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THE BIGGER PICTURE As energy generation from solar and wind sources is subject to weather variability,
short- and long-term decisions in the electricity sector are heavily influenced by their generation forecasts.
Consequently, millions of dollars of public and private funds have been spent on developing accurate fore-
casting tools. In this article we argue that, while these tools are essential, there is a complementary aspect
to this problem, namely the inherently limited predictability of renewable energy data. Researchers and
practitioners in the energy sector have often overlooked this aspect. Here, we present a reliable method
for quantifying the data predictability of renewable energy sources and illustrate its applications through
real-world examples, fromprivate investment decisions to public policies. Our findings indicate that consid-
ering predictability in power system decisions can save millions of dollars in operation costs, prevent the
waste of clean energy, and lower electricity costs.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Decision-making in the power systems domain often relies on predictions of renewable generation. While
sophisticated forecasting methods have been developed to improve the accuracy of such predictions, their
accuracy is limited by the inherent predictability of the data used. However, the predictability of time series
data cannot bemeasured by existing prediction techniques. This important measure has been overlooked by
researchers and practitioners in the power systems domain. In this paper, we systematically assess the
suitability of various predictability measures for renewable generation time series data, revealing the best
method and providing instructions for tuning it. Using real-world examples, we then illustrate how predict-
ability could save end users and investors millions of dollars in the electricity sector.
INTRODUCTION

In 2023, renewable electricity generation is expected to increase

bymore than 9%, surpassing 9,300 TWhworldwide.1 Two-thirds

of this growth comes from the increase in solar photovoltaic (PV)

and wind energy generation, demonstrating their crucial role in

reducing greenhouse gas (GHG) emissions.1 A surge in the

new solar and wind farm installation is anticipated in the coming

years with the recent commitment of more than 40 countries to

phase out coal-fired power plants at the COP26 climate sum-

mit.2 Despite the evident environmental and economic benefits

of PV and wind generation sources, their output is intermittent

and highly uncertain and, hence, undispatchable (the dispatch-
This is an open access article und
ability of an electricity generation source means that their output

power can be adjusted within the physical limits of the generator

based on the electricity grid requirements).3 This, in turn, can

cause frequent mismatches between electricity supply and

demand in power grids, which affects the planning and design

of power systems, electricity market operation, and several other

aspects of power systems that depend on dispatchability and

accurate prediction of electricity generation.4 As a result,

renewable generation prediction has become an integral part

of numerous decision-making processes related to power

systems.

These decisions, made by different stakeholders in electricity

systems, are usually split into short- and long-term decisions.
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Short-term decisions are typically operational in nature by

focusing on how to make the best use of resources in the short

term, e.g., day-ahead and real-time electricity markets, in which

power plants and transmission system operation will be sched-

uled. In contrast, long-term decisions, made when considering

future achievements, lead decision-makers to take actions

different from those they would usually do. GHG emission reduc-

tion through renewable energy policy design is a classic example

of a long-term decision typically made by governments. Other

examples of long-term decisions are (1) shaping the long-term

strategies of renewable energy in a jurisdiction based on solar

and wind atlases5–8 or (2) a private investor who decides among

multiple energy projects by looking at the potential yield of

the sites in several decades ahead.9 A short-term example is

the energy procurement by the power system operators in the

day-ahead or real-time electricity markets, where they use

day- or several-minutes-ahead predictions of renewable

generation for making least-cost, reliable decisions.10 Whether

short- or long-term decisions, some form of renewable genera-

tion prediction is involved in the decision-making process.

Thus, one can realize the sheer importance of renewable

generation prediction in the electricity industry.

In recent years, much work has been done on developing

short-term forecasting methods (prediction horizons of a few

minutes to a day) for wind and solar PV generation.11–13 These

scientific efforts have been supported by generous grant money,

mostly from government funding agencies,14,15 hoping to

improve the forecasting accuracy of solar or wind generation.

In addition to academic efforts, numerous companies16–18 are

commercially providing renewable generation forecast services

for electricity market participants and operators. Nonetheless,

all the existing forecasting methods in the literature use historical

data directly or indirectly for prediction, even those using numer-

ical weather forecast models. As a result, regardless of the type,

granularity, and prediction horizon of forecasting methods, their

accuracy is restricted by inherent predictability of the historical

data. Predictability in this context means ‘‘the ability to deter-

mine ahead of time the availability of a generation resource,’’4

such as wind and solar energy. Despite the importance of

inherent predictability in this context, most studies that explored

the uncertainty in renewable generation relied solely on fore-

casting methods to evaluate their impacts on electricity sys-

tems.11–13 There are a few studies on the predictability of wind

speed or power generation for some power systems applica-

tions, where prediction error metrics were used as a predictabil-

ity measure.19–21 While lower forecast errors could imply higher

predictability in a given time series, they cannot be used as a sur-

rogate parameter for the predictability because of the following

issues.

1. Which forecasting method? Each prediction technique

uses a predefinedmodel, e.g., linear or nonlinear, or deter-

ministic or stochastic, to learn the existing patterns in a

time series.22 Therefore, their predictions do not reflect

the inherent predictability of the time series.23,24 Even if

we could know the characteristics of the underlying

data, there would have been numerous prediction tech-

niques for each class of problems with potentially different

performance and accuracy, making it arduous to justify
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using a specific forecasting method. The other way is to

try all those methods which may be impossible or inef-

ficient.

2. What prediction horizon? The performance of forecasting

methods can vary significantly by the prediction horizon

and highly depends on seasonality and the time of

day.25,26 Therefore, a particular prediction horizon should

be picked and justified, which is challenging.

3. Which prediction error metric? There are many prediction

error metrics (mainly categorized into scale-dependent,

percentage, and scaled errors) to evaluate the perfor-

mance of a forecasting method, each with specific limita-

tions.27 Choosing the proper prediction error metric

depends on the data and their quality, the loss function

of the forecasting method, goals, and applications. Thus,

another arduous task is to choose and justify an error

metric representing the predictability for a given time

series.

Therefore, using a proper predictability theory that does not

involve the above issues is necessary.

The concept of time series predictability has been investigated

in other disciplines, such as climatology,28 ecology,29 epidemi-

ology,30 financial markets,31 and communication systems,32 to

mention a few. In power system studies, however, predictability

measures have rarely been used despite their multifaceted appli-

cations.26,33,34 Consequently, quantifying the predictability of

renewable generation has been entirely overlooked in practical

decision-making processes and relevant research studies where

power systems are concerned.

This article investigates the suitability of various potential pre-

dictability measures used in other disciplines for the renewable

generation time series. After finding the best predictability mea-

sure, we tune its hyperparameters to suit our application. Then,

through studying different real-world examples, we demonstrate

that considering the predictability of renewable generation as a

deciding factor is essential for many long-term decisions in elec-

tric power systems. We argue that while renewable generation

forecasting methods are indeed necessary, incorporating the

inherent predictability of renewable generation in long-term

decision-making processes can help achieve better decisions.

