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Continuum Modeling with Functional Lennard—Jones
Parameters for DNA-Graphene Interactions

Kyle Stevens,* Ngamta Thamwattana, and Thien Tran-Duc

Carbon nanostructures are of particular interest as platforms for molecular

The 6-12 Lennard-Jones potential for two
atoms at a distance p apart is given by

storage and adsorption. In this paper, the adsorption of a single stranded DNA

molecule onto a graphene sheet is considered. Even though DNA molecules
are complicated heterogeneous structures comprising several types of atoms,
it is found that the repeated patterns within the DNA molecules enable the
use of a continuum approach to model the DNA-graphene sheet interaction.
Here, a model is proposed such that the heterogeneity across the DNA
molecule is captured by interaction functions, which are used to replace the
attractive and repulsive constants in the Lennard-Jones potential. Result from
this new model shows better agreement to molecular dynamics simulations
compared to the traditional continuum approach where atoms on the DNA

A B
fi(p) = s + o 1)

where A and B are the attractive and re-
pulsive constants, respectively. As shown in
Equation (1), the Lennard-Jones potential is
an interatomic potential, so for intermolec-
ular interactions, one method to obtain the
total potential energy is to sum over the pair-
wise interaction between atoms i and j of the
two interacting molecules, namely

are averaged evenly across the molecule. Finally, the paper comments on the

model, its parameters, and suggests ways for improvement.

1. Introduction

Due to their high surface area, carbon materials have been ex-
plored as platforms for molecular adsorption for uses in a variety
of applications. Gas storage,!'™! pollution capture,>”] biomedi-
cal uses,!®19 gas sensing,['*13] and drug encapsulation!'*% are
some of the applications that make use of the non-covalent in-
teractions between carbon nanostructures and stored materials.
Since carbon compounds are typically nonpolar, the non-covalent
interactions between carbon nanostructures and other molecules
are dominated by van der Waals forces. To model these inter-
actions and obtain the potential energy for the system, the 6-12
Lennard-Jones potential is commonly used due to its simple form
and computational efficiency.!'”]
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This method is referred to as a discrete approach. Another
method to obtain the total interaction energy, which we refer to
as a continuum approach, is to replace the above double summa-
tions with double surface integrals,

E=’h’12/s /5 ff(p)dSldSZ 3)

where p here is a distance between typical surface elements dsS;
and dS,, #, and #, are the surface densities of atoms on the two
molecules. This approach was first proposed by Girifalcol'®! to
determine the potential energy between interacting fullerenes.
Over the past decade, extensive development of this approach
has been made to determine interaction energies for a variety
of molecular structures with various shapes, sizes, and chemi-
cal compositions.['-22] The key advantage of a continuum model
lies in the resultant analytical expression of the potential energy,
which can be readily used to determine characteristics of an in-
teraction, such as critical distance, energy minima, and forces at
an arbitrary distance and configuration. However, the continuum
model is not straightforwardly used for irregular shaped struc-
tures.

In the standard continuum approach mentioned above, the
coefficients (A and B) in the Lennard-Jones potential are con-
stants, which is suitable for modeling interactions between
mononuclear molecules since they can be thought of as ho-
mogeneous surfaces with uniform atomic distribution.[?>24] Ex-
amples include interactions between two carbon nanostruc-
tures, such as fullerene—fullerene, fullerene-nanotube, fullerene-
nanocone, nanotube-nanotube, and graphene-graphene.[?°! For
interactions involving heterogeneous structures or heteronuclear
molecules, the standard continuum approach can be adapted by
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Figure 1. Atomic representation of a ssDNA molecule above a graphene sheet and its corresponding diagram representing the ssDNA as a helical

surface and the graphene sheet as a flat plane.

either averaging contributions of the constituent atoms as a ho-
mogeneous approximation,?*?’] or dividing the molecules into
multiple surfaces of the same atomic type.[?#?° Even though
these extensions are relatively simple to implement, the homo-
geneous approximation produces results that poorly agree with
molecular dynamics simulations, and the multi-surface method
requires multiple integral computations which can be cumber-
some for large molecules. Recently, a new development for the
continuum approach has been introduced to capture heteroge-
neous structure where the constants A and B are replaced by
functional coefficients known as interaction functions, A(p) and
B(p).[3% These functions represent the change in the interaction
profile depending on the location of different types of atoms
across the heterogeneous molecule. Although excellent agree-
ments to molecular dynamics simulations are obtained, the inte-
gration involved becomes more complicated than having A and
B as constants. Importantly, care must be taken to determine the
interaction functions so that the integration is tractable.

We comment that the method of averaging contribution from
all constituent atoms is the simplest to upscale for studying large
heterogeneous molecules, whereas the multi-surface method is
not as straightforward due to the summation of all interactions
from all the surfaces. As such, the multi-surface method can
get computationally intensive for large heterogeneous structures.
The method with the interaction functions is relatively easy to up-
scale compared to the multi-surface method as there is only one
surface to handle.

In refs. [30-32], we use the continuum approach with the in-
teraction functions to model the interactions of carbon struc-
tures with coronene and methane, which are small heteroge-
neous structures comprising only two types of atoms. In this pa-
per, we investigate potential use of interaction functions to model
larger heterogeneous structures comprising more than two types
of atoms.

In particular, we consider a heterogeneous molecule with clear
patterns or repeated structures due to the organization of their
atoms, such as a periodic structure in polymers. One example
of such structures is a single-stranded DNA (ssDNA) molecule,
and so we model its interaction with a graphene sheet. Based on
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the patterns within a ssDNA molecule, we propose a technique
where we combine the method of averaging over regions of ho-
mogeneous surfaces and using the interaction functions to de-
scribe the interaction profile across the regions within a hetero-
geneous molecule.

We note that we particularly choose to study the interaction
between a ssDNA molecule and a graphene sheet in order to
compare our results to that of Alshehri et al.l?/ who adopt a
continuum approach with homogenous approximation, assum-
ing atoms on the ssDNA molecule are uniformly smeared across
DNA'’s helical surface.

