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Abstract: Uniform grape maturity can be sought by producers to minimise underripe and/or over-
ripe proportions of fruit and limit any undesirable effects on wine quality. Considering that grape
heterogeneity is a multifaceted phenomenon, a composite index summarising overall grape het-
erogeneity was developed to benefit vineyard management and harvest date decisions. A grape
heterogeneity index (GHI) was constructed by aggregating the sum of absolute residuals multiplied
by the range of values from measurements of total soluble solids, pH, fresh weight, total tannins,
absorbance at 520 nm (red colour), 3-isobutyl-2-methoxypyrazine, and malic acid. Management of
grape heterogeneity was also studied, using Cabernet Sauvignon grapes grown under four viticul-
tural regimes (normal/low crop load, full/deficit irrigation) during the 2019/2020 and 2020/2021
seasons. Comparisons of GHI scores showed grape variability decreased throughout ripening in
both vintages, then significantly increased at the harvest time point in 2020, but plateaued on sample
dates nearing the harvest date in 2021. Irrigation and crop load had no effect on grape heterogeneity
by the time of harvest in both vintages. Larger vine yield, leaf area index, and pruning weight
significantly increased GHI score early in ripening, but no significant relationship was found at the
time of harvest. Differences in the Ravaz index, normalised difference vegetation index, and soil
electrical conductivity did not significantly change the GHI score.

Keywords: Cabernet Sauvignon; composite indicator; grape variability; grape maturity; vineyard
management; viticulture

1. Introduction

Berry physical and chemical heterogeneity is a consequence of grapevine genotype
plasticity and the interplay with climate, geophysical parameters, and vineyard manage-
ment techniques [1,2]. Grape heterogeneity exists at the block, vine, and bunch levels,
where each group is nested within the preceding one [3], which is important to consider
for sampling regimes, vineyard management, and winemaking purposes. When sorted
into maturity classes by density, berries from a single parcel of fruit can have significantly
different transcriptome, phenolic composition and extractability, fresh weight (FW), and
concentration of sugars, organic acids, anthocyanins, and volatile compounds [4–11]. Grape
heterogeneity can therefore be considered a multidimensional phenomenon, although met-
rics for assessing grape quality for winemaking are often based on simple measurements
of sugar (i.e., total soluble solids, TSS), pH, or titratable acidity and rarely consider the
distribution of maturity among a grape population.

The variability of berry maturity can be large when grapes initiate ripening, partic-
ularly at the bunch-to-bunch level within a vine [3,12]. This leads to differences in the
upper and lower limits of the various grape maturity measures that are used, although
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the differences decrease throughout berry development [5,13]. Similarly, the proportional
distribution of berries across maturity classes is more evenly spread at véraison and con-
denses to maturity classes around the mean as grapes ripen, yielding a smaller standard
deviation in grape density as well as grape maturity measures, for example, TSS [7,14,15].
The initiation of berry ripening appears to be related to the ratio of seed weight to berry
weight and suggests there is flexibility in hormone regulation of the grape ripening process,
although the mechanism of grape maturity synchronisation is not yet understood [15].

High grape heterogeneity translates to a relatively larger proportion of underripe
and/or overripe grapes in a parcel of fruit on a single sample date or at the time of
harvest [16]. If high grape heterogeneity remains at harvest, there could be significant
effects on wine sensory and chemical characteristics [9,14,17]. Therefore, there has been
growing interest in managing grape heterogeneity to achieve high-quality wine, with recent
work focussing on the use of remote sensing and precision viticulture to address variability
across a vineyard [18–20]. Differences in vineyard soil type and depth are considered
significant driving forces for grape maturity variability as these geophysical parameters
correlate to vine vigour and yield, which in turn alter berry composition [20,21].

Conventional viticultural practices involving deficit irrigation and crop load manip-
ulation have been studied for their effects on intra-vine bunch-to-bunch variability [12].
Application of late-season water deficit resulted in berries with higher TSS and anthocyanin
content variability, likely due to uneven berry shrivel (dehydration), although crop load had
no significant effects. In contrast, other studies showed that crop-thinning led to advanced
grape ripening and decreased TSS variability, but the outcome appeared to depend on the
mechanism of thinning [22] and, potentially, on the timing of winter pruning [23]. In an
alternative approach involving pre-véraison application of 1-naphthaleneacetic acid, an
auxin used to delay ripening, the TSS content of treated vines was less variable at the time
of harvest than control vines without auxin application [24].

Grape heterogeneity is clearly a complicated and abstruse viticultural issue, not only
to control but also to quantify objectively. A single measure of grape maturity variability
alone might not succeed in capturing the overall grape heterogeneity of a parcel of fruit
and may fail to reveal treatment effects. Results obtained from various measures of grape
maturity variability, for example, based on predicted values for berry compositional traits
from the absorbance-transmission and fluorescence excitation-emission matrix (A-TEEM)
method reported previously [25], could potentially be utilised to make vineyard manage-
ment decisions, although it would require effort to interpret the results. It is proposed that
aggregation of multiple measures of grape maturity variability in the construction of a com-
posite index would provide summarising capabilities and simple comparisons [26]. Indeed,
composite indices have been used in viticulture to define aspects such as sustainability [27]
and vineyard parameters such as vine health, yield, and geophysical properties [28].

Considering the research gaps, a grape heterogeneity index (GHI) was formulated as
an innovative measure of overall grape heterogeneity. The composite index would aid har-
vest decisions by enabling producers to identify if a parcel of fruit has reached the targeted
grape homogeneity and could assist with implementing appropriate vineyard management
practices and fruit grading. The approach considered data from measurement of TSS, pH,
FW, malic acid, 3-isobutyl-2-methoxypyrazine (IBMP), total tannins, and absorbance at
520 nm (red colour, A520) from Cabernet Sauvignon fruit grown in Coonawarra, South Aus-
tralia under deficit or full irrigation and normal or low crop load. The GHI was constructed
using the sum of absolute residuals of the seven grape maturity measures multiplied by the
range of values at the bunch level and applied on multiple dates throughout the 2019/2020
and 2020/2021 vintages to determine the viticultural treatment effects on overall grape
heterogeneity. A simplified version of the GHI was also constructed using residuals of TSS,
pH, and FW to investigate the relationship between vineyard variability and overall grape
heterogeneity.
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2. Results and Discussion
2.1. Exclusion/Inclusion of Grape Maturity Indicators

The applicability of a composite indicator like the GHI originates from the quality of
the input data; therefore, the relevance to winemaking and the accuracy of several grape
maturity indicators as measures of technological, phenolic, and flavour maturity that can
be predicted with a rapid A-TEEM technique [25] were thoroughly evaluated as a first step.
Grapes were sampled multiple times throughout the ripening period, and differences in
bunch-to-bunch absolute residuals extracted from the LMMs (Figure 1) and average values
(Figure 2) of grape maturity indicators were analysed. Due to the hierarchal structure of
the dataset, there was a requirement to account for non-independence between data points.
Therefore, the use of LMMs with nested random effects (bunch, vine, and block) provided
increased model power and minimised false-positive associations by correcting for this
specific data structure. Among the scales of possible heterogeneity involving vineyard,
vine, and bunch, intra-vine bunch variability was shown to be the most significant source
of variation in berry composition and FW throughout ripening (Table S1 of the Supporting
Information), hence the intra-vine bunch variability was considered herein. This finding
aligned with a previous report [12], and although intra-bunch variability was not examined
in the current study, it was still accounted for in LMMs because it can potentially contribute
considerably to variability [3]. Vintages were analysed separately due to significant differ-
ences (p ≤ 0.05) in average values and residuals of grape maturity measures between the
two growing seasons (Figures S1 and S2 of the Supporting Information).

Figure 1 shows that pH residuals in both vintages and A520, IBMP, malic acid, and
MCP tannin residuals in the 2019/2020 vintage decreased from the initial sampling date
until harvest. Fresh weight residuals in 2019/2020 significantly increased from 76 dpf to
97 dpf and then decreased by 108 dpf before significantly increasing to the highest FW
residual value of the vintage. Residuals in 2020/2021 for A520, FW, and MCP tannin
fluctuated throughout the sampling period, and IBMP and malic acid residuals initially
decreased, but as fruit matured, there was an increase in bunch-to-bunch variability. For
TSS residuals in both vintages, there was an initial decline, and then residuals remained
constant from 97 to 111 dpf in 2019/2020 and 108 to 128 dpf in 2020/2021.

Previous studies that analysed the variability of TSS, pH, tannins, grape colour, FW,
and malic acid, reported similar trends to the current study [4,5,13], although the mech-
anisms that account for the observations are uncertain. For FW variability, uneven berry
cell death within a bunch could be a main driving force as well as the irrigation regime [1].
For berry chemical parameters, it is suggested that environmental factors [24,29–31] and
geophysical characteristics of a vineyard [18,20] are responsible for the trends in grape
heterogeneity over time.

The analysis of IBMP variability at bunch and vine levels has seemingly not been
reported before but has been shown to be a dynamic feature of a vineyard at the block
level [32]. Furthermore, vine vigour differences were deemed to result in spatial variability
in IBMP across a vineyard [21].

Average values of TSS, pH, IBMP, malic acid, absorbance at 520 nm, FW, and MCP
tannin were determined for multiple dates in the 2019/2020 and 2020/2021 vintages
(Figure 2). The changes in A520, pH, and TSS were inverse to their residual counterparts; as
averages increased, variability decreased. For malic acid, IBMP, and MCP tannin, residuals
decreased as ripening increased. Interestingly, the average values and residuals of FW
appeared to follow a similar trend to each other (Figures 1 and 2). Despite an early harvest
in the 2020 vintage, TSS values still reached 23.8 ◦Brix at 111 dpf, although they were higher
at harvest in 2021, at 25.2 ◦Brix (Figure 2).



Plants 2023, 12, 1442 4 of 22Plants 2023, 12, x FOR PEER REVIEW 4 of 22 
 

 

 
Figure 1. Changes in the bunch-to-bunch variability (absolute residuals) within a vine between sam-
pling dates (days post-flowering, dpf) for (A,B) absorbance at 520 nm (A520), (C,D) berry fresh 
weight (FW), (E,F) 3-isobutyl-2-methoxypyrazine (IBMP), (G,H) malic acid, (I,J) methyl cellulose 
precipitable (MCP) tannin, (K,L) pH, and (M,N) total soluble solids (TSS) over the 2019/2020 (A,C,E, 
etc.) and 2020/2021 (B,D,F, etc.) seasons according to mean ± SEM (n = 24 vines per sampling date). 
Different lower-case letters within a vintage for a given measurement represent significant differ-
ences between sampling date (linear mixed model, α = 0.05, Bonferroni-adjusted). 

Figure 1. Changes in the bunch-to-bunch variability (absolute residuals) within a vine between
sampling dates (days post-flowering, dpf) for (A,B) absorbance at 520 nm (A520), (C,D) berry fresh
weight (FW), (E,F) 3-isobutyl-2-methoxypyrazine (IBMP), (G,H) malic acid, (I,J) methyl cellulose
precipitable (MCP) tannin, (K,L) pH, and (M,N) total soluble solids (TSS) over the 2019/2020 (A,C,E,
etc.) and 2020/2021 (B,D,F, etc.) seasons according to mean ± SEM (n = 24 vines per sampling date).
Different lower-case letters within a vintage for a given measurement represent significant differences
between sampling date (linear mixed model, α = 0.05, Bonferroni-adjusted).
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nin concentration, (K,L) pH, and (M,N) total soluble solids (TSS) over the 2019/2020 (A,C,E, etc.) 
and 2020/2021 (B,D,F, etc.) seasons according to mean ± SEM (n = 24 vines per sampling date). Dif-
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between sample date (linear mixed model, α = 0.05, Bonferroni-adjusted). 

Figure 2. Changes between sampling dates (days post-flowering, dpf) in the average values of (A,B) ab-
sorbance at 520 nm (A520), (C,D) berry fresh weight (FW), (E,F) 3-isobutyl-2-methoxypyrazine (IBMP)
concentration, (G,H) malic acid concentration, (I,J) methyl cellulose precipitable (MCP) tannin concen-
tration, (K,L) pH, and (M,N) total soluble solids (TSS) over the 2019/2020 (A,C,E, etc.) and 2020/2021
(B,D,F, etc.) seasons according to mean ± SEM (n = 24 vines per sampling date). Different lower-case
letters within a vintage for a given measurement represent significant differences between sample date
(linear mixed model, α = 0.05, Bonferroni-adjusted).
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The 2019/2020 growing season (i.e., October to March) was characterised by five
frost events throughout October and a late frost in November 2019 around flowering,
followed by low rainfall and two heatwaves (defined as three or more days with maximum
temperature above 35 ◦C) in December and one in January. In comparison, the 2020/2021
growing season had one frost early in October and a cooler December and January, with
one heatwave in January. However, cumulative GDDs over the 2019/2020 and 2020/2021
growing seasons appear to be comparable (Figure 3A). The cumulative rainfall was slightly
different between the two growing seasons as 2019/2020 had 18% less rainfall over the
six-month period than 2020/2021 (Figure 3B), but cumulative ET0 was comparable between
the two vintages (Figure 3C). Therefore, it could be concluded that the timing of weather
events plays a role in increasing or decreasing grape heterogeneity [1,23,33].
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Figure 3. Cumulative growing season data showing (A) growing degree days (GDDs), (B) rainfall,
and (C) evapotranspiration (ET0) during the 2019/2020 and 2020/2021 vintages.

This assessment of grape maturity measures that cover different quantitative indices of
maturity [25] demonstrated their relevance to the definition of overall grape heterogeneity.
Although examined, CIRWG and tartaric acid were excluded from the construction of
the GHI. It appeared that CIRWG, an index correlated to anthocyanin concentration and
composition [34], was unable to describe the expected trend in grape colour. Samples at
75 dpf in the 2020/2021 vintage had the highest CIRWG value (Figure S3 of the Supporting
Information), potentially due to grape seeds being incorporated in the homogenates used in
this study that have been shown to have higher colourimetric values than grape skins and
higher colourimetric values before seed browning occurs later in ripening [34,35]. However,
considering that grape colour is an important contributing factor to red wine quality and
increases due to the biosynthesis of anthocyanins, A520 was used as an indicator for
grape colour instead [36]. In general, tartaric acid residuals were lower on later sampling
dates (Figure S4 of the Supporting Information), which is similar to results previously
reported [5]. Tartaric acid could possibly be used but was excluded from GHI construction
because of missing values for multiple sample dates. Finally, with IBMP typically being
the dominant methoxypyrazine, it was decided not to include IPMP and SBMP in the
GHI construction as the concentrations were below the limits of detection, being 0.11 and
0.15 ng/kg, respectively, on later sampling dates.

2.2. Viticultural Regime Effects on Individual Indicator Variability

Scrutinising the underlying indicators of grape maturity variability that are to be
incorporated in the proposed GHI allows for evaluation of the potential ability of the
composite indicator to determine viticultural treatment impacts on grape heterogeneity.
Therefore, viticultural treatment effects on the residuals from the determination of A520,
FW, IBMP, malic acid, MCP tannin, pH, and TSS were compared on individual sampling
dates in 2019/2020 and 2020/2021 (Figure 4). Interestingly, at the time of harvest, FN
(grower control) variability was significantly lower than FL, DN, and DL treatments for
only two out of seven measures (A520 and FW) in 2019/2020 and significantly lower in
IBMP, TSS, and pH residuals in 2020/2021. On the other hand, FN treatment had higher
TSS and IBMP residuals in 2019/2020, and treatment FL had higher A520 variability in
the 2019/2020 vintage but significantly higher FW, malic acid, MCP tannin, pH, and TSS
residuals in 2020/2021. For treatment DL in the 2019/2020 vintage, TSS and IBMP residuals
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were significantly lower at the time of harvest, and pH and MCP tannin residuals were
higher, whereas in 2020/2021, malic acid and MCP tannin residuals were significantly
lower. Treatment DN consistently had neither significantly lower nor higher variability
in all measures in both vintages, except for FW residuals being significantly higher in
2019/2020. Treatment effects on grape maturity variability measures fluctuated on other
sampling dates in both vintages.

Variations in yield per vine and Ravaz index (i.e., kg vine yield/kg pruning weight) can
influence grape maturity, and significant differences in these parameters existed between
normal and low crop load treatments in the 2020/2021 vintage but not in 2019/2020,
although low crop load vines appeared to be 30% lower in yield (Table S2 of the Supporting
Information). Understandably, the bunch count was significantly lower for low-cropped
vines in both vintages. Results suggested that the chosen crop load adjustment was such
that the FL treatment was not source limited and reached a higher TSS concentration
than the FN treatment in the 2020/2021 vintage [12,33], but the viticultural treatments
imposed in the current study seemed not to have delayed overall ripening consistently
over two vintages (Figure S5 of the Supporting Information). Differences in vine yield
between vintages were significant (p ≤ 0.001, Table S2), most likely due to the late frost
in the 2019/2020 season affecting the fruit set, thereby altering the source-sink ratio and
changing crop load treatment effects. Indeed, changing the source-sink ratio of vines can
also cause a delay in ripening. The photosynthetic assimilation rate for deficit irrigation
vines was significantly lower on multiple sampling dates (Table S3 of the Supporting
Information), possibly due to the water stress these vines experienced earlier in both
vintages, which may have caused the vines to be source limited compared to fully irrigated
vines. However, there appeared to be an increase in grape TSS concentration at the time of
harvest in deficit irrigation treatments, possibly due to berry dehydration, although deficit
irrigation did not consistently increase grape heterogeneity across multiple measures in
both vintages (Figure 4). Pruning weights from the viticultural treatments were comparable
in the 2020/2021 vintage, and LAI was not significantly different in 2020/2021 but was
significantly higher for fully irrigated vines and low-cropped vines in the 2019/2020 vintage
(Table S2).

Crop load manipulations explored by Calderon-Orellana et al. [12] in California
to manage Cabernet Sauvignon grape heterogeneity at harvest were comparable to the
2020/2021 vintage crop load of the current study. That previous work showed that green-
drop and upper bunch thinning had no significant effect on grape heterogeneity, which may
have been due to both crop load treatments not being source limited. Those researchers also
found that late season water deficit increased grape maturity variability, suggesting that
the timing (early or late season) of water deficit is important for grape heterogeneity [1].

Overall, crop load and irrigation treatments appeared to have significant main and
interaction effects on the variability of grape maturity measures on each sampling date
(Table S4 of the Supporting Information) but the effects were inconsistent (Figure 4). Nu-
merous environmental parameters appear to contribute to the variability of grape maturity
measures and may play a role in the inconsistent outcomes from viticultural treatments.
Furthermore, there were differences in soil ECa across the Treatment Block (Figure S10),
which has been shown to contribute to vineyard-scale grape heterogeneity [18,20]. Notably,
treatment effects on overall grape heterogeneity were difficult to determine by assessing
the individual data sets (maturity measures) presented in Figure 4, thereby highlighting
the need for a composite indicator such as the proposed GHI for research and industry use.
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Figure 4. Bar charts showing the changes in the bunch-to-bunch variability (absolute residuals) in
response to crop load and irrigation regimes for (A,B) absorbance at 520 nm (A520), (C,D) berry fresh
weight (FW), (E,F) 3-isobutyl-2-methoxypyrazine (IBMP), (G,H) malic acid, (I,J) methyl cellulose
precipitable (MCP) tannin, (K,L) pH, and (M,N) total soluble solids (TSS) for each sampling date
(days post-flowering, dpf) in the 2019/2020 (A,C,E, etc.) and 2020/2021 (B,D,F, etc.) seasons. Bars
and error bars represent the mean ± SEM (n = 6 vines per treatment). Different lower-case letters
on a given sampling date represent significant differences between treatments (linear mixed model,
α = 0.05, Bonferroni-adjusted). DL = deficit irrigation/low crop load, DN = deficit irrigation/normal
crop load, FL = full irrigation/low crop load, FN = full irrigation/normal crop load (grower control).
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2.3. Calculation, Normalisation, Aggregation, and Weighting Methods

PCA was performed on bunch averages and absolute residuals for the seven grape
maturity indices to assess the interrelationships between individual indicators and guide
decisions regarding GHI calculation, normalisation, and aggregation methodology, and
finally, to gain insight into the underlying structure of the GHI. The PCA biplots in Figure 5
show the first two principal components, PC1 and PC2, with scores grouped by sample date
(dpf). The cumulative variance explained by PC1 and PC2 in the 2020/2019 vintage was
85.3% and 60.5% for average maturity index values and residuals, respectively (Figure 5A,C)
and that for 2020/2021 was 89.7% and 59.9%, respectively (Figure 5B,D).
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For the grape measurement average values, the separation of samples along PC1 was
similar in both vintages (Figure 5A,B) and related to differences in grape maturity. Later
sampling dates moved to the right of PC1, which was positively correlated to values for
TSS, red colour (A520), pH, and less so to FW, and negatively correlated to malic acid, IBMP,
and MCP tannins. Separation of samples along PC2 is driven primarily by differences
in FW and MCP tannin being opposite in the 2019/2020 vintage and mostly FW in the
2020/2021 vintage, suggesting that these variables are less dependent on grape maturity.
Encouragingly, these results highlighted that the seven maturity indices used in this study
sufficiently capture differences in grape samples. Of note, the confidence ellipses are larger
for earlier sample dates in both vintages and decrease for later sample dates (Figure 5A,B).
As such, range could be used as a measure of variability to differentiate fruit parcels and
was therefore considered when formulating the GHI (Equation (1) in Section 3.8.6). Yet,
from 108 dpf in the 2019/2020 vintage and 118 dpf in the 2020/2021 vintage, there appeared
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to be minimal change in the sample date PC1 score range, indicating a plateau in variability
as determined by range.

In both vintages, all seven measures of grape maturity variability, i.e., absolute residu-
als of TSS, FW, IBMP, malic acid, MCP tannin, A520, and pH, were positively correlated to
PC1 (Figure 5C,D), revealing that the separation of samples was again related to differences
in grape maturity. Consideration of the separation by sample date along PC2 suggests
there is an interaction effect among the aspects of grape maturity. Separation according
to maturity along PC2 appears to be primarily due to differences in FW and MCP tannin
in the 2019/2020 vintage, with the two variables having a low correlation to each other
(r = 0.37). In the 2020/2021 vintage, samples are moved in the positive direction along
PC2 by higher FW residuals and lower malic acid and IBMP residuals. FW residuals had
a weak relationship with malic acid (r = 0.32) and IBMP (r = 0.33), but residuals of the
latter two variables were highly correlated (r = 0.78). This suggests that factors driving
FW variability do not necessarily contribute to grape chemical variability as expressed by
MCP tannin, malic acid, or IBMP residuals. Altogether, the biplots with residuals shown in
Figure 5C,D describe the complex phenomenon of grape heterogeneity as the fruit matures,
depicting the lessening in grape maturity variability throughout the ripening process but
also demonstrating the remaining grape heterogeneity in the later ripening stages.

The positive correlations to PC1 of the residuals of seven grape maturity indices (as
indicators of grape heterogeneity) suggested an additive aggregation of residuals would
be appropriate to formulate the GHI, thus aligning with the objective to define the overall
grape heterogeneity of a given parcel of fruit. Nonetheless, the use of PC loadings rather
than absolute residuals could also be considered for further composite index construction.
In the present case, the min-max scaling of individual heterogeneity indicators was deemed
appropriate so that values were on the same scale between 0 and 1. Log transformation
was applied before PCA because maturity measure residuals were positively skewed. Such
a transformation step would also need to be considered when formulating the GHI.

Importantly, the contributions of each measure of grape maturity variability to PC1
(Figure 5C,D) were not equal, implying that different weights should be applied to indi-
vidual indicators. Despite this, equivalent weighting was considered due to the relatively
equal importance of the indicators from a winemaking perspective, especially in terms of
the significance of IBMP to Cabernet Sauvignon as used in this work. The main drawback
of such an approach could be the risk of “double counting” IBMP and malic acid residuals,
considering these indicators were highly correlated based on the 2020/2021 vintage data
(Figure 5D). Nevertheless, the association of these two measures might not indicate a
shared latent phenomenon, so both measures were included in the formulation of the GHI
(according to Equation (1) in Section 3.8.6). Equal fractional weights for each maturity
index residual were thus applied, giving GHI scores ranging between 0 and 1 that could be
interpreted as percentages if necessary.

2.4. Uncertainty and Sensitivity Analysis

With the approach to calculation, aggregation, and normalisation determined, un-
certainty and sensitivity analyses were performed to assess the robustness of the GHI,
as suggested when constructing a composite index [26]. Potential sources of error were
deemed to be the selection of grape variability indicators and the calculation and normal-
isation methods. Therefore, the inclusion/exclusion of individual indicators (e.g., GHI
(−TSS)), use of a different formula (Equation (2) in Section 3.8.6, GHI*), and changing
the transformation and normalisation steps (GHI_normalised) were correlated with GHI
(Figure 6).
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Figure 6. Correlation plot used to assess uncertainty with a multimodelling approach, showing the
relationship between GHI calculated using Equation (1) with seven variability indicators, and GHI
with six indicators with the singular exclusion of absorbance at 520 nm (GHI(−A520)), berry fresh
weight (GHI(−FW)), IBMP (GHI(−IBMP)), etc. along with GHI with TSS, FW, and pH as indicators
(GHI(3)), an alternate GHI described in Equation (2) (GHI*), and GHI calculated with Equation (1)
from residuals that were square root transformed and normalised (GHI_normalised). Darker red
squares indicate a higher Pearson correlation coefficient.

The Pearson correlation coefficients (r) were between 1.00 and 0.53, indicating very
low to moderate uncertainty of the GHI. The major source of uncertainty was determined to
be the calculation step, based on the value of r being lower for GHI* than GHI_normalised
or in the cases where an indicator was excluded (Figure 6). Interestingly, a GHI developed
with only TSS, FW, and pH (i.e., GHI(3)), of which TSS and pH are longstanding techno-
logical maturity indicators, had a strong correlation (r = 0.91) with the more complex GHI,
which included all seven indicators (incorporating information on maturity with regard to
phenolic and flavour compounds along with technological maturity [25]).

Scatterplots between the input (grape maturity measure residuals) and output (GHI
scores calculated with Equation (1)) show positive and moderate to strong correlations
(Figure 7A–G) with significant relationships between variables (p ≤ 0.001), suggesting
the GHI score relates to changes in the individual grape maturity indices. Overall, the
robustness of the GHI appears to be suitable, but ultimately, its applicability to summarising
the overall grape heterogeneity of a given fruit parcel required final testing.

2.5. Viticultural Regime Effects on Overall Grape Heterogeneity

The usefulness of the proposed GHI for summarising overall grape heterogene-
ity between vintages (Figure 8A), sample dates (Figure 8B,C), and viticultural regimes
(Figure 8D,E) was investigated. There was a significant difference in average GHI score
between the 2019/2020 and 2020/2021 seasons, albeit with 2019/2020 having a higher
GHI score by only 0.03. In general, the GHI score demonstrated similar trends in both
seasons of the study, with scores decreasing from the first sample date to harvest, as could
be expected. In the 2019/2020 vintage, the GHI score decreased from an average of 0.66 at
76 dpf to 0.52 at 108 dpf but then significantly increased within three days to 0.57 at 111 dpf.
From individual indicator analysis (Figure 1C), it was shown that fruit of greater maturity
had higher FW residuals, which may be driving the increase observed for GHI score at
111 dpf in the 2019/2020 vintage. There was a significant decrease in GHI score from 0.67
at 75 dpf to 0.51 at 118 dpf in the 2020/2021 vintage, but interestingly, no significant change
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in overall grape heterogeneity from 118 dpf through to harvest at 128 dpf occurred (GHI
score between 0.51–0.54). From Figure 1, it appears that the combination of TSS residuals
remaining constant and the fluctuations in FW, A520, IBMP, malic acid, MCP tannin, and
pH residuals resulted in a constant GHI score for the last three sampling dates. Therefore,
it could be suggested that fruit should be harvested once GHI scores plateau and other
grape maturity targets are met. Furthermore, grape heterogeneity targets could be set
with grading from “very high” to “very low” based on GHI scores to aid interpretation by
industry practitioners. The proposed GHI presents a novel starting point, but additional
research into the effects of any remaining grape heterogeneity at harvest is required to
understand the optimal GHI score for desirable wine chemical and sensory properties
(perhaps on a varietal basis).
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Figure 7. Sensitivity analysis achieved using scatterplots showing the relationship between bunch-
to-bunch (i.e., within a vine) GHI score and residuals from linear-mixed models for (A) absorbance
at 520 nm (A520), (B) berry fresh weight (FW), (C) 3-isobutyl-2-methoxypyrazine (IBMP), (D) malic
acid, (E) methyl cellulose precipitable (MCP) tannin, (F) pH, and (G) total soluble solids (TSS). Linear
fits (–) are graphed to aid visualisation of the relationship between variables, with Pearson correlation
coefficient (r) and p-value indicating the strength and significance of the relationship.

Deficit/full irrigation and normal/low crop load treatment effects were not signifi-
cantly different when grapes were less mature (76 and 75 dpf) in both seasons (Figure 8D,E)
and were not significant by the time of harvest at 111 and 128 dpf. This result summarises
the fluctuations in TSS, red colour, pH, IBMP, malic acid, MCP tannin, and FW residuals
observed at harvest for treatments (Figure 1), showing that the GHI score respects the
general trends of the underlying individual variability indicators.

In summary, GHI ranking appeared to be a valuable tool to determine bunch-to-bunch
grape heterogeneity of a parcel of fruit, although admittedly, numerous measurements are
required (noting that the simplest version GHI(3) also performed relatively well; Section 2.4).
Undertaking those analyses can involve time-consuming and expensive techniques that
limit the accessibility, speed, and ease of implementation of the GHI. Fortunately, a rapid
spectroscopic approach has been recently developed for predicting multiple grape maturity
indices from one analytical approach [25], which could greatly improve the availability
of data for vineyard managers and decrease the costs involved with constructing and
implementing a GHI.
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strate the change in grape heterogeneity relative to maturity. As such, this investigation 
considered whether overall grape heterogeneity might have an inverse relationship with 
these vine attributes and soil ECa. Grape samples were collected from 30 vines within the 
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Figure 8. Changes in the bunch-to-bunch variability determined by GHI score according to (A) vin-
tage and sampling date (dpf) per season for (B) 2019/2020 and (C) 2020/2021, and in response to
crop load and irrigation regime (n = 6 vines per treatment) for each sample date in (D) 2019/2020,
and (E) 2020/2021. Bars/points and associated error bars represent the mean ± SEM of GHI score.
Different lower-case letters for a given year or sampling date represent significant differences be-
tween sampling dates or treatments (linear mixed model, α = 0.05, Bonferroni-adjusted). DL = deficit
irrigation/low crop load, DN = deficit irrigation/normal crop load, FL = full irrigation/low crop
load, FN = full irrigation/normal crop load (grower control).

2.6. GHI Relationship with Vineyard Variability

Vine canopy architecture parameters (leaf area index, LAI and normalised difference
vegetation index, NDVI), vine size (vegetative growth and yield), and soil ECa have been
shown to correlate to grape maturity measures [19–21,37], and Figures 1 and 2 demon-
strate the change in grape heterogeneity relative to maturity. As such, this investigation
considered whether overall grape heterogeneity might have an inverse relationship with
these vine attributes and soil ECa. Grape samples were collected from 30 vines within the
Commercial Block at 75, 108, and 128 dpf in the 2020/2021 vintage. The residuals of the
easily measurable parameters of TSS, FW, and pH were processed at the vine level due
to vineyard spatial variability primarily affecting vine-to-vine attributes, and the simplest
calculation of GHI(3) was implemented. As shown earlier in Figure 6, GHI(3) had a strong
correlation to the more complex GHI with seven aggregated variability indicators and was
therefore deemed suitable for an initial investigation into the relationship of overall grape
heterogeneity with soil ECa and vine attributes.

Vine GHI(3) scores were shown to have a significant relationship with yield, vegetative
growth, and LAI at 75 dpf (Figure 9A–C), revealing that larger vine canopies and yields had
higher overall grape heterogeneity early in ripening. The strength of the correlations was
low to moderate, however, with r = 0.39–0.66 for GHI(3) score versus vine yield, vegetative
growth, and LAI. Evaluation of Figures S6–S11 (Supporting Information) reveals that vines
with a higher yield, pruning weight, and LAI had significantly lower TSS values and
significantly higher TSS variability at 75 dpf. Furthermore, vines with higher LAI had
significantly lower pH values and higher pH residuals, and vines with higher LAI and/or
pruning weight had significantly lower berry FW values and higher FW residuals at 75 dpf.
This indicated that the vines with larger canopies and yields had less mature fruit on this
sampling date, which, in turn, would be expected to have higher variability, as observed in
Figure 9A–C. Interestingly, by 108 dpf there is no longer a significant relationship between
LAI, vegetative growth, and yield with GHI(3) score.
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nificant relationship (p = 0.04) with ECa at 108 dpf (Figure 9F), when a lower GHI(3) score 
seemed to depend on soil with higher ECa. Interestingly, there were no significant rela-
tionships between berry maturity indices or their residuals and the Ravaz index (Figure 
S11), despite this parameter being considered an important aspect of grape maturity and 
wine quality [37]. Assessment of the residuals of individual indicators (Figures S6–S11) 
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index) may change average berry FW, TSS, or pH, but this does not always result in a 
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Figure 9. Relationship of vine GHI(3) scores with scaled (A) vine yield, (B) vegetative growth, (C) leaf
area index (LAI), (D) normalised difference vegetation index (NDVI), (E) Ravaz index, and (F) soil
electrical conductivity (ECa) across the Commercial Block for different sampling dates (75, 108 and
128 dpf) in season 2020/2021. Linear fits (–) are graphed to aid visualisation of the relationship
between variables, with Pearson correlation coefficient (r) and p-value indicating the strength and
significance of the relationship.

There were inconsistent and insignificant relationships for GHI(3) score with vine crop
load, NDVI, and soil ECa on all three sample dates (Figure 9D–F), except for the significant
relationship (p = 0.04) with ECa at 108 dpf (Figure 9F), when a lower GHI(3) score seemed
to depend on soil with higher ECa. Interestingly, there were no significant relationships
between berry maturity indices or their residuals and the Ravaz index (Figure S11), despite
this parameter being considered an important aspect of grape maturity and wine qual-
ity [37]. Assessment of the residuals of individual indicators (Figures S6–S11) suggested
that a change in vine canopy architecture, soil ECa, yield, or crop load (Ravaz index) may
change average berry FW, TSS, or pH, but this does not always result in a significant
change in variability. This accords with previous research, which concluded that grape
heterogeneity did not correlate with pruning weight, vine yield, or crop load [12]. As a final
remark, the GHI(3) score appears to sufficiently describe the relationship, or lack thereof,
between overall grape heterogeneity and vine attributes and soil ECa on multiple sampling
dates, although further research could consider other grape chemical parameters.

3. Materials and Methods
3.1. Climate Observations

Monthly mean temperature, average monthly rainfall, and base evapotranspiration
(ET0) values for 2019/2020 and 2020/2021 were obtained from the Bureau of Meteorology’s
Coonawarra weather station 026091 in South Australia at 37.29◦ S, 140.83◦ E. Comparisons
of the 2019/2020 and 2020/2021 growing seasons were undertaken using cumulative grow-
ing degree days (GDDs) on a monthly basis (October to March) with a base temperature of
10 ◦C [38], cumulative rainfall, and ET0.

3.2. Vineyard Site

Vitis vinifera L. cv. Cabernet Sauvignon vines (Reynella clone) grown in a 7.32 ha
commercial vineyard (Commercial Block, Figure 10) in Coonawarra, South Australia (37.38◦

S 140.84◦ E, 57 m above sea level) were sampled during the 2019/2020 and 2020/2021
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seasons. The Commercial Block was situated on Terra Rossa soils: gradational clay loam
over calcrete with various shallow soils, including silt and coarse and fine sand [39]. Vines
were planted in 1976 (west block) and 1996 (east block), with north/south row orientation
and 1.83 m × 3.38 m spacing (vine × row). All vines were planted on their own roots,
vertically trained with sprawling canopy, and cordons were mechanically spur-pruned
with hand-pruning adjustments to two nodes per spur after machine pruning. Spur density
was estimated in the 2019/2020 vintage to be 18 ± 0.1 spurs/m of cordon. Eutypa was
present in the vineyard (approximately 60% of vines were affected), and effort was made to
select vines without disease according to visual examination. Vines were frost irrigated
prior to frost events to a total of 0.69 ML/ha in 2019/2020 and 0.13 ML/ha in 2020/2021,
and drip-irrigated from November to March to a total of 1.19 ML/ha in 2019/2020 and
0.89 ML/ha in 2020/2021.
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Spur density was estimated in the 2019/2020 vintage to be 18 ± 0.1 spurs/m of cordon. 
Eutypa was present in the vineyard (approximately 60% of vines were affected), and effort 
was made to select vines without disease according to visual examination. Vines were 
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2020/2021, and drip-irrigated from November to March to a total of 1.19 ML/ha in 
2019/2020 and 0.89 ML/ha in 2020/2021. 

 
Figure 10. Commercial Block in Coonawarra (background image Copyright (2022), Google) com-
prised of vines planted in 1976 (west-side) and 1996 (east-side) showing (A) sampled vines (orange 
dots), block boundary with blocks split by vine age (outlined with orange boxes), and Treatment 
Block (blue box), (B) Variation in soil electrical conductivity (ECa, mS/m) surveyed by EM38 in 2011, 
and (C) Normalised difference vegetation index (NDVI) acquired at 63 dpf (January 2021) at 80 cm 
resolution prior to scaling. Images generated using QGIS version 3.18.0. 

Figure 10. Commercial Block in Coonawarra (background image Copyright (2022), Google) com-
prised of vines planted in 1976 (west-side) and 1996 (east-side) showing (A) sampled vines (orange
dots), block boundary with blocks split by vine age (outlined with orange boxes), and Treatment
Block (blue box), (B) Variation in soil electrical conductivity (ECa, mS/m) surveyed by EM38 in 2011,
and (C) Normalised difference vegetation index (NDVI) acquired at 63 dpf (January 2021) at 80 cm
resolution prior to scaling. Images generated using QGIS version 3.18.0.

3.3. Viticultural Treatments

Treatments were applied as detailed previously [25]. In summary, triplicate treatments
were set up as a 2 × 2 factorial split block design within a 0.6 ha area (Treatment Block,
Figure 10A) of the Commercial Block. Sustained deficit irrigation was implemented 21 days
post flowering (dpf) in 2019 within the southern half of the Treatment Block. Deficit
irrigation vines received approximately 40% of crop evapotranspiration (ETc) compared to
full irrigation vines, which received approximately 60% of ETc. The treatments received
the same frost irrigation, but deficit irrigation vines received approximately 50% less drip
irrigation through the growing season than full irrigation. The crop coefficient (kc) values
were estimated using a recent study in Coonawarra [40]. The northern half of the Treatment
Block remained at full irrigation (control). Within each irrigation system, two crop load
treatments were established at 56 dpf and 58 dpf in 2020 and 2021, respectively. The low
crop load treatment vines underwent removal of every distal bunch on a cane to achieve
an average of 30% and 25% fewer bunches per vine than grower control (normal) crop
load treatment, which had an average of 83 and 87 bunches per vine in 2020 and 2021,
respectively. Normal crop load treatment vines were not adjusted for bunch number. In
short, treatments were defined as deficit irrigation with low crop load (DL), deficit irrigation
with normal crop load (DN), full irrigation with low crop load (FL), and full irrigation with
normal crop load (FN).
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3.4. Vine Physiology, Canopy, and Yield Measures

Vine leaves were placed in aluminium foil zip-lock bags 1 hr prior to measuring stem
water potential (ΨS) and leaf water potential (ΨL) on neighbouring leaves. Measurements
were taken using a Model 1505D Pressure Chamber (PMS Instrument Company, Albany,
OR, USA). The rate of photosynthesis, stomatal conductance, and transpiration were
analysed using an LI-6400/XT portable console (LI-COR Biosciences, Lincoln, NE, USA).
Vine measurements were taken on three vines per treatment between 12:00 and 14:00 on
days without cloud cover, which were 86, 97, and 108 dpf in 2020 and 75, 86, 97, 118, and
126 dpf in 2021. Viticanopy App [41] was used at 108 dpf to analyse the leaf area index (LAI)
in 2020 and 2021 (n = 6 vines per treatment). Vine cane number, total cordon length, and
cane weight were measured in 2021 (n = 10 vines). Yield components of vines (n = 10; vine
bunch count and total yield weight) were obtained at the time of harvest in both vintages.
The Ravaz index [42] was calculated from the average pruning weight per meter divided
by yield per meter for vines under each treatment in 2020/2021.

3.5. Sampling and Berry Sorting

In 2020 and 2021, intact berries were sampled approximately every 10 days from early
ripening. Sampling started at 76 dpf in 2020, followed by 86, 97, and 108 dpf with harvest at
111 dpf resulting in five sampling dates. In 2021, sampling occurred on 75, 87, 97, 108, 118,
and 126 dpf, with harvest at 128 dpf resulting in seven sampling dates. Due to restrictions
associated with the COVID-19 pandemic, the fruit had to be harvested prior to commercial
harvest in 2020. The treatment vine sampling regime has been detailed previously [25]. In
summary, berries were cut with the pedicel remaining intact from the top, middle, and
bottom of bunches (n = 5 per position) to represent intra-bunch variability, and bunches
(n = 7) were sampled randomly from the east and west facing side of each vine (n = 6 per
treatment) to represent intra- and inter-vine variability. Grape samples were stored on ice
before being transported to the laboratory and stored at 4 ◦C overnight. Separately for
each vineyard treatment, berries were sorted at room temperature according to maturity
class using NaCl salt density baths (n = 16) ranging from 1040 kg/m3 to 1152 kg/m3, with
increments of 7 kg/m3 [43]. The population across each maturity class was recorded for
every bunch. The sorted maturity classes were washed with distilled water and dried
before being homogenised using an Ultra Turrax homogeniser (IKA T-18 Basic, IKA Works,
Selangor, Malaysia) at 18,000 rpm for 2 min. Maturity classes for each treatment were
subsampled into 1 g aliquots and stored at −20 ◦C before further analysis.

3.6. Vineyard Spatial Variation

In 2021, the Commercial Block (Figure 10) was sectioned based on soil electrical
conductivity (ECa) data from EM38 (Geonics, Mississauga, ON, Canada) surveys conducted
in 2010 and 2011 (Figure 10B). Between three and five healthy vines were sampled from
each subsection to ensure representation of the spatial variability of the Commercial Block.
Vines were sampled at 75, 108, and 128 dpf with the same sampling regime used for
treatment vines and sorted into maturity classes as outlined in Section 3.5. These were
georeferenced using a differentially corrected Global Navigation Satellite System (GNSS)
accurate to approximately 20 cm in the x and y planes. The normalised difference vegetation
index (NDVI) values were extracted from satellite imagery captured at 63 dpf with 80 cm
resolution (Datafarming, Highfields, QLD, Australia). The image band containing non-vine
pixels was replaced with null values so that only image bands with vine pixels were used
to calculate NDVI. Values were scaled to 0–255 prior to extracting NDVI values relevant to
the trial (Figure 10C); note that a separate scaling was used for two sub-blocks due to their
different age. Yield components (n = 30 vines) and pruning weights (n = 12 vines) were
measured at the time of harvest (128 dpf) and after leaf fall (June 2021), accordingly. Crop
load was calculated as the Ravaz index, based on vine yield (kg) divided by vine pruning
weight and averaged per treatment (n = 12).
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3.7. Analysis of Grape Physical and Chemical Parameters

Measures of berry TSS, pH, malic and tartaric acids, methoxypyrazines, methyl cellu-
lose precipitable tannins (MCP tannin), and absorbance at 520 nm were obtained from a
previous study [25] and are briefly described below. Additional measurements of average
berry FW and CIELab colour coordinates were undertaken for the current study. All mea-
surements were conducted on the sorted maturity classes for the respective treatments and
completed within six months of vineyard sampling.

3.7.1. Average TSS, pH, and Berry FW

Average FW was determined using a Mettler Toledo analytical balance after berries
had been sorted, washed, and dried. An aliquot of 1 g of fresh grape homogenate was
centrifuged for 5 min at 1200× g, and TSS (◦Brix) and pH of the supernatant were measured
using a bench-top refractometer (Hanna Instruments, Woonsocket, RI, USA) and pH meter
(OHAUS, Parsippany, NJ, USA).

3.7.2. Total Tannin and Organic Acid Measurements

Grape homogenate total tannin concentrations were analysed using the methylcellu-
lose precipitable tannin assay [44]. Malic and tartaric acid concentrations were measured
by enzymatic assays (Megazyme, Bray, Ireland) with absorbance recorded on an Infinite
200 PRO UV-Vis spectrophotometer (Tecan Group Ltd., Männedorf, Switzerland). Tartaric
acid values for samples collected 76 dpf and 86 dpf in 2020, and 75 dpf in 2021 were not
obtained as the concentration was below the limit of detection (0.82 g/L) after samples had
been diluted to remove interference from malic acid concentrations > 2.0 g/L. The dilution
factor depended on the concentration of malic acid in the sample, which was determined
prior to tartaric acid analysis.

3.7.3. Methoxypyrazine Extraction and Quantification

Methoxypyrazines were extracted according to Dunlevy et al. [45] and analysed
by stable isotope dilution assay with headspace SPME-GC-MS following the previously
reported procedure [14], with the inclusion of deuterated internal standards d3-IPMP and
d3-SBMP for quantification of IPMP and SBMP, respectively [21].

3.7.4. Absorbance and CIELab Measures

Extracts of grape homogenates were prepared using 50% aqueous ethanol following
the method previously detailed [44], and supernatants were diluted prior to analysis with a
HORIBA Aqualog spectrophotometer (Aqualog-UV-800-C, Quark Photonics, Adelaide, SA,
Australia) using a macro fluorescence cuvette (Sigma-Aldrich, Castle Hill, NSW, Australia)
and a previously detailed method [25,46]. Absorbance at 520 nm (A520) and CIELab
measures were collected using Aqualog software (version 4.2, HORIBA Instruments Inc.,
Irvine, CA, USA), and the colour index for red wine grapes (CIRWG) was computed
following the previous method [34].

3.8. Data Analysis

The statistical software program R (R Foundation for Statistical Computing, Vienna,
Austria) version 4.2.1 in RStudio (RStudio Inc., Boston, MA, USA) was used for analyses.
The packages “stats”, “emmeans”, “lmerTest”, “ggplot2”, “dplyr”, “FactoMineR”, “cor-
rplot”, “psych” and “multcomp” were used for data normalisation, log transformation,
correlation matrix visualisation, multivariate analysis, data visualisation, and throughout
data analyses.

3.8.1. Treatment Trial Vine Data

Vine physiology, canopy, and yield parameters were compared using one-way ANOVA
and pairwise comparisons of the estimated marginal means with Bonferroni adjustment
(α = 0.05).
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3.8.2. Missing Values

Missing values for grape homogenate pH, IBMP, MCP tannin, A520, CIELab coordi-
nates, and malic and tartaric acids were incurred at the extreme high and low maturity
classes (≤7 berries from these density baths did not provide enough material for analyses).
Such grape chemical values were deemed missing, not at random, and linear regression
models were used to estimate the missing values. This method was used to estimate the
chemical parameters of three maturity classes on average per sample date.

3.8.3. Linear Mixed Models

Mixed effect linear regression models (i.e., linear mixed model, LMM) with the re-
stricted maximum likelihood method were applied to determine vintage and sample date
effects and crop load and irrigation interaction effects on grape chemical and physical
properties. Berry measurements were set as dependent factors; vintage, sample date, crop
load, and irrigation were set as the fixed effects, where appropriate, and block, vine, and
bunch were set as nested random factors.

3.8.4. Grape Chemical and Physical Data Mean and Residual Analysis

The absolute residuals were extracted from LMMs as a measure of variability [12], and
estimates of the contribution of each random effect (block, vine, and bunch) to the variance
of the dependent variable were recorded. Mean and absolute residual comparisons for
vintage, sample date, and treatment were completed using one-way ANOVA, and two-way
ANOVA was carried out for treatment interaction effects, followed by Bonferroni adjusted
pairwise comparisons (α = 0.05). Principal component analysis (PCA) was conducted on
log-transformed absolute residuals of TSS, FW, pH, malic acid, IBMP, MCP tannin, and
A520, and average bunch values of each measure, separately for each vintage.

3.8.5. Spatial Trial Vine Canopy and Size Attributes

Subsections of the Commercial Block based on ECa values were classified using
QGIS version 3.18.0 and Precision Agriculture Tools plugin [47]. Vine canopy architecture
parameters, LAI, and yield parameters were scaled to have a mean of zero and standard
deviation equal to one based on vine age prior to further analysis. LMMs were developed
with TSS, FW, and pH as dependent factors, scaled vine canopy and yield parameters as
fixed effects, and vine and bunch as nested random effects. The absolute residuals were
then plotted against the appropriately scaled vine canopy or yield parameter, and the
strength of the linear relationship was assessed using the Pearson correlation coefficient.

3.8.6. Grape Heterogeneity Index

GHI score was calculated for heterogeneity level i (i.e., bunch, vine, or block) as
the range of values for measurement j multiplied by the sum of absolute residuals res of
measurement j as shown in Equation (1):

GHIi =
1
n

{(
(max(x)ij − min(x)ij)× ∑ resij

)
+
(
(max(x)ik − min(x)ik)× ∑ resik

)
+ . . .

}
(1)

where n is the number of measurements used in the calculation. Absolute residuals were
extracted from LMMs and log-transformed and scaled using the min-max scaling method
reported elsewhere [26]. An additive aggregation method of the range multiplied by the
sum of residuals of measurements A520, FW, IBMP, malic acid, MCP tannin, pH, and TSS
was used to calculate the GHI score, unless stated otherwise. An alternate calculation of
GHI was used in the multimodelling approach in the uncertainty analysis of Equation (1),
as shown in Equation (2):

GHI∗i =
1
n

{
mean(res)ij + mean(res)ik + . . .

}
(2)
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Comparisons between GHI score and the fixed effects of vintage, sample date, and
treatment were completed using LMMs with block, vine, and bunch as nested random ef-
fects. One-way (vintage and sample date) and two-way (treatment) ANOVA with pairwise
comparisons (α = 0.05, Bonferroni adjusted) were applied to mean GHI scores.

4. Conclusions

As a summary tool to describe overall grape heterogeneity, GHI has been proposed
as a composite index that relies on absolute residuals of TSS, FW, pH, IBMP, malic acid,
A520, and MCP tannin extracted from LMMs used to account for fixed and random effects.
Indicator selection was derived from a thorough analysis of the trends in the residuals
from grape maturity indices over multiple sampling dates and between viticultural treat-
ments. This analysis gave transparency to the results obtained from implementing the GHI,
which showed good sensitivity and robustness for analysing total grape heterogeneity.
Although important to Cabernet Sauvignon as studied herein, it appeared that IBMP could
be excluded, and the GHI would remain a useful measure of grape heterogeneity, thus
broadening its applicability to cultivars that do not produce this varietal compound.

Further consideration could be given to geometric or multicriteria aggregation meth-
ods that could compensate samples with low residuals; in other words, ‘reward’ samples
that have variability below a threshold for two or more indicators so that the range in GHI
scores would be larger [26].

Based on GHI scores, variability decreased throughout ripening and plateaued when
samples became more mature, highlighting that harvesting fruit too early (even if perhaps
technologically mature) could result in the presence of high grape heterogeneity. There
seemed to be minimal effects on the GHI score of the applied treatments, but the results
from imposing water deficit with a normal crop load implied that stressed vines do not
produce more variable fruit. A relationship between GHI and vine attributes appeared to
be lacking, but the use of a simplified version of the GHI was consistent with observed
trends between TSS, FW, and pH residuals and vine LAI, NDVI, pruning weight, vine
yield, Ravaz index, and soil ECa. The potential of GHI scores for comparing overall grape
heterogeneity in parcels of fruit was demonstrated, providing the first objective tool to
assess this phenomenon. Further studies can be envisaged that build upon the GHI with
other varieties and regions and utilise it to assess the effects of grape maturity variability
on vineyard practices or wine chemistry and sensory characteristics.
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