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Rapid advancements in technology through the early twenty-first century have led to 

the emergence of a new paradigm in mental health, in which digital platforms could become a 

fundamental part of mental healthcare delivery.  Wearable devices, which are computational 

devices worn on the body, might form an important element of these new approaches by 

capturing and interpreting physiological data associated with psychological states.  This 

thesis presents a series of studies investigating the range of wearable devices for the treatment 

of mental health problems, the perceived acceptability of these devices, and the evidence for 

one specific device modality, aided meditation.  

In Study 1, a literature review was conducted to identify wearable devices that could 

be used in the treatment of anxiety-related symptoms, determine what supporting evidence 

existed for each device modality, and explore potential clinical implications of using those 

devices.  The review identified early-stage evidence for the use of heart rate variability 

biofeedback devices, but limited research on other modalities, indicating a need for further 

high-quality research. 

Study 2 surveyed a community sample of 427 adults to investigate perceived 

acceptability of wearable devices for treating mental health problems.  Interest in using 

wearable devices as adjuncts to conventional therapy was strong, with acceptability closely 

linked to perceived device effectiveness (β = 0.28-0.30).  Wearable devices also appeared to 

have greater acceptability in the presence of negative attitudes toward conventional therapies, 

suggesting they might help reduce barriers to treatment.  

Studies 3 and 4 focused on evaluating one particular device: the Muse 

electroencephalogram (EEG) meditation headband.  In these studies, 68 adult participants 

 ABSTRACT 



 x 

used the device during a series of lab-based meditation tasks, with a subset (n = 29) also 

completing 14 days of home practice.  Study 3 investigated the potential of the headband 

measures to assess state mindfulness, a process variable linked to psychological benefits 

resulting from meditation practice.  The primary headband measure showed sensitivity to 

both within-participants (d = 0.56) and between-participants (r = -0.50) differences on a task 

measure of state mindfulness.  Aggregate measures over 14 days’ practice explained around 

30% of variance in self-reported trait mindfulness and related constructs.  EEG biomarkers 

thus appear to have potential as a novel objective method of mindfulness measurement. 

Study 4 used a crossover trial design (auditory feedback of the primary headband 

measure vs no feedback) to examine the effect of receiving feedback.  The feedback 

condition resulted in a higher level of state mindfulness (RR = 1.15), a lower level of the 

primary headband measure (d = -0.22), and differences in subjective experience of 

meditation. These results suggest that with appropriate guidance, feedback may be an 

effective adjunct to meditation. 

Together, these studies support the notion that wearable devices could be effective 

and engaging adjunctive digital mental health interventions.  The results support the use of 

synchronous feedback of practice quality data to enhance the therapeutic benefits of 

meditation practice, and were consistent with the mechanisms through which neurofeedback 

is theorised to function.  Continuing engagement with wearable devices by both researchers 

and clinicians is recommended. 
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This thesis considers an emerging group of digital mental health technologies known 

as wearable devices, and their potential use in the treatment of mental health problems.  

Wearable devices, which are computational devices worn on the body, are an emerging class 

of digital mental health interventions that typically work by capturing and interpreting the 

physiological data associated with psychological states.  The present introductory chapter 

provides a review of related research on wearable devices.  Chapter 2 consists of an exegesis 

detailing the reasoning underpinning the four studies that constitute this thesis.  Chapters 3 

and 4 present the first two studies, which take a broad focus on wearable devices of any 

modality.  The final two studies evaluate the use of a specific device modality, EEG 

neurofeedback-assisted meditation, and these are presented in Chapters 5 and 6.  Finally, 

Chapter 7 completes this thesis by summarising the results and discussing relevant 

implications, strengths, limitations, and future research directions.  

This introductory chapter will describe what wearable devices are and explain the 

rationale for using them to address current challenges in mental health.  The Muse EEG 

meditation headband is then introduced, along with a review of empirical and theoretical 

research into neurofeedback-assisted meditation within the context of the meditation and 

mindfulness literature.  Next, this introduction reviews some of the research about the 

acceptability of wearable devices and digital mental health interventions more generally.  The 

chapter concludes with a brief summary of the literature and how it informs the broad 

purpose and approach of the present thesis. 

 CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 
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1.1 Current Challenges in Mental Health 

Common mental health disorders such as depression and anxiety rank as some of the 

most burdensome non-communicable diseases globally, with the burden falling 

disproportionately on those of lower socioeconomic status (Abajobir et al., 2017; Rehm & 

Shield, 2019; Vigo et al., 2016).  There is a significant global “treatment gap” between those 

who need access to evidence-based mental health treatments and those who can access them 

(Alonso et al., 2018; Demyttenaere et al., 2004; Thornicroft et al., 2017).  This gap is 

attributed to attitudinal factors such as a desire to handle one’s own problems and help-

seeking stigma, as well as structural factors like financial barriers and a lack of available 

services (Andrade et al., 2014; Corrigan et al., 2014).  The treatment gap has persisted in 

countries such as Australia, Canada, the United Kingdom, and the United States despite 

increases in the provision of treatment over the last three decades (Jorm et al., 2017; 

Meadows & Burgess, 2009).  Given the need to bridge this gap, there is a recognised need for 

scalable treatments that can increase access to evidence based interventions (Bower & 

Gilbody, 2005; Kazdin, 2019).  The development of new intervention approaches using latest 

technology has been identified as an important research direction in addressing the treatment 

gap (Fairburn & Patel, 2017; Wykes et al., 2015). 

1.2 Wearable Devices 

Wearable devices are an emerging new class of digital mental health interventions 

which can perhaps most simply be described as computational devices worn on the body.  

There appears to be no agreement on a common definition for these devices but important 

features described in the literature are summarised in Table 1. Perhaps the most studied 

application of wearable devices is in the area of healthcare (Erdmier et al., 2016; Wu & Luo, 

2019) although they have also been leveraged for a wide range of other applications (Park et 

al., 2014) including occupational health and safety (Mardonova & Choi, 2018), high 
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performance sport (Kos & Kramberger, 2017), cognitive assistance (Chen et al., 2015), 

entertainment (Mann et al., 2007), and augmenting workforce capabilities (Kumar et al., 

2018).  The apparent focus on healthcare can be ascribed to the growing availability and 

consumer interest in wearable devices, as well as their ability to collect large amounts of 

physiological and behavioural data in a minimally invasive way (Erdmier et al., 2016).  

Examples of data measured from wearables include levels of physical activity and mobility, 

falls, posture, gait, respiration rate, heart rate, blood glucose level, blood pressure, blood 

oxygen saturation, muscular response (electromyography), neural activity 

(electroencephalography), body or skin temperature, and galvanic skin response (Chen et al., 

2015; Izmailova et al., 2018; Wu & Luo, 2019).  Some wearable devices are designed 

specifically for consumer use, while others are developed to be used by clinicians (Wu & 

Luo, 2019).   

 
Table 1 
Key features of wearable devices described in the literature 

Feature Source(s) 
Provides computing functionality to the user Buenaflor & Kim, 2012 

Context awareness Buenaflor & Kim, 2012 

May be continuously worn or always-on Buenaflor & Kim, 2012 

Continuously monitors the user’s 
physiology and/or behaviour 

Chan et al., 2012; Coffey & Coffey, 2016; 
Gao et al., 2016 

Form factor that does not restrict the 
physical movement of the user 

Gao et al., 2016; Park et al., 2014 

Can be used anywhere (mobility) and 
anytime (availability) 

Kim & Shin, 2015 

Low cost Chan et al., 2012 

Low power consumption Chan et al., 2012 

 

1.2.1 Mental Health Applications 

Although the majority of wearable devices available today are used with the aim of 

improving physical health, wearable devices also have potential to enhance mental health 
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assessment and intervention.  Firstly, wearable devices could help the user to recognise and 

change physiological responses that are associated with psychological problems (Schoenberg 

& David, 2014).  The interconnection between mental states and bodily experiences is well-

acknowledged in contemporary models of health, such as the biopsychosocial model (Engel, 

1977).  This link is also evident in current mental healthcare frameworks: for example, a 

commonly used cross-sectional case formulation model in cognitive behavioural therapy 

views physical sensations as being in constant interaction with cognitions, affect, and 

behaviour (Padesky & Mooney, 1990).  Changing maladaptive physiological responses might 

therefore promote more adaptive thoughts, feelings, and actions.   

A second way in which wearable devices might be relevant is by detecting the 

wearer’s mental state or behaviours.  Using machine learning, data from wearable device 

sensors such as respiration rate, heart rate, and electrodermal activity can be used to infer 

internal states like emotions (Ihmig et al., 2020; Vallejo & El Saddik, 2019).  Other 

information, such as accelerometer, gyroscope and location data, could be used to derive 

behavioural markers such as stress, fatigue, or social avoidance (Mohr, Zhang, et al., 2017).  

This information is then fed back to the wearer to support their ability to recognise 

psychological states and behaviours, enabling interventions to be delivered on demand to 

promote healthy self-regulation.  In short, the physiological metrics which can be measured 

by wearable devices may be important treatment targets themselves whilst also providing 

valuable information about underlying cognitive, affective, and behavioural processes, 

complementing conventional assessment and intervention techniques that rely upon self-

report measures. 

1.2.2 Biofeedback and Neurofeedback 

Many wearable devices appear to be based upon biofeedback and neurofeedback 

techniques.  Biofeedback is a type of self-tracking developed in the late 1950s (Schwartz et 
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al., 2016).  It involves the precision measurement of physiological activity such as breathing, 

muscle activity, or heart function (Association of Applied Psychophysiology and 

Biofeedback, 2021).  This physiological information is then provided as feedback to the user, 

typically through visual or auditory cues, which serve to reward the attainment of a desired 

physiological state.  For example, an auditory cue could be presented whenever a trainee’s 

respiration rate is below eight breaths per minute.  A central mechanism through which 

biofeedback is thought to function is operant learning: by rewarding the trainee, their efforts 

toward the goal state are reinforced (McKee, 2008; Weerdmeester et al., 2020).  Other 

potential mechanisms of biofeedback include the modulation of attention, self-efficacy, locus 

of control, and threat appraisal (Weerdmeester et al., 2020).  Biofeedback approaches have 

been used to treat a wide variety of presenting problems, including a range of psychosomatic 

complaints as well as other pathological states such as anxiety (Gilbert & Moss, 2012; 

Schoenberg & David, 2014).   

Neurofeedback is a distinct type of biofeedback in which the training is based upon a 

neural signal, such as EEG (Schwartz et al., 2016).  The EEG, which represents the 

postsynaptic potentials of neurons in the cortex (Read & Innis, 2017), can be electronically 

filtered in order to determine the amplitude within specific frequency bands including delta 

(1-4hz), alpha (8-12hz), and beta (13-21hz; Demos, 2005).  Higher amplitudes within certain 

bands have been empirically associated with particular types of neural activities: for example, 

delta amplitudes tend to be higher during sleep, while higher beta amplitudes are associated 

with thinking and focusing (Demos, 2005).  Clinical applications of neurofeedback have 

generally aimed to enhance specific frequency bands, or to increase coherence between 

different cortical regions (Demos, 2005; La Vaque, 2012; Schwartz et al., 2016). Two 

fundamental assumptions of neurofeedback are, firstly, that trainees are able to change neural 

dynamics in the desired direction, and secondly, that these changes in neural dynamics in turn 
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bring about functional change, or in other words, address a particular neurological or 

psychiatric condition (Papo, 2019; Thibault & Raz, 2017).  There is some evidence for the 

use of neurofeedback in managing epileptic seizures and treating attention deficit 

hyperactivity disorder (ADHD), with ongoing research to evaluate other potential 

applications for conditions such as anxiety, depression, and substance use problems (La 

Vaque, 2012). 

The availability of wearable devices utilising biofeedback and neurofeedback is 

expanding in the consumer marketplace.  For example, the HeartMath range of products 

provides biofeedback of heart rate variability (HeartMath, 2022). Neurofeedback devices on 

the market include the Muse (InteraXon Inc., 2020b), MindWave (NeuroSky Inc., 2022), and 

Insight (Emotiv Inc., 2022) devices which are limited-channel EEG headbands with 

associated smart device applications that can facilitate neural training.  Wearable devices 

such as these could increase the accessibility of evidence-based biofeedback- and 

neurofeedback-based interventions, although it is unclear whether results obtained using 

clinical-grade measurement devices can be reliably reproduced with consumer-grade devices. 

1.2.3 Wearables in Clinical Practice 

Given the potential mental health applications of wearable devices, an important 

question is how they might effectively be utilised in clinical practice.  The market for 

wearables is expected to continue to grow strongly over the near term (International Data 

Corporation, 2020), suggesting that there will be increasing availability of these devices and 

interest in using them.  However, it is currently unclear how this growing range of wearables 

could be incorporated adjunctively into treatment and what implications would arise from 

this.  The broader literature on digital mental health interventions suggests a range of 

potential benefits such as reduced clinician involvement for lower intensity treatments, real 

time risk monitoring, just-in-time adaptive interventions, skills generalisation in ecologically 
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valid settings, and increased engagement with homework (Lui et al., 2017; Mohr, Zhang, et 

al., 2017; Naslund et al., 2017; Torous et al., 2015).  However, these are largely hypothetical 

advantages which are yet to be widely realised.  Furthermore, digital mental health 

interventions such as wearables could have associated disadvantages or risks such as 

attitudinal or practical barriers to uptake, increased social isolation, low engagement, poor 

data security, and poorer skills development (Aboujaoude & Gega, 2020; Clarke & 

Yarborough, 2013; Garrido et al., 2019; Mrazek et al., 2019; Rudd & Beidas, 2020).  This 

suggests that significant care must be taken if wearable devices are to be effectively utilised 

in clinical practice. 

The limited use of wearable devices in clinical practice to date may be attributed to 

several factors.  Wearables have generally been marketed as enhancing wellbeing rather than 

addressing clinical problems, perhaps due to the regulatory burden associated with 

developing a medical device (Erdmier et al., 2016).  Devices are therefore less likely to have 

features designed for clinical use, such as clinician access portals.  The lack of information on 

how to incorporate these devices into practice may also limit uptake.  Possibly the biggest 

barrier, however, is that scientific knowledge remains scant in regard to the range of available 

devices, the modalities through which they claim to work, and the evidence supporting them 

(Piwek et al., 2016; Torous & Gualtieri, 2016).  A greater evidence base is therefore needed 

to help clinicians navigate this growing range of wearable interventions for mental health. 

1.3 Supporting Meditation with Wearable Devices 

One potential way that wearable devices might be leveraged in digital mental health 

treatments is as an aid to meditation.  The term “meditation” encompasses a collection of 

contemplative practices, some of which have been shown to have therapeutic benefits for 

common mental health problems like anxiety and depression (Creswell, 2017; Goldberg et 

al., 2018).  However, there appear to be a number of barriers to successful meditation 
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practice, such as a perceived lack of intrinsic reward, a poor understanding of the aim of 

meditation, and difficulty knowing whether one is practicing this behaviour effectively 

(Banerjee et al., 2017; Hunt et al., 2020; Moss et al., 2008; Russell et al., 2018).   

This section now introduces the Muse EEG meditation headband, which is a 

commercially-available wearable device developed to provide neurofeedback-based guidance 

during meditation.  It then describes the concept of meditation in greater detail and reviews 

the theoretical and empirical basis of neurofeedback-assisted meditation.  The final part of 

this section discusses the construct of mindfulness and explains why mindfulness may be an 

important factor in deriving benefits from meditation. 

1.3.1 Muse EEG Meditation Headband 

Muse is a series of consumer-grade EEG headbands and associated smart device apps 

that have been developed to support meditation through neurofeedback.  The headbands 

feature a dry electrode design, avoiding the need for bulky electrode caps or conductive gel 

typically used with clinical-grade EEG devices.  Figure 1 presents the 2016 variant of Muse 

(InteraXon Inc., 2017) used in the studies herein, which is fitted across the forehead and rests 

behind the ears.  This version features four electrodes approximating the TP9, AF7, AF8, and 

TP10 standard montage positions, as well as a reference electrode at Fpz.  The frontal 

positions utilise silver electrodes while the temporal electrodes consist of conductive silicon-

rubber.  The headband has a sampling rate of 256hz, at 12 bits per sample.  Current models of 

Muse with similar features to the device described here can be purchased for between $249-

399 USD.1 

The Muse app utilises a proprietary algorithm to putatively monitor attentional 

fluctuations during meditation, which are classified into three bands: active, neutral, and calm 

(Interaxon Inc., 2020).  Synchronous neurofeedback is provided to meditators during their 

 
1 At time of writing, January 2022. 
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Figure 1 
Muse app and EEG headband 

  

 

meditation, through a dynamically changing soundscape that reflects the measured degree of 

attention.  For example, in the “beach” soundscape, focused attention is represented by gentle 

waves lapping and light winds while wandering attention results in heavy crashing waves and 

strong winds.  When meditators achieve a prolonged period of focused attention, they are 

rewarded by the sound of birds tweeting.  In addition to synchronous feedback, meditators 

receive asynchronous feedback through a summary report after each meditation, logging their 

attentional focus at each moment, and tracking the number of birds and “recoveries” from 

periods of wandering attention.  The app includes several other gamification features, such as 

a system of levelled challenges, milestones, weekly goals, and “Muse points” (earned from 

focused attention, birds, and recoveries during each meditation session).  An online clinician 

platform is also available, which allows clinicians to monitor the meditation progress of 

participating clients.   

1.3.1.1 Validity of Muse EEG Measurement. Several studies have been conducted 

to evaluate the validity and utility of the raw EEG data obtained from Muse.  Ratti et al. 



 10 

(2017) compared Muse with two medical-grade EEG devices.  They found that Muse was 

more prone to artifacts from eye blinks and muscle movement, and tended to have increased 

power spectral densities relative to the medical-grade devices.  Muse also had the poorest 

test-retest reliability of the devices, perhaps due to inconsistencies positioning the headband 

and in obtaining good scalp connectivity with dry electrodes.  The authors concluded that 

Muse has limitations but may still provide useful data for some purposes.  The issue of 

artifacts may be somewhat ameliorated using appropriate correction algorithms.  

Furthermore, although the limitations found by Ratti et al. may compromise the ability to 

capture good quality absolute EEG data, these issues may not affect the ability to accurately 

detect relative changes in power spectral density throughout a session.  This point is well 

demonstrated by two further studies using Muse.  The first paper demonstrated that it was 

possible to use Muse to reliably measure three commonly-studied event-related potentials 

(N200, P300, and reward positivity; Krigolson et al., 2017).  Although Muse was somewhat 

less reliable than research-grade equipment, the authors determined that comparable results 

could be achieved with only a small increase in the number of samples.  In another study, 

Karydis et al. (2015) showed that Muse could be used to reliably distinguish pain states using 

machine learning.  These studies together suggest that, although EEG data derived from 

Muse has poorer validity and reliability than high-grade EEG devices, it may nonetheless be 

appropriate for some applications. 

1.3.1.2 Efficacy of Muse. A separate body of research has evaluated the effects of 

meditating with Muse neurofeedback on outcomes related to mental health.   Balconi et al. 

(2018) conducted a randomised trial over four weeks, in which healthy participants were 

asked to perform breath-focused meditation for 10 minutes per day, increasing to 20 minutes 

per day by the end of the study.  The experimental group used Muse, while an active control 

group practiced with a similar, but not dynamic, auditory stimulus (i.e., without 
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neurofeedback).  Participants in the experimental group had significantly greater reductions 

in subjective measures of stress, state anxiety, and fatigue than those in the control group.  

Furthermore, there was a significant increase in heart rate variability in the experimental 

group relative to control, both at rest and during a Stroop-like stressor task.  A subset of 

participants completed psychophysiological and task-based outcomes, which were reported in 

a separate paper (Crivelli et al., 2019).  The experimental group demonstrated greater 

performance than the active control group on a complex response time task.  A significantly 

higher frontal alpha-beta ratio in the experimental group was interpreted as an indicator of 

improved relaxation skills, while significantly higher alpha blocking in the frontal and central 

areas was thought to represent an increase in global neural responsiveness.  Strengths of this 

study are the use of a range of subjective, task-based, and neurophysiological outcomes, as 

well as the choice of an active control condition that closely mirrors the experimental 

condition in structure.  Limitations include a lack of detailed reporting on the intervention, 

group sizes, and adherence.  Moreover, information about the study provided elsewhere 

(Balconi et al., 2017) suggests that participants completed a large test battery, but not all 

outcomes were reported, possibly indicating that the reported results were selected based 

upon their statistical and/or clinical significance. 

In another trial, Bhayee et al. (2016) randomised healthy participants to a Muse-

assisted meditation group or an active control group that undertook online maths training 

exercises over a six week period.  Both groups spent 10 minutes per day on their respective 

interventions.  Participants in the experimental group showed large improvements in Stroop 

task response time that were significantly greater than those in the control group.  They also 

had a significantly greater improvement on the somatic subscale of the Brief Symptom 

Inventory, with a large effect, but no effect on the depression or anxiety subscales.  A 

strength of this study was the experimental design which matched conditions on intervention 
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duration and cognitive demand.  However, an important limitation was that it could not be 

determined whether neurofeedback augmented the benefits of meditation alone, since the 

control condition did not involve meditation.  Furthermore, the small number of analysed 

participants in the study (n = 26) severely limited statistical power and the ability to detect 

more modest effects.   

1.3.2 Meditation 

Neurofeedback-assisted meditation wearables such as Muse aim to leverage an 

existing evidence-based treatment approach, meditation, to support psychological wellbeing.  

Meditation is a collection of contemplative practices originating from Eastern religious 

traditions (Wielgosz et al., 2019).  It is a central element of evidence-based psychological 

treatments such as mindfulness-based stress reduction (MBSR; Kabat-Zinn, 1990) and 

mindfulness-based cognitive therapy (MBCT; Segal et al., 2002), but may also be used as a 

standalone treatment or adjunct to other treatments.  Meditation practices encompass a range 

of styles based upon traditional methods, such as the focused attention meditation style 

supported by Muse.  Although there is little agreement on how to classify these different 

styles (Brandmeyer et al., 2019), most forms of meditation appear to share some common 

features (Lutz et al., 2015).  Firstly, they often involve assuming a particular physical posture, 

such as sitting with a straight back and a relaxed body.  Secondly, the meditator strives to 

maintain an accepting attitude toward thoughts and feelings that are experienced during the 

meditation.  Thirdly, the meditation is driven by implicitly or explicitly expressed values, 

such as the reduction of suffering.  Lastly, the task set (i.e., instructions for how to practice) 

must be retained by the meditator throughout the meditation.    

1.3.2.1 Clinical Benefits. Meditation-based interventions have been shown to have 

benefits for a variety of clinical psychological problems.  A recent systematic review and 

meta-analysis showed that manualised interventions, such as MBCT, were equally as 
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efficacious as existing evidence-based treatments for anxiety and depressive symptoms 

(Goldberg et al., 2018).  For pain and substance use problems, meditation-based interventions 

were equivalent or superior to active controls.  A separate meta-analytic review of stand-

alone meditation-based interventions (i.e., those delivered ouside of a broader therapeutic 

framework) found small-to-medium improvements in depression and anxiety symptoms 

relative to no-treatment controls (Blanck et al., 2018).  Meditation-based treatments delivered 

by smartphone app have been similarly evaluated, with a recent meta-analysis finding small-

to-medium improvements in symptoms of stress, anxiety, and depression relative to mostly 

waitlist controls (Gál et al., 2021).  In another meta-analytic review, meditation-based 

interventions were shown to attenuate physiological markers of stress, including blood 

pressure, heart rate, triglycerides, and cortisol (Pascoe et al., 2017).  Together, these results 

suggest that meditation-based interventions can help to address the symptoms of common 

mental health problems such as anxiety, depression, and stress, even when used outside of 

broader treatment frameworks and delivered digitally. 

1.3.2.2 Theorised Mechanisms. There are many theorised mechanisms of action that 

could explain the beneficial effects of meditation.  Cognitive mechanisms that appear to be 

well-supported include increased meta-awareness, as well as the ability to detect and 

disengage from attention capture by task-unrelated thought (Gu et al., 2015; Wielgosz et al., 

2019).  Important affective mechanisms are likely to include an increased ability to 

distinguish emotional states, reduced emotional reactivity, and altered reward processing (Gu 

et al., 2015; Wielgosz et al., 2019).  These mechanisms appear to be underpinned by 

structural and functional changes in the brain regions concerned with attention regulation, 

emotion, and self-awareness (Tang et al., 2015).  Because different styles of meditation may 
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each train a distinct subset of skills, the mechanisms through which salutary effects occur 

may differ according to meditation style (Travis & Shear, 2010). 

1.3.2.3 Focused Attention Meditation. Focused attention meditation is a style of 

meditation that is supported by devices like Muse.  This style is often used by beginners in 

order to develop basic skills, after which meditators sometimes transition to other styles such 

as open monitoring meditation (Lutz et al., 2015; Malinowski, 2013).  In focused attention 

meditation, meditators attempt to maintain focus on a designated object, such as the breath 

moving in and out of the abdomen (Lutz et al., 2008).  When attention inevitably wanders 

away from the target object, meditators are asked to notice this, and to non-judgementally 

return their focus to the target.  As shown in Figure 2, focused attention meditation can be 

thought of as a continuous cycle of attending, becoming distracted, and returning attention to 

the target, with each stage of this cycle linked with heightened activity in specific brain 

networks (Hasenkamp et al., 2012; Malinowski, 2013).  Focused attention meditation is 

considered to train three key skills: the ability to monitor and be alert to distractions, the 

ability to disengage attention from a distraction, and the ability to reorient attention to the 

focal object (Lutz et al., 2008).  These abilities have clear relevance in supporting the 

awareness of, and disengagement from, maladaptive psychological processes such as 

rumination and worry (Wielgosz et al., 2019). 

1.3.3 Neurofeedback-Assisted Meditation 

A small body of scientific literature has established the theoretical and empirical basis 

for neurofeedback-assisted meditation, which is implemented by the Muse EEG headband.  

Brandmeyer and Delorme (2013) initially proposed the use of neural information to alert 

meditators to mind wandering episodes, supporting them to reorient to a focused state.  This 

strategy is founded upon the understanding that the cognitive states experienced in meditation 

(i.e., sustained focus, mind wandering without awareness, awareness of mind wandering, and 
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Figure 2 
Theorised stages of focused attention meditation and their corresponding brain networks, 
after Malinowski (2013) 

 

 

attention shifting; Figure 2) are associated with distinct neural states that can be detected 

using measurement tools such as EEG and fMRI (see, e.g., Braboszcz & Delorme, 2011; 

Hasenkamp et al., 2012; Malinowski, 2013).  Providing meditators with information about 

their degree of focused attention in real time could thus help them learn to recognise their 

own attentional states and attain improvements in sustained attention, supporting more 

effective practice. 

There is some empirical support for using neural indicators of mind wandering to 

support meditation.  Garrison et al. (2013) conducted a series of experiments in which novice 

and experienced meditators undertook focused attention meditation while receiving visual 

feedback on changes in the fMRI blood oxygenation level-dependent (BOLD) signal change 
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in the posterior cingulate cortex (PCC).  The PCC is one part of the default mode network, 

which appears to become more active when the mind wanders (Hasenkamp et al., 2012).  

When asked to exert control over the feedback signal, experienced meditators showed a 

significant decrease in PCC activation, whereas novice meditators were unable to modulate 

PCC activation.   In another study, van Lutterveld et al. (2017) trained novice and 

experienced meditators in effortless awareness meditation, a style that aims to achieve 

undistracted awareness.  In this experiment, the feedback signal was derived from a spatially 

filtered EEG measure of PCC activity in the 40-57hz frequency band, a part of the gamma 

band.  Both novice and experienced meditators were able to move the feedback signal in the 

direction of effortless awareness (i.e., decreased PCC activity), but could not shift it in the 

opposite direction.  These studies suggest that it is possible to modify the neural dynamics 

associated with mind wandering during meditation when information about these dynamics is 

provided as feedback.  Early evidence therefore supports the theory of neurofeedback-

assisted meditation, although these studies have generally involved lab-grade EEG systems 

rather than consumer-grade wearable devices. 