We also note a number of proposed applications involving
DNA-graphene interactions, including molecular logic gates,!’!
material synthesis,** and electronic biosensing.!** Thus, under-
standing adsorption mechanisms of DNA onto graphene sheet is
crucial for the development of such applications.

In the following section, we describe the newly combined ap-
proach taken to obtain analytical expressions for the interaction
energy. Note that full details for evaluating integral expressions
are given in Appendices A and B, while detail for molecular
dynamics simulations used to benchmark analytical solution is
given in Appendix C. In Section 3, we investigate the effects of
the parameters on the interaction energy, as well as discuss im-
provements that can be made when implementing this modeling
technique to other molecules in the future.

2. Modeling Approach

In this section, we model the interaction between a single-
stranded B-DNA molecule and a graphene sheet (see Figure 1).
We assume that a graphene sheet is lying flat on the xy-plane
and that the DNA is a helix of length ¢ and radius b. Following
Alshehri et al.,[*) a general point on the surface of the helix has
coordinates

<C—V,btsinv,btcosv+5> 4
2

where v € [0,2x], t € [0, 1] are surface parameters and 6 is the
perpendicular distance between the xy-plane and the helix axis.
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Figure 2. Visual representations of a ssDNA molecule. a) A stick and ball model (e nitrogen;e oxygen;e carbon;e hydrogen;e phosphorous). b) A point

plot with groups of molecular structures represented by colors (~ deoxyribose;® phosphate;® nucleobase).

Table 1. Numerical values of parameters used in calculations.

Parameter Value
ssDNA radius, b 10.2V
region split point, 7 0.6
ssDNA length, ¢ 34V
base pair frequency, m, 1
backbone frequency, m, 11
ssDNA density, 1, 0.7069 V2
base pair region density, 1, ; 0.6285 V2
backbone region density, , , 0.8262 V2
graphene sheet density, 7, 0.3812 V2

While Alshehri et al.[?%] average the contribution of atoms on the
DNA to obtain constants A and B, this paper considers the atomic
structure of the DNA and thus, we use the Lennard-Jones poten-
tial with functional interaction coefficients to model the DNA.
Here, the potential energy between a ssDNA molecule and a
graphene sheet is evaluated by the expression

E=n, (-K; + K) (5)

where #, is the atomic density of the graphene sheet, and K, is
determined by the computation of the integral

K, =m / / F0)r " dSonrdS, ©)
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where 7, is the atomic density of the ssDNA molecule, p is the
distance between a point on the surface of the ssDNA and the
graphene sheet, dSpy, and dS, are the surface elements of the
DNA helix and graphene sheet respectively, and f, for n=3,6
are the interaction functions replacing the standard constants A
and B. The physical constants of DNA and graphene used in this
model are found in Table 1.

Since a graphene sheet is a homogeneous surface of car-
bon atoms, the choice of interaction function only depends on
the structure of the ssDNA molecule. The ssDNA molecule
consists of two main regimes along the length of the strand,
namely the phosphate-deoxyribose backbone, comprising alter-
nating molecules of phosphate and deoxyribose in a periodic
fashion, and the inner region comprising the four (sometimes
five) types of nucleobases (see Figure 2a). A single turn of ss-
DNA typically has either 10 or 11 nucleobases, often written as
10.5.3¢) This allows us to assume the interaction function that is
periodic in v with a frequency of 11. While there is a variability
in the distribution of the atoms throughout the DNA as shown
in Figure 2a, the regularity in the distribution of the constituent
molecular groups is clear, as shown in Figure 2b. Thus, it seems
intuitive to model each molecular group on the DNA as a ho-
mogeneous region. So, for example, rather than attempting to
capture the heterogeneity within a phosphate group, we treat the
entire phosphate as a homogeneous surface with average contri-
bution of phosphorous and oxygen. Additionally, since we do not
consider a particular DNA, specific sequence of nucleobases is
not relevant in the model. As such, we assume that all four nu-
cleobases have an equal likelihood to be on the DNA and thus we
approximate an averaged nucleobase as a homogeneous surface
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Figure 3. Possible configurations of how a ssDNA molecule is divided into regions a) a series of stacked horizontal strips and b) two vertically aligned

strips.

over which its constituent atoms are smeared and the contribu-
tions of all four bases are averaged.

Based on these assumptions, there are three possible can-
didates for the interaction function: a) a piecewise interaction
function that varies in v (i.e., f,;(v) for t €[0,7] and f, ,(v) for
t € [r,1]); b) a piecewise functlon that variesint (i.e., f, ,(t) forv €

[(2?12", (Zli)z” and f,,(t) for v € | Zli)z”, (Z’J;Z @ipr) for i=0,1,-,5,
not including the ﬁnal interval as there is an odd number of
strips); and finally c) an interaction function that varies contin-
uously in both variables f, (v, t). Visually, (a) and (b) correspond
to the images in Figure 3, where the first is two continuous sur-
faces separated along t = 7, the second image has 11 continuous
surfaces stacked vertically along the helix, and (c) would be a fully
continuous combination of (a) and (b). This division into regions
also naturally leads to using individual densities (;) for each re-
gion rather than a single density for the whole DNA strand.
According to (a), we consider interaction functions of the form
a cos(mv) + f in order to capture the alternating nature of the
two regimes, phosphate and deoxyribose in the outer band and
nucleobases and empty space in the inner band. The resulting
integral under this choice of the interaction function is given by

© oo cos (myv) + By
K, = ’71,i/ / / TdSDNAng
o Jo S, p
o v

inner band

o cos m,v) +
+'71o// / : 2) ﬁzdSDNAngr (7)

outer band

where the values of the coefficients «; and g; (i = 1, 2) are deter-
mined from the interaction coefficients (A and B) of the con-
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stituent molecules interacting with graphene, and m, is deter-
mined by the number of base pairs in one turn.