In this regard, we demonstrate that solar farms’ expected profit

strongly correlates with their generation predictability. Then, by

revealing the strong dependency of predictability on the location

of solar farms, we establish that these decisions will be subopti-

mal unless predictability is considered in the investment deci-

sions of the renewable plants. Also, by presenting the findings

from our study on the rooftop PV systems across South Australia

(SA), Australia, we illustrate that ignoring the predictability in

renewable energy policymaking has led to more unpredictable

generation in the power grid, potentially resulting in higher

reserve market prices and green energy spillage. Lastly, by

showing the strong relationship between predictability and the

location of solar PV systems, we show how this feature can

help public service sectors to achieve better solutions for man-

aging a power system with high renewable energy integration.

These findings highlight the crucial role of quantifying renewable

generation predictability in making effective long-term decisions

related to power systems.



Table 1. Summary of the assessed predictability measures

Predictability measure Introduced in No. of hyperparameters Applied in

Dispersion entropy (DE) 2016 (Rostaghi and Azami45) 2 (dimension, class) mechanics (Rostaghi et al.81), biomedical

engineering (Azami et al.82)

Permutation entropy (PE) 2002 (Bandt and Pompe37) 1 (dimension) medicine (Li et al.83), epidemiology

(Scarpino et al.30), economics (Zumino

et al.84)

Sample entropy (SaE) 2000 (Richman and Moorman36) 2 (dimension, match criterion) biology (Kaffashi et al.85), neurology (Li

et al.86), biomedical engineering (Yentes

et al.87)

Spectral entropy (SpE) 1991 (Inouye et al.76) 0 economics (Georg88), neurology (Li et al.89)

Weighted PE (WPE) 2013 (Fadlallah et al.43) 1 (dimension) ecology (Pennekamp et al.29), computer

science (Garland et al.24), climatology

(Huang and Fu28)
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RESULTS

Finding a universal predictability measure
The predictability of a dynamical system reflects the extent to

which its future state can be anticipated. In a system with high

predictability, the future state of the system can be accurately

predicted using previously known states. For example, periodic

or constant signals fall into this class. Conversely, a dynamical

system with low predictability refers to a system whose future

state cannot be determined among various possibilities. White

noise, for example, falls into this category, where the historical

data give no insight into the future, regardless of the forecasting

method. On this basis, predictability is an inherent property of

dynamical systems.23

As there is little consensus on the definition of the signal’s pre-

dictability, various measures have been developed and used to

determine the predictability of time series data. Most of these

measures can be categorized into two groups: (information) en-

tropy-based metrics and fractal theory-based metrics. While the

former group is more widely known for measuring the predict-

ability of time series,35–37 the metrics from the fractal theory,

specifically the self-similarity parameter (also known as Hurst

exponent), have been used to represent the predictive structure

of a signal.26,32,38,39 Nonetheless these two groups are funda-

mentally different, as each captures a particular aspect of the

time series predictability. In information theory, entropy is used

to characterize the complexity or compressibility of data.40,41

Data with high entropy include minimal redundant information,

making them difficult to compress. In other words, these data

have a high level of randomness or unpredictability, making it

difficult to identify patterns or regularities that can be exploited

to compress the data. In contrast, data with low entropy tend

to be easier to compress as they have a higher level of regularity

and predictability. In fractal theory, however, the Hurst exponent

shows the degree of self-similarity and long-range dependence

of a signal.32 In this context, higher long-range dependence

means that past values can give a better insight into the future.

Nevertheless, as the Hurst exponent of a time series cannot be

directly calculated, various methods have been developed to

estimate it, each of which would provide a different value.38 It

is, therefore, challenging to establish a reliable and robust mea-

sure of predictability based on the Hurst exponent. On the con-

trary, the entropy-based metrics developed over the past three
decades can be readily calculated using efficient, reliable

methods. Some examples of such metrics are approximate en-

tropy (AE),35 sample entropy (SaE),36 and permutation entropy

(PE).37 They are also closely related to the known predictability

of dynamical systems, quantified by Lyapunov exponents and

Kolmogorov-Sinai entropy.24,36,37 These features (i.e., direct

representation of uncertainty and reliable calculation methods)

make entropy-based metrics a better way to quantify the pre-

dictability of renewable generation data.

Various entropy-based metrics have been introduced in

different disciplines to measure complexity or predictability,

where a time series with higher entropy is considered more com-

plex or less predictable, and vice versa. Here, we investigate

which method, among the prominent approaches, is the most

effective for measuring the predictability of renewable genera-

tion time series. Table 1 provides a summary of these entropy-

based metrics. In the experimental procedures section, we

describe how these measures are calculated.

To assess the suitability of the entropy-based metrics intro-

duced in Table 1, we used a dataset consisting of 1,000 rooftop

PV generation time series belonging to Australian households

known by their postcodes.42 The data are available for 1 year,

from January 1, 2019 to January 1, 2020, with a sampling interval

of 5min. The dataset was checked and cleansed before analysis,

where time series with more than 200 missing values and signif-

icant generation clipping (if a PV system has the same maximum

generation for 7 months, we consider significant generation clip-

ping has happened, possibly due to the rooftop PV export limits

in Australia) were removed from the dataset. This is important

because if the renewable generation time series is significantly

affected by external factors, such as clipping and self-curtail-

ment, the patterns of the affected time series would no longer

represent the inherent features of the renewable generation,

thus being unsuitable for measuring the inherent predictability

of a renewable energy source in a given time and location. After

data cleaning, 335 reliable time series remained to analyze the

generation of PV systems in SA, New South Wales (NSW), and

Victoria (VIC).

In the first step, we carried out a preliminary assessment of

the potential predictability measures. Using the five different en-

tropy-based metrics, we compared the entropy values of three

randomly selected PV generation time series from our dataset

with white Gaussian noise (WGN) and a pure sine wave signal
Patterns 4, 100708, April 14, 2023 3
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Figure 1. Preliminary assessment of the suitability of potential pre-

dictability measures for renewable generation time series

(A), (B), (C), (D), and (E), respectively, show the values over time obtained by

dispersion entropy (DE), permutation entropy (PE), sample entropy (SaE),

spectral entropy (SpE), and weighted permutation entropy (WPE) for a sine

wave signal (with a 1-day cycle), a white Gaussian noise (WGN), and three

randomly selected PV generation time series from our dataset. These are

calculated using 2-month rolling windows that move 1 day forward at a time.

The hyperparameters are set to the commonly used values of each metric (i.e.,

the dimension of PE and WPE is 6, both the class and dimension of DE are 5,

and the dimension of SE is 3).
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over 1 year using 2-month rolling windows. In this study, WGN, a

pure random noise, is expected to show high entropy values (i.e.,

low predictability) compared with other time series. At the same

time the sine wave, a perfectly periodic signal, must have the

lowest entropy (i.e., highest predictability). Also, the three PV

generation time series are expected to have entropy values be-

tween the two extreme cases. As shown in Figure 1, WGN and

sine wave signals consistently indicate the highest and lowest
4 Patterns 4, 100708, April 14, 2023
entropy values, respectively, over the course of a year when

PE, weighted PE (WPE), and spectral entropy (SpE) are used

as the predictability measures. Dispersion entropy (DE) and

SaE, however, fail the preliminary test because they incorrectly

indicate that the sine wave signal is less predictable than all three

PV generation time series. While the entropy values of each

metric will differ based on the hyperparameters used, the quali-

tative results will remain the same, i.e., DE and SaE fail the test

regardless. Thus, they are unsuitable metrics for measuring the

predictability of PV generation time series, and the most appro-

priate metric should be chosen from SpE, PE, or WPE.

