
Citation: Eadie, L.N.; Rehn, J.A.;

Breen, J.; Osborn, M.P.; Jessop, S.;

Downes, C.J.E.; Heatley, S.L.;

McClure, B.J.; Yeung, D.T.; Revesz, T.;

et al. Case Report: Rare IKZF1 Gene

Fusions Identified in Neonate with

Congenital KMT2A-Rearranged

Acute Lymphoblastic Leukemia.

Genes 2023, 14, 264. https://doi.org/

10.3390/genes14020264

Academic Editors: Zhenya Tang and

Zejuan Li

Received: 13 December 2022

Revised: 13 January 2023

Accepted: 16 January 2023

Published: 19 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

genes
G C A T

T A C G

G C A T

Case Report

Case Report: Rare IKZF1 Gene Fusions Identified in Neonate with
Congenital KMT2A-Rearranged Acute Lymphoblastic Leukemia
Laura N. Eadie 1,2 , Jacqueline A. Rehn 1,2 , James Breen 2,3,4, Michael P. Osborn 2,5,6,7,8 , Sophie Jessop 5,7 ,
Charlotte E. J. Downes 1,9 , Susan L. Heatley 1,2,5, Barbara J. McClure 1,2, David T. Yeung 1,2,6,8,
Tamas Revesz 2,5,7, Benjamin Saxon 2,7,10 and Deborah L. White 1,2,5,6,9,11,*

1 Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research
Institute, Adelaide, SA 5000, Australia

2 Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
3 South Australian Genomics Centre (SAGC), Adelaide, SA 5000, Australia
4 Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
5 Australian & New Zealand Children’s Haematology/Oncology Group, Clayton, VIC 3168, Australia
6 Australasian Leukaemia & Lymphoma Group, Richmond, VIC 3121, Australia
7 Department of Haematology & Oncology, Women’s & Children’s Hospital, Adelaide, SA 5000, Australia
8 Royal Adelaide Hospital, Adelaide, SA 5000, Australia
9 Faculty of Sciences, Engineering and Technology, University of Adelaide, Adelaide, SA 5000, Australia
10 Clinical Services and Research Division, Australian Red Cross Blood Service, Adelaide, SA 5000, Australia
11 Australian Genomics Health Alliance, Parkville, VIC 3052, Australia
* Correspondence: deborah.white@sahmri.com

Abstract: Chromosomal rearrangements involving the KMT2A gene occur frequently in acute lym-
phoblastic leukaemia (ALL). KMT2A-rearranged ALL (KMT2Ar ALL) has poor long-term survival
rates and is the most common ALL subtype in infants less than 1 year of age. KMT2Ar ALL frequently
occurs with additional chromosomal abnormalities including disruption of the IKZF1 gene, usually by
exon deletion. Typically, KMT2Ar ALL in infants is accompanied by a limited number of cooperative
le-sions. Here we report a case of aggressive infant KMT2Ar ALL harbouring additional rare IKZF1
gene fusions. Comprehensive genomic and transcriptomic analyses were performed on sequential
samples. This report highlights the genomic complexity of this particular disease and describes the
novel gene fusions IKZF1::TUT1 and KDM2A::IKZF1.

Keywords: congenital acute lymphoblastic leukemia; infant ALL; KMT2A-rearranged ALL; case
report; chromosomal abnormalities; fusion gene; IKZF1 translocation; mRNA-sequencing

1. Introduction

The histone-lysine [K] Methyl Transferase 2A (KMT2A) on chromosome 11q23 is
a pathogenic driver gene in acute lymphoblastic leukemia (ALL). KMT2A-rearranged
ALL (KMT2Ar ALL) has poor long-term survival rates and is the most common ALL
subtype in infants (<1 year of age) [1], comprising >70% of all ALL diagnoses in this age
group [2]. It is often associated with hyperleukocytosis and central nervous system (CNS)
involvement [3]. While KMT2Ar ALL frequently occurs with additional chromosomal
abnormalities including disruption of the IKZF1 gene (chromosome 7p12), usually by exon
deletion [4], KMT2Ar ALL in infants typically presents with few co-occurring alterations [5].
However, we report a genomically complex case of aggressive congenital KMT2Ar ALL
harboring additional rare and novel IKZF1 gene fusions.