According to (b), we consider interaction functions that are
sigmoidal in shape since we need to capture the transition from
nucleobase to deoxyribose and empty space to phosphate across
the strips. Interaction functions that are sigmoidal in shape have
previously been used to capture transition between two types of
atoms*% so we assume similar behavior to hold when transition-
ing between two regions within a molecule. In particular we use
functions of the form a arctan(u(t — 7)) + f, which implies that
the resulting integral for evaluation is of the form

Qi+1)27

I a, arctan ﬂl (t—
K, = =M 12;;271 pAn
g

(@i+2)2x

o [ ayarctan (p, (E— 1)) + B,
+m 2/ b / o dSpyadS, (8)

where the coefficients «; and g, are determined in a similar man-
ner to the first choice above, #, ; and #, , are atomic densities for
each of the horizontal strips, and y; is determined by the slope of
the transition from the inner to outer region.

According to (c), we consider an interaction function that
has combined properties from both (a) and (b), that is, we
expect a sigmoidal profile when fixing v and a sinusoidal
shape when fixing t. This behavior can be achieved by tak-
ing the cosine function above and replacing the coefficients
a and f with arctan functions, namely (e, arctan(u, (t — 7)) +
;) cos(mv) + (a, arctan(u, (t — 7)) + f,), where the coefficients of
the arctan functions are determined from the coefficients of the
original cosine functions from the first choice. Note that this only
works if both cosine functions have matching frequencies m, oth-
erwise the frequency will need to be modified by some function

7)) + By

dSpyadS,
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. / /2”/ a arctan (py (£ — 7)) + ;) cos (mv) (ayarctan (u, (t— 7)) + B,)

Of all these three choices of interaction functions and the cor-
responding integrals, we find that only Equation (7) can be eval-
uated analytically, namely

dSpyadS, 9)

progress with Equation (9) since we are only interested in analyt-
ical solution for K. High computational time is also expected for
Equation (9).

By 4P, ,
K, = m be {Zm‘x”u z Z AJy + ;”’121 2 Ay, + 2man, , z Z AJs + ZZ”H; Z Az]4} (10)

i=0 j=0

where

(12200 (2 =i = )18 (fom =i+ ) = 2) (1) b

A= il (2m — 20)!(m — i + 1);
(n— 1)i<n - %)vai
A= ———— (11)
(i1)26%
and

k 1k
1 4b2 22 4h2 7 2 k-1
(-0),(-22) (10 228) ()

i=0 j=0

2.1. Determination of Coefficients a, , and g, , Used in
Equation (10)

In order to adopt (10) to determine the potential energy between
a DNA and a graphene sheet, we first need to determine the coef-
ficients a; and g; (i = 1,2), which are the interaction coefficients
of the constituent molecular groups interacting with a graphene
sheet. We note that two sets of the interaction coefficients are con-
sidered. The first set is derived from the carbon—carbon values in
Table 2, while the second set uses the graphene—graphene values.

o k
— 5-(+2n-2) ° ¢
Ji=o kz::; l; I (k-1

j+2+1?

F <j+2n—2,j+2l+1;j+2l+2;—b5_7>

] _ TZi+1 _1 2i+1.21‘+3'_4b2ﬂ212
2T st \T T T T
k c (12)
o k (=1 _ﬁ) (1 4y )z (—t )k_lTj+Zl
(1—7) < 2>k< 2 ] 0 o b(T_l)
= +2n—222 T F(1,—j-2Lj+2n-2,2,"— ——
(6 + bty k=0 =0 (k=) — ik
2 2 \k 2 2 %—k _
<_%>k<_4hczﬂ ) (1 + 4bczﬂ to) (—to)k : (1 _72i+21+1)

20+ 21+1

where , F, denotes the standard hypergeometric function and F,
denotes an Appell’s hypergeometric function. Detailed derivation
of these expressions is given in Appendix A. For Equation (8),
we obtain a semi-analytical solution where one integration is re-
mained to be evaluated numerically (see Appendix B). Due to
the high computational time to compute the semi-analytical so-
lution numerically, we do not adopt this case here. We also do not
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In refs. [30, 31] methane-nanotube and coronene-graphene in-
teractions were considered. In these studies, the heterogeneous
molecule (methane/coronene) can be modeled as two regions
(inner region of carbon atoms and outer region of hydrogen
atoms). The interaction functions are then used to describe the
interaction profile of a carbon surface (nanotube/graphene) in-
teracting with the two regions. In refs. [30-32] the sigmoidal
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Table 2. Values of the van der Waals radius () and the energy well depth
(€) for each interaction used to determine the Lennard-Jones’s attractive
and repulsive constants: A = 4e6% and B = 402

Interaction o [A] € [keal mol~"] A [kcal mol~! A®] B [kcal mol~" A'2]
c-c? 3.431 0.105 684.952 1 117 047
P—pa) 3.695 0.305 3102.659 7 890 568
N—N?2 3.261 0.069 331.7154 398 677.9
0-0% 3.118 0.060 220.5919 202 753.2
H—H?2) 2.571 0.044 50.84645 14 689.55
Graphene—Graphene® 3.415 0.055 350.23 555 299.54

2 From ref. [37]; ) From ref. [38].

Table 3. Interaction coefficients for the constituent molecules of DNA in-
teracting with either carbon or graphene.

Molecule A ¢ B, ¢ A ¢ B, ¢

Deoxyribose 400.49 544 857.74 360.70 499 546.24
Phosphate 605.86 984 648.81 439.97 673 728.00
Nucleobase 456.18 647 484.77 390.01 565 623.69

functions were used to represent a smooth transition from the
inner carbon core to the outer hydrogen region. As shown in
refs. [30-32] the coefficients for the interaction functions are rel-
atively simple to determine since they can be restricted to match
the Lennard-Jones constants A_. (or B ) at the carbon region
and Ay (or B_y) at the hydrogen region.

