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Abstract

Optical fibre sensing correlates measurable properties of the light guided

within an optical fibre with an external parameter being sensed. There

are a number of different methods of fibre sensing, including scattering

based sensing, specklegram sensing and interferometric sensing, each with

their own applications and limitations. Sensing with multimode fibre offers

some significant advantages over single mode fibre, but carries the inherent

limitation of extracting useful information from the highly complex and

sensitive process of multimode fibre transmission.

Deep learning is a form of machine learning at the forefront of data

analysis and processing which has solved many problems in a wide range of

applications, most notably image and speech recognition. Its application in

multimode fibre imaging and sensing has been brief but successful. In this

thesis, deep learning is explored as a tool for understanding and quantifying

the complex multimode fibre transmission process for sensing applications.

Chapter 2 looks at deep learning applied to fibre specklegram sensing,

demonstrating its ability to correlate the change in the specklegram output

of the fibre with a parameter of the fibre’s environment for temperature and

refractive index sensing. The superiority of the deep learning approach over

current statistical methods is demonstrated, as the deep neural networks

improve upon the issues of limited dynamic range and vulnerability to

specklegram misalignment that are present with the correlation method.

At the same time, the first example of deep learning for regression-based

sensing of a continuous variable, as opposed to discrete/classification sensing,

is presented.

Chapter 3 looks at deep learning applied to sensing with the wavelength

spectrum output of a multimode fibre. Current methods of interferometric

sensing with a wavelength spectrum and multimode fibre involve the need to

inscribe resonance-producing structures within the fibre, which can be costly

and time-consuming. The use of deep learning has been previously explored
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as a method of extracting information pertaining to an environmental

parameter, specifically temperature, from a wavelength spectrum without the

presence of any resonant features. This thesis looks to build upon such work

by demonstrating multi-point sensing using the concept of encoding spatially

resolved temperature information in a wavelength spectrum. Sapphire crystal

optical fibre is used for sensing, where its highly variable fibre radius is

exploited as a means of encoding such spatially resolved information in a

fashion that a deep neural network can learn. It is shown that such networks

trained on spectra from sapphire fibre perform far better for multi-point

temperature sensing than those trained on spectra from glass silica fibres of

constant radius.
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1 Introduction

1.1 Sensing with optical fibres

1.1.1 Overview

The potential of fibre optics technology has been realised since the

mid 1960s, with their low loss light transmission properties, revolutionising

the telecommunication industry [1]. Interest in fibre optics for sensing

applications can be traced to 1967, with the patenting of the “Fotonic

Sensor” for surface finish monitoring [2]. Both research interest and industry

applications in fibre optics for telecommunications and sensing since these

origins have been heavily dominated by the former, due to the immediate

market impact and collective research focus, something fibre sensing did

not have. Nevertheless, fibre sensing has been extensively researched,

with notable commercial successes such as gyroscopes and structural health

monitoring [3].

The attractiveness of optical fibres for sensing (as well as

telecommunication) purposes stems from the many unique properties of

standard glass silica optical fibre; electromagnetic passivity, small size (radius

on the order of tens of microns), ability to access difficult to reach locations

(such as in vivo), corrosion resistance, and compatibility with technology

and systems developed for telecommunication [4, 3]. They are also capable

of multiplexing information in the wavelength domain and yielding spatially

resolved information in the time domain.

Figure 1: Basic principle of operation of a) an intrinsic and b) an extrinsic optical fibre sensor

Optical fibre sensors operate on the principle that the properties of light
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guided within an optical fibre, such as intensity, wavelength, polarisation

or phase, can be modulated by the environment surrounding the fibre [4].

This implies that environmental parameters such as temperature, pressure

and strain can be correlated with the output of an optical fibre and hence

sensed. As shown in Figure 1, if the modulation of the light occurs within

the fibre, the sensor is classed as intrinsic, whereas if an external transducer

used, wherein the light modulation occurs, the sensor is classed as extrinsic

[5].

1.1.2 Theory of light propagation of through optical fibre

Classical geometric ray tracing is the simplest and most intuitive

picture to describe the propagation of electromagnetic radiation, and is an

approximation which holds when the fibre core size is large compared to the

wavelength of light. For almost all conventional fibres, including the fibres

used throughout the experimental sections of this thesis, this approximation

holds, meaning one can draw results from applying geometric optics to the

propagation of light through optical fibres. To do this we consider a circular,

step-index fibre, as shown in Fig. 2. A ray of light travelling through the core

of the fibre that makes an angle θz with the fibre axis will strike the core-

cladding interface of the fibre at an angle θ. As per Snell’s law of refraction

(Eq. 1), there is a critical angle, θc associated with this interface (Eq. 2),

such that any angle of incidence at or above this angle will result in all of

the incident light to be reflected and none to be transmitted through the

interface.

nisin(θi) = ntsin(θt) (1)

θc = sin−1(
nt
ni

) (2)

Here, ni and nt denote the refractive index experienced by the incident

and transmitted rays respectively, and θi and θt denotes the angles these rays
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Figure 2: a) A ray of light incident on the core-cladding interface of a step-index optical fibre b) the

refractive index profile of a step-index fibre

make with the normal to the interface between the media. Specifically, in the

case of a ray of light striking the core-cladding interface of a fibre, ni = nco

and nr = ncl. For a ray of light propagating in a fibre, which makes an

angle θz with the fibre axis, and angle θ = 90o − θz with the normal to the

core-cladding interface, propagation without loss of power due to reflections

at the core-cladding interface will occur so long as θ ≥ θc, or according to

the condition in Eq. 3.

θ ≥ sin−1(
ncl
nco

) (3)

To fully understand how light exists and propagates through an optical

fibre, however, one must use the electromagnetic field picture of light.

Maxwell’s equations describe the spatial and temporal relationships of the

electric and magnetic components of a time varying electromagnetic field,

and are given in Eqs. 3-6 [6] as:

∇H = J +
∂D

∂t
(4)

∇E = −∂B

∂t
(5)

∇ ·D = ρ (6)
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∇ ·B = 0 (7)

H denotes magnetic field strength, J denotes current density, D denotes

the electric displacement field, E denotes the electric field strength, B denotes

the magnetic flux density and ρ denotes the electric charge density.

The goal is now to solve for E and H with the constraints imposed by a

fibre’s geometry. In this case a translationally invariant, step-index, circular

fibre is considered. While the fibres used in the experimental sections of

this thesis deviate from translational invariance and a step-index nature,

the conclusions drawn from this simple case are enough to gain a general

understanding of how light propagates through a fibre. The principles and

feasibility of optical fibre sensing can also be drawn from these conclusions.

This derivation follows [6].

The step-index, circular fibre has a circularly symmetric cross-sectional

refractive index profile, n(r), which can be described in cylindrical polar

coordinates (r, ϕ, z) as:

n(r) =

nco, 0 ≤ r < a

ncl, a < r <∞
(8)

It can be shown that for a translationally invariant fibre, the z-

dependence of the electric and magnetic fields can be separated from the

transverse (r and φ) dependence in the form of a complex exponential:

E(r, φ, z) = e(r, φ)exp(iβz) (9)

H(r, φ, z) = h(r, φ)exp(iβz) (10)

where β denotes the propagation constant of the fibre. It can be shown

that satisfying Maxwell’s equations in this situation reduces to solving the
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vector wave equation in both the core and the cladding, with the condition

of continuity of the tangential field components across the interface of the

two. In the case of the translationally invariant fibre, this reduces to

{∇2
t + n2k2 − β2}ez = 0 . (11)

Here ∇t denotes the spatial derivative transverse to the fibre axis (z-

axis), k the wavenumber and ez the z-component of the modal field. It can

also be shown that, from Maxwell’s equations, the transverse modal fields

can be determined from ez once it has been determined from the scalar wave

equation.

There is a set of solutions to the scalar wave equation given the boundary

conditions, which are indexed by two values: ν and m. These solutions, which

we refer to as the supported or guided modes of the fibre, have complex forms.

To describe these solutions in simple form, we first define three quantities:

U , W and R as follows:

U = a(k2n2
co − β2)1/2 (12)

W = a(β2 − k2n2
cl)

1/2 (13)

R = r/a (14)

Radially, the modes take the form Jν(UR) in the core, where Jν is the

νth Bessel function of the first kind, and Kν(WR) in the cladding, where

Kν is the νth modified Bessel function of the second kind. Azimuthally, the

modes take the form sin(νφ) or cos(νφ) depending on their parity. ν is the

first of two indices with which modes are identified. Multiple solutions with

the same ν index may satisfy the scalar wave equation, however these modes

will have different values of β and hence different values of U . Such modes

are distinguished by the second modal index m, with the solution possessing

the highest value of U given m = 1 and so forth.
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Azimuthally invariant modes, that is with ν = 0, correspond to the

transverse electric and magnetic modes, TE0m and TM0m. Modes with ν ≥ 1

are referred to as the hybrid modes, HEνm.

A quantity used to describe how multimode a fibre is, is its V-number,

defined as:

V = ak(n2
co − n2

cl)
1/2 (15)

A fibre with a V-number in the range 0 < V < 2.405 will operate as

a single-mode fibre. The number of supported modes increases as the V

number increases. For large V-numbers, the number of supported modes can

be approximated with:

Nmodes ≈
V 2

2
(16)

Modes with lower ν become supported before those with higher ν.

Standard multimode telecommunications fibres with a core diameter of 50

νm and a numerical aperture (defined as NA =
√
n2
co − n2

cl) of 0.39 will have

a V ≈ 40, meaning they will support roughly 800 modes.

Intensity interference patterns

The electric field in a fibre is the superposition of the electric fields

belonging to each individual supported mode. For a fibre with N supported

modes, each with modal coefficient aj and propagation constant βj, the

electric field cross-section at position z along the z-axis is given by

E(r, φ, z) =
N∑
j=1

aj êj(r, φ)exp(iβjz) , (17)
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where êj(r, φ) is the unit vector pointing in the direction of ej(r, φ). The

intensity speckle pattern, I, is given by the magnitude of this electric field

vector squared,

I(r, φ, z) =

∣∣∣∣∣
N∑
j=1

aj êj(r, φ)exp(iβjz)

∣∣∣∣∣
2

(18)

This intensity speckle pattern, when imaged and recorded, is called a

specklegram, and is used for sensing in chapter 2. It is highly sensitive

to the phase relations between each pair of modes in the fibre, as seen in

the scale of the complex phase term, for which a full 2π phase shift occurs

over one effective wavelength of its associated mode.. The dependence of a

fibre’s refractive index on environmental parameters (such as temperature

and pressure), and in turn βj’s dependence on the fibre’s refractive index,

makes a specklegram highly sensitive to changes in the fibre’s environment,

a desirable quality of fibre sensors.

Figure 3: Example of the electromagnetic intensity pattern of individual modes propagating in a fibre

(left) and the total intensity pattern, resulting from complex interference between these modes (right).

Fig. 3 shows a numerically modelled example of the cross-sectional

intensity pattern belonging to six different supported modes in a fibre, as well

as the overall intensity pattern belonging to the superposition of all modes

in the fibre. Although the individual modal intensities carry a certain radial
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symmetry, the resultant intensity becomes a complex interference pattern

due to the phase differences between the modes.

The other piece of data collected from an optical fibre sensor for sensing

in this thesis is a wavelength power spectrum, used in chapter 3. This is

generated by measuring the power coupled into a single mode fibre from the

optical fibre sensor at a range of wavelengths. The act of coupling the light

into a single mode fibre filters out the power which does not reside near the

fibre’s core. As the intensity pattern is dependent upon the wavelength, this

power will vary across the wavelength range. In addition, a given wavelength

power spectrum will change in response to the fibre’s environment through

perturbations to the fibre’s refractive index and length, and hence can be

used for sensing.

The wavelength power spectrum is a superposition of the interference

between each pair of modes in the fibre. A pair of modes with

differing effective propagation constants will produce a periodic wavelength

interference pattern, who’s periodicity in wavelength space depends on the

difference between these propagation constants. By considering the equation

for the full interference pattern given in Eq.18, it can be seen that the

contribution for each pair of interfering modes will be given by the cross

terms that arise from squaring the summation. The wavelength dependence

of this intensity arises from the βj term, itself given by Eq. 19.

βj =
2π

λ
neff,j(λ) (19)

1.1.3 Selected optical fibre sensors

There are a number of methods of effectively correlating changes in

the light guided within an optical fibre to an environmental parameter.

Successful methods include interferometric sensing (i.e. Fabry-Perot

interferometers (FPIs) and fibre Bragg gratings (FBGs)), scattering based

sensing and specklegram sensing. Scattering based sensors have the
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ability to be classed as truly distributed, in that sensing information is

provided on a continuous spatial scale. Quasi-distributed sensing, that is,

distributed sensing at discrete, spatially resolved points, can be achieved via

interferometric methods using wavelength division multiplexing. The number

of sensing points is limited by the available wavelength bandwidth.

Interferometric sensing

Interferometric sensors aim to create features in the wavelength or

frequency spectrum of a beam of light that are easily measured/tracked and

correlated to properties of the medium through which the light passed [4].

