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Continuum Modeling with Functional Lennard–Jones
Parameters for DNA-Graphene Interactions

Kyle Stevens,* Ngamta Thamwattana, and Thien Tran-Duc

Carbon nanostructures are of particular interest as platforms for molecular
storage and adsorption. In this paper, the adsorption of a single stranded DNA
molecule onto a graphene sheet is considered. Even though DNA molecules
are complicated heterogeneous structures comprising several types of atoms,
it is found that the repeated patterns within the DNA molecules enable the
use of a continuum approach to model the DNA-graphene sheet interaction.
Here, a model is proposed such that the heterogeneity across the DNA
molecule is captured by interaction functions, which are used to replace the
attractive and repulsive constants in the Lennard-Jones potential. Result from
this new model shows better agreement to molecular dynamics simulations
compared to the traditional continuum approach where atoms on the DNA
are averaged evenly across the molecule. Finally, the paper comments on the
model, its parameters, and suggests ways for improvement.

1. Introduction

Due to their high surface area, carbon materials have been ex-
plored as platforms for molecular adsorption for uses in a variety
of applications. Gas storage,[1–4] pollution capture,[5–7] biomedi-
cal uses,[8–10] gas sensing,[11–13] and drug encapsulation[14–16] are
some of the applications that make use of the non-covalent in-
teractions between carbon nanostructures and stored materials.
Since carbon compounds are typically nonpolar, the non-covalent
interactions between carbon nanostructures and othermolecules
are dominated by van der Waals forces. To model these inter-
actions and obtain the potential energy for the system, the 6-12
Lennard-Jones potential is commonly used due to its simple form
and computational efficiency.[17]
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The 6-12 Lennard-Jones potential for two
atoms at a distance 𝜌 apart is given by

ff(𝜌) = − A
𝜌6

+ B
𝜌12

(1)

where A and B are the attractive and re-
pulsive constants, respectively. As shown in
Equation (1), the Lennard-Jones potential is
an interatomic potential, so for intermolec-
ular interactions, one method to obtain the
total potential energy is to sumover the pair-
wise interaction between atoms i and j of the
two interacting molecules, namely

E =
∑
i

∑
j

ff(𝜌ij) (2)

This method is referred to as a discrete approach. Another
method to obtain the total interaction energy, which we refer to
as a continuum approach, is to replace the above double summa-
tions with double surface integrals,

E = 𝜂1𝜂2 ∫S1
∫S2

ff(𝜌)dS1dS2 (3)

where 𝜌 here is a distance between typical surface elements dS1
and dS2, 𝜂1 and 𝜂2 are the surface densities of atoms on the two
molecules. This approach was first proposed by Girifalco[18] to
determine the potential energy between interacting fullerenes.
Over the past decade, extensive development of this approach
has been made to determine interaction energies for a variety
of molecular structures with various shapes, sizes, and chemi-
cal compositions.[19–22] The key advantage of a continuummodel
lies in the resultant analytical expression of the potential energy,
which can be readily used to determine characteristics of an in-
teraction, such as critical distance, energy minima, and forces at
an arbitrary distance and configuration. However, the continuum
model is not straightforwardly used for irregular shaped struc-
tures.
In the standard continuum approach mentioned above, the

coefficients (A and B) in the Lennard-Jones potential are con-
stants, which is suitable for modeling interactions between
mononuclear molecules since they can be thought of as ho-
mogeneous surfaces with uniform atomic distribution.[23,24] Ex-
amples include interactions between two carbon nanostruc-
tures, such as fullerene–fullerene, fullerene-nanotube, fullerene-
nanocone, nanotube–nanotube, and graphene–graphene.[25] For
interactions involving heterogeneous structures or heteronuclear
molecules, the standard continuum approach can be adapted by
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Figure 1. Atomic representation of a ssDNA molecule above a graphene sheet and its corresponding diagram representing the ssDNA as a helical
surface and the graphene sheet as a flat plane.

either averaging contributions of the constituent atoms as a ho-
mogeneous approximation,[26,27] or dividing the molecules into
multiple surfaces of the same atomic type.[28,29] Even though
these extensions are relatively simple to implement, the homo-
geneous approximation produces results that poorly agree with
molecular dynamics simulations, and the multi-surface method
requires multiple integral computations which can be cumber-
some for large molecules. Recently, a new development for the
continuum approach has been introduced to capture heteroge-
neous structure where the constants A and B are replaced by
functional coefficients known as interaction functions, A(𝜌) and
B(𝜌).[30] These functions represent the change in the interaction
profile depending on the location of different types of atoms
across the heterogeneous molecule. Although excellent agree-
ments to molecular dynamics simulations are obtained, the inte-
gration involved becomes more complicated than having A and
B as constants. Importantly, care must be taken to determine the
interaction functions so that the integration is tractable.
We comment that the method of averaging contribution from

all constituent atoms is the simplest to upscale for studying large
heterogeneous molecules, whereas the multi-surface method is
not as straightforward due to the summation of all interactions
from all the surfaces. As such, the multi-surface method can
get computationally intensive for large heterogeneous structures.
Themethod with the interaction functions is relatively easy to up-
scale compared to the multi-surface method as there is only one
surface to handle.
In refs. [30–32], we use the continuum approach with the in-

teraction functions to model the interactions of carbon struc-
tures with coronene and methane, which are small heteroge-
neous structures comprising only two types of atoms. In this pa-
per, we investigate potential use of interaction functions tomodel
larger heterogeneous structures comprisingmore than two types
of atoms.
In particular, we consider a heterogeneousmolecule with clear

patterns or repeated structures due to the organization of their
atoms, such as a periodic structure in polymers. One example
of such structures is a single-stranded DNA (ssDNA) molecule,
and so we model its interaction with a graphene sheet. Based on

the patterns within a ssDNA molecule, we propose a technique
where we combine the method of averaging over regions of ho-
mogeneous surfaces and using the interaction functions to de-
scribe the interaction profile across the regions within a hetero-
geneous molecule.
We note that we particularly choose to study the interaction

between a ssDNA molecule and a graphene sheet in order to
compare our results to that of Alshehri et al.[26] who adopt a
continuum approach with homogenous approximation, assum-
ing atoms on the ssDNAmolecule are uniformly smeared across
DNA’s helical surface.
We also note a number of proposed applications involving

DNA-graphene interactions, including molecular logic gates,[33]

material synthesis,[34] and electronic biosensing.[35] Thus, under-
standing adsorptionmechanisms of DNA onto graphene sheet is
crucial for the development of such applications.
In the following section, we describe the newly combined ap-

proach taken to obtain analytical expressions for the interaction
energy. Note that full details for evaluating integral expressions
are given in Appendices A and B, while detail for molecular
dynamics simulations used to benchmark analytical solution is
given in Appendix C. In Section 3, we investigate the effects of
the parameters on the interaction energy, as well as discuss im-
provements that can bemade when implementing this modeling
technique to other molecules in the future.

2. Modeling Approach

In this section, we model the interaction between a single-
stranded B-DNA molecule and a graphene sheet (see Figure 1).
We assume that a graphene sheet is lying flat on the xy-plane
and that the DNA is a helix of length c and radius b. Following
Alshehri et al.,[26] a general point on the surface of the helix has
coordinates( c𝜈
2𝜋

, bt sin 𝜈, bt cos 𝜈 + 𝛿
)

(4)

where 𝜈 ∈ [0, 2𝜋], t ∈ [0, 1] are surface parameters and 𝛿 is the
perpendicular distance between the xy-plane and the helix axis.
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Figure 2. Visual representations of a ssDNA molecule. a) A stick and ball model ( nitrogen; oxygen; carbon; hydrogen; phosphorous). b) A point
plot with groups of molecular structures represented by colors ( deoxyribose; phosphate; nucleobase).

