrophotometer (version 4.2, Quark Photonics, Adelaide, SA, 121 

Australia) using the same instrument settings as reported previously (Ranaweera, Gilmore, et 122 

al., 2021b) (i.e., excitation wavelength range of 240–800 nm with a 5 nm increment under 123 

medium gain and 0.2 s integration time; emission wavelength range of 242–824 nm with a 4.66 124 

nm increment as set by the instrument). Samples were analysed in a Hellma type 1FL (1 cm 125 

path length) Macro Fluorescence cuvette (Sigma-Aldrich, Castle Hill, NSW, Australia). 126 

Absorbance spectra (240–700 nm) and EEMs were recorded with data acquisition undertaken 127 
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using Origin software (version 8.6, OriginLab Corporation, Massachusetts, USA). Wine colour 128 

measurements comprising CIELab, hue, and intensity were also recorded. Pre-processing of 129 

excitation-emission matrix (EEM) data involved normalisation according to the water Raman 130 

scattering units for the specified emission conditions, and correcting for the influence of inner 131 

filter effects (IFE), solvent background, dark detector signals, and Rayleigh masking to 132 

eliminate spectral distortion (Gilmore et al., 2017). 133 

5. Sample preparation and A-TEEM analysis for blending experiment134 

Wines were added into 12 mL glass vials with Teflon lined caps to prepare the blends as shown 135 

in Table 1 to obtain a final volume of 10 mL. After addition, vials were mixed thoroughly for 136 

60 s using a benchtop vortex and samples were prepared and analysed in duplicate as described 137 

in Section 4, but using a dilution of 1:150. 138 

Table 1. Percentages of wine in blends of Shiraz with Cabernet Sauvignon or Grenache. 139 

Variety Blending percentage (v/v) 
Shiraz  100 99 95 90 85 60 50 0 
Cabernet Sauvignon 
or Grenache 0 1 5 10 15 40 50 100 

6. Statistical analysis140 

One-way analysis of variance (ANOVA) with Tukey’s honestly significant difference 141 

(HSD) post hoc test for pairwise comparisons (α = 0.05) for basic chemical measures and wine 142 

colour parameters according to stage of winemaking and region were undertaken with XLSTAT 143 

(version 2019.03.02, Addinsoft, Boston, USA). EEM data were unfolded into a two-way array 144 

using transform unfold multiway (mode 1) in Solo software (version 8.7.1, Eigenvector 145 

Research, Inc., Manson, WA, USA). Principal component analysis (PCA) was carried out with 146 

singular value decomposition and autoscale pre-processing with four principal components to 147 

explore variations in samples at different stages of winemaking using Solo software. Samples 148 

were labelled with their variety according to winemaking stage and classified using extreme 149 

gradient boosting discriminant analysis (XGBDA) after partial least squares (PLS) compression 150 

using five latent variables (LV), with mean centring pre-processing and decluttering with 151 

generalised least squares weighting (GLSW) at 0.2 to both calibrate and cross-validate (k =10, 152 

Venetian blinds procedure). The model was evaluated using confusion matrix score 153 

probabilities according to previous studies (Ranaweera, Gilmore, et al., 2021a, 2021b). For the 154 

blending experiment, unfolded EEM data were modelled with PLS and XGB regression 155 

algorithms (Solo software) using blending percentage as the y-block. Root mean square error 156 

of cross-validation (RMSECV) (Venetian blinds with 10 splits) and coefficients of 157 
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determination for both calibration and cross-validation (R2 cal, R2 CV) were used to evaluate158 

the effectiveness of the models. 159 

RESULTS AND DISCUSSION 160 

1. Variations according to stage of winemaking161 

CIELab colour parameters and basic oenological measurements of wine samples obtained 162 

during the winemaking process were assessed with one-way ANOVA according to different 163 

winemaking stages as well as according to origin (for different varieties), as shown in Table S1 164 

and Table S2, respectively, of the Supplementary data. When analysed according to the 165 

winemaking stage (Table S1), there were no significant differences (p-value > 0.26) in basic 166 

chemistry (alcohol, pH, TA) nor colour parameters (hue, intensity, L*, a*, b*, C*). Values for 167 

the chromatic characteristics at the different winemaking stages showed that the wines were 168 

relatively low in lightness (L*), moderately high in red (a*) and yellow (b*) , and high in 169 

chroma (C*). These results generally aligned with variations among oenological properties and 170 

colour expression during winemaking (Arcena et al., 2020), depending on the stage/time period 171 

of sampling. According to the origin of the samples (Table S2), alcohol % v/v and all colour 172 

parameters showed significant variation (p-value <0.0001), whereas pH and TA were not 173 

significantly different. 174 

In the CIE 1931 xyY colour space, all samples were congregated together in the red zone (x = 175 

0.68 to 0.72 and y = 0.27 to 0.31, Figure 1A), which contrasted with the hue vs intensity plot, 176 

where clear separation of Shiraz from Barossa Valley and Nebbiolo from Southern Flinders 177 

Ranges could be observed (Figure 1B). Furthermore, Grenache and Mataro samples from 178 

vineyards at Waite campus (Alverstoke and Coombe) were clustered relatively close, but were 179 

still somewhat differentiated. Based on this simple analysis, it appeared that unique information 180 

related particularly to origin that was not impacted by the stage of processing could be 181 

expressed from absorbance data. 182 
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FIGURE 1. Analysis of colour parameters according to stage of the winemaking process 185 

(n = 15, duplicate samples analysed twice) showing (A) CIE 1931 plot (inset shows 186 

clustering of samples) and (B) hue vs colour intensity graph. PF, post primary 187 

fermentation; MF, post malolactic fermentation, PB, pre-blending. 1, Grenache from 188 

Alverstoke vineyard; 2, Grenache from Coombe vineyard; 3, Shiraz from Barossa Valley; 189 

4, Mataro from Coombe vineyard; 5, Nebbiolo from Southern Flinders Ranges. 190 

The observations were interesting but the stages of winemaking were seemingly overshadowed. 191 

As such, further exploratory analysis was carried out with EEM data (which can be considered 192 

as a molecular fingerprint (Gilmore et al., 2017)) using PCA (Figure 2). The first three principal 193 

components explained 94.80 % of the total variance for the samples, which were perfectly 194 

clustered according to origin for the different winemaking stages. Wines from the different 195 
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regions and varieties were reasonably well separated along PC1 except for Mataro from 196 

Coombe vineyard and Shiraz from Barossa Valley. PC2 especially segregated Nebbiolo from 197 

Southern Flinders Ranges from the remainder and the Shiraz to an extent, whereas Waite 198 

Campus vineyard samples (Grenache and Mataro) overlapped. The Shiraz was well separated 199 

from other samples along PC3. This outcome provided the first indication that the fluorescence 200 

molecular fingerprint according to origin could be traced (and seemingly preserved) during 201 

winemaking. 202 

203 

FIGURE 2. Scores from PCA of EEM data for samples of different variety/origin collected 204 

at three stages of winemaking (n = 15, duplicate samples analysed twice). Gre Alv, 205 

Grenache from Alverstoke vineyard; Gre Coo, Grenache from Coombe vineyard; Mat 206 

Coo, Mataro from Coombe vineyard; Neb SFR, Nebbiolo from Southern Flinders Ranges; 207 

Shz BV, Shiraz, from Barossa Valley. PF, post primary fermentation; MF, post malolactic 208 

fermentation; PB, pre-blending. 209 

XGBDA was subsequently carried out as reported in (Ranaweera, Gilmore, et al., 2021a, 210 

2021b) for classification by origin. Figure 3 shows the class cross-validation (CV, Venetian 211 
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blinds CV method) prediction probability from this machine learning approach, revealing the 212 

probability of each sample belonging to the class it most closely resembles. Class CV prediction 213 

demonstrated excellent separation of samples according to origin, grouping all stages of 214 

winemaking (i.e., post primary fermentation, post malolactic fermentation, and pre-blending) 215 

together for each class. These results further emphasised the distinct possibility of tracing 216 

samples through different stages of winemaking according to their origin. Thus, EEM data from 217 

the A-TEEM technique could provide an original spectral fingerprint of the product that can be 218 

maintained during wine production, thereby opening up avenues for this being used as a 219 

chemical signature for traceability. 220 

FIGURE 3. Class CV predicted for wine origin from XGBDA analysis of EEM data for 222 

samples collected at three stages of winemaking (n = 15, duplicate samples analysed twice). 223 