Early forms of interferometric sensing included Mach-Zehnder [7] and Sagnac

[8] interferometers, which split a single mode of light in two beams in order

to create an interference pattern with itself as a result of differing optical

path lengths. These are capable of sensing anything which affects the optical

path length of the light propagating through the fibre, such as temperature

and pressure. Alternative versions of interferometric sensors include FPIs

and FBGs.

A fibre FPI functions by inscribing a cavity inside of an optical fibre, with

reflections from either end of the cavity producing an interference pattern

formed from the two reflections [9]. The resulting interference pattern is

periodic in wavelength, with the repeating nature corresponding to multiples

of 2π in the phase difference between the two reflected beams. The distance

between two spectral peaks is called the free spectral range, and is dependent

on the refractive index of the medium comprising the cavity. Extrinsic FPIs

consist of a cavity of a different material than the fibre, usually air, and

produce an interference pattern between reflections from either end of the

cavity. Intrinsic FPIs use the fibre itself as the cavity material, usually with

mirrors inserted at either end of the desired cavity. FPI interference patterns

are characterised by the coefficient of finesse, F (Eq. 20), a function of the

reflectivity of the mirrors comprising the cavity (R1 and R2), and determines
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how narrow the resonant peaks that are produced are. This is shown in

Figure 4.

F =
2π

−ln(R1R2)
(20)

Figure 4: Two interference patterns produced from theoretical Fabry-Perot interferometers with different

coefficients of finesse.

FBGs operate on a similar principle to FPIs, in that they aim to produce

resonant features in the wavelength spectrum of a fibre that can be easily

tracked. An FBG creates a single resonant peak that moves in wavelength

space in response to the fibre’s optical path length. This is achieved with a

periodic perturbation to the fibre’s refractive index, called a grating, which

scatters light off each perturbation. The rigid spacing of the grating (named

the “pitch” and denoted by Λ) creates a resonance condition relating to the

spacing between perturbations, given by Eq. 21 [10]. Figure 5 shows this

principle of operation.
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λ = 2neffΛ (21)

The light reflected from each of the grating perturbations will grow out

of phase if this condition is not met, leaving a strong peak in the reflection

spectrum at this wavelength. This resonant wavelength is directly related to

the refractive index of the fibre and hence will shift in a manner that can

be calibrated to sense any environmental parameter which affects the fibre’s

optical path length.

Figure 5: Principle of operation of an FBG. The resonant wavelength is determined by the spacing of the

grating and the effective refractive index of the propagating mode in the fibre.

Both Fabry-Perot interferometers and fibre Bragg gratings are capable

of operating as multi-point sensors. FBGs can achieve this via two methods;

wavelength-division multiplexing, which inscribes multiple gratings of

different resonant wavelength in the fibre [11], and time-division multiplexing,

which inscribes multiple, low reflectivity gratings in the fibre, who’s reflected

signals can be distinguished in the time domain [12]. The former is limited

in dynamic range by the size of the available wavelength bandwidth, whereas

the latter is limited by the available time domain resolution. FPIs can

also achieve multi-point sensing through wavelength-division multiplexing

in the Fourier domain, but this is more difficult [13]. A novel approach is

to inscribe FPIs whose cavities are defined by low reflectivity FBGs. The

different cavities can be distinguished using Fourier analysis [14]. In all
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cases, inscribing just a single FBG or FPI in an optical fibre can be difficult,

costly and time consuming, which poses an inherent difficulty in these sensing

methods which increases with the number of sensing points desired.

Scattering based sensing

Truly distributed sensors require continuous sensing at every single point

along a fibre to be capable of sensing temperature, not just discrete points,

something that is inherently not possible with the interferometric sensing

techniques described thus far. This type of sensing can be achieved by

exploiting the scattering that occurs everywhere as light propagates in a

fibre through mechanisms such as Raman, Rayleigh and Brillouin scattering,

as shown in Figure 6. Signals produced by the three types of scattering are

sensitive to different environmental parameters, and as such are suitable for

different types of sensors. Raman scattering is a result of the interaction

between light and thermally excited molecules [15], hence being sensitive

to temperature and mainly used for distributed temperature sensing [16].

Brillouin scattering is a result of the interaction between light and an acoustic

wave in the given medium acting as a form of Bragg grating, reflecting a

wavelength corresponding to its spatial wavelength. The reflected light is

dependent on both the medium’s refractive index and the wave’s acoustic

velocity, which are both a function of temperature and strain, allowing

Brillouin scattering based sensors to perform distributed temperature and

strain sensing [17]. Rayleigh scattering is a result of light interacting with

random inhomogeneities in the medium. It is frequently used for distributed

acoustic sensing, in conjunction with phase-sensitive optical time domain

reflectometry (Φ-OTDR) [18, 19].

Brillouin optical time domain analysis (BOTDA) is the main method of

interrogating a distributed sensor based on stimulated Brillouin scattering

[20]. This involves sending a pump pulse along the fibre that has a weak CW

probe also sent through it. The reflection from the pulse gives information on
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the Brillouin scattering due to the probe signal at each point it encounters.

Issues with BOTDA include phase noise arising from the coherence of the

pump pulse [21], the requirement of polarisation parallelism between pump

and probe [22] and trade-off between spatial resolution and pulse width.

Figure 6: Principle of operation of an OTDR based distributed sensor.

Optical time domain reflectometry (OTDR) is the main method of

interrogating a Raman distributed sensor [23]. This operates on the

principle that the local Raman backscatter in an optical fibre increases with

increasing temperature [16]. The limitation of both of these scattering-based

temperature sensing methods is however the spatial resolution being limited

by the time domain resolution of the recording equipment.

Specklegram sensing

An optical fibre specklegram sensor (FSS) exploits the sensitivity of the

OPLs and relative phases of a fibre’s guided modes for sensing. Instead

of analysing interference features in the wavelength domain, specklegram

sensing utilises the cross-sectional spatial intensity interference pattern

emanating from an MMF’s end facet [24]. Section 1.1.2 gave an example

and the theory behind specklegrams.
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FSSs have the advantage of only requiring cheap and lightweight

equipment in comparison to other optical fibre interrogation techniques; a

lens, webcam and coherent light source is sufficient to capture a specklegram

[25]. Given these advantages, they have found many unique applications

including motion sensing and surveillance [26, 27, 28], temperature sensing

[29, 30] and strain measurement [31]. Some other specific applications include

wavelength detection [32] and blood flow monitoring [33].

The methods used to analyse and compare specklegrams are statistical,

the two main methods being correlation [34] and subtraction [35]. Such

statistical methods suffer from a lack of distributed sensing capabilities,

dynamic range limitations and vulnerability to noise, meaning the majority

of success in FSS finds itself in qualitative measurements and classification.

This thesis will address such weaknesses in specklegram sensing by exploring

the use of deep learning for specklegram analysis, demonstrating its

superiority over a traditional statistical correlative method in temperature

and refractive index (water depth) sensing.
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1.2 Deep learning of multimode fibre transmission

1.2.1 Deep learning introduction

Machine learning is a term which encompasses all methods and

algorithms by which a computer recurrently ‘learns’ from a set of data to

continually improve its parameters to optimise for a certain task [36]. Deep

learning is a branch of machine learning techniques, which uses large sets

of data to train neural networks, the architectures of which can loosely

be made analogous to the neurons in the human brain (hence the name)

[37]. These networks have the potential to be very large in size, with

almost every parameter able to be trained via backpropagation and stochastic

gradient descent [38]. Deep learning allows such neural networks to learn the

representations required for understanding data in high dimensional spaces

without any prior human input or knowledge about the data and its domain.

Deep neural networks are generally structured with layers which represent

the data in increasing levels of abstraction, starting from the raw input and

ending with the output.

Deep learning is recognised as the biggest advancement in machine

learning over the past 10 years and has become famous as a powerful

tool for finding intricate trends and structures in potentially very highly

dimensional data. Its potential came to the fore at the 2012 ImageNet

competition for classifying images, in which convolutional neural networks

far outperformed all other algorithms [39]. Some of its most well-known

and successful applications aside from image recognition include language

processing [40], speech recognition [41] and autonomous vehicle navigation

[42]. Deep neural networks gain the ability to learn a more comprehensive

set of the representations required to characterise its given dataset the larger

and more diverse the dataset is. The applications mentioned above all

have readily available corresponding datasets which are large and diverse,

which contributes to their status as deep learning’s largest successes. In

reality though, deep learning has shown itself to be capable of learning high-
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dimensional structures in any dataset, hence its wide variety of uses and

applications.

Figure 7: Schematic representations of a) a multi-layer perceptron and b) convolutional neural network

Two classes of deep neural network are used in this thesis; multi-layer

perceptrons (MLP) [43] and convolutional neural networks (CNN) [44].

Schematics of these are displayed in Fig. 7. MLPs are one of the simplest

DNN architectures and consist of a series of layers of nodes, the input layer

being the raw data and the output layer being the desired output of the

network. Each node’s value is determined as a linear combination of the

nodes in the previous layer, with a nonlinear activation function. The weights

(coefficients) and biases (constants) comprising these linear combinations are

the trainable parameters of the model. MLPs take a one-dimensional input,

so higher dimensional data must be flattened to a vector before training an

MLP.

CNNs use convolutional windows, called filters, to scan the input data,
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performing correlations between the filter’s values and the data’s. These

filter values are the trainable parameters of the CNN. The model attempts to

maximise the correlation value, hence optimising the filters as representations

of adjacent datapoints in the data. This makes CNNs capable of not only

learning recurrent features in images and other data, but recognising these

features no matter where they appear. This is an advantage over MLPs,

which can learn features but only when they appear in the same location in

the data (hence activating the same nodes). A consequence of this is that

CNNs are far more computationally expensive than similarly sized MLPs.

1.2.2 Deep learning for multimode fibre transmission and imaging

The transmission of light through a multimode fibre is a complex and

highly sensitive process meaning it can be difficult to quantify and control.

However, it can be advantageous to use MMF over single mode fibre where

the complexity of the MMF transmission can be exploited, particularly for

sensing where the output is highly sensitive to perturbations. For these

reasons and applications, it is relevant to attempt to understand MMF

transmission process. A theoretical framework which solves for the allowed

modes in a fibre and their propagation characteristics in the ideal case has

been well established [6, 45]. However, this theory is unable to account

for the imperfect nature of fibres, which sustain deviations from their ideal

forms during the fabrication process. The effects of these imperfections grow

with the length of the fibre and can render the transmission process highly

unpredictable, yet still deterministic.

Methods of determining and controlling the MMF transmission process

empirically have been used as a means of accounting for this unpredictable

nature. The transmission matrix of a fibre is an experimentally determined

map between its input and output, and digital holography is a means of

shaping the input to a fibre in order to reverse engineer its output [46, 47, 48].

Plöschner et. al. (2015) used a spatial light modulator and knowledge of the

transmission matrix of a MMF to fully quantify the transformation of light
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from input to output, as well as demonstrating the ability to shape a fibre’s

output to an arbitrary amplitude distribution [49], even showing robustness

against deformities and bends in the fibre. However, these methods are highly

vulnerable to perturbations on the fibre which introduce temporal changes

in the specklegram for a constant input, especially for longer fibres.

The use of an artificial neural network for MMF imaging dates back

to 1990, with Aisawa et al. (1990) using an ANN for image classification

from 10 categories of images transmitted through a MMF [50]. This method

employed a three-layer MLP with sigmoid activation, and investigated

image classification amongst image displacement and the introduction of

artificial noise. More recently, it has been shown that convolutional neural

networks (CNNs) are a powerful tool in MMF imaging. Borhani et. al.

(2018) demonstrated the reconstruction and classification of an image set

of handwritten digits through a MMF of length up to 1 km using a

“visual geometry group” (VGG) CNN [51]. Rahmani et al. (2018) trained

both a VGG and a “Resnet” CNN for amplitude-amplitude inversion and

amplitude-phase inversion for image reconstruction again on handwritten

digits. Transfer learning, specifically the networks successfully reconstructing

specklegrams into handwritten symbols not seen during training, was also

demonstrated [52]. These authors have more recently demonstrated MMF

image reconstruction in the presence of wavelength drift [53]. Caramazza

et al. demonstrated the reconstruction of natural scene images transmitted

through a MMF from the specklegram [54]. Other instances of the use of

deep learning in conjunction with specklegrams include the interrogation of

FBGs [55] and wavelength detection [56].

1.2.3 Deep learning for sensing with multimode fibre

The current literature on deep learning for MMF sensing is less numerous

than that of deep learning for MMF imaging. The limited examples include

deep learning applied to scattering based sensing [57, 58, 59], specklegram

sensing [60, 61] and wavelength spectrum sensing. The majority of these
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demonstrate classification based sensing [62], with only two examples of

regression based sensing.

Deep learning has been applied to the OTDR-interrogated scattering

signal from a MMF for a number of purposes. Various CNNs have been shown

to be able to classify a variety of different classes of mechanical perturbations

and the location they occurred from an OTDR scattering signal [57, 58].

The input data to the networks in this case consisted of three-dimensional

matrices; the three axes representing time, distance along the fibre and the

backscattered signal strength. In [58], these matrices spanned 120 s and 33

km and were fed into a CNN. Another example of deep learning applied

to scattering-based sensors is the detection of structural micro-cracks in the

fibre used for sensing [59]. Despite these qualitative, classification based

applications of deep learning in scattering sensing, little to no research exists

of deep learning in a regression sensing context, such as temperature and

pressure sensing.