Table 1. Numerical values of parameters used in calculations.

Parameter Value

ssDNA radius, b 10.2 ∀

region split point, 𝜏 0.6

ssDNA length, c 34∀

base pair frequency, m1 11

backbone frequency, m2 11

ssDNA density, 𝜂1 0.7069 ∀−2

base pair region density, 𝜂1,i 0.6285 ∀−2

backbone region density, 𝜂1,o 0.8262 ∀−2

graphene sheet density, 𝜂g 0.3812 ∀−2

While Alshehri et al.[26] average the contribution of atoms on the
DNA to obtain constantsA andB, this paper considers the atomic
structure of the DNA and thus, we use the Lennard-Jones poten-
tial with functional interaction coefficients to model the DNA.
Here, the potential energy between a ssDNA molecule and a
graphene sheet is evaluated by the expression

E = 𝜂g
(
−K3 + K6

)
(5)

where 𝜂g is the atomic density of the graphene sheet, and Kn is
determined by the computation of the integral

Kn = 𝜂1 ∫SDNA
∫Sg

fn(𝜌)𝜌
−2ndSDNAdSg (6)

where 𝜂1 is the atomic density of the ssDNA molecule, 𝜌 is the
distance between a point on the surface of the ssDNA and the
graphene sheet, dSDNA and dSg are the surface elements of the
DNA helix and graphene sheet respectively, and fn for n = 3, 6
are the interaction functions replacing the standard constants A
and B. The physical constants of DNA and graphene used in this
model are found in Table 1.
Since a graphene sheet is a homogeneous surface of car-

bon atoms, the choice of interaction function only depends on
the structure of the ssDNA molecule. The ssDNA molecule
consists of two main regimes along the length of the strand,
namely the phosphate-deoxyribose backbone, comprising alter-
nating molecules of phosphate and deoxyribose in a periodic
fashion, and the inner region comprising the four (sometimes
five) types of nucleobases (see Figure 2a). A single turn of ss-
DNA typically has either 10 or 11 nucleobases, often written as
10.5.[36] This allows us to assume the interaction function that is
periodic in 𝜈 with a frequency of 11. While there is a variability
in the distribution of the atoms throughout the DNA as shown
in Figure 2a, the regularity in the distribution of the constituent
molecular groups is clear, as shown in Figure 2b. Thus, it seems
intuitive to model each molecular group on the DNA as a ho-
mogeneous region. So, for example, rather than attempting to
capture the heterogeneity within a phosphate group, we treat the
entire phosphate as a homogeneous surface with average contri-
bution of phosphorous and oxygen. Additionally, since we do not
consider a particular DNA, specific sequence of nucleobases is
not relevant in the model. As such, we assume that all four nu-
cleobases have an equal likelihood to be on the DNA and thus we
approximate an averaged nucleobase as a homogeneous surface
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Figure 3. Possible configurations of how a ssDNA molecule is divided into regions a) a series of stacked horizontal strips and b) two vertically aligned
strips.

over which its constituent atoms are smeared and the contribu-
tions of all four bases are averaged.
Based on these assumptions, there are three possible can-

didates for the interaction function: a) a piecewise interaction
function that varies in 𝜈 (i.e., fn,1(𝜈) for t ∈ [0, 𝜏] and fn,2(𝜈) for
t ∈ [𝜏, 1]); b) a piecewise function that varies in t (i.e., fn,1(t) for 𝜈 ∈
[ (2i)2𝜋

11
, (2i+1)2𝜋

11
] and fn,2(t) for 𝜈 ∈ [ (2i+1)2𝜋

11
, (2i+2)2𝜋

11
] for i = 0, 1,⋯, 5,

not including the final interval as there is an odd number of
strips); and finally c) an interaction function that varies contin-
uously in both variables fn(𝜈, t). Visually, (a) and (b) correspond
to the images in Figure 3, where the first is two continuous sur-
faces separated along t = 𝜏, the second image has 11 continuous
surfaces stacked vertically along the helix, and (c) would be a fully
continuous combination of (a) and (b). This division into regions
also naturally leads to using individual densities (𝜂i) for each re-
gion rather than a single density for the whole DNA strand.
According to (a), we consider interaction functions of the form

𝛼 cos(m𝜈) + 𝛽 in order to capture the alternating nature of the
two regimes, phosphate and deoxyribose in the outer band and
nucleobases and empty space in the inner band. The resulting
integral under this choice of the interaction function is given by

Kn = 𝜂1,i ∫
𝜏

0 ∫
2𝜋

0 ∫Sg

𝛼1 cos
(
m1𝜈

)
+ 𝛽1

𝜌2n
dSDNAdSg

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
inner band

+ 𝜂1,o ∫
1

𝜏 ∫
2𝜋

0 ∫Sg

𝛼2 cos
(
m2𝜈

)
+ 𝛽2

𝜌2n
dSDNAdSg

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
outer band

, (7)

where the values of the coefficients 𝛼i and 𝛽i (i = 1, 2) are deter-
mined from the interaction coefficients (A and B) of the con-

stituent molecules interacting with graphene, and mi is deter-
mined by the number of base pairs in one turn.
According to (b), we consider interaction functions that are

sigmoidal in shape since we need to capture the transition from
nucleobase to deoxyribose and empty space to phosphate across
the strips. Interaction functions that are sigmoidal in shape have
previously been used to capture transition between two types of
atoms[30] so we assume similar behavior to hold when transition-
ing between two regions within a molecule. In particular we use
functions of the form 𝛼 arctan(𝜇(t − 𝜏)) + 𝛽, which implies that
the resulting integral for evaluation is of the form

Kn = 𝜂1,1 ∫
1

0 ∫
(2i+1)2𝜋

11

(2i)2𝜋
11

∫Sg

𝛼1 arctan
(
𝜇1 (t − 𝜏)

)
+ 𝛽1

𝜌2n
dSDNAdSg

+ 𝜂1,2∫
1

0 ∫
(2i+2)2𝜋

11

(2i+1)2𝜋
11

∫Sg

𝛼2 arctan
(
𝜇2 (t − 𝜏)

)
+ 𝛽2

𝜌2n
dSDNAdSg (8)

where the coefficients 𝛼i and 𝛽i are determined in a similar man-
ner to the first choice above, 𝜂1,1 and 𝜂1,2 are atomic densities for
each of the horizontal strips, and 𝜇i is determined by the slope of
the transition from the inner to outer region.
According to (c), we consider an interaction function that

has combined properties from both (a) and (b), that is, we
expect a sigmoidal profile when fixing 𝜈 and a sinusoidal
shape when fixing t. This behavior can be achieved by tak-
ing the cosine function above and replacing the coefficients
𝛼 and 𝛽 with arctan functions, namely (𝛼1 arctan(𝜇1(t − 𝜏)) +
𝛽1) cos(m𝜈) + (𝛼2 arctan(𝜇2(t − 𝜏)) + 𝛽2), where the coefficients of
the arctan functions are determined from the coefficients of the
original cosine functions from the first choice. Note that this only
works if both cosine functions havematching frequenciesm, oth-
erwise the frequency will need to be modified by some function

Adv. Theory Simul. 2023, 6, 2200896 2200896 (4 of 14) © 2023 The Authors. Advanced Theory and Simulations published by Wiley-VCH GmbH

 25130390, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adts.202200896 by U

niversity of A
delaide A

lum
ni, W

iley O
nline L

ibrary on [05/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

of t that smoothly transitions from m1 to m2. With this choice of
interaction functions, the integral Kn of the form

Kn = 𝜂1 ∫
1

0 ∫
2𝜋

0 ∫Sg

(
𝛼1 arctan

(
𝜇1 (t − 𝜏)