Gre Alv, Grenache from Alverstoke vineyard; Gre Coo, Grenache from Coombe 224 

vineyard; Mat Coo, Mataro from Coombe vineyard; Neb SFR, Nebbiolo from Southern 225 

Flinders Ranges; Shz BV, Shiraz, from Barossa Valley. PF, post primary fermentation; 226 

MF, post malolactic fermentation; PB, pre-blending. 227 

2. Modelling to identify blend proportions228 

Testing the A-TEEM approach for sensitivity in terms of changes in matrix from introducing a 229 

blending component was another important consideration in terms of possible fraud detection. 230 
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To evaluate the possibility of identifying the blending percentage of each sample, regression 231 

methods were applied to EEM data for Shiraz wine containing proportions of Cabernet 232 

Sauvignon or Grenache. As a common method, PLS regression (PLSR) was applied for the two 233 

sets of wines blended according to the amounts in Table 1. The correlation between the actual 234 

blends and predicted percentages were evaluated, with R2 CV and RMSECV values for Shiraz 235 

and Cabernet Sauvignon blends (0.996, 2.17) and Shiraz and Grenache blends (0.992, 3.12) as 236 

shown in Figure S1. Accuracy of the models was good, with R2 CV values > 0.990 for both sets 237 

of blends, but the RMSECV values were slightly high, at 2-3 %. PLSR uses latent variables 238 

(components) that explain as much of the covariance as possible between a set of predictor X-239 

variables and response Y-variables (Ghanem et al., 2015). A study by Gilmore et al. (2020) 240 

identified that XGB regression (XGBR) yielded more precise fits for prediction of phenolic and 241 

anthocyanin compound concentrations from A-TEEM data compared to PLSR. Therefore, 242 

XGB regression was applied to the blending experiment data to seek improvements in the 243 

regression models. Figure 4 shows the results, with the XGBR models having a perfect R2 CV 244 

of 1.00 and exceedingly low RMSECV of 0.00028 for both sets of Shiraz blends. 245 

XGBR can clearly predict the blend percentage for each sample, notably with a clear distinction 246 

between 0 % blend and 1 % blend for both Shiraz/Cabernet Sauvignon and Shiraz/Grenache. 247 

This was a striking result, highlighting that XGBR modelling of EEM data could be a successful 248 

option for detecting the addition of small proportions of different varietal wines. With further 249 

development and ultimately the production of databases, it is conceivable that this approach 250 

could be applied to robustly predict the composition of unknown sample blends. In addition, 251 

the approach is simple and rapid in comparison to sensitive DNA techniques (e.g., based on 252 

cultivar genotype to determine wine blends), which suffer from reproducibility problems when 253 

authenticating experimental or commercial wines (Boccacci et al., 2020). 254 
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FIGURE 4. XGB regression of measured vs CV predicted blending percentages for Shiraz 256 

wine containing proportions of (A) Cabernet Sauvignon or (B) Grenache. Insets show 257 

more detail of the sample separation for 0 %–20 % blends. 258 

CONCLUSIONS 259 

The A-TEEM approach with machine learning modelling continued to show promise as an 260 

indispensable tool for wine authentication. In this preliminary work, A-TEEM was applied to 261 

monovarietal unfinished wine samples collected from different stages of the winemaking 262 

process (i.e., post primary fermentation, post malolactic fermentation, and pre-blending) to 263 

investigate the possibility of tracing molecular fingerprints during wine production. PCA was 264 

able to separate samples from different origins based on EEM data and subsequent XGBDA 265 

modelling could differentiate the samples with 100 % accuracy. Further highlighting the power 266 

of the A-TEEM technique, two sets of wine blends (Shiraz/Cabernet Sauvignon and Shiraz/ 267 

Grenache) were analysed to model the proportions of wine in the blend (beginning as low as 1 268 

%). Regression models built with PLSR and XGBR were evaluated in terms of correlation 269 

coefficient and cross-validation error, with unrivalled accuracy achieved for the XGBR model 270 

with R2 CV equal to 1.00 and small RMSECV for both sets of wine blends. Given the possibility 271 

of tracing a wine’s origin through production in conjunction with identifying small additions of 272 

other wine in a blend, this approach could foreseeably be developed into a robust method and 273 

applied in the industry not only for validating the origin of wine but also detecting other aspects 274 

of wine fraud. 275 
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Chapter 7 | Concluding remarks & future perspectives 

7.1 Conclusions 
Wine authentication is an extensive concept that includes verifying wine age, 

geographical origin, variety, and production practices to be compliant with label 

descriptions and other regulatory requirements. Perhaps more evident recently, 

many of the popular wines of the world are every so often the subject of substitution 

or counterfeiting, with no exception for wines from Australia. The ability to verify 

important parameters encompassed within the chemical composition of wines would 

be beneficial in making an Australian wine unique in the market among others. Upon 

reviewing the literature as presented in Chapters 1 and 2, it was identified that 

different analytical techniques have been developed to verify wine authenticity over 

the past few decades, but considering the multifaceted production process, it has 

remained a challenge to establish a robust method to authenticate the inherent 

attributes of a wine. This thesis aimed to address this issue by developing a robust 

but simple analytical method to accurately authenticate wine according to 

geographical origin, variety and vintage. In a novel approach to wine 

authentication, the use of absorbance and fluorescence spectroscopy in 

conjunction with machine learning has been assessed. In addition, the work has 

addressed the underlying chemical markers attributable to regional wines and 

has explored models for predicting chemical parameters using spectral data. 

7.1.1 Development of methodology using fluorescence spectroscopy for 

wine authentication 

Fulfilling Objective 1 of the project, spectrofluorometric analysis based on the A-TEEM 

technique was initially applied to authenticate the geographical origin of Australian 

Cabernet Sauvignon wine from three Geographical Indications (GI) – Coonawarra, 

Yarra Valley, and Margaret River – together with wines from Bordeaux, France 

(Chapter 3). The A-TEEM technique was applied as a non-targeted method that uses 

a three-dimensional excitation-emission matrix (EEM) to obtain a “molecular 

fingerprint” from fluorophoric components present in wine to differentiate them 

according to region of origin. The EEM data were pre-processed prior to chemometric 
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analysis by normalising according to the water Raman scattering units and correcting 

for the influence of inner filter and other effects to eliminate spectral distortion. 

Classification accuracy according to A-TEEM was compared to models 

developed with element concentrations determined by ICP-MS as a reference 

method for wine authentication. ICP-MS data modelling was undertaken with 

discriminant analysis (DA) and the EEM data were analysed using support vector 

machine discriminant analysis (SVMDA). Additionally, a novel application of 

machine learning using extreme gradient boosting discriminant analysis (XGBDA) 

was used for element and EEM data. The effectiveness of the methods was 

evaluated by cross-validation of classification models, using evaluation 

parameters including sensitivity, specificity, precision and F1 score. DA of 

elemental data and the SVMDA of EEM data resulted in an overall correct 

classification of 94.2 % and 84.7 %, respectively. In comparison, the analysis of 

EEM data with XGBDA afforded 100 % correct classification for all classes 

whereas ICP-MS resulted in an overall 97.7 % correct classification with XGBDA. 

From this initial study it was concluded that the A-TEEM technique was a simple, 

rapid, and sensitive method and modelling of EEM data was highly effective in 

discrimination of wine according to geographical origin. The unrivalled results 

of this investigation led to further expansion of this approach to other varieties 

and regions, and exploration of the underlying chemical markers leading to the 

classification. 

7.1.2 Verification of the method according to region and exploring the 

varietal authentication with insight into chemical markers 

In accordance with Objective 2 of the overall study, the method developed in Chapter 

3 was further tested with a broad range of commercial, unreleased wines (n = 221) 

from ten GI in South Australia and Western Australia belonging to three different 

varieties (Shiraz, Cabernet Sauvignon, and Merlot), as reported in Chapter 4. 