For our choice of interaction functions presented in Equa-
tion (7) for modeling a ssDNA molecule, we determine «; and
B, (i=1,2) such that when n =3, a; + f; = A, qeobasex a0 @, +
ﬂZ = Adeoxyribose-x and When n= 6’ aq + ﬁl = Bnucleobase-x and a; +
By = Bieoxyrivosex- Note that x represents interaction involving ei-
ther carbon or graphene. Similarly, we prescribe that f; —a; =0
(when n=3) or 0 (when n=06) and §, —a, = A when
1= 3) or B ocphate (When n=6).

We derive the Lennard-Jones constants of each region by em-
ploying the homogeneous smearing method using the parame-
ters given in Table 2. Using the standard combination rules for
Lennard-Jones parameters, we generate two sets of interatomic
interaction constants A;c, B¢, and A, penes Bigraphene, Where i
is any other type of molecular groups. For example, the attrac-
tive constant for carbon and phosphate (PO,) is calculated from
A hosphate.C = %Ap»c + %AO_C. Using the values from Table 2, we
derive the interaction coefficients for the constituent molecules
of DNA interacting with either carbon or graphene as given in
Table 3.

Using the values shown in Table 3, we obtain «; , and f, , for
both sets of coefficients as presented in Table 4. In the follow-
ing section, we plot the energy obtained from Equation (10) us-
ing these two set of coefficients. The results are compared with
molecular dynamics simulations and the homogeneous model
where atoms in the DNA are smeared over the helical surface.

phosphate-x (

3. Results and Discussion

In this section, the interaction between a ssDNA and a flat
graphene sheet is considered. Particular attention is made to the
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Table 4. Numerical values for a; ; and f; , for the interaction function (7)
derived from the values in Table 3. Note the set of coefficients (i) and
(ii) are based on the interaction involving carbon—carbon and graphene—
graphene, respectively.

Set n o b a b,
(i) 3 228.09 228.09 —102.69 503.18
6 323 742.39 323 742.39 —219 895.54 764 753.28
(i) 3 195.01 195.01 —39.64 400.3344899
6 282 811.85 282 811.85 —87 090.88 586 637.12

10

(=]
1

Potential Energy (kcal/mol)

_20_

T T T T T T T T T T T T T T T
12 13 14 15 16 17 18 19 20
Distance from graphene sheet (A)

Figure 4. Energy profiles comparing models (i) and (ii) with the homo-
geneous model and the MD results (< molecular dynamics simulations;
_ — _model (i); — . — model (ii); and — homogeneous model).

DNA structure in order to use a continuum approach to study
such interaction. In Alshehri et al.,?%] the DNA is modeled as
a homogeneous helical surface where the effect of constituent
atoms is averaged throughout the entire structure. As shown
in Figure 4, the potential energy obtained from the homoge-
neous model does not agree well with the results from molec-
ular dynamics (MD) simulations (see Appendix C for details of
the MD study). We compare our new results from the expres-
sion derived from Equation (10) using the two sets of coeffi-
cients found in Table 4, denoted as models (i) and (ii) respec-
tively, with the results from the homogeneous model described
in Alshehri et al.?®l and the numerical results from the MD
study. For the interaction coefficients used in the homogeneous
model, Alshehri et al.?%! considered a specific DNA sequence,
5'-CCACTAGTGG-3/, so the attractive and repulsive constants
are obtained by taking the arithmetic mean of all the individual
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Table 5. Energy minima and critical distance of the models and numerical
results.

Model Sin [A] Epin [keal mol™]
MD 12.939 —17.600
Model (i) 12.881 —26.495
Model (ii) 12.864 —21.496
Homogeneous 12.846 —23.544

atomic interaction coefficients (e.g., Apya_c = ﬁ (97Ac_c +
104, ¢ + 114A,;_ ¢ + 61A,_ + 38Ay_)). We note that the total
number of atoms in a DNA is determined from the number of
atoms in each molecular group in its bonded state, meaning that
there are less hydrogen atoms than the standalone molecules.
In general, for every base pair there is a corresponding deoxyri-
bose molecule (C;OH,) and a phosphate molecule (PO,). Of the
base pairs, there are guanine (C;H,N;O), adenine (C;H,Njs), cy-
tosine (C,H,N;0), and thymine (C;H;N,0O,). Last there are the
lone hydrogen and hydroxide at the 5" and 3’ end, respectively.
The interaction coefficients we use for the homogeneous model
in this paper are derived in the same manner, though rather than
considering a specific sequence of nucleobases, eleven averaged
nucleobases are used instead. Specifically, weuse Cu Hy N1s O as

the chemical composition of an averaged nucleobase when deter-
mining the interaction coefficients.

It can be seen that model (i) performs even more poorly com-
pared to the homogeneous model. For model (ii), the result is
closer to the MD simulations. This indicates that using coeffi-
cients based on graphene—graphene interaction is more appro-
priate than using coefficients based on C-C interaction for mod-
eling interactions involving graphene sheet.

Next, we explore the impact of other parameters in the model
on the interaction energy profile. We first investigate the two
shape parameters of the helix, namely the radius b and the length
c. From Figure 4, we find the location of the minimum energy
(61min) and the corresponding minimum energy (E, ;) as shown
in Table 5. The values of §,;, from the three models are found to
be in good agreement with the MD results, despite varying widely
in the values of E .

We show in Figure 5 that the location &, is strongly affected
by the radius of the ssDNA (b). In Figure 5, we demonstrate that
varying the values of b by 0.2 A results in the same amount of
displacement in &, as well as a slight change in E,,, due to
helical surface being further away from the graphene sheet.

On the other hand, it is shown in Figure 6 that an increase
in the length of the helix, ¢, over 10 A is required to produce a
decrease in E, ;, of a similar magnitude to that produced by in-
creasing the radius, b by 0.2 A.

These results demonstrate the significance of DNA’s radius
over its length in the model. However, these findings indicate that
the size of the helix largely impacts the location of the minimum
energy (6,,,,), but only minimally affects the value of minimum
energy (E,y,).