Additionally, we should determine the best hyperparameters

and resampling intervals such that the predictability measure

can capture the most important predictive structures in the

renewable generation time series. While SpE calculation does

not include any hyperparameter, both PE and WPE values are

calculated based on a hyperparameter (i.e., embedding dimen-

sion) that can take any integer from 3 to 7.37,43 However, as

the maximum embedding dimension is restricted by the length

of the time series,44 our options would be limited to from 3 to

6. Resampling the original 5-min data is also necessary for

measuring the inherent predictability of renewable generation

because the mentioned entropy-based metrics, i.e., PE, SaE,

WPE, and DE, are measured on the basis of patterns in the vec-

tors established from the 2 to 8 sequential data points in the time

series.36,37,43,45 The finite length of the vectors may thus lead to

neglecting existing predictive structures in the vectors with

higher lengths. Conversely, creating longer vectors by choosing

a longer resampling interval may lead to disregard of predictive

patterns in the data, as the higher-resolution dynamics will

disappear in resampling. Hence, finding the optimal resampling

interval is necessary for measuring predictability.

To find the best metric, hyperparameters, and resampling in-

tervals, we calculated the entropy values of all PV generation

time series in our dataset, using the candidate predictability

measures with different hyperparameters and resampling inter-

vals. The bestmeasurewas chosen by comparing the correlation

between the entropy values and the average prediction errors of

all time series in our dataset. No matter what prediction method,

horizon, or error metric is used, a time series with low entropy

(i.e., high predictability) should exhibit relatively low prediction

errors. To this end, we compared different predictability mea-

sures based on their average correlation with 16 sets of predic-

tion errors consisting of four prediction horizons (i.e., 5 min,

10 min, 15 min, and 20 min ahead), two forecasting methods

(i.e., autoregressive integrated moving average [ARIMA] and

naive), and two error metrics (i.e., the normalized absolute error

[NMAE] and the normalized root-mean-square error [NRMSE]).

Themaximumprediction horizonwas 20min, the longest horizon

relevant to renewable generation prediction in the Australian

electricity market (while our case studies are limited to the

Australian electricity market, the predictability measurement

process, and the conclusions, are not). In this spot energy mar-

ket, generators typically submit their final bids (the generation

forecasts in the case of renewable plants) for each dispatch

target 5–10 min ahead. However, depending on the forecasting

method or the operational requirements of the renewable plants,

forecasts with longer horizons, i.e., 10–20 min, can be important

too. We also chose different error metrics and forecasting



Figure 2. Finding the best predictability measure and its hyperpara-

meters for renewable generation time series

Each line shows the average correlation between the predictability values

obtained by a measure with a specific hyperparameter and 16 datasets of

prediction errors, resulting from four prediction horizons (5min, 10min, 15min,

and 20 min ahead), two forecasting methods (ARIMA and naive), and two error

metrics (NMAE and NRMSE).
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methods with different learning procedures to ensure that the

best metric would be selected regardless of the method and er-

ror metric. The NMAE and NRMSE of each time series for each

forecasting method were calculated based on 105,080 predic-

tions obtained for 5-, 10-, 15-, and 20-min-ahead horizons with

3 h of training data. To create the set of predictions for each

time series, we used rolling windows throughout the year with

one interval moving forward at a time. Finally, 16 forecast error

sets were created from different combinations of prediction ho-

rizons, methods, and error metrics to find the best predictability

measure for our application.

The result of this comparison is shown in Figure 2. According

to the graph, WPE outperforms SpE and PE regardless of

the selected hyperparameter and resampling interval. Also,

increasing the resampling interval impacts the average correla-

tion of each metric differently. Even choosing different

hyperparameters for the WPE leads to different best resampling

intervals (i.e., the resampling interval with the highest average

correlation). Furthermore, when the resampling interval varies

between 10 and 25min, theWPE values obtained for dimensions

4–6 have an average correlation of more than 0.6 with prediction

errors. This shows the robustness of the WPE measure in this

application, although tuning the WPE hyperparameters would

result in a better measure. Overall, the WPE with a dimension

of 6 and a resampling interval of 10 min has the highest correla-

tion among all cases, which makes it the most suitable predict-

ability measure in this application. Figure 3 depicts the relation-

ship between the tuned WPE and the NMAE and NRMSE values

of the time series obtained for the two forecasting methods and

the four prediction horizons. All 16 scatterplots show a statisti-

cally significant correlation between the WPE and the prediction

error. The R2 values, shown in Figure 3, are high, given the

amount of explainable short-term variability in the rooftop PV

generation data. This further supports the selection of the WPE

for measuring the predictability of renewable generation.
In addition to theminutes-ahead bidding in the Australian elec-

tricity market, generators should submit day-ahead generation

bids. While they are not financially binding as generators can

change the bids in the real-time market, they act as an advisory

measure for the market operator. Therefore, an accurate day-

ahead renewable generation prediction can help the operator

run the market more efficiently. In this regard, Figure 4 depicts

a moderate to strong correlation between the tuned WPE and

the day-ahead prediction errors. We used two forecasting

methods, seasonal naive and random forest, with 9 (note the

qualitative results have been the same with any other training

set sizes between 6 and 14 days) days for training and 1 day

for testing.27 The NRMSEs and NMAEs were obtained for a

10-day rolling window (9 days for training and 1 day for testing)

throughout a year with 1 day moving forward (i.e., 354 prediction

windows). Finally, the median of the NRMSEs and NMAEs was

calculated for each time series in the dataset. The strong positive

correlation between the day-ahead prediction errors and the

WPE shows its suitability as a predictability measure for renew-

able generation. Since the WPE is positively correlated with pre-

diction errors, we define the predictability index as ‘‘1 � WPE,’’

where a lower WPE of a given time series shows higher

predictability.

Applications of predictability in power systems
Private investment decisions

Many research studies have been carried out in recent years pro-

posing methods for finding the best location for building solar PV

and wind farms,46–49 wherein various tools and factors are used,

such as solar or wind atlases, geographic information system

data, transmission lines, roads, and so forth. Similar factors, in

addition to some practical considerations, are taken into

account by industry and investors for renewable plant invest-

ments.50,51 For example, in Australia, marginal loss factor

assessment at a potential location is a key step in building new

power plants because it can greatly affect revenue and is one

of the main factors considered by investors.52 Such assess-

ments are critical because these factors affect not only the

energy yield of solar or wind farms over their lifetime but also their

participation in the day-ahead and/or real-time (or spot) elec-

tricity markets, where they must meet their energy commit-

ments. Similar to conventional power plants, solar and wind

farms are penalized for deviating from their market commit-

ments. The penalty could be particularly devastating when

renewable power plants participate in a day-ahead market

compared with a real-time market because of higher prediction

errors in the day-ahead market (many renewable plants bid

conservatively, i.e., below their actual prediction, to dodge the

imbalance penalties, which results in green and cheap energy

spillage). Even in a real-time market where participants can bid

only a few minutes to hours before every dispatch interval,

prediction errors of renewable generation can lead to significant

financial penalties. For example, in the Australian National Elec-

tricity Market (NEM), the operator utilizes regulation Frequency

Control Ancillary Services (FCAS) to ensure the balance between

supply and demand, where the source of imbalance could be the

difference between the actual production level of renewable

plants and their commitment due to prediction errors. The

Australian Energy Market Operator (AEMO) then recovers the
Patterns 4, 100708, April 14, 2023 5