Notably, EEM and absorbance data were combined through multi-block data 

analysis to improve the effectiveness of the machine learning classification. The 

results reinforced the capability of A-TEEM technique in combination with XGBDA 

for wine authentication, providing 100 % accurate classification of wines for variety  
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and 99.7 % for region of origin. As for the aim of understanding the chemicalmarkers 

that may discriminate among wines, the main fluorophoric components 

attributed to variation in the samples were proposed using parallel factor analysis 

(PARAFAC) of EEM data. PARAFAC tentatively revealed the most dominant 

fluorescent compounds; however those components did not contribute to the 

clustering of samples related to wine origin due to overfitting of all the classes with 

the same loading. Considering the potential utility of the methodology, A-TEEM data 

were applied to predict the concentrations of 24 phenolic compounds in wine based 

on HPLC reference data and partial least squares regression. The overall results 

afforded values for Pearson’s correlation (r) > 0.99 and coefficient of determination 

(adjusted R2) > 0.99, with standard error of the regression slope < 0.002, thus 

indicating the high explanatory power and robustness of the prediction models. 

Even though analysis of additional samples was recommended to strengthen the 

models, the A-TEEM technique with chemometrics was revealed to be a rapid 

method for phenolic quantification as well as a valuable tool for authentication of 

wine. Overall, a potential insight into the underlying chemistry of the wines was 

provided, which may ultimately be used to improve understanding of wine 

regionality. 

7.1.3 Investigation of intraregional variation of Shiraz wines using 

A-TEEM and machine learning modelling

The A-TEEM technique was applied for the first time to examine intraregional 

differences using a set consisting primarily of experimental Shiraz wines (with some 

unreleased commercial wines) from five proposed subregions (not delimited) of the 

Barossa Valley GI along with Eden Valley GI (Chapter 5). The molecular fingerprint 

of wine was captured using the A-TEEM technique to reveal variations ascribed to 

the terroir within the same region, addressing Objective 3 of the project. The wines 

came from three consecutive seasons (2018, 2019 and 2020), with the experimental 

wines being produced in a consistent manner, permitting authentication testing 

according to the vintage as well. Using fusion of A-TEEM data in a multi-block 

approach, initial exploratory analyses involved k-means clustering and PCA, with 

k-means analysis revealing clustering according to the vintage year, emphasising 
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the strong seasonal impacts for wine, whereas PCA plots of individual years showed 

substantial clustering of some subregions. Clustering of subregions by PCA was 

especially evident in 2018, whereas environmental factors may have 

obscured the differentiation in the subsequent vintages. Supervised classification 

with XGBDA models afforded an unsurpassable level of accuracy (i.e., 100 %) 

according to vintage year as well as for subregion across all vintages. The A-

TEEM method was shown to be a powerful tool for authenticating wine from 

origins that are in close proximity and results of this study may provide impetus 

for employing this as a chemical-based approach to better understand the 

expression of terroir in regional Australian wines. In another novel application of 

A-TEEM data, predictive models were also developed in Chapter 5 for basic

chemical parameters by regressing against data   obtained from reference

methods. Thus, XGB regression with cross-validation afforded strong correlations

(R2 CV) and low errors (RMSECV) for alcohol (0.877, 0.22 % v/v) glucose +

fructose (0.888, 0.12 g/L), pH (0.793, 0.06), titratable acidity (0.839, 0.28 g/L), and

volatile acidity (0.876, 0.06 g/L), showing the capability of A-TEEM and

chemometrics as an approach for rapid determination of these useful chemical

parameters.

7.1.4 Tracing the molecular fingerprint of wine throughout the 

winemaking process and recognising the blending percentage of 

varietal wine 

Chapter 6 describes a preliminary investigation of the impact of production practices on 

wine authentication using the A-TEEM approach, with monovarietal wines from 

three different processing stages (post primary fermentation, post 

malolactic fermentation, and pre-blending). This study provided a first evaluation of 

the stability of the molecular fingerprint of wine throughout the winemaking process 

and offered insight into whether A-TEEM could be used for traceability at 

different stages of production. A plot of hue and colour intensity obtained from 

absorbance data of the samples as well as PCA of the EEM data showed a 

clustering of wine samples according to their origin, thus showing the lack of 
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influence of stage of processing and highlighting the prospect of tracing a wine’s 

spectral signature through production. Similar to the statistical results of previous 

experiments, XGBDA showed a remarkable ability to differentiate samples 

according to their origin with 100% accuracy irrespective of winemaking stage, 

highlighting the capability of the approach based on the selectivity of EEM data. 

For the blending experiment, unreleased but commercially-produced monovarietal 

wines were prepared in two sets, Shiraz containing Cabernet Sauvignon and 

Shiraz containing Grenache, with a series of blends comprising 1 %, 5 %, 10 %, 

15 %, 20 %, 40 %, and 50 % of the second varietal wine. Regression methods were 

applied to EEM data in an effort to identify the blending percentage. Comparing 

two regression methods, PLSR and XGBR with both sets of blends, XGBR 

was found to yield more precise prediction of percentage in the blend, 

achieving R2 CV of 1.00 and RMSECV of 0.00028 in comparison to PLSR (R2 CV > 

0.99 and RMSECV between 2-3). Although more work is required in this space, 

A-TEEM analysis with XGBR could be an excellent option for the detection of

possible fraud in relation to wine blending.

In summary, this thesis has contributed to identifying a reliable method to accurately 

authenticate wine according to geographical origin, variety, and vintage. Application 

of spectrofluorometric analysis for wine authentication in combination with machine 

learning modelling using XGBDA provided unapparelled results and the approach 

could conceivably be adapted for use in a supply chain setting for validating the 

origin of commercial wine. This project also contributed knowledge regarding the 

influence of terroir on wine composition, as evidenced by variations in wine 

molecular fingerprints. This is important when trying to determine regional and 

varietal characters encompassed within the chemical composition of wines, and 

provides the opportunity for optimising perceived value in the global market. Finally, 

the assessment of processing stages during winemaking and of wine blending 

is a step forward in terms of a using wine chemistry within a traceability 

system to aid in mitigating wine fraud. Ultimately, the outcomes of this thesis have 

enhanced scientific knowledge regarding methodology for wine authentication 

and provided the foundation for commercial application of this approach in the 

wine industry. 
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7.2 Future perspectives 
The possibility of authentication of wine according to its geographical origin, variety, 

and vintage using fluorescence spectroscopy as a rapid and sensitive method has 

been successfully revealed in Chapters 3, 4, and 5. Specifically, according to Chapter 

5, discrimination of wine at a subregional level was possible due to the sensitivity of 

the technique and capability of machine learning models. This raises the possibility 

of using the approach developed in this thesis as a chemical basis to verify regional 

zoning based on terroir or to authenticate individual vineyards or estates, although 

these aspects would need to be verified. Additionally, identifying the potential of this 

technique to classify wine after a certain period of time based on chemometric 

models built previously needs to be explored, since wines can be stored in the bottle 

for several years or transported to different countries. Hence, the influence of 

storage conditions related to temperature and time on the classification of wine also 

needs to be investigated. Leading on from this, it would be useful to identify the 

applicability of the models developed for use on the same wines after ≈ 5 years of 

storage under different conditions. 

From the prediction modelling of phenolic compound concentrations (Chapter 4), 

it was revealed that phenolic compounds could contribute significantly as 

chemical drivers for classification. Furthermore, verification of the chemical 

markers represented in the EEM that are responsible for correct classification 

would be beneficial. With improved understanding of chemical composition with 

respect to Australian wines of provenance, future work could investigate the most 

appropriate viticultural or winemaking practices that preserve or increase wine 

quality and expression of regionality based on A-TEEM analysis in conjunction 

with sensory assessment. Indeed, A-TEEM with machine learning modelling could 

conceivably be utilised during wine production to assist in the targeting of wines 

with desired style and quality parameters, although this remains to be explored. 

As described in Chapters 4 and 5, the A-TEEM technique with machine learning 

modelling is not only applicable to wine authentication processes (classification), but 
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can also be applied in various analyses related to wine (regression). 

In accordance with the preliminary results detailed in Chapter 6, 

this technique has been able to discriminate wine at different stages of 

winemaking. This may be further developed for improved understanding of 

the impacts of viticulture and winemaking practices, like the effect 

of additives, filtration, different vineyard treatments, clones, and rootstocks, 

in the pursuit of quality wines representing regional and varietal 

characteristics, especially under changing environmental conditions. 