To further investigate the cause of the discrepancies in the en-
ergy profiles shown in Figure 4, we consider interaction coeffi-
cients, A and B, used for interactions involving phosphate, de-
oxyribose, and nucleobase. We comment that the coefficients A
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Figure 5. Energy profiles of model (ii) for varying the radius of the helix,
b, where 10.2V is the value used in other calculations (_ b= 10 A; _
b=102A; —b=10.4A).

and B calculated from averaging the contribution of constituent
atoms within a molecule do not provide a result that is in good
agreement with the MD simulations. Due to the non-linear effect
that the distance has on the Lennard-Jones potential, the config-
uration of the atoms within the molecule needs to be accounted
for. In Figure 7, two homogeneous sphere models for phos-
phate interacting with graphene are compared against simula-
tion results. One has coefficients determined from averaging the
contribution of each constituent atoms (i.e., A = éAPC + %Aoc)
and the other has coefficients determined by fitting a standard
sphere-plane continuum model®! with the externally obtained
well depth (¢) and the van der Waals radius (o) (i.e., E,;, = —€
and F’ (2%0') = 0). From the energy profiles, it can be seen that
the average atomic contribution approach leads to interaction co-
efficients A, osphate_carbon 304 Bphosphate_carbon that do not produce
result thatis in good agreement to simulation results. This is con-
trasted with the coefficients obtained from fitting a sphere-plane
model, which matches the simulation results more closely. Even
though there is a big difference between the two approaches, the
fitted coeflicients approach comes with some drawbacks. These
include the needs for a means of accounting for the molecule’s
shape for a homogeneous model and for information about the
well depth and the location of the well depth for the interac-
tion considered. Thus, this method would only be suitable for
determining coefficients of smaller molecular units as part of a
larger molecule. As a result, we do not pursue the fitted coef-
ficients approach for DNA molecule studied here as it requires
further assumptions for the shapes of nucleobases and deoxyri-
bose and the determination of € and o for these molecular groups
and graphene.
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Figure 6. Energy profiles of model (ii) with varied lengths of the helix, c. A

value of 34 A is used for ¢ in the other calculations (—c=32 A, _c=34A;

—c=50A).

Another possibility for the discrepancy between the contin-
uum model and the simulation results is the assumption made
to the structure of the DNA molecule. Figure 8a shows how the
helical-surface model, with the right parameters, captures the
overall shape of the ssDNA molecule but not the volume. As the
nucleobases are orthogonal to the backbone and the backbone it-
selfis not flat, a model comprising two helical cylinders capturing
nucleobases and backbone atoms may be more suitable for mod-
eling a ssDNA strand. An example of this modeling approach is
shown in Figure 8b.

4. Concluding Remarks

The Lennard-Jones potential is widely used for determining in-
teraction energy between non-bonded molecules. This potential
together with a continuum approach are adopted when dealing
with regular shaped molecules since the resultant energy can
be found explicitly as a function of distance between two in-
teracting molecules. Challenges arise when the interaction in-
volves irregular shaped structures or heterogeneous molecules,
which comprise more than one types of atoms. For heteroge-
neous molecules, the assumptions underlying traditional con-
tinuum approach that atoms are evenly smeared throughout the
molecule and the effects of atoms are the same regardless of its
location on the molecule seem invalid. To address this issue, we
propose a new continuum approach for a heterogeneous struc-
ture, where the Lennard-Jones coefficients are replaced by inter-
action functions.**32] While this approach has been shown to
work well with methane and coronene, we note their relatively
simple structures, which can be modeled as a sphere and a disk,
respectively. Furthermore, their atomic arrangement of carbon

Adv. Theory Simul. 2023, 6, 2200896 2200896 (8 of 14)

www.advtheorysimul.com

Potential Energy (kcal/mol)

-5 T T T T T T T
4 5 6 7
Distance from graphene sheet (A)

Figure 7. Energy profiles for phosphate group interacting with graphene
(X, molecular dynamics simulations; _ model with coefficients deriving
from averaging contribution of constituent atoms; . model with coeffi-
cients fitted from a sphere-plane model).

atoms at the central region and hydrogen atoms at the perimeter
enables the interaction functions in the form of a sigmoidal pro-
file, which makes the integrals in the interaction energy traceable
yielding analytical outcomes. For larger and more complex het-
erogeneous molecules, there has yet to be a continuum method
that takes into account both atomic arrangement and structure
of a molecule. As such, this paper can be viewed as an introduc-
tion to a continuum approach using the Lennard-Jones potential
with interaction functions to model complicated heterogeneous
molecules, such as polymers and DNAs.

A continuum model for heterogeneous molecules is proposed
here for the modeling of single-stranded DNA interacting with
a graphene sheet. By recognizing the patterns of atoms on the
DNA molecule, we are able to develop a technique combining
the method of averaging atomic contributions over regions of sur-
faces and using the interaction functions to describe the interac-
tion profile across the regions within a heterogeneous molecule.
This new approach appears to improve the accuracy of the model
when benchmarking with molecular dynamics simulations. De-
spite some improvement shown here, the model can be further
benefited by a systematic method for determining the interaction
coefficients between the constituent molecules (namely phos-
phate, deoxyribose, and the nucleobases) and the graphene sheet.
Different interaction functions may also be explored to better
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(b)

Figure 8. One turn of a ssDNA molecule’s atomic coordinates plotted along with a) a helical-surface and b) two helical cylinders.

capture the heterogeneity of the DNA molecule. Additionally, the
model can also be further improved by using a volume-based
model to better capture all atoms of the DNA.

These suggested improvements to the continuum modeling
for DNAs provide areas for future research directions. Finally, we
note that the approach presented in this paper can be extended to
model polymers or other heterogeneous molecules with repeated
patterns and structures.