)
+ 𝛽1

)
cos (m𝜈) +

(
𝛼2 arctan

(
𝜇2 (t − 𝜏)

)
+ 𝛽2

)
𝜌2n

dSDNAdSg (9)

Of all these three choices of interaction functions and the cor-
responding integrals, we find that only Equation (7) can be eval-
uated analytically, namely

Kn =
bc

2n − 2

{
2m𝛼𝜂1,i

m∑
i=0

∞∑
j=0

A1J1 +
4𝜋𝛽𝜂1,i
𝛿2n−2

∞∑
i=0

A2J2 + 2m𝛼𝜂1,o

m∑
i=0

∞∑
j=0

A1J3 +
4𝜋𝛽𝜂1,o
𝛿2n−2

∞∑
i=0

A2J4

}
(10)

where

A1 =
(−1)i22(m−i) (2m − i − 1)!B

(
1
2
, m − i + 1

2

)
(2n − 2)j

(
1
2

)
j
(2b)j

i!j! (2m − 2i)!(m − i + 1)j

A2 =
(n − 1)i

(
n − 1

2

)
i
b2i

(i!)2𝛿2i
(11)

and

J1 = 𝛿−(j+2n−2)
∞∑
k=0

k∑
l=0

(
− 1

2

)
k

(
− 4b2𝜋2

c2

)k(
1 + 4b2𝜋2

c2
t0
) 1

2
−k(

−t0
)k−l

l! (k − l)!
𝜏 j+2l+1

j + 2l + 1 2F1

(
j + 2n − 2, j + 2l + 1; j + 2l + 2;−b𝜏

𝛿

)
J2 =

𝜏2i+1

2i + 1 2F1

(
−1
2
, 2i + 1

2
; 2i + 3

2
;−4b

2𝜋2

c2
𝜏2
)

J3 =
(1 − 𝜏)

(𝛿 + b𝜏)j+2n−2

∞∑
k=0

k∑
l=0

(
− 1

2

)
k

(
− 4b2𝜋2

c2

)k(
1 + 4b2𝜋2

c2
t0
) 1

2
−k(

−t0
)k−l

𝜏 j+2l

l! (k − l)!
F1

(
1,−j − 2l, j + 2n − 2, 2; 𝜏 − 1

𝜏
,
b (𝜏 − 1)
𝛿 + b𝜏

)

J4 =
∞∑
k=0

k∑
l=0

(
− 1

2

)
k

(
− 4b2𝜋2

c2

)k(
1 + 4b2𝜋2

c2
t0
) 1

2
−k(

−t0
)k−l

l! (k − l)!

(
1 − 𝜏2i+2l+1

)
2i + 2l + 1

(12)

where 2F1 denotes the standard hypergeometric function and F1
denotes an Appell’s hypergeometric function. Detailed derivation
of these expressions is given in Appendix A. For Equation (8),
we obtain a semi-analytical solution where one integration is re-
mained to be evaluated numerically (see Appendix B). Due to
the high computational time to compute the semi-analytical so-
lution numerically, we do not adopt this case here. We also do not

progress with Equation (9) since we are only interested in analyt-
ical solution for Kn. High computational time is also expected for
Equation (9).

2.1. Determination of Coefficients 𝜶1,2 and 𝜷1,2 Used in
Equation (10)

In order to adopt (10) to determine the potential energy between
a DNA and a graphene sheet, we first need to determine the coef-
ficients 𝛼i and 𝛽i (i = 1, 2), which are the interaction coefficients
of the constituent molecular groups interacting with a graphene
sheet.We note that two sets of the interaction coefficients are con-
sidered. The first set is derived from the carbon–carbon values in
Table 2, while the second set uses the graphene–graphene values.

In refs. [30, 31] methane-nanotube and coronene-graphene in-
teractions were considered. In these studies, the heterogeneous
molecule (methane/coronene) can be modeled as two regions
(inner region of carbon atoms and outer region of hydrogen
atoms). The interaction functions are then used to describe the
interaction profile of a carbon surface (nanotube/graphene) in-
teracting with the two regions. In refs. [30–32] the sigmoidal
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Table 2. Values of the van der Waals radius (𝜎) and the energy well depth
(𝜀) for each interaction used to determine the Lennard-Jones’s attractive
and repulsive constants: A = 4𝜀𝜎6 and B = 4𝜀𝜎12.

Interaction 𝜎 [Å] 𝜀 [kcal mol−1] A [kcal mol−1 Å6] B [kcal mol−1 Å12]

C−Ca) 3.431 0.105 684.952 1 117 047

P−Pa) 3.695 0.305 3102.659 7 890 568

N−Na) 3.261 0.069 331.7154 398 677.9

O−Oa) 3.118 0.060 220.5919 202 753.2

H−Ha) 2.571 0.044 50.84645 14 689.55

Graphene−Grapheneb) 3.415 0.055 350.23 555 299.54

a)From ref. [37]; b)From ref. [38].

Table 3. Interaction coefficients for the constituent molecules of DNA in-
teracting with either carbon or graphene.

Molecule A⋆−C B⋆−C A⋆−G B⋆−G

Deoxyribose 400.49 544 857.74 360.70 499 546.24

Phosphate 605.86 984 648.81 439.97 673 728.00

Nucleobase 456.18 647 484.77 390.01 565 623.69

functions were used to represent a smooth transition from the
inner carbon core to the outer hydrogen region. As shown in
refs. [30–32] the coefficients for the interaction functions are rel-
atively simple to determine since they can be restricted to match
the Lennard-Jones constants AC–C (or BC–C) at the carbon region
and AC–H (or BC–H) at the hydrogen region.
For our choice of interaction functions presented in Equa-

tion (7) for modeling a ssDNA molecule, we determine 𝛼i and
𝛽i (i = 1, 2) such that when n = 3, 𝛼1 + 𝛽1 = Anucleobase-x and 𝛼2 +
𝛽2 = Adeoxyribose-x and when n = 6, 𝛼1 + 𝛽1 = Bnucleobase-x and 𝛼2 +
𝛽2 = Bdeoxyribose-x. Note that x represents interaction involving ei-
ther carbon or graphene. Similarly, we prescribe that 𝛽1 − 𝛼1 = 0
(when n = 3) or 0 (when n = 6) and 𝛽2 − 𝛼2 = Aphosphate-x (when
n = 3) or Bphosphate-x (when n = 6).
We derive the Lennard-Jones constants of each region by em-

ploying the homogeneous smearing method using the parame-
ters given in Table 2. Using the standard combination rules for
Lennard-Jones parameters, we generate two sets of interatomic
interaction constants Ai-C, Bi-C, and Ai-graphene, Bi-graphene, where i
is any other type of molecular groups. For example, the attrac-
tive constant for carbon and phosphate (PO4) is calculated from
Aphosphate-C = 1

5
AP-C +

4
5
AO-C. Using the values from Table 2, we

derive the interaction coefficients for the constituent molecules
of DNA interacting with either carbon or graphene as given in
Table 3.
Using the values shown in Table 3, we obtain 𝛼1,2 and 𝛽1,2 for

both sets of coefficients as presented in Table 4. In the follow-
ing section, we plot the energy obtained from Equation (10) us-
ing these two set of coefficients. The results are compared with
molecular dynamics simulations and the homogeneous model
where atoms in the DNA are smeared over the helical surface.

3. Results and Discussion

In this section, the interaction between a ssDNA and a flat
graphene sheet is considered. Particular attention is made to the

Table 4. Numerical values for 𝛼1,2 and 𝛽1,2 for the interaction function (7)
derived from the values in Table 3. Note the set of coefficients (i) and
(ii) are based on the interaction involving carbon–carbon and graphene–
graphene, respectively.