There are limited examples of deep learning applied to other forms of

sensing. Cuevas et al. (2018) used MMF specklegram output to classify the

location of mechanical perturbations on the fibre [60], similar to [57] and

[59]. In this example, the subtraction between a resting specklegram and one

recorded while the fibre was being mechanically perturbed was fed into both

a CNN and MLP with the goal of predicting the discrete section of fibre that

the perturbation took place. This is the only example so far of deep learning

for spatially resolved sensing without using scattering based methods. The

fibre used for the experiment was bent in a continual ’S’ shape, and although

it is not addressed in the paper, this thesis will address the fact that induced

mode mixing can give an optical fibre distributed sensing capabilities.

There are limited examples of deep learning for regression sensing with

MMF. Nguyen et al. [62], the lead author of which co-supervised the

research comprising this thesis, demonstrated deep learning for temperature

sensing using the wavelength transmission spectrum of a sapphire crystal
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optical fibre. The spectra were collected while the fibre was simultaneously

subjected to strong mechanical noise, demonstrating a deep neural network’s

ability to extract information pertaining to a measurand of choice from a

MMF output, even in the presence of strong noise. Smith et al. [61]

demonstrated deep learning for regression sensing using the specklegram

output of a multimode exposed core fibre, improving upon current statistical

methods of specklegram analysis.
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1.3 Thesis summary

This thesis demonstrates the potential of deep learning for MMF sensing.

It will build upon the current literature by training DNNs for sensing in

two experiments. Chapter 2 demonstrates for the first time regression

specklegram sensing using deep learning, which, similar to [60], trains a DNN

on the specklegram output of a MMF, but trains it to sense a continuous

range of a parameter of interest as opposed to simply classifying a discrete

location. Chapter 3 builds upon [62] by training a DNN for temperature

sensing using the wavelength spectrum from a MMF, this time demonstrating

multi-point, spatially resolved sensing by giving the DNN multiple, spatially

resolved temperature labels along the fibre’s length to learn.

Both of these examples of deep learning applied to MMF sensing are at

the forefront given they are using a DNN designed for regression sensing,

something which has only been used once before in the literature. The

majority of sensing applications of deep learning perform classification, which

is often a simpler concept to prove. However, for quantitative sensing

requirements, such as temperature and pressure sensing, it is regression

sensing that is required. This thesis aims to provide a base for deep learning

applied to both specklegram and wavelength spectrum sensing, successfully

demonstrating the first example of regression-based sensing with either of

these MMF outputs.
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2 Deep learning for fibre specklegram sensing

2.1 Introduction

Current methods of analysing and comparing specklegrams for various

applications use purely statistical methods, for example correlation [34]

and differencing [35] in the context of fibre specklegram sensing as well as

decorrelation techniques in the form of principal component analysis for data

filtering [63] and speckle noise reduction [64]. A downside of these methods

is that they can lose information in the specklegram images; for example

correlation sums the contributions of all pixels into a single value to quantify

the similarities between two specklegrams. As a result, much of specklegram

sensing is aimed towards qualitative and classification applications, such as

motion detection and mechanical perturbation event classification.

Cabral et al. (2020) demonstrated the use of a multimode exposed core

fibre (ECF) for fibre specklegram sensing [29]. This publication demonstrated

fibre specklegram sensing of temperature and refractive index on a continuous

scale using a statistical correlation method. Despite functioning as a proof

of concept, the limitations of the correlative method become known in the

form of a dynamic range limitation. This method quantifies how different

a specklegram is from a reference specklegram based on the zero-normalised

cross correlation (ZNCC) function, and identifies this with how far the chosen

measurand has shifted from its reference point. Once the specklegram images

reach zero correlation with the reference, further changes will not give any

useful information and the dynamic range has been reached.

The research publication presented in this chapter applies deep learning

techniques to the same dataset as [29] to demonstrate not only the ability for

a DNN trained on fibre specklegram data to perform regression sensing, but

to improve upon the limitations imposed on the current correlation methods.

2.2 Publication
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Abstract: Fiber specklegram sensors (FSSs) traditionally use statistical methods to analyze
specklegrams obtained from fibers for sensing purposes, but can suffer from limitations such as
vulnerability to noise and lack of dynamic range. In this paper we demonstrate that deep learning
improves the analysis of specklegrams for sensing, which we show here for both air temperature
and water immersion length measurements. Two deep neural networks (DNNs); a convolutional
neural network and a multi-layer perceptron network, are used and compared to a traditional
correlation technique on data obtained from a multimode fiber exposed-core fiber. The ability for
the DNNs to be trained against a random noise source such as specklegram translations is also
demonstrated.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Optical fibers as sensors have been extensively researched, and notable commercial applications
include gyroscopes and structural health monitoring [1]. Interest in this technology is due to the
properties of optical fiber sensors (OFSs), including their light weight, small size, absence of
moving parts, and resistance to electromagnetic fields [1–4]. Generally, an OFS functions by
correlating changes in an external measurand of choice (such as temperature, strain or pressure)
[5], with measurable changes in the phase, polarization or intensity of the light propagating
through it. A particularly sensitive approach is to measure the phase properties of the propagating
light through interference methods. After propagating through the fiber, the phase of the light at
the output depends on the optical path length (OPL), which depends on the effective refractive
index of the propagating mode, as well as any perturbations on the fiber affecting its refractive
index and length. Directly tracking changes in the phase of light is not feasible due to its very
high frequency. Therefore, phase changes are often measured through interferometric techniques
such as Fabry-Perot, Mach-Zehnder or, in the case of multimode fiber (MMF), interference
between propagation modes.

A specklegram is the total intensity pattern at the end facet of the fiber, and consists of
bright and dark features of constructive and destructive interference caused by the relative
phases between the modes [6]. Fiber specklegram sensors (FSSs) are OFSs that use an MMF’s
specklegram to quantify changes in these relative phases. Given the OPL of each mode will
respond differently in the presence of environmental changes, the relative phases between these
modes and hence the specklegram becomes highly sensitive to the environment surrounding
the fiber [7]. FSSs also have the advantage of only needing low cost, lightweight interrogation

#443932 https://doi.org/10.1364/OE.443932
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equipment. A lens, coherent light source and webcam is enough to capture a specklegram [8,9]
so they have found many unique applications, including motion sensing and surveillance [10,11],
strain sensing [12], vibration sensing [7], temperature sensing [13] and wavelength detection
[14]. The analysis and comparison of specklegrams from an FSS generally follows one of two
statistical methods. The first, correlation, relies on multiplying the pixels of two specklegrams
together in order to correlate them and hence uses their similarity as images [7,15]. The second,
differencing, relies on subtracting the pixels of the two images in order to use their differences as
images [11,16].

Despite the numerous applications FSSs have found solutions for, the current methods of
analyzing and comparing specklegram images are at heart purely statistical. The cumulative effect
of external perturbations is averaged along the fiber, furthermore, all pixels in the specklegram
contribute to a single value quantifying a correlation/difference [8]. In this way, they do not
offer any physical insight into how the multimode transmission is occurring throughout the
length of the fiber, nor do they offer distributed sensing capabilities, and suffer dynamic range
limits. The MMF transmission process is so sensitive to small perturbations that building a
mathematical model to describe the transmission can be complex and often limited to special
cases. Research has been done in describing the physical transmission of light through an
MMF such as building transmission matrices (TMs) [17,18] and phase conjugation [19,20], with
applications in imaging and biomedical sensing, for example microscopy [21] and endoscopy
[22]. Despite such successes, these analytical methods are highly vulnerable to changes in the
fiber’s environment, such as bends or defects. Furthermore, they are not suitable for sensing
purposes, as the nonlinear effects of environmental changes on MMF transmission go beyond the
capabilities of a linear transmission matrix.

The use of deep learning has been explored as a solution to describe MMF transmission by
inferring the relationship between an input and a speckle pattern without the need for prior
knowledge of the physics and fiber properties governing the transmission [23,24]. A deep neural
network (DNN) is a tool to map between potentially very high dimensional data using a non-linear
transformation with many parameters, through statistical learning [25]. Deep learning can be
considered state of the art in terms of artificial intelligence, displaying capabilities to learn
complex patterns in high-dimensional spaces, and solve problems in many fields, most notably
image and speech recognition [26,27]. The power of DNNs has also been explored in the context
of mapping the complex MMF transmission. Two maps of interest that DNNs are able to learn in
regards to MMF transmission include imaging, where the fiber’s environment is held constant
and a map is learnt between the input and output of the fiber [23,28–32], and sensing, where the
input of the fiber is held constant and a map is learnt between the fiber’s environment and its
output [33,34]. To date, the sensing application of DNNs has been far less explored compared to
imaging.

We have previously demonstrated the use of a statistical correlation method [13]; the zero-
normalized cross correlation (ZNCC) function, to make an FSS out of a multimode exposed
core fiber (ECF). An ECF is a microstructured optical fiber with one side open to the external
environment, allowing sensing of external materials through the evanescent field [35]. We have
previously demonstrated the use of such a fiber as a suitable tool for biological sensing [36–38].
In this work we utilize two DNN architectures to analyze the change of specklegrams from
such an ECF with respect to temperature and refractive index in the form of variable water
immersion, the latter of which is only made possilengthble by use of the ECF which allows media
of different refractive indices to be in contact with the core of the fiber. We emphasize that the
fiber environment is designed to have minimal external perturbations and noise other than the
measurand of interest so as to provide a controlled proof of concept. For a demonstration of a
DNN’s ability to extract a measurand amongst strong noise, see our previous work [33]. We
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demonstrate that two different DNNs improve on the ZNCC method by extending the dynamic
range of the sensor, as well as demonstrating robustness against specklegram image translations.

2. Concept and experiment design

2.1. Experimental Principle

The light guided along an optical fiber can be expressed as a superposition of orthogonal modes,
each being a unique solution to Maxwell’s equations given the boundary conditions imposed
by the fiber geometry. At a distance L from the entrance to the fiber, the field transverse to the
direction of propagation can be expressed as a superposition of guided modes, as in Eq. (1),

E⃗(x, y, z = L) =
N∑︂

i=1
aiêi(x, y)ei 2π

λ neff ,iL, (1)

where i sums over the N guided modes supported by the fiber, êi(x, y) are the modal fields (unit
electric fields), ai are the modal coefficients (amplitude of each mode), ei 2π

λ neff ,iL is the complex
phase term, and neff ,i is the effective refractive index of the ith mode. For the electric field at
the end facet of the fiber, L will be the length of the fiber. The specklegram is then the intensity
pattern at the end facet of the fiber, which can be expressed as in Eq. (2).

I(x, y, L) =
|︁|︁|︁|︁|︁

N∑︂
i=1

aiêi(x, y)ei 2π
λ neff ,iL

|︁|︁|︁|︁|︁
2

(2)

The specklegram’s characteristic speckle effect comes from interference between the modes,
with bright regions corresponding to constructive interference (modes in phase) and dark regions
corresponding to destructive interference (modes with a π phase difference). Figure 1 shows the
specklegram from an ECF being imaged using a lens, which can then be captured using a camera
or webcam.

The OPL that each mode experiences is given by the product of its effective refractive index
and the geometric length travelled (OPL= neff L). All non-degenerate modes will have phase
differences along the fiber due to differing neff . The sensitivity of these phase differences are
highlighted by the fact that a full cycle of phase (2π) for modes in a fiber has a length of λ / neff ,
which is on the order of microns. The output specklegram is also highly sensitive to deviations
from an ideal fiber such as noise or fiber defects. In the ideal case of no noise, a specklegram will
change continuously and deterministically with a continuous change in the fiber’s environment,
but this breaks down in the presence of strong noise. This leads to the idea that specklegrams can
be used to sense changes in a fiber’s environment, provided noise is not too strong.

Figure 2 shows three specklegrams, each from air temperatures 3°C apart. Although to
the human eye it is apparent the specklegram is changing, and the movement/evolution of
some features are able to be tracked, the overall trend governing this change cannot be easily
determined, and certainly not extended beyond this temperature range. Statistical methods
compare how specklegrams differ or correlate pixel to pixel in order to quantify this trend. They
can, however, suffer from limited dynamic range as the images become increasingly different from
the reference image and further changes in the specklegram reveal less information about how
the specklegram has changed. Hence, in this work, we demonstrate that deep learning is a more
powerful tool for mapping the seemingly arbitrary relationship between a fiber’s specklegram
and its environment over a larger dynamic range, improving both accuracy and robustness against
unwanted noise. We have previously demonstrated this approach using deep learning on the
wavelength dependent transmission spectrum of a multimode fiber coupled to a single mode fiber,
rather than specklegram, under strong noise conditions for temperature sensing [33].
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Fig. 1. Representation of multimode transmission of light through an exposed core fiber.
The electric field in the fiber is a sum of all its modes. These modes and their relative phases
respond differently to external perturbations. A lens is used to image the intensity pattern
(specklegram) at the end facet. Also displayed is a cross-sectional image of the fiber used.
Reprinted from [13].