Appendix A: Computation of the Integral K,
Equation (7)

A ssDNA helix has coordinates (;—;, btsinv, btcosv + &), where ¢ is
the length of the DNA strand, b is the radius of the DNA strand, § is
the distance from the helix axis to graphene sheet. Here, we assume that
& > b since the DNA molecule cannot intersect the graphene sheet. For
a graphene sheet lying flat on the xy-plane, its coordinates are given by
(x, , 0). Typical surface elements for graphene and DNA are given respec-

tively by dS, = dxdy, dSpna = by/ b2 + %dvdt, where x,y € (—o0, ),
te[0,1]and v € [0, 27].

From the coordinates of graphene and the DNA, distance between
two typical surface element is given by p? = (2 —x)* + (btsinv—y)? +

(bt cos v + 6)2. Thus, the integral K, over both surfaces can be written as

1 2r ) oof (V, t) CZ
Ky = ”]b/o ./O '/_oo /_oo in\lbzt2+ mdxdydvdt
2z
_,ﬁz”/ / L 1+ 4bin tZ/ / ~2dxdydvdt (A1)

Next, we write p? = fiZ + (Z —x)?, and make the substitution x — ;—; =

fl, tan ¢. This changes the limits of the integration from (—oo, o) to
[—g, g] and the differential dx = fl;sec?pd¢p. With the substitution the in-
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tegral K,, becomes

b 2r
- m C/ A RYARS i / / ﬂzfec "D peydvds
mbe [ [ 4b2n? ,
7 A A f;,, (V, t) 1 + 52 t
® d 2n-2
X Frrl cos”""“¢pd¢pdydvdt
oo -z

_mbe (2n—3)1 2 /| 4b7r
= T 2n— / / f;,, Vt / ﬂ—dyd\/dt

(A2)

=
I

@n-1)11
em! 2
again write ﬂ% = ﬂ% + (y — btsinv)? and substitute y — bt sinv = fl, tan ¢,
so

_ mbe (2n—3)"/ 2 4bz,,2 R
K= =2 Ja ) a2 '

Note that /03 cos?xdx = Z and n!!is the double factorial. Now, we

z ﬂ 2
X /2 L(p]dqﬁdvdt
2 (ﬂ%secqu)"_i
_ nybe 2n=3)! an v, 1) 4b2 2/ s
T2 (2n- z)n 0 22 t gcos ddpdvdt
b 2z ot
= / / Jn )2 Zmdvdt (A3)
2n-2 (btcos v +6)""" c2
since /,7 cos? 'xdx = (zﬁ?i;u
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The rest of the analytical calculation depends on the choice of f, (v, t).
Dividing the DNA strand into two regimes along the t-axis, we have the
nucleobases in the interval [0, 7] and the phosphate-deoxyribose back-
bone in the interval [z, 1]. Accordingly, f, is set to be two different func-
tions of v in these intervals, namely f, ; = @y cos(mqv) + f in [0, 7] and
Jn2 = @y cos(myv) + f, in [z, 1]. This also splits K, into two double inte-

grals,
”1('/ l 4b2752 /2” a cos m1v)-zl-ﬁ21d dt
(btcosv +8)°"
2 2 2r
+'I10/ / 4b ps / @, COs sz)'z"ﬁjd dt (A4)
(btcos v + 86)™""

The integral in v is effectively the same for both regions, so we only need
to solve the integral of the form

2 gcos (mv) + B
| = — v
0 (btcosv+5)>?

2 2
a/ %dv+ﬂ/ %dv
0 (btcosv+8)"™ 0 (btcosv+8)"""

aly + B, (AS)

After applying a double-angle trigonometric identity, the integral I, can
be readily computed as a hypergeometric function using a special case
shown in equation 3.681.1 in ref. [39],

/% o
o (1- kzsinzx)o

which we then expand into an infinite sum in order to facilitate the inte-
gration with respect to t:

i 1
/2:2/0( . —dv

2
&+ bt — 2btsm2§)

V3 -|. L2
2P <o, 2Tk ) (A6)

4 /2 1 dv
6 +bt)*2 Jo ( bt 2 )2”’2

1—m5|n v
2z 1 2bt
= —F(2n-2=;T; A7
6+ b1)22° 1< S 5+bt> *7

Using a quadratic transformation of the , F; hypergeometric function,

JF) (a,b;2b;z)=(1—§) 2F1<; ”er—],b+%;(ﬁ)2> (A8)

both the coefficient and the argument of the hypergeometric function in
I, are simplified to

L < bt )2""2 plm=2 -1 | G
2 = 2n—2 - 2" ’ » by
(6 +bt)?" 6+ bt 2 2 52+bt§n

2
2 1 bt
=52n22F1< 1’”_5’]'<3>>
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2 (”_1)'("_%),' bt\”
—o— (%)

T 522 4 ) (i!)z

=

= 2
= (w > ZAzt’ (A9)

The integral I, is more interesting due to the cosine term. By making the
assumption that m is an integer renders it tractable as we can make use
of De Moivre’s formula:

cos (2mx) = R (cos (2mx) + i sin (2mx))
=R ((cosx +i sinx)z”')
2m
=N (; (2:’" ) cos?™ (x) i'sin’ (x))

(2;’ ) cos? 2 (x) i%isin? (x)

i=0
= Z (-1 ( Zr:': ) cos?M=xsin?ix (A10)
i=0

where i is the imaginary unit. Thus, we have

I =2/ cos (mv)2 Zd"
0 (btcosv+8)"""
cos (2mv)

2
- 4/
0 (8+bt —2btsin>v)"""

dv

r m

f 2m )
(6 + bt) 6+ 822 2i
X cosz('"_')vsinZiv;dv
('I - Z—btsinz\/)zn_2
S+bt
2 ( )/E cos2(m=) ysin2iy dv
Zn 2 2n-2
(6+bt) F 0 (1 _ Z—b‘sinzv)
S+bt

4 (2m)! i

T Gby2 £

) z j j
2 cos?m=iysin?ly
dv
Zm 2i)! 2bt 2n-2
1— 2 sin?y
5+bt

i

1B(i+l m—i+l)
2m 212 2’ 2

4 (2m)!7 i

e+

.1 2bt
X Fi(2n=2,i+-;m+ 1T,
G )