Application of A-TEEM in combination with XGBDA machine learning 

technique using cross-validation was  revealed to be  a robust method for wine 

authentication. Specifically, the Venetian blinds (k-fold) method used in this 

study was easy to implement and effective in analysing a different number 

of data splits in comparison to leave-one-out cross-validation, which is often 

applied in other studies but is only recommended for small data sets. It is 

understood that model validation plays a major role in authentication 

studies, and as seen in many reports, a limitation is often related to the 

number of samples obtained. Ideally, samples would be partitioned into 

calibration, validation, and test sets, but that requires a large number of 

samples per class, so researchers tend to stop at cross-validation. Therefore, to 

strengthen the models in future, inclusion of many additional samples would 

allow for a separate test set to be applied to assess the performance of the 

model. Moreover, this could potentially be considered on an industrial scale, 

whereby the use of A-TEEM and development of cloud-based processing and 

database management could provide advantages, namely the construction of a 

robust authenticity database by non- specialist operators who could input data 

into a system that is also accessible by authorities. Furthermore, maintaining a 

database with ongoing collection of  samples will facilitate a systematic 

authentication approach. Overall, building on this work through 

incorporation of innovative technologies with  chemical traceability enhances the 

process of wine  authentication and will ultimately result  in  better protection of 

wines from designated origins as well as enhanced consumer satisfaction. 
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ABSTRACT

Enhancing knowledge in this area could assist producers to select practices that deliver wines of the desired style 

extreme gradient boosting discriminant analysis. This machine learning technique was able to classify the wines 

(C1, C2, C3, and C4, respectively). Association of these four components with different sensory descriptors was 
possible through multiple factor analysis, with C1 relating to ‘dark fruits’ and ‘savoury’, C2 with ‘barnyard’, C3 with 
‘cooked vegetables’ and ‘vanilla/chocolate’, and C4 with ‘barnyard’ and a lack of C1 descriptors. Partial least squares 
regression modelling was undertaken with EEM data and sensory results, with a model for perceived astringency 
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INTRODUCTION

Wine is a luxury product with a highly complex 
composition that can be affected by the 
environment in which the grapes are grown 
as well as techniques applied in the vineyard 
and winery. The intrinsic complexity of wine 
has necessitated the development of various 
techniques to obtain an in-depth understanding 
of grape and wine metabolites and control points 

 
Relating compositional and technological factors 
with the sensory expression of a wine, which is 
a determining factor for the overall consumer 
experience, remains an ongoing focus of 
research. Being able to link chemical and sensory 
information with the practices and techniques that 
wine endures during production would ultimately 
equip practitioners with the ability to make 
more precise decisions for producing targeted  
wine styles.

Multiple methodologies are available for 
       

will depend upon the requirements of the study.  
Rate-all-that-apply (RATA) is a quantitative 
sensory methodology that is rapid and 
effective for wine sensory characterisation 
(Danner et al., 2018), as shown by its successful use 
in different studies (Franco-Luesma et al., 2016; 
Mezei et al., 2021; Nguyen et al., 2020). 

       
 

chemical composition that underpins sensory 
traits. A common approach has therefore been to 
combine sensory data with a number of chemical 
analysis techniques to predict and classify wine 
sensory characters (Niimi et al., 2018), explore 
distinctiveness (Geffroy et al., 2016), comprehend 
the impact of storage and packaging conditions 
(Hopfer et al., 2013), and understand quality drivers 
(Gambetta et al., 2016; Hopfer et al., 2015).  
Many studies rely on analytical methodologies 
that are time-consuming, expensive, and 
relatively intricate (e.g., HPLC or GC with mass 
spectrometry), requiring personnel with specialised 
skills. There is room, however, for more accessible 
approaches (usually spectroscopy-based) that can 
provide chemical information more simply and 
rapidly. As reviewed by Ranaweera et al. (2021a), 
there are various spectroscopic approaches and 
each differs in terms of compounds measured, 
sensitivity, and advantages/disadvantages, among 
other aspects. The choice of methodology should 

        
objectives of the study.

20 © 2021 International Viticulture and Enology Society - IVES

has often been applied to the analysis of food 
products because of its time- and cost-effective 
nature, and its high selectivity and sensitivity 
(Ranaweera et al., 2021a). It can provide a unique 
three-dimensional excitation and emission matrix 

(Coelho et al., 2015; Ranaweera et al., 2021b). 
This technique can be a useful tool to authenticate, 
distinguish and classify different food products 

vitamins, and aromatic amino acids) present at 
different concentrations depending on the product 
(Karoui and Blecker, 2011). This methodology 
is also highly applicable to wine, which contains 

has been applied to wine for authentication and 
discrimination of samples based on variety, 
origin, or vintage (Ranaweera et al., 2021b; 
Ranaweera et al., 2021c; Sádecká and 
Jakubíková, 2020; Suciu et al., 2019), to analyse 
oxidative changes and sulfur dioxide addition 
(Coelho et al., 2015), and to quantitatively assess 
polyphenol content (Cabrera-Bañegil et al., 2017).

In the quest for a rapid technique that could 
link wine composition and sensory properties, 
this study aimed to explore 1) the association 
between sensory descriptors obtained by RATA 

Cabernet-Sauvignon wines from the Coonawarra 
Geographical Indication (GI), and 2) the 
dominant sensory traits of such regional wines. 

using EEMs with machine learning modelling for 

investigated the relationship between the main 

(PARAFAC) and sensory descriptors using 
multiple factor analysis (MFA), and assessed 
partial least squares (PLS) regression models to 
predict sensory attributes.

MATERIALS AND METHODS 

1. Sample selection

Unreleased vintage 2020 Cabernet-Sauvignon 
wines were sought from commercial producers 
using fruit from the Coonawarra GI of South 
Australia. Most of the wines were monovarietal 
and had only undergone alcoholic and malolactic 
fermentation and racking, with minimal oak 
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In total, 26 Cabernet-Sauvignon wine samples  
(6 × 750 mL bottles of each wine) were obtained 
from 8 wineries/vineyards within the GI 
(Supplementary data, Table S1).

2. Sensory evaluation

Prior to formal evaluation, the wines were tasted by 
 et al. (2002) consisting 

of academics and postgraduate oenology students 

mouthfeel with a free text assessment followed by 
a discussion of the wines. This informal tasting 
was used to evaluate whether the sample set was 
appropriate for a naïve panel to assess (considering 
that they were not commercially-released wines), 
to ensure that the samples could be differentiated, 
and to decide on the sensory attributes that should 
be included in the formal RATA evaluations.

Naïve wine consumers (n = 60; 27 females and  
33 males from 18 to 77 years of age) were recruited 
based on being 18 years of age or older and 
having consumed red wine at least once a month. 
Evaluations were conducted in a purpose-built 
sensory laboratory at the University of Adelaide’s 
Waite Campus, in individual booths equipped with 

at room temperature (22–23 °C). Samples (20 mL) 
were served at room temperature in clear stemmed 
ISO wine glasses coded with a random four-digit 
number and covered by a petri dish. 

Due to the number of samples and to avoid palate 
fatigue, assessments were divided into three 

second, and 8 samples in the last session. The 
samples were randomly presented monadically for 
each subject within a session and the same panel 
was used for all three sessions. RATA methodology 
was used to characterise samples by rating the 
intensity only of the attributes that applied from 

and mouthfeel descriptors (Supplementary data, 
Table S2) on a 7-point scale (from “extremely 
low” to “extremely high”). Between samples, the 
panellists were forced to have a 1-min break and 
could cleanse their palate with deionised water and 
unsalted crackers. A 5-min break was enforced at 
the mid-point of the tasting (between samples 
4 and 5). Data were collected with RedJade 
software (2016, Redwood City, USA). Informed 
consent was obtained from panellists and this 
study was approved by the Human Research 
Ethics Committee of the University of Adelaide 
(approval number: H-2019-031).

3. Chemicals

HPLC grade absolute ethanol and analytical grade 

from Chem-Supply (Port Adelaide, SA, Australia). 
High purity water was obtained from a Milli-Q 

Australia).

4. Spectro uorometric analysis

After sensory analysis, the remainder of each wine 
was subsampled into a 4 mL centrifuge tube that 

at 4 °C until measurements were performed. 
After warming to room temperature, samples 
were centrifuged at 9300 × g for 10 min and 

diluted 150-fold (Ranaweera et al., 2021c), and 
analysed in a Hellma type 1FL (1 cm path length) 
Macro Fluorescence cuvette (Sigma-Aldrich, 
Castle Hill, NSW, Australia). Samples were 
prepared in duplicate and two measurements 
of each sample were undertaken with a Horiba 

® spectrophotometer (version 
4.2, Quark Photonics, Adelaide, SA, Australia). 
The excitation wavelength ranged from 240 to 
700 nm with an increment of 5 nm under medium 
gain and 0.2 s integration time and the emission 
wavelength ranged from 242 to 824 nm with 
an increment of 4.66 nm. Data acquisition was 
controlled with Origin software (version 8.6, 
OriginLab® Corporation, Massachusetts, USA) 
and EEMs were normalised using water Raman 

effects, solvent background, dark detector signals, 
and Rayleigh masking (Gilmore et al., 2017).