Fig. 2. Specklegrams at the end facet of the ECF corresponding to temperatures of (a) 23°C,
(b) 26°C, and (c) 29°C.

2.2. Experimental setup and data collection

The ECF used in this experiment was fabricated by drilling six holes into a pure silica preform
using an ultrasonic CNC machine [13]. A diamond endmill was used to open a slot, exposing
one of the holes to the outside environment. It was drawn with an optical fiber draw tower at
2005°C. An example cross-sectional image of the fiber is shown in Fig. 1. The length of ECF
used for temperature and sensing was 13 cm and 11 cm respectively. This length finds a balance
between the sensitivity required to resolve temperature changes, and the dynamic range. water
immersion length

The experimental setup, shown in Fig. 3, consisted of a He-Ne laser beam (633 nm, 5 mW)
passing through a neutral density filter before being launched into the ECF via a 20× microscope
objective lens, and from the end facet of the ECF imaged onto a webcam via a 40× microscope
objective lens. The ECF was placed in a fiber bathing apparatus manufactured out of an aluminium
block with a Peltier device underneath, to control temperature and water immersion length. The
webcam captured footage at an 800×600 resolution and at 15 frames per second. For each
discrete temperature/immersion length, approximately 10 seconds of footage was taken, with
each frame producing a single specklegram for use in analysis. This resulted in approximately
150 specklegrams per measurand label. The specklegrams within each video differ in that they
are affected by inherent noise in the fiber’s environment and electrical noise in the webcam.
Temperature data was taken in increments of 0.5°C over a range of 22.5-30°C, while immersion
length data was taken in increments of 5 mm over a range of 0-50 mm. These ranges were chosen
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as the easiest to achieve while capturing the ZNCC’s full dynamic range. For more information
about the experimental setup and fiber fabrication, see our previous work [13].

Fig. 3. Schematic diagram of the experimental setup used to capture specklegrams from
an ECF in the presence of temperature and refractive index changes. NDF, neutral density
filter; M1, M2, mirrors; L1, 20× microscope objective; L2, 40× microscope objective; ECF,
exposed core fiber. Reprinted from [13].

2.3. Zero-normalized cross-correlation (ZNCC)

The correlative statistical technique used in our previous work [13], and again included in this
paper for comparison is the zero-normalized cross correlation (ZNCC) function, defined in
Eq. (3):

Z(k) =
∑︁

N (I0 − Ī0)(Ik − Īk)[︂∑︁
N (I0 − Ī0)2

∑︁
N (Ik − Īk)2

]︂ 1
2

, (3)

where I0 is the pixel intensity of a reference frame, Ik is the pixel intensity of the kth frame, the
barred intensities are the average pixel intensity for those frames and N sums over all the pixels.
The function multiplies two images’ corresponding pixels and sums over these pixels to quantify
how closely the images are correlated. 1 denotes the images being highly positively correlated,
-1 being highly negatively correlated, with 0 being no correlation.

In this work we use a similar image processing method as in [13]. The 800×600 images were
cropped to a 200×200 region of interest in order to eliminate the black region surrounding the
specklegram. These were then downsampled to 60×60 images in order to save computational
power when training the DNNs.

Once the ZNCC scores for each specklegram in a dataset were calculated against the reference
frame, a sixth order polynomial calibration curve for the measurand versus ZNCC score curve
was fitted. This function was used to make predictions on specklegrams unseen during the
calibration process and quantify the performance of the method.

2.4. Deep neural networks (DNNs)

Two broad classes of DNNs, both used in this work, include multi-layer perceptrons (MLPs) [39]
and convolutional neural networks (CNNs) [40]. MLPs consist of a series of fully-connected
layers, ending with a layer the size of the number of categories to classify or regression variables
to calculate. Each node in each layer gets its value from a weighted sum of all nodes in the
previous layer. Images and higher dimensional data must be flattened to a single vector before
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passing through an MLP. On the other hand, a CNN uses convolutional layers, each consisting
of a set number of convolutional filters that scan the image, calculating a correlation with the
corresponding image pixels at each possible position, generating feature maps that hold spatial
information as to the image’s features. MLPs value each connection between each node equally,
whereas CNNs will prioritize connections between adjacent datapoints/pixels, which can be
useful for learning recurring features in images.

Firstly, we used an MLP, schematically represented in Fig. 4. When flattened, the 60×60 input
image meant our input layer had 3600 nodes. Our output layer, given it was predicting a single
value (either temperature or immersion length), had just one node. In between were five hidden
dense layers, each decreasing in size from the input size to a single node, a common tactic in
MLP architecture design. These hidden layers are there to learn the latent space of the input data
in order to facilitate the regression output layers. The rectified linear unit (ReLU) activation [41]
was applied after each layer. The model had in total 9,752,929 trainable parameters.

Fig. 4. (a) Schematic of the multi-layer perceptron DNN (MLP) used. The pixel values
of the input image are flattened to a single vector and make up the input layer, followed
by a series of fully-connected layers. Each node’s value is determined by a sum of the
contributions from all nodes in the previous layer. The output layer has one node which
represents our desired measurand label. (b) Schematic representation of a convolutional
neural network (CNN). Each convolutional layer consists of a set number of convolutional
filters, each one creating a “feature map”, which is a map of correlations as the filter scans
the image. These feature maps are then down sampled using a pooling method, comprising
one convolutional layer.

Secondly, we used a CNN architecture based on the VGG-16 architecture, a winner at
the ImageNet Challenge 2014 image recognition competition [42]. Despite many follow-up
architectures being developed since, the VGG architecture continues to work well for many
image recognition applications [43,44], as well as for MMF transmission [23]. The architecture
features three VGG ‘blocks’, each consisting of two or three convolutional layers followed by
a maxpooling layer [45], which downsamples the result by pooling pixels together and taking
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the maximum value of each ‘pool’. Our architecture’s three blocks featured two, two and three
convolutional layers with 64, 128 and 256 convolutional filters each respectively. Following the
third block, the result was flattened and passed through four fully-connected layers, finishing with
a single node. All convolutional and dense layers also used the ReLU activation. The model had
in total 29,787,329 trainable parameters. This appears as a very large number of parameters, but
we believe models of this size are justified given the highly complex nature of the specklegram,
which depends on interference between every possible pair of supported modes in the fiber.
The ECF used in this research is very highly multimodal, supporting thousands modes, which
indicates just how many degrees of freedom such a specklegram depends on. We also believe
the use of DNNs over simpler methods of high-dimensional data mapping, such as a supported
vector machine [46], is justified. Such methods often require prior knowledge about the domain
of the data in order to find and visualize high-dimensional trends, and, while computationally
lighter, can be more time consuming overall.

The entire image dataset consisted of approximately 150 specklegrams per measurand label.
For the temperature and water immersion length datasets, this was a total dataset of 2,414 and
1,684 specklegrams respectively. These datasets were shuffled and split into three sets; the
training set (67.5%), validation set (22.5%), and testing set (10%). The training set was used to
train the model while the validation set was used for evaluating the results of this training with
images the model had not seen during training. The testing dataset was kept aside during this
process and was only seen by the models whilst producing the final results which appear in this
paper. This procedure was also used for the ZNCC method, utilizing the same training set for
the calibration curve and the same test set for evaluation (the validation set was not used for the
ZNCC method as this method has no hyperparameters to tune).

The training process for both models followed a standard procedure. Mini-batches of 64
training samples were randomly sampled from the training dataset and passed through the model.
The standard mean squared error (MSE) loss was then calculated. Backpropagation was then
performed, whereby the gradient of the loss function with respect to the model’s weights was
calculated, and these weights adjusted in the negative direction of this gradient, in order to head
towards a model with a lower loss value [47]. After this had been completed for all training
samples in the training set, one epoch was completed, and the process repeated. Both models
were trained for 100 epochs. The Adam optimizer [48] was used with a learning rate of 10−3.
After 100 epochs, the model with the lowest MSE loss was taken as the best model and used for
making predictions. This length of training was chosen to coincide roughly with the loss value
beginning to converge to its apparent minimum. Given the relatively small training dataset size, it
was important to not overtrain the model, as this could lead to overfitting and poor generalisation
capabilities.

The training was done using a Lenovo Legion 7i laptop with a 10th Gen Intel Core i7-10875H
processor, 16 Gb of memory and an NVIDIA GeForce RTX 2070 graphics card. The CNN took
generally just under an hour to train 100 epochs with a training dataset of ∼1500 specklegrams,
while the MLP could do this in minutes.

To quantify the performance of both the DNN models and the ZNCC method, an MSE metric
was used in the training. A root mean square error (RMSE) metric is used to display results in
this paper in order to preserve the original predictions’ units.

3. Results

3.1. ZNCC calibration curve

To make predictions for the measurand associated with a specklegram using the ZNCC method, a
sixth order polynomial calibration curve was fitted to the plot of the measurand label against the
ZNCC score for each specklegram in the training set against the reference specklegram. This
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curve then returned a predicted measurand when given the ZNCC score of a specklegram in the
test set.

From the plots in Fig. 5, it is seen that an ideal curve passing through each of the points
would not be a 1-to-1 function, and hence cannot be used for sensing over the full range of
temperature and immersion parameters. This is because the calibration curve needs to return a
unique measurand label when given a ZNCC score, whereas it is seen in Fig. 5 that the sensor
response reaches a minimum ZNCC score of around 0 and then starts increasing again with
continually increasing temperature/immersion. This defines a range limit on the ZNCC method,
as once the calibration curve is no longer 1-to-1, it can no longer be used for making unique
predictions. It is this fundamental limit of the ZNCC method that we will improve upon by
employing DNNs

Fig. 5. Calibration curves for predicting (a) air temperature and (b) water immersion length
from the ZNCC score of a specklegram against the reference. The fitted curve is a 6th order
polynomial.

3.2. Predictions

The results come in three parts. The first two relate to datasets for temperature and water
immersion length sensing, while the third looks at the performance of the analysis methods
against randomly translated specklegrams. For the first two parts, each of the two datasets
(temperature and immersion length) were treated in the same way. The DNNs were trained and a
measurand vs ZNCC score function fitted using the training dataset, then the quality of the models
tested by making predictions using the testing dataset. For both the temperature and immersion
datasets, two methods were performed. The first is as described, where all data was shuffled and
split into training/validation/test sets. For the second method, all data relating to three of the
labels (23°C, 26°C and 29.5°C for temperature and 5 mm, 25 mm and 45 mm for immersion)
were removed from the dataset prior to the split. These labels were chosen so as to have two
labels close to either end and one from the middle of the datasets removed. These models were
then trained and tested with the given training/testing sets as normal, but then additionally made
to make predictions using the data from temperatures/immersions they had not yet seen. This
is to simulate how these methods would be expected to function as real world sensors; sensing
any measurand value within the trained range despite only seeing a set of discrete labels during
training. Results of these tests are shown in Fig. 6 and Fig. 7.
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Fig. 6. Ability of the three models to predict temperature labels from specklegrams. (a),
(b), (c). All data shuffled and split into training/validation/testing sets, predictions shown
made on the test set. (d), (e), (f). Data pertaining to three temperatures removed before
the split of data and training. Crosses - predictions on test set, circles - predictions on
unseen temperature data. For both: black line - line of parity, i.e. where correct predictions
would lie. The ∆T errors shown use a root-mean-square metric. ∆Tall refers to the crosses,
i.e. temperature labels which the models were trained on. ∆Tint refers to the circles, i.e.
interpolated predictions on the temperature labels not seen during training.

For the method where all data was combined and shuffled (with no datapoints omitted), the
predictions made by the DNNs all lie almost exactly on the line of correct predictions. The
ZNCC method’s predictions lie close to the line within the useful part of the calibration curve,
but become inaccurate as the edge of the correlation range is reached. This demonstrates the
inherent range limitation that the ZNCC method possesses, and it can be seen that the DNNs
solve this.

For the second part of the analysis, where datapoints were removed so as to interpolate with,
the DNNs appear to still make accurate predictions on the data they were trained on, but mostly
worse than when they were trained on all data. This can be attributed to the reduced training
set size, as the overall distribution of data is smaller and easier to overfit to. The discrepancy
is more noticeable in the immersion length set, which we can be attributed to two potential
causes. Firstly, the immersion length data contains less labels, and hence removing three points
resulted in a greater relative reduction in the datapoints shown in training. Secondly, given the
experimental setup, the immersion length reference measurement (data label) has larger relative
error compared to temperature, and as such there may be minor inconsistencies in the labelling
of the specklegrams that are not present in the temperature dataset

The interpolated points were predicted best by the more complex VGG network, with the MLP
showing a more noticeable deviation from the reference labels with these predictions. The ZNCC
results for this second part of the analysis are similar to the first part.
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Fig. 7. Ability of the three models to predict water immersion labels from specklegrams.
(a), (b), (c). All data shuffled and split into training/validation/testing sets, predictions shown
made on test set. (d), (e), (f). Data pertaining to two temperatures removed before the split
of data and training. Crosses - predictions on test set, circles - predictions on unseen water
immersion data. For all: black line - line of parity, i.e. where correct predictions would
lie. The ∆T errors shown use a root-mean-square metric. ∆xall refers to the crosses, i.e.
water immersion labels which the models were trained on. ∆xint refers to the circles, i.e.
interpolated predictions on the water immersion labels not seen during training.