-1’8 (i+ sm—i+ %) (2”—2)j(i+ %)'(Zb)j
J
20t (2m = 20) ! (m + 1)

:2(2m)!iiA1—ﬂ. (A1)

85 G+byr?
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where B(x, y) is the beta function that comes from equation 3.681.1 in
ref. [39]

z
/2 sinz"‘1xcoszv’1xdx_ 18(;4
SN XCOS™ X4y — 2B (u,

0

V) o Fq (0, 1y u + v; K Al12
(1—k25in2x)0 2 )2Fi ) (A12)

Combining the results for I; and I,, the integral | can be written as a func-
tion of t with parameters a, , and m, namely

. ¢ N 4 4z p 2
It pym) =2ma Y Y A m bt)f”“ 52nZZA2t’ (A13)

i=0 j=0

Thus, the expression for K,, is given by

bc 4 4b2 72
K, = T {;11’1-/0 It ay, fr,my) A/ T+ 2 t2dt
1
+n1,o/ I (8 By my) y/ 1+ 4hc” tZdt} (A14)

which means only four integrals remain, namely

7= /0 (6+bi/+2"‘2 Vi e
! 1 / 4b2 72
Js :/T o+ bt)jﬂn—z T+ c2 Hdt
Ja= /1 21+ 4bcz—z”ztzdt (A15)

In some of the above integrals, namely J; and J;, we approximate

2 72
A/ 1+ 4b t2 by its Taylor series about a point t, to render them more

tractable The general series is given by

- (T +7t9)"™ i
(T+y1)" 2 —O(t —t)' (A16)
i=0 !
so, 1"ory:4b:2”2 andr—% we have
1
1 ab2a? \K W 37k
-1) (- 14 4y
F,_ e L) (%)
1+ tzkzé o (£ —1)
(A17)

As a general rule, we select t to be the midpoint of the interval over which
we are integrating. This means t, = % forJ; and tg = % for J5.

We first evaluate J, since it is the most straight-
forward integral compared to the others. From equa-
tion 3.254.1 in ref. [39] we have ['x*7T(u—x)*""(x? +42)"dx =

2V, Atu—1 A A1, Au Autl. —u? .
BYuttHTIB(4, u)3Fy (—v, Tt el ﬁ_Z)’ where pFq s a gen-
eralized hypergeometric function given by ,F,(ay, -+, a,; by, =+, by 2) =

w (@)@, 7
X0 g,
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Thus,
_/2:/ 1/ 1+ y212dt
0

’ 1
=y/ t‘,/—2+t2dt
0 Y

y 1B (41, 1) 5, <_l At1 A+2 A+2 i+3;_yzrz)
Y

7A+] 1 A+1. A+3 55
:_21<—— —v—,—J/T)
A+1 2" 2 2

where the reduction in order of the ;F, to a ,F; occurs as the

2 N . .
’1% terms cancel, as implied by the series expansion of the general

Fq.
For the evaluation of J,, we use the substitution yt=sinh9,
sinh?~T9coshd~ 19

p

the recurrence relation [ sinh”@cosh?0do = p
z%fsinhpﬁcoshq_zﬁde and the antiderivative fsinh2”0d9 =
2 2 h((2n-2
=n" ( ") 22,, + o 12 7)%.% such,
1
Jo= [ V1 +y22dt
T
1 =1
=— sinh*0cosh?6de
el
1 (sinh*'9cosho | 1 , =
= — (Tl [ sinhiede
A A+2 A+2 ~
t=1
_ 1 (sinh"'9cosho . 1 (_.I),,,<2n) 0
Ty A+2 A+2 n /) 22
n—1 O=arcsinhy
( ) sinh ((2n — 2i) 6) (A19)
22” 1 2n—2i
'=0 f=arcsinhyt

Next, we consider J;. From equation 3.194.1 in ref. [39] we have

u a—1 a
Jo (1X+T)”dx = “725 (v, a; 1 + a; —bu), so that

= ——— /1 +y22dt
h /0 6+bt v

e a0
_/0 (6 + bt) k!

© 2023 The Authors. Advanced Theory and Simulations published by Wiley-VCH GmbH

85U20| 7 SUOWILLIOD BAIIRID) 3|edldde 3Ly Aq paueAob ke SSofe O ‘88N JO S3|nJ 10} A%eiqIT 3UIIUO /B IM UO (SUOIPUOD-PUR-SLBY IO A8 1M AReiq 1 jpul [UO//SA1Y) SUORIPUOD pUe SWIS | 8U3 88S *[£202/90/50] U0 A%iqiauljuo A8|IMm ‘luwn|y apeRpY J0 AISRAIN A 968002202 SIPe/Z00T OT/I0p/W0d"A3|1m A el 1ieuljuo//sdiy woij papeojumoq 'S ‘€202 ‘06E0ETS


http://www.advancedsciencenews.com
http://www.advtheorysimul.com

ADVANCED
SCIENCE NEWS

ADVANCED
THEORY AND
SIMULATIONS

www.advancedsciencenews.com

S < (_%>k(‘yz)k(1 + ?’zto)%_k(—to)k_/

o= (k=1
A2l | | br
X mzf:1 <O’,/‘l+2 +1A+2 +2,—?> (AZO)

Last, we evaluate J; by using a linear substitution, t= (1—7)u+
7, and rewrite the integral in the form of an Appell’s F; function,
that is, [, %" (1=x)"""(1 =) ™°(1 — ) "ddx = B4, AF1 (4 0,0, A +
u; u,v). Appell’s Fy function is a generalized ,F; function with two vari-
ables instead of one. Thus,

1
= ———— V1 +y22dt
Is /, (6 + bt)°? *r

g <_5> (_Vz)k(1+V2to)%_k(—to)k_l T2
DR [ &

(k=11 5+ bt)°

(-2), (7 (4 r200) T )
(k=1

1 a+21
X/ (1= 1) u+1)**? "
0o B+br+b(1—-7)u)°

(_% )k(—yz)kU +7%tp) 7K () L2l
(6 +b7)°

1_
(2,0 # e

pr I (k—=1)!
- -
><F1<1,—/1—21,a,2;171,%>. (A21)

Using the results of J;, J,, J3, and J,, we obtain analytical expression for K,
as presented in Equation (10).