5. Basic analytical measurements of pH, TA,
ethanol, and SO2

Sample pH and titratable acidity (TA) were 
obtained with a T50 auto-titrator (Mettler 
Toledo, Melbourne, VIC, Australia). Ethanol 
was measured in triplicate by HPLC analysis 
(Li et al., 2017) of undiluted samples that were 
centrifuged at 9300 × g for 10 min. Separation 
was performed with an Aminex HPX-87H column 
(300 mm × 7.8 mm, BioRad, Hercules, California, 
USA) thermostatted at 60 °C using 2.5 mM H2SO4 

. 
Peaks were detected with a refractive index 
detector (RID-10A, Shimadzu, Kyoto, Japan) 

prepared in model wine using ChemStation for 
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LC 3D Systems software (Agilent Technologies, 
Santa Clara, CA, USA). Free and total SO2 
concentrations were determined in duplicate using 
the method described by Iland et al. (2004). 

6. Statistical analysis

 
two-way analysis of variance (ANOVA) with 

 
 

between the samples. Attributes that presented 
        

hierarchical cluster (AHC) analysis of all samples 
with an automatic entropy truncation and Euclidean 
distance using Ward’s method or unweighted 
pair-group average (UPGMA). With a superior 
cophenetic correlation (0.676 for UPGMA versus 
0.511 for Ward’s method), UPGMA was chosen 

 
classes. Correlation principal component analysis 

 
that arose for different clusters based on the AHC 
analysis. 

EEM data were unfolded using unfold multiway 
(mode 1) in Solo software (version 8.7.1, 
Eigenvector Research, Inc., Manson, WA, USA). 

 
by AHC analysis, extreme gradient boosting 
discriminant analysis (XGBDA) was conducted 
(Ranaweera et al., 2021c) using pre-processing 
with mean centring, PLS compression to yield 
a maximum of 25 latent variables (LVs), and 
decluttering with generalised least squares 
weighting at 0.2 for calibration and cross-
validation (k = 10, Venetian blinds procedure). 
Confusion matrix score probabilities were used 
to assess the model effectiveness. PARAFAC was 
performed with a non-negativity constraint in all 
modes imposed and the model was validated by 
split-half analysis (Murphy et al., 2013).

Loadings for the components determined by 
PARAFAC were analysed in conjunction with 

 
        

model was created with PLS1 regression of 
sensory scores for perceived wine astringency and 
the EEM data to predict astringency ratings. The 
model was optimised through assessment of LVs, 
root mean square error of calibration (RMSEC), 
root mean square error of cross-validation 
(RMSECV, Venetian blinds with 10 splits), and 
root mean square error of prediction (RMSEP).

22 © 2021 International Viticulture and Enology Society - IVES

ANOVA, PCA, AHC, and MFA were performed 
with XLSTAT (version 2019.4.1, Addinsoft, New 
York, USA). XGBDA, PARAFAC, and PLS 
regression analysis were conducted with Solo 
software (version 8.7.1).

RESULTS AND DISCUSSION

Unreleased Cabernet-Sauvignon wines sought for 
the study went through minimal post-fermentation 

and were bottled at early stages of production so 
that the impact of the Coonawarra GI could be 

winemaking operations. Basic analytical 
measurements were within the normal range for 
red wines at such a stage of production. The total 
and free SO2 content ranged from 0.4 to 70.8 mgL-1 
and 0.4 to 33.4 mgL-1, respectively, TA ranged 
from 5.6 to 7.5 gL-1, pH values ranged from 3.40 
to 3.87, and ethanol concentration ranged from 

1. RATA sensory pro ling and clustering of
wines

Of the 53 sensory attributes rated by panellists 

1 mouthfeel attribute (Supplementary data, 
Table S3). The means of the 20 descriptors were 
analysed through a correlation PCA (Figure 1) 
following the AHC analysis (Supplementary 

Cluster 1 (shown in red, 7 wines) appeared on the 
right side of F1 and spread across both segments 
of F2, with 5 samples in the upper half and 2 in the 
lower half. Cluster 2 (green, 14 samples) mostly 
presented near the origin, with 11 samples on the 
left and 3 samples on the right of F1, and a more 
or less even spread across F2. Cluster 3 (cyan, 
2 samples) was found on the left side of F1 and 
upper half of F2, and Cluster 4 (pink, 1 sample) 
was separated from the rest in the bottom right 
portion of the plot. Squared cosine values for 
samples in Cluster 5 (data not shown) indicated 
a higher representation on F3, in the lower half as 
seen in Figure 1B.

In terms of the sensory descriptors, ‘barnyard’ 

were plotted on the right side of F1 and lower part 
of F2; ‘minty’, ‘cooked vegetables’, ‘dark fruits’, 

and ‘savoury’ aromas, and acidity were plotted 
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FIGURE 1.
versus F2 and (B) F1 versus F3. 

Colour coding represents the clusters resulting from the agglomerative hierarchical cluster analysis (Supplementary data, Figure S1), 
with samples in the same cluster bearing the same colour. Cluster 1, red; Cluster 2, green; Cluster 3, cyan; Cluster 4, pink;  

on the right side of F1 and upper half of F2; and 

and sweetness were plotted on the left side of 
F1 and upper half of F2 (Figure 1A). The aroma 

represented in the upper half of F3 (Figure 1B).

(Supplementary data, Figure S1) 
could be explained through different 

 

Cluster 1 was characterised by savoury characters 
including ‘earthy’ and ‘tobacco’, along with 
‘oaky’ and ‘dark fruits’ aromas, and higher 
acidity, whereas Cluster 2 on the opposite side 
was generally characterised by a lack of those 
characters. Considering that these were young 
wines, the results might indicate the presence of 
some oak contact during fermentation for most 
samples in Cluster 1 as opposed to no oak contact 
for samples in Cluster 2 (Crump et al., 2015). 
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Cluster 3 was associated with higher sweetness 
       

and astringency. Cluster 4 was characterised 
       

      
higher bitter taste and astringent mouthfeel, and a 
lack of sweetness. Cluster 5 was especially related 

      
        

 
have similarly been used in the past for regional 

    
wines (Souza Gonzaga et al., 2019; 
Souza Gonzaga et al., 2020) and Australian Shiraz 
and Chardonnay wines (Kustos et al., 2020). 
Those studies with commercial wines reported 
that some distinctive sensory traits can be more 

       
wine-producing region, with the current work on 
unreleased wines also indicating the existence of 
perceived differences within a GI according to 
Figure 1.

The main differences reported previously for 
Cabernet-Sauvignon wines were the duality 
between ‘green’ and ‘fruity’ related characters 
and between ‘oak’ related traits and ‘eucalyptus’ 
or ‘minty’ attributes (Heymann and Noble, 1987; 
Souza Gonzaga et al., 2020). In the present study, 
the contrast was between ‘barnyard’, astringency 
and bitterness attributes, and ‘cherry cola’, 
‘vanilla/chocolate’, and sweetness. Oak-related 
and savoury attributes and the ‘minty’ trait were 
found in the same quadrant, not in direct contrast, 
and the same was evident for fruity and vegetal 
characters (Figure 1A). Considering the samples 
were dominated by or exclusively produced 
from Cabernet-Sauvignon (Supplementary 
data, Table S1) and were all from the same GI, 
albeit from different vineyards and wineries, the 

        
work might be associated with differences in the 
winemaking processes, as seen previously by 
Kustos et al. (2020) with Australian Chardonnay 
and Shiraz wines. Additionally, the wines in the 

 
less than 5 months) or other maturation treatments 
compared to commercially released red wines, 
which might have allowed sensory traits that 
could be attributed to aspects of terroir (e.g., soil, 
topography, and vineyard management practices) 
to be more perceivable, such as the ‘minty’ and 
fruity attributes.