3.3. Translated specklegrams

After the performance of the DNNs and the ZNCC method had been tested on the two sets
of data, the final part of the experiment was to test their robustness against random horizontal
and vertical translations of the specklegrams. The capturing of the specklegram via a lens and
a webcam requires precise alignment. Therefore this process has the potential to introduce
transverse translation due to alignment drift. We have chosen to demonstrate the ability of the
CNN to automatically compensate for this type of drift, which is not a feature of the correlation
function approach.

To test this, the same procedure as in the first two parts of the experiment was carried out
with the temperature data, i.e. all the data was shuffled, split, the models trained/ZNCC curve
fitted and predictions were made with varying degrees of random specklegram translations in the
vertical and horizontal directions. The physical translation size when the specklegram reaches
the webcam, after cropping and downsampling, is equivalent to approximately 0.1 mm per pixel.
For each translation amount, the models trained on this data made predictions on the testing set.
The results are presented as a plot of model accuracy (average error) against the maximum size
of the translations, displayed in Fig. 8.

When the DNNs were shown translated images during the training phase, they were able to
effectively learn the measurand/specklegram relation for that size of translation, and achieve an
error only a factor of around three away from the original, untranslated specklegram analysis at



Research Article Vol. 30, No. 7 / 28 Mar 2022 / Optics Express 10453

Fig. 8. Performance of the three tested models when trained using artificially translated
specklegrams. The x-axis shows the maximum number of pixels that each specklegram in the
set could have been translated by in either direction – the actual amount was chosen randomly
with a uniform distribution between the positive and negative of the value displayed on the
x-axis.

the largest translation size that was tested. The ZNCC method on the other hand begins to diverge
in error at even the smallest translation size. It appears to plateau at an RMSE of ∼2.2°C, which
turns out to be the maximum error possible as it begins predicting a singular average value for all
measurand labels. This is to be expected, as the ZNCC method is simply directly comparing
images pixel for pixel, so as images for the same label become more different and their ZNCC
scores spread over a larger range, it becomes difficult to fit an accurate prediction curve to the
data. At the larger translation sizes, spreads of ZNCC scores were so great that a straight line
predicting the same temperature for every specklegram minimized the error.

4. Conclusion

We have demonstrated the ability of deep neural networks to learn the complex relationship
between changes in a multimode fiber’s environment (namely temperature and refractive index),
and the intensity specklegram it outputs at its end facet. We have achieved higher accuracy and
consistency over a larger measurand range than with a traditional statistical correlation (ZNCC)
method. Furthermore, we have demonstrated that deep neural networks (DNNs) are able to learn
this multimode fiber transmission relationship even when the training and testing specklegrams
have been translated, something the correlation method is fatally vulnerable to. Finally, the
feature recognition ability of convolutional neural networks (over both the MLP and ZNCC
method) was exploited to predict measurands from translated specklegrams, even when none
were included in the training dataset.

This work provides the first direct comparison of a standard statistical method to the use of
DNNs in fiber specklegram sensing. We have shown that limitations for the ZNCC method are
easily handled by the DNNs, prompting the possibility of further work in the use of DNNs with
FSSs and testing what their true limitations are.

This approach of using deep learning for sensing with an exposed core fiber has potential to
be useful in biosensing, where the exposed core fiber excels. The use of DNNs could improve
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the versatility of sensors immensely, providing robustness against imaging alignment difficulties
and dynamic range issues. Finally, the field of machine learning is vast, and the limits of its
application to sensing and imaging are far from being reached. meaning further improvements
from the deep learning aspect of this paper are to be expected.
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2.3 Additional information to the publication

2.3.1 Loss, overfitting and underfitting

Two problems commonly occurring within the realm of deep learning

which are important to monitor for and avoid are underfitting and overfitting.

Overfitting occurs when a model learns the training data too well, that is,

memorises the noise and peculiarities of the training dataset as if they were

characteristic of the entire data distribution. As a result, overfitted models

find it difficult to generalise to the validation set, which was drawn from the

same distribution of data as the training set. Overfitting is characterised

by the loss value on the validation set diverging upwards as the training

loss converges to its minimum, and is commonly an issue when using small

datasets. Underfitting occurs when a model is unable to learn the basic

trends within a dataset, and is characterised by the training loss failing to

converge to a sufficiently low value, and is usually an indicator of no strong

correlation between the x- and y-data or a model not complex enough to find

a correlation [65].

As the dataset used for the training in this experiment could be

considered small for deep learning, there was a potential for the models

being trained to overfit. With this consideration in mind, two steps were

taken. Firstly, the number of training epochs was kept to 100, so that the

model may have enough time to fit to the training data without overfitting

and losing its ability to generalise to the validation and test sets. Secondly,

the validation loss history was monitored alongside the training loss, in case

it diverged upwards while the training loss converged. Figure 8 shows the

training and validation loss histories for the models trained on all data (that

is, without omitted labels for testing interpolation). As shown in this figure,

the validation loss converges with the training loss rather than diverging,

indicating no overfitting present with these models.

As the loss history plots seemingly converge close to their minimum value

by as early as 20 epochs, the argument could be made that even 100 epochs
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Figure 8: Training and validation loss history of four models trained during the experiment.
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is too long to train the models. There are a couple of reasons why it might be

necessary to continue training for this long. Firstly, it is always possible for

a model to find a new local minimum in its parameter space, and so ending

the training process early risks missing out on a model with a potentially

lower loss. Secondly, only the model with the lowest loss is kept as the final

model, meaning, as long as overfitting is not occurring, there is no harm in

letting the model continue training once it has seemingly converged. Thus a

training length of 100 epochs is justified in this case.

2.3.2 Copyright

© 2022 Optica Publishing Group under the terms of the Open Access

Publishing Agreement [66]. Users may use, reuse, and build upon the article,

or use the article for text or data mining, so long as such uses are for non-

commercial purposes and appropriate attribution is maintained. All other

rights are reserved.

The online abstract of this publication is accessible at https://doi.

org/10.1364/OE.443932.
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3 Deep learning for multi-point fibre

temperature sensing

3.1 Introduction

Temperature sensing with optical fibres is traditionally done through

two main methods; sensing with a wavelength spectrum, such as fibre Bragg

gratings (FBGs), and scattering based sensing, such as using optical time-

domain reflectometry (OTDR). Scattering based sensing methods can be

truly distributed, while there are methods for performing multi-point sensing

using the wavelength spectrum. Like the vast majority of fibre applications,

silica fibres are generally used for temperature sensing. Due to its softening

point, sensing with silica fibre is not possible above 1300℃ [67]. The leading

alternative for fibre temperature sensing above this temperature is sapphire

crystal optical fibre. A sapphire fibre temperature sensor with a femto-second

laser written FBG has been shown to function up to 1900℃ [68]. Sapphire

fibre however carries its own limitations, such as a high number of supported

modes, resulting in broad FBG peaks which reduce sensing resolution and

multiplexing capabilities. This motivates the need for alternative methods

of analysing sapphire fibre wavelength spectra for high temperature sensing,

the method being explored in this chapter being deep learning.

Resonance-producing structures such as fibre Bragg gratings (FBGs) and

Fabry-Perot interferometers (FPIs) are built into optical fibres so that sensing

may be performed using the resulting wavelength interference spectrum [4]

(this was discussed in more detail in Section 1.1). Such structures encode

information in the wavelength spectrum that is easy to track and correlate

with an environmental parameter; for FBGs this is a resonant peak and for

FPIs this is a periodic feature, who’s periodicity in the frequency domain is

referred to as the free spectral range (FSR). In the case of FBGs, the shift in

a resonant wavelength is extracted for sensing, while for FPIs it is the phase,

which is also a wavelength shift but of the whole periodic spectrum.
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Multi-point sensing is achieved with FBGs via wavelength division

multiplexing (WDM). This involves inscribing FBGs of differing resonant

wavelengths such that the information pertaining to the different structures

may coexist in the wavelength spectrum and the useful information from each

extracted separately. There are a number of issues with this method however.

Structures such as FBGs can be costly and time consuming to inscribe in

an optical fibre. Sensing is also limited by the bandwidth of the source as

well as the spectrum analyser. Furthermore, such sensors will always suffer

from cross-sensitivity against environmental parameters not being sensed.

In the case of multimode FBGs, bandwidth resolution is further hindered by

the broadening of resonant peaks due to the multiple present modes [69].As

mentioned above, sensing with traditional silica fibre is also not possible at

high temperatures.

Recent attention has been paid to the use of machine learning for

optical fibre sensing, which holds promise to increase sensitivity and reduce

cross-sensitivity. Nguyen et al. [62] demonstrated the extraction of single-

point temperature information from the transmission wavelength spectrum

of sapphire crystal optical fibre by training a deep neural network on these

wavelength spectra, each with an associated temperature label [62]. This

fibre was unaltered and had not had any resonance-producing structures built

into it. This work also showed noise immunity by deliberately shaking the

fibre such that the recorded spectra’s response to this noise far outweighed

that of temperature changes. These spectra were used to train a multi-

layer perceptron DNN, and it was shown that this DNN was still able to

effectively learn and predict the relationship between the heavily noise-

affected spectra and the temperature under which they were recorded.

This demonstrated the deep learning approach’s robustness against cross-

sensitivity to unwanted environmental parameters affecting the fibre being

used. Conventional sensing techniques in the presence of multiple parameters

which affect the fibre output are unable to distinguish the individual effects

without calculating cross-sensitivities between each parameter, for example
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temperature and pressure [70]. Nguyen et al. have shown that deep learning

techniques are able to extract information from the output of an MMF

pertaining to a single environmental parameter without prior knowledge of

its cross-sensitivity with other parameters.

This chapter presents work which is an extension of [62], in which DNNs

are trained for multi-point temperature sensing at 10 discrete, spatially

resolved points using the wavelength spectra from a variety of fibres. It is

demonstrated that the network trained on sapphire fibre wavelength spectra

performs far more accurate multi-point sensing than those trained on the

spectra from more conventional fibres. This is attributed to the mode

coupling induced by the fluctuating fibre diameter and hence fluctuating

number of supported modes along the length of the sapphire fibre. We

show using numerically modelled results that the mode mixing due to a

variable radius can give an optical fibre sensor inherent distributed sensing

capabilities.

3.2 Theory and numerical modelling

3.2.1 The wavelength spectrum and spatially resolved

information

A local perturbation on a fibre, such as heating, will create a local

change in fibre’s refractive index, and hence a different set of supported

modes for the length of this perturbation. This will cause the propagating

electromagnetic power to couple into the new set of modes for the duration

of the perturbation, before coupling back into the original set. As the optical

fibre transmission is linear, perturbations in various positions are expected

to have the same effect on the resulting optical fibre output.

A consequence of this is that the wavelength spectrum from a perfectly

translationally invariant fibre should hold no information about where a

perturbation has taken place along the fibre, rather it is the culmination

of the effects of all the perturbations that exist along the fibre. In order
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to gain distributed information in a translationally invariant fibre then the

symmetry of the system needs to be broken, such as with FBGs or FPIs.

Sapphire crystal optical fibre (SOF) fibres are grown in the desired shape

of a fibre, unlike glass silica fibres, which are drawn from a preform. This

process is much less precise than drawing a preform, leading to an fibre

diameter which varies with length. The diameter in fact varies between

60µm and 80µm over distances on the order of millimetres. A consequence

of this is that the number and nature of the supported modes in the fibre

will vary with the fibre’s length, meaning the modal distribution of power

will constantly need to be redistributed as the set of supported modes in

one section of fibre couples into the set in the next. Although it is possible

to induce mode mixing in otherwise translationally invariant fibre through

bending, the mode mixing in sapphire fibre will be almost continuous and

unique as the fibre diameter changes almost arbitrarily.

3.2.2 Theory of mode coupling

This section aims to provide numerical evidence that spatial

perturbations in a fibre, specifically diameter changes, are required to

provide the symmetry breaking that is needed for discrimination of spatially

separated sensing events in a MMF. A consequence of this will be evidence

that sapphire crystal optical fibre is a suitable candidate for distributed

sensing when paired with deep learning techniques.

Eq. 17 described the light in a MMF as the superposition of orthogonal

modes. The distribution of the total power transmitted through a fibre

between these modes is given by the modal coefficients aj, the relative

weighting between the modes. The specific distribution is dependent upon

the launching conditions of light into the fibre. Unless specific effort is made

to launch light into higher order modes, it is the lower order modes which

tend to carry more power.

When the light in a MMF is incident on a section of fibre with different
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supported modes, i.e. two different fibres spliced together or simply a

perturbation in the radius or refractive index of a single fibre, the total power

will be redistributed amongst the new set of modes. This new distribution

is dependent on the original modal coefficients and the amplitude overlap

integrals between each pair of old and new modes.