2. Case Report

A full-term neonate was delivered to a mother with an unremarkable antenatal history.
At three days old the infant had a complete blood count performed in the setting of hyper-
bilirubinemia and poor feeding. This revealed a leukocytosis of 136 × 109/L (98% lym-
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phoblasts), with normal red cell and platelet parameters (hemoglobin 171× 109/L, platelets
183 × 109/L). Immunophenotyping of peripheral blood mononuclear cells (PBMNC) con-
firmed B-ALL (70% blasts; 93% CD19/CD34+, 39% CD10/CD19/CD34+). Cytogenetics
demonstrated a 47XX karyotype with trisomy 8 and translocations t(4;11)(q21;q23) and
t(7;11)(q11.2;p11.2). The KMT2A::AFF1 (MLL::MLLT2/AF4) KMT2A rearrangement was
confirmed by fluorescence in situ hybridization. No diagnostic bone marrow biopsy was
performed. A lumbar puncture revealed CNS involvement.

The infant was treated with induction chemotherapy as per the Interfant-06 proto-
col [6] and achieved a minimal residual disease (MRD) level of 5 × 10−3 by the end of
induction using Allele Specific Oligonucleotide PCR for IgH rearrangement. However,
further intensive chemotherapy was delayed by significant toxicities, including vincristine-
related polyneuropathy requiring mechanical ventilation. Following two weeks of dose-
reduced mercaptopurine and oral methotrexate maintenance, azacitidine was administered
(2.5 mg/kg for 5 days) [7] with the intention of bridging to hematopoietic stem cell trans-
plant if remission was obtained. Unfortunately, the bone marrow blast percentage rose to
5% at the end of this cycle, and despite further azacitidine and consolidation chemotherapy
as per the protocol AALL15P1 [7], by the next bone marrow examination, lymphoblasts had
risen to 55%. Subsequent blinatumomab combined with intrathecal chemotherapy resulted
in a morphological remission with MRD of 10−2. However, the second blinatumomab
course was complicated by the development of facial nerve palsy secondary to an extradu-
ral leukemic chloroma impinging on her facial nerve. This heralded florid morphological
relapse with 42% bone marrow blasts, which exhibited complete loss of CD19 on flow
cytometry (93% CD19/34+ at diagnosis). The patient failed to respond to either FLAG-IDA
or inotuzumab and succumbed at nine months of age. The timeline of treatments and re-
sponse assessments are summarized in Figure 1, and immunophenotyping flow cytometric
dot plots are shown in Figure S1.
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by mRNA-Seq are indicated. Asterisks denote the samples analyzed by transcriptomic sequencing in
this report. Interfant-06 induction chemotherapy includes prednisone, dexamethasone, vincristine,
cytarabine, daunorubicin, PEG-asparaginase, methotrexate, bortezomib and melphalan; AALL15P1
consolidation protocol includes cyclophosphamide, mercaptopurine, cytarabine, methotrexate, hy-
drocortisone and methotrexate. Dx = diagnosis; REF = refractory; REL = relapse; AZA = azacyti-
dine; blina = blinatumomab; FLAG-IDA = fludarabine, cytarabine, granulocyte-colony stimulating
factor, idarubicin.

3. Results

Transcriptomic sequencing (mRNA-Seq) performed on PBMNCs at diagnosis identi-
fied the KMT2A::AFF1 gene fusion, with low number of reads. Two IKZF1 gene fusions
were also identified: IKZF1::TUT1 and KDM2A::IKZF1 (Figure 2A, Table S2). Both IKZF1
fusions were validated by PCR and Sanger sequencing (Figure 2B). Significantly, this is
the first time the KDM2A::IKZF1 and IKZF1::TUT1 gene fusions have been described, and
the first report of KMT2Ar ALL with co-occurring IKZF1 fusions [8]. Although KDM2A
and TUT1 are both in the same karyotypic region of chromosome 11 (11q13.2 and 11q12.3,
respectively), they are separated by >190 genes, with a genetic distance corresponding to a
recombination frequency of >3.8% [9]. Thus, these two fusions likely represent separate
genomic events. Multiplex ligation-dependent probe amplification (MLPA) is a PCR-based
method for quantification of DNA copy numbers and a reliable method for copy number
variation (CNV) genotyping. We used two different MLPA probe mixes (P202 and P335,
MRC Holland) to determine CNV in genomic DNA. No deletions or duplications were
detected in any of the genes assayed; of importance, no deletions were detected in IKZF1
exons 1–8 (Figure S2).