Some samples in Cluster 2 indicated that 
     

24 © 2021 International Viticulture and Enology Society - IVES

although in general not much difference was 
seen between the samples (Figure 1A). A ‘minty’ 
character has been reported previously for 
Coonawarra Cabernet-Sauvignon wines, which 
might indicate this as a dominant trait for the 
Coonawarra region (Robinson et al., 2011; Souza 
Gonzaga et al., 2019; Souza Gonzaga et al., 2020). 
Characters described as ‘minty’ and ‘eucalyptus’ in 
Cabernet-Sauvignon wines have been associated 
with the presence of eucalyptol (i.e., 1,8-cineole) 
and hydroxycitronellol, and although ‘eucalyptus’ 

Table S3), studies have shown that they might be 
interchangeable and indistinguishable by a sensory 
panel (Capone et al., 2012; Robinson et al., 2011; 
Souza Gonzaga et al., 2020). The current study did 
not explore the presence of volatile compounds so 
the link between ‘minty’ and ‘eucalyptus’ from 
both sensory and chemical viewpoints is open 
for further examination. Among the possibilities, 
the occurrence of 1,8-cineole in wine has been 
related to the presence of Eucalyptus trees within 
the vineyard environment (Capone et al., 2012), 
whereas some studies report the presence of ‘minty’ 

proportion of Cabernet-Sauvignon in the blend 
(Picard et al., 2015; Picard et al., 2016b). Mint 
aroma in that case has been associated with the 
presence of piperitone (Picard et al., 2016a). 
Considering that the present study examined 
young Cabernet-Sauvignon wines, it seemed 
unlikely that piperitone or other limonene-derived 
compounds (Picard et al., 2017) were responsible 
for the presence of the ‘minty’ attribute, although 
further investigation is required to clarify the role 
of various monoterpenoids in the perception of 
mint-related characters.

2. Classi cation of sensory clusters based on
spectro uorometric analysis

To examine whether sensory information could 

results from AHC (Supplementary data, Figure 
S1) were modelled in conjunction with the EEMs 
of the wine samples through machine learning with 
the XGBDA algorithm. Various algorithms and 

based on EEM data, such as soft independent 
modelling of class analogy and support vector 
machine, but XGBDA performs well when 
analysing a complex heterogeneous matrix with 
uneven class distribution (Babajide Mustapha 
and Saeed, 2016). The analysis was undertaken 
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after PLS compression, used to improve the 
stability of the model by making it less disposed to 

in Figure 2 shows each cluster (denoted using 

by AHC. The model attempted to predict the class 
(cluster) to which each sample belonged, based on 

data. Figure 2 and the confusion matrix obtained 
from cross-validation (data not shown) highlighted 

with a discrete segregation between the classes in 
the cross-validated model. This result indicated 
that the underlying composition of the wines 

might be driving the sensory differences of the 
clusters determined from RATA evaluation.

spectroscopy have been previously applied for 
wine varietal, vintage and origin authentication 
(Ranaweera et al., 2021b; Ranaweera et al., 2021c; 
Sádecká and Jakubíková, 2020; Suciu et al., 2019), 
which tends to yield similar or even better 
performance compared to other spectroscopic 

methods like UV-vis, near-infrared, mid-infrared, 

(Mandrile et al., 2016; Riovanto et al., 2011; 
Tan et al., 2016). Ultimately, studies involving 

demonstrated the approach as a valid tool for 
authenticating wine, and along with the present 
work, highlight the extent to which this type of 
data can be used to understand important traits 
related to wine chemical and sensory properties.

3. Using PARAFAC to identify main
uorophoric compounds

Attempting to shed light on the relationship 

PARAFAC was performed on the EEM data to 

samples. The percentage of core consistency of the 
data can be applied in combination with split-half 
analysis to assess the model suitability, especially 
with high complexity matrices such as wine 
 (Airado-Rodríguez et al., 2011; 
Murphy et al., 2013). The split-half analysis 
compares the similarity between each half of 

FIGURE 2. 
modelling for the set of Cabernet-Sauvignon wines (n = 26). 
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the data set, and like with core consistency, a 
higher percentage is desirable when deciding 
on the number of components for the model 
(Murphy et al.,  
PARAFAC model generated a core consistency 

           
       

residuals of the samples showed that three (CS2, 
CS7 and CS26) of the 26 wines were outliers 
and presented equally high residuals for the 
four determinations (i.e., duplicate readings 
of duplicate samples) compared to the other 
samples. Based on the available data, no possible 

 
samples as outliers. Although sample CS7 was the 

       
alcoholic and malolactic fermentation, which 
might indicate a possible factor, that was not 
the case for the other two outlier samples.  

Nonetheless, PARAFAC modelling was performed 
again without the outlier samples, this time 

components (Figure 3).

From PARAFAC it was possible to identify 
ex em) for the 

four components as demonstrated in Figure 3, 
and therefore to tentatively assign chemical 
compound classes that are naturally present 
in wine (Airado-Rodríguez et al., 2011; 
Airado-Rodríguez et al., 2009). Such 
spectral data can typically be related to 

(Christensen et al., 2006) and especially phenolic 
compounds (Schueuermann et al., 2018). For 
PARAFAC component 1, maximum intensities of 

ex em = 310 nm were tentatively 

FIGURE 3. 
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FIGURE 4. Multiple factor analysis biplot of the four components from PARAFAC (in grey, ) using 

wine samples (excluding CS2, CS7 and CS26).

(including tannin). Component 2 peak intensities 
ex em = 375 nm and can 

be proposed to result from phenolic aldehyde 
related compounds. Component 3 peak intensities 

ex em = 335 nm and were 
considered to be associated with anthocyanins. 
Finally, component 4 peak intensities were 

ex em = 375 nm and tentatively 
assigned to stilbenoids such as trans-resveratrol. 

Ranaweera et al. (2021c) and Airado-
Rodríguez et al. (2009) proposed similar 
assignments for PARAFAC model components 
in red wine, which are reasonable considering the 
main compounds (i.e., catechins, anthocyanins, 
and other phenolics) expected to be abundant 
in red wine. It is noteworthy that compound 
classes assigned from the PARAFAC modelling 
(i.e., phenolics) were not necessarily driving the 
sensory characters themselves, but could act as 
indirect markers that indicated compositional 
aspects of the wines that were not essentially 

gene copies responsible for the biosynthesis of 
important wine compounds such as anthocyanins 
in grape berry can belong to multicopy families, 

(Kuhn et al., 2013). In contrast, there could be 
a direct relationship with compounds associated 
with aspects such as the taste and mouthfeel of 
the wine, as explained in more detail in the next 
section.

4. Relation between PARAFAC components
and RATA results according to MFA

Considering the compound classes tentatively 

by implying an indirect correlation), the relative 
loadings of the four classes were analysed in 
conjunction with RATA results through MFA. 

descriptors and means of the four compound 
class loadings from 23 wines (excluding CS2, 
CS7 and CS26) were used for the analysis 

of 0.232 between both sets of data, an RV 

between the RATA data and the MFA model.  
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right side of F1 and the upper portion of F2, C2 
and C3 were explained entirely along F1, with C3 
on the right side and C2 on the left side, and C4 
was plotted on the left side of F1 and lower part of 
F2, more or less opposite to C1 (Figure 4).

Catechin monomers associated with C1 are usually 
extracted from grape skin and seed and can increase 
the bitter taste of wine (Fischer and Noble, 1994) 
whereas polymers of catechin (e.g., tannins), 
extracted from the same sources, are related with 
astringency (Waterhouse et al., 2016a). Figure 4 
shows C1 was associated with ‘dark fruits’ and 

      
‘savoury’ aroma, which is likely to be an indirect 
relationship as mentioned in the previous section. 