1.3.4 Mindfulness 

The construct of mindfulness is thought to be important in achieving clinical benefit 

from meditation (Visted et al., 2015), and could underlie the incremental effectiveness of 

aided meditation practice relative to conventional approaches.  No single definition of 

mindfulness has been agreed by academics (Van Dam et al., 2018), but most definitions 

appear to make reference to two dimensions first proposed by Bishop et al. (2004).  Firstly, 

mindfulness involves maintaining attention on the present moment experience, which implies 

an ability to sustain attention and to switch attention away from distractors.  Furthermore, the 

ability to remain focused on the present moment requires that elaborative thought about that 

experience, such as rumination, is minimised.  The second dimension of mindfulness 
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identified by Bishop et al. is the extent to which experiences are regarded with an attitude of 

curiosity and acceptance.  In other words, mindfulness involves being open to all aspects of 

the present moment experience without trying to change it.  Mindfulness therefore 

encompasses many of the underlying cognitive abilities that are trained in different styles of 

meditation. 

1.3.4.1 Trait and State Mindfulness. Mindfulness has been conceptualised as both a 

trait and a state (Brown & Ryan, 2003; Kiken et al., 2015; Lutz et al., 2015; Vago & 

Silbersweig, 2012).  State mindfulness refers to the extent to which attention is openly and 

non-judgementally directed towards present moment experience at any one moment (Bishop 

et al., 2004; Lau et al., 2006), while trait mindfulness is theorised as a dispositional tendency 

to be mindful throughout all parts of daily life (Baer et al., 2006; Brown & Ryan, 2003).  

Various self-report measures of trait mindfulness have been developed (see, e.g., Baer et al., 

2006; Brown & Ryan, 2003), however there is a general lack of consensus about how 

mindfulness should be defined and operationalised, which is evidenced by inconsistent factor 

structures and low correlations between different mindfulness measures (Bednar et al., 2020; 

Davidson & Kaszniak, 2015; Grossman & Van Dam, 2011; Van Dam et al., 2018).  Gains in 

trait mindfulness are not specific to mindfulness-based interventions, and the construct may 

lack divergent validity with other constructs such as personality, stress, and quality of life 

(Bishop et al., 2004; Lutz et al., 2015; Visted et al., 2015).  Furthermore, self-report 

mindfulness measures may be vulnerable to social desirability bias, and the interpretation of 

these measures could differ depending on the respondent’s knowledge about mindfulness 

practices (Lutz et al., 2015; Van Dam et al., 2018).  These issues highlight the need for 

further work on defining and measuring trait mindfulness. 

Relative to trait mindfulness, there has been less research on state mindfulness, 

although there are at least two well-developed measures: the Toronto Mindfulness Scale 
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(TMS; Lau et al., 2006) and the State Mindfulness Scale (SMS; Tanay & Bernstein, 2013).  

Although both measures have a two-factor structure, they appear to measure different factors, 

providing little consensus on what an appropriate factor structure of state mindfulness may 

be.  A recent attempt to develop a state version of a higher-dimensional mindfulness 

assessment, the Five Factor Mindfulness Questionnaire, was unsuccessful as no items were 

deemed sufficiently reliable for a state measure (Truong et al., 2020).  As with trait 

mindfulness, more research is needed to better define the state mindfulness construct and to 

understand how it might best be operationalised. 

1.3.4.2 Objective Assessment of Mindfulness. One novel research direction in 

mindfulness measurement which could resolve some of the outstanding concerns is the use of 

objective measures (Hadash & Bernstein, 2019).  An example of these is the Breath Counting 

Task (BCT; Levinson et al., 2014).  The BCT is a task measure of mindfulness that is 

administered during focused attention meditation, in which participants track their breaths 

with keypresses.  The premise of the BCT is that lapses of attention will result in either 

miscounts (i.e., failure to use a separate key to indicate the ninth breath), or resets (i.e., 

pressing a key to signify losing count). 

Initial research appears to support the BCT as a valid measure of mindfulness.  

Levinson et al. (2014) found that breath counting accuracy had small associations with self-

report measures of trait mindfulness, discriminated between novice and experienced 

meditators, and was sensitive to change.  Furthermore, participants with a higher breath 

counting accuracy spent significantly more time in a brain state that was thought to reflect 

task readiness, and significantly less time in an “idling” state (Lim et al., 2018).  Objective 

measures such as the BCT may therefore be useful supplements to self-report measures, with 

benefits such as reduced vulnerability to bias and increased temporal density of data.  

Although the BCT has been proposed as a measure of trait mindfulness it may in fact more 
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closely measure state mindfulness, given it captures functioning within a fixed period, has a 

small association with self-reported trait mindfulness, and has only modest test-retest 

reliability (Levinson et al., 2014). 

Novel objective measures of mindfulness could potentially be derived from the EEG-

based measures of attentional focus used by devices like Muse.  Strong conceptual 

similarities exist between the Breath Counting Task and these EEG-based measures used to 

facilitate neurofeedback-aided meditation.  Both measures aim to continuously track the 

degree of sustained attention during meditation, with minimal disruption to the meditative 

experience.  These EEG measures of attentional focus might therefore also serve as objective 

measures of state mindfulness. 

1.3.4.3 State Mindfulness Predicts Clinical Benefits of Meditation. State 

mindfulness could be an important process variable in relation to meditation and 

neurofeedback-aided meditation, since regular cultivation of state mindfulness is thought to 

lead to enhanced trait mindfulness and associated reductions in psychological distress 

(Garland et al., 2010; Vago & Silbersweig, 2012).  Kiken et al. (2015) tested this theory in a 

group of participants from an 8-week community-based mindfulness program based on 

MBSR.  State mindfulness during the intervention significantly predicted greater 

improvements in trait mindfulness and psychological distress, even when baseline levels of 

these outcomes were controlled for.  In another study, the level of state mindfulness achieved 

during a brief focused-attention meditation significantly predicted increases in self-reported 

cognitive reappraisal, a type of emotion regulation strategy (Garland et al., 2015).   

A separate body of research has examined the role of “practice quality” in predicting 

beneficial outcomes of mindfulness practice, rather than state mindfulness per se (Del Re et 

al., 2013; Goldberg et al., 2014, 2020).  As with state mindfulness, the theory is that 

adherence to the manner of practice, not merely the time spent, may predict the extent of the 
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benefits gained.  Del Re et al. (2013) found that increases in practice quality during an 8-

week course of MBSR significantly predicted change in psychological distress over the same 

period, while controlling for baseline trait mindfulness and social desirability.  In a later study 

of an 8-week group mindfulness intervention for smoking cessation, increases in practice 

quality significantly predicted change in psychological functioning at post-treatment and at 5-

month follow-up, controlling for practice time (Goldberg et al., 2014).  While empirical data 

are lacking, there appears to be insufficient divergent validity between the constructs of 

practice quality and state mindfulness, both conceptually and in the item content of their 

respective measures.  In short, the empirical evidence summarised above suggests that being 

able to sustain attention on the present with a non-judgemental attitude is central to realising 

the benefits of mindfulness training, at least for practice types such as focused attention 

meditation.  This suggests an important mechanism by which neurofeedback-aided 

meditation, which putatively supports sustained attention, could enhance the therapeutic 

effects of mindfulness practice. 

1.4 Acceptability of Wearable Devices 

An important consideration in the evaluation of wearable devices is their acceptance 

by consumers, including both patients and providers.  Acceptability concerns the extent to 

which users and/or clinicians consider an intervention to be appropriate (Sekhon et al., 2017) 

or to meet expectations (Musiat et al., 2014).  There appears to be little agreement in the 

literature on a theoretical foundation for assessing acceptability.  At least two research 

streams emerge, with one focusing on healthcare intervention acceptability (see, e.g., Sekhon 

et al., 2017), and the other on the acceptability of technology, usually in organisational 

contexts (also referred to as acceptance; see, e.g., Arning & Ziefle, 2009; Nadal et al., 2020).  

In the former stream, acceptability has been construed as a collection of factors that affect 

engagement with an intervention (Musiat et al., 2014; Sekhon et al., 2017), whereas in the 
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latter stream acceptability appears synonymous with the level of engagement with an 

intervention (Berry et al., 2016; Nadal et al., 2020).  An important distinction that arises 

within both research streams is that acceptability can relate to different stages of use.  In other 

words, acceptability can be considered prior to use (referred to as prospective, pre-use, or 

hypothetical acceptability), during use (concurrent or initial use acceptability), or following 

use (retrospective, sustained use, or actual acceptability; Berry et al., 2016; Nadal et al., 2020; 

Sekhon et al., 2017).  Acceptability across all stages of use is an important consideration in 

successful implementation of interventions: prospective acceptability is linked to the rate of 

initial uptake, while concurrent and retrospective acceptability are related to the level of 

engagement, adherence, and clinical outcomes achieved (Sekhon et al., 2017).  

1.4.1 Theoretical Models of Acceptability 

A range of existing theories and models may inform important predictors of 

acceptability of digital healthcare interventions such as wearable devices.  In the technology 

acceptability literature, the technology acceptance model (Davis, 1989) highlights perceived 

effectiveness and perceived ease-of-use as important high-level predictors of technology 

uptake, and various extensions of this theory exist (see,. e.g., Venkatesh et al., 2012, 2003).  

These relatively parsimonious theories tend to focus on higher-level predictors of technology 

acceptability, but do not typically elaborate on more specific or concrete factors (Arning & 

Ziefle, 2009; Bagozzi, 2007).  Within the health behaviour literature, Ritterband and 

colleagues (2009) combined a range of existing health behaviour theories with clinical 

knowledge and empirical findings to develop the Internet interventions model.  This is a 

comprehensive model of behaviour change through Internet interventions which can be 

readily applied to all kinds of digital health interventions.  Although this model does not 

explicitly consider prospective acceptability, it identifies four domains affecting intervention 

usage: intervention characteristics, support provided, user characteristics, and environmental 
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factors.  Each of these domains is then broken down further, as detailed in Table 2.  Many, if 

not all of these factors have potential relevance to the acceptability of wearable devices. 

1.4.2 Empirical Studies of Acceptability 

There has been little research into how individual factors influence the acceptability of 

wearable devices for treatment of mental health problems, however some studies have 

investigated prospective acceptability of digital mental health interventions more broadly.  

One branch of research has examined the relative preference for digital mental health 

treatments compared to conventional treatments (i.e., face-to-face therapy).  These studies 

include samples of the general population (Klein & Cook, 2010; March et al., 2018), 

university students (Levin et al., 2018; March et al., 2018; Wallin et al., 2018), and attendees 

at a primary healthcare clinic (Wallin et al., 2018).  Stigma regarding mental illness 

consistently predicted a greater preference for Internet-based treatments (Klein & Cook, 

2010; Wallin et al., 2018) or other self-help options (Levin et al., 2018).  A greater doctors’ 

locus of control was linked to a greater tendency toward using Internet-based treatments 

(Klein & Cook, 2010; March et al., 2018).  The effect of sociodemographic variables was 

generally negligible (Klein & Cook, 2010; March et al., 2018) or small (Wallin et al., 2018), 

as was the effect of psychological distress severity (March et al., 2018; Wallin et al., 2018). 

Given that this previous work has focused on other digital mental health interventions, 

primarily Internet-based treatment, it is unclear how much can be inferred regarding the 

acceptability of wearable devices.  The literature suggests that users’ expectations for mental 

health apps are similar to their expectations for Internet-based interventions (Musiat et al., 

2014), but wearable devices were not considered in this research.  Digital mental health 

interventions generally share some common characteristics, such as the use of technology and 

a potential for reduced clinician contact.  However, wearable devices may have unique 

qualities that affect their acceptability: for example, stigma may be a greater concern due to 
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the visibility of the device, or the therapeutic rationale for using these devices may be less 

intuitive than that of Internet-based treatments.  Research focusing specifically on the 

acceptability of wearable devices is therefore needed in order to understand which factors 

might influence the uptake of this distinct class of interventions. 

 
Table 2 
Factors that may affect wearable device acceptability, based on the Internet Interventions 
model (Ritterband et al., 2009)
Domain Factors 
Intervention 
characteristics 

§ Appearance (colour usage, layout, organisation, screen size) 
§ Behavioural prescriptions (contracts, written instructions, 

prompts) 
§ Burdens (difficulty of use, length) 
§ Content (accurate, clear, simple) 
§ Delivery (animations, audio, illustrations, text, video, 

vignettes/testimonials) 
§ Message (source, style) 
§ Participation (interaction, reinforcement, testing) 
§ Assessment (personalisation, tailoring) 

Support provided § Email 
§ Phone 
§ Face to face 

User characteristics § Disease 
§ Demographics 
§ Traits 
§ Cognitive factors 
§ Beliefs and attitudes 
§ Physiological factors 
§ Skills 

Environmental factors § Personal 
§ Professional 
§ Community 
§ Healthcare system 
§ Media/policy/culture 

 

1.5 Summary 

Digital health is expected to be central to the future provision of healthcare, and 

digital mental health interventions such as wearables could help to overcome the “treatment 

gap”, especially for difficulties that are mild in severity (Labrique et al., 2018; Rodriguez-



 24 

Villa, Rauseo-Ricupero, et al., 2020).  However, there is presently a lack of knowledge about 

the available range of wearable devices, how they might be used to address mental health 

problems, whether any supporting evidence exists, and what clinical implications there might 

be for their use. 

Neurofeedback-supported meditation is one modality of wearable device that is 

currently available through systems such as the Muse consumer-grade EEG meditation 

headband (Brandmeyer & Delorme, 2013; InteraXon Inc., 2020b).  EEG-based measures of 

mind wandering, such as those provided by Muse, appear to be conceptually similar to 

objective measures of state mindfulness.  These EEG-based measures might therefore be a 

novel method of assessing state mindfulness.  Furthermore, prior research has shown that 

higher levels of state mindfulness (and the conceptually similar construct of practice quality) 

during meditation are thought to be important in enhancing trait mindfulness and reducing 

psychological distress (Del Re et al., 2013; Garland et al., 2015; Kiken et al., 2015).  Hence, 

providing synchronous feedback of this data to meditators could support learning about how 

to meditate effectively, reducing barriers to meditation and strengthening the therapeutic 

effects.  Theoretical and empirical research provides some support for neurofeedback-

supported meditation (Balconi et al., 2018; Bhayee et al., 2016; Brandmeyer & Delorme, 

2013; Crivelli et al., 2019), but existing findings are limited by small samples sizes, choice of 

comparator conditions, and possible reporting bias. 

An important factor in the initial uptake of wearable devices is likely to be their 

prospective acceptability (Berry et al., 2016; Sekhon et al., 2017).  At present, it is not known 

which individual factors might affect prospective acceptability of wearable devices.  

Research on other digital mental health interventions, such as Internet-based therapy (see, 

e.g., Klein & Cook, 2010; March et al., 2018; Wallin et al., 2018), suggests that these 

interventions may be preferred when there are attitudinal barriers to conventional therapy 
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(such as stigma), when belief in doctors’ locus of control is low, and when technology 

confidence is greater.  Research specifically evaluating the acceptability of wearable devices 

is needed so that devices can be targeted at those most likely to use and benefit from them. 

The broad purpose of the present thesis was to advance knowledge about the potential 

use of wearable devices in treating mental health problems.  The first two studies within this 

thesis (Chapters 3 and 4) investigate the availability and acceptability of wearable devices for 

mental health across a range of modalities, as well as the clinical implications of their use.  

The latter two studies (Chapters 5 and 6) evaluate a singular wearable device and modality, 

EEG neurofeedback-supported meditation using the Muse headband.  The following 

exegesis, in Chapter 2, outlines the rationale, aims, and relevance of each individual study 

within the thesis.
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The direction for this thesis developed through several converging factors.  I was 

aware of the Muse EEG meditation headband and was curious about whether the device 

could help those learning to meditate, or whether it would merely be a well-promoted 

treatment with no meaningful evidence base to support it.  I already had an interest in 

meditation, and I wanted to learn more about the mechanisms underlying meditative practice.  

I also recall having some awareness of the challenge to evidence-based practice that was 

posed by the new frontier of technology-based mental health treatments. 

The topic of wearable devices for mental health is indeed broad and Chapter 1 

presents an attempt to synthesise relevant research on wearables themselves, as well as 

approaches to treatment that wearables might leverage such as meditation and mindfulness. 

Chapter 1 sets the scene for some of the broad but interrelated questions within this general 

area.   

My initial studies kept the focus broad and sought to address two gaps in the 

literature.  Firstly, there was little existing knowledge about the scope of available devices, 

how they might operate, and what implications there are for using these devices in clinical 

practice.  Secondly, it was unclear whether consumers would want to use such devices for 

treating mental health problems, and if so, which factors would predict their level of interest 

relative to conventional treatments.  Given the demonstrated need for better evidence of 

efficacy—drawn from Study 1—and the interest in wearables from consumers (Study 2), the 

two latter studies in this thesis had a narrower focus on a specific device and modality: the 

Muse EEG headband, which was developed to support meditation through neurofeedback.  

The objective of these studies was to build on the limited existing evidence for the Muse 

 CHAPTER 2: EXEGESIS 
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headband and the mechanisms through which it was thought to work.  In the remainder of 

this chapter, I provide a rationale for the specific aims and methodology of each of these four 

studies.  The background for each study is then further detailed within the respective chapter. 

2.1 Study 1 

The purpose of this study was to develop a comprehensive understanding of wearable 

devices that were commercially available and purportedly targeted mental health problems.  

Although I had used a Muse EEG meditation headband and a HeartMath heart rate variability 

device, I did not know the extent of other devices on the market, or which features they 

offered.  Early searches suggested there was little scientific literature for these devices, and so 

it was necessary to search through grey literature to identify devices that might meet the 

criteria.  Since I knew several devices were already commercially available and being widely 

used, I felt that it was also important to identify the potential clinical implications of using 

these devices to help guide their clinical use. 

In my early reading of the literature I had not identified any kind of classification 

paradigm that clearly identified the group of devices that I was interested in studying.  

Exploratory searches suggested that there were many devices that could monitor and report 

on physiological features without being oriented around mental health outcomes or actively 

assisting the wearer to modulate these features.  Biofeedback and neurofeedback modalities, 

which were used in the HeartMath and Muse devices I was aware of, had the critical addition 

of actively feeding back information to the wearer in real-time.  However, I did not want to 

limit the review to only these modalities in case there were other types of active interventions 

that would also merit inclusion.  One criterion was therefore that the device had to provide 

some active intervention element: either measuring and feeding back data in real-time, or 

perhaps actively stimulating some physiological system.  Consequently, devices that 

functioned asynchronously by reporting measures to the user periodically were not 
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considered.  Other important inclusion criteria centred upon the issue of availability.  The 

promise of wearable devices rests substantially upon the idea that they can become as easy to 

access as other consumer electronics such as smartphones (Mrazek et al., 2019; Rodriguez-

Villa et al., 2020).  For this to occur, devices would need to be available for consumers to 

purchase, priced at an affordable level, and oriented toward consumer use.  Early searches 

placed most devices around $150-300 USD, and a cutoff of $500 USD was selected as a 

likely upper limit for many consumers in purchasing a single-purpose device of this type.  To 

further contain the scope of the review, I decided to select only devices that might be used in 

the treatment of anxiety, since wearable devices generally measure physiological parameters 

linked to the somatic symptoms seen in many anxiety disorders (Mallorquí-Bagué et al., 

2016).  

A second issue that arose while developing this review was the complexity and 

heterogeneity of devices being studied.  I expected that there could be numerous potential 

differences in hardware and software between devices which, on the surface, might appear to 

work in the same way.  The best evidence for a device would therefore be studies that directly 

test that device in clinical populations.  However, such evidence was typically scarce and 

inconclusive, probably because of the relative short period that the devices had been 

available.  My approach was therefore to present any available evidence from research on 

individual devices, as well as summarising any systematic reviews of evidence for that device 

modality. 

In summary, the purpose of Study 1 was to identify currently available wearable 

devices that might be used in the treatment of anxiety, understand the extent of available 

evidence for these devices or their putative modalities, and review possible clinical 

considerations when using devices as a part of treatment.  
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2.2 Study 2 

The purpose of the second study was to evaluate the acceptability to consumers of 

using wearable devices to treat a mental health problem.  The acceptability of an intervention 

is a well-established determinant of its potential clinical utility (American Psychological 

Association, 2002).  Since it has been suggested in the literature that there is a low 

willingness to utilise digital interventions (Mohr, Lyon, et al., 2017), I felt that it was 

important to assess whether this was also true specifically for wearable devices.  If the 

acceptability of these devices to consumers was low, they would be unlikely to have 

widespread clinical utility.  I therefore wanted to survey a sample that was broadly 

representative of the general population. 

Careful consideration was needed to select the most appropriate method for 

measuring the acceptability of wearable devices, and to choose the most relevant comparator 

treatments.  As I wanted to consider wearables as an entire class of devices rather than a 

specific device, it made sense to evaluate the prospective acceptability, that is the perceived 

acceptability of such devices without having used them (Berry et al., 2016; Sekhon et al., 

2017).  I also considered prospective acceptability to be important because it would likely 

have a strong impact on treatment uptake, regardless of concurrent or retrospective 

acceptability.  Since I predicted that the level of clinician support might affect the 

acceptability of wearable devices (March et al., 2018; Ritterband et al., 2009), ratings of 

acceptability were sought for two discrete wearable device use cases: a “blended” use case 

(i.e., use in conjunction with conventional talk therapies) and a self-help use case.  The 

description of wearable devices shown to participants for these use cases was informed by the 

characteristics of the devices reviewed in the first study (i.e., device size, purpose, 

mechanisms, manner of use, and cost; see Appendix A).  In order to have some benchmarks 

of relative acceptability, I decided to also ask participants to rate the acceptability of two 
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other treatment approaches for comparison (conventional talk therapy and the use of self-help 

material such as an app or book).  Prospective acceptability was operationalised as the level 

of interest in using each treatment in the event of a mental health problem. 

As well as evaluating the level of acceptability of devices and other treatments, I 

thought that it would also be worthwhile to determine whether acceptability was related to 

participant characteristics.  This information could potentially assist clinicians to target 

wearable device interventions to those who would be most receptive to using them.  

Literature searching revealed a number of existing studies that had evaluated device-related 

factors that were associated with wearable device acceptability, but few that focused on the 

characteristics of the wearer (see, e.g., Kalantari, 2017).  Not all possible factors could be 

measured due to participant burden, and so it was necessary to consider which predictors 

would likely have the strongest relationship with wearable acceptability.  To inform my 

selection, I looked at which factors had been shown to affect preference for Internet-based 

treatment relative to conventional face-to-face treatments (e.g., Klein & Cook, 2010; March 

et al., 2018; Wallin et al., 2018), theorising that these would likely also be relevant in the 

context of wearable devices. 

The purpose of Study 2, then, was to determine the prospective acceptability of 

wearable devices—or in other words, how willing consumers would be to use such devices 

with just a basic idea of what they were.  This study and its results are fully described in 

Chapter 4. 

2.3 Study 3 and Study 4 

Having reviewed a range of wearable devices in Study 1, I thought that the Muse EEG 

meditation headband warranted further research because it was a relatively mature product 

that appeared to have a substantial existing user base.  Furthermore, given the recent 

proliferation of mindfulness-based treatments in clinical practice, I expected that there might 
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be significant clinician interest in using Muse. The purpose of these studies, then, was to 

evaluate the Muse EEG meditation headband as an aid to meditation. 

An important consideration in developing these studies was the selection of the most 

appropriate experimental design.  Ultimately, randomised controlled trials in clinical 

populations are considered to be the gold standard method for establishing treatment efficacy 

(Chambless & Hollon, 1998).  However, as identified in Study 1, aided meditation is a 

relatively novel and unproven technology.  For this reason, I thought that an important initial 

step would be to develop more evidence for the putative mechanisms underlying Muse, 

which could be done in a non-clinical population.  Identifying mechanisms can help to 

understand the link between treatment and outcome, optimise therapeutic effects, and identify 

critical elements, as well as providing support for the efficacy of an intervention (Kazdin, 

2007).  The mechanisms evaluated in Studies 3 and 4 centred upon two key assumptions.  

Firstly, the effectiveness of biofeedback interventions is thought to rely upon the reliability 

and validity of the biological signal being measured (McKee, 2008).  For Muse to be 

effective, it would therefore need to be producing a valid measure of meditation quality (i.e., 

sustained attention).  Secondly, the provision of a biofeedback signal should enhance the 

ability of the trainee to modulate the signal, gaining some additional control over it (McKee, 

2008).  Receiving feedback from Muse would therefore be expected to increase the degree of 

meditation quality, relative to unassisted practice.  These assumptions became the research 

questions underpinning Studies 3 and 4, respectively. 

The purpose of Study 3 was to evaluate the reliability and validity of the proprietary 

measures derived from the Muse headband.  Although studies suggest that it is possible to 

derive meaningful information about meditation state from EEG data (see, e.g., Braboszcz & 

Delorme, 2011; Hasenkamp et al., 2012), little or no research has demonstrated the same 

principle using a consumer-grade device with a lower quality EEG signal.  The primary Muse 
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measure, which I termed “Muse mind wandering”, ostensibly detects the degree of focused 

attention on the breath (Interaxon Inc., 2020).  It is this measure which is used to provide 

auditory feedback to meditators.  As the Muse mind wandering measure appeared 

conceptually similar to objective measures of state mindfulness, I wanted to establish its 

convergent validity with state mindfulness and related measures of trait mindfulness and 

attention.   

The selection of measures to assess concurrently with Muse required some 

consideration.  Although self-report measures of mindfulness have predominantly been used 

in the literature, they have been criticised on account of insufficient discriminant validity with 

well-being and biases related to the level of experience of mindfulness practice (Grossman, 

2008, 2011; Sauer et al., 2013; Van Dam et al., 2018).  I therefore decided to include the 

Breath Counting Task (Levinson et al., 2014) as an objective measure of state mindfulness.  I 

also selected a well-established experience sampling method (Weinstein, 2018) to assess the 

subjective level of mind wandering at random intervals during the meditation task.  The 

advantage of these measures was the ability to capture multiple data points with minimal or 

no disruption to the meditation practice.  This yielded a higher density of data, increasing 

analytic power and providing the opportunity to investigate within-participant as well as 

between-participant associations. 

The purpose of Study 4 was to evaluate the effect of Muse feedback on the quality of 

meditation practice.  According to biofeedback theory, training with feedback should allow 

the trainee to begin to modulate the physiological signal underpinning that feedback (McKee, 

2008).  I therefore expected that receiving auditory feedback of the Muse mind wandering 

measure would result in increased state mindfulness, relative to not receiving any feedback.  I 

chose to test this experimentally using a counterbalanced crossover trial design, giving 

greater statistical power than a parallel design, and thus reducing the number of participants 
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needed.  This design was appropriate as I expected any learning effects accruing from the 

first condition to the second would not differ substantially based on the order in which the 

conditions were presented (Senn, 2002).  A secondary question was whether participants’ 

experience of meditation differed between conditions.  To this end, I chose to administer a 

questionnaire about meditation experiences after participants completed each condition.  

The use of a no-feedback condition as a control condition, rather than a sham 

feedback condition (i.e., random feedback), was an important methodological consideration 

in Study 4.  Using a sham feedback condition would have ensured that any observed 

intervention effects could be attributed to the information provided in the feedback, not a 

result of other factors such as attentional or motivational differences elicited by feedback 

(Alino, 2016).  However, three compelling reasons existed for using a no-feedback condition 

instead.  Firstly, a no-feedback control would best represent a typical unaided meditation, 

which is a possible alternative clinical treatment, whereas sham feedback would not represent 

any clinical intervention.  Secondly, improvements in attention or motivation resulting from 

feedback should not necessarily be considered trivial or unimportant, and are perhaps better 

considered as important mechanisms of the intervention (Lambert, 2013; Weerdmeester et al., 

2020).  Lastly, the use of a sham feedback condition may compromise participants’ 

perception of control over the signal, risking their motivation or interest in the true feedback 

condition (Alino, 2016).  For these reasons, a no-feedback control was selected as the most 

appropriate comparator condition for the present work. 

In summary, the purpose of Study 3 and Study 4 was to evaluate the potential of the 

Muse meditation headband as an aid to meditation, by firstly determining whether the 

measures produced by Muse were related to state mindfulness, and secondly evaluating the 

effect of Muse neurofeedback on state mindfulness and subjective experiences.  These studies 

are reported in Chapters 5 and 6, respectively.
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3.2 Abstract 

Anxiety disorders are a major public health problem, and a range of wearable 

technological devices for addressing the somatic symptoms of anxiety are increasingly 

available.  This narrative review summarises five distinct modalities underlying wearable 

devices and investigates clinical implications for managing clients using such devices.  The 

literature suggests potential benefits of HRV biofeedback devices, whilst other modalities 

(aided meditation, false physiological feedback, electrodermal biofeedback and respiration 

biofeedback) are less supported. High-quality research on the efficacy of such devices is also 

lacking, particularly in clinical populations. Wearables could offer potential benefits, but may 

be contraindicated in some cases. Collaborative use of clinical evaluation tools, such as the 

American Psychiatric Association’s app evaluation model, can aid in shared decision-making 

about device use.  

3.3 Introduction 

Anxiety disorders are a major public health concern, with a lifetime prevalence rate 

estimated to be 16.6% globally (Somers et al., 2006).  After depressive disorders, anxiety 

disorders carry the greatest disease burden of the mental disorders (Abajobir et al., 2017).  
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Yet despite longstanding recognition of the treatment gap in mental health, and substantial 

increases in the size of the mental health workforce and related government funding, the 

evidence suggests that the prevalence of anxiety-related complaints continues to increase, 

even in developed nations (Jorm et al., 2017).  Furthermore, of those who seek help for mood 

and anxiety disorders, only 26% receive an evidence-based treatment (Jorm et al., 2017).  

While early technological mental health interventions have shown some promise for scaling 

up treatments (e.g., O’Connor, Munnelly, Whelan, & McHugh, 2017), a new generation of 

consumer-targeted wearable electronic solutions that present new possibilities and challenges 

in addressing anxiety are now becoming available. 

Wearables are interactive computing devices, worn either as an item of clothing or as 

an accessory, and they are an important element of the new frontier of healthcare innovation 

(Nasir & Yurder, 2015).  Wearables, like mobile technologies for health (mHealth), are part 

of a broader movement to democratise healthcare, potentially enabling ubiquitous, patient-

centred health provision.  With smartphones acting as an “extension of the self” (Morris & 

Aguilera, 2012, p. 622), it has been argued that there is promise for improving access, uptake, 

adherence and engagement with treatments, as well as potentially enabling clients to 

continually manage their condition outside of treatment, resulting in reduced costs and better 

outcomes (Clough & Casey, 2015b).  Products like smart watches or fitness bands, usually 

paired with smartphone applications (‘apps’), have already been widely adopted in the move 

towards a “quantified self”: increased self-understanding based on personal analytics (Piwek 

et al., 2016).  Now, a first generation of wearable devices for addressing mental wellbeing are 

moving beyond quantification with the promise of an “augmented self”, including EEG 

headbands to aid meditation, sensors that provide feedback on irregular or adaptive breathing 

patterns, and heart rate variability monitors that seek to achieve coherence of cardiac and 

respiratory rhythms.   
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A common theme across most of these devices is that they provide some form of 

relaxation training, by giving the wearer an indication of their degree of arousal and guiding 

them in exercises to achieve calm.  Some devices are designed for short session-based use, 

while others are intended to be worn all day, providing moment-to-moment feedback to the 

user as required (so-called ecological momentary interventions).  It has been proposed that 

wearable devices could help to reduce various access barriers by avoiding the need to attend a 

clinic in some cases (Lui et al., 2017), and their deployment on a large scale might even 

contribute to the collection of field data that can answer difficult research questions, given 

appropriate user consent (Moraveji, 2012).  The use of mHealth platforms may allow for 

these wearable interventions to be more seamlessly integrated into everyday life, and regular 

use might be encouraged through gamification (Deterding et al., 2011; Fleming et al., 2016).  

Technological delivery could also mean that treatments are more consistently applied, 

compared to provider delivery (Riley, 2017).  Of course, many of these potential benefits 

remain hypothetical for now, since there has been little research on the actual acceptability of 

wearable devices, while research into other e-mental health interventions suggests that 

widespread adoption has not yet been achieved, despite there being evidence for the efficacy 

of some of these treatments (Apolinário-Hagen et al., 2017).  

Wearable devices may be particularly suitable for tackling anxiety because somatic 

symptoms are a significant feature of various anxiety disorders, and many of these symptoms 

relate to over-activation of the sympathetic nervous system and corresponding under-

activation of the parasympathetic nervous system (Friedman, 2007; Mallorquí-Bagué et al., 

2016).  Practice with calming technologies might therefore help to increase self-efficacy, 

reduce aversive interpretations of somatic arousal (Meuret et al., 2004), or even lead to 

lasting physiological changes (for example, improved baroreflex function; Lehrer et al., 

2003).  Relaxation techniques already have an established place in the treatment of anxiety 



   39 

disorders (Manzoni et al., 2008), but given the rapid development and commercialisation of 

wearables, little knowledge has been generated thus far about whether they could facilitate 

this approach to treatment (Coffey & Coffey, 2016).  Nonetheless, despite the lack of existing 

evidence, numerous online reviews and opinion pieces offer enthusiastic endorsement for the 

use of these devices in improving wellbeing and addressing clinical disorders such as anxiety.  

At the same time, strong growth in annual sales of wearable devices is projected to continue 

over coming years (CCS Insight, 2017).  As with the proliferation of smartphone apps, the 

growing number of wearables presents a challenge for clinicians in terms of being able to 

provide up-to-date advice to clients who may be eager to use such technologies.   

In the present review, we aimed to describe the range of modalities through which 

wearables ostensibly address anxiety, highlight some of the available evidence for those 

modalities and for specific devices, and summarise some of the potential implications of 

using wearables in a clinical context. Importantly, given the broad nature of this issue in 

terms of the range of technologies available, their mechanisms of action, and the generally 

limited research material available, a systematic review was not considered appropriate. 

Instead, we undertook a narrative review to capture the diversity of devices and evidence 

available in one article (Dijkers, 2009).  

In order to determine relevant devices for inclusion herein, literature and broader 

Internet searches were conducted using search terms such as “wearable device” or the name 

of specific device modalities once these had been identified.  For inclusion, devices needed to 

(i) be currently available direct to consumers, (ii) cost less than USD $500, (iii) comprise 

active intervention elements using physiological or neurological signals, and (iv) be oriented 

toward consumer use rather than research or specialised applications unrelated to anxiety 

symptoms.  A total of 40 devices were identified, with 26 devices being excluded 

(research/specialised orientation: 11, no active intervention elements: 9, not presently 
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available for purchase: 4, cost: 1, not wearable: 1). The remaining 14 devices (Table 3) were 

then grouped according to their assumed modalities.  Each of these modalities is further 

described below, and, where available, the results of recent systematic reviews evaluating the 

evidence for each modality are summarised.  Furthermore, where literature that specifically 

evaluated the identified devices could be found, it is also reviewed here.  Following this 

discussion of different device modalities, the clinical implications of using these devices—

including risks and unexpected effects, as well as approaches for clinical evaluation—are 

considered.  

3.4 Device Modalities 

3.4.1 Heart Rate Variability Biofeedback 

Many of the wearable devices for anxiety identified in this review ostensibly operate 

through biofeedback.  Biofeedback training devices are thought to work by feeding back 

information about bodily signals to allow trainees to recognise and learn to control those 

signals.  While early biofeedback research tended to focus on parameters such as skin 

temperature, heart rate and muscle potential, recent devices have been developed around 

bodily signals that require more sophisticated measurement and/or interpretation, such as 

heart rate variability, electrodermal activity, respiration and EEG (Schoenberg & David, 

2014).  Heart rate variability (HRV) is the variation in interval between heartbeats.  It is an 

important signal because it has been shown to be a reliable predictor of physical health as 

well as an indicator of healthy parasympathetic functioning, which is associated with the 

ability to self-regulate emotions under stress (Caldwell & Steffen, 2018; Goessl et al., 2017; 

Jester et al., 2019).  It is perhaps unsurprising, then, that reduced HRV has been observed in 

most types of anxiety disorder (Chalmers et al., 2014).  HRV is influenced in large part by 

respiratory sinus arrhythmia, whereby heart rate accelerates during inhalation and decelerates  

during exhalation (Goessl et al., 2017).  HRV biofeedback aims to maximize HRV by
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Table 3 
Summary of wearable devices with potential benefit for anxiety symptoms 

Modality Device Website Comments 
Approx. 
Cost 

EDA Pip (2014) 
Galvanic Ltd 

thepip.com Held between thumb and forefinger like a guitar plectrum; 
developer currently in liquidation. 

$245 AUD 

EEG Brainlink (2014) 
Macrotellect Ltd 

o.macrotellect.com 1 channel dry sensor headband €149 EUR 

 Insight (2015) 
Emotiv, Inc. 

emotiv.com 5 channel hybrid sensor headband (requires minimal 
priming with saline) 

$299 USD 

 Lowdown Focus (2017) 
SmithOptics, Inc. 

smithoptics.com EEG sunglasses based on Interaxon Muse technology 
(described below) 

$349 USD 

 Mindwave (2011) 
Neurosky, Inc. 

neurosky.com 1 channel dry sensor headband $79 USD 

 Muse (v2, 2016) 
Interaxon, Inc. 

choosemuse.com 4 channel dry sensor headband; primarily offers aided 
meditation but third-party apps can be used also 

$249 USD 

 Myndband (2016) 
Myndplay Ltd 

myndplay.com 1 channel dry sensor headband £179 GBP 

 SenzeBand (2016) 
Neeuro Pte Ltd 

neeuro.com 4 channel dry sensor headband $299 USD 

Entrainment Doppel (2018) 
Team Turquoise Ltd 

feeldoppel.com Worn on inside of wrist where the pulse is normally felt; 
provides a regular heartbeat-like tactile sensation 

$179 USD 

HRV† emWave 2 (2011) 
HeartMath, Inc. 

heartmath.com Standalone feedback device or used with apps on Mac or 
Windows (no smartphone support) 

$199 USD 

 Blaze, Charge 2, Ionic, 
Versa 
FitBit, Inc. 

fitbit.com ‘Relax’ app guides breathing based on HRV patterns $119- 
$249 USD 
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Modality Device Website Comments 
Approx. 
Cost 

 Inner Balance (2013) 
HeartMath, Inc. 

heartmath.com Bluetooth or wired sensor worn on the earlobe during 
biofeedback sessions 

$159 USD 

 Sona (2015) 
Caeden, Inc. 

caeden.com Wristband; monitors HRV through the day and offers HRV 
biofeedback sessions 

$199 USD 

Respiration Stone (2014) 
Spire, Inc. 

spire.io Sensor worn on belt or bra; feedback on elevated and calm 
states in realtime; also short biofeedback sessions 

$149 USD 

Note: †The products listed here are integrated software and hardware HRV solutions.  However, a range of smartphone apps can also be linked to 
low-cost generic sensor devices (chest strap, ear clip, finger clip and a limited range of smart watch devices) to provide session-based HRV 
biofeedback. 
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guiding trainees in breathing at their “resonance rate”—the number of breaths per minute that 

produces the largest variability in heart rate, usually around six—through feeding back 

information about their HRV (Kleen & Reitsma, 2011).  The resonance rate causes maximal 

heart rate oscillation as a result of heart rate becoming in phase with breathing and out of 

phase with blood pressure oscillations (Lehrer & Gevirtz, 2014). 

Individual HRV biofeedback devices may operate in slightly different ways, but they 

generally work by giving paced breathing cues while also displaying feedback about the level 

of coherence being achieved between heart rate and breathing.  The range of available HRV 

devices are perhaps the most developed in terms of wearables for mental health.  This may be 

in part because unlike most other wearables, non-proprietary communication protocols used 

by many HRV sensors mean that apps can connect with a range of different sensors, and vice 

versa.  Perhaps for this reason, some HRV solutions can appear economical when compared 

to other wearables.  Sensors come in multiple forms, from chest straps to optical ear or finger 

clip sensors.  Future apps may even utilise the smartphone camera as a 

photoplethysmographic heart rate sensor, allowing for HRV to be trained without the use of 

an additional measuring device, and this technique has been shown to produce valid 

measurements (Plews et al., 2017).  Some of the products on the market are entirely 

integrated offerings, which function either as standalone devices (e.g. HeartMath emWave 2) 

or as a paired sensor and smartphone app (e.g. HeartMath Inner Balance).  HRV 

measurement is also incorporated into many recent fitness watch products such as some 

FitBit and Garmin devices, as well as the Apple Watch.  However, these watch 

implementations are typically not compatible with standard communication protocols, 

meaning that only proprietary software can be used, and this often does not feature 

biofeedback options, but is used instead for quantifying fitness levels.  Furthermore, the 
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sensors used in wrist-worn devices can be prone to artefacts, and so accurate readings may 

only be produced when completely still (Baek & Shin, 2017). 

3.4.1.1 Support for HRV Biofeedback. A recent meta-analysis of 24 RCTs targeting 

stress and anxiety in clinical and non-clinical populations revealed large effects for HRV 

biofeedback overall, both within groups and when compared to a mix of passive and active 

controls (Goessl et al., 2017).  However, the authors of that review identified an unclear risk 

of study bias (according to Cochrane Handbook guidelines) in the majority of included 

studies, such that sub-optimal randomisation, blinding, and treatment of missing data may 

compromise the fidelity of the results.  While Goessl et al. attempted to evaluate the impact 

of study bias with a moderation analysis, the non-significant results of this analysis cannot be 

interpreted for the intended purpose because only studies with a high or unclear overall risk 

of bias were included.   Schmidt and Martin (2017) carried out a further qualitative 

systematic review of 21 RCTs using HRV biofeedback for physical and psychological 

problems, finding that increases in HRV were persistent, and effects on psychological 

variables like subjective stress were positive but generally not superior to active controls.  

However, they also note a lack of controlled studies showing effects of HRV biofeedback on 

psychological outcomes.  Both reviews thus demonstrate that potential study bias is a major 

limitation of the evidence available at present.  A second major issue is that few studies 

identified in these systematic reviews compared HRV biofeedback with active controls in 

clinical populations.  This represents a significant concern for clinicians, who need to know 

whether a proposed intervention is likely to be at least as effective as current best practices 

for the treatment of a specific disorder or symptom cluster.   Other limitations of existing 

research include a failure to observe a dose-response relationship in many studies, as well as 

differences in treatment protocols between studies.  Most outcome measures rely on self-

report, although physiological and neurological changes have also been observed, indicating 
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that outcomes are not limited to subjective measures (Lehrer et al., 2003; Prinsloo et al., 

2013).  Lastly, the long-term benefits of treatment, including how measured improvements 

translate into everyday coping, have not been well explored as yet (Wheat & Larkin, 2010).  

In summary, while recent systematic reviews suggest that HRV biofeedback could lead to 

clinically significant improvements for people with anxiety through increased self-awareness 

and improved physiological and psychological self-regulation, higher quality research, and 

particularly studies within clinical populations that compare against active control treatments, 

are needed to further substantiate these claims (Goessl et al., 2017; Schmidt & Martin, 2017).  

Since much of the research in these reviews was done with research-grade equipment, and 

given the difficulty in measuring HRV accurately, more evidence is also needed to show that 

these treatments can be effectively reproduced in consumer-grade wearable technology.  

3.4.2 Respiration Biofeedback 

Another bodily signal targeted by biofeedback devices is respiration.  The dynamic 

two-way relationship between breathing patterns and affective state has already been well 

established (Ley, 1999).  While stress may lead to hyperventilation—depending on the 

intensity of the stressor and the learned reactivity to stress—respiratory rate can also be 

controlled volitionally, and is therefore a potential therapeutic target (Moraveji, 2012).  

Irregularities in baseline respiratory rate have been observed in some diagnoses of anxiety 

(Grassi et al., 2014).  Furthermore, a decreased baseline respiratory rate has been observed 

following clinical interventions like meditation (Pascoe et al., 2017).  Acknowledging this 

connection, breathing training has been used as an effective clinical treatment, sometimes 

aided by feeding back information about respiratory parameters to trainees (Meuret et al., 

2004).  When combined, respiratory features such as breath rate, inhalation-exhalation ratio 

and tidal volume can discriminate stress with a similar level of power to ECG features, and 

closely predict self-reported measures of perceived stress in ecologically valid scenarios 
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(Plarre et al., 2011).  However, consistently monitoring the breath during everyday life is 

challenging as constant attention is required, and respiratory patterns therefore represent a 

potential target for intervention with wearable devices.  

Perhaps the first mass-market wearable device based on respiratory activity is the 

Stone (Spire, Inc), a small sensor that is attached to the belt or underwear.  This device 

registers breathing patterns and categorises the user’s state as normal, calm, tense, or focused.  

It can send alerts to the wearer when changes in breath indicate a rise in tension, and gives 

positive feedback when users achieve an extended period of calm.  Guided meditations with 

respiratory feedback are also available on demand through the app.   

3.4.2.1 Support for Respiration Biofeedback. To date, there appears to be little 

evidence around the effectiveness of respiration biofeedback.  A recent systematic review of 

multiple biofeedback modalities identified only three studies where respiration biofeedback 

was used, all of which were for treatment of panic disorder, with only one study reporting 

statistically significant symptomatic change (Schoenberg & David, 2014).  However, the 

treatments used in these studies were fundamentally quite different to that of devices that 

provide ecological momentary interventions based on respiratory features, such as the Stone, 

making it difficult to translate any conclusions.  Little research evaluating such devices 

appears to be have been conducted thus far.  An unpublished study conducted by Spire in 

partnership with Stanford University and LinkedIn engaged 225 LinkedIn employees, around 

half of whom received a Stone device and used it over a one-month period (Moraveji et al., 

2017).  Compared to the group who did not receive a device, users demonstrated significant 

decreases in measures of anxiety, negative affect and perceived stress.  While the amount of 

time spent in a ‘calm’ state (as classified by the device) increased by 37% on average over 

the course of the study, high variability between participants meant that this change was not 

statistically significant.  The study’s conclusions should be considered with caution since it 
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was not subjected to peer review, and the open-label nature of the trial means that expectancy 

effects were not controlled for.  Furthermore, the participants did not represent a well-defined 

clinical population, and a 41% drop-out rate in the treatment group suggests that uptake of the 

device among users may be problematic. 

3.4.3 Electrodermal Activity Biofeedback 

Electrodermal activity (EDA), also known as galvanic skin response, refers to the 

changes in conductance of the skin due to sweat glands being activated by the sympathetic 

nervous system (Parnandi & Gutierrez-Osuna, 2017).  Changes in EDA are associated both 

with neural measures of arousal (Critchley et al., 2013) and with psychological stress (Salafi 

& Kah, 2015; Visnovcova et al., 2016).  There are two primary characteristics of EDA: skin 

conductance level (SCL) is a baseline measure of sympathetic arousal, while skin 

conductance response (SCR) refers to momentary peaks in the signal which occur in response 

to episodic stressors such as startle events or affective arousal (Parnandi & Gutierrez-Osuna, 

2017).  Only one consumer-grade EDA biofeedback device was identified in the present 

review.  The Pip (Galvanic Ltd) is a small device that is held between the thumb and 

forefinger, and it can be used with a number of included game-based apps in which the user 

makes progress toward goals by reducing their level of arousal.   

3.4.3.1 Support for EDA Biofeedback. Despite research showing the link with 

objective and subjective measures of arousal, a recent systematic review found a lack of 

quality evidence for the efficacy of EDA biofeedback for any mental disorder thus far 

(Schoenberg & David, 2014).  Only one study evaluating an EDA-based wearable device 

could be identified, trialling the Pip in a group of healthy participants using game-based apps 

following a stress induction two after (Dillon et al., 2016).  Compared to the control group 

who played a game without biofeedback, participants using the Pip reported significantly 

lower heart rate and perceived stress.  However, the observed effect size was small, and 
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longer-term effects were not studied. Further studies therefore appear to be required in order 

to establish the credibility of this form of treatment, particularly with regard to anxiety 

disorders. 

3.4.4 Neurofeedback and Aided Meditation 

Neurofeedback, also known as EEG biofeedback, is a specific form of biofeedback 

that works by giving users information regarding characteristics of the EEG signal measured 

over particular cortical regions (Demos, 2005).  For some decades, neurofeedback has been 

used clinically to treat conditions such as attention disorders and epilepsy (Kopřivová et al., 

2013).  Neurotherapy typically involves taking quantitative EEG data which can be compared 

to normative data to identify cortical regions that are under- or over-active within specific 

frequency bands, after which neurofeedback protocols can be developed to reward 

normalisation of brain activity in these areas (Demos, 2005).  Consumer-grade neurofeedback 

devices operate in a simpler way, often only having active sensors in the prefrontal area 

where hair does not preclude the use of dry electrodes.  These devices typically have a range 

of manufacturer and/or third-party apps which function in various ways.  Some apps simply 

quantify EEG state, while others attempt to infer associated mental state (e.g. focused, tense, 

relaxed), or include games where the objective is for the user to perform increasingly difficult 

tasks while controlling their level of arousal.  However, the specific EEG patterns being 

targeted by these apps are often not disclosed, making it difficult to make any generalisations 

about the efficacy of treatments using this modality. 

One specific way that neurofeedback might be used to improve mental health is 

through aiding meditation.  Meditation-based interventions have been associated with 

significant reductions in physiological signs of stress, such as cortisol, blood pressure and 

heart rate (Pascoe et al., 2017).  Limited early evidence suggests that mindfulness programs 

incorporating meditation could be comparable to gold-standard cognitive behavioural 
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interventions when used to treat anxiety disorders (Singh & Gorey, 2018), although more 

research is needed to comprehensively address this question.  Furthermore, stand-alone (i.e., 

used in isolation from other treatment) mindfulness exercises such as guided breathing 

meditation have been shown to have small-to-moderate effects on anxiety compared with 

stand-alone active controls (Blanck et al., 2018).  Aided meditation employs algorithms that 

process EEG signals to detect mind-wandering, which has been associated with gamma 

power in the posterior cingulate cortex (van Lutterveld et al., 2017) and with theta power 

globally (Braboszcz & Delorme, 2011).  Auditory or visual feedback can then be given to the 

user, for example by increasing the volume of background sounds to signal the mind 

becoming distracted.  Because meditation can be difficult to learn, neurofeedback may help 

the learning process by giving objective feedback (van Lutterveld et al., 2017).  Moreover, 

some clients feel they are “doing nothing” during meditation or that the instructions are 

ambiguous (Kleen & Reitsma, 2011), and real-time feedback based on cortical activity could 

overcome this problem.  It should be noted that current implementations of aided meditation 

tend to be developed specifically for use with concentrative meditation, such as focusing on 

the breath, but may not necessarily support other meditative approaches such as mindfully 

being aware and accepting of all thoughts and feelings. 

3.4.4.1 Support for Assisted Meditation. Few studies have assessed the efficacy of 

neurofeedback-assisted meditation devices, perhaps because of their relatively recent 

inception.  Several recent trials have evaluated the use of the Muse headband relative to 

similarly structured active controls in short (4-6 week) interventions (Balconi et al., 2017, 

2018; Bhayee et al., 2016; Crivelli et al., 2019).  The results of this early research suggest that 

compared to controls, regular use of Muse could lead to significant improvements in 

outcomes such as somatic symptoms, perceived stress, state anxiety, and mood modulation in 

healthy or moderately stressed adults.  Crivelli et al. (2019) also reported significant changes 
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in objective measures such as a reaction time task, N2 event-related potentials, and associated 

EEG measures.  Preliminary results of another trial involving people with a mild-to-moderate 

traumatic brain injury suggest improvements in anxiety and depression symptoms, as well as 

measures of self-efficacy and mindfulness, although full analyses from this study are yet to 

be reported (Gray, 2017).  Importantly, no published studies using participants with anxiety 

or other psychological disorders were identified and thus, the efficacy of such devices in 

clinical populations remains entirely unknown.   

3.4.5 Entrainment and False Feedback 

Another mechanism through which wearable devices can operate is entrainment.  

Entrainment is the synchronisation of one’s brain or body with rhythmic stimuli found in the 

environment, either voluntarily or involuntarily (Ross & Balasubramaniam, 2014).  Unlike 

biofeedback, entrainment does not rely on learning or even on paying attention to a stimulus, 

but can occur merely through exposure.  For example, heart rate and respiration rate tend to 

be entrained by music, relative to the tempo (Larsen & Galletly, 2006).  In false feedback 

approaches, a signal is provided which explicitly mimics a natural physiological rhythm, such 

as heart rate.  This type of feedback may alter the perception of emotional arousal, including 

both positive and negative affect (Crucian et al., 2000).  Entrainment and false feedback 

technologies offer interesting avenues for exploration because they may have the potential to 

aid emotional regulation with no effort required from the user, reducing problems of 

compliance, and avoiding the possibility that managing the device itself will become an 

added stressor for the user (Costa et al., 2016).   

3.4.5.1 Support for False Feedback. The entrainment of neural rhythms (brainwave 

entrainment) has already received much attention from both researchers and consumers, and 

due to the fact that such devices are not novel, they will not be further explored here.  

However, recent research has also explored the potential for entraining other physiological 
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characteristics through wearable devices.  Costa et al. (2016) developed a prototype 

wristband device to deliver a heartbeat-like vibration at a consistent low tempo where the 

pulse is normally felt.  Under induced stress, users who were told the device fed back their 

heart rate had a significantly lower increase in state/trait anxiety relative to the control group, 

who wore the device switched off.  A third group who had the device switched on, but were 

told only that it created a vibration, did not differ significantly from the control group.  These 

results suggest that the perception of the truthfulness of feedback is important.  However, 

Azevedo et al. (2017) found different effects with the doppel—a very similar commercially 

available device—under comparable conditions.  Here, participants who had the device 

switched on demonstrated an objectively and subjectively reduced stress response, even 

though they were told that it was simply a measuring instrument.  While these early studies 

show promise, physiological entrainment needs to be researched much more thoroughly in 

order to answer the outstanding questions and generate sufficient evidence to warrant its use, 

particularly in clinical populations. 

3.5 Clinical Implications 

As with many new or alternative therapies there is a growing interest in using 

wearable devices for mental health, however this has not been matched with adequate 

supporting evidence.  In particular, researchers have not yet investigated whether any of the 

wearable devices identified in this review are effective for people experiencing clinically 

significant anxiety symptoms.  This is a substantial limitation given that evidence-based 

approaches emphasise the importance of appropriate evidence being applicable to the specific 

patient or problem at hand (Gillam & Siriwardena, 2014).  Nevertheless, failing to fully 

engage with clients who intend to use wearables as part of their treatment might lead to those 

clients seeking help elsewhere, or worse still, not at all (Coffey & Coffey, 2016).  If nothing 

else, the use of wearables as an adjunct to therapy may potentially help through expectancy 
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effects and increased engagement.  Several devices also offer online practitioner portals 

which allow clinicians to monitor the data generated by the client’s devices, given their 

consent—a feature which may be useful in monitoring progress, increasing adherence, and 

potentially in providing useful diagnostic information. 

3.5.1 Risks and Unexpected Effects 

Little research has explored the implications of using biofeedback devices as an 

adjunct to therapy, although potential side effects such as fatigue and dizziness have been 

identified (Clough & Casey, 2011).  For aided meditation, existing contraindications for 

meditative therapies might be considered, such as a history of trauma, psychosis, mania, 

suicidality, or seizures (Lustyk et al., 2009).  Anxiety about technology could mean that for 

some clients, attempts to use wearables exacerbates the very issue they try to address 

(Laxman et al., 2015).  It has also been suggested that relaxation techniques may become 

counterproductive to therapeutic objectives if they begin to be used as a strategy to avoid 

unpleasant emotions rather than allowing them to be experienced (Allen et al., 2007).  

Cuijpers and Schuurmans (2007) report that self-help interventions, including 

relaxation techniques, are particularly useful in overcoming client barriers such as cost, 

distance and an anxiety of traditional mental health settings.  However, the use of self-help 

interventions without sufficient professional guidance was a concern due to the possibility of 

misdiagnosis and the greater likelihood of early dropout.  Evidence-based interventions could 

be iatrogenic if they are poorly implemented technologically, leading to no improvement and 

thereby reinforcing treatment avoidance (Torous et al., 2017).  Concerns have also been 

expressed about whether the use of technology may compromise the therapeutic alliance, 

although there is some evidence for the opposite, at least where technology is used 

appropriately according to client preferences (Richards et al., 2016).  Furthermore, the use of 
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mHealth technologies may be unsuited to clients who are at significant safety risk, and may 

cause unnecessary complications in complex therapeutic cases (Torous & Roberts, 2017b). 

Clinicians can educate clients about the fact that not all treatment approaches are 

beneficial for every person, and help them to understand the potential risk of iatrogenic 

effects.  For some clients, an over-reliance on the information provided by devices could be a 

concern: one report indicates that clients may become fixated on wearable device data—

which may be limited in accuracy and scope—resulting in the therapeutic relationship being 

compromised (Baron et al., 2017).  It may therefore be important to emphasise to some 

clients that wearables are only one piece of the larger treatment picture, and to have an open 

discussion about the limitations to the validity and effectiveness of such devices.  On the 

other hand, perceptions of limited treatment efficacy may increase the risk of premature 

termination of therapy (Mojtabai et al., 2012), so having an overly negative attitude about 

wearables may become a self-fulfilling prophesy.  

3.5.2 Clinical Evaluation of Devices 

While Clough and Casey (2015b) contend that practitioners need to be familiar with 

mHealth technologies in order to effectively guide clients, Morris and Aguilera (2012) 

instead see the client as taking ownership, with clinicians guiding the discussion about how 

devices are being used and adding value to the treatment.  Asking the client to demonstrate 

the use of the device may however be helpful in beginning a dialogue about possible risks 

and benefits, and about how use of the device might play a role in the treatment (Torous & 

Roberts, 2017b).  Because new wearables are constantly being developed, it may be almost 

impossible for practitioners to stay abreast of individual devices.  Moreover, the information 

that manufacturers openly provide about the functionality of their devices and their scientific 

validity is often lacking.  Having a basic understanding of the various modalities through 

which devices operate, as discussed in this review, may aid in navigating this new landscape 
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and in providing guidance to clients.  Nonetheless, treatment benefits may vary depending on 

the fidelity with which the treatment is implemented within each particular device.  Much of 

the supporting evidence for particular modalities (in particular, HRV) is based on the use of 

research-grade equipment, and this raises questions over whether such treatments can be 

reproduced in much less robust consumer-grade devices.  Furthermore, it is likely that other 

factors such as device design and usability could have a substantial effect on treatment 

outcomes. 

While no evaluation resources appear to have been developed specifically for 

wearable devices, there are a number of evaluation frameworks and portals designed to aid 

clinicians in selecting appropriate mobile apps for mental health (Neary & Schueller, 2018), 

and these may be adopted for wearables too.  Research suggests that apps for anxiety 

disorders predominantly do not employ evidence-based components and the uptake of apps 

based directly on academic research is low (Bry et al., 2018; Neary & Schueller, 2018), 

necessitating proper evaluation of potential interventions.  At present, the PsyberGuide 

website (psyberguide.org) appears to be the only portal to list any wearable devices, with a 

review of the Muse headband.  Another approach is to use evaluation frameworks which 

provide structured guidelines for the systematic appraisal of mHealth technologies, and these 

frameworks can readily be applied to devices.  While some comprehensive scales have been 

developed to score technologies on a range of criteria (Baumel et al., 2017; Stoyanov et al., 

2015), the American Psychiatric Association’s app evaluation model (American Psychiatric 

Association, 2017; Torous et al., 2018) is a briefer hierarchical framework that may be more 

suitable for clinical decision making, as it is used to weigh up apps qualitatively according to 

individual priorities.  Under this system, apps are subjected to a five-stage process beginning 

with the collection of background information, followed by the evaluation of risks, evidence, 

ease of use, and interoperability in turn (Figure 3).  Each stage of the assessment leads to a 
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decision to proceed, to proceed with caution, or not to proceed.  This type of rapid evaluation 

may be useful in helping clinicians and clients orient to pertinent appraisal factors, instead of 

depending on unreliable information such as app store ratings and user reviews.  Where the 

use of technology is initiated by the clinician, this shared evaluation can also serve to 

adequately inform the client before consenting to treatment (Torous & Roberts, 2017b). 

 

Figure 3 

Wearable device evaluation process, after American Psychiatric Association (2017) 

 

 

3.6 Conclusion 

While there is strong and growing interest in wearable technologies for mental health 

disorders like anxiety, this interest has not yet catalysed sufficient research into the efficacy 

and effectiveness of such devices.  As with other mental health technologies, the introduction 

of wearable devices is bound to result in ongoing disruption in the way that treatments are 

delivered, at least for some.  Due to the broad subject of the present review, a narrative 

review approach was taken, limiting inferences that can be made about levels of evidence.  



  56 

However, it was nonetheless apparent that overall, little evidence exists to support the use of 

specific devices for the treatment of anxiety disorders. This is perhaps due to the fact that 

technology is often superseded before it can be properly evaluated.  What evidence for 

specific devices could be identified here was also largely limited by methodological 

constraints and narrow or non-clinical samples, making the implications for the treatment of 

clinically significant anxiety symptoms in real-world clinical settings unclear.  Furthermore, 

general evidence for the modalities through which these devices are presumed to work also 

appears to be limited, though HRV biofeedback may be an exception to this.  Despite this 

general lack of evidence, it is advantageous for clinicians to be aware of common wearable 

devices and how they ostensibly function, since it is increasingly likely that clients may 

independently adopt such technologies.  However, the use of these devices as adjuncts should 

not supplant treatment with appropriate established therapies.  Clinicians should be aware 

that there can be risks and unexpected effects resulting from the use of wearable devices.  

Using clinical evaluation tools such as the APA app evaluation model to weigh up risks and 

benefits together with clients can help to identify anticipated problems, ensure both client and 

practitioner are fully informed, and determine how devices will help work towards 

therapeutic goals. 
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4.2 Abstract 

Objective.  This study examined the potential acceptability of wearable devices (e.g. 

smart headbands, wristbands and watches) aimed at treating mental health disorders, relative 

to conventional approaches.  

Method.  A questionnaire assessed perceptions of wearable and non-wearable 

treatments, along with demographic and psychological information.  Respondents (N = 427) 

were adults from a community sample (Mage = 44.6, SDage = 15.3) which included current 

(30.2%) and former (53.9%) mental health help-seekers. 

Results.  Perceived effectiveness of wearables was a strong predictor of interest in 

using them as adjuncts to talk therapies, or as an alternative to self-help options (e.g., 

smartphone applications).  Devices were more appealing to those with negative evaluations 

of psychological therapy and less experience in help-seeking. 

Conclusions.  Interest in using wearable devices was strong, particularly when devices 

were seen as effective.  Clients with negative attitudes to conventional therapies may be more 

responsive to using wearable devices as a less directive treatment approach. 
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4.3 Introduction 

Untreated psychological disorders are a major global problem.  Since the 1990s there 

has been a growing awareness of the ‘treatment gap’ between those who require treatment 

and those who access it (Demyttenaere et al., 2004).  However, despite considerable 

improvements in treatment resources, the gap in industrialized countries does not appear to 

have shifted over time (Jorm et al., 2017).  Improving preventive mental health, as well as 

targeting therapies to the most severe cases, may be important strategies in reducing the 

treatment gap (Jorm et al., 2017).  However, a range of psychological and structural barriers 

prevent people from accessing traditional face-to-face mental health services, including 

stigma, a preference for solving one’s own problems, or poor service availability (Mojtabai et 

al., 2012).  

Technological adjuncts to therapy, such as wearable devices, are one proposed 

strategy for closing the treatment gap (Naslund et al., 2017).  A range of wearables—devices 

worn as an accessory or item of clothing—have recently been developed with the goal of 

improving mental health (Coffey & Coffey, 2016; Hunkin et al., 2019; Torous & Gualtieri, 

2016).  Wearable devices typically operate in concert with smartphone applications (‘apps’) 

by sensing and relaying physiological signals. For instance, many of these devices work 

through biofeedback, monitoring bodily signals that reflect arousal state and feeding this 

information back to the wearer, prompting them to utilize adaptive coping skills.  They 

include EEG headbands for aided meditation, breathing sensors, and heart rate variability 

monitors.  Some are worn throughout the day, while others are used for regular brief sessions 

of self-administered training.  A variety of wearable devices oriented toward mental health 

are now commercially available and being marketed directly to consumers, with the majority 

priced between $150-300 US dollars (Hunkin et al., 2019).  One example is Muse (Interaxon, 

Inc.), an EEG headband designed to give auditory feedback during focused-attention 
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meditation.  While using the headband and accompanying app during meditation sessions, the 

wearer hears soundscapes that vary from calm to intense, according to their level of focus on 

the breath.  By receiving feedback on what non-judgmental attention feels like, as well as 

tracking progress, it is theorized that the wearer can more rapidly develop proficiency as a 

meditator (Balconi et al., 2017). 

Like other e-mental health approaches such as apps, evidence-based wearable devices 

could potentially improve mental health outcomes due to their accessibility, flexibility, and 

low cost (Nicholas et al., 2017).  Recent forecasts for the wearable market (Gartner, 2018) 

suggest that the number of devices oriented at mental health, as well as their sophistication, 

will continue to increase.  Despite this, many questions remain regarding the use of such 

devices in clinical practice, such as the extent of potential risks and benefits, principles for 

the evaluation of devices, and the clinical circumstances in which wearables might be most 

effective.  With the growing use of technology in clinical settings (e.g., smartphone apps, 

tablets, virtual reality devices), as well as ongoing developments in the consumer device 

market, clinicians are more likely to encounter wearable devices.  However, the potential for 

these devices to improve therapeutic outcomes, either when used alone or as adjuncts to 

traditional talk therapies, will depend at least to some extent on their acceptability to clients.  

Research indicates that consumers’ perceived benefits and limitations of e-mental health 

treatments differ from traditional face-to-face treatment (Musiat et al., 2014), and also that 

individual interest in these treatments varies (Nicholas et al., 2017).  Since there is a demand 

from clients to receive more personalized treatments (Hollis et al., 2018), and 

accommodating client preferences results in more positive outcomes and fewer dropouts 

(Swift et al., 2018), there is a clear need to understand which factors shape the acceptability 

of wearable devices in order to identify client groups for which they might be efficacious.   
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Research into the role of individual factors in the acceptability of wearable devices, as 

opposed to device factors, is limited thus far.  Important individual factors are theorized to 

include aspects such as demographics, traits, cognitive factors, beliefs and attitudes, and 

disease characteristics (Ritterband et al., 2009).  Though knowledge is limited, previous 

studies have evaluated some individual factors in the broader context of e-mental health 

treatments, such as Internet-delivered interventions.  Several of these studies have focused on 

the hypothetical acceptability of such interventions, referring to the level of interest expressed 

in an intervention that had not yet been experienced (Berry et al., 2016).  This type of 

acceptability is distinct from the acceptability of interventions which have already been 

experienced.  It is an important target for research because if hypothetical acceptability is 

low, treatment uptake may be compromised, regardless of the actual quality of the treatment.  

Furthermore, a generally low willingness to engage with digital interventions has been cited 

as a major problem in digital mental health research and implementation (Mohr, Lyon, et al., 

2017).  Klein and Cook (2010) examined the characteristics of ‘e-preferers’ (i.e. those who 

had a higher preference for Internet-based mental health assistance compared to face-to-face 

therapy) and showed they did not differ on demographic factors or previous mental health 

service usage, but that they had significantly higher stigma regarding mental illness.  March 

et al. (2018) reported similar findings in regard to the absence of demographic differences, 

but also demonstrated that technology confidence led to a greater preference for online 

services relative to face-to-face services.  Another recent study of university students and 

primary care patients found that higher help-seeking self-stigma, together with treatment 

expectancy, predicted a stronger preference for Internet-based approaches compared to face-

to-face treatment (Wallin et al., 2018).  Taken together, these findings suggest that 

technological readiness, perceived effectiveness of devices, and barriers to face-to-face 
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therapy (such as stigma) could be important predictors of interest in wearable devices relative 

to traditional approaches.   

Given the need to effectively target wearable devices for mental health to those most 

likely to use them, we aimed to evaluate how the perceived acceptability of these devices was 

related to individual factors identified from the e-mental health literature, as well as clinical 

factors—psychological symptoms, prior mental health diagnoses, previous experience 

consulting mental health professionals, and satisfaction with previous treatment.  

Furthermore, because the factors motivating use of mental health wearables in self-help as 

opposed to clinician-facilitated approaches might differ, these options were considered 

separately (Arjadi et al., 2018).  Given the absence of a research evidence base addressing 

preference for wearables, we adopted an exploratory approach with the aim of identifying 

factors that predict a desire to use wearable devices preferentially (either alone or in 

combination with other treatments). 

4.4 Method 

4.4.1 Participants 

Eligible participants were Australian residents over the age of 18 who considered 

themselves as fluent in English.  A total of 546 participants consented, with two ineligible, 

117 partial, and 427 complete responses.  Partial responses were discarded as missing items 

could not be reasonably imputed.  Table 4 presents a summary of the characteristics of 

complete responders. 

4.4.2 Measures 

4.4.2.1 Demographics. Participants reported their age, gender, relationship status, 

household income, level of education, Australian postcode, and type of employment 

(according to the Australian and New Zealand Standard Classification of Occupations).  The 

index of relative socioeconomic disadvantage (IRSD), a measure of socioeconomic status 
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where lower values represent more disadvantageous factors, was computed based on 

respondent postcodes (Australian Bureau of Statistics, 2016b).  Postcodes were used to 

determine whether respondents resided in major cities or rural/remote areas (Australian 

Bureau of Statistics, 2016a). 

 

Table 4 

Sociodemographic characteristics of participants (N = 427) 
 M ± SD or n (%) 

Age 44.63 ± 15.25 

18-34 144 (33.7%) 

35-54 150 (35.1%) 

55+ 133 (31.1%) 

Gender Male 184 (43.1%) 

Education  

Diploma or below 177 (41.5%) 

Bachelor degree  178 (41.7%) 

Postgraduate degree 72 (16.9%) 

Relationship status  

Single/divorced/separated 156 (36.5%) 

Married/committed relationship 271 (63.5%) 

Household income  

< $35,000 112 (26.2%) 

$35,000-$65,000 92 (21.5%) 

$65,000-$105,000 103 (24.1%) 

> $105,000 120 (28.1%) 

Socioeconomic disadvantage 1019.11 ± 56.40 

Rural/remote 124 (29.0%) 

 

4.4.2.2 Hypothetical Acceptability of Mental Health Treatments. Participants were 

asked to report their interest in using each of four specific mental health treatments (If you 

were experiencing a mental health problem (e.g. anxiety, depression), how interested would 

you be in [treatment type] to help your problem?), scored on a seven-point scale (Not at all 

interested – Very interested).  Treatments included (1) using counselling or talking therapies 

under the guidance of a mental health professional, (2) using wearable devices under the 

guidance of a mental health professional (i.e. blended therapy), (3) using wearable devices 
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without professional guidance, and (4) using other self-help options without professional 

guidance. 

4.4.2.3 Intention to use a Wearable Device. Participants indicated whether they 

would “definitely want” or “definitely not want” to use a wearable device if they were 

experiencing a mental health problem, or whether they would need to find out more before 

deciding.  This categorical response was used to determine the proportion of respondents who 

made a relatively rapid decision based on the limited information about wearable devices that 

was provided to them.  Those who indicated they required more information were prompted 

to briefly describe specific details they would need to know in order to decide.  The 

collection of this open-ended data was intended firstly to triangulate the quantitative 

responses (i.e. to increase confidence in the findings through the use of multiple investigatory 

methods; Korstjens & Moser, 2018), and secondly to identify any aspects that had not been 

adequately measured by quantitative items. 

4.4.2.4 Other Clinical and Wearable-Oriented Items. Items were developed to 

assess awareness of wearable devices for mental health (yes/no), intention to use wearables if 

recommended by a practitioner (yes/no), level of knowledge of wearable devices prior to 

commencing the survey (seven-point scale, No knowledge – Expert knowledge), and 

perceived effectiveness of wearable devices for mental health problems (seven-point scale, 

Not at all effective – Extremely effective).  Use of wearable devices for mental health and 

well-being, or other purposes (such as fitness) was reported.  Participants indicated whether 

they were currently consulting a mental health professional or had ever done so, as well as 

any prior mental health diagnosis, whether this diagnosis was still having an impact, and the 

duration of its impact. 

4.4.2.5 Depression, Anxiety and Stress Scales (DASS-21). The DASS-21 (Lovibond 

& Lovibond, 1995) is an abbreviated self-report measure of the negative affective states of 
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depression, anxiety, and stress.  Items represent statements associated with depression, 

anxiety, or stress, rated in terms of how much they applied over the past week (0 = Did not 

apply to me at all, 1 = Applied to me to some degree, or some of the time, 2 = Applied to me 

to a considerable degree, or a good part of time, 3 = Applied to me very much, or most of the 

time).  Item scores are summed within each of the three scales and multiplied by two, 

producing scale scores ranging from 0-42 where higher values represent greater symptom 

severity.  Cronbach’s alpha showed good internal consistency (depression = .93, anxiety = 

.84, stress = .86). 

4.4.2.6 Perceived Barriers to Psychological Treatments Scale (PBPT). The PBPT 

(Mohr et al., 2010) is a multidimensional measure of perceived barriers to face-to-face 

treatment, comprising nine distinct dimensions.  The scale consists of 25 items relating to 

specific barriers rated by difficulty (1 = Not difficult at all, 2 = Slightly difficult, 3 = 

Moderately difficult, 4 = Extremely difficult, 5 = Impossible).  Instructions for completion 

were adapted for readability and the Australian context (Please rate how difficult these things 

might make it for you to see a counsellor or psychologist.)  Mean scores are calculated for 

each of the eight subscales so that each has a score between 1-5, where higher scores 

represent greater barriers to treatment.  The total score is the mean of all 25 items, although 

notably this over-represents subscales which contain more items (particularly stigma).  

Internal consistency was generally good (total scale .91; subscales from .75 to .88 except 

‘availability of services’, .59). 

4.4.2.7 Technology Readiness Index 2.0 (TRI 2.0). The TRI 2.0 (Parasuraman & 

Colby, 2015) is a 16-item measure of attitudes toward the use of novel technologies.  Four 

subscales encompass both motivational (optimism, innovativeness) and inhibitory 

(discomfort, insecurity) aspects, each containing four items which represent statements about 

technology.  Responses indicate level of agreement with each statement (1 = Strongly 
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disagree, 2 = Somewhat disagree, 3 = Neutral, 4 = Somewhat agree, 5 = Strongly agree).  

Subscales scores are the mean of their constituent items, ranging from 1-5.  The total scale 

score is the mean of the subscales after reversing insecurity and discomfort subscales; higher 

scores thus represent more positive attitudes to novel technology.  Internal consistencies were 

acceptable, ranging from .64 to .82 for subscales, and .85 overall. 

4.4.3 Procedure 

After obtaining human ethics approval, the online questionnaire was made active 

during November and December 2018.  To target a broad sociodemographic range, 

participants were sought via Facebook advertising (n = 378) and convenience sampling (i.e. 

sharing of the survey through personal and professional networks; n = 53).  In order to 

minimize participation bias, advertisements did not refer to wearable devices but asked 

potential participants to complete a short survey on “current and future approaches to treating 

common mental health issues like anxiety and depression”, and participation was incentivized 

with a prize draw of three $150 (Australian dollar) vouchers.  Participants were first shown 

an electronic information sheet describing eligibility requirements, the kind of information 

they would be asked to provide and how this data would be used, the estimated time to 

complete the survey, and the potential for experiencing discomfort from some of the 

questions included in the DASS-21.  To continue, participants were required to indicate that 

they had read and understood this information, and willingly agreed to take part.  Following 

consent, participants completed demographic questions and eligibility checks, and were asked 

whether they were already aware of wearable devices for mental health.  Participants were 

shown a brief description of wearable devices for mental health, including general 

information about their typical size, cost, purpose, method of working, and cost (see 

supplementary material, Appendix A).  After viewing this description, participants reported 

their interest in accessing mental health treatment through four distinct methods, as described 
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above, before completing the remaining measures.  Participants who reported ‘moderate’ 

level or higher depression, anxiety or stress symptoms according to DASS cut-off scores 

were shown information about some common manifestations of these problems and a range 

of avenues for seeking help. 

4.4.4 Statistical Analyses 

Quantitative analyses were conducted using the R statistical software, version 3.5.1 (R 

Core Team, 2018).  Power analysis using G*Power 3.1.9.2 (Faul et al., 2009) indicated that N 

= 395 participants were required to detect small effects (f2 = 0.02) in linear regression models 

with up to 10 predictor variables, given a 5% Type I error rate and 80% power (Cohen, 

1988).  Categorical predictor variables were collapsed when groupings appeared to be 

redundant or contained only a small number of respondents.  Since the effects of age on 

outcome variables appeared linear, age was treated as a continuous variable.   

To determine whether treatment preference differed significantly by treatment, a 

mixed linear model specified with a random intercept for respondent was fitted and post-hoc 

Tukey comparisons of means were computed.  Bivariate analyses were used to examine the 

association of individual predictors with individual treatment acceptability.  Due to non-

normal data, Spearman rank correlations were used for continuous predictors; t-tests and one-

way ANOVAs were considered robust tests for categorical predictors due to the large sample 

size, the fact that variances were generally homogenous, and distributions did not differ 

substantially between groups (Fagerland, 2012; Schmider et al., 2010).  Given the large 

number of bivariate tests, Benjamini and Hochberg’s (1995) false discovery rate adjustment 

was used to correct p-values.  This procedure is less conservative than family-wise error rate 

controls such as the Bonferroni correction because it accounts for the number of actual null 

hypothesis rejections (Streiner, 2015).   
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To examine predictors of comparative acceptability, three comparisons between 

specific treatments (as described in the results) were computed as the Z-scores of the 

difference between interest in one treatment and another, thus representing a measure of 

relative preference for one treatment over the other.  Multiple linear regression models were 

then constructed for each of the three treatment comparisons.  While there are a number of 

limitations to automated stepwise model building approaches (Harrell, 2015), some reduction 

in predictors was desirable for reasons of interpretability and practicality (Houwelingen & 

Sauerbrei, 2013).  Furthermore, redundancy analysis (Harrell, 2015) did not identify any 

variables that could be removed prior to modelling, and no particular variables had theoretical 

primacy.  Predictors for each model were therefore selected using backward elimination 

based on optimizing the Akaike information criterion (Heinze et al., 2018).  Reduced models 

were cross-checked against the corresponding full models for each treatment comparison, to 

ensure that predictors with sizeable and/or statistically significant effects had been included 

in the reduced models, and that parameter estimates in the reduced models did not differ 

wildly from the full models.   

For the written responses, thematic analysis from a realist perspective (i.e. assuming 

responses were a true articulation of participants’ experience) was used to explore 

information respondents desired to know in order to decide whether to use wearable devices 

(Braun & Clarke, 2006).  This process aims to find common patterns of meaning that occur 

across the data, and normally involves a series of steps consisting of data familiarization, 

generating codes for features of the data, organizing related codes into overarching themes, 

and iteratively reviewing and refining themes to fit the data.  Data were analyzed using 

NVivo 12 (QSR International Pty Ltd) taking an inductive approach.  The first author 

developed the coding frame during manual coding of responses, and together with the third 

author, identified themes that arose from these codes.  To establish credibility (Korstjens & 
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Moser, 2018), the second author assessed 30 randomly selected responses and identified 

corresponding themes.  Differences in thematic associations in this subsample, as well as the 

categorization of codes into themes overall, were reviewed by the first and second authors in 

order to reach consensus (‘investigator triangulation’; Korstjens & Moser, 2018).  The 

identified themes, along with representative quotes, are presented in Table 7.  To promote 

dependability and confirmability of the analysis, the raw data have been published separately 

(https://doi.org/10.25909/5d65c816af254). 

4.5 Results 

Table 4 presents the characteristics of study participants. A similar proportion of 

males and females over a broad range of ages (18-78) responded, although those over the age 

of 65 were less represented.  Participants were predominantly either professionals (37.9%) or 

not formally employed (e.g. students, retired, or unpaid caregivers; 35.4%), whereas under 

5% reported being sales workers, machinery operators and drivers, or laborers.  Mean relative 

socioeconomic disadvantage was in the seventh decile, signifying somewhat fewer 

disadvantages than the average Australian.  According to DASS cut-off scores, 47.3% of 

participants had at least a ‘mild’ level of symptoms for one or more of the depression, anxiety 

and stress subscales, while 12.9% reported ‘moderate’, 5.6% ‘severe’, and 2.8% ‘extremely 

severe’ symptoms (Lovibond & Lovibond, 1995).  Almost a third (30.2%) of the sample 

reported that they were presently seeing a mental health professional, while 53.9% had done 

so previously but were no longer accessing treatment.  

Table 5 summarizes clinical and wearable-oriented variables.  Around two-fifths 

(40.7%) of respondents initially reported an awareness of wearable devices for mental health.  

However, participants later reported relatively low knowledge of the nature of these devices 

in the context of a description of them during the actual survey.  While more than a fifth of 

respondents indicated that they presently used other types of wearable devices, such as fitness  
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Table 5 

Clinical and wearable-oriented variables 

 M ± SD or n (%) 

Pre-existing awareness of wearables for mental health 174 (40.7%) 

Previous knowledge 1.75 ± 1.26 

Interest in using a wearable device  

Definitely yes 162 (37.9%) 

Need to know more 249 (58.3%) 

Definitely no 16 (3.7%) 

Would use wearable device if recommended by clinician 411 (96.3%) 

Wearable devices currently used for mental health/wellbeing
a
  

1 device 7 (1.6%) 

2 devices   1 (0.2%) 

Use of wearable devices for other reasons 92 (21.5%) 

Perceived effectiveness 4.02 ± 1.21 

Interest in treatments  

Talk therapies 5.61 ± 1.66 

Wearables (blended) 5.28 ± 1.62 

Wearables (self-help) 4.01 ± 1.95 

Other self-help 4.50 ± 1.74 

DASS
b
  

Depression 14.39 ± 11.20 

Anxiety 8.78 ± 8.12 

Stress 15.37 ± 9.23 

Ever consulted a mental health professional 

Yes, and still seeing 

Yes, but no longer seeing 

No 

 

129 (30.2%) 

230 (53.9%) 

 68 (15.9%) 

Ever been diagnosed with a mental health problem 

Yes, and still impacting 

Yes, but no longer impacting 

No 

 

239 (56.0%) 

 70 (16.4%) 

118 (27.6%) 

Satisfaction with prior treatment
c
 4.70 ± 1.70 

Years affected by condition
d
 18.57 ± 14.13 

Barriers to treatment 1.98 ± 0.60 

Stigma 1.85 ± 0.79  

Lack of motivation 2.21 ± 1.04 

Emotional concerns 1.89 ± 0.90 

Negative evaluation of therapy 2.05 ± 0.91 

Misfit of therapy to needs 1.84 ± 0.78 

Time constraints 2.11 ± 0.96 

Participation restrictions 1.59 ± 0.75 

Availability of services 2.40 ± 0.95 

Cost 3.02 ± 1.13 

Technology readiness 3.24 ± 0.63 

Optimism 3.65 ± 0.76 

Innovation 3.20 ± 0.96 

Discomfort 2.68 ± 0.79 

Insecurity 3.19 ± 0.88 
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Note:  
a
Devices reported include FitBit ‘Relax’ app (n = 5), Interaxon Muse headband (n = 

2), Sentio Feel wristband (n = 1), and Spire Stone respiration monitor (n = 1).  

b
Adjusted for DASS-42 equivalence.

  c
For respondents who had previously consulted 

a mental health professional (n = 359).  
d
For those who reported a diagnosed 

condition and reported duration (n = 234).  

 

wearables, only eight respondents reported that they currently used a wearable device for 

mental health or well-being.  Few respondents indicated they had no interest in using a 

wearable device, whereas around two-fifths indicated that they would definitely be interested 

in using such a device.  

4.5.1 Acceptability of Treatments 

Inspection of hypothesized predictors revealed that older participants tended to have 

significantly lower depression, anxiety and stress scores, perceived barriers to treatment, and 

technology readiness, with small-to-moderate effects (Cohen, 1992).  Furthermore, greater 

total perceived barriers to treatment were significantly associated with lower satisfaction with 

previous treatment (r = -.35) and higher depression, anxiety and stress (r = .38-.39).  Greater 

technology readiness was significantly associated with increased levels of knowledge (r = 

.19) and greater perceived effectiveness (r = .17) of wearables.  Correlations between all 

study variables are shown in Table A1 (supplementary material, Appendix A).  Analysis of 

variance showed that total DASS scores varied significantly according to whether 

respondents had ever consulted a mental health professional, F(2, 424) = 30.89, p < .001, η2
 = 

.13, with highest scores for those still seeing a clinician and lowest scores for those who had 

never visited.  However, consulting a mental health professional was not significantly 

associated with total perceived barriers to treatment, F(2, 424) = 2.57, p = .078, η2
 = .01.  

Of the four treatment options presented, respondents expressed strongest interest in 

using talk therapies for treatment of a mental health problem, followed closely by using 

wearables with the guidance of a mental health professional (i.e. blended therapy).  Using 
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wearables without assistance was the least preferred option.  A mixed linear effects analysis 

showed a significant main effect, F(3, 1278) = 102.24, p < .001, and Tukey post-hoc testing 

indicated that mean preferences for all treatments were significantly different from one 

another.  The relationships of continuous and categorical predictors with acceptability of the 

four treatments are provided as supplementary material (Appendix A, Tables A2 and A3).  

4.5.2 Multivariable Linear Models of Comparative Treatment Preferences 

Multivariable linear models comparing preference for wearable devices relative to 

other treatment preferences are presented in Table 6.  In the model comparing wearables 

(blended) with talk therapies, six predictors explained 17% of variance in treatment 

preference.  Greater perceived efficacy of wearables, current use of other wearable devices, 

and negative evaluations of therapy predicted significantly greater interest in accessing 

treatment using wearable devices in a blended format rather than talk therapies alone.  On the 

other hand, previous or ongoing consultation with a mental health professional predicted a 

significantly greater preference for talk therapies, as did greater prior knowledge of wearable 

devices.  A second model considering wearables (self-help) vs other self-help incorporated 

eight predictors and explained 14% of variance in preferred treatment.  Greater perceived 

efficacy of wearables and negative evaluation of therapy predicted a significantly stronger 

preference for using wearable devices rather than other types of self-help.  However, previous 

or current experience consulting a mental health professional, stigma, and discomfort with 

technology predicted a significantly greater preference for other self-help options.  The last 

model considered wearables (blended) vs wearables (self-help) and incorporated seven 

predictors explaining 15% of variance in preferred treatment.  Older age and rural/remote 

location predicted significantly greater preference for using wearables in a blended format 

rather than for self-help.  Furthermore, relative to those in the top two household income 

quintiles (>$105,000), being in the second quintile (~$35,000-65,000) predicted a  
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Table 6 

Linear regression models predicting relative interest in wearable treatments compared with 
three other specified interventions 

Model/predictor B  ±  SE β [95% CI] p 
1. Wearables (blended) vs talk therapies 

Intercept -1.82 ± 0.41  <.001 

Current wearable usage: Yes
a
 0.43 ± 0.18  .016 

Ever consulted: Yes (no longer seeing)
a
 -0.51 ± 0.21  .017 

Ever consulted: Yes (still seeing)
a
 -1.27 ± 0.23  <.001 

Perceived effectiveness 0.39 ± 0.06 0.28 [0.19, 0.37] <.001 

Barrier: Negative evaluation of therapy 0.21 ± 0.08 0.11 [0.02, 0.20] .014 

Barrier: Time 0.14 ± 0.08 0.08 [-0.01,0.17] .067 

Previous knowledge about wearables -0.13 ± 0.06 -0.10 [-0.18, -0.01] .033 

2. Wearables (self-help) vs other self-help 

Intercept -1.19 ± 0.55  .030 

Current wearable usage: Yes
a
 0.32 ± 0.21  .132 

Ever consulted: Yes (no longer seeing)
a
 -0.62 ± 0.25  .014 

Ever consulted: Yes (still seeing)
a
 -0.65 ± 0.28  .021 

Perceived effectiveness 0.47 ± 0.07 0.30 [0.21, 0.39] <.001 

Barrier: Stigma -0.52 ± 0.15 -0.22 [-0.34, -0.09] <.001 

Barrier: Negative evaluation of therapy 0.48 ± 0.14 0.22 [0.10, 0.35] <.001 

Barrier: Time 0.14 ± 0.10 0.07 [-0.02, 0.17] .138 

Barrier: Participation restrictions -0.22 ± 0.13 -0.09 [-0.19, 0.02] .103 

Technology readiness: Discomfort -0.07 ± 0.03 -0.11 [-0.20, -0.02] .018 

3. Wearables (blended) vs wearables (self-help) 

Intercept 0.56 ± 0.42  .193 

Remoteness: Rural/remote
b
 0.43 ± 0.19  .021 

Household income: <$35,000
c
 0.03 ± 0.24  .896 

Household income: $35,000-65,000
c
 0.56 ± 0.24  .022 

Household income: $65,000-105,000
c
 -0.04 ± 0.23  .851 

Ever consulted: Yes (no longer seeing)
a
 0.50 ± 0.24  .037 

Ever consulted: Yes (still seeing)
a
 1.03 ± 0.26  <.001 

Age 0.02 ± 0.01 0.14 [0.05, 0.23] .018 

Barrier: Negative evaluation of therapy -0.53 ± 0.10 -0.26 [-0.36, -0.16] <.001 

Barrier: Participation restrictions 0.27 ± 0.13 0.11 [0.00, 0.21] .043 

Previous knowledge about wearables -0.11 ± 0.07 -0.08 [-0.17, 0.01] .089 

Note: Dependent variables in each model are the standardized differences between one 

treatment and another; positive estimates predict a higher preference for the first 

treatment described in each model, and vice versa.  Predictors were selected using 

backward elimination to optimize the Akaike information criteria.  All three models 

were significant: (1) Adjusted R2
 = .17, F(7, 419) = 13.82, p < .001; (2) Adjusted R2

 

= .14, F(9, 417) = 8.89, p < .001; (3) Adjusted R2
 = .15, F(10, 416) = 8.34, p < .001. 

Comparison conditions: 
a
No, 

b
Major cities, 

c
>$105,000. 
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significantly greater preference for using wearables in the blended format, as did the presence 

of participation restrictions and previous or ongoing consultation with a mental health 

professional.  On the other hand, negative evaluation of therapy was associated with a 

preference for using wearable devices without clinician assistance.  Satisfaction with prior 

treatment was not included in these models because of incomplete responding.  However, 

bivariate analyses (Appendix A, Table A2) indicated that prior treatment satisfaction was 

associated with a reduced preference for wearables (blended) relative to talk therapies (r = -

.19, p < .001) and a greater preference for wearables in a blended format relative to self-help 

format (r = .15, p < .05). 

4.5.3 Written Responses 

Around half of study participants (58.3%, n = 249) reported an interest in wearables 

for mental health but indicated that they required further information before deciding whether 

to use them.  Of these, 97.9% (n = 244) provided written responses indicating what 

information they desired in order to inform whether or not to use such devices.  Thematic 

analysis of these responses suggested thirteen distinct themes, which are presented along with 

representative quotes in Table 7.  Around half of the responses were considered to appeal to 

evidence and efficacy, as well as knowing how devices worked.  Privacy was also an 

important theme for many respondents, particularly in relation to data storage and access 

control.  Further themes concerned discretion, practicality, risks and negative outcomes, 

positive outcomes, cost, time and effort needed, matching devices to the problem or situation, 

knowing how devices are used, and the availability of professional support. 

4.6 Discussion 

This study evaluated predictors of the acceptability of wearable devices for mental 

health concerns, relative to conventional mental health treatment options.  The results 

indicate that overall, interest in using wearable devices with clinician support was almost as 
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Table 7 

Themes relating to important factors in decision-making about wearable device use 

Theme Description Excerpts from written responses 

Knowing how 

devices work 

(n = 112) 

How devices work; what devices are measuring; 

what devices do; how devices help or the theory 

behind them 

“More detail about how the devices might assist” (#38) 

“What data the device collects, how it would help me in 
managing my mental health” (#446) 

Evidence and 

efficacy (n = 100) 

Whether devices were efficacious; what evidence 

or research there was for devices; success rates; 

reliability 

“Whether it is effective, helpful or a time waster” (#33) 

“A lot of background research and/or reasons for believing they 
might help.” (#81) 

Privacy (n = 45) Access to data; storage of data; use of data by 

others (e.g. for monitoring, treatment enforcement, 

withholding benefits or insurance claims) 

“How the data associated with my use of the wearable device 
would be gathered, stored and shared; and the particulars of 
exactly what data would be gathered.” (#127) 

“What data was being tracked, if that information was secure, 
and I'd need to be 100% certain the data could NOT be shared 
without my consent - and specifically never to insurance or other 
financial services companies” (#509) 

Discretion (n = 36) Discreetness, visibility, or obtrusiveness of 

devices; stigma 

“Having it visible to others would cause me much more anxiety.” 

(#63) 

“…whether I can have it disguised as something else to not 
single me out as struggling, say a watch or Fitbit for example.” 

(#493) 

Positive outcomes  

(n = 36) 

Potential benefits and advantages; expected effects; 

helpfulness; positive impact 

“The outcomes that may be expected from the devices.” (#69) 

“…how it would benefit in during anxiety and or depressive 
episodes.” (#357) 

Risks and negative 

outcomes (n = 36) 

Side-effects, unexpected effects or potential harm; 

safety; disadvantages; working counter to 

therapeutic aims; risks of use without professional 

support 

“Does it harm the body, any side effects.” (#361) 

“I would need reliable evidence regarding the possibility of 
negative outcomes.” (#342) 
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 Theme Description Excerpts from written responses 

Cost (n = 31) Financial cost of purchase and use “Is it affordable?” (#526) 

Time and effort 

needed (n = 29) 

Length of treatment; time consumed/required 

frequency of using; effort involved; ease of use; 

convenience; time cost vs benefit 

“How long per day and overall duration” (#50) 

“…whether the effort of collecting the data would be worth it.” 

(#519) 

Physical form 

(n = 25) 

Size; type of device/what it is; appearance; 

design/materials 

“Size/inconvenience.” (#515) 

“If it were a watch or similar, I'd wear it. I'd probably not wear 
a head band or ear clips” (#356) 

Matching devices to 

problem or 

situation (n = 21) 

Match to problem/situation; whether it is 

customized for the individual or generic; 

contraindications 

“I'd want to know if the person or computer knew what my 
condition was and not just put me in a basket with all other 
patients.” (#370) 

“Would it be specifically tuned for me or offer a generic 
instruction like go for a walk or have a nap” (#442) 

Practicality (n = 20) Comfort; durability; intrusiveness/obstructiveness  “How limiting to normal function it may be.” (#484) 

“…practicality when wearing the device, maintenance…” (#483) 

Knowing how 

devices are used 

(n = 18) 

How to use the devices; how feedback is received, 

or how to interpret/respond to feedback 

“How to interpret the symptoms that the device is monitoring” 

(#230) 

“Details of how the sessions proceed” (#282) 

Availability of 

professional 

support (n = 15) 

Whether support is available; whether devices are 

recommended by a professional; whether 

professionals are aware of devices 

“Detailed professional advice from consulting psychologist or 
psychiatrist well acquainted with my condition to date” (#113) 

“I'd also want to talk to my doctor/psych to gauge how effective 
they think they are, whether their other patients liked it/had 
success, that kind of thing.” (#229) 

Note: Data based on a subsample of n = 244 responses where respondents indicated they required more information in decision-making about 

wearable device use.  
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strong as interest in using talk therapies alone. However, use of mental health wearables 

appeared to be dependent upon the perceived effectiveness of these devices and knowledge 

regarding “how they work”.  Importantly, the use of wearable devices appeared to reduce 

some barriers to accessing treatment, particularly negative evaluations of therapy, but was 

contraindicated by higher stigma.  Furthermore, prior experience accessing mental health 

services was associated with a greater preference for treatments involving a higher level of 

clinician involvement (i.e. talk therapies, followed by wearables in blended format).  These 

findings have several implications for clinical practice and further research with this 

emerging technology. 

The perceived effectiveness of wearable devices was consistently one of the strongest 

predictors of interest in using wearables over other treatment options.  While this is congruent 

with research into e-mental health treatments more broadly (Gun et al., 2011; Musiat et al., 

2014), generating robust evidence for wearable devices is troublesome because devices and 

apps tend to be updated on short, commercially-oriented timescales, whereas controlled trials 

are costly and results may become quickly outdated (Kumar et al., 2013).  Alternative 

approaches to evaluation have been proposed (e.g. continuous evaluation systems or rapid 

research designs; Mohr, Cheung, Schueller, Hendricks Brown, & Duan, 2013; Riley, 

Glasgow, Etheredge, & Abernethy, 2013), but these new methods have not been widely 

adopted, and neither is there a consensus view that they supersede existing methods (Torous 

et al., 2019).  Similarly to mental health apps, the current state of evidence for wearables 

means they may best serve as adjuncts to extend existing evidence-based treatments (e.g. 

devices such as assisted meditation headbands), while exercising caution (Lui et al., 2017).  

Brief clinical evaluation frameworks such as the App Evaluation Model (American 

Psychiatric Association, 2017) can be easily adapted for use with wearable devices (Hunkin 
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et al., 2019), and may provide a pragmatic way to systematically assess the suitability and 

safety of a given wearable device used adjunctively in a specific clinical situation.   

The results of this study provide some insight into factors associated with a desire for 

clinician guidance when using wearable devices.  Respondents’ preference for clinician 

involvement with wearables is consistent with previous work demonstrating that e-mental 

health interventions are more acceptable and/or helpful when coupled with therapeutic 

support (Berry et al., 2016; Casey et al., 2013; Klein & Cook, 2010).  Research suggests that 

guided use of e-mental health interventions results in fewer drop-outs (Anton & Jones, 2017) 

and superior clinical outcomes (Mehrotra et al., 2017) relative to unguided use.  Equally, the 

use of e-mental health interventions as adjuncts to face-to-face interventions may improve 

compliance with the primary treatment (Lui et al., 2017).  However, interrelated factors 

including negative evaluation of therapy, having no experience consulting mental health 

professionals, or being less satisfied with prior experiences (and to a lesser extent, younger 

age) were associated with an increased desire to use wearable devices without clinician 

support.  This is consistent with existing research linking these factors with lower rates of 

treatment-seeking and treatment continuance, often connected to a desire for managing one’s 

own problems (Mojtabai et al., 2012; Montague et al., 2015; Rickwood, 2015).   

Self-help interventions have been viewed as a conduit to accessing higher intensity 

face-to-face services by increasing mental health literacy and emotional competence 

(Christensen & Hickie, 2010; Rickwood et al., 2007).  However, without clinician guidance 

as to the suitability of wearable devices, there is a risk that they could be unhelpful, or even 

iatrogenic (Hunkin et al., 2019).  Several strategies can be used by practitioners to overcome 

these emotional and attitudinal barriers in hesitant clients, including working through harmful 

effects of self-stigma (Corrigan & Rao, 2012), challenging extreme attitudes about self-

reliance (Labouliere et al., 2015), and increasing insight into the severity of one’s condition 
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(Mojtabai et al., 2012).  Notably, the present results show that negative evaluation of therapy 

predicted increased interest in using wearables blended with face-to-face therapy compared 

with accessing talk therapy alone.  This is consistent with evidence that increasing client 

control over an intervention can reduce resistant behavior linked to emotional barriers 

(Beutler et al., 2011).   

While the standardized effect sizes for some individual predictors of acceptability 

were substantial, the variance explained by the predictive models in Table 3 was less than 

20% in all cases.  This large proportion of unexplained variance suggests the existence of 

various unmeasured factors that modulate interest in wearable devices.  One widely cited 

model of technology acceptance (Venkatesh et al., 2012) implicates a broad range of possible 

factors, such as attitudes, perceived behavioral control, compatibility (i.e. consistency with 

needs and values), subjective norm, image (i.e. perceived status enhancement), complexity, 

perceived ease of use, hedonic motivation, and price value.  Participants’ written responses, 

while supporting quantitative findings, also provided insight into some of these other factors.  

Responses highlighted the importance of perceived efficacy and a desire for clinician support, 

while a lack of responses concerning issues such as technology readiness or symptom 

severity was also consistent with quantitative data.  Responses also suggested that time and 

cost, common barriers to more traditional therapy, may remain as substantial barriers to 

accessing wearable devices.  Further themes indicated the presence of other barriers more 

specific to wearables, such as privacy, discretion, and practicality.  These barriers highlight 

the importance of matching individual needs to devices with specific features (e.g., robust 

data protection, or a discreet form factor).  Lastly, the theme of matching devices to the 

mental health problems being experienced indicated a desire for devices that can be tailored 

to meet individual requirements.    
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The present study has several limitations.  These findings may not be generalizable 

across sociocultural boundaries, since attitudes, barriers, and decision-making processes 

regarding mental health technology uptake may differ substantially (Bagozzi, 2007; Clough 

et al., 2019; Rojas-Méndez et al., 2015).  Responses were not entirely representative of the 

broader Australian population in regard to variables such as education level and type of 

employment.  The use of an online survey could also be expected to cause bias toward 

respondents who are more comfortable with technology.  Although these kinds of biases can 

be expected given the sampling approach used, recruitment via Facebook does compare 

favorably with traditional methods as far as representativeness (Thornton et al., 2016).  

Furthermore, the sample did contain sufficient variability to model the impact of various 

inter-individual differences on treatment preference—including a wide range of scores on 

technology readiness.  Lastly, heterogeneity in devices, individual needs, and mental health 

conditions means that more specifically targeted wearable interventions may garner stronger 

interest, as suggested by written responses.   

The high proportion of respondents who had experienced mental health conditions 

and accessed clinical treatments was a strength of this research.  Furthermore, we were able 

to provide some support for the notion that e-mental health may help to improve access to 

treatment—and perhaps also retention—which has been identified as a priority area for 

research (Hollis et al., 2018).  Given our findings, one direction for future study is to evaluate 

the factors that influence the perceived effectiveness of wearable devices.  Secondly, while 

hypothetical acceptability should be a good predictor of willingness to engage in specific 

treatments, future work could determine how this relates to measures of actual acceptability 

(e.g. ease of use, perceived helpfulness, and satisfaction ratings; Berry et al., 2016), which is 

likely to moderate the sustained use of wearable devices. 
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4.6.1 Conclusion 

Wearable devices, among other e-mental health approaches, may play a major role in 

future psychological interventions.  Respondents’ strong interest in wearables and their 

general preference for professional guidance highlights the need for clinicians to provide 

opportunities for integrated approaches for some clients.  Furthermore, since augmenting 

traditional approaches with wearable devices appeared more acceptable for those with 

negative perceptions of therapy, these adjuncts could be a novel approach to tackling 

treatment resistance.  Although devices need to be seen as effective in order for clients to 

want to use them, clinicians must also take care to ensure that they adequately inform clients 

about the evidence base for wearable devices, which is currently limited.  These issues 

notwithstanding, the broad cross-demographic acceptability of wearable devices in the 

present data suggest strong potential for incorporating these devices into clinical care, 

providing that risks and benefits are evaluated for each client and treatment scenario.  
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5.2 Abstract 

Objectives. Measures from wearable devices could be a valuable supplement to 

mindfulness assessment and intervention.  This observational study evaluated measures from 

a consumer-grade EEG headband (Muse, InteraXon, Inc.) as novel correlates of state 

mindfulness during focused attention meditation. 

Methods. Adult participants (N = 68, Mage = 22.66, SDage = 7.35) completed a task-

based measure of state mindfulness and thought probe measures of subjective mind 

wandering while meditating with the EEG headband. A subset completed 14 days of home 

practice (n = 29).   

Results. Device measures were sensitive to attention lapses within-participants in the 

state mindfulness task (d = 0.56) and had large between-participants associations for the same 

task (r = -0.50).  Mean device metrics from home practice together explained approximately 

30% of variance in self-reported trait mindfulness, attentional control, non-attachment and 

decentering.   

Conclusion. EEG biomarkers show potential as correlates of mindfulness with distinct 

benefits over existing assessment methods. 
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5.3 Introduction 

Wearable devices are an emerging group of technological solutions that are worn on 

the body and some of these devices are marketed for improved mental health and wellbeing 

(Hunkin et al., 2019).  They typically work by detecting physiological signals that can be fed 

back to the user in order to train a desired response, such as relaxation, through operant 

conditioning (i.e., biofeedback; Sergueeva & Shaw, 2017).  Wearable devices are becoming 

increasingly sophisticated and more widely available, and there is substantial consumer 

interest in their usage (Coffey & Coffey, 2016; Hunkin et al., 2020; Piwek et al., 2016).  One 

important implication of such devices is the large volume of data that is generated through 

their use (Coffey & Coffey, 2016).  However, to date there has been little research to evaluate 

the theoretical or clinical utility of such measurements (Piwek et al., 2016; Torous & 

Gualtieri, 2016). 

One commercially available device modality is neurofeedback-assisted meditation.  

These wearable devices aim to support focused attention meditation by distinguishing 

attentive states from mind wandering states, and feeding back this information to the 

meditator (Brandmeyer & Delorme, 2013).  Sustained attention is a central element of 

focused attention meditation practice, a meditation style which requires the meditator to 

maintain focus on an object such as the breath (Malinowski, 2013).  Moreover, the degree of 

sustained attention during this type of meditation has been used as a novel measure of state 

mindfulness (Frewen et al., 2014; Levinson et al., 2014), a construct that can be described as 

a non-judgmental awareness of present moment experience (Bishop et al., 2004; Creswell, 

2017; Davidson & Kaszniak, 2015).  Wearable device measures of sustained attention during 

meditation might therefore also be closely associated with state mindfulness.   

Device-based correlates of state mindfulness during meditation have potential 

importance for both theory and clinical practice.  Whilst mindfulness-based interventions 
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have demonstrated efficacy for addressing a range of clinical problems, there is ongoing 

scientific debate over how mindfulness itself should be operationalized and measured (Van 

Dam et al., 2018).  Existing self-report mindfulness measures have several limitations, such 

as poor discriminant validity with well-being scales and the tendency for responses to be 

biased according to the degree of the mindfulness experience of the respondent (see, e.g., 

Grossman, 2008, 2011; Sauer et al., 2013; Van Dam et al., 2018).  Device-based measures 

can be recorded continuously and without interruption to the meditator, and they putatively 

capture mindfulness ability independent of response bias.  These measures could also serve as 

convenient indicators of practice quality and therapeutic progress in clinical work, since state 

mindfulness during meditation and meditation practice quality are closely related constructs 

that have been shown to mediate improvements in both trait mindfulness and psychological 

distress (Del Re et al., 2013; Goldberg et al., 2020; Kiken et al., 2015).   

The focus of the present study was an EEG meditation headband (Muse, InteraXon 

Inc., Toronto).  This consumer-grade dry electrode headband was developed to support 

focused attention meditation practice by providing auditory neurofeedback.  The concept for 

the headband evolved from experiments with “brainwave concerts” in which participants’ 

EEG signals were used to control art installations (Mann et al., 2007).  Since then, it has 

attracted substantial interest from the research community (InteraXon Inc., 2020a).  The 

headband is fitted across the forehead and rests behind the ears, with electrodes 

approximating standard montage frontal (AF7/AF8) and temporal/parietal (TP9/TP10) 

placements, as well as a reference electrode (Fpz).  The device is arguably affordable ($250-

350 US dollars) and ostensibly detects the attentional state of the wearer during meditation 

using a proprietary algorithm, with data transmitted via Bluetooth to the Muse smartphone 

application (“app”; available on iOS and Android platforms).  While meditating with the app 

and headband, the wearer hears a soundscape that varies according to their inferred 
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attentional state (e.g., from peaceful lapping waves to an intense storm).  Changes in the 

soundscape thus provide real-time feedback on the wearer’s degree of focus, with mind 

wandering resulting in more intense sounds.  Although the quality of Muse data is lower than 

that of medical grade EEG systems due to the use of dry electrodes (Ratti et al., 2017), data 

fidelity was sufficient to measure event-related potentials and reliably discern pain states in 

previous work (Karydis et al., 2015; Krigolson et al., 2017).  Muse generates two main 

proprietary measures, which can be viewed in the Muse app or through an online clinician 

platform provided by InteraXon.  The first measure, here termed “Muse mind wandering”, is 

thought to reflect the degree of attention to the breath from moment to moment within the 

meditation session.  The second measure, “Muse recoveries”, putatively represents the 

number of times during the session that the meditator returned focus to the breath following a 

mind wandering episode (and thus the total number of such mind wandering episodes).  

The present study aimed to evaluate the feasibility of using the Muse EEG headband 

to support mindfulness assessment.  Due to the proprietary nature of the Muse measures, 

knowledge about their neurophysiological basis could not be used to guide the interpretation.  

Instead we took a pragmatic approach by assessing the association of Muse measures with 

state and trait mindfulness, as well as several related constructs.  At the within-participants 

level, we hypothesised that periods of meditation with a greater state mindfulness would be 

accompanied by a lower Muse mind wandering score.  Secondly, it was expected that Muse 

mind wandering score at any one moment would correspond to the subjective degree of mind 

wandering at the same moment.  At the between-participants level, we anticipated the same 

relationships between Muse mind wandering, state mindfulness, and subjective mind 

wandering.  Furthermore, we anticipated that mean Muse mind wandering from across the 

meditation session would be negatively associated with dispositional measures of 

mindfulness, attention regulation, decentering, and non-attachment.  Gains in attention 
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regulation are thought to be central to the development of higher level capacities that result 

from meditation, such as improved emotional regulation (Isbel & Summers, 2017; 

Malinowski, 2013).  Decentering (taking a detached view of one’s thoughts as not defining 

the self) and non-attachment (perceiving wellbeing as not contingent on specific objects or 

outcomes) are closely related to trait mindfulness (Fresco et al., 2007; Sahdra et al., 2010; 

Tran et al., 2014).  These constructs have also been implicated as potential mechanisms of 

mindfulness meditation (Hoge et al., 2015; Tran et al., 2014).  Lastly, we explored the utility 

of the second Muse measure, recoveries, as a predictor of the same trait measures described 

above, albeit without hypothesising any specific relationships. 

5.4 Method 

5.4.1 Participants 

A total of 68 participants took part, with a mean age of 22.66 (SD = 7.35).  Of these, 

59% identified as female (the remainder male), and 32% reported having routine meditation 

experience (i.e. having meditated at least once per week consistently for a month or longer).  

Of those who did report routine meditation experience, the duration ranged from 3 months to 

3 years, except one participant with 19 years of meditation experience.   

Participants were required to be at least 18 years old and under 65 years.  Those who 

reported vulnerability to experiencing adverse effects of meditation such as psychosis, 

seizures or traumatization were excluded to mitigate potential risk (Creswell, 2017); 

exclusion criteria were a diagnosis of post-traumatic stress disorder, experience of physical or 

sexual abuse in childhood, a diagnosis or known risk of psychosis, or the regular use of illicit 

substances (Creswell, 2017; Dobkin et al., 2012; Lustyk et al., 2009).  Self-report of any type 

of neurological disorder or traumatic brain injury, or a lack of English language fluency, were 

further exclusion criteria.  Of those assessed for eligibility (N = 71), three participants were 

excluded for not meeting these criteria (n = 2) and technical difficulties (n = 1). 
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5.4.2 Measures 

5.4.2.1 Muse. The 2016-model Muse MU-02 EEG headband (firmware version 

1.2.13) was used in conjunction with the Muse app (version 19.2.364) running on Apple iPad 

tablets.  During the lab tasks, audio was muted so that participants did not receive feedback 

normally provided by the app as to the extent of their mind-wandering, but participants heard 

one of the Muse background soundscapes (calm sounds of waves lapping) throughout all of 

the exercises.  Feedback was suppressed because it could entrain participants’ meditative 

state, confounding the results.  Two measures produced by proprietary Muse algorithms were 

of interest.  Firstly, Muse produces a putative measure of momentary attention to the breath, 

which can be sampled at 1Hz frequency, and with a range of 0-100 where higher values 

indicate diminished attention to the breath.  We termed this “Muse mind wandering”.  Muse 

also produces a measure of “recoveries” from each session, i.e. the putative number of times 

the wearer returns to calm breath focus after an episode of mind wandering.  A third measure, 

“birds”, was not included in this analysis as it was very strongly correlated with Muse mind 

wandering (r ≈ -0.90). 

5.4.2.2 Subjective State Mind Wandering. Thought probe experience sampling 

(Weinstein, 2018) was used to measure the subjective level of mind wandering during 

meditation, following Levinson et al. (2014).  Participants were asked “when you heard the 

bell, where was your attention?” (completely with the breath/completely away from the 

breath), with responses on VAS scales on screen, scored from 0-100.  Mean subjective state 

mind wandering, measured in this way, has previously been shown to have small-to-moderate 

negative associations with trait mindfulness (Mrazek et al., 2012). 

5.4.2.3 State Mindfulness During Meditation. The Breath Counting Task (Levinson 

et al., 2014) requires participants to undertake a form of breath-focused meditation and to 

press a key for each breath they register.  In each nine-breath cycle, breaths one to eight are 
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registered with the right arrow key, while the ninth breath is registered with the down arrow.  

If participants notice losing count, they are instructed to press the space bar to ‘reset’ and 

begin counting again from one.  In the present study, participants were also instructed to reset 

the count if they noticed counting beyond nine, or if they noticed that they had missed 

recording more than one breath (rather than retrospectively adding breaths to the count).  This 

was expected to improve the measurement validity of self-caught and uncaught errors, since 

appropriate responses to these scenarios were otherwise not clearly defined.  The main 

outcome measure of the task is the proportion of accurate count cycles completed.  Although 

the task putatively assesses trait mindfulness, only fair test-retest reliability has been 

demonstrated (Wong et al., 2018), while moderate-to-large correlations with related state 

measures have also been observed (Levinson et al., 2014), suggesting some variance in state 

mindfulness is also being captured. 

5.4.2.4 Trait Mindfulness. The Mindful Attention/Awareness Scale—Lapses Only 

(MAAS-LO) is a 12-item version of the Mindful Attention/Awareness Scale (MAAS; Brown 

& Ryan, 2003), with the removal of three items to make the measure applicable to university 

students and more consistent with lapses of attention (Carriere et al., 2008).  The MAAS is a 

widely used mindfulness measure with good psychometric properties, assessing the ability to 

attend to present moment experience (Osman et al., 2016).  Internal consistency for the 

MAAS-LO was excellent (α = .86). 

5.4.2.5 Mindfulness-related Trait Measures. Three dispositional measures closely 

related to trait mindfulness were used.  The 5-item Adult Temperament Questionnaire Short 

Form, Attentional Control subscale (ATQ-SF-ACS; Evans & Rothbart, 2007) is a measure in 

which higher scores represent greater attentional control.  The 7-item Non-Attachment Scale 

(NAS-7; Sahdra, Ciarrochi, Parker, Marshall, & Heaven, 2015) is a measure of psychological 

flexibility and nonreactivity such that personal well-being is not predicated upon a fixed set 



   

 

91 

of circumstances or needs.  The Experiences Questionnaire, Decentering subscale (EQ-D; 

Fresco et al., 2007) assesses the capacity to see one’s thoughts as momentary mental events, 

rather than an immutable reflection of the self.  Higher scores on these measures indicate 

greater non-attachment and decentering, respectively.  Cronbach’s alpha showed good to 

excellent internal consistency for the ATQ-SF-ACS (α = .72), NAS-7 (α = .78), and EQ-D (α 

= .88). 

5.4.3 Procedure 

After gaining ethical approval, participants were recruited through an undergraduate 

psychology research participation program (n = 64) and through promotion via physical and 

electronic flyers within a university community (n = 4).  Participants were asked to avoid 

vigorous exercise or caffeine in the two hours prior to attending, to have eaten at the previous 

mealtime, and to have had no less sleep than usual on the day.  Following informed consent 

and pre-trial briefing procedures, participants were seated comfortably at a workstation in a 

quiet, dimly lit space, and the Muse headband was fitted.  After the brief calibration 

performed by the Muse app, the session commenced, with experimental software triggered 

synchronously. 

Lab participation consisted of five experimental phases.  Participants were asked to 

keep their eyes closed, with auditory prompts to open their eyes for thought probe sampling 

and between phases.  The first phase, a focused attention meditation familiarization, guided 

participants in breath focus (7 minutes, based on existing materials: 

http://webtasks.keck.waisman.wisc.edu/b/demo).  In phase two, participants continued 

breath-following on their own (10 minutes).  During this time, eight thought probes assessed 

subjective mind wandering (two probes after 10 second delays for familiarization, not 

analyzed; then six probes after breaks of 60, 90 and 120 seconds, each duration featuring 

twice in random order).  In phase three, participants were familiarized with the Breath 
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Counting Task (7 minutes), consisting of 270 seconds of guided audio in performing the task, 

then 150 seconds practice time.  During practice, auditory guidance was given if keypress 

intervals were overly short (< 3 seconds) or long (>30 seconds).  Phase four consisted of two 

self-guided meditations (10 minutes each) while undertaking the Breath Counting Task.  In 

one condition there was no auditory feedback, while in the other Muse auditory mind 

wandering feedback was enabled (these data are reported separately; see Hunkin et al., 

2020a).  Conditions were randomly counterbalanced and preceded by a 120 second distractor 

task (reading from a geological history textbook on screen).  Lastly, participants completed a 

range of self-report measures on screen, were thanked for their time, and received payment 

(either course credit or a prepaid debit card valued at $20 AUD). 

In an optional second stage, participants (n = 29) took a Muse headband home for 14 

days, during which they were asked to meditate with eyes closed for 10 minutes with the 

device at a convenient time each day.  Participants were free to use any of the brief guided 

audio introductions that were available via the app, after which the timed meditation with 

auditory EEG neurofeedback began.  At completion of the home practice stage, participants 

received a prepaid debit card ($30 AUD). 

5.4.4 Statistical Analyses 

Statistical analyses were performed using R version 3.6.1 (R Core Team, 2019).  

Based on simulations with pilot data (Stevens & Brysbaert, 2018), a sample size of 50 

participants was selected to provide adequate power to find small effects in the within-

participants analyses, which were the primary outcomes.  Visual analysis of the data showed 

no extreme outliers.  The internal consistency of Muse mind wandering was estimated by 

dividing the mind wandering time series during the familiarization phase into eight periods 

(approximately 52 seconds each), calculating the mean for each period, and computing 

Cronbach’s alpha as if each period mean represented a scale item (Allen et al., 2004).   
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For analyses involving the Breath Counting Task, participants were excluded due to 

technical problems (n = 2) or if data were missing due to headband signal loss during or prior 

to this phase (n = 22).  Those who did not complete at least one breath count in each 

experimental condition, or failed to achieve at least one correct breath count across both 

conditions (n = 8), were also excluded because it was unlikely they had attended to and 

understood the auditory instructions.  All remaining cases (n = 35) were analyzed.  To 

determine whether Muse mind wandering was related to Breath Counting Task accuracy 

within participants, a series of maximum likelihood hierarchical linear models were fitted.  

The outcome variable for these models was the mean Muse mind wandering score within 

each breath count in the no-feedback condition of the self-guided meditation task.  All 

models met the assumptions of homogeneity of variance and normality of residuals.  An 

initial model was estimated with only task order as a predictor.  Likelihood ratio tests were 

then used to determine whether changing the correlation structure and adding breath count 

accuracy as a predictor improved model fit (Pinheiro & Bates, 2000).  Because within-

participant differences in Muse mind wandering were the focus, a within-participant effect 

size measure was used (δW; Lai & Kwok, 2016).  This statistic is calculated by dividing the 

maximum likelihood estimate of a fixed effect by the residual within-participant standard 

deviation, and is interpreted as for Cohen’s d. 

Since there were multiple experience sampled mind wandering trials for each 

participant, the relationship between subjective mind wandering and time-locked Muse-

sampled mind wandering may have differed within individuals, compared to across the group 

(see Simpson's paradox; Kievit et al., 2013).  Within- and between-participant correlations (rw 

and rb respectively) were therefore estimated using hierarchical linear models (Lam et al., 

1999).  Adjusted bootstrap percentile (“BCa”) confidence intervals were estimated with 5000 

iterations (Hamlett et al., 2003). 
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Home practice sessions of at least 3 minutes duration were analyzed.  To determine 

test-retest reliability, the absolute intraclass correlation coefficient (ICC) referred to by 

McGraw and Wong (1996) as ICC(A,1) was calculated for Muse mind wandering and 

recoveries across home practice sessions (Qin et al., 2019).  Lastly, correlations between task 

summary measures (e.g. mean Muse mind wandering, proportion of correct breath counts) 

and trait measures were examined. 

5.5 Results 

Table 8 presents descriptive statistics for study variables, summarised at participant level.  

Muse data for the thought probe task were complete, but signal loss later in the lab session 

caused some missing data for the Breath Counting Task (n = 22).  In everyday use it would 

have been possible to adjust the Muse headband and continue the session, however this was 

not possible within the experimental setting because signal loss caused unrecoverable 

desynchronisation of timestamps between headband and experimental software.  The loss of 

signal was thought to be related to the duration of use and movements made by participants 

which compromised the dry electrodes’ contact with the scalp, rather than any characteristic 

of the experimental process or participant.  Muse mind wandering exhibited strong internal 

consistency during the familiarisation phase completed in the lab (α = .95).  Some home 

practice sessions appeared to have scores that were constrained within the upper or lower 

range, although the mean session range indicated that scores tended to be spread across much 

of the full 100-point range.   

5.5.1 State Mindfulness 

Summary statistics for the Breath Counting Task are shown in Table 9.  The 

proportion of correct breaths counts spanned the full range from no correct counts (n = 3) to 

no errors (n = 1).  To determine differences in Muse mind wandering scores between correct, 
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Table 8 
Descriptive data and correlations of between-participant study variables 
 M SD 1 2 3 4 5 6 7 8 9 10 11 12 
Breath Counting Taska               
   1. Mean Muse MW 44.46 18.45 –              
   2. Muse recoveries 23.31 19.56 .64** –           
   3. BCT Correct counts (%) 0.49 0.32 -.50** -.48** –           
   4. BCT Miscounts (%) 0.21 0.19 .12 .34* -.44** –         
   5. BCT Resets (%) 0.30 0.29 .47** .30† -.81** -.18 –        
Probe task               
   6. Mean subjective MW 35.76 22.83 .23 .16 -.27 .04 .27 –       
   7. Mean Muse MWb 45.73 14.79 .86** .52** -.39* .08 .38* .15 –      
Home practicea               
   8. Mean Muse MW 38.78 7.38 .23 .44† -.43 .12 .42 -.24 -.03 –     
   9. Mean Muse recoveries 17.23 9.13 -.06 .16 -.49† -.03 .60* -.45* -.22 .76** –    
Trait measures               
   10. Mindfulness 3.61 0.82 -.33† -.20 .24 -.12 -.18 -.16 -.13 -.25 .15 –     
   11. Attentional control 3.44 1.11 .08 .00 .05 .03 -.08 -.20† -.03 -.18 .18 .53** –   
   12. Non-attachment 4.23 0.84 .00 -.22 .20 -.05 -.18 -.17 -.07 -.23 .11 .59** .61** – 
   13. Decentering 34.97 7.48 -.09 -.22 -.03 .08 -.02 -.08 -.17 -.16 .25 .48** .56** .66** 
Note: an = 67 except in the Breath Counting Task (n = 35) and home practice (n = 28).  bMean of Muse scores sampled at six occasions, time-

locked to thought probe sampling.  MW = mind wandering.  BCT = Breath Counting Task.   
† p < .10, * p < .05, ** p < .01 
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miscounted and reset breath counts, a series of hierarchical models were constructed (Table 

10).  The first included a random intercept for participant and a fixed effect for taskorder, to 

control for learning effects.  As there was substantial autocorrelation in residuals, an AR(1) 

correlation structure was added in the second model, with a significant improvement to fit.  

Including a fixed effect for breath count status (correct, miscounted or reset) gave a further 

improved fit in the third model.  Coefficients for this fixed effect showed that both miscounts, 

B = 2.84, 95% CI [0.96, 4.72], and resets, B = 4.73, 95% CI [2.91, 6.55], were associated 

with significantly higher Muse mind wandering, relative to correct counts, with moderate 

effect sizes.  The difference in Muse mind wandering score between resets and miscounts 

also approached significance, B = 1.89, 95% CI [-0.04, 3.83], p = .056. 

 
Table 9 
Descriptive statistics for Breath Counting Task correct, miscounted, and reset breath counts 

 Correct Miscount Reset 
Counts 6.46 ± 4.13 2.97 ± 2.73 4.71 ± 5.59 
Proportion of total (%) 49.46 21.10 29.44 
Participants (n) 32 26 30 
Duration (s) 47.98 ± 12.69 44.89 ± 14.25 35.07 ± 21.44 
Breaths reported 9.00 ± 0.00 7.74 ± 1.39 4.18 ± 2.88 
Mean Muse mind wandering 40.12 ± 15.76 44.03 ± 18.72 49.24 ± 20.77 

Note: Values represent M ± SD except where specified.  Summary values were first 
aggregated by participant.  

 

5.5.2 Subjective Mind Wandering 

Participants completed a mean of 5.81 thought probes with a mean response time of 

10.82 seconds (SD = 2.52).  Muse mind wandering, sampled at the time of each thought 

probe, was approximately normally distributed, whereas subjective (probe-caught) mind 

wandering had the highest frequency on the low bound, meaning that participants often 

reported their attention being entirely on the breath.  Contrary to expectations, the association 

between Muse-sampled and subjective mind wandering was negligible, both within-
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participants, rw = .01, 95% CI [-.07, .12], and between-participants, rb = .11, 95% CI [-.09, 

.31]. 

5.5.3 Home Practice 

Participants completed a mean of 11.31 (SD = 2.84) meditation sessions at home.  

Participants with greater meditation experience (i.e. having previously meditated at least once 

per week for periods totalling six months or more, n = 11) had a lower mean Muse mind 

wandering (M = 36.92, SD = 8.13) compared to those with less or no meditation experience 

(M = 40.30, SD = 6.77), but this difference was not statistically significant, t(18) = 1.16, p = 

.262, d = 0.45.  The ICC(A,1) was .27 (95% CI [.17, .43]) for Muse mind wandering and .17 

(95% CI [.09, .30]) for recoveries, indicating low test-retest reliabilities between home 

practice sessions. 

5.5.4 Between-Participant Measures 

Table 8 presents the correlations for between-participant measures.  Muse mind 

wandering tended to have small or negligible correlations with mindfulness-related traits that 

were not statistically significant.  The strongest correlation, between trait mindfulness and 

mean Muse mind wandering during the Breath Counting Task, approached significance, r(33) 

= 0.33, p = .053.  Mean Muse mind wandering during the Breath Counting Task had a 

significant negative association with the rate of correct breath count cycles, r(33) = -.50, p = 

.002, as well as a significant positive correlation with the rate of reset breath count cycles, 

r(33) = 0.47, p = .004.  Consistent with the within-session findings, this association indicated 

that participants who tended to reset their breath counts more frequently also tended to 

experience more mind wandering according to Muse, while participants who counted more 

cycles correctly tended to experience less mind wandering according to the device.  However, 

the rate of miscounted breath cycles had a negligible association with mean Muse mind 

wandering during the task.   
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A higher rate of recoveries during home practice was associated with more resets in 

the Breath Counting Task, r(12) = .60, p = .023, but also with lower subjective mind 

wandering during the thought probe task, r(26) = -.45, p = .016.  Furthermore, although mean 

Muse mind wandering and recoveries during home practice were strongly positively 

correlated, they exhibited opposing associations with trait measures, suggesting that each 

variable contained uniquely predictive information about these traits.  Based on this 

observation, an unplanned analysis was conducted to determine whether regressing traits on 

both variables simultaneously could explain additional variance, i.e. an ‘enhancement effect’ 

(Lewis & Escobar, 1986).  For trait mindfulness and all related trait measures, both mean 

Muse mind wandering and recoveries were significant predictors, and the four models had 

significantly better predictive value than corresponding intercept-only models (Table 11).  

Substantial enhancement effects were observed: individual predictors accounted for under 

10% of variance in bivariate associations, whereas together the predictors explained 24-35% 

of the variance.  Semi-partial correlations showed that unique variance in each predictor had 

large correlations with trait measures (sr ≈ .50). 

5.6 Discussion 

The aim of the present study was to evaluate the feasibility of the Muse EEG 

headband to support mindfulness assessment.  Muse mind wandering exhibited a high 

internal consistency and low test-retest reliability, as expected for a state measure 

(Zuckerman, 1983).  As hypothesised, this measure was significantly associated with a 

concurrently assessed measure of state mindfulness in both within- and between-participant 

analyses.  However, within-participant associations with subjective mind wandering, and 

between-participant associations with mindfulness, attention regulation, decentering, and 

non-attachment were mostly small and none were statistically significant.  Participants
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Table 10 
Hierarchical linear models estimating the effect of correct, miscounted and reset breath counts on Muse mind wandering 
 Model 1 Model 2 Model 3 
 Coefficient p Coefficient p Coefficient p da 

Fixed effects (B ± SE)        
Intercept 41.27 ± 3.62 < .001 41.53 ± 3.59 < .001 39.78 ± 3.50 < .001  
Order: Firstb 11.09 ± 6.47 .096 10.77 ± 6.40 .102 10.08 ± 6.20 .114 1.20 
Status: Miscountc     2.84 ± 0.96 .003 0.34 
Status: Resetc     4.73 ± 0.93 < .001 0.56 

Random effects (SD)        
Participant 17.57  17.17  16.60   
Residual 8.15  8.63  8.42   

Model properties        
AR(1) correlation (ϕ) —  0.42  0.42   
ICC .82  .80  .80   
AIC 3628.53  3565.10  3543.09   
Likelihood ratio testd   χ2(1) = 65.43 < .001 χ2(2) = 26.01 < .001  

Note: aThe within-participant effect size (δW; Lai & Kwok, 2006) was used.  bReference level: Second. cReference level: Correct. dRelative to the 
preceding model.   

 
Table 11 
Multiple linear regressions of mindfulness, attentional control, non-attachment and decentering traits on mean Muse mind wandering and 
recoveries during home practice 

 Intercept  Mean Muse mind wandering  Mean Muse recoveries  Model fit 
Outcome variable B SE p  B SE p sr  B SE p sr  R2 F p 
Mindfulness 6.19 0.96 .406  -0.11 0.03 .002 .56  0.08 0.03 .004 -.52  .33 6.29 .006 
Attentional control 6.07 1.19 < .001  -0.12 0.04 .008 -.49  0.09 0.03 .008 .49  .28 4.80 .017 
Non-attachment 6.49 1.00 < .001  -0.09 0.03 .010 -.48  0.07 0.03 .019 .44  .24 4.03 .030 
Decentering 53.64 7.86 < .001  -0.86 0.26 .003 -.53  0.74 0.21 .002 .57  .35 6.61 .005 

Note: n = 28. MW = mind wandering. sr = semi-partial correlation (association between predictor and outcome while controlling for the other 
predictor, interpreted as for Pearson’s r). 
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completed over 80% of home sessions, and mean mind wandering and recoveries metrics 

from these sessions were together strong predictors of mindfulness and related traits. 

Given that Muse and task-based state mindfulness measures involved entirely distinct 

methods, the association between them should be considered exceptionally strong (Patrick et 

al., 2019).  As hypothesized, breath counting miscounts and resets were linked to 

significantly greater Muse mind wandering relative to correct breath counts.  In line with 

previous findings, breath count resets appeared to represent deeper lapses of attention than 

miscounts (Wong et al., 2018), with the difference in Muse mind wandering between resets 

and miscounts approaching significance.  Subjective mind wandering was not associated with 

Muse mind wandering in within-participant analyses, while the small positive between-

participants correlation with Muse mind wandering was not statistically significant.  The 

confidence interval for the latter association was not inconsistent with previous work 

assessing correlations between self-report and task-report measures relating to this construct 

(Levinson et al., 2014; Mrazek et al., 2012).  Greater power may be required to more 

conclusively test this theorized relationship.  

The incremental predictive value of Muse recoveries after accounting for Muse mind 

wandering was a noteworthy finding, requiring some consideration of the potential reasons.  

On the one hand, there are conceptual similarities between the recoveries putatively being 

measured by Muse and the resets being measured in the Breath Counting Task.  These 

similarities were reflected in the strong association between mean recoveries during home 

practice sessions and breath counting resets during the laboratory session.  Since higher rates 

of resets in the Breath Counting Task index lower mindfulness, recoveries measured by Muse 

might also be seen as undesirable phenomena.  On the other hand, the ability to recover—to 

catch one’s mind wandering and reorient one’s attention—is thought to be a central skill in 

cultivating mindfulness (Isbel & Summers, 2017).  Supporting this notion, mean recoveries 



   

 

101 

during home practice were predictive of lower mean subjective mind wandering in the lab.  

Furthermore, when Muse mind wandering was controlled for, greater recoveries predicted 

increased mindfulness, attentional control, decentering and non-attachment.   

Considering possible permutations of mean mind wandering and recoveries (Figure 4) 

provides insight into the confounding association between these variables and the reason they 

might have far greater predictive value when combined, consistent with theory (Malinowski, 

2013).  For example, a higher rate of recoveries suggests a meditation characterized by  

 
Figure 4 
Potential permutations of Muse mean mind wandering and recoveries (icons show 
representative sequences of focused attention interrupted by mind wandering) 

 

frequent switching between on-task and off-task cognitions.  This might reflect a mindful 

state if mean mind wandering is low, i.e. longer periods of sustained attention predominate, 

and are interspersed with brief periods of off-task thought that are quickly detected.  On the 

other hand, high mean mind wandering paired with the same level of recoveries would 

suggest a meditation characterized by brief periods of attention, amongst longer episodes of 

off-task thought.  Because higher levels of mind wandering provide more opportunities to 
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recover focus, the variables are strongly correlated and so the positive role of recoveries can 

be confounded—and must therefore be controlled for.   

Since Muse putatively responds to changes in attention, the mindfulness measures 

selected for the present study (i.e., MAAS-LO and Breath Counting Task) were also focused 

on the attentional aspect of mindfulness.  Growing evidence suggests that to derive benefits 

from mindfulness practice, present moment attention must be coupled with an accepting 

orientation to experience (Curtiss et al., 2017; Lindsay & Creswell, 2019; Rahl et al., 2017).  

While an acceptance-like factor emerges consistently in self-report measures of trait 

mindfulness, state mindfulness, and meditation practice quality (Del Re et al., 2013; Lau et 

al., 2006; Rau & Williams, 2016), it remains unclear to what extent this factor is captured in 

measures of behavioural performance during meditation.  Prior research shows that 

acceptance training results in incremental improvements in behavioural measures of 

attention, over and above training in attention monitoring (Rahl et al., 2017).  This suggests 

that such behavioural measures may be measuring some degree of acceptance, consistent 

with theory that accepting thoughts makes them less distracting (Delorme & Brandmeyer, 

2019; Isbel & Summers, 2017).  Muse measures may therefore capture both the attention and 

acceptance qualities of mindfulness, but further research to assess the extent of these 

relationships using self-report and behavioural measures is needed. 

The novel measurement modality and the use of multiple sampling methodologies 

(EEG, cognitive task, and self-report) were important strengths of the present study.  The 

small size of the sample limited the precision of between-participants estimates, but the 

findings were strengthened by the use of repeated measures and within-participants analyses.  

Although the sample was relatively homogenous (i.e., young and well educated) and prone to 

self-selection bias, we did not expect that these characteristics would substantially affect the 

measurements obtained with Muse, with age being a possible exception due to neural changes 
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that occur over the lifespan (Dimitriadis & Salis, 2017).  The strong associations between 

Muse measures (jointly) and mindfulness-related traits were limited by the fact that these 

analyses were unplanned; the enhancement effect observed in the present work should be 

replicated a priori.  We did not explicitly test Muse measurements’ sensitivity to change 

during clinical treatment.  However, the sensitivity of these measures to within-session 

variability in the Breath Counting Task does give some confidence in this regard, as the latter 

measure has been shown to change in response to brief mindfulness training (Rowland et al., 

2019).  A final important limitation is the use of a non-clinical sample, since common clinical 

conditions such as depression and anxiety appear to result in changes in some EEG 

biomarkers (Olbrich & Arns, 2013; Shadli et al., 2015), potentially compromising the validity 

of the algorithm used by Muse when these conditions are present.  Given the proprietary 

nature of the algorithm, it is difficult to know whether the biomarkers it relies upon could be 

prone to this issue.  It is possible that deficits in trait mindfulness could in fact underlie some 

of the biomarkers that have previously been linked to psychopathology (e.g. alpha 

asymmetry; Isbel et al., 2019), which would mitigate this concern.  Furthermore, given that 

our sample was recruited largely from an undergraduate population, we expected a 

substantial proportion of participants would be experiencing at least mild psychological 

distress.  A final and important limitation of the present work is that it cannot reveal the 

underlying EEG measures linked with heightened state mindfulness, due to the proprietary 

algorithm used by the device.  Further work will be needed to develop open scientific 

knowledge regarding EEG-based measures of state mindfulness, however the present results 

clearly demonstrate the feasibility and potential of this approach. 

The practical implications of these findings relate primarily to the interpretation and 

utility of Muse measures.  The considerable associations with state and trait mindfulness 

measures suggest that Muse does capture substantial variation in these constructs, which have 
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been shown to mediate decreases in psychological symptoms (Kiken et al., 2015; Visted et 

al., 2015).  The sensitivity of Muse to fluctuations in state mindfulness supports the use of the 

device to enhance learning via neurofeedback during meditation, since gaining a reliable 

signal of the target state (e.g., a mindful state) is a precondition of effective neurofeedback.  

Furthermore, the strong internal consistency of Muse mind wandering suggests that valid 

measurements can be derived even from relatively brief meditation sessions.  This provides 

some confidence in using Muse measures to supplement other assessments.  However, a few 

caveats apply.  Firstly, there was low test-retest reliability between sessions during the home 

practice period, likely due to a combination of state fluctuations and measurement error.  This 

means that sustained trends over weeks or months are most likely to represent true changes, 

whereas trends over only a few sessions may simply represent noise.  Secondly, the 

interdependence of the mind wandering and recoveries measures means that neither measure 

can be interpreted in isolation.  Increased mindfulness is expected to be characterized by both 

increased recoveries and decreased mind wandering, at least in early and intermediate stages 

of practice.  It is important to note that these implications for interpretation cannot 

immediately be generalized to similar devices, because of potential differences in hardware 

or software.  Further discussion of some practical considerations in interpreting Muse scores 

is provided as supplementary material (Appendix B).   

While these results provide preliminary support for Muse measures as correlates of 

mindfulness, more work is needed to replicate and extend these findings.  A higher-powered 

study would increase confidence in the size of the associations with trait measures of 

mindfulness and related constructs.  Other task-based assessments of mindfulness could also 

be useful comparative measures (see, e.g., Hadash, Plonsker, Vago, & Bernstein, 2016).  

Since Muse showed low test-retest reliability, it will be important to quantify how much 

variability in results represents measurement error as opposed to short term fluctuations in 
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state mindfulness.  Future research could also explicitly test the extent of Muse measures’ 

sensitivity to change from mindfulness-based interventions.  Lastly, the development of a 

unitary scoring scheme based on both Muse metrics would simplify its use in practice. 

5.6.1 Conclusion 

Wearable devices for mental health are increasing in availability and popularity, but 

the measures they generate remain largely unvalidated.  The present results demonstrate the 

general feasibility of wearable-based EEG measures of mind wandering during meditation as 

an adjunct assessment tool.  Furthermore, they provide preliminary support for Muse 

measures as correlates of state and trait mindfulness, constructs which are thought to mediate 

the clinical improvement resulting from meditation.  The objectivity of the measures, the high 

temporal granularity of the data, and the convenience of assessment are all potentially 

important benefits of this approach.  The present findings support further research with this 

technology, particularly to assess sensitivity to change in clinical treatment groups, and to 

understand the extent to which Muse captures not only present moment attention but also an 

accepting orientation to experience.  Given the potential to enhance theoretical knowledge 

and the increasing need to incorporate digital mental health approaches into clinical practice, 

developing empirical evidence regarding measures produced by Muse and other wearable 

devices should be a priority. 
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6.2 Abstract 

Objectives.  EEG neurofeedback has potential to increase the effectiveness of mobile 

meditation applications by providing synchronous performance feedback to meditators.  This 

crossover trial aimed to evaluate the effects of auditory EEG neurofeedback on state 

mindfulness during focused attention meditation—a putative mediator of mental health 

benefits—relative to no feedback. 

Methods.  Adult participants (N = 68, Mage = 22.66, SDage = 7.35) completed a task-

based measure of state mindfulness whilst meditating with and without auditory feedback 

from a consumer-grade EEG headband.  Participants rated subjective meditation experiences 

in each condition.  A subgroup (n = 29) completed 14 days of home practice with the device 

and responded to open-ended questions about their experience. 

Results.  Auditory feedback was associated with greater state mindfulness (RR = 1.15, 

95% CI [1.00, 1.29]). Device-measured mind wandering was lower when feedback was 

present (d =  0.22 [-0.07, -0.37]), but there was a negligible effect on device-measured 

recoveries from mind wandering episodes (d = -0.11 [-0.30, 0.08]).  Feedback was associated 
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with quantitative differences in subjective experiences consistent with heightened arousal.  

Thematic analysis revealed helpful (active, guiding) and unhelpful (stressful, distracting, 

incongruent with subjective experience) aspects of feedback.  

Conclusions.  EEG neurofeedback appears to increase state mindfulness in adults 

during a brief meditation.  These results support feedback as an effective adjunct to 

meditation.  Psychoeducation regarding feedback and the meditative experience may help to 

maximise the beneficial effects.  Replication of these findings in clinical populations is 

warranted. 

6.3 Introduction 

Meditative practices are an umbrella of methods for cultivating mindfulness, and are 

central to contemporary evidence-based therapies like mindfulness-based stress reduction 

(MBSR) and mindfulness-based cognitive therapy (MBCT; Dimidjian & Linehan, 2008).  

Growing public interest in meditation has led to the emergence of numerous stand-alone apps 

that offer guided instruction for meditation practice (Flett et al., 2019).  Research and clinical 

interest in such apps has also increased due to their perceived benefits in complementing 

existing service delivery in mental health systems.  Meditation apps may be used as a low-

intensity approach in interventions for mild cases, thereby enabling more resources to be 

diverted to handling more severe presentations (Bower & Gilbody, 2005; Fairburn & Patel, 

2017).  App-based interventions might also overcome some traditional barriers to treatment, 

such as cost, physical distance, stigma, and scalability, thereby increasing access to evidence-

based therapies (Kazdin, 2019; Nicholas et al., 2017).  The increasing availability and 

sophistication of digital interventions is expected to increase the scale at which these 

therapies can be delivered (Cavanagh & Millings, 2013; Mrazek et al., 2019; Muñoz, 2019), 

and initial evidence for meditation apps supports their continuing development and 

evaluation (Flett et al., 2019; Linardon, 2020).  However, the utility of these apps in clinical 
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practice may be limited by their small effects on common mental health symptoms (Bostock 

et al., 2019; Flett et al., 2019). 

Given the potential advantages of meditation apps, there is a need for research on how 

their effectiveness can be increased.  One proposed approach, EEG neurofeedback, aims to 

support the development of meditative practice by synchronously providing meditators with 

objective performance data based on neural indicators (Brandmeyer & Delorme, 2013).  

Receiving feedback on performance could assist meditators to adopt a higher level of state 

mindfulness during meditation, which putatively mediates improved emotion regulation and 

decreased distress (Garland et al., 2015; Kiken et al., 2015).  There may also be ancillary 

benefits of neurofeedback for meditation adherence and uptake.  Meditators who consider 

their performance to be poor during early meditation experiences tend to have a lower 

intention to continue meditating (Russ et al., 2017), highlighting the importance of providing 

greater support during initial attempts.  The use of feedback could also modify perceptions 

that meditation involves doing nothing; these perceptions are closely linked to views that 

meditation has minimal benefit, and form perhaps the most substantial barrier to uptake (Hunt 

et al., 2020; Russell et al., 2018). However, there is little empirical research to date 

examining the potential benefits of synchronous neurofeedback during meditation (Hunkin et 

al., 2019).  

Neurofeedback-assisted meditation is available via consumer-grade systems such as 

the portable headband and app known as Muse (InteraXon, Inc.).  Muse supports a form of 

meditation in which meditators attempt to maintain focused attention on a specific object or 

sensation, typically one’s breathing (Malinowski, 2013).  Practice in this tradition is thought 

to facilitate increased awareness of mind wandering (i.e., meta-awareness) and an ability to 

non-judgementally reorient to the object of focus.  The Muse app produces a soundscape that 

ranges from calm (such as gentle rain) to more active (such as thunder, wind and heavy rain), 
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according to the meditator’s level of focused attention.  By alerting the meditator to attention 

lapses through these synchronous changes in auditory feedback, Muse purports to support 

meditation by encouraging a more rapid return to a focused state.   

Preliminary research suggests that meditation with Muse may lead to a significant 

reduction in somatic symptoms along with improvements in attention and cognitive 

performance, relative to active controls (Bhayee et al., 2016; Crivelli et al., 2019).  A recent 

study found that Muse did not differ from unassisted meditation according to physiological 

measures of relaxation (Svetlov et al., 2019).  However, it is unclear how the degree of 

relaxation during meditation might be related to concurrent attentional performance and to 

stress reduction outside of meditation.  Furthermore, possible negative effects of 

neurofeedback are unclear.  For example, receiving feedback on errors during a vigilance task 

has been associated with a renewed focus on the task at hand, but also with reactive mind-

wandering that can interfere with immediate task performance (Smallwood et al., 2004).  This 

is consistent with reports of neurofeedback during meditation being distracting, or even 

anxiety-provoking for some meditators (Marcengo et al., 2017; Sas & Chopra, 2015).  

Understanding how Muse auditory feedback affects meditation is thus an important research 

target in evaluating the practical application of these technologies.  

The present study used a counterbalanced crossover design to evaluate the effects of 

Muse feedback (auditory feedback condition) on state mindfulness and subjective experience 

in healthy participants, relative to not receiving feedback (no feedback condition).  Our 

primary hypothesis was that, relative to the no feedback group, the auditory feedback group 

would exhibit an increase in objectively measured state mindfulness.  In line with this, Muse 

data were expected to indicate a lower device-measured mean mind wandering and a greater 

number of recoveries from a mind wandering state in this condition.  Quantitative measures 

of meditation experiences following both conditions were used to explore how the presence 
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of feedback affected the meditation, from the meditator’s perspective.  In a second phase, 

participants used the device over 14 days of home-based practice.  Secondary hypotheses 

predicted a reduction in mean mind wandering and an increase in recoveries according to 

device measures, as well as an increase in perceived control over device feedback across the 

home practice period.   

6.4 Method 

6.4.1 Participants 

Participants were university students aged between 18-60 years (N = 68).  The 

majority were aged 20 years or below (M = 22.66, SD = 7.35), with gender identified as 

female (n = 40) and male (n = 28).  Two-thirds of participants (n = 46) reported no habitual 

meditation experience (defined as any form of meditation at least once per week, over a 

minimum period of one month).  For those who did have meditation experience, the duration 

ranged from three months to three years, apart from a single participant with a history of 19 

years of practice.   

Participants at higher risk of adverse effects from meditating were excluded (i.e. risk 

of psychosis, a previous diagnosis of post-traumatic stress disorder, a history of physical or 

sexual abuse in childhood, or the regular use of illicit substances; Creswell, 2017; Dobkin et 

al., 2012; Lustyk et al., 2009).  The self-reported presence of a neurological disorder or 

traumatic brain injury, or poor English fluency, were additional exclusion criteria.  Of 71 

participants assessed, two were excluded and one could not commence due to technical 

issues.  Further to formal eligibility requirements, participants were asked to avoid caffeine or 

vigorous exercise during the two hours prior to the initial session, as well as ensuring they 

had no less sleep than usual and had eaten at the preceding mealtime. 
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6.4.2 Procedure 

Following ethical approval, recruitment took place through an undergraduate 

psychology research participation program (n = 64) and promotional flyers (n = 4).  Once 

informed consent, pre-trial screening and briefing were completed, each participant was 

shown to an individual enclosed lab space, asked to make themselves comfortable at a 

workstation, and instructed on how to use the Muse headband.  The session began with 

Muse’s standard calibration sequence, after which Muse began collecting data, with the 

experimental software (Inquisit 4) initiated simultaneously.  Data from the first two phases 

were reported elsewhere (Hunkin et al., 2021b) and are not analysed further here.  In the first 

phase, participants were guided in breath-focused meditation, following prior work 

(http://webtasks.keck.waisman.wisc.edu/b/demo, 7 min duration).  The second phase 

consisted of unguided breath-following (10 min), with eight intermitted thought probes.  The 

third phase consisted of familiarisation with the Breath Counting Task (270 sec) and a brief 

practice (150 sec).  During the practice, participants were reminded of what to do if their 

keypress intervals were less than 3 seconds or exceeded 30 seconds.  Phase four involved two 

self-guided meditations which were presented in random order.  Participants undertook the 

Breath Counting Task in both conditions; in one condition they heard only a Muse 

background soundscape (waves lapping) with no auditory feedback, while in the other they 

heard the same soundscape accompanied by auditory feedback from Muse on their level of 

attention to the breath.  Both conditions were preceded by a 120 second mind wandering 

induction, which involved reading from a geological history textbook presented on screen 

(Danckert et al., 2018).  Following each meditation, participants completed the MEQ with 

respect to that session.  Finally, a range of self-report measures were completed, and 

participants were thanked and reimbursed for their time (course credit, or a $20 AUD debit 

card). 
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Participants also had the opportunity to take the device home for two weeks of home 

practice (n = 29).  During this period they were asked to meditate with Muse for at least 10 

minutes per day and complete written responses (Table C1, Appendix C).  Participants 

received a $30 AUD debit card in appreciation of their involvement in the home practice 

stage. 

6.4.3 Measures 

6.4.3.1 Muse. The MU-02 (“Original Muse”) 2016-model EEG headband (firmware 

version 1.2.13) was used with the Muse app (version 19.2.364) installed on Apple iPad 

tablets.  Muse is equipped with three silver frontal electrodes (AF7/8 positions, with a 

reference channel at FPz) and two conductive silicon-rubber temporal electrodes (TP9/10 

positions).  Raw EEG data are sampled at 256 Hz, while the main proprietary measure of 

“calm” produced by Muse has a sampling frequency of 1 Hz.  A meditation with Muse begins 

with a calibration phase in which the wearer is asked to let their thoughts flow naturally, 

followed by a brief auditory instruction in breath-focused meditation.  Data collected during 

the present study provided initial evidence for the internal consistency and validity of two 

Muse metrics (mean mind wandering and recoveries from mind wandering) as indicators of 

state mindfulness (Hunkin et al., 2021b).  

6.4.3.2 Breath Counting Task. The Breath Counting Task (Levinson et al., 2014) is 

a task-based objective measure of mindfulness.  While following the breath during focused 

attention meditation, participants are asked to count each breath, starting from one and 

beginning over again after the ninth breath.  Participants pressed the right arrow for each of 

the first eight breaths, and the down arrow on the ninth breath.  If they realised they had lost 

track of the count, stopped counting, or missed a keypress, the space key could be used to 

reset the count, after which counting began again from one.  The primary outcome of the task 

is the proportion of correct breath counts to erroneous counts (sum of resets or miscounts). 
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6.4.3.3 Meditation Experience Questionnaire (MEQ). The MEQ (Frewen et al., 

2011) is a thirteen-item self-report questionnaire rating typical experiences encountered 

during meditation, such as unpleasant thoughts, awareness of one’s body, and sleepiness.  

The questionnaire was developed based on common responses to open-ended questions about 

experiences during meditation.  Each item represents the frequency of a distinct meditation 

experience, scored on a five-point Likert-type item from Never (1) to Almost constantly (5).  

Because each item is interpreted individually, no full-scale scores are derived. 

6.4.3.4 Perceived Difficulty of Meditation and Perceived Control over Feedback. 

A seven-point Likert-type item was used to gauge relative difficulty of maintaining breath 

focus (“Did you find it easier to keep your attention on the breath in the exercise where you 

received audio feedback, or the exercise where you only heard wave sounds?”), with 

endpoint anchors Easier with audio feedback (1) and Easier with just wave sounds (7), as 

well as a midpoint anchor (no difference).  The level of perceived control over the feedback 

was measured with a second item (“How much control did you feel you had over the audio 

feedback on your level of attention to the breath, in the exercise where you heard it?”), with 

anchors of No control (1) to Complete control (7).  A similar item was used at follow-up in 

relation to perceived control over the most recent home practice session.   

6.4.3.5 Written Feedback. Participants were provided a diary during home practice, 

in which they were asked to respond to open-ended questions regarding their Muse 

experiences.  Diaries included items asking for impressions of using Muse, the auditory 

feedback, and specific helpful and/or unhelpful aspects of Muse (see Appendix C, Table C1). 

6.4.4 Data Analyses 

Statistical analyses were performed using R version 3.6.1 (R Core Team, 2019).  The 

planned sample size of 50 was selected to power analyses reported elsewhere (Hunkin et al., 

2021b); a priori simulations using pilot data (Stevens & Brysbaert, 2018) showed this would 
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also be sufficient to find small effects in between-group differences in the proportion of 

correct breath counts.  Initial exploration of the data showed no outlying responses 

attributable to the single participant who had a significant history of meditation, therefore this 

case was retained.  For the main analyses, cases were excluded where Muse signal was lost 

due to poor headband contact (n = 22), breath count data were deemed invalid (i.e. no correct 

counts in either condition, n = 9), or technical issues occurred (n = 2), leaving 35 cases.  Of 

these, 24 completed the feedback condition first.  Correlations between key study variables 

are shown in Table C2, Appendix C. 

To determine the effect of receiving auditory feedback on the rate of correct and reset 

breath counts, mean Muse mind wandering and Muse recoveries, four maximum likelihood 

hierarchical models were constructed with random intercepts for participant and fixed effect 

predictors for auditory feedback.  In the first and second models a binomial distribution was 

used to compare breath count accuracy between conditions, and relative risk was calculated 

based on the baseline proportion of correct (Model 1) or reset (Model 2) breath counts in the 

no feedback condition (Grant, 2014).  The third and fourth models used a Gaussian 

distribution to compare mean Muse mind wandering and recoveries between conditions.  To 

control for learning effects, all four models included a fixed effect predictor for the 

experimental period (Senn, 2002).  One further maximum likelihood hierarchical model was 

fitted to compute pointwise confidence bands around the difference in mean Muse mind 

wandering trajectories between conditions.  This last model extended the former by adding an 

interaction term of experimental condition with time and allowing for autocorrelation of 

residuals.  While there was some heterogeneity in the sample with regard to age and 

experience with meditation, it was not feasible to statistically explore potential moderation 

effects due to the small sample size and the few participants in the upper end of the age 

range.  Nonetheless, visual inspection of the data did not suggest any marked differences in 
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EEG or Breath Counting Task outcomes attributable to either age or level of previous 

meditation experience.  Differences in subjective meditation experience were analysed using 

paired t-tests for each individual item, and the false discovery rate adjustment was used to 

obtain simultaneous p-values and confidence intervals (Benjamini et al., 2005; Benjamini & 

Hochberg, 1995). 

The experience of using feedback during meditation, as described in written 

responses, was explored using thematic analysis from a realist perspective (Braun & Clarke, 

2006).  This is an inductive technique where data are analysed “bottom up” to derive higher 

level themes.  In the first step, the first and second authors manually coded all of the 

responses independently of one another.  Because responses were broad and did not always 

focus specifically on auditory feedback, the first author then filtered out codes that bore no 

relation to feedback before identifying themes in the remaining codes.  The first and third 

authors subsequently reviewed the codes and corresponding themes together in order to 

establish consensus (i.e. investigator triangulation; Korstjens & Moser, 2018).  Lastly, the 

first author ensured that the themes were consistent with the filtered responses that made up 

the dataset. 

6.5 Results 

6.5.1 Effects of Auditory Feedback During Meditation Task 

 Table 12 presents descriptive data for the Breath Counting Task and Muse measures 

in each experimental condition.  Hierarchical models were constructed to determine whether 

auditory feedback was associated with significantly increased performance, operationalised 

as a higher rate of correct breath counts, lower mean Muse mind wandering, and greater 

Muse recoveries, while controlling for period (Table 13).  The first model showed that 

participants had a 15% higher likelihood of reporting a correct breath count in the auditory 

feedback condition, compared to the exercise in which they did not hear feedback, with the 



  118 

Table 12 
Descriptive statistics for Breath Counting Task and Muse measures by experimental 
condition 

 
No feedback 

M ± SD 
Auditory feedback 

M ± SD 
Breath Counting Task   
   Correct (%) 49.46 ± 31.58 52.28 ± 27.34 
   Miscount (%) 21.10 ± 18.89 26.54 ± 21.52 
   Reset (%) 29.44 ± 28.79 21.18 ± 18.73 
Muse   
   Mean mind wandering 44.52 ± 18.51 41.58 ± 16.31 
   Recoveries 21.46 ± 18.46 19.60 ± 17.92 

Note: n = 35. 
 
 
effect approaching statistical significance (p = .056).  Since there also appeared to be a large 

difference in the proportion of breath count resets between conditions, a second model was 

constructed to determine whether this difference was statistically significant.  This unplanned 

supplementary analysis showed that auditory feedback led to a 41% lower likelihood of reset 

breath counts, relative to miscounts and correct counts.  In the third model, auditory feedback 

predicted a statistically significant 4.15-unit reduction in mean Muse mind wandering; in 

other words, hearing feedback led to reduced mind wandering as measured by the Muse 

headband.  However, the use of auditory feedback did not predict any significant difference 

in Muse recoveries (Model 4).  Figure 5 shows the trajectory of Muse mind wandering 

throughout each condition, aggregated across all participants (for key model parameters, see 

Table C3, Appendix C).   Mean mind wandering tended to decrease from an early high in 

both conditions, with minimal difference between conditions during the first two minutes.  

After this, a relatively stable mean level of mind wandering was established in both 

conditions, with a generally lower level in the auditory feedback condition.  

Auditory feedback had a large negative effect on self-reported relaxed or calm 

feelings experienced during meditation, and a moderate negative effect on fatigue or 

sleepiness (Table 14).  Feedback also led to small increases in awareness of difficulty in 
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Table 13 
Hierarchical model estimates of the effect of auditory feedback on correct and reset breath 
counts, mean Muse scores, and Muse recoveries, relative to no feedback 
 Coefficient Std. Error p RRa db 95% CI 
Model 1: Correct breath counts  
Fixed effects (B)       

Intercept 0.00 0.24 .985 1.00   
Auditory feedback 0.30 0.16 .056 1.15  [1.00, 1.29] 
Period: First -0.21 0.16 .195 0.90  [0.75, 1.05] 

Random effects (SD)       
Participant 1.25      

Model 2: Reset breath counts  
Fixed effects (B)       

Intercept -1.22 0.25 < .001 0.36   
Auditory feedback -0.67 0.17 < .001 0.59  [0.44, 0.78] 
Period: First 0.40 0.17 .022 1.32  [1.04, 1.63] 

Random effects (SD)       
Participant 1.22      

Model 3: Mean Muse mind wandering  
Fixed effects (B)       

Intercept 43.50 2.99 < .001    
Auditory feedback -4.15 1.41 .006  -0.22 [-0.37, -0.07] 
Period: First 3.26 1.41 .027  0.17 [0.03, 0.33] 

Random effects (SD)       
Participant 16.27      
Residual 5.34      

Model 4: Muse recoveries  
Fixed effects (B)       

Intercept 21.34 3.15 < .001    
Auditory feedback -1.99 1.78 .270  -0.11 [-0.30, 0.08] 
Period: First 0.37 1.78 .837  0.02 [-0.17, 0.21] 

Random effects (SD)       
Participant 16.60      
Residual 6.75      

Note: n = 35 participants. aRelative risk computed based on the baseline proportion of correct 
breath counts (49.46%, Model 1) and reset breath counts (29.44%, Model 2). bCohen’s 
d, with denominator based on standard deviation of scores in no feedback condition. 

 
 

maintaining focus on the breath and interest and awareness in the breathing process, although 

these did not reach significance.  There were negligible differences in the frequency of other 

subjective experiences, such as pleasant/unpleasant thoughts, planning thoughts, or awareness 

of the body and meditation environment.  Participants varied in their rating of whether it was 

it was more difficult to keep attention on the breath with the auditory feedback or without it, 



  120 

with 11 finding it more difficult without feedback, 21 with feedback, and three neutral (M = 

4.89, SD = 1.98).  There was a significant tendency toward a higher median perceived 

difficulty with feedback present, V = 401.5, p = .009, d = 0.45. 

 
Figure 5 
Trajectory of mean Muse mind wandering across the session in the no feedback and auditory 
feedback conditions (MW = mind wandering) 

 

 
6.5.2 Home Practice 

Participants (n = 29) completed a mean of 11.31 (SD = 2.84) out of 14 days of home practice, 

a mean adherence rate of 81%.  Mean Muse mind wandering did not decrease with successive 

meditation sessions as expected, showing no change statistically (Table 15; see also 

Appendix C).  Muse recoveries were also unchanged across the period.  Participants who 

completed the lab tasks without signal loss and also undertook self-guided practice at home 

(n = 14) reported a large and statistically significant increase in perceived control over Muse 

feedback in their final home meditation (M = 5.14, SD = 1.10), relative to the lab session (M 

= 2.79, SD = 1.67), t(13) = 4.53, p < .001, d = 1.67. 

The mean response rate for the open-ended questions during home practice was 75%.  

Table 16 presents five themes relating to meditation feedback that were extracted from these 

responses, along with illustrative excerpts.  Positive responses concerned the responsivity
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Table 14 

Differences in meditation experiences with and without auditory feedback from Muse 

Experience 
Auditory feedback 

M ± SD 
No feedback 

M ± SD pFDR 95% CIFDR d 
Reviewing a mental “to do” list (what I have to do) 2.57 ± 1.17 2.54 ± 1.12 .958 [-0.41, 0.47] 0.02 

Unpleasant or upsetting thoughts or memories 1.97 ± 0.92 2.03 ± 0.86 .958 [-0.55, 0.43] -0.06 

Pleasant or happy thoughts or memories 2.51 ± 1.01 2.60 ± 1.03 .958 [-0.51, 0.34] -0.08 

Feeling relaxed and calm 3.11 ± 1.16 3.94 ± 0.84 .008 [-1.45, -0.21] -0.83 

Being particularly aware of difficulties maintaining your 
attention on your breathing (e.g. due to mind 
wandering) 

4.06 ± 0.94 3.74 ± 0.98 .235 [-0.13, 0.76] 0.33 

Being particularly aware of the presence of others in the 
room (e.g., sound of others’ breathing or movements) 

1.69 ± 1.11 1.60 ± 0.95 .958 [-0.56, 0.74] 0.08 

Being particularly aware of the environment around you 
(e.g., sounds in the room, the temperature) 

2.14 ± 1.06 2.06 ± 0.94 .958 [-0.52, 0.69] 0.09 

Being particularly aware of your own body (e.g., posture, 
heart rate, temperature) 

3.23 ± 0.88 3.11 ± 0.96 .958 [-0.39, 0.62] 0.12 

Being particularly aware of bodily discomfort (e.g., neck, 
back, shoulder pain) 

2.97 ± 1.34 2.94 ± 0.91 .958 [-0.52, 0.58] 0.03 

Thoughts about planning or memories concerning recent 
social/leisure activities (e.g., what to do tonight/what I 
did on the past weekend) 

2.83 ± 1.07 2.83 ± 1.12 1.000 [-0.54, 0.54] 0.00 

Fatigue/sleepiness; began to fall asleep 2.69 ± 1.32 3.31 ± 1.23 .016 [-1.17, -0.08] -0.49 

Being interested in and aware of the process of my 
breathing 

3.54 ± 1.04 3.34 ± 0.87 .831 [-0.29, 0.69] 0.21 

Using some type of mantra to focus my attention (e.g., 
saying to myself “in” and “out,” visualized a scene) 

2.86 ± 1.35 2.71 ± 1.25 .958 [-0.31, 0.59] 0.11 

Note: n = 35.  p-values and confidence intervals were adjusted using the false discovery rate method.  
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Table 15 
Hierarchical linear models estimating change in mean Muse mind wandering and Muse 
recoveries with successive meditation sessions 
 Coefficient Std. Error p da 
Model 1: Mind wandering     
Fixed effects (B)     

Intercept 37.24 1.75 < .001  
Session number 0.28 0.17 .099 0.02 

Random effects (SD)     
Participant 6.58    
Residual 10.91    

Model 2: Recoveries     
Fixed effects (B)     

Intercept 15.85 2.47 < .001  
Session number 0.27 0.27 .328 0.02 

Random effects (SD)     
Participant 7.67    
Residual 17.66    

Note: n = 29 participants, 328 sessions.  aCohen’s d, with denominator based on standard 
deviation of all participant scores in their first home practice meditation session. 

 

of the feedback (Active theme) as well as the helpful nature of the feedback in understanding 

the current mental state and developing an effective meditation technique (Guiding).  

Participants also reported finding feedback anxiety-provoking, often due to being self-critical 

of their own meditation performance or feeling like they could not control the feedback 

(Stressful).  A fourth theme was the distracting nature of the feedback, which made it more 

difficult to keep focus on the breath or made participants too conscious of the process 

(Distracting).  Lastly, feedback was not always perceived as being representative of 

participants’ subjective level of calm attention to the breath (Incongruent with subjective 

experience).  Importantly, positive and negative themes were not mutually exclusive across 

participants: feedback was often viewed as helpful while causing stress and distraction at the 

same time. 

6.6 Discussion 

The aim of the present study was to evaluate the effects of auditory feedback on 

meditation performance and experience.  The results provided preliminary support for the 
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Table 16 
Themes around the experience of receiving feedback while meditating with Muse 

Theme Description Excerpts from written responses 
Active 

(n = 4) 
Sense of responsivity and immediacy; 

tracking performance in real-time 
“Makes meditation feel active and not like a waste of time” (#28) 
“…it’s immediately responsive so I can track how I’m going in the moment” 

(#7) 
Guiding 

(n = 22) 
Helps to stay alert/calm/focused; allows 

for earlier detection/increased 
awareness of mind wandering; a 
reminder to calmly refocus; helps 
develop meditation technique 

“feedback was very helpful to improving and understanding the “correct” 
headspace” (#8) 

“the feedback helped me to understand my mind’s state better” (#12) 
“I am able to correct myself and stop my mind from wandering before I would 

usually notice that it has wandered” (#33) 
Stressful 

(n = 16) 
Anxiety-provoking; draws salience to 

lack of mastery; evokes self-criticism 
due to desire to succeed; can lead to 
fixation on controlling feedback; more 
effort does not always improve 
performance 

“Meditation is supposed to be a calming and relaxing activity, however I rarely 
felt relaxed, most of the time I felt anxious and agitated.” (#29) 

“…it’s stressing as well since [I] want to be good at [calming/focusing 
thoughts], so sometimes I feel frustrated when I get distracted” (#12) 

Distracting 
(n = 15) 

Draws attention away from the breath; 
disrupts concentration; makes it 
difficult to focus or be calm; feedback 
becomes a competing object of focus; 
overthinking or being too conscious of 
the process 

“I find the sounds distracting and continually filling my mind with thoughts 
about them” (#11) 

“When the sounds became more intense (mind was wandering) it became 
harded to become calm again.” (#14) 

“Became too conscious of controlling the sound as opposed to relaxing” (#21) 

Incongruent 
with 
subjective 
experience 
(n = 7) 

Feedback not representative of perceived 
level of attention to the breath; feedback 
sensitive to mental state during initial 
calibration period 

“I would also become confused as the sounds would appear when my mind 
was not wandering…” (#29) 

“I sometimes think about why the noises change and complain about how it’s 
saying that I’m concentrating when I feel that I actually am” (#32) 

“Some sessions I was very distracted but because the calibration detected my 
being more distracted initially, I got a very good score – and the same is true 
in reverse.” (#24) 
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hypothesis that feedback would improve meditation performance, as evidenced by an 

increase in state mindfulness—reflected in more accurate breath counting—that closely 

approached significance.  Corroborating this finding, feedback led to significantly reduced 

mind wandering according to Muse, although recoveries did not differ.  Furthermore, 

participants reported fewer subjective experiences of relaxation and of sleepiness when 

auditory feedback was present.  Home practice led to a large increase in perceived control 

over feedback, although neither of the Muse metrics showed the hypothesised improvements 

over the two-week period. 

Even with relatively limited time for participants to learn how to modulate the signal, 

auditory feedback appeared to enhance state mindfulness during meditation.  Although the 

increase in correct breath counts was small in absolute terms and did not quite reach 

statistical significance (p = .056, two-tailed), supplementary analysis showed a significantly 

lower rate of breath count resets in the feedback condition.  Resets have been linked to more 

prolonged episodes of mind wandering compared to miscounts, which are thought to reflect 

briefer deviations of attention (Wong et al., 2018).  This suggests that feedback lessened the 

intensity or duration of mind wandering episodes as well as potentially reducing the 

incidence of these episodes.  The present results also showed that Muse-measured mind 

wandering was lower when receiving auditory feedback, in contrast to a recent study under 

very similar conditions (Svetlov et al., 2019).  This discrepancy between findings could be 

due to methodological differences, since those authors used 30% shorter sessions, 

recalibrated the device between conditions, and dichotomised outcome data according to a 

pre-defined threshold rather than using raw results. 

Subjective ratings of meditation experiences across task conditions provided some 

context for the objective findings.  Ratings showed decreased sleepiness and a reduced sense 

of calm, which together suggest an increase in subjective arousal when auditory feedback was
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present.  This may at first appear counterintuitive, given a commonly held view that 

meditation should be a relaxing experience—a notion embedded in the Muse ecosystem 

itself, where “calm” is explicitly the target state.  In the Buddhist tradition, however, 

meditation has instead been regarded as a kind of relaxed alertness that strikes a balance 

between under-arousal and over-arousal (Andersen, 2005; Britton et al., 2014).  Indeed, 

evidence suggests that during early training, meditators require substantial mental effort to 

achieve the meditative state (Lutz et al., 2008; Tang et al., 2012).  Furthermore, empirical 

data from an MBSR cohort showed that reductions in subjective sleepiness were associated 

with increased self-reported present moment attention and non-judgemental orientation to 

experience, two abilities thought to characterise the construct of mindfulness (Del Re et al., 

2013).   

Written responses from home practice gave some additional insight into the 

experience of feedback during meditation.  Responses relating to the Active theme suggested 

feedback increased engagement in meditation, in line with the view of increased arousal.  The 

second theme, Guiding, was consistent with the observed trends in quantitative data toward 

an increased awareness of the process of breathing and with difficulties maintaining attention 

when auditory feedback was present.  The experience of Stress due to feedback was, on the 

one hand, consistent with qualitative reports from users of a similar device prototype (Sas & 

Chopra, 2015).  On the other hand, a recent study found no difference in physiological stress 

markers (high frequency heart rate variability, electrodermal activity, and salivary α-amylase) 

when meditating with Muse auditory feedback relative to no feedback (Svetlov et al., 2019).  

Reports of stress or anxiety due to feedback suggest that the task became onerous or 

frustrating for some participants, perhaps because of failed attempts to control feedback, 

performing more poorly than desired, or the need to divide attention between breath focus 

and feedback monitoring.  Auditory feedback on task performance has also been shown to 
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increase physiological indicators of stress when contingency on task performance is low, i.e. 

feedback is less controllable (Peters et al., 1998).  This suggests that as control over feedback 

increases with practice, the experience should become less stressful.  The fourth theme, 

Distracting, was again consistent with open-ended responses from previous work (Marcengo 

et al., 2017; Sas & Chopra, 2015).  Novel stimuli (here auditory feedback) tend to be 

effective at attention capture, making the task of attending to the breath more difficult 

(Schmeichel & Baumeister, 2013).  The final theme, Incongruent with subjective experience, 

although not endorsed by a large proportion of participants, is in line with previous work 

showing that subjective mind wandering has only weak or negligible associations with device 

metrics (Hunkin et al., 2021b).   

6.6.1 Limitations and Future Research Directions 

A major strength of the present work was the use of multiple measurement and 

analytic methods, enabling a more comprehensive understanding of the effects of 

synchronous auditory feedback on meditation.  A key limitation is that differences between 

groups could not be conclusively ascribed to the provision of information about mind 

wandering, since it is possible that the mere sound of feedback with no neurological basis 

might also improve meditation performance through demand or expectancy effects, or by 

increasing attention or task effort due to heightened goal salience.  Sham feedback could also 

produce subjective effects such as less sleepiness and fewer relaxed feelings.  However, the 

no feedback control is a meaningful comparator because it is representative of standard 

practice (i.e. using a meditation app without feedback).  Another limitation was that a priori 

power was not achieved due to high rates of device disconnection during the experiment; 

higher power may have yielded less ambiguous results regarding state mindfulness, which 

only approached significance.  Lastly, due to time and resource constraints, the present work 

did not examine EEG performance markers other than Muse mind wandering score. 
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These findings raise some important directions for future research.  The stress 

experienced by some participants in response to feedback suggests that it may be beneficial to 

have a training phase where feedback becomes progressively more intrusive as meditators 

gain skill, in order not to overwhelm their capacity to process it.  Advancement through this 

phase could even be linked to physiological measures of stress, where possible to measure 

these.  We speculate that this could be especially helpful for meditators with an anxious 

disposition, who may find it particularly difficult to adopt a calm and non-judgemental 

approach to their own performance.  Future research could also evaluate the benefit of 

providing education regarding feedback, incorporating issues such as the dialectic between 

relaxation and arousal, the fact that feedback may become easier to control with practice, and 

the divergence of feedback from subjective mind wandering state.  Regarding the 

methodological limitations discussed previously, evaluating Muse relative to sham feedback 

may give insight into the importance of the accuracy of feedback, although interpreting the 

effects of sham feedback also comes with caveats (Alino, 2016; Lambert, 2013).  While the 

present study demonstrated both objective and subjective differences in meditating with 

Muse relative to no feedback, it is unclear whether these differences persist in long term use, 

and this would be a worthwhile area for further research.  Longitudinal research is also 

needed to determine whether early meditation experiences with Muse lead to differences in 

meditation attitudes, intentions, and behaviours, compared to using meditation apps without 

feedback. 
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The overall aim of this thesis was to examine how wearable devices might contribute 

to the treatment of mental health problems.  Wearable devices are an emerging group of 

digital mental health technologies that could play a significant role in overcoming the 

“treatment gap” between those requiring evidence-based treatments and those who actually 

receive them (Wilhelm et al., 2020).  However, limited knowledge currently exists about the 

range of devices that are commercially available, how they claim to work, evidence for their 

efficacy, and the clinical implications of their use.  Furthermore, there has been little research 

examining the acceptability of wearable devices to consumers.   

The present research aimed to begin to address these gaps in the literature, which limit 

greater clinical adoption of wearable technologies.  Two studies investigate wearable devices 

broadly, with the aim of identifying available devices, reviewing potential implications of 

clinical use, and evaluating acceptability for mental health consumers.  A further two studies 

concern a specific device modality, EEG neurofeedback.  This work evaluates the capacity of 

the Muse EEG meditation headband to measure state mindfulness and related constructs and 

investigated the effect of receiving EEG neurofeedback from this device during focused 

attention meditation.  The results of these studies build on the limited existing literature on 

the use of wearable devices for the treatment of mental health problems.  The following 

chapter reviews the key findings of each study and outlines their significance with reference 

to prior literature.  The clinical and theoretical implications of the thesis are then discussed, 

along with relevant strengths, limitations, and directions for future work. 

 CHAPTER 7: GENERAL DISCUSSION AND RESEARCH CONCLUSIONS 
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7.1 Summary and Significance of Key Findings 

Study 1 reviews fourteen commercially available wearable devices that could be used 

as adjuncts in the treatment of anxiety-related symptoms.  These devices are thought to work 

through five distinct modalities: electrodermal activity biofeedback, EEG neurofeedback, 

entrainment, HRV biofeedback, and respiration biofeedback.  The review identifies scant 

evidence for most modalities in relation to mental health outcomes.  There is some evidence 

for HRV biofeedback, though this tends to be of lower quality and pertains more to sensitive 

lab-based measurement devices rather than wearable devices.  The review reveals a number 

of risks and unexpected effects that should be anticipated when using these devices.  It also 

proposes a pragmatic clinical evaluation framework, adapted from earlier work, that could be 

used as a decision aid when considering the use of wearables.   

Study 1 addresses a significant gap in the literature on wearable devices for mental 

health.  Since these devices have mostly become available over the past decade, there was 

little pre-existing research enumerating and classifying devices and their respective 

modalities.  Previous reviews were no longer current (e.g., Clough & Casey, 2011), 

concerned only with activity and sleep trackers (e.g., Martinez et al., 2016), or examined 

biofeedback devices within other contexts such as stress (e.g., Subhani et al., 2017).  

Moreover, these reviews did not comprehensively consider the implications of using 

wearable devices in clinical practice, such as questions about risks or clinical decision-

making regarding device use.  The significant contribution of Study 1 is therefore to bring 

together the most current information regarding available wearable devices, evidence for their 

use, and relevant clinical considerations in the context of treating anxiety symptoms. 

Study 2 specifically focuses on the acceptability of wearable technology, as distinct 

from other digital mental health technologies. The findings suggest that mental health 

consumer interest in blended therapies (i.e., wearable device treatments used adjunctively 
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with conventional talk therapies) is strong and only marginally lower than interest in 

conventional talk therapies.  Perceived effectiveness of wearables is a particularly strong 

predictor of interest in using them, while sociodemographic variables are not predictive of 

acceptability.  These predictors of acceptability are largely consistent with existing studies 

investigating other digital mental health interventions (see, e.g., Klein & Cook, 2010; March 

et al., 2018; Wallin et al., 2018).  Using wearable devices as adjuncts to treatment appears 

more appealing for those who have negative attitudes to conventional therapies and less 

experience in help-seeking.  These findings suggest that wearable devices may be a useful 

engagement tool for those who may typically not seek help via typical mental health 

channels, consistent with one theorised benefit of digital mental health interventions (Clarke 

& Yarborough, 2013; Lui et al., 2017).   

Study 2 was devised to overcome some significant limitations of existing research 

into the acceptability of wearable devices and other digital mental health interventions.  

Firstly, previous research on wearable devices was generally focused on applications other 

than mental health, with an emphasis on higher-level or device-related characteristics rather 

than individual-level predictors of acceptability (see, e.g., Kalantari, 2017).  Furthermore, 

some existing work produced an arbitrary measure of acceptability which could not easily be 

compared to other treatments, or to adjunctive use alongside those treatments (see, e.g., 

Arjadi et al., 2018; Dorow et al., 2018).  Study 2 is thus a significant contribution in two 

respects.  Firstly, it explores the influence of individual factors such as sociodemographic 

factors, clinical status, and attitudes to therapy.  Secondly, acceptability for wearable devices 

is examined within the context of acceptability for conventional therapies and self-help 

interventions, so that predictors of differential acceptability between therapies could be 

examined. 
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Studies 3 and 4 evaluate the Muse headband, which was developed to support focused 

attention meditation by providing synchronous neurofeedback.  Study 3 identifies significant 

within- and between-participants associations between device-measured mind wandering and 

an objective measure of state mindfulness, the Breath Counting Task.  These associations are 

particularly notable due to the entirely distinct methodologies used for each measure (i.e., 

EEG vs. a cognitive task).  Furthermore, mean Muse mind wandering and mean Muse 

recoveries during a 14-day home practice period jointly explain around 30% of variance in 

four mindfulness-related trait measures.  These findings suggest that Muse has practical value 

as a measure of state mindfulness during meditation.  Study 4 is based upon the same dataset, 

and the results of this study suggest that receiving neurofeedback during meditation results in 

a greater level of state mindfulness relative to unaided practice.  Feedback also appears linked 

to differences in the experience of meditation, which are consistent with a heightened sense 

of arousal.  Thematic analysis reveals that participants perceive positive aspects of feedback, 

specifically making the experience of meditation more active and receiving guidance in how 

to practice.  However, there are negative aspects of feedback too: it could induce stress and 

distraction, and feedback is not always congruent with subjectively perceived performance. 

Although the Muse EEG meditation headband appears to be one of the most-

researched wearable devices presently available, Studies 3 and 4 both make significant new 

contributions to this literature.  Previous work typically compared the use of Muse with a 

control intervention over several weeks, examining the effects on cognitive, psychological 

and psychophysiological outcomes (see, e.g., Balconi et al., 2018; Bhayee et al., 2016; 

Crivelli et al., 2019).  However, there has been little research to assess whether the measures 

produced by Muse were valid correlates of enhanced meditation performance.  Study 3 is 

therefore novel in showing that Muse measures are strongly associated with a behavioural 

measure of state mindfulness.  Furthermore, little existing research had compared Muse with 
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a comparable meditation intervention without neurofeedback.  This type of comparator is 

important because the ultimate clinical utility of Muse is for it to have incremental benefits 

over unaided meditation interventions.  Study 4 therefore compares the use of Muse with a 

no-feedback control condition that is matched in every way except for the presence of 

feedback.  This is an important methodological detail because very little research exists to 

support the use of EEG neurofeedback as a specific active ingredient that enhances 

meditation practice relative to unassisted meditation.   

These findings add to those of Balconi and colleagues (Balconi et al., 2018; Crivelli et 

al., 2019) who compared Muse with a closely matched meditation-based active control 

condition over a four week period.  In Study 4, the only difference between experimental 

conditions is the presence of auditory feedback, whereas in the studies of Balconi and 

colleagues there were other obvious differences between conditions that participants would 

have been aware of (the use of a headband and smartphone app, gamification features, 

asynchronous feedback on performance).  The present methodology thus eliminates some 

possible confounders that were present in previous work.  Furthermore, these results suggest 

a potential mechanism through which the improvements observed by Balconi and colleagues 

occurred, since higher state mindfulness during meditation has been linked to accumulated 

decreases in psychological distress (Kiken et al., 2015). 

7.2 Clinical and Theoretical Implications 

The results of these studies have important implications, both for clinical work and for 

theory.  A recurring clinical implication across all studies is the potential benefit of clinician 

guidance in the use of wearable devices.  The review of the literature in Study 1 highlights 

that without clinician involvement, there is likely to be a higher risk of misdiagnosis, dropout, 

overinterpretation of device metrics, or use of devices in unhelpful ways (e.g., as an 

avoidance strategy).  Study 2 shows that wearable devices are far more appealing to most 
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prospective users when coupled with professional support, although the factors driving 

assisted use may be different to those driving unassisted use (cf. Arjadi et al., 2018).  Study 3 

demonstrates that Muse EEG headband device metrics contain useful information but that it 

may need to be interpreted with care, while Study 4 suggests that evidence-based 

psychoeducation could be critical to reducing misperceptions about the accuracy, 

controllability, and physiologically arousing nature of neurofeedback during meditation.  

Together, these findings are consistent with the theory that wearable devices are likely to be 

more acceptable and effective when clinician guidance is available.  This is in line with 

research findings in other domains of digital mental health, such as apps and Internet 

interventions (Baumeister et al., 2014; Garrido et al., 2019; Schueller et al., 2017).   

The implication of these findings is that clinicians should take an active role in 

discussing how a wearable device might be therapeutic, how it should be used, what to expect 

when using it, and what limitations there might be in terms of the beneficial effects or the 

accuracy of information provided by the device.  As with other forms of homework between 

sessions, clinicians need to devote time to reviewing device data in session regularly or risk 

clients judging the device to be unimportant (see, e.g., Beck, 2021).  There is some 

disagreement in the literature over the importance of clinicians’ personal experience with 

adjunctive digital mental health interventions (Clough & Casey, 2015b; Morris & Aguilera, 

2012).  However, experience with wearable devices would arguably be valuable for 

clinicians, especially when an evidence-based evaluation of the device is not available—as is 

the case for the vast majority of currently available devices in the marketplace. 

While showing that clinician guidance may increase the acceptability of wearable 

devices, the results of Study 2 also suggest that for some clients, incorporating wearable 

devices could enhance the acceptability of conventional treatments.  Empirical studies and 

digital mental health models such as the Internet Interventions model (Ritterband et al., 2009) 
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and the Efficiency Model of Support (Schueller et al., 2017) have tended to focus on the 

additive benefit of the clinician to digital mental health interventions.  However, Study 2 

further tests this theory by considering whether using wearable devices as adjuncts could 

increase the prospective acceptability of conventional therapies.  The results suggest that 

incorporating wearables has the potential to increase acceptability, specifically in cases where 

clients have no previous experience with therapy, have negative evaluations of therapy, or 

perceive devices to be effective.  These findings are consistent with the theory that digital 

mental health interventions play a role in reducing attitudinal barriers to accessing care 

(Christensen & Hickie, 2010).  Future theoretical and applied research should therefore not 

only consider the additive benefits of clinician support on digital mental health intervention 

acceptability, but also the reverse. 

The clinical implications for the use of the Muse EEG meditation headband are 

somewhat less clear.  The results of Study 4 suggest demonstrable benefits in using Muse to 

practice meditation, relative to conventional meditation approaches (represented by the no-

feedback condition in Study 4).  However, the findings of Study 3 make a less compelling 

case for using Muse to assess clinical change.  As detailed in Section 5.6, the low test-retest 

reliability of the mind wandering measure is concerning, and may reflect significant 

measurement error (see Ratti et al., 2017) or calibration effects in addition to the expected 

fluctuation of a state variable.  Study 3 shows that both Muse measures together significantly 

predict trait mindfulness when they are aggregated over numerous sessions, reducing the 

noise associated with each measurement occasion.  However, comparing a singular session 

result with a later session is unlikely to produce meaningful information about change, as 

evidenced by a recent study of Muse measures (Acabchuk et al., 2021).  These limits to 

reliability are likely to be common with consumer-grade wearable devices because of 

artifacts in the raw physiological measures and the limited accuracy of algorithms in making 
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inferences from the data.  This problem underlines the importance of providing appropriate 

psychoeducation so that clients do not become overly fixated on the meaning of device 

metrics, as discussed in Section 3.5.1. 

A final notable implication relates to the importance of clinical and sociodemographic 

predictors of the prospective acceptability digital mental health interventions.  Previous 

research has shown mixed findings regarding the importance of sociodemographic predictors 

in the acceptability of digital mental health interventions, perhaps due to heterogeneity across 

those interventions (see, e.g., Klein & Cook, 2010; Mackert et al., 2016; Wallin et al., 2018).  

These predictors, such as age, gender, education, socioeconomic status, and remoteness, 

tended to not be significant, or demonstrated only small or trivial effect sizes.  Likewise, 

symptom severity had small to negligible effects on preference for e-mental health relative to 

conventional treatments (March et al., 2018; Wallin et al., 2018).  The results of Study 2 are 

broadly consistent with these existing findings, as differences in symptom severity and 

sociodemographic factors do not appear to affect the prospective acceptability of wearable 

devices relative to conventional talk therapies or self-help interventions.  The relative lack of 

influence of sociodemographic factors may run counter to intuition.  Although it is known 

that older age is associated with lower levels of technology acceptability in the broader 

context of information communications technology, this relationship may not hold within the 

digital health context due to differences in utilisation context, motives, and user heterogeneity 

(Arning & Ziefle, 2009).   Clinicians should therefore take care not to make assumptions 

about treatment preferences based solely on symptom severity or sociodemographic factors.  

Further research in this area may allow for a more nuanced understanding of when symptom 

severity and sociodemographic factors might be important, and whether concurrent and 

retrospective acceptability follow a similar pattern.  
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7.3 Strengths 

Wearable devices are rapidly emerging but under-researched technologies, and thus a 

key strength of this thesis is the novel topic of study and its relevance to current trends in 

clinical practice.  Furthermore, the research program took a multi-faceted approach in line 

with the Internet Interventions model (Ritterband et al., 2009), which identifies a wide range 

of factors that would potentially affect the utilisation and effectiveness of e-health 

interventions such as wearable devices.  This resulted in the development of knowledge in 

multiple areas: from identifying currently available devices and evaluating what evidence 

existed for using them, to determining individual factors relating to the acceptability of 

wearable devices and finally, assessing the potential benefits of one specific device.  

A particular strength of this thesis is in drawing together the existing literature in the 

areas of neurofeedback-supported meditation and state mindfulness.  Prior theoretical work 

suggested that detecting mind wandering episodes and feeding this information back to the 

meditator could facilitate and support the development of effective meditation practice 

(Brandmeyer & Delorme, 2013).  However, existing literature had not acknowledged that the 

neurological signal being measured might effectively serve as a measure of state mindfulness.  

The present work thus elucidates a specific mechanism through which neurofeedback-

supported meditation could operate, since enhanced state mindfulness during meditation has 

been linked to superior clinical outcomes (Garland et al., 2015; Kiken et al., 2015).  Making 

the connection between these two separate bodies of literature extends the theoretical basis 

for neurofeedback-assisted meditation and could stimulate new research in this area. 

Another important strength of the present thesis is in demonstrating a novel evaluation 

paradigm.  While clinical trials are the most well-established way to demonstrate the efficacy 

of new devices, they are costly and time consuming, and more rapid methods of evaluation 

are needed (Kumar et al., 2013; Mohr, Lyon, et al., 2017; Patrick et al., 2016; Riley et al., 
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2013).  Lab-based evaluation of devices, as Studies 3 and 4 demonstrate, may be a useful 

middle ground in which potential devices can be assessed in terms of their measurement 

accuracy and acute effects on relevant process variables.  This paradigm is likely to be most 

appropriate when there are known mediators of the long-term outcomes being studied (in the 

present work, state mindfulness) and when devices are used intensively for short periods.  

Other advantages of this approach include the ability to directly compare participants’ 

meditation experience with and without feedback in a relatively controlled environment, 

without introducing additional confounders such as extended app features like gamification, 

reminders, and asynchronous feedback on performance, along with the associated digital 

placebo effect (Torous & Firth, 2016). 

Lastly, the use of multiple investigative methods is a strength of all three empirical 

studies within this thesis.  Study 2 includes qualitative responses, which captured important 

aspects of wearable device acceptability that were not part of the quantitative scales.  Studies 

3 and 4 utilise a task-based assessment as well as a quantitative and qualitative measures of 

the experience of meditating with Muse, in addition to the device measures.  These measures 

reveal important aspects of the meditation experience, such as heightened arousal, stress, and 

distraction related to feedback, which are not evident from the quantitative measures.  

Utilising multiple methods has thus allowed for a more rigorous and nuanced investigation 

across each of the three empirical studies.  

7.4 Limitations 

A considerable limitation affecting Studies 1 and 2 concerns the heterogeneity of 

wearable devices.  As identified in Study 1, at least five modalities of device may be used for 

the treatment of mental health problems, and there are varying levels of evidence for these 

modalities.  Device factors such as the physical profile of each device modality and the way it 

is used could be major factors in whether it is acceptable to clients, as discussed in Study 2.  
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However, even within each modality there is likely to be substantial heterogeneity in aspects 

such as device build quality, proprietary algorithms, software usability, measurement fidelity, 

and user appeal (see, e.g., Nelson et al., 2020).  Heterogeneity could also result from device 

and software development evolution over time (Clough & Casey, 2015a).  For example, 

while the EEG headband evaluated in Studies 3 and 4 was a current model at the 

commencement of this thesis, two newer models of the same device are now available, and 

numerous software updates have been made.  It is typically not evident to clinicians and 

clients whether the intervention being delivered by these newer devices or newer software 

differs substantially from earlier versions.  Given these factors, it may be difficult to develop 

general rules about the efficacy of any one specific modality—thus limiting the external 

validity of the present findings. 

Although this thesis takes a broad approach to the use of wearable devices in the 

mental health context, it was not possible to include all of the potentially important aspects.  

For example, while Study 2 investigates the perceived acceptability of wearables to clients, 

the factors involved in clinician decision making were not examined.  Clinician barriers are 

thought to be critical to achieving broader implementation of digital mental health services, 

and may include issues such as cost, privacy concerns, a lack of awareness or training, and 

resistance to change (Batterham et al., 2015; Ramsey et al., 2016).  The significance of 

clinician attitudes was reinforced in Study 2, where over 96% of respondents said that they 

would use a wearable device if their clinician recommended doing so.  A further limit to the 

scope of the present work concerns the theorised benefits of digital mental health 

interventions.  Study 2 suggests that there is a high level of prospective acceptability for 

wearable devices amongst potential clients.  However, the present work does not quantify the 

level of retrospective acceptability following use of such devices in a wearable-based 

intervention, or the degree of adherence and retention achieved in such an intervention. 
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An important limitation of Studies 3 and 4 is the sample size, which fell short of the 

planned number due to data loss.  This led to relatively wide confidence intervals, which limit 

the certainty that the results could be replicated in future.  The first main source of data loss, 

due to a poor headband signal, is unlikely to have affected the results, other than to reduce the 

effective sample size.  Nonetheless, recurrent experiences of losing headband connection may 

limit the clinical utility of the device for some meditators, and indeed appeared to be a source 

of significant frustration in verbal feedback to the researcher.  The second main source of 

data loss, invalid breath count data, could have potentially biased the results.  However, the 

lack of information about why breath count data loss occurred (i.e., why participants failed to 

complete at least one correct breath count cycle) means that it is difficult to know the extent 

of any possible bias.  Investigating this problem further will be important to confirm the 

validity of the task as an objective measure of mindfulness.   

Another limitation concerns the non-clinical nature of the sample used in Studies 3 

and 4.  Due to the evaluation paradigm used in these studies (outlined earlier in this section), 

the objective was to assess state and trait mindfulness and the effect of neurofeedback on 

these process variables, rather than on psychological symptoms directly.  For this reason, it 

was possible to use a non-clinical sample (albeit sampled from a population known to have a 

high proportion of individuals with elevated mental health symptoms).  This approach was 

beneficial in terms of ease of participant recruitment and was appropriate given the little 

existing research with the device.  However, the use of non-clinical samples represents a 

common limitation in digital mental health research (Lau et al., 2020).  In the present context, 

it is possible that higher levels of psychopathology may somehow invalidate the EEG 

algorithms used, leading to less accurate feedback being provided.  Perhaps more 

conceivably, heightened psychopathology could affect the ability of the meditator to utilise 

feedback in order to achieve a heightened state of mindfulness.  These limitations highlight 
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the importance of working toward trials within clinical populations, to ensure that the 

beneficial effects of the device are invariant to psychopathology. 

One final limitation relates to the assumptions made about the purpose of meditation 

and the underlying mechanisms that bring about therapeutic benefits.  The present thesis 

considers meditation as a clinical treatment for the purpose of symptom reduction, however 

Eastern meditation traditions may have a different goal—usually, the experience of particular 

subjective state (Reddy & Roy, 2019).  The utility of neurofeedback support may therefore 

vary depending on what the meditator is aiming to achieve through their practice.  

Furthermore, as described in Section 1.3.2, there are many different styles of meditation, and 

each style may train different cognitive and affective skills, or even produce salutary effects 

via other mechanisms such as increasing self-compassion (Wielgosz et al., 2019).  The 

present thesis emphasises the skills thought to be trained in focused attention meditation: the 

ability to monitor for distractions, disengage from them, and reorient attention (Lutz et al., 

2008).  The findings are thus most relevant in the context of focused attention meditation, but 

at the same time may not consider all of the important mechanisms of symptom reduction 

associated with this style of meditation. 

7.5 Future Research Directions 

Considering the issue of device heterogeneity, a significant contribution to the 

scientific literature would involve the development of an explicit classification framework of 

wearable devices for mental health, building on the work of Study 1.  The key purposes of 

such a framework would be to identify important dimensions across which wearable devices 

differ, and to consider the implications of these differences for clinical and research work.  

For example, devices like Muse are used primarily for brief practice sessions, whereas other 

devices are designed to be worn throughout the entire day and/or night.  This characteristic is 

likely to have implications for device evaluation, because while lab-based evaluation may be 
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appropriate for the former type, the latter is likely to require the use of field data.  A 

classification framework would aid future work in the area by providing a common language 

for researchers, reducing terminological differences and redundancy. 

Given the need to broaden the empirical evidence for wearable devices, an important 

future research direction is in developing the most economical and rapid methods of 

evaluating wearables.  Digital mental health interventions like apps and wearable devices 

typically have a short lifespan before being superseded (Clough & Casey, 2015a).  

Furthermore, as shown in Study 1, a large number of wearable devices targeting mental 

health and wellbeing are already available, with this number likely to grow significantly in 

coming years.  This constant turnover and short lifespan make evaluation difficult because 

devices may be outdated before evaluation is completed.  Future research will need to 

establish evaluation paradigms that can overcome these challenges, and there are several 

avenues of enquiry that could contribute to this end.  Firstly, given limited research capacity, 

one target might be to formalise the process of determining which devices are most likely to 

prove efficacious based on a rapid device assessment.  This would allow evaluation resources 

to be targeted more efficiently.  A second strategy is to develop research methods that might 

yield more rapid results.  Randomised controlled trials are considered a gold standard, yet 

there is thought to be a time lag of around seven years from grant application to the 

dissemination of results in these trials (Ioannidis, 1998).  The