The KMT2A::AFF1 gene fusion observed here is the most common fusion observed in
infant disease (49% of all infant KMT2Ar leukemias [1]). However, the breakpoint in KMT2A
exon 9 (Figure 3A) is rarely observed in infant KMT2A::AFF1 leukemia (19%, compared
with the frequently observed exon 11 breakpoint) [8]. Upon formation of KMT2A::AFF1,
the entire C-terminal portion of KMT2A is lost; this region contains domains important
for post-translational regulation and mediation of protein–protein interactions. The lost
regulatory and H3K4 methyltransferase activity lead to the widespread epigenetic dys-
regulation observed in KMT2Ar patients [1]. The KMT2A portion retained in the fusion
harbors binding motifs for proteins, such as menin and LEDGF, which are critical for
leukemic transformation [10,11], and domains to facilitate KMT2A’s DNA-binding capacity.
The AFF1 portion of the fusion lacks a degron sequence, likely perturbing the protein’s
degradation rate. This is supported by high AFF1 expression in this patient, as compared
with AFF1 expression in all other B-ALL samples in our patient cohort. Conversely, while
KMT2A gene expression was not increased, elevated expression of the homeobox gene
MEIS1 was observed as is typical of KMT2Ar patients [12] (Figure 3B). It should be noted
that, in an in vivo model, KMT2A::AFF1 fusions were incapable of inducing leukemia in
isolation, suggesting additional genomic aberrations are required [13].
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Figure 2. (A) Circos plot representation of gene fusions identified by transcriptomic sequencing
of PBMNC at diagnosis, MSC representing a germline sample, BMMNC from a refractory sample
after commencing induction therapy and BMMNC from a sample while undergoing blinatumomab
therapy. (B) The IKZF1::TUT1 and KDM2A::IKZF1 gene fusions were detected by breakpoint RT-
PCR in the diagnosis PBMNC sample. IKZF1::TUT1 product size = 261 bp, KDM2A::IKZF1 product
size = 256 bp, β-Actin = 193 bp. The fusions were validated by Sanger sequencing. The fusion
breakpoints are shown in the upper panels and delineated with a vertical line, the amino acid
reference sequences in the middle panels and the sequencing trace in the lower panels. Sequencing
was aligned with Benchling software. Abbreviations: PBMNC = peripheral blood mononuclear
cells; MSC = mesenchymal stem cells; BMMNC = bone marrow mononuclear cells; REF = refractory;
Dx = diagnosis; NTC = no template control.
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protein-binding domains, nuclear localization domains and the repression domain responsible for
HDAC1 and HDAC2 recruitment. The menin- and LEDGF-binding domains are critical for leukemic
transformation involving KMT2A, as both menin and LEDGF are essential oncogenic co-factors
for KMT2A. The interaction of the three proteins is necessary for leukemic transformation [10,11].
(B) Boxplots of differential expression levels of five genes involved in gene fusions identified in
patient CHI_0391. Gene expression levels in germline, diagnosis, refractory post-induction therapy
and on-blinatumomab treatment samples from patient CHI_0391 (colored dots) are denoted and
compared with samples from our B-ALL patient cohort (black dots; 592 patient samples at various
disease timepoints including the 4 highlighted samples from CHI_0391. See Table S1 for cohort
characteristics). The data are expressed as log normalized counts per million. (C) The IKZF1::TUT1
gene fusion retains a small portion of IKZF1 but the majority of TUT1, encompassing the nuclear
localization sequence and truncating the RNA recognition motif. (D) The KDM2A::IKZF1 gene fusion
retains the catalytic domain of KDM2A and all functional domains of IKZF1.

The Terminal Uridylyl Transferase 1 (TUT1) gene has previously been reported as a
fusion partner in T-cell lymphoblastic lymphoma patients [15]; however, IKZF1::TUT1 is a
novel fusion gene. TUT1 encodes a nucleotidyl transferase enzyme that may play a role in
controlling gene expression and cell proliferation; however, its role in oncogenesis remains
unclear. The novel IKZF1::TUT1 fusion is the predominant gene fusion in this patient at all
disease timepoints (Figure 2A, Table S2). Interestingly, only a small portion of the IKZF1
gene, containing no functional domains, is present. Thus, it is likely that the TUT1 fusion
partner is driving the putative leukemic activity of this fusion. Additionally, the diagnosis
sample exhibits the highest expression level of the TUT1 gene observed in our patient
cohort (Figure 3B). Limited functional data for TUT1 gene fusions exist; however, given that
the RNA recognition motif is truncated while the nuclear localization sequence remains
(Figure 3C), it is possible that aberrant gene expression occurs as a result of IKZF1::TUT1.

The second novel fusion involving IKZF1, KDM2A::IKZF1, incorporates the catalytic
domain of KDM2A and all IKZF1 functional domains (Figure 3D). The encoded Ikaros
protein is a transcription factor with key regulatory functions in lymphopoiesis [16]. IKZF1
is a leukemic driver and functions as a tumor suppressor and loss of Ikaros function,
either by mutation or deletion, is frequently observed in B-cell ALL [17] as well as other
hematological malignancies [18]. Ikaros loss of function alterations are associated with poor
prognosis and inferior treatment outcomes [19–21]. However, currently no outcome data for
IKZF1 gene fusions are available, most likely due to the rarity of these alterations (Table 1).
Whether these fusions are driver alterations and contribute to leukemic development also
remains to be determined.

Transcriptomic sequencing was performed on mesenchymal stem cells generated from
hair follicles, representing a germline sample, as well as sequential samples taken when the
patient was refractory following induction therapy and while undergoing blinatumomab
therapy prior to relapse (Figure 2A). Interestingly, the KDM2A::IKZF1 and KMT2A::AFF1
gene fusions were no longer detectable by mRNA-Seq following blinatumomab therapy,
suggesting the IKZF1::TUT1 gene fusion may be responsible for driving relapse.

Infant KMT2Ar ALL cases normally present with pro-B-cell blasts with the immunophe-
notype: B220/CD43/19/34/22/TdT/CyCD79a+, CD10/BPI/IgM– [22,23]. However, im-
munophenotypic analyses of PBMNCs from this infant detected an atypical immunophe-
notype at diagnosis with a clear population of CD10+ cells (93% CD19/CD34+, 39%
CD10/CD19/CD34+) suggesting the presence of two leukemic populations
(Figures 1 and S1). Similarly, at both the refractory (13% CD19/CD34+, 0.6% CD10/CD19/
CD34+) and on-blinatumomab timepoints (CD19 negative, 2.8% CD10/CD34+), two im-
munophenotypic populations were present. Comparing these data with the gene fu-
sions identified by transcriptomic sequencing (Figure 2A), it is likely that the CD19- clone
present during blinatumomab therapy harbored the IKZF1::TUT1 gene fusion, while the
CD10/CD19+ clone harbored the KDM2A::IKZF1 and KMT2A::AFF1 gene fusions. How-
ever, this would require confirmatory sequencing of each cell population.
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Table 1. IKZF1 gene fusions previously reported in acute lymphoblastic leukemia.

Fusion Chromosome
Abnormality Disease Number

of Cases Description IKZF1 Exon
Retention Predicted Function Ref

DNAH14::IKZF1 t(1;7)(q42;p12) B-ALL 1
in-frame; exon 36 to exon 4
ZNF2-4 domains (DNA-binding function) and ZNF5-6
domains containing dimerization sites are truncated

exons 1–4 Similar to the IK6 isoform,
loss-of-function allele [24]

ETV6::IKZF1 t(7;12)(p12;p13) B-ALL 1 out-of-frame; intron 2 to intron 3
No functional IKZF1 domains are present exons 1–3 Likely abolishes the

function of Ikaros protein [18]

FIGNL1::IKZF1 t(7;7)(p12;p12) B-ALL 1
out-of-frame; exon 4 to exon 4*
Majority of functional IKZF1 domains are retained;
ZNF1 domain (DNA-binding function) is truncated

exons 5–8 Altered transcriptional
regulation [25]

IKZF1::CDK2 t(7;12)(p12;q13) B-ALL 1
out-of-frame; exon 3, no CDK2 breakpoint
details provided
No functional Ikaros domains are present

exons 1–3 Likely abolishes the
function of Ikaros protein [26]

IKZF1::ETV6 t(7;12)(p12;p13) B-ALL 1 out-of-frame; intron 3 to intron 2
No functional IKZF1 domains are present exons 1–3 Likely abolishes the

function of Ikaros protein [18]

IKZF1::FIGNL1 t(7;7)(p12;p12) B-ALL 2
out-of-frame; intron 3 to 5′ UTR exon 2 and exon 3 to
13691 bp downstream
No functional IKZF1 domains are present

exons 1–3 Likely abolish the function
of Ikaros protein [18,27]

IKZF1::NUTM1 t(7;15)(p12;q14) B-ALL 1
in-frame; exon 7 to exon 2
Some functional IKZF1 domains are retained; ZNF5-6
domains containing dimerization sites are truncated

exons 1–7 Altered transcriptional
regulation [26]

IKZF1::SETD5 t(3;7)(p25;p12) B-ALL 1 # in-frame; exon 3, no SETD5 breakpoint details provided
No functional IKZF1 domains are present exons 1–3 Likely abolishes the

function of Ikaros protein [26]

IKZF1::TRPV2 t(7;17)(p12;p11) B-ALL 1 out-of-frame; no exon/intron details provided
No functional IKZF1 domains are present

breakpoint not
specified

Likely abolishes the
function of Ikaros protein [26]

IKZF1::ZEB2 t(2;7)(q22;p12) B-ALL 1 in-frame; exon 3 to exon 5
No functional IKZF1 domains are present exons 1–3 Likely abolishes the

function of Ikaros protein [18]

SETD5::IKZF1 t(3;7)(p25;p12) B-ALL 1 # in-frame; no SETD5 breakpoint details provided, exon 4
All functional IKZF1 domains are retained exons 4–8 Altered transcriptional

regulation [26]
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Table 1. Cont.

Fusion Chromosome
Abnormality Disease Number

of Cases Description IKZF1 Exon
Retention Predicted Function Ref

STIM2::IKZF1 t(4;7)(p15;p12) B-ALL 1 No fusions details provided breakpoint not
specified No fusion details provided [28]

IKZF1::ABCA13 t(7;7)(p12;p12) T-ALL 1

out-of-frame; exon to intron
Some functional IKZF1 domains are retained; ZNF4
domain (DNA-binding function) and ZNF5-6 domains
containing dimerization sites are truncated

exons 1–5
Reduced expression of
IKZF1; likely abolishes the
function of Ikaros protein

[29]

IKZF1::NOTCH1 t(7;9)(p12;q34) T-ALL 1

in-frame; exon to exon
Some functional IKZF1 domains are retained; ZNF4
domain (DNA-binding function) and ZNF5-6 domains
containing dimerization sites are truncated

exons 1–5 Altered transcriptional
regulation [30]

IKZF1::NOTCH1 t(7;9)(p12;q34) T-ALL 1 $

out-of-frame; intron to intron
Some functional IKZF1 domains are retained; ZNF4
domain (DNA-binding function) and ZNF5-6 domains
containing dimerization sites are truncated

exons 1–5 Altered transcriptional
regulation [27]

NOTCH1::IKZF1 t(7;9)(p12;q34) T-ALL 1 $
out-of-frame; exon to intron
Some functional IKZF1 domains are retained; ZNF1-4
domains containing dimerization sites are truncated

exons 6–8 Altered transcriptional
regulation [27]

Note 1: Retained IKZF1 exons refers to IKZF1 transcript variant 1, NM_006060 except for (*), which relates to alternate transcript variant 15, NM_001291845. Note 2: # IKZF1::SETD5 and
SETD5::IKZF1 fusions were observed in the same patient. Note 3: $ IKZF1::NOTCH1 and NOTCH1::IKZF1 fusions were observed in the same patient.
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4. Discussion

Here, we describe a rare case of congenital KMT2Ar ALL presenting with co-occurring
IKZF1 gene fusions and a predictably aggressive disease trajectory. We report for the first
time the novel IKZF1::TUT1 and KDM2A::IKZF1 gene fusions. Rearrangements involving
KMT2A are commonly retained in relapsed infant ALL [5,31,32]; however, in this case,
the KMT2A::AFF1 gene fusion did not appear to be the lesion driving leukemic relapse.
Instead, our data suggest that relapse was driven by IKZF1::TUT1. This gene fusion
remained in all samples investigated, including the on-blinatumomab therapy sample
taken immediately prior to relapse. Conversely, the KMT2A::AFF1 gene fusion was only
detected in the diagnosis and refractory post-induction samples, highlighting a key role for
IKZF1::TUT1 in disease pathogenesis. Intriguingly, both IKZF1 gene fusions are predicted to
be out-of-frame (Table S2); however, our data demonstrate the IKZF1 gene is still expressed
(Figure 3B). This is not unprecedented, and it has previously been observed that out-of-
frame fusions can cause transcriptional activation/repression of genes involved in the
fusions leading to increases or decreases of their expression and the associated functional
outcomes [29].

Ikaros is a lymphoid transcription factor with a tumor-suppressive function. Alter-
ations that knock out the Ikaros function, such as the gene fusions described here, would
presumably also affect Ikaros target genes including signal transducers (c-kit, Flt3, Il7r),
pre-B-cell receptor signaling proteins (Syk) and cell cycle regulators (Cdkn2a, Cdkn1a) [33].
Indeed, altered Flt3 [34] and Syk [35] expression has been reported in KMT2Ar ALL. Stud-
ies have demonstrated Flt3 inhibitors are active against KMT2Ar disease in vivo [36] and,
when administered in combination with various chemotherapeutics including some of
those used here (dexamethasone, cytarabine, asparaginase), effectively kill KMT2Ar cells
in vitro [37,38]. More recently, a Children’s Oncology Group trial has demonstrated the
benefit of Flt3 inhibitor lestaurtinib in combination with chemotherapy (Interfant 99-based
induction regimen) for treating infants with KMT2Ar ALL [39]. Similarly, the combination
of vincristine and the Syk inhibitor entospletinib demonstrated enhanced efficacy in in vivo
models of infant KMT2Ar ALL compared with either agent alone [40]. However, entosple-
tinib as a treatment for ALL has yet to enter clinical trials. A retrospective case study of
11 infants with KMT2Ar ALL demonstrated the efficacy of blinatumomab in patients with
relapsed/refractory disease [41], and pre-clinical efficacy was observed in recent in vivo
models assessing azacitidine in combination with venetoclax [42]. However, we observed
poor response to the Interfant-06 induction and Children’s Oncology Group consolidation
protocols (AALL15P1), which comprise various chemotherapy agents, including those
detailed above (Figure 1), and while azacitidine was well tolerated, the patient soon became
resistant. The immunotherapies blinatumomab and inotuzomab [43] as well as the FLAG-
IDA relapse regimen also failed. Case reports such as this highlight the urgent need for
new targeted therapies to improve outcome in KMT2Ar infant ALL. We also demonstrate
the importance of gene sequencing to comprehensively dissect the underlying genomic
complexity of a disease like ALL and identify co-occurring alterations that may impact
treatment outcomes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14020264/s1, Table S1: Key characteristics of the B-ALL
patient cohort used in the gene expression analyses; Table S2: Complete range of gene fusions identi-
fied in patient CHI_0391 by transcriptomic sequencing; Figure S1: Immunophenotyping analyses of
diagnosis, refractory and on-blinatumomab samples; Figure S2: Analysis of deletions in key B-ALL
genes in CHI_0391 identified by multiplex ligand-dependent probe amplification (MLPA).
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