      
       

(p = 0.313), thus indicating that there might not be 
an association. In contrast, the correlation between 

 
 

moderate association. This implied that polymers 
         

than monomers, which would be reasonable given 
their relative concentrations in red wine.

 
by the origin of wood (usually oak) incorporated 
either during fermentation or maturation and 
can vary in concentration depending on ageing 
time — such compounds can be responsible for 
some oak-related aroma traits (e.g., vanillin) in 
wine (del Alamo Sanza et al., 2004). Other oak 
compounds (e.g., volatile phenols, hydrolysable 

       
undoubtedly be extracted as well. C2 was related 

       
aroma. Anthocyanins assigned to C3 are pigments 
present in red grape skins that are important to the 
colour of red wine (He et al., 2012). Anthocyanins 
might also be responsible for an increase in 
the ‘fullness’ of a wine (Vidal et al., 2004), as 
well as perceived astringency and bitterness 
(Ferrero-del-Teso et al., 2020; Paissoni et al., 2018). 
Additionally, as explained in the section 
dealing with PARAFAC, genes involved in 
the biosynthesis of anthocyanins in grapes 
are expressed through pathways that coincide 

       
volatile compounds (Czemmel et al., 2012; 
Kuhn et al., 2013). This could explain why 
anthocyanins could act as markers for compounds 

28 © 2021 International Viticulture and Enology Society - IVES

 et al., 2010) 
 

From the MFA, C3 was linked to ‘cooked 

assigned to C4 are compounds that can be found 
in grape berry skins and are extracted into wine 
during fermentation (Waterhouse et al., 2016b). 
Stilbenoids, especially trans-resveratrol, are 
responsible for the antioxidant characteristics 
of red wine and its association with the 
prevention of age-related diseases in consumers 
(Pawlus et al., 2012). According to Gaudette and 
Pickering (2011), trans-resveratrol seems to have 
minimal impact on the sensory qualities of wine 
(when spiked at less than 200 mgL-1). Figure 4 
shows that C4 was associated with ‘barnyard’ 

example of an indirect relationship between the 

It is worth noting that the associations between 
sensory traits and tentative compound types 
found through PARAFAC do not allow for 
strict conclusions. It is possible, considering the 
complexity of what is being modelled, that some 
relationships may arise due to chance, and more 
in-depth research is necessary to better understand 
and explain the proposed relationships.

5. Regression model for astringency prediction

Considering that most of the compounds detected 

affect basic mouthfeel and taste attributes in 
wine, PLS regression was performed with the 
two mouthfeel and three taste attributes described 
by the sensory evaluation of the 26 wines. 
Astringency was the only attribute that could 
be well modelled from the EEM data without 

 
An optimal model was generated with eight LVs, 
giving RMSEC = 0.085, RMSECV = 0.132, 
RMSEP = 0.222, R2 calibration = 0.936,  
R2 cross-validation = 0.848, and  
R2 prediction = 0.681. The model was thus 

samples and able to predict the results with 

low value for RMSECV indicated that the error 
associated with the prediction of astringency 

used (7-point), demonstrating that the model 
appeared to be suitable. This outcome showed 

capabilities for predicting a perceived mouthfeel 
attribute rating for this data set, which was 
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encouraging given the simplicity of the approach 
and the complexity of what was being modelled.

The chemical composition of Cabernet-Sauvignon 
wines has also previously been used for sensory 

described by Niimi et al. (2018) explaining 

mouthfeel. In that work, the model for predicting 
perceived astringency score involved anthocyanin 
concentration and colour measures, both of which 
can be determined using the A-TEEM approach 
and used in combination with a multi-block 
analysis (Ranaweera et al., 2021c) to add 
information beyond that encompassed in the 
EEM data alone. Notably, the present study is the 

the outcomes are positive, further work with 
additional samples will be necessary to improve 
and extend the modelling. Furthermore, different 
spectroscopic methods have been validated 
before for determining phenolic compound 
concentrations in a way that is less time consuming 
and more cost-effective than other options, and 
such approaches could become a valuable tool for 
assisting winemakers in monitoring and controlling 
phenolic composition (Cozzolino et al., 2008; 

Cozzolino et al., 2004; Dambergs et al., 2012; 
Janik et al., 2007; Ranaweera et al., 2021c). 
Fluorescence spectroscopy in particular can 
quantify compounds that are present in the sample 
at a lower concentration than other spectroscopic 
methods (Gilmore and Chen, 2020), thus providing 
an attractive option for additional development  
in future. 

CONCLUSIONS 

This study aimed to explore the association 

data of unreleased, commercially produced 
2020 Coonawarra Cabernet-Sauvignon wines. 

using a machine learning algorithm, and examined 

compounds via regression modelling. Thus, 

explained by the sensory results of the RATA 
evaluation. Cluster 1 wines were characterised 
by savoury-related characters, Cluster 2 by 
‘minty’ traits and a lack of the savoury-related 

low bitterness and astringency, Cluster 4 by higher 

FIGURE 5. Correlation between the predicted and measured ratings for perceived astringency according 
to partial least squares regression modelling for Cabernet-Sauvignon wines (n = 26). 
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Additionally, the EEM data analysed through 
 
 

demonstrating that there might be a good 
association between the EEMs and sensory ratings 
(whether direct or indirect). After excluding three 
outlier samples, PARAFAC analysis showed 

       
to explain the data set, with compound classes 
tentatively associated with the intensity readings 
being catechins (C1), phenolic aldehydes (C2), 
anthocyanins (C3) and stilbenoids (C4). MFA 
was used to identify associations between the 
PARAFAC components and the sensory ratings, 
revealing that C1 was associated with ‘dark fruits’ 
and ‘savoury’ characters, C2 was associated with 
‘barnyard’, C3 was related to ‘cooked vegetables’ 
and ‘vanilla/chocolate’, and C4 was related with 
‘barnyard’ but more characterised by the lack 
of attributes associated with C1. However, the 
nature of any relationship between the proposed 
compound classes and perceived sensory attributes 
requires further study. PLS regression resulted in a 
suitable model that was able to predict perceived 

 
no suitable model was found for the other sensory 
attributes. Overall, the correlation of sensory 

 
optimistic feat, yet the results from this study were 
promising. This work may inspire further research 
that is designed to better understand the chemical 

        
factors throughout wine production using a rapid 

     
the inclusion of a small selection of compositional 
variables.
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APPLICATION OF FLUORESCENCE SPECTROSCOPY WITH MULTIVARIATE 
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Abstract 

Aim: To investigate the possibility of utilising simultaneous measurements of absorbance-transmittance and 
fluorescence excitation-emission matrix (A-TEEM) combined with chemometrics, as a robust method that gives 
rapid results for classification of wines from different regions of South Australia according to their Geographical 
Indication (GI), and to gain insight into the effect of terroir on inter regional variation. 

Methods and Results: Additionally, to obtaining various colour parameters, the A-TEEM technique enables the 
attained in response to the presence of fluorophoric compounds. This is 

accomplished by recording a three-dimensional excitation-emission matrix (EEM) over multiple excitation and 
emission wavelengths, which can then be analysed using multivariate statistical modelling to classify wines. 
Shiraz wine samples (n = 134) from six different GIs of South Australia (Barossa Valley, Clare Valley, Eden Valley, 
Langhorne Creek, McLaren Vale, and Riverland) were analysed and absorbance spectra, hue, intensity, CIE 
L*a*b, CIE 1931, and EEMs were recorded for each sample. EEM data were evaluated according to the cross-
validation model built with extreme gradient boost discriminant analysis (XGBDA) using score probability to 
assess the accuracy of classification according to the region of origin. Preliminary results have shown a high 
prediction ability and the data extracted from A-TEEM could be used to investigate phenolics as potential 
chemical markers that may provide effective regional discrimination. 

Conclusions: The molecular fingerprinting capability and sensitivity of EEM in conjunction with multivariate 
statistical analysis of the fluorescence data using the XGBDA algorithm provided sufficient chemical/spectral 
information to facilitate accurate classification of Shiraz wines according to the region of origin. A-TEEM coupled 
with XGBDA modelling appears to be a promising tool for wine authentication according to its geographical 
origin. 

Significance and Impact of the Study: Having tangible evidence that Australian fine wines may be discriminated 
on the basis of geographical origin, will help to improve the international reputation of Australian wines and 
increase global competitiveness. Understanding of the important regional chemical parameters would allow 
grape growers and winemakers to optimise their viticultural and winemaking practices to preserve these 
characteristics of their terroir. Moreover, verifying the content in the bottle according to the label descriptions 
with a rapid method, has the potential to verify product provenance and counteract fraud in cases where wine 
of inferior/questionable quality or contaminated wine is presented as originating from Australia. 

Keywords: Geographical origin, chemometrics, modelling, excitation-emission matrix
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Introduction 

profile. Wine provenance and its embodiment of terroir is considered an important driver for consumer 
purchasing decisions (Warman and Lewis, 2019). In addition, wine is a luxury product that gains value from its 
terroir, so authentication of the geographical origin of wine has increasingly become a necessity in the wine 
industry to counter fraudulent activity. In Australia like other wine growing regions, the notion of geographical 
indication (GI) has been developed 
given quality, reputation or other characteristics of the wine is essentially attributable to the geographical 

(Wine Australia, 2018). This allows differentiation of wines produced from winegrapes that are grown in 
different regions. However, when considering the geographical origin of wine, it is not simply the place where 
the winegrapes are grown that translates into its unique regionality. The location is underpinned by influences 
on grape cultivar from climate, soil, topography, viticultural practices etc, which relate to the broad concept of 
terroir (van Leeuwen and Seguin, 2006). 