For light coupling between two sections of fibre with differing modal

solutions, continuity of the transverse electromagnetic field at the interface

between these sections gives

∑
j

aj êtj −
∑
j

bj êtj =
∑
j

cν êtν (22)∑
j

ajĥtj −
∑
j

bjĥtj =
∑
j

cνĥtν , (23)

where êtj and ĥtj represent the transverse electric and magnetic modal

fields of the jth supported mode in the first fibre, etν and htν represent those of

the νth supported mode of the second fibre, aj represents the modal coefficient

of the jth incident mode in the first fibre, bj represents that of the jth reflected

mode in the first fibre and cν that of the νth transmitted mode in the second

fibre. It is assumed that aj are a result of the coupling of the light into the

fibre and are already known, which leaves bj and cν to be solved for. By

taking the right cross product of Eq.(22) with ĥ∗
ν and the left cross product

of Eq.(23) with ê∗
j and exploiting the orthonormality of modes, one obtains

cν =
1

2

(∑
j

aj

∫
A∞

êj × ĥ∗
ν · ẑdA+

∑
j

bj

∫
A∞

êj × ĥ∗
ν · ẑdA

)
(24)

cν =
1

2

(∑
j

aj

∫
A∞

ê∗
ν × ĥj · ẑdA−

∑
j

bj

∫
A∞

ê∗
ν × ĥj · ẑdA

)
. (25)

Eqs.(24) and (25) are most easily solved in matrix form. By defining the

vectors

45



a = [a1, a2, ...aj...] (26)

b = [b1, b2, ...bj...] (27)

c = [c1, c2, ...cν ...] , (28)

and the matrices

Mjν =
1

2

∫
A∞

ê∗
ν × ĥj · ẑdA (29)

Njν =
1

2

∫
A∞

êj × ĥ∗
ν · ẑdA, (30)

and using the Equations 24 and 25 to eliminate b, one obtains Eq.(31),

an expression for c, the modal distribution of power in the second fibre, in

terms of a [71].

c = 2a
(
N−1 +M−1

)−1
. (31)

While the mode coupling conditions at the join between two fibres can

be solved analytically, solutions for more arbitrary fibre perturbations such

as a continually varying fibre radius or refractive index are more difficult to

solve for, and rely on approximations such as the weak guidance and slow

varying approximations [6].

3.2.3 Numerically modelled results

Numerical modelling of the transmission of light through a system of two

adjacent fibres and the coupling of modes between them was undertaken. A

program was written in Matlab [72] to solve for the modes in two sections

of fibre, as in Section 1.1.2, and compute the coupling of light from one to

the other as per the analysis above. The refractive index of the fibres was
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changed as according to a thermo-optic coefficient of 1.1 × 10−5 T−1 [73].

A specklegram intensity pattern at the end facet of the second fibre was

then generated, with the goal of investigating spatially resolved information

pertaining to the two sections of fibre from this output.

A specklegram output was chosen as opposed to a wavelength spectrum as

the computational time needed to produce a specklegram with the program

used was orders of magnitude less. A specklegram is effectively produced

for each individual point of a wavelength spectrum in order to calculate the

transmitted intensity, hence a spectrum containing 1000 points (as did the

spectra recorded in the experimental section of this chapter) will take 1000

times longer to produce than a specklegram output. Despite their inherent

differences, both should contain spatially resolved information, should it

exist, due to continuous mode coupling in the fibre, and the results drawn

from one will generally be applicable to the other.

The specklegram output of the fibre simulation was used to investigate

means of encoding spatially resolved information pertaining to the two

sections of fibre in such an output, such that the information could be

learnt by a DNN. Two possible mechanisms by which this could occur

were investigated; mode mixing due to a variable fibre radius, and a mode-

dependent loss in the fibres, with higher order modes being more lossy than

lower order modes.

In order to test the effectiveness of these two mechanisms in

distinguishing the spatial position of otherwise identical perturbations on

a fibre, two specklegrams were generated for each applied mechanism, one

with the first section of fibre at 25℃ and the second at 50℃, and vice versa.

To evaluate and quantify the differences between the generated specklegrams

a zero-normalised cross correlation function between the two specklegrams

was used. This is defined as
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Figure 9: Specklegrams generated under no additional assumptions, the assumption of mode dependent

loss, and two instances of a fibre radius disjoint. The two specklegrams were generated with the two

sections of the fibre at 25℃ and 50℃ and vice-versa. The ZNCC score represents the correlation score

between the two specklegrams.
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Z(I1, I2) =

∑
N(I1 − Ī1)(I2 − Ī2)

[
∑

N(I1 − Ī1)2
∑

N(I2 − Ī2)2]
1
2

, (32)

where I1 and I2 denote the pixel intensity of two images, N denotes the

pixels in the images to be summed over and the barred intensities denote

the average intensity of the image. The ZNCC theoretically returns a value

between -1 and 1, but unless images are specifically negatively correlated,

the value will generally lie between 0 and 1, with 0 denoting no correlation

between the images, and 1 denoting the images as positively correlated

Figure 9 displays the two specklegrams generated under each set of

assumptions, as well as the ZNCC score between them. In all circumstances,

the two sections of fibre were chosen to be 15 cm long, with nco = 1.45,

ncl = 1.40 and λ = 1.55 µm. The fibre was chosen to be 20 µm in radius,

with the radius mismatch mechanism being achieved with fibres of section

radii 19 and 21 µm and 18 and 22 µm. The “control” was carried out with

the ideal propagation of light through the fibres in the absence of any other

mechanisms. The “mode dependent loss” was simulated by assigning each

calculated mode an extinction coefficient, κ, from a linear distribution of

values, assigning the lowest extinction coefficients to the lowest order modes.

The extinction coefficient represents an imaginary component of each mode’s

effective refractive index, such that Eq. 19 becomes

β =
2π

λ
(neff − iκ). (33)

The “radius mismatch” model was performed twice, with the diameters

in the first and second fibre being 18µm-22µm and 22µm-18µm for the two

cases

The results of the “control” reflect what was discussed in Section 3.2.1,

in that in the case of ideal multimode fibre transmission, the effect of a
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perturbation on the output of the MMF is independent of the translational

position of the perturbation. This is reflected in the ZNCC score close

to 1, showing the two outputs corresponding to the two spatially resolved

perturbations being very similar.

The largest difference in specklegrams comes from the “radius mismatch”

cases as opposed to mode dependent loss, giving evidence that the induced

mode mixing due to a change in fibre radius is able to give evidence about

the spatial position of a perturbation along a fibre. The effect appears to

be greatest when the higher-moded fibre is producing the specklegram, but

both cases produce significantly more different specklegrams than the two

cases with a constant fibre radius.

Despite the apparent existence of this spatially resolved information, it

is only useful if it is able to be extracted using a method of analysis. For this

work, this method is by using a deep neural network (DNN). To this end,

50 specklegrams for each of the control, mode dependent loss and radius

mismatch cases were generated, each with a random temperature between

25℃ and 50℃ in each of the two fibre sections. The specklegrams and

temperature labels were used to train a DNN with the goal of overfitting to

the small set of data. In the absence of a large set of data (due to the time

constraints of generating these specklegrams), the ability to overfit to this

dataset is the best indication of the existence of a physical function between

the specklegrams and temperature labels. In this case, it is sufficient to

demonstrate this overfitting ability, rather than demonstrate generalisation

capabilities, to make conclusions about distributed temperature information

in the fibre’s output. In the case of overfitting, one also expects the validation

loss to be high, as the trained model will lack generalisation capabilities.

Multilayer perceptron networks with four hidden layers were fed the

150×150 pixel specklegrams and trained for 250 epochs. A mean squared

error loss function between the true temperature labels and those predicted

by the DNNs was used for training. The results in Table 1 make it obvious
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Training loss (℃) Validation loss (℃)

Control 0.65 20

Mode dependent loss 0.68 8.8

Radius mismatch 0.089 0.52

Table 1: Training and validation loss between the true and predicted temperature labels corresponding

to the specklegrams after 250 epochs of training. It is the overall loss pertaining to predictions on two

temperature labels, and so is the average between them.

that the DNN trained on specklegrams generated with a mismatch in radius

between the two fibre segments was able to find a learnable connection in

the data much easier than the other two cases. This indicates that the mode

mixing due to a change in fibre radius is able to encode spatially resolved

information in a MMF output that is not there when the such strong mode

mixing is not induced.

3.3 Experimental design and data collection

The aim of this experiment was to test experimentally a DNN’s ability to

learn and perform multi-point fibre temperature sensing using the wavelength

reflection spectra collected from different fibres including sapphire fibre.

These wavelength spectra were collected while the fibres lay inside of a

furnace, with ten temperature labels simultaneously recorded, such that

DNNs could be trained for temperature sensing with this data. As well

as seeing in general the possibility of multi-point regression-based sensing

using a DNN, the results from the sapphire fibre will give insight into the

idea of continuous mode mixing leading to spatially resolved information in

the output of an MMF, as explored numerically earlier in the chapter.

Although the theory earlier in this chapter uses the specklegram output

of a multimode fibre, a wavelength spectrum was chosen to be recorded for

this experiment due to the ease of experimental setup in this situation. As

the furnace used had one entry point, the reflected light from the fibre’s

end facet was interrogated, something which would be difficult to record the
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specklegram of. Both forms of MMF output however will carry the complex,

spatially-resolved information required for the multi-point sensing.

Reflection wavelength spectra from the fibres was collected under

different temperature distributions, thus providing a variety of temperature

labels for each individual sensing point. The temperature distributions were

achieved by placing the fibres in various positions relative to a furnace.

Spectra were collected using a swept-source interrogator, an instrument

which sends and receives a coherent light source at a range of wavelengths,

measuring the intensity of light received at each wavelength and displaying

this as a power spectrum in the wavelength domain.

Figure 10: Experimental setup.

The three fibres used for this experiment were sapphire crystal optical

fibre (SOF) purchased from Micromaterials, in-house fabricated silica

suspended core fibre (SCF) [74] and silica graded index fibre (GRIN)

purchased from Nufern. The two silica fibres were prepared for high

temperatures by stripping their coatings using fibre strippers. As it was

reflection spectra being recorded for the experiment, the end facets of the

fibres needed to be flat to reflect enough light intensity to be recorded by the

interrogator. For the silica fibres, this could be achieved with a fibre cleaver.

The sapphire fibre however can not be cleaved using a conventional cleaver
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as the crystal structure will not allow for a flat surface to be produced in this

fashion. For that reason, the sapphire fibre was additionally polished using

a fibre polisher to ensure a flat end facet capable of creating a measurable

reflected signal. The end of the sapphire fibre spliced to the single mode

fibre was also intentionally made non-flat, so as to nullify the reflection signal

from this interface being picked up by the interrogator. This was done as the

sapphire fibre is very lossy, and this reflection signal would overpower that

of the end facet reflection. A 15cm length of sapphire was used, while 25cm

lengths of SCF and GRIN were used.

The fibres were packaged in inconel tubing to protect from impurities

present in the furnace air, before being spliced to single mode fibre using a

Fitel s179a fusion arc splicer. The single mode fibre was similarly spliced

to a single mode optical patch cable, which was connected to a 1460-1620

nm Micron Optics Hyperion si255 swept source interrogator to produce a

reflection spectrum.

To collect the multiple temperature labels that the DNNs would be

learning to predict, 10 points of a 20-point fibre Bragg grating (FBG) were

used. An FBG was chosen over other temperature sensing methods such as

thermocouples as it was by far the easiest method of achieving 10 sensing

points. The particular FBG used was fabricated by inscribing 10 Bragg

gratings in suspended core fibre using a femto-second ablation laser [75].

The FBG was prepared similarly to and bundled with the fibres above.

Once packaged, all four tubes containing the fibres were bundled together

such that the end facets of the fibres coincided. This bundle was kept together

throughout the entirety of the data collection. The 10 Bragg gratings

consisting the 10 sensing points began a few millimetres from the end of

the FBG fibre, and were spaced every 1.5 cm. Only 10 sensing points were

used as it was only these 10 which lay adjacent to all three sensing fibres,

given the length of sapphire used was 15 cm.

Data was collected over 11 separate 24 hour periods, with the fibres in
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Figure 11: Examples of the positions of the fibres used relative to the furnace, the resulting temperature

progression of the outermost labels and one in the middle, and the initial temperature distributions when

the furnace was at its hottest.

a different spatial position relative to the furnace for each. The furnace

was let to cool linearly from 300℃ to 25℃ over these periods, such that

each spectrum recorded was under a unique temperature distribution, and

each sensing point experienced an independent variety of temperature labels.

Examples of these distributions and an approximate positioning of the fibres

that created them are shown in Figure 11.

Of these 11 sets of data, each containing 72,000 spectra, six were

combined to train the networks, with the performance of each evaluated

using the testing dataset, and the remaining five were used to test the

networks’ generalisation capabilities. The six sensor positions comprising

the training data were spaced equidistant, beginning with the sensors placed
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as far inside the furnace as possible, and finishing with the sensors’ end facets

close to the exit of the furnace. The five positions used to test the networks’

generalisation capabilities each lay between a pair of these six positions, in

a quasi-random position between the two.

Wavelength spectrum data was read in from the interrogator to a

LabView program. Examples of the spectra obtained from each of the fibres

is shown in Figure 12. The raw spectra contained 20,000 data points, with

a resolution of 8 pm. All spectra were decimated by a factor of 20, resulting

in 1,000 point spectra with a resolution of 0.16 nm. This was done to reduce

memory usage on the recording computer as well as save computational power

while training the DNN.