Appendix B: Evaluation of integral K,, Given in
Equation (8)

For a semi-analytical solution to the integral K,, in Equation (8), we start
from Equation (A3) in the vertical strip derivation, then we break the in-
tegral in v into m intervals, where m is the number of nucleobases in the
turn of DNA being modeled. For these horizontal strips, two interaction
functions, T, ; and T, ,, are used to represent the transition from empty
space to phosphate and from nucleobase to deoxyribose, respectively. As
the interaction alternates between these regions along the v interval, we

capture this alternating behavior by using T, ; on [ ()21 M] ndT,,

on [=—— Ge2e (ZJJ:; 2”] whereie {0, 1, TJ} andj {01, TJ}‘
Both T, functlons have the same form of aarctan(m(t — ty)) + p to ap-
proximate the smooth transition from inner strip to outer strip of the ss-
DNA molecule.

As the integral is no longer invariant to rotations, we must also
rotate the helical surface about its own axis by some angle ¢, thus
a strip of the helical surface is parametrized by ( , bt(cos ¢psinv +
sin ¢ cosv), bt(—singsinv + cosgpcosv) +6). In the x-coordmate, we
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) i 2j+1
add either a 2 or 3 &H1C
m m

segment is in.
Combining the above terms, the integral K,, becomes

term, depending on which interval the strip

m'l
| (2/+1)2nT]() -|+4b/rt

= n
Ky = Z / / v
=0 T 2

m-2 .
lzj/1 (Zl+m2)27r Tn, ®/1+ 4bc” 2

(2i+1)27 ﬂ%n—z dvdt], (B1)

+ M2
i=0

where ﬂ2 (bt(—sin ¢ sin v + cos ¢ cos v) + 8)%. More generally, we com-
pute the integral K, of the form

1 2 .2
K,,=/T t)\/'|+4b”t2
0 c?

b
X/ (bt (— sin ¢ sinv + cos ¢ cos v) + 8§)>>"dvdt (B2)

To evaluate this integral, we first combine the sinv and cos v terms with
phasor addition,

1 5 b
K,,:/ T (t)\/'|+4b—2”t2/ (6 + bt cos (v + 6))2"dvdt
0 5 a
2 2 b+6
01+ 22x tZ/ (6 + bt cos (v)) 2 2"dvds (83)
5 a+0

The above simplification arises as

—sin¢sinv + cos ¢ cosv

_ (—sinq.’)cos (—%) +cosq§coso)2 , cos (v +6) (B4)

+<—sin¢sin (—%) + cos ¢ cos sin 0)
where 6 = arctan(tan(¢)) when cos ¢ > 0, § = 7 + arctan(tan(¢)) when

cos ¢ < 0 and 6 = sgn(sin q§) when cos ¢ = 0. Next, to evaluate K,,, we
consider the integral I given by

b+6 dv
I = / — (B5)
a+6 (6 + btcosv)™"™

We note that since § > bt, the integrand do not have singularities for all
values of v. Using the standard tangent half-angle substitution, we obtain

a2 2(1+2)" .
-, (remz)

5+ bt

22)2"_3

7 ('l +
2/ -— dz
2 (6(1+22) +bt(1-22))
Zz)Zn—3

z (1 +
:2/ 2n—2dz
21 (64 bt+ (5 - bt) 2)

(-I +u)2n 3 du

uz
5
u (5+bt+ (5—bt)u 2”22\/'

(B6)
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We now apply a linear substitution u = (4, — u;)w + u; to integrate over
[0, 1], after which we binomially expand the term with power 2n — 3 to put
the integral in the form of an Appell’s F; function,

| = (”2—u1)/01 ((”2_“1)6""'“1)_%(1+(u2—u1)w+“1)2n—3 B

(6 +bt+ (6 bt) (uy — ty) @ + uy)) "2

(g ) 2”2‘3 (21— 3)101+ )"y — )’

S it@n—3=)1(6 (1+uy) +bt (1—uy))* 2

i uy—up -
1 w’(] e a))
X - dw
0 ( __(6=bt)(ur-uy) w)
)

8(T+uq)+bt(1—uy

Nl—

= (Mz—w)znz_‘j (21 =3)1(0+u)*" " (uy —uy)’

S it@n—3-)16 (1 +u) +bt (1—u)?" 2 (i +2)

- 85— bt) (uy —
) Fy(ie1,d,2n—2i42,0 "% (6 b1) (ur — o) (B7)
2 Uy 5 (1 +uq) +bt (1—uy)

where u; = tanz(#) and u, = tanz(t%g).
Now K,, only has a single integral in t remained, namely

1 2 .2
K”:/ T, 01+ £ 2y e (88)
0 C

We note that this integration is unlikely to yield analytical results so to
progress further, numerical integration may be required.

Appendix C: Molecular Dynamics Simulations

The large-scale atomic/molecular massively parallel simulator
(LAMMPS) software package [ was used to perform the simulations for
the above described ssDNA-graphene interaction. Results of these simu-
lations are reported in this paper. The system is simulated in a domain of
size 100 A x 100 A x 100 A. The Lennard-Jones pair potential is used with
a cut-off distance of 14 A. To compare simulation results with continuum
models, the molecules are forced to move along prescribed trajectories as
opposed to allowing the program to determine the movement from a set
of initial conditions. This method of simulation is identical to a numeric
solution of the discrete case of each interaction. To capture the invariance
of the model to rotations about the ssDNA axis, the simulation results
are the average potentials from ten random ssDNA strands simulated
over ten different rotational configurations about the ssDNA axis (100
simulations in total).
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