For geographical authentication, influence of terroir on regional variations can be described according to the 
differences of chemical components in wine (Roullier-Gall, et al., 2014). These markers of geographical origin 

Chemical measures such as elemental composition, stable isotope ratios, amino 
acid profile, grape and wine volatile compounds and polyphenols have been explored using range of advanced 
analytical methods to verify important regional parameters encompassed within the chemical composition of 
wines of provenance (Ranaweera, et al., 2020a). However, in terms of practical application, it is necessary to 
consider a method that is rapid, accessible for in situ analyses, simple to implement, relatively low cost, and has 
high sensitivity and specificity. More recently, fluorescence spectroscopy has been explored as a tool to fulfil 
these requirements. This works by producing excitation emission matrices (EEMs) that provide a unique 
molecular fingerprint of each of the wine samples. Given the complexity of the datasets, multivariate data 
analysis methods (i.e., chemometrics) are often utilised to identify the patterns or classification groups of a 
particular wine. This method was successfully applied for the geographical authentication of a set commercial 
Cabernet Sauvignon wines (Ranaweera et al., 2020b). 

In the current study, we aimed to apply fluorescence spectroscopy in combination with various multivariate 
algorithms to develop a robust authentication model for Australian Shiraz wines produced at a commercial scale 
from different South Australian regions. This was undertaken using absorbance-transmittance with EEM (known 
as the A-TEEM technique) to further assess the effectiveness of this tool for regional authentication.  

Materials and Methods 

A total of 134 samples of unfinished (2019 vintage) commercial Shiraz wines from six different GIs of South 
Australia (Barossa Valley, Clare Valley, Eden Valley, Langhorne Creek, McLaren Vale, and Riverland) were 
analysed in duplicate by the A-TEEM technique according to Ranaweera et al. (2020b). An Aqualog 
spectrophotometer (Horiba Scientific, Version 4.2) was used to record the absorbance spectra, hue, intensity CIE 
L*a*b, CIE 1931, and EEMs of the samples. In the data acquisition process of the Aqualog, all EEMs were pre-
processed prior to statistical analysis by normalising according to the water Raman scattering units for the 
specified emission conditions and correcting for the influence of inner filter effects (IFE) and Rayleigh masking. 
Multivariate algorithms, including partial least square discriminant analysis (PLSDA), support vector machine 
discriminant analysis (SVMDA), and extreme gradient boost discriminant analysis (XGBDA) were examined for 
the classification of wines. The data were pre-processed with different options including mean centreing, 
autoscaling, and generalised least squares weighting. Data were then compressed by PCA or PLS regression, 
applying the pre-processing method that provided the highest classification probability for each assigned class. 
The effectiveness of the cross-validated modelling techniques (Venetian blinds method; k=10) was compared by 
considering the accuracy of the predictions. Data analysis was undertaken using Solo software (version 8.8.1, 
Eigenvector Research, Inc., Manson, WA, USA). 
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Results and Discussion

EEM contour maps of the Shiraz wine samples were obtained from all the different regions, similar to the 
example shown for Barossa Valley and Eden Valley (Figure 1). The EEM signals arise from the fluorophores 
present in the wine such as phenolic compounds. Although subtle, definite differences can be seen in the each
EEM maps (hence the notion of these being a molecular fingerprint), especially around excitation/emission
wavelengths (EX/EM) of 275/320 nm. However, most components of wine have broad overlapping fluorescence 
excitation and emission spectra in the UV and visible range (Gilmore et al., 2017), therefore it is necessary to 
employ multivariate statistical analysis to extract the information and apply it for classification according to 
origin.

Figure 1. Example of EEM contour maps of Shiraz wine from Barossa Valley (left) and Eden Valley (right).

Multivariate data analysis with different supervised machine learning algorithms was undertaken to explore the 
potential for assigning samples to the correct class (i.e., region) according to the fluorescence measurements. 
PLSDA is a linear classification method recognised as a useful feature selector and classifier in food authentication 
(Song et al., 2018). On the other hand, SVMDA is also a well-known learning algorithm, which represents a 
nonlinear classification technique (Song et al., 2018). In comparison, XGBDA has yet to be applied broadly in a 
biological setting, but has previously been able to classify commercial Cabernet Sauvignon wines from three
different regions of Australia and Bordeaux with 100% accuracy using fluorescence data (Ranaweera et al.,
2020b). These modelling techniques were applied to the Shiraz wines in the present study, yielding classification 
results as summarised in Table 1.
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Table 1. Confusion matrix showing the cross-validation results of XGBDA, PLSDA and SVMDA models of EEMs for 
the different wine regions.

  Actual Class 
Barossa 
Valley  

Clare Valley Eden Valley Langhorne 
Creek  

 McLaren 
Vale 

Riverland 

Predicted Class 
  XGBDA 

Barossa Valley 56 0 0 0 0 0 
Clare Valley 0 16 0 0 0 0 
Eden Valley 0 0 22 0 0 0 
Langhorne Creek 0 0 0 30 0 0 
McLaren Vale 0 0 0 0 26 0 
Riverland 0 0 0 0 0 118 
Accuracy % 100 100 100 100 100 100 

  PLSDA 
Barossa Valley 56 0 4 0 0 0 
Clare Valley 0 10 0 0 0 0 
Eden Valley 0 0 18 0 0 0 
Langhorne Creek 0 0 0 29 2 0 
McLaren Vale 0 6 0 1 24 0 
Riverland 0 0 0 0 0 118 
Accuracy % 100 63 82 97 92 100 

  SVMDA 
Barossa Valley 54 0 6 1 1 0 
Clare Valley 0 13 0 1 2 0 
Eden Valley 2 0 16 0 0 0 
Langhorne Creek 0 0 0 27 2 0 
McLaren Vale 0 3 0 1 21 0 
Riverland 0 0 0 0 0 118 
Accuracy % 96 81 73 90 80 100 

XGBDA was by far the best performing model, with cross-validation affording 100% correct classification of Shiraz 
wines from all of the tested regions (Table 1). This is in accordance with the previous study of Cabernet Sauvignon 
wines (Ranaweera et al., 2020b). On the other hand, PLSDA showed 100% correct classification for Barossa Valley 
and Riverland samples and 97% accuracy for Langhorne Creek samples, with only one misclassified sample as 
McLaren Vale (Table 1). However, Eden Valley and Clare Valley samples were among the lowest in accuracy for 
PLSDA (82% and 63%). With SVMDA, similarly to other two methods, Riverland showed 100% correct 
classification and 96% for Barossa Valley. Yet there was relatively poor performance for Eden Valley samples, 
which showed the lowest accuracy using SVMDA (73%), and were misclassified as Barossa Valley. Langhorne 
Creek, McLaren Vale, Clare Valley gave an accuracy of 90%, 81% and 80%, respectively, with SVMDA.  

These results in combination with colour measures from A-TEEM will lead to further investigation of chemical 
drivers behind this classification in future studies. Overall, the outcomes highlighted the integral capability of 
XGBDA for effective classification without overfitting the data and for parallel processing of unbalanced datasets, 
as reported previously (Ranaweera et al., 2020b). Other model performance parameters, including sensitivity, 
specificity, precision, and F1 score, were also considered (data not shown), with XGBDA showing the highest 
values (1.0) for all of the parameters for each of the regions compared to PLSDA and SVMDA (< 1.0) and hence 
verifying this approach as the best performing classification model. 

Conclusion 

The results emphasised that the A-TEEM technique, in combination with the powerful multivariate tool XGBDA, 
can be highly effective in the authentication of wines according to their geographical origin. Moreover, the 
additional data obtained from A-TEEM can provide useful information on the typical colour and phenolic 
measures undertaken for red wine. Ultimately, unveiling inter-regional variations could be applied in the future 
to understand the influence of terroir for Australian wine regions. This will be beneficial to the optimisation or 
preservation of regional expression in wine and to improve the economic value of wines arising from different 
regions. 
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