Figure 12: Example wavelength reflection spectra obtained from the four fibres

The FBG sensor consisted of 20 gratings, spaced 1.5 cm apart and

resonant peaks spaced approximately 5 nm apart in the wavelength domain.

Temperature labels for each grating were obtained using a peak tracking

algorithm implemented in Matlab [72] and a calibration curve relating the
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shift in resonant peak to the change in temperature experience by the FBG.

This calibration curve had been experimentally obtained by the group that

designed the fibre using a fourth order polynomial fit:

∆T = a1

(
∆λ

λRT

)
+ a2

(
∆λ

λRT

)2

+ a3

(
∆λ

λRT

)3

+ a4

(
∆λ

λRT

)4

, (34)

where ∆T denotes the shift in temperature from room temperature in ℃,

∆λ denotes the shift in peak wavelength from the peak room temperature

wavelength, and λRT denotes the room temperature wavelength. The

coefficients, ai have been determined as

a1 = 1.516068× 105 ℃ (35)

a2 = −1.387818× 107 ℃ (36)

a3 = 1.874080× 109 ℃ (37)

a4 = −1.060863× 1011 ℃. (38)

3.3.1 Deep learning

The DNN architecture used in this analysis was a multi-layer perceptron

with an input layer of the 1,000 point spectra, output layer corresponding

to the 10 temperature labels, and four hidden layers of size 512, 128, 64

and 32. Figure 13 gives a representation of this MLP architecture. The

432,000 spectra comprising the dataset were shuffled and split into training,

validation and testing sets, the proportional size of each being 67.5%, 22.5%

and 10% of the total dataset respectively. Training was implemented using

the Keras library. For the 360,000 spectra from the five sets of data intended

to test the networks’ generalisation capabilities, separate from the training

data, these were not split into three groups, as they were not needed for

training, and none had been seen by the networks during the course of this
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Figure 13: Representation of the deep neural used in this analysis. It consisted of four hidden layers, with

the number of nodes in each shown in the figure

work. All of these spectra were instead used purely for testing in Section

3.4.2 with the models trained in this section.

The optimisation algorithm used for training was the Adam optimiser

[76]. Hyperparameters included a learning rate of 10−3, batch sizes of 64

and a training length of 500 epochs. The model with the lowest loss that

was created during training was kept as the final model. Training was

performed on a Lenovo Legion 7i laptop with a 10th Gen Intel Core i7-

10875H processor, 16 GB of memory and an NVIDIA GeForce RTX 2070

graphics card. Training over 500 epochs took approximately two hours.

3.4 Results

3.4.1 Training and testing within the dataset

The models were trained on the 291,600 spectra (67.5% of the 432,000

spectra), and the performance of the networks was tested using the set of

43,200 testing spectra (10% of the 432,000 spectra). These had not been seen

by the network during training. The training was performed with a ‘model

checkpoint’ in place, which only saved a particular model resulting from an

epoch as the new model if the loss at the end of this epoch improved on that
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of the current best model.

Figure 14: The loss history for the 500 epochs of training performed on the models using spectra from a)

sapphire fibre, b) graded-index fibre and c) suspended core fibre

Figure 14 shows the history of the MSE loss at the end of each 500

training epochs for the training process of the three models. Each plot has

the same y-axis scale. From these plots, one can draw two conclusions. First

of all, it appears that each model was still slightly improving at the end of the

500 epochs, leading one to believe the models were not done training. This is

exaggerated however by the logarithmic y-axis, and it can safely be said that

further training would not have worthfully improved the models. Secondly,

it is obvious that the model trained on the sapphire fibre spectra reached a

much lower loss value than that of the GRIN fibre, which in turn reached a

much lower loss value than that of the SCF fibre. This indicates that there is

a clear distinction between the ability for the DNN architecture employed to

find a meaningful connection between the spectra and 10 temperature labels

between the three fibres, with the model learning best with the sapphire

spectra and worst with the SCF spectra.

The results pertaining to the performance of the three models are

presented in the form of a root-mean-squared error metric between the 10
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Figure 15: Predictions of the three DNNs on three selected temperature sensing positions out of the 10

they were trained on.
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Fibre Label#1 Label#2 Label#3 Label#4 Label#5

Sapphire 0.83 0.64 0.56 0.42 0.38

GRIN 5.0 3.4 2.9 2.9 2.9

SCF 9.6 7.6 6.8 6.1 5.7

Fibre Label#6 Label#7 Label#8 Label#9 Label#10

Sapphire 0.48 0.55 0.53 0.65 0.84

GRIN 2.5 2.0 1.8 1.8 2.4

SCF 6.1 7.0 7.3 8.0 9.3

Table 2: RMS error (℃) of predictions made by the networks trained on data from the three fibres for

each of the 10 sensing points.

temperature labels predicted by the networks when given a test spectra, and

the 10 true temperature labels. The labels start with label #1 at the end

of the fibres, closest to their end facets, and count up, with label #10 being

furthest from the end facet. Table 2 displays this RMS error for the DNNs

trained on the data from the three fibres in predicting the 10 distributed

temperature labels from the testing dataset.

Figure 15 shows examples of the predictions on three of the 20

temperature labels, showing more explicitly how the DNNs performed with

individual sensing points. From the results displayed, it is clear that the

DNN trained on sapphire fibre spectra is by far the most accurate model in

predicting each of the 10 temperature labels corresponding to a spectrum

and temperature distribution not seen during training. This is supported by

the low loss achieved by the model during training, which is two orders of

magnitude lower than the next model, suggesting a meaningful and physical

relationship between the sapphire fibre spectra and the spatially resolved

temperature measurements. It is also supported by the high accuracy of the

model, again up to to an order of magnitude more accurate than the other

two models.

It is hypothesised and experimentally supported here that the sapphire

fibre, with its variable radius and hence constant mode mixing, is more
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Fibre Label#1 Label#2 Label#3 Label#4 Label#5

Sapphire 15 11 8.9 6.0 4.9

GRIN 21 19 17 14 11

SCF 15 12 9.9 7.9 7.7

Fibre Label#6 Label#7 Label#8 Label#9 Label#10

Sapphire 5.2 5.8 6.4 5.4 5.1

GRIN 10 9.5 8.6 8.0 9.5

SCF 8.9 11 13 13 14

Table 3: RMS error (℃) of predictions made by the networks trained on data from the three fibres for

each of the 10 sensing points.

capable of distributed sensing using its wavelength spectrum than an ordinary

fibre which does not possess this characteristic. This is due to the unique

contribution to the output of the fibre from each spatially resolved point

along the fibre due to the unique mode mixing occurring at that location, as

opposed to contributions from each point along the fibre being summed up

equally.

3.4.2 Generalisation to unseen temperature distributions

The second part of this experiment was to test the trained models’ ability

to generalise to temperature distributions they had not seen during training.

This was achieved by collecting data as mentioned earlier in this section,

which involved sets of data from sensor positions which did not go into the

set of training data. In general it is not expected that DNNs should be able

to generalise to data which sits completely outside of the distribution of data

which comprised its training set. This includes similar data which has simply

been recorded under slightly different conditions or methods, intentional or

not. As such, it is not expected that the models trained in this experiment

will perform to a similar standard as the previous section, but conclusions

can still be drawn by comparing the performance of the three models in

attempting this task.
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The generalisation capabilities of the trained models were tested on

360,000 spectra from five sensor positions which the model had not seen

during training. Each of these positions lay between The 360,000 spectra

were all handled in the same way as the training data, i.e. normalised. The

spectra were then fed into the models trained in Section 3.4.1 and predictions

on the 10 training labels made.

Table 3 and Figure 16 display the results of the predictions and the

accuracy of the three models as in Section 3.4.1. The first thing to note is

that the models are far less accurate at predicting the temperature labels

from spectra which were generated from different temperature distributions

than those which comprised the training set. The model trained on the

sapphire fibre’s spectra is slightly more accurate, but not significantly.

One possible reason the performance of the three models is overall

inaccurate is the changing polarisation state of the light travelling through

the fibre when the single mode optical patch cables leading to and from

the interrogator are perturbed. This occurs when the sensors’ positions are

shifted and can have a profound effect on the spectrum recorded by the

interrogator in the absence of any other perturbations. Figure 17 shows

two example spectra from a GRIN fibre sensor, where the only perturbation

applied was manual movement of the optical patch cables leading to and

from the interrogator.

A consequence of this is that it is not only the temperature distribution

surrounding the fibre which affects the wavelength spectrum, but in this case

the position of the SMF patch cables used and hence the polarisation state

of the light. In reality there are countless environmental variables which

affect the recorded spectrum and the performance of the DNNs, everything

from atmospheric pressure to the calibration of the interrogator and even

the random seed selected in the code used for training the models. DNNs

prove themselves to be very powerful at learning the required relationship

between the x- and y-data it is presented with, in this case wavelength spectra
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Figure 16: Predictions of the three DNNs on three separate temperature labels for the unseen temperature

distributions
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Figure 17: Two wavelength spectra, a) and b), recorded from the same graded-index fibre sensor seconds

apart. The fibre itself was held still and the only perturbation applied was movement of the single mode

optical patch cable leading to and from the interrogator

and temperature labels, and learning to ignore/see through other parameters

which affect the y-data, such as mechanical noise in the case of [62]. However,

they are only capable of doing this when they are shown many examples of

the full extent of this noise, and consequently how its effects on the y-data

are not due to the x-data. In our case, data relating to each sensor position

is recorded for 24 hours with the patch cables in the same position, and

hence the DNNs are unable to learn the effect of patch cable position on

the wavelength spectrum. The effect on the spectra from the different patch

cable positions for the datasets not seen during training is then attributed

to a temperature change, and the DNNs perform poorly.

A possible solution to this is to use polarisation maintaining single mode

fibre patch cables, such that perturbations on the patch cables will not have

an effect on the spectra, which is a subject for future work. It is hypothesised

however that using the polarisation maintaining single mode fibre and patch

cables will improve the DNNs ability to generalise to unseen temperature

distributions.
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3.5 Conclusion and future work

The experimental results presented here demonstrate that a DNN trained

on wavelength spectra for temperature sensing from a fibre with variable

radius, such as sapphire fibre, is far more likely to be able to discern spatially

resolved information than those trained on data from other fibres. Together

with the numerically modelled results, this gives evidence that a fibre with

a variable radius, or more generally any continuous perturbation which

induces mode mixing, is able to encode spatially resolved information in

its wavelength spectrum.

An attempt was made to generalise to temperature distributions which

were not seen during model training with limited success. This has been

attributed to the changing polarisation state of light in the fibres and a

solution in the form of using polarisation maintaining fibre is suggested.

Although not explicitly shown in this work, this work can be extended

to temperature sensing above 1300℃ with the sapphire fibre, temperatures

which silica fibre can not be used for. To achieve the calibration at these

temperatures, one would use thermocouples. After calibration, the fibre

sensor would have all the advantages that fibre sensors possess over the

thermocouples, such as small size and electromagnetic passivity.

There are still directions that this line of research could continue from

here. The temperature distributions used were all similar in that the

temperature monotonically decreased from inside the furnace to out. The

DNN would need to be trained on a wider variety of temperature distributions

to improve the generalisation capabilities needed for deployment in the

field. Another logical direction to take is to attempt to give a regular,

translationally invariant fibre distributed sensing capabilities by inducing

mode mixing along its length through mechanisms such as perturbing its

radius or refractive index. Methods to achieve suitable perturbations could

include stress and pressure induced perturbations, tapering or a low power

splicing arc. Sapphire fibre has inherent drawbacks such as high cost,
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high loss and overall being difficult to work with, and so finding a way to

achieve the same effect with regular, silica fibre could make investigating this

phenomenon much more accessible.
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4 Conclusion

In this thesis, deep learning for regression based fibre optical sensing has

been investigated in two ways that have not previously been attempted. Deep

learning has been applied to fibre specklegram sensing for temperature and

refractive index sensing, displaying improvements over the current statistical

methods of specklegram analysis. Deep learning was then applied to fibre

reflection spectra for distributed temperature sensing with sapphire optical

fibre.

In chapter 2, deep learning analysis of specklegrams from an exposed

core fibre for temperature and refractive index sensing was investigated.

The advantages of the deep learning method over a conventional statistical

correlation method (as used in [29]) is demonstrated. Although it is

peripheral to the aims of this thesis, it is worth noting that this previous

work demonstrated the first instance of fibre specklegram sensing with an

exposed core fibre, hence the first instance of fibre specklegram refractive

index sensing. Two different deep neural network architectures, a multi-

layer perceptron model and a convolutional neural network, were used. Both

of these models were trained on specklegrams from the fibre under i) various

temperatures and ii) various depths of water immersion, and compared to

the zero-normalised cross correlation function method of analysis, which

is standard in current literature. It is shown that the neural networks

outperform the correlation method for sensing, improving on such flaws

as limited dynamic range and vulnerability to optical misalignment during

specklegram recording.