Set n 𝛼1 𝛽1 𝛼2 𝛽2

(i) 3 228.09 228.09 −102.69 503.18

6 323 742.39 323 742.39 −219 895.54 764 753.28

(ii) 3 195.01 195.01 −39.64 400.3344899

6 282 811.85 282 811.85 −87 090.88 586 637.12

Figure 4. Energy profiles comparing models (i) and (ii) with the homo-
geneous model and the MD results ( molecular dynamics simulations;

model (i); model (ii); and − homogeneous model).

DNA structure in order to use a continuum approach to study
such interaction. In Alshehri et al.,[26] the DNA is modeled as
a homogeneous helical surface where the effect of constituent
atoms is averaged throughout the entire structure. As shown
in Figure 4, the potential energy obtained from the homoge-
neous model does not agree well with the results from molec-
ular dynamics (MD) simulations (see Appendix C for details of
the MD study). We compare our new results from the expres-
sion derived from Equation (10) using the two sets of coeffi-
cients found in Table 4, denoted as models (i) and (ii) respec-
tively, with the results from the homogeneous model described
in Alshehri et al.[26] and the numerical results from the MD
study. For the interaction coefficients used in the homogeneous
model, Alshehri et al.[26] considered a specific DNA sequence,
5′-CCACTAGTGG-3′, so the attractive and repulsive constants
are obtained by taking the arithmetic mean of all the individual

Adv. Theory Simul. 2023, 6, 2200896 2200896 (6 of 14) © 2023 The Authors. Advanced Theory and Simulations published by Wiley-VCH GmbH
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Table 5. Energy minima and critical distance of the models and numerical
results.

Model 𝛿min [Å] Emin [kcal mol−1]

MD 12.939 −17.600

Model (i) 12.881 −26.495

Model (ii) 12.864 −21.496

Homogeneous 12.846 −23.544

atomic interaction coefficients (e.g., ADNA−C = 1
320
(97AC−C +

10AP−C + 114AH−C + 61AO−C + 38AN−C)). We note that the total
number of atoms in a DNA is determined from the number of
atoms in each molecular group in its bonded state, meaning that
there are less hydrogen atoms than the standalone molecules.
In general, for every base pair there is a corresponding deoxyri-
bose molecule (C5OH7) and a phosphate molecule (PO4). Of the
base pairs, there are guanine (C5H4N5O), adenine (C5H4N5), cy-
tosine (C4H4N3O), and thymine (C5H5N2O2). Last there are the
lone hydrogen and hydroxide at the 5′ and 3′ end, respectively.
The interaction coefficients we use for the homogeneous model
in this paper are derived in the samemanner, though rather than
considering a specific sequence of nucleobases, eleven averaged
nucleobases are used instead. Specifically, we use C 19

4
H 17

4
N 15

4
O as

the chemical composition of an averaged nucleobase when deter-
mining the interaction coefficients.
It can be seen that model (i) performs even more poorly com-

pared to the homogeneous model. For model (ii), the result is
closer to the MD simulations. This indicates that using coeffi-
cients based on graphene–graphene interaction is more appro-
priate than using coefficients based on C–C interaction for mod-
eling interactions involving graphene sheet.
Next, we explore the impact of other parameters in the model

on the interaction energy profile. We first investigate the two
shape parameters of the helix, namely the radius b and the length
c. From Figure 4, we find the location of the minimum energy
(𝛿min) and the corresponding minimum energy (Emin) as shown
in Table 5. The values of 𝛿min from the three models are found to
be in good agreement with theMD results, despite varying widely
in the values of Emin.
We show in Figure 5 that the location 𝛿min is strongly affected

by the radius of the ssDNA (b). In Figure 5, we demonstrate that
varying the values of b by 0.2 Å results in the same amount of
displacement in 𝛿min, as well as a slight change in Emin due to
helical surface being further away from the graphene sheet.
On the other hand, it is shown in Figure 6 that an increase

in the length of the helix, c, over 10 Å is required to produce a
decrease in Emin of a similar magnitude to that produced by in-
creasing the radius, b by 0.2 Å.
These results demonstrate the significance of DNA’s radius

over its length in themodel.However, these findings indicate that
the size of the helix largely impacts the location of the minimum
energy (𝛿min), but only minimally affects the value of minimum
energy (Emin).
To further investigate the cause of the discrepancies in the en-

ergy profiles shown in Figure 4, we consider interaction coeffi-
cients, A and B, used for interactions involving phosphate, de-
oxyribose, and nucleobase. We comment that the coefficients A

Figure 5. Energy profiles of model (ii) for varying the radius of the helix,
b, where 10.2∀ is the value used in other calculations ( b = 10 Å;
b = 10.2 Å; −b = 10.4 Å).

and B calculated from averaging the contribution of constituent
atoms within a molecule do not provide a result that is in good
agreement with theMD simulations. Due to the non-linear effect
that the distance has on the Lennard-Jones potential, the config-
uration of the atoms within the molecule needs to be accounted
for. In Figure 7, two homogeneous sphere models for phos-
phate interacting with graphene are compared against simula-
tion results. One has coefficients determined from averaging the
contribution of each constituent atoms (i.e., A = 1

5
APC + 4

5
AOC)

and the other has coefficients determined by fitting a standard
sphere-plane continuum model[25] with the externally obtained
well depth (𝜀) and the van der Waals radius (𝜎) (i.e., Emin = −𝜀
and E′(2

1
6 𝜎) = 0). From the energy profiles, it can be seen that

the average atomic contribution approach leads to interaction co-
efficients Aphosphate–carbon and Bphosphate–carbon that do not produce
result that is in good agreement to simulation results. This is con-
trasted with the coefficients obtained from fitting a sphere-plane
model, which matches the simulation results more closely. Even
though there is a big difference between the two approaches, the
fitted coefficients approach comes with some drawbacks. These
include the needs for a means of accounting for the molecule’s
shape for a homogeneous model and for information about the
well depth and the location of the well depth for the interac-
tion considered. Thus, this method would only be suitable for
determining coefficients of smaller molecular units as part of a
larger molecule. As a result, we do not pursue the fitted coef-
ficients approach for DNA molecule studied here as it requires
further assumptions for the shapes of nucleobases and deoxyri-
bose and the determination of 𝜀 and 𝜎 for thesemolecular groups
and graphene.

Adv. Theory Simul. 2023, 6, 2200896 2200896 (7 of 14) © 2023 The Authors. Advanced Theory and Simulations published by Wiley-VCH GmbH

 25130390, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adts.202200896 by U

niversity of A
delaide A

lum
ni, W

iley O
nline L

ibrary on [05/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

Figure 6. Energy profiles of model (ii) with varied lengths of the helix, c. A
value of 34 Å is used for c in the other calculations ( c = 32 Å; c = 34 Å;
−c = 50 Å).

Another possibility for the discrepancy between the contin-
uum model and the simulation results is the assumption made
to the structure of the DNA molecule. Figure 8a shows how the
helical-surface model, with the right parameters, captures the
overall shape of the ssDNA molecule but not the volume. As the
nucleobases are orthogonal to the backbone and the backbone it-
self is not flat, amodel comprising two helical cylinders capturing
nucleobases and backbone atoms may be more suitable for mod-
eling a ssDNA strand. An example of this modeling approach is
shown in Figure 8b.

4. Concluding Remarks

The Lennard-Jones potential is widely used for determining in-
teraction energy between non-bonded molecules. This potential
together with a continuum approach are adopted when dealing
with regular shaped molecules since the resultant energy can
be found explicitly as a function of distance between two in-
teracting molecules. Challenges arise when the interaction in-
volves irregular shaped structures or heterogeneous molecules,
which comprise more than one types of atoms. For heteroge-
neous molecules, the assumptions underlying traditional con-
tinuum approach that atoms are evenly smeared throughout the
molecule and the effects of atoms are the same regardless of its
location on the molecule seem invalid. To address this issue, we
propose a new continuum approach for a heterogeneous struc-
ture, where the Lennard-Jones coefficients are replaced by inter-
action functions.[30–32] While this approach has been shown to
work well with methane and coronene, we note their relatively
simple structures, which can be modeled as a sphere and a disk,
respectively. Furthermore, their atomic arrangement of carbon

Figure 7. Energy profiles for phosphate group interacting with graphene
( , molecular dynamics simulations; model with coefficients deriving
from averaging contribution of constituent atoms; model with coeffi-
cients fitted from a sphere-plane model).

atoms at the central region and hydrogen atoms at the perimeter
enables the interaction functions in the form of a sigmoidal pro-
file, whichmakes the integrals in the interaction energy traceable
yielding analytical outcomes. For larger and more complex het-
erogeneous molecules, there has yet to be a continuum method
that takes into account both atomic arrangement and structure
of a molecule. As such, this paper can be viewed as an introduc-
tion to a continuum approach using the Lennard-Jones potential
with interaction functions to model complicated heterogeneous
molecules, such as polymers and DNAs.
A continuummodel for heterogeneous molecules is proposed

here for the modeling of single-stranded DNA interacting with
a graphene sheet. By recognizing the patterns of atoms on the
DNA molecule, we are able to develop a technique combining
themethod of averaging atomic contributions over regions of sur-
faces and using the interaction functions to describe the interac-
tion profile across the regions within a heterogeneous molecule.
This new approach appears to improve the accuracy of the model
when benchmarking with molecular dynamics simulations. De-
spite some improvement shown here, the model can be further
benefited by a systematic method for determining the interaction
coefficients between the constituent molecules (namely phos-
phate, deoxyribose, and the nucleobases) and the graphene sheet.
Different interaction functions may also be explored to better

Adv. Theory Simul. 2023, 6, 2200896 2200896 (8 of 14) © 2023 The Authors. Advanced Theory and Simulations published by Wiley-VCH GmbH
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Figure 8. One turn of a ssDNA molecule’s atomic coordinates plotted along with a) a helical-surface and b) two helical cylinders.

capture the heterogeneity of the DNAmolecule. Additionally, the
model can also be further improved by using a volume-based
model to better capture all atoms of the DNA.
These suggested improvements to the continuum modeling

for DNAs provide areas for future research directions. Finally, we
note that the approach presented in this paper can be extended to
model polymers or other heterogeneousmolecules with repeated
patterns and structures.

Appendix A: Computation of the Integral Kn in
Equation (7)

A ssDNA helix has coordinates ( c𝜈
2𝜋
, bt sin 𝜈, bt cos 𝜈 + 𝛿), where c is

the length of the DNA strand, b is the radius of the DNA strand, 𝛿 is
the distance from the helix axis to graphene sheet. Here, we assume that
𝛿 > b since the DNA molecule cannot intersect the graphene sheet. For
a graphene sheet lying flat on the xy-plane, its coordinates are given by
(x, y, 0). Typical surface elements for graphene and DNA are given respec-

tively by dSg = dxdy, dSDNA = b
√

b2t2 + c2

4𝜋2
d𝜈dt, where x, y ∈ (−∞,∞),

t ∈ [0, 1] and 𝜈 ∈ [0, 2𝜋].
From the coordinates of graphene and the DNA, distance between

two typical surface element is given by 𝜌2 = ( c𝜈
2𝜋

− x)2 + (bt sin 𝜈 − y)2 +
(bt cos 𝜈 + 𝛿)2. Thus, the integral Kn over both surfaces can be written as

Kn = 𝜂1b∫
1

0 ∫
2𝜋

0 ∫
∞

−∞ ∫
∞

−∞

fn (𝜈, t)

𝜌2n

√
b2t2 + c2

4𝜋2
dxdyd𝜈dt

= 𝜂1
bc
2𝜋 ∫

1

0 ∫
2𝜋

0
fn (𝜈, t)

√
1 + 4b2𝜋2

c2
t2 ∫

∞

−∞ ∫
∞

−∞
𝜌−2ndxdyd𝜈dt (A1)

Next, we write 𝜌2 = fl21 + ( c𝜈
2𝜋

− x)2, andmake the substitution x − c𝜈
2𝜋

=
fl1 tan𝜙. This changes the limits of the integration from (−∞,∞) to
[− 𝜋

2
, 𝜋
2
] and the differential dx = fl1sec

2𝜙d𝜙. With the substitution the in-

tegral Kn becomes

Kn =
𝜂1bc
2𝜋 ∫

1

0 ∫
2𝜋

0
fn (𝜈, t)

√
1 + 4b2𝜋2

c2
t2 ∫

∞

−∞ ∫
𝜋
2

− 𝜋
2

fl1sec
2𝜙

fl2n1 sec2n𝜙
d𝜙dyd𝜈dt

=
𝜂1bc
2𝜋 ∫

1

0 ∫
2𝜋

0
fn (𝜈, t)

√
1 + 4b2𝜋2

c2
t2

× ∫
∞

−∞

1
fl2n−11

∫
𝜋
2

− 𝜋
2

cos2n−2𝜙d𝜙dyd𝜈dt

=
𝜂1bc
2

(2n − 3)!!
(2n − 2)!! ∫

1

0 ∫
2𝜋

0
fn (𝜈, t)

√
1 + 4b2𝜋2

c2
t2 ∫

∞

−∞

1
fl2n−11

dyd𝜈dt

(A2)

Note that ∫ 𝜋
2

0 cos2nxdx = (2n−1)!!
(2m)!!

𝜋

2
and n!! is the double factorial. Now, we

again write fl21 = fl22 + (y − bt sin 𝜈)2 and substitute y − bt sin 𝜈 = fl2 tan𝜙,
so

Kn =
𝜂1bc
2

(2n − 3)!!
(2n − 2)!! ∫

1

0 ∫
2𝜋

0
fn (𝜈, t)

√
1 + 4b2𝜋2

c2
t2

× ∫
𝜋
2

− 𝜋
2

fl2sec
2𝜙(

fl22sec
2𝜙

)n− 1
2

d𝜙d𝜈dt

=
𝜂1bc
2

(2n− 3)!!
(2n− 2)!! ∫

1

0 ∫
2𝜋

0

fn (𝜈, t)

fl2n−22

√
1+ 4b2𝜋2

c2
t2∫

𝜋
2

− 𝜋
2

cos2n−3𝜙d𝜙d𝜈dt

=
𝜂1bc
2n − 2 ∫

1

0 ∫
2𝜋

0

fn (𝜈, t)

(bt cos 𝜈 + 𝛿)2n−2

√
1 + 4b2𝜋2

c2
t2d𝜈dt (A3)

since ∫ 𝜋
2

0 cos2n+1xdx = (2n)!!
(2m+1)!!
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The rest of the analytical calculation depends on the choice of fn(𝜈, t).
Dividing the DNA strand into two regimes along the t-axis, we have the
nucleobases in the interval [0, 𝜏] and the phosphate-deoxyribose back-
bone in the interval [𝜏, 1]. Accordingly, fn is set to be two different func-
tions of 𝜈 in these intervals, namely fn,1 = 𝛼1 cos(m1𝜈) + 𝛽1 in [0, 𝜏] and
fn,2 = 𝛼2 cos(m2𝜈) + 𝛽2 in [𝜏, 1]. This also splits Kn into two double inte-
grals,

Kn = bc
2n − 2

{
𝜂1,i ∫

𝜏

0

√
1 + 4b2𝜋2

c2
t2 ∫

2𝜋

0

𝛼1 cos (m1𝜈) + 𝛽1

(bt cos 𝜈 + 𝛿)2n−2
d𝜈dt

+ 𝜂1,o ∫
1

𝜏

√
1 + 4b2𝜋2

c2
t2 ∫

2𝜋

0

𝛼2 cos (m2𝜈) + 𝛽2

(bt cos 𝜈 + 𝛿)2n−2
d𝜈dt

}
(A4)

The integral in 𝜈 is effectively the same for both regions, so we only need
to solve the integral of the form

I = ∫
2𝜋

0

𝛼 cos (m𝜈) + 𝛽

(bt cos 𝜈 + 𝛿)2n−2
d𝜈

= 𝛼 ∫
2𝜋

0

cos (m𝜈)

(bt cos 𝜈 + 𝛿)2n−2
d𝜈 + 𝛽 ∫

2𝜋

0

1

(bt cos 𝜈 + 𝛿)2n−2
d𝜈

= 𝛼I1 + 𝛽I2 (A5)

After applying a double-angle trigonometric identity, the integral I2 can
be readily computed as a hypergeometric function using a special case
shown in equation 3.681.1 in ref. [39],

∫
𝜋
2

0

dx(
1 − k2sin2x

)𝜚 = 𝜋

2 2F1
(
𝜚, 1
2
; 1; k2

)
(A6)

which we then expand into an infinite sum in order to facilitate the inte-
gration with respect to t:

I2 = 2∫
𝜋

0

1(
𝛿 + bt − 2btsin2 𝜈

2

)2n−2 d𝜈
= 4

(𝛿 + bt)2n−2 ∫
𝜋
2

0

1(
1 − 2bt

𝛿+bt sin
2𝜈
)2n−2 d𝜈

= 2𝜋

(𝛿 + bt)2n−2
2F1

(
2n − 2, 1

2
; 1; 2bt

𝛿 + bt

)
(A7)

Using a quadratic transformation of the 2F1 hypergeometric function,

2F1 (a, b; 2b; z) =
(
1 − z

2

)−a
2F1

(
a
2
, a + 1

2
; b + 1

2
;
( z
2 − z

)2)
(A8)

both the coefficient and the argument of the hypergeometric function in
I2 are simplified to

I2 = 2𝜋

(𝛿 + bt)2n−2

(
1 − bt

𝛿 + bt

)2n−2

2F1

⎛⎜⎜⎜⎝
2n − 2
2

, 2n − 1
2

; 1;
⎛⎜⎜⎝

2bt
𝛿+bt

2 − 2bt
𝛿+bt

⎞⎟⎟⎠
2⎞⎟⎟⎟⎠

= 2𝜋
𝛿2n−2

2F1

(
n − 1, n − 1

2
; 1;

(
bt
𝛿

)2
)

= 2𝜋
𝛿2n−2

∞∑
i=0

(n − 1)i
(
n − 1

2

)
i

(i!)2

(
bt
𝛿

)2i

= 2𝜋
𝛿2n−2

∞∑
i=0

A2t
2i (A9)

The integral I1 is more interesting due to the cosine term. By making the
assumption that m is an integer renders it tractable as we can make use
of De Moivre’s formula:

cos (2mx) = ℜ (cos (2mx) + i sin (2mx))

= ℜ
(
(cos x + i sin x)2m

)
= ℜ

(
2m∑
i=0

( 2m
i

)
cos2m−i (x) iisini (x)

)

=
m∑
i=0

( 2m
2i

)
cos2n−2i (x) i2isin2i (x)

=
m∑
i=0

(−1)i
(2m
2i

)
cos2(m−i)xsin2ix (A10)

where i is the imaginary unit. Thus, we have

I1 = 2∫
𝜋

0

cos (m𝜈)

(bt cos 𝜈 + 𝛿)2n−2
d𝜈

= 4∫
𝜋
2

0

cos (2m𝜈)(
𝛿 + bt − 2btsin2𝜈

)2n−2 d𝜈
= 4

(𝛿 + bt)2n−2 ∫
𝜋
2

0

m∑
i=0

(−1)i
(2m
2i

)
× cos2(m−i)𝜈sin2i𝜈 1(

1 − 2bt
𝛿+bt sin

2𝜈
)2n−2 d𝜈

= 4

(𝛿 + bt)2n−2

m∑
i=0

(−1)i
(2m
2i

)
∫

𝜋
2

0

cos2(m−i)𝜈sin2i𝜈(
1 − 2bt

𝛿+bt sin
2𝜈
)2n−2 d𝜈

=
4 (2m)!

(𝛿 + bt)2n−2

m∑
i=0

(−1)i

(2i)! (2m − 2i)! ∫
𝜋
2

0

cos2(m−i)𝜈sin2i𝜈(
1 − 2bt

𝛿+bt sin
2𝜈
)2n−2 d𝜈

=
4 (2m)!

(𝛿 + bt)2n−2

m∑
i=0

(−1)i

(2i)! (2m − 2i)!
1
2
B
(
i + 1

2
, m − i + 1

2

)

× 2F1

(
2n − 2, i + 1

2
;m + 1; 2bt

𝛿 + bt

)

= 2 (2m)!
m∑
i=0

∞∑
j=0

(−1)iB
(
i + 1

2
, m − i + 1

2

)
(2n − 2)j

(
i + 1

2

)
j
(2b)j

(2i)!j! (2m − 2i)!(m + 1)j

× tj

(𝛿 + bt)j+2n−2

= 2 (2m)!
m∑
i=0

∞∑
j=0

A1
tj

(𝛿 + bt)j+2n−2
(A11)
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where B(x, y) is the beta function that comes from equation 3.681.1 in
ref. [39]

∫
𝜋
2

0

sin2𝜇−1xcos2𝜈−1x(
1 − k2sin2x

)𝜚 dx = 1
2
B (𝜇, 𝜈) 2F1

(
𝜚,𝜇;𝜇 + 𝜈; k2

)
(A12)

Combining the results for I1 and I2, the integral I can be written as a func-
tion of t with parameters 𝛼, 𝛽, and m, namely

I (t; 𝛼, 𝛽, m) = 2m𝛼

m∑
i=0

∞∑
j=0

A1
tj

(𝛿 + bt)j+2n−2
+ 4𝜋𝛽

𝛿2n−2

∞∑
i=0

A2t
2i (A13)

Thus, the expression for Kn is given by

Kn = bc
2n − 2

{
𝜂1,i ∫

𝜏

0
I (t; 𝛼1, 𝛽1, m1)

√
1 + 4b2𝜋2

c2
t2dt

+ 𝜂1,o ∫
1

𝜏

I (t; 𝛼2, 𝛽2, m2)

√
1 + 4b2𝜋2

c2
t2dt

}
(A14)

which means only four integrals remain, namely

J1 = ∫
𝜏

0

tj

(𝛿 + bt)j+2n−2

√
1 + 4b2𝜋2

c2
t2dt,

J2 = ∫
𝜏

0
t2i
√

1 + 4b2𝜋2

c2
t2dt,

J3 = ∫
1

𝜏

1

(𝛿 + bt)j+2n−2

√
1 + 4b2𝜋2

c2
t2dt

J4 = ∫
1

𝜏

t2i
√

1 + 4b2𝜋2

c2
t2dt (A15)

In some of the above integrals, namely J1 and J3, we approximate√
1 + 4b2𝜋2

c2
t2 by its Taylor series about a point t0 to render them more

tractable. The general series is given by

(1 ± 𝛾t)r =
∞∑
i=0

(−r)i(∓𝛾)i(1 ± 𝛾t0)
r−i

i!
(t − t0)

i (A16)

so, for 𝛾 = 4b2𝜋2

c2
and r = 1

2
, we have

√
1 + 4b2𝜋2

c2
t2 =

∞∑
k=0

(
− 1

2

)
k

(
− 4b2𝜋2

c2

)k(
1 + 4b2𝜋2

c2
t0
) 1

2−k

k!
(
t2 − t0

)k
(A17)

As a general rule, we select t0 to be the midpoint of the interval over which
we are integrating. This means t0 =

𝜏

2
for J1 and t0 =

1−𝜏
2

for J3.
We first evaluate J2 since it is the most straight-

forward integral compared to the others. From equa-
tion 3.254.1 in ref. [39] we have ∫ u

0 x𝜆−1(u − x)𝜇−1(x2 + 𝛽2)𝜈dx =
𝛽2𝜈u𝜆+𝜇−1B(𝜆,𝜇)3F2(−𝜈,

𝜆

2
, 𝜆+1

2
; 𝜆+𝜇

2
, 𝜆+𝜇+1

2
; −u

2

𝛽2
), where pFq is a gen-

eralized hypergeometric function given by pFq(a1,⋯, ap; b1,⋯, bq; z) =∑∞
i=0

(a1)i⋯(ap)i
(b1)i⋯(bq)i

zi

i! .

Thus,

J2 = ∫
𝜏

0
t𝜆
√
1 + 𝛾2t2dt

= 𝛾 ∫
𝜏

0
t𝜆
√

1
𝛾2

+ t2dt

= 𝛾
1
𝛾
𝜏𝜆+1B (𝜆 + 1, 1) 3F2

(
− 1
2
, 𝜆 + 1

2
, 𝜆 + 2

2
; 𝜆 + 2

2
, 𝜆 + 3

2
;−𝛾2𝜏2

)
= 𝜏𝜆+1

𝜆 + 1 2F1
(
− 1
2
, 𝜆 + 1

2
; 𝜆 + 3

2
;−𝛾2𝜏2

)
(A18)

where the reduction in order of the 3F2 to a 2F1 occurs as the
𝜆+2
2

terms cancel, as implied by the series expansion of the general
pFq.

For the evaluation of J4, we use the substitution 𝛾t = sinh 𝜃,

the recurrence relation ∫ sinhp𝜃coshq𝜃d𝜃 = sinhp−1𝜃coshq−1𝜃
p+q +

q−1
p+q ∫ sinhp𝜃coshq−2𝜃d𝜃 and the antiderivative ∫ sinh2n𝜃d𝜃 =

(−1)n( 2n
n
) 𝜃

22n
+ 1

22n−1
∑n−1

i=0 (−1)
n( 2n

i
) sinh((2n−2i)𝜃)

2n−2i . As such,

J4 = ∫
1

𝜏

t𝜆
√
1 + 𝛾2t2dt

= 1
𝛾𝜆+1 ∫

t=1

t=𝜏
sinh𝜆𝜃cosh2𝜃d𝜃

= 1
𝛾𝜆+1

(
sinh𝜆−1𝜃 cosh 𝜃

𝜆 + 2
+ 1

𝜆 + 2 ∫ sinh𝜆𝜃d𝜃
)|||||

t=1

t=𝜏

= 1
𝛾𝜆+1

(
sinh𝜆−1𝜃 cosh 𝜃

𝜆 + 2
+ 1

𝜆 + 2

(
(−1)n

( 2n
n

)
𝜃

22n

+ 1
22n−1

n−1∑
i=0

(−1)n
(2n

i

) sinh ((2n − 2i) 𝜃)
2n − 2i

))||||||
𝜃=arcsinh𝛾

𝜃=arcsinh𝛾𝜏

(A19)

Next, we consider J1. From equation 3.194.1 in ref. [39] we have

∫ u
0

xa−1

(1+bx)𝜈 dx =
ua

a 2F1(𝜈, a; 1 + a;−bu), so that

J1 = ∫
𝜏

0

t𝜆

(𝛿 + bt)𝜎
√
1 + 𝛾2t2dt

= ∫
𝜏

0

t𝜆

(𝛿 + bt)𝜎

∞∑
k=0

(
− 1

2

)
k

(
−𝛾2

)k(
1 + 𝛾2t0

) 1
2−k

k!
(
t2 − t0

)k
dt

=
∞∑
k=0

(
− 1

2

)
k

(
−𝛾2

)k(
1 + 𝛾2t0

) 1
2−k

k!

× ∫
𝜏

0

t𝜆

(𝛿 + bt)𝜎

k∑
l=0

k!
l! (k − l)!

(−t0)k−lt2ldt

= 𝛿−𝜎
∞∑
k=0

k∑
l=0

(
− 1

2

)
k

(
−𝛾2

)k(
1 + 𝛾2t0

) 1
2−k(−t0)k−l

l! (k − l)! ∫
𝜏

0

t𝜆+2l(
1 + b

𝛿
t
)𝜎 dt
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= 𝛿−𝜎
∞∑
k=0

k∑
l=0

(
− 1

2

)
k

(
−𝛾2

)k(
1 + 𝛾2t0

) 1
2−k(−t0)k−l

l! (k − l)!

× 𝜏𝜆+2l+1

𝜆 + 2l + 1 2F1

(
𝜎, 𝜆 + 2l + 1; 𝜆 + 2l + 2;− b𝜏

𝛿

)
(A20)

Last, we evaluate J3 by using a linear substitution, t = (1 − 𝜏)u +
𝜏, and rewrite the integral in the form of an Appell’s F1 function,
that is, ∫ 1

0 x𝜆−1(1 − x)𝜇−1(1 − ux)−𝜚(1 − vx)−𝜎dx = B(𝜇, 𝜆)F1(𝜆, 𝜚, 𝜎, 𝜆 +
𝜇; u, v). Appell’s F1 function is a generalized 2F1 function with two vari-
ables instead of one. Thus,

J3 = ∫
1

𝜏

t𝜆

(𝛿 + bt)𝜎
√
1 + 𝛾2t2dt

=
∞∑
k=0

k∑
l=0

(
− 1

2

)
k

(
−𝛾2

)k(
1 + 𝛾2t0

) 1
2−k(−t0)k−l

l! (k − l)! ∫
1

𝜏

t𝜆+2l

(𝛿 + bt)𝜎
dt

= (1 − 𝜏)
∞∑
k=0

k∑
l=0

(
− 1

2

)
k

(
−𝛾2

)k(
1 + 𝛾2t0

) 1
2−k(−t0)k−l

l! (k − l)!

× ∫
1

0

((1 − 𝜏) u + 𝜏)𝜆+2l

(𝛿 + b𝜏 + b (1 − 𝜏) u)𝜎
du

= (1 − 𝜏)
∞∑
k=0

k∑
l=0

(
− 1

2

)
k

(
−𝛾2

)k(
1 + 𝛾2t0

) 1
2−k(−t0)k−l

l! (k − l)!
𝜏𝜆+2l

(𝛿 + b𝜏)𝜎

× ∫
1

0

(
1 + (1−𝜏)

𝜏
u
)𝜆+2l

(
1 + b(1−𝜏)

𝛿+b𝜏 u
)𝜎 du

=
(1 − 𝜏)

(𝛿 + b𝜏)𝜎

∞∑
k=0

k∑
l=0

(
− 1

2

)
k

(
−𝛾2

)k(
1 + 𝛾2t0

) 1
2−k(−t0)k−l𝜏𝜆+2l

l! (k − l)!

× F1

(
1,−𝜆 − 2l, 𝜎, 2; 𝜏 − 1

𝜏
,
b (𝜏 − 1)
𝛿 + b𝜏

)
. (A21)

Using the results of J1, J2, J3, and J4, we obtain analytical expression for Kn
as presented in Equation (10).

Appendix B: Evaluation of integral Kn Given in
Equation (8)

For a semi-analytical solution to the integral Kn in Equation (8), we start
from Equation (A3) in the vertical strip derivation, then we break the in-
tegral in 𝜈 into m intervals, where m is the number of nucleobases in the
turn of DNA being modeled. For these horizontal strips, two interaction
functions, Tn,1 and Tn,2, are used to represent the transition from empty
space to phosphate and from nucleobase to deoxyribose, respectively. As
the interaction alternates between these regions along the 𝜈 interval, we
capture this alternating behavior by using Tn,1 on [

(2i)2𝜋
m

, (2i+1)2𝜋
m

] and Tn,2
on [ (2j+1)2𝜋

m
, (2j+2)2𝜋

m
] where i ∈ {0, 1,⋯, ⌊m−1

2
⌋} and j ∈ {0, 1,⋯, ⌊m−2

2
⌋}.

Both Tn functions have the same form of 𝛼 arctan(m(t − t0)) + 𝛽 to ap-
proximate the smooth transition from inner strip to outer strip of the ss-
DNA molecule.

As the integral is no longer invariant to rotations, we must also
rotate the helical surface about its own axis by some angle 𝜙, thus
a strip of the helical surface is parametrized by ( c𝜈

2𝜋
, bt(cos𝜙 sin 𝜈 +

sin𝜙 cos 𝜈), bt(− sin𝜙 sin 𝜈 + cos𝜙 cos 𝜈) + 𝛿). In the x-coordinate, we

add either a 2ic
m

or a (2j+1)c
m

term, depending on which interval the strip
segment is in.

Combining the above terms, the integral Kn becomes

Kn = bc
2n − 2

⎛⎜⎜⎜⎝𝜂1,1
⌊m−1

2 ⌋∑
i=0

∫
1

0 ∫
(2i+1)2𝜋

m

(2i)2𝜋
m

Tn,1 (t)
√
1 + 4b2𝜋2

c2
t2

fl2n−22

d𝜈dt

+ 𝜂1,2

⌊m−2
2 ⌋∑
i=0

∫
1

0 ∫
(2i+2)2𝜋

m

(2i+1)2𝜋
m

Tn,2 (t)
√
1 + 4b2𝜋2

c2
t2

fl2n−22

d𝜈dt

⎞⎟⎟⎟⎠ , (B1)

where fl22 = (bt(− sin𝜙 sin 𝜈 + cos𝜙 cos 𝜈) + 𝛿)2. More generally, we com-
pute the integral Kn of the form

Kn = ∫
1

0
Tn (t)

√
1 + 4b2𝜋2

c2
t2

× ∫
b

a
(bt (− sin𝜙 sin 𝜈 + cos𝜙 cos 𝜈) + 𝛿)2−2nd𝜈dt (B2)

To evaluate this integral, we first combine the sin 𝜈 and cos 𝜈 terms with
phasor addition,

Kn = ∫
1

0
Tn (t)

√
1 + 4b2𝜋2

c2
t2 ∫

b

a
(𝛿 + bt cos (𝜈 + 𝜃))2−2nd𝜈dt

= ∫
1

0
Tn (t)

√
1 + 4b2𝜋2

c2
t2 ∫

b+𝜃

a+𝜃
(𝛿 + bt cos (𝜈))2−2nd𝜈dt (B3)

The above simplification arises as

−sin𝜙 sin 𝜈 + cos𝜙 cos 𝜈

=

√√√√√√
(
−sin𝜙 cos

(
− 𝜋

2

)
+ cos𝜙 cos 0

)2
+
(
−sin𝜙 sin

(
− 𝜋

2

)
+ cos𝜙 cos sin 0

)2 cos (𝜈 + 𝜃) (B4)

where 𝜃 = arctan(tan(𝜙)) when cos𝜙 > 0, 𝜃 = 𝜋 + arctan(tan(𝜙)) when
cos𝜙 < 0 and 𝜃 = sgn(sin𝜙) 𝜋

2
when cos𝜙 = 0. Next, to evaluate Kn, we

consider the integral I given by

I = ∫
b+𝜃

a+𝜃

d𝜈

(𝛿 + bt cos 𝜈)2n−2
(B5)

We note that since 𝛿 > bt, the integrand do not have singularities for all
values of 𝜈. Using the standard tangent half-angle substitution, we obtain

I = ∫
z2

z1

2
(
1 + z2

)−1(
𝛿 + bt 1−z

2

1+z2

)2n−2 dz

= 2∫
z2

z1

(
1 + z2

)2n−3(
𝛿
(
1 + z2

)
+ bt

(
1 − z2

))2n−2 dz
= 2∫

z2

z1

(
1 + z2

)2n−3(
𝛿 + bt + (𝛿 − bt) z2

)2n−2 dz
= 2∫

u2

u1

(1 + u)2n−3

(𝛿 + bt + (𝛿 − bt) u)2n−2
du

2
√
u

(B6)
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We now apply a linear substitution u = (u2 − u1)𝜔 + u1 to integrate over
[0, 1], after which we binomially expand the term with power 2n − 3 to put
the integral in the form of an Appell’s F1 function,

I = (u2 − u1)∫
1

0

((u2 − u1)𝜔 + u1)
− 1
2 (1 + (u2 − u1)𝜔 + u1)

2n−3

(𝛿 + bt + (𝛿 − bt) ((u2 − u1)𝜔 + u1))
2n−2 d𝜔

= (u2 − u1)
2n−3∑
i=0

(2n − 3)!(1 + u1)
2n−3−i(u2 − u1)

i

i! (2n − 3 − i)!(𝛿 (1 + u1) + bt (1 − u1))
2n−2

× ∫
1

0

𝜔i
(
1 − u1−u2

u1
𝜔
)− 1

2(
1 − (𝛿−bt)(u1−u2)

𝛿(1+u1)+bt(1−u1)
𝜔
)2n−2 d𝜔

= (u2 − u1)
2n−3∑
i=0

(2n − 3)!(1 + u1)
2n−3−i(u2 − u1)

i

i! (2n − 3 − i)!(𝛿 (1 + u1) + bt (1 − u1))
2n−2 (i + 2)

× F1

(
i + 1, 1

2
, 2n − 2, i + 2;

u1 − u2
u1

,
(𝛿 − bt) (u1 − u2)

𝛿 (1 + u1) + bt (1 − u1)

)
(B7)

where u1 = tan2( a+𝜃
2
) and u2 = tan2( b+𝜃

2
).

Now Kn only has a single integral in t remained, namely

Kn = ∫
1

0
Tn (t)

√
1 + 4b2𝜋2

c2
t2I (t) dt (B8)

We note that this integration is unlikely to yield analytical results so to
progress further, numerical integration may be required.

Appendix C: Molecular Dynamics Simulations

The large-scale atomic/molecular massively parallel simulator
(LAMMPS) software package [40] was used to perform the simulations for
the above described ssDNA-graphene interaction. Results of these simu-
lations are reported in this paper. The system is simulated in a domain of
size 100 Å × 100 Å × 100 Å. The Lennard-Jones pair potential is used with
a cut-off distance of 14 Å. To compare simulation results with continuum
models, the molecules are forced to move along prescribed trajectories as
opposed to allowing the program to determine the movement from a set
of initial conditions. This method of simulation is identical to a numeric
solution of the discrete case of each interaction. To capture the invariance
of the model to rotations about the ssDNA axis, the simulation results
are the average potentials from ten random ssDNA strands simulated
over ten different rotational configurations about the ssDNA axis (100
simulations in total).
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