Figure 3. High correlation between the WPE

and the minutes-ahead prediction errors of

solar PV generation

The scatterplots show the relationship between the

WPE of dimension 6 and the 10-min resampling in-

terval, and the NRMSE and the NMAE of the PV

generation data when ARIMA and naive forecasting

methods are used to predict 5-, 10-, 15-, and

20-min-ahead generation.
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regulation FCAS costs from market participants, including wind

and solar farms, by determining howmuch each has contributed

to the need for this service, called the ‘‘causer pays’’ proced-

ure.53 Figure 5 shows the share of regulation FCAS charges

per terawatt-hour of produced energy for the NEM power plants

based on fuel types in each quarter of 2020. While the total pro-

duction (hence revenue) of solar PV and wind farms was much

less than coal- and gas-fired plants, the share of regulation

FCAS charges for the renewable plants was considerably higher

than those of conventional power plants. This results in a signif-

icant reduction in the renewable plants’ profit. For example,

owing to such charges, four renewable plants in SA lost more

than 20% of their energy market revenue in 2020.54,55 One

main reason for higher FCAS charges of solar farms is the signif-

icant prediction errors in their generation forecasts that lead to

higher causer pays factors (CPFs), based on which a specific

percentage of the regulation FCAS costs is assigned to each po-

wer plant.56 Figure 6 depicts the relationship over time between

the CPFs of six solar farms in NSW, gathered from AEMO,57 and

the predictability of PV generation, determined on the basis of

two different datasets: (1) our rooftop PV generation dataset

and (2) 5-min historical data of all-sky global tilted irradiance

(GTI) at the six solar farm locations in 2019, downloaded from

SolCast.58 The figures demonstrate a strong negative correlation

between the average CPF and the predictability for the actual so-

lar PV generation and the GTI of solar farms. Each participant’s

monthly CPF determines their regulation FCAS market costs,

so the lower the CPF, the lower the regulation FCAS charges.

This further validates the choice of the WPE as the predictability
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measure, since the regulation market costs

of solar farms, which depend on their fore-

casting accuracy, strongly correlate with

the WPE.

To understand the impact of considering

PV generation predictability on the deci-

sion to build a solar farm, we conducted a

case study of nine potential locations in

NSW, shown in Figure 8, to determine the

best location for a hypothetical 51.8 MW

solar farm. We considered two different

scenarios. In the first scenario, the pro-

jected revenue of the solar farm was

calculated only on the basis of the total so-

lar energy yield, which is known as themain

factor in choosing the location of a solar

farm in practice. In the second scenario,

we considered the revenue and the FCAS

market charges caused by the unpredict-
ability of generation in calculating the projected net revenue.

Note that the solar farm capacity equals the average capacity

of the six solar farms studied in the previous analysis. Also, all

potential locations are situated close to transmission lines and

main roads in NSW. To quantify the monetary value of PV gener-

ation predictability, we first estimated a quantitative relationship

between the predictability and the CPF. The scatterplots in Fig-

ure 7A illustrate the relationship between the average predict-

ability and the CPF of solar farms over 2-month rolling windows

in NSW, based on the previous analysis shown in Figure 6. We

further validated the results by depicting the relationship be-

tween the annual predictability of solar farms’ GTI data and their

average CPF for a year (Figure 7B). Despite the limited number of

data points, in all three cases shown in the scatterplots the Pear-

son correlation was statistically significant, indicating a strong

negative correlation between the predictability (i.e., 1 � WPE)

and the CPF. Even though the predictability values of the GTI da-

taset are consistently higher than those of the rooftop PV system,

the slope of the regressed lines are relatively similar, suggesting

that a robust relationship exists between the CPF and the pre-

dictability. (This is due tomany reasons. For example, PV system

malfunction, panel degradation, shading, and so forth do not

impact the GTI data, which leads to its higher predictability.)

Finally, to compare the net revenue of the solar farm in different

locations for the two scenarios, we used the GTI sun-tracking

data of the locations shown in Figure 8 from August 2021 to

August 2022. We set location 1, where the White Rock solar

farm is installed, as our baseline in the comparison. Based on

the real historical data, the White Rock solar farm had an annual



Figure 4. Strong correlation between the WPE and the day-ahead

prediction errors of solar PV generation

The scatterplots show the relationship between the WPE of dimension 6 and

the 10-min resampling interval, and themedian NRMSE and themedian NMAE

of the day-ahead predictions of PV generation data using random forest and

seasonal naive forecasting methods.

Figure 5. Australian electricity market regulation costs by type of

power plant

Each bar illustrates the share of power plants with a particular fuel type in the

regulation FCAS costs of the Australian electricity market in each quarter of

2020. The shares of costs in each quarter are normalized by the terawatt-hours

of generated energy during that period. The data for the regulation FCAS costs

and the generation of each fuel type are collected from AEMO78 and

OpenNEM,79 respectively.
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revenue of about AUS$10,000 per MW installed capacity in

2020.59 Accordingly, we calculated the revenue of a 51.8MWso-

lar farm in other locations, assuming a 1% higher annual GTI

would lead to 1%more revenue. Also, using the most conserva-

tive estimate for the slope of the regressed line between the CPF

and the predictability, shown in Figure 7B, it is possible to esti-

mate the reduction in the CPF when the predictability increases.

For instance, the figure shows that a 0.1 increase in the renew-

able generation predictability would reduce CPF by 0.272. Given

that the average annual cost of the regulation market was about

$85.6 million in the last 5 years,60 a 0.272 reduction in the CPF

leads to roughly $233,000 lower cost of regulation FCAS each

year. Finally, the net revenue of the solar farm in different loca-

tions is compared in Figure 9. According to the bar plot, location

9 would be the best option for building a 51.8 MW solar farm

without considering the predictability. However, if the cost asso-

ciatedwith the predictability of PV generation were taken into ac-

count, location 5would be the best option by a significant margin

over location 9. Once predictability is considered, the ranking of

the choices changes significantly in relation to the highest net

revenue, suggesting it has a considerable impact on solar farm

investments.

These observations indicate that considering generation pre-

dictability as a factor in investment decisions of renewable plants

is imperative because profits strongly depend on it. Figure 10

illustrates the changes in the predictability of solar PV generation

in various locations in Australia. We can observe that the PV gen-

eration predictability varies significantly across different regions
and even within each state, indicating that it is highly location

dependent. Based on the previous analysis, we can estimate

that a 100 MW solar farm could lose roughly $900,000 of its reve-

nue each year because of these differences in PV generation pre-

dictability (this would be 9% of its potential $10 million revenue).

Without considering predictability, investment studies for building

renewable plants will produce suboptimal results. In other words,

tofind thebest locations for futuresolarPVandwind farmprojects,

wemust take into account the cost implications of the predictabil-

ity as a decisive factor in addition to the other technical and

financial factors currently being used.50,51 This can be done by

measuring the predictability of the potential renewable generation

at a location using the existing (or simulated) generation data or

relevant surrogate variables, such as GTI for solar PV farms. This

is particularly vital, since the predictability measure is not corre-

lated with other factors being considered in such studies. For

further discussion on this topic, please refer to Note S1.