Although deep learning is shown to improve upon the ZNCC method,

it is obvious that the full capabilities of the deep learning approach aren’t

demonstrated. Both the full dynamic range and potential robustness against

noise are yet to be seen. The next steps in demonstrating the power of deep

learning for fibre specklegram sensing would take this into consideration,

i.e. data would be collected over a larger temperature range and a longer
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submersion length. Our previous work [62], as well as the work presented

in Chapter 3 of this thesis demonstrates that deep learning for temperature

sensing works well up to temperatures of 600℃ , and so it would be interesting

to investigate whether deep learning models trained on specklegrams are able

to function over such a large dynamic range also. Furthermore, as in [62],

a logical next step would be to investigate a deep learning model’s ability

to extract information pertaining to an environmental parameter such as

temperature while subjected to strong noise, such as vibration.

This thesis also saw deep learning applied to the wavelength reflection

spectra output of multimode fibre for distributed temperature sensing. This

is performed with the spectra of unaltered fibres instead of the current

method of interferometric fibre temperature sensing which utilises fibre Bragg

gratings and wavelength division multiplexing. The idea of spatially unique

mode mixing along a fibre leading to spatially unique information in its

output is explored, leading to a novel application of sapphire optical fibre’s

poor diameter consistency for distributed temperature sensing. Experimental

data is used to confirm this concept in an experiment which aimed to train

deep neural networks with fibre reflection spectra to predict spatially resolved

temperature labels. It is shown that the model trained on sapphire fibre

spectra far outperforms those trained on spectra from silica fibres which do

not share the sapphire fibre’s diameter inconsistency, giving more evidence

towards continuous mode mixing in a fibre giving it inherent distributed

sensing capabilities.

Despite conclusive results, some aspects of this experiment could be

improved upon. For instance, all deep learning models, including that trained

on sapphire spectra, performed poorly when predicting temperatures from

distributions not seen during training. While extrapolating to data outside

of the distribution of training data is not something in deep learning which is

expected to work often, it is the author’s belief that it may be possible. Truly

distributed temperature information in the fibre’s output should allow for

the extraction of temperature information for each individual sensing point

68



regardless of the overall distribution. It is believed that better extrapolation

results could be achieved through the use of a polarisation maintaining fibre

setup, so as to minimise noise from changing polarisation states due to

moving the sensor. This experiment could have also featured more advanced

simulated results, such as simulating transmission through a fibre of more

than two sections. Both of these shortcomings were unfortunately a result of

the time limit imposed for the completion of the thesis, and the author will

be investigating these next steps following the completion of this thesis.

Overall, these two experiments demonstrate the ability of deep learning

for regression-based fibre sensing, something which has only been performed

once before in the literature [62]. This area of research has much potential for

success, if one considers the success of deep learning in almost any other field

of research/application. Presented in this thesis is work which demonstrates

deep learning’s ability to overcome limitations in established fibre sensing

techniques, and important steps towards future work which could make deep

learning for fibre sensing, along with its many potential advantages over

current sensing techniques, practical enough for real world applications.
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Appendix 1: Code used in chapter 2

Presented in this appendix is the code used to process the data and

perform the machine learning undertaken in chapter 2. The code was written

in Python in the Jupyter online coding platform. The Keras deep learning

library, by Google, was used to create and train the deep neural networks.

The general aim of the code is as follows; to read in specklegram images

which are stored as .png files, process these into arrays that are suitable of

being used by DNNs, build a DNN using the Keras library and train this

network using the aforementioned arrays.

The first block of code imports all the packages used throughout the

program. The function of prominently used packages will be explained as

necessary, and documentation on each can be readily found online.

# Code block 1: import necessary packages

import numpy as np

import os

import cv2

import pandas as pd

from PIL import Image

from pathlib import Path

import fnmatch

import random as rn

import matplotlib.pyplot as plt

import time

np.random.seed(69)

rn.seed(69)

import keras

from sklearn.model_selection import train_test_split

from keras.models import Sequential
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from keras.layers.core import Dense, Dropout, Activation,

↪→ Flatten

from keras.layers.convolutional import Convolution2D as Conv2D

from tensorflow.keras.optimizers import Adam, Adadelta, Adamax

from keras.models import Sequential, load_model

from keras.layers import Dense, Conv1D, MaxPooling1D, Flatten,

↪→ Dropout, Activation, MaxPool2D

from keras.regularizers import l1, l2

from keras.callbacks import EarlyStopping, ModelCheckpoint

from keras.layers import BatchNormalization

from livelossplot.inputs.keras import PlotLossesCallback

from keras import layers

from keras.layers import Input, Add, Dense, Activation,

↪→ ZeroPadding2D, BatchNormalization, Flatten, Conv2D,

↪→ AveragePooling2D, MaxPooling2D, GlobalMaxPooling2D

from keras.models import Model, load_model

from keras.preprocessing import image

from keras.utils import layer_utils

from keras.utils.data_utils import get_file

from keras.applications.imagenet_utils import preprocess_input

from IPython.display import SVG

from keras.utils.vis_utils import model_to_dot

from tensorflow.keras.utils import plot_model

from keras.initializers import glorot_uniform

import scipy.misc

from matplotlib.pyplot import imshow

%matplotlib inline

import keras.backend as K

K.set_image_data_format(’channels_last’)
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K.set_learning_phase(1)

Code block 2 defines a function which will read in the specklegram

images from .png files to NumPy arrays using the “cv2” image manipulation

package. The .png images are stored to a hard drive in a system such that

all images pertaining to a temperature/immersion depth label’s video are

stored inside a folder named after that label, and each image inside a label

folder is labelled as “frame” plus the chronological number of that image

as a frame in the original video. This makes for the convenient, automatic

importing of the entire archive of images using for loops.

# Code block 2: Reading and storing images as arrays

# Set image size for resizing images

image_size_x = 240

image_size_y = 180

image_size_x_original = 800

image_size_y_original = 600

#temps = [4,6,7,8,10,11,12,14]

temps =

↪→ [22.5,23,23.5,24,24.5,25,25.5,26,26.5,27,27.5,28,28.5,29,29.5,30]

↪→

def load_data():

x_data = []

y_data = []

x_test = []

y_test = []
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for i in range(len(temps)):

temp = str(temps[i])

img_folder = "D:/AAA/darcy/Documents/Uni/Masters/

↪→ Project/ECF_OL_PNG/Air Temp 11-09/" + temp

for j in range(len(fnmatch.filter(os.listdir(img_folder

↪→ ), ’*.png’))):

frame = str(j)

img_path = "D:/AAA/darcy/Documents/Uni/Masters/

↪→ Project/ECF_OL_PNG/Air Temp 11-09/" + temp + "

↪→ /" + "frame" + frame + ".png"

img_colour = cv2.resize(cv2.imread(img_path, cv2.

↪→ IMREAD_COLOR).astype(np.float32),(image_size_x

↪→ ,image_size_y))

img = cv2.cvtColor(img_colour, cv2.COLOR_BGR2GRAY)

# Code for randomly offsetting images

#randX = int(round(rn.uniform(-20,20)))

#randY = int(round(rn.uniform(-20,20)))

#img = img[270+randX:470+randX,242+randY:442+randY]

x_data.append(img)

y_data.append(temps[i])

x_data = np.array(x_data)

x_data = np.expand_dims(x_data, axis=3)

x_test = np.array(x_test)

#x_test = np.expand_dims(x_test, axis=3)

y_data = np.array(y_data)

y_test = np.array(y_test)

return x_data, y_data, x_test, y_test
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Code block 3 defines a function which will normalise and remove the

positive bias of all values across all arrays in the set of data. It will then

shuffle the arays and their associated labels, and split this shuffled set into the

training, validation and testing sets required for performing machine learning.

The shuffling and splitting is done with the train_test_split function from

the “sklearn” package, which is designed for this purpose. This function calls

the load_data() from the previous block of code.

# Code block 3:

def normalize_and_split_train_data():

train_data, train_target, test_data, test_target =

↪→ load_data()

#combined_data = np.concatenate((train_data,test_data))

combined_data = train_data

m = combined_data.mean()

s = combined_data.std()

print (’Train mean, sd:’, m, s )

train_data -= m

train_data /= s

train_data1 = np.zeros((np.size(train_data,axis=0),60,60,1)

↪→ )

for i in range(np.size(train_data,axis=0)):

randX = int(round(rn.uniform(-10,10)))

randY = int(round(rn.uniform(-10,10)))

#randX = 0
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#randY = 0

train_data1[i,:,:,:] = train_data[i,73+randY:133+randY

↪→ ,81+randX:141+randX,:]

# 1st split - 10% for testing data - not to be seen during

↪→ finetuning

x_train3, x_test2, y_train3, y_test = train_test_split(

↪→ train_data1, train_target, test_size=0.1,

↪→ random_state=1)

# 2nd split - 75/25 of what’s left

x_train2, x_valid2, y_train, y_valid = train_test_split(

↪→ x_train3, y_train3, test_size=0.25, random_state=1)

print(’Train shape:’, x_train2.shape)

print(’Validation shape:’, x_valid2.shape)

print(’Test shape:’, x_test2.shape)

return x_train2, x_valid2, y_train, y_valid, x_test2,

↪→ y_test

Code block 4 creates a function which, when called, will create and store

the DNN architecture defined within. The code to create the two types of

DNN architecture used in the analysis in chapter 2, a VGG style CNN and

an MLP, are both shown. The Keras library allows for a simple, modular

approach to building DNN architectures by purely adding each layer of the

model as a single line of code.

# Code block 4a: Defining DNN (3-BLOCK VGG16 MODEL)

def create_model():

model = Sequential()
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model.add(Conv2D(input_shape=(60,60,1),filters=64,

↪→ kernel_size=(3,3),padding="same", activation="relu"))

model.add(Conv2D(filters=64,kernel_size=(3,3),padding="same

↪→ ", activation="relu"))

model.add(MaxPool2D(pool_size=(2,2),strides=(2,2)))

model.add(Conv2D(filters=128, kernel_size=(3,3), padding="

↪→ same", activation="relu"))

model.add(Conv2D(filters=128, kernel_size=(3,3), padding="

↪→ same", activation="relu"))

model.add(MaxPool2D(pool_size=(2,2),strides=(2,2)))

model.add(Conv2D(filters=256, kernel_size=(3,3), padding="

↪→ same", activation="relu"))

model.add(Conv2D(filters=256, kernel_size=(3,3), padding="

↪→ same", activation="relu"))

model.add(Conv2D(filters=256, kernel_size=(3,3), padding="

↪→ same", activation="relu"))

model.add(MaxPool2D(pool_size=(2,2),strides=(2,2)))

model.add(Flatten())

model.add(Dense(units=2048,activation="relu"))

model.add(Dense(units=1024,activation="relu"))

model.add(Dense(units=256,activation="relu"))

model.add(Dense(units=1))

return model

# Code block 4b: Defining DNN (MLP MODEL)

def create_model():

84



model= Sequential()

model.add(Flatten(input_shape=(150,150,1)))

model.add(Dense(5096, activation=’relu’))

model.add(Dense(1024, activation=’relu’))

model.add(Dense(256, activation=’relu’))

model.add(Dense(64, activation=’relu’))

model.add(Dense(16, activation=’relu’))

model.add(Dense(2))

return model

Code block 5 begins by calling the functions defined above in order to

import and process the specklegram data and create the DNN. It then defines

hyperparameters related to the training of the DNN, such as the optimiser,

number of epochs and loss metric used.

The training itself takes place in the history = ... line. Once all the

relevant hyperparameters are set, Keras only requires this one line of code to

perform the entire training process. All of the mathematics of the stochastic

gradient descent process are abstracted away. Once the model is trained, the

best model is saved and its performance tested using the validation set.

# Code block 5: Training the model

x_train1, x_valid1, y_train, y_valid, x_test1, y_test =

↪→ normalize_and_split_train_data()

x_train = x_train1

x_valid = x_valid1

x_test = x_test1

es = EarlyStopping(monitor = ’loss’, mode = ’min’, verbose = 1,

↪→ patience = 5000)
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mc = ModelCheckpoint(’best_model.h5’, monitor=’loss’, mode=’min

↪→ ’, verbose=1, save_best_only=True)

model = create_model()

numEpochs = 250

tic = time.perf_counter()

# Setting the optimizer

model.compile(optimizer = Adam(lr=0.001),

loss = ’mse’,

#metrics = [’accuracy’])

metrics = [’mse’,’mae’])

# Run without save best model... not yet

history = model.fit(x_train, y_train, validation_data=(x_valid,

↪→ y_valid), shuffle = True, batch_size = 64, epochs=

↪→ numEpochs,

verbose=0, callbacks=[PlotLossesCallback(),

↪→ es, mc])

toc = time.perf_counter()

print(f"Model trained in {toc - tic:0.4f} seconds")

# load the saved model

saved_model = load_model(’best_model.h5’)

#predict the value for test spectra with respect to temp (

↪→ x_test)

predictions = saved_model.predict(x_valid)
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From here, the performance of the trained model on the validation set can

be visualised by plotting its predictions against the true labels (not shown).

The code used to perform the deep learning in chapter 3 is similar to

the code shown above. Once the data (1000-point spectra as the x-data and

10 temperature labels as the y-data) had been loaded into suitable NumPy

arrays, the normalisation, shuffling and splitting of the data, as well as the

building and training of the DNN proceeded as above. An MLP similar to

code block 4b was used, except with the correct layer sizes for that task.

87