The predictability of renewable generation is expected to play

an increasingly important role in the future. Renewable energy

plants are currently subject to different regulations than conven-

tional ones by electricity market operators under the direction of

regulators and policymakers. For example, in Australia, conven-

tional generators are noncompliant if their generation deviates

from their instructed dispatch target; renewable plants are

not.61,62 As most conventional power plants are expected to

retire in the next few years in Australia, the market rules have

been changing to ensure reliable grid operation. Such changes

mean that if renewable plants’ output is not predictable, they

must leave sufficient headroom (i.e., not generate at their

maximum availability) to respond to the unpredictable genera-

tion changes and meet their forecasts. Otherwise, they must

invest in storage systems to ensure that their power plants

comply with the rules or face heavy penalties. Both can be costly

solutions for investors but can be mitigated by choosing a loca-

tion with high generation predictability.
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Figure 6. Dependency of solar farms’ regula-

tion market costs on the predictability of PV

generation

These plots show the relationship over time between

the predictability (1�WPE) of PV generation and the

solar farms’ causer pays factors (CPFs) in New

SouthWales (NSW) over the year 2019. In (A), the PV

generation data in NSW from our dataset is used to

calculate the average predictability over time.

However, in (B), the average predictability of PV

generation is determined based on the predictability

of global tilted irradiance (GTI) sun-tracking data in

the exact locations of the six solar farms in NSW.

The predictability of PV generation is calculated over

2-month rolling horizons with 1-month shifting for-

ward. To make the CPF data comparable with the

predictability values, we calculate the 2-month

moving average of the CPF values of solar farms in

the sameway. The CPF data57 of solar farms in 2019

is gathered for every solar farm in NSW with a gen-

eration capacity above 10 MW, which are commis-

sioned in or before January 2019, namely Griffith,

Royalla, Mugga Lane, Manildra, Coleambally, and

Moree solar farms. Also, the average CPF of solar

farms and the predictability of monthly GTI data are

calculated by the weighted average of the six farms

based on their maximum generation capacity.
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Policy design

The unpredictability of renewable generation, caused by inher-

ently uncertain weather forecasts, has increased the costs of

reserve electricity markets.63,64 For instance, the United

Kingdom power grid experiences a £5–10 per MWh increase in

the reserve market costs for 1 MW additional wind or solar pro-

duction due to their prediction errors. As the number of renew-

able plants increases in the electricity grid, the additional cost

of operational reserve requirements per MWh of renewable en-

ergy will rise even more.63 Given that consumers (or taxpayers)

pay for these costs on their electricity bills (or government sub-

sidies), governments are responsible for minimizing these costs

through well-planned investments and shrewd policy design.

In November 2021, SA became the first gigawatt-scale power

grid in the world to reach zero net demand when the combined

output of rooftop solar and other small-scale generators ex-

ceeded the total customers’ load demand.65 This has been

achieved mainly by the federal government’s subsidies on

rooftop PV panels66 as well as state government policies, such

as solar feed-in payments.67,68 Despite all the benefits, the

high level of distributed PV generation has led to higher variability

of power system net demand, which can cause high spot energy

prices, voltage swings, or even loss of supply if not adequately

managed.69 One well-known solution is to integrate costly bat-

tery storage systems in the grid. Yet a cheaper but effective

way to mitigate some of these issues is to invest in renewable

energy sources with higher generation predictability.

In this regard, recognizing the differences in the predictability

of renewable generation in different areas could change the pub-
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lic sector policies for the better long-term

good. For instance, as shown in Figure 11,

northern SA with the highest predictability
has an average density of rooftop PV systems equal to 41.5%,

comparable with the south (40%)with significantly lower predict-

ability. A better policy could have been offering different incen-

tives in different regions based on their predictability, e.g.,

rooftop PV only in the northern part of the state and PV plus bat-

tery in the south.

On a larger scale, considering renewable generation pre-

dictability as a factor in the decision-making processes can

impact the strategies for dealing with the uncertain nature of

renewable generation. For instance, the lower predictability

of PV generation in the state of VIC (Figure 10) suggests

that increasing rooftop solar PV in that region will increase

net demand uncertainty compared with other states, which

in turn requires a higher amount of operational reserve re-

quirements in the power grid and, hence, higher cost of

energy for consumers. This can shape the policies and regu-

lations to push for alternative renewable generation (e.g.,

small-scale wind turbines) instead of rooftop PV or subsidies

on home battery systems in that region. These are only a

few examples to showcase the significance of considering

PV generation predictability in various aspects of electricity in-

dustry policymaking.

Other applications in power systems

Apart from the application of predictability in private invest-

ment and policy design, we identified several potential appli-

cations related to other aspects of the energy sector, such

as power system daily operation, power grid planning studies,

and even automated diagnosis of generation anomalies in a

large number of PV systems. For instance, considering the
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Figure 7. Strong inverse correlation between

the regulation market costs and the genera-

tion predictability of solar farms

In (A), the scatterplots illustrate the relationship be-

tween the average predictability and CPF of

2-month rolling horizons for the rooftop PV genera-

tion and the GTI dataset (the same data as in Fig-

ure 6). In (B), the scatterplot shows the relationship

between the predictability of the solar farms’ GTI

data and CPF for the six solar farms in NSW in

the year 2019. The CPFs are normalized based

on the capacity of each solar farm. In all scatterplots,

the correlation between the two variables is statis-

tically significant (p < 0.05); thus, the R2 value is

shown. Also, in each plot the linear regression

equation describing the quantitative relationship

between the CPF and the predictability is presented

using the ordinary least squares method.
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predictability changes over time reveals interesting and help-

ful seasonality patterns in renewable generation predictability

that can advise system planning studies. Figure 12 presents

the predictability profiles of the rooftop PV generation in three

states of Australia, namely NSW, VIC, and SA, over time. In

these charts, each line represents the predictability profile of

an Australian household over the year 2019, calculated on

the basis of 2-month rolling windows that move forward

1 day at a time. It can be seen that the evolution of predictabil-

ity over time varies remarkably from one state to another. This

observation may have significant policy design implications,

e.g., to jointly plan future flexibility resources (such as batte-

ries or pumped hydro storage) and interconnections between

states to share flexibility capacity in different seasons, thus

lowering the cost of decarbonization for all Australians. For

example, the PV generation predictability is the lowest in

SA from August to October (Figure 12A) but the highest in

NSW during the same period (Figure 12C). In the event of

proper interconnection between the two states (in May

2021, the Australian Energy Regulator approved constructing

a new interconnector between SA and NSW70), the flexibility

sources in NSW can be used to manage the higher uncer-

tainties in the SA power grid during that time. The average

predictability of renewable generation in each state can

also inform power system operators and market partic-

ipants in determining the time frame for the annual mainte-

nance of their assets, ensuring the availability of enough
reserve requirements when renewable re-

sources have lower predictability. Lastly,

acknowledging that the maximum capa-

bility of prediction methods varies in

different states over time can advise po-

wer system operators regarding the fore-

casting accuracy of renewable sources in

different areas and, thus, better estima-

tions for required frequency regulation

sources in the power systems.

By knowing that solar PV generation is

highly correlated with solar insolation, we

expect to see similar output from the PV
systems located in close proximity. As a result, we should

observe similar changes in the predictability of the PV systems

in the same region, which can be verified in Figure 12. This

further proves that the predictability of the PV generation,

measured by the WPE, is an inherent feature of the PV system.

From a different perspective, we can use this property to auto-

matically diagnose faults, shading, and other inefficiencies and

malfunctions in PV systems within a region using ‘‘big data’’

analysis.71

DISCUSSION

The overwhelming attention to improving the forecasting

methods of renewable generation in recent years has overshad-

owed the fact that no method can provide perfect predictions for

renewable generation. This leads us to think about how the

inherent predictability of renewable generation can be quanti-

fied. In this paper, we tried to shed light on this missing piece

of the puzzle. By conducting a set of analyses on an actual PV

generation dataset, we found a reliable method among various

potential metrics to quantify the inherent predictability of renew-

able generation data. For this purpose, we demonstrated that

the WPE with dimension 6 and a 10-min resampling interval is

themost suitable predictability measure for our application, illus-

trating its strong relationship with forecast errors regardless of

the forecasting method, prediction horizon, and error metric.

Then, using our PV generation dataset and analyzing various
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Figure 8. Annual solar irradiance and predictability values of (poten-

tial) solar farms in NSW
In (A), the fill color of the circles quantifies the total annual GTI sun-tracking

values for the potential solar farm locations in NSW. In (B), the fill colors of

the circles quantify the predictability (1 � WPE) of the GTI data at the

potential solar farm locations in NSW. The circles with orange borders

indicate actual farm locations. Both the annual solar irradiance and pre-

dictability are calculated based on the 5-min GTI time series from August

2021 to August 2022. The GTI data were obtained from SolCast.58.

Figure 9. Impact of considering the predictability in choosing the

best location for building a solar farm

The bar plot shows the projected revenue changes of a 51.8 MW solar farm

when installed in different locations, shown in Figure 8, with respect to location

1. In the first scenario, the revenue only depends on the annual solar irradiance.

In the second scenario, the costs associated with the regulation market costs

are also taken into account based on the changes in the predictability; thus,

the CPF.
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real-world examples, we provided evidence that this measure

can offer valuable additional information to decision-makers in

the energy industry. Revealing the significant impact of PV gen-

eration predictability on the profit of solar farms, we demon-

strated that considering the predictability in renewable plant in-

vestments can lead to better decisions with higher profits.

Also, by comparing the rooftop PV density and predictability

data in SA, we showed that policymakers can benefit from

considering renewable generation predictability in policy design.

Lastly, we demonstrated how predictability can be applied

beyond what we discussed here, analyzing PV generation pre-

dictability in different states of Australia to show an example of

such applications.

Electricity generation and consumption are undergoing

significant changes, for example the ever-increasing adoption

of electric vehicles and rooftop PV systems combined with

the installation of utility-scale renewable power plants, making

electricity supply and demand more unpredictable. Conse-

quently, estimating the predictability of generation and demand

is becoming more critical than ever. While forecasting methods

are essential, they will never be perfect. Hence, attention

must be paid to the other half of the problem: the limited

inherent predictability of intermittent generation sources.

Measuring this property of renewable generation data can offer

numerous direct and indirect insights to policymakers, inves-

tors, power system planners and operators, and third-party
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service providers in the electricity industry for better decision-

making.

While the analysis in this paper is based on PV generation

data, future studies on wind energy generation might gain

similar insights. Also, even though the predictability measure

chosen for this paper works well for measuring the short-

term predictability of renewable energy, it cannot be used to

measure long-term predictability (months and years ahead).

A metric for estimating long-term predictability could have

many applications in the electricity industry, e.g., quantifying

the long-term risks associated with renewable energy invest-

ments. Future research can benefit from addressing these

limitations.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Sahand Karimi-Arpanahi (sahand.karimi-

arpanahi@adelaide.edu.au).

Materials availability

There are no physical materials associated with this study.

Data and code availability

All the Python codes used for thementioned analyses in this study are available

on Zenodo (https://doi.org/10.5281/zenodo.7538884)72 and a GitHub reposi-

tory (https://github.com/sahand-karimi/Measuring_Predictability_Renewable_

Energy). The original rooftop PV generation data from Solar Analytics, used

in this study, cannot be shared because of a nondisclosure agreement

with the company. However, we have added a synthetic dataset with a similar

structure to our rooftop PV generation to the repository. This dataset is

synthesized by interpolating hourly solar irradiance data to 5-min resolution in

different locations of Australia in 2015.73 While this synthetic dataset does

not meet the criteria for the application described in our study, it guides the

users to prepare their own dataset in the correct structure that can be used

by our code. Also, it can be used as an example to study the code.

Please note that a renewable generation dataset should satisfy the following

three conditions for the applications described in this paper: (1) it should have

at least a temporal resolution of 10min (it can differ depending on the electricity
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Figure 10. Impact of location on the predict-

ability of solar PV generation

The predictability values are shown for the 1-year PV

generation of houses in different regions across

Australia. Each region consists of postcodes within

25 km of each other. The circles on the maps are

colored based on the average predictability (1 �
WPE) of PV systems in that region. The resampling

interval of the PV generation time series is 10 min,

and the embedding dimension in the WPE calcula-

tion is set to 6.
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market and compliance rules); (2) the measured or estimated data should not

be systematically affected by the external factors, such as generation curtail-

ment, export limits, and so forth; and (3) the length of data should be at least

6 months, and the dataset should cover a wide geographical area such as a

country.

The solar irradiance data (GTI) from SolCast, used in this study, cannot be

shared publicly, but university students and researchers can freely access

the data on SolCast.com to reproduce our results.58 To do so, one should

create a ‘‘Student or public researcher’’ account and then submit a ‘‘Time se-

ries request’’ with the following details. Enter all the locations of the (potential)

solar farms as in our study (the exact latitude and longitude of each location are

available in the public repository). Set the ‘‘Data period’’ as mentioned in the

relevant analysis, ‘‘Time granularity’’ to 5 min, and ‘‘File format’’ to SolCast.

Select ‘‘GTI horizontal single-axis tracker’’ as one of the parameters in the

request. Finally, download the GTI data and use it as input for the relevant an-

alyses. In the case of an issue in accessing these data, please reach out to the

lead contact.
Figure 11. Predictability and density of rooftop PV generation in SA

A comparison between the PV generation predictability at SA’s local govern-

ment areas (LGAs) with available data and the density of the dwellings with

rooftop PV in the LGAs. The data for rooftop density is obtained from the

Australian PV Institute.80 Also, the resampling interval of the PV generation

time series is 10 min, and the embedding dimension of WPE is 6.
Permutation entropy

Aiming to define a predictability measure, which is ‘‘easily calculated for any

types of time series, be it regular, chaotic, noisy, or reality-based,’’ Bandt

and Pompe introduced PE in their seminal work.37 As a model-free complexity

metric, PE was shown to behave similarly to Lyapunov exponents and

Kolmogorov-Sinai entropy (i.e., the complexity measures of dynamical sys-

tems).37,43,74 PE can readily be calculated by determining the ordinal pattern

of the vectors in a time series and extracting the probability distribution of

the ordinal patterns. The core idea in PE is that the patterns inside a time series

do not have a similar probability of occurrence. For instance, if a couple of spe-

cific patterns occur most often in a time series, PE will be a small number close

to zero, meaning that the time series is predictable because of the repetitive

patterns. Conversely, if all patterns have an almost equal probability of occur-

rence, PE will be close to 1, showing that the time series is difficult to predict.

To calculate the PE of time series fxtgt = 1;.;N of length N for embedding

dimensiond,wefirst divide the timeseries intoN � ðd �1Þembedding vectors

(i.e., sequencesof values) of lengthd, which areXd
t = ðxt ; xt + 1;.; xt + ðd� 1ÞÞ for

t = 1;.;N � ðd � 1Þ. We then assign each vector to a single permutation, pi,

in the set of possible permutations,P, which includes all possible unique order-

ings of d real numbers. Therefore, there are d! unique permutations in P. In

other words, we associate each sequence of values, Xd
t , to one permutation,

pi, based on the sequence’s ordinal pattern, pi � fðXd
t Þ. For example, if Xd

t is

{4,3,7}, then fðXd
t Þ, the ordinal pattern of this sequence, is 2-1-3.

For each pi ˛P, the relative frequency of permutation pi occurring in time

series fxtg is

PðpiÞ =

���t; ��; t <N � d;f
�
Xd
t

�
= pi

���
N � ðd � 1Þ ; (Equation 1)

where j:j shows cardinality, fðXd
t Þ is the ordinal pattern of Xd

t , and PðpiÞ is the

occurrence probability of vectors that has the same ordinal pattern as permu-

tation pi .

Using the above definitions, PE for dR2 is defined as

PEðdÞ = �
X
pi ˛P

PðpiÞlog2ðPðpiÞÞ: (Equation 2)

As 0<PEðdÞ< log2ðd!Þ, the PE value is commonly normalized by dividing it

by log2ðd!Þ, so the normalized PE values are between 0 and 1. This way, the

values of PE in different dimensions are comparable with each other. In this pa-

per, the normalized PE is referred to as the ‘‘PE.’’

It is also worth noting that the Bandt and Pompe37 recommended that, for

practical purposes, the embedding dimension should be a number between

3 and 7 (d˛ f3; 4; 5; 6; 7g). Additionally, to allow all possible patterns in the

time series to appear in the analysis, we should select the dimension such

that d! � N. This enables accurate estimation of the relative frequency of per-

mutations for a finite time series. Note that to determine the exact values of the

frequencies, wemust haveN/ + N.75 Lastly, because PE does not consider

the possibility of equal values in a vector, tie-breaking methods should be

implemented in those situations, particularly in discrete-valued time series.

However, such circumstances can infrequently happen if the data are re-

corded in high resolution, as in our dataset.
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Figure 12. Different patterns of changes in PV generation predict-

ability over time in different states of Australia

The predictability values (1 � WPE) of a 2-month rolling horizon across a year

for the PV systems’ generation profiles in the states of (A) SA, (B) VIC, and (C)

NSW. In this analysis, the resampling interval of the PV generation time series

is 10 min, and the embedding dimension of the WPE is 6.
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Weighted permutation entropy

A major drawback in PE for measuring the predictability of time series is that it

reflects no information other than the order structure of the vectors in a time

series. This is particularly significant when the changes in the amplitude of a

time series contain important information, such as in a PV generation time se-

ries. In addition, PE is highly sensitive to measurement when the values of the

observations in the time series are close to each other. To deal with these is-

sues, an improved version of PE was proposed by Fadlallah et al.,43 whereby

they assigned a weight to each vector in the time series, calling the new mea-

sureWPE. It is less sensitive to noises and considers the amplitude information

of the observations in the calculations. This is because the weights of the vec-

tors are quantified according to the variance of the observations in each

vector.

To calculate the WPE of a time series, we first determine the weight of each

vector as follows:

wt =
1

d

Xd

s = 1

�
xt + ðs� 1Þ � X

d

t

�2
; (Equation 3)

where X
d

t is the arithmetic mean of the values in the corresponding vector.

For each pi ˛P, the weighted probability of permutation pi occurring in time

series fxtg is
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PwðpiÞ =

PN�ðd� 1Þ
t = 1

�
wt :j

�
f;

�
Xd
t

�
;pi

��
PN� ðd� 1Þ

t = 1 wt

; (Equation 4)

where jða;bÞ is 1 when a = b, and 0 otherwise.

Using the above definitions, WPE for dR2 is defined

WPEðdÞ = �
X
pi ˛P

PwðpiÞlog2ðPwðpiÞÞ: (Equation 5)

Similar to PE, WPE values are normalized by log2ðd!Þ. In this paper, the

normalized WPE is referred to as the ‘‘WPE.’’
Sample entropy

Pincus adapted the concept of entropy for real-world applications by propos-

ing approximate entropy (ApE) to measure the complexity of time series. He

argued that the variations in the proposed measure are closely related to the

changes in Lyapunov exponents and Kolmogorov-Sinai entropy, thereby

demonstrating the ability of ApE to indicate the complexity of systemdynamics

by using imperfect and finite data.35

To determine the ApE for time series fxtgt = 1;.;N, we should first

form a sequence of vectors fumt gt = 1;.;N�m + 1 with length m, where

umt = ½xt ; xt + 1;.; xt + m� 1� and m is a positive integer (for the sake of consis-

tency with PE andWPE definitions, we callm ‘‘dimension’’). Second, we define

function dðumt ;umt Þ as the maximum of the absolute values of the component-

wise differences between the two vectors. Next, we count ‘‘similar’’ vectors

with dimension m in the time series by

Cm
t ðrÞ =

1

N � m + 1

���t�� d�um
t ; u

m
t

�
< r

���; (Equation 6)

where j:j shows cardinality, and r specifies the tolerance for two vectors to be

considered similar (we call r ‘‘match criterion’’).Cm
t ðrÞ is actually the probability

that vector umt is within r of umt . Using this function, we next define

FmðrÞ =
1

N � m + 1

XN�m + 1

t = 1

ln Cm
t ðrÞ: (Equation 7)

Considering the mentioned definitions, the ApE of time series fxtgt = 1;.;N is

defined as

ApEðm; rÞ = lim
N/ + N

�
FmðrÞ � Fm + 1ðrÞ�: (Equation 8)

Owing to some issues in the practical implementation of ApE, Richman

et al.36 proposed an improvement to the ApE, defining it as sample en-

tropy. An important shortcoming of the ApE is its bias in the calculation

of Cm
t ðrÞ, since the self-matches of the template vector, umt , are included.

This would particularly be an issue for relatively short time series.39 To

address this issue in calculating Cm
t ðrÞ, they did not consider self-

matches. In addition, they considered only the first N � m vectors of

dimension m (instead of N � m + 1 in ApE) to ensure that, for

1% t%N � m, both umt and um + 1
t are defined. Therefore, to calculate

the SaE, we first define

Bm
t ðrÞ =

1

N � m � 1

���t�� d�um
t ; u

m
t

�
< r; ts t

���; (Equation 9)

Am
t ðrÞ =

1

N � m � 1

���t�� d�um + 1
t ; um + 1

t

�
< r; ts t

���: (Equation 10)

Thereafter, we define

BmðrÞ =
1

N � m

XN�m

i = 1

Bm
t ðrÞ; (Equation 11)

AmðrÞ =
1

N � m

XN�m

i = 1

Am
t ðrÞ: (Equation 12)

Considering the above definitions, the SaE of time series fxtgt = 1;.;N is

defined as
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SaEðm; rÞ = lim
T/ + N

� ln

�
AmðrÞ
BmðrÞ

�
; (Equation 13)

which can be estimated by statistic SaEðm; rÞ = � ln
	
AmðrÞ
BmðrÞ



.

The SaE ismore robust against data length and displays relative consistency

under different circumstances than the ApE. Also, it can be calculated faster

than ApE because of its higher computational efficiency.36
Dispersion entropy

Tackling some limitations of SaE and PE, Rostaghi and Azami introduced

DE in 2016 as a new ‘‘irregularity indicator.’’ Since the probability of

different states is similar in a system with maximum entropy or irregular-

ity, it is impossible to predict the system states. Conversely, the system

has a minimum irregularity (or entropy) if there is only one state with the

probability of one that can happen.45

Accordingly, to calculate the DE of time series fxtgt = 1;.;N of length N for

embedding dimension d and classes c, we first map each data point xt to one

of the classes, labeled from 1 to c. While this mapping can be done through

different linear or nonlinear methods, the typical way45 is to employ the normal

cumulative distribution function to map fxtg to fytgt = 1;.;N, where yt is between

0 and 1. We can then use a linear algorithm to assign yt to an integer from 1 to

c, creating fztgt = 1;.;N. Then, similar to PE, we first divide the time series into

N � ðd �1Þ embedding vectors (i.e., sequences of values) of length d, which

are Zd
t = ðzt ; zt + 1;.; zt + ðd� 1ÞÞ for t = 1;.; N � ðd � 1Þ. We then assign

each vector to a single dispersion pattern among all possible patterns. The num-

ber of possible dispersion patterns is equal to cd, since the length of each

embedding vector is d, and each data point in the vector can be an integer

from 1 to c. Thereafter, similar to PE (Equations 1 and 2), the relative frequency

of each dispersion pattern is calculated, based onwhich the value of DE is deter-

mined. Lastly, as this value would be between 0 and log2ðcdÞ, it is normalized by

dividing it by log2ðcdÞ. This paper refers to the normalized DE as the ‘‘DE.’’
Spectral entropy

Thepower spectral density (PSD) (or simply power spectrum) of a signal, widely

used in signal-processing literature, describes the distribution of the signal’s

power content based on the frequency components composing the signal.

To calculate the SpE, we first utilize a periodogram to estimate the PSD of

the time series. The PSD is then normalized by the total power of the time se-

ries. Thus, there would be
Pfn

f = 0Sf = 1, where Sf is the normalized power

spectrum, and fn is a reasonably high frequency.76

Given the normalized PSD of the time series, its SpE can be defined as

SpE = �
Xfn
f = 0

Sf log2ðSf Þ: (Equation 14)

Predictability

As discussed earlier in the paper, predictability is an inherent property of

dynamical systems.23 To measure the predictability of time series

fxtgt = 1;.;N using its entropy, we define it as

Pred: = maxðHÞ � HðfxtgÞ; (Equation 15)

where H denotes the entropy value and maxðHÞ is the maximum value that it

can have. Thus, if the entropy is normalized, maxðHÞ = 1.
Time series resampling

Time series resampling is an essential technique that allows us to flexibly find

the best time resolution for our analysis. It can be used for different purposes,

e.g., handling large datasets, removing the impact of sporadic measurement

errors, or getting desirable results for specific purposes.

To perform resampling, we created each data point of the resampled time

series based on the average of the required number of data points in the orig-

inal time series. For instance, to create a 10-min resampled time series from

our original 5-min data, we created each data point of the resampled time se-

ries based on the average of two data points in the original series.
Normalized root-mean-square error

Assume At ;Ft , and et respectively denote actual, forecast, and error values for

t = 1;.;N. Then, the NRMSE will be calculated as follows:

et = At � Ft : ct˛ f1;.;Ng; (Equation 16)

RMSEðRootMeanSquareErrorÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meanðe2

t Þ
q

; (Equation 17)

NRMSE =
RMSE

maxðAtÞ � minðAtÞ : (Equation 18)

Please note that in the minutes-ahead predictions, NRMSE is normalized by

the 99th percentile to avoid the impact of potential measurement errors on the

normalization.

Normalized mean absolute error

Assume At ;Ft , and et respectively denote actual, forecast, and error values for

t = 1;.;N. Then, the NMAE will be calculated as follows:

et = At � Ft : ct˛ f1;.;Ng; (Equation 19)

MAEðMeanAbsoluteErrorÞ = meanðjet jÞ; (Equation 20)

NMAE =
MAE

maxðAtÞ � minðAtÞ ; (Equation 21)

where j:j shows the absolute function.

Please note that in the minutes-ahead predictions, NMAE is normalized by

the 99th percentile to avoid the impact of potential measurement errors on

the normalization.

ARIMA prediction method

We used ARIMA as one of the standard minutes-ahead prediction

methods to determine the prediction errors of time series in the datasets.

ARIMA works on the basis of autocorrelations in the time series to model

temporal structures. We can then use the fitted model to predict future

values in a time series. The ARIMA model consists of three main compo-

nents, based on which a model is fitted on a time series. The autoregres-

sion (AR) part of ARIMA aims to describe a particular time series data

point based on the linear regression of past observations. The moving

average (MA) part uses past prediction errors in the time series in a

regression-like model to predict future values. Lastly, if the time series

is not stationary, the integrated (I) part of ARIMA calculates the differ-

ences between consecutive observations of the time series to create a

stationary time series, using which the model would be trained. Inter-

ested readers are referred to the book by Hyndman and Athanasopou-

los27 for additional information regarding the ARIMA models.

Naive prediction method

The naive prediction method was used as the second minutes-ahead repre-

sentative predictionmethod in our analysis. As a result of thismethod, forecast

values are set to previous period observations, i.e.,

FT + tjT = AT ; (Equation 22)

where At and Ft denote the actual and predicted values, respectively, and

FT + tjT is the predicted value at time T + t when AT is the last historical

data value.

Random forest prediction method

We used random forest regression as one of the common day-ahead pre-

diction methods to determine the prediction errors of time series in the da-

tasets. Random forest regression is a supervised learning algorithm that

uses an ensemble learning method for regression. This method combines

predictions from multiple machine-learning algorithms to make more accu-

rate predictions than those of a single model using random forecast as a

regressor.77
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Seasonal naive prediction method

This article used the seasonal naive prediction method as the second day-

ahead representative prediction method. This method sets predicted values

to the observed values for the previous seasonal period, where the seasonal

period is 1 day for the PV generation time series. Accordingly, the predicted

values are calculated by

FT + tjT = AT + t�mðk + 1Þ; (Equation 23)

where At and Ft denote the actual and predicted values, respectively; FT + tjT is

the predicted value at time T + t when AT is the last historical data value;m is

the seasonal period; and k is the integer part of ðt � 1Þ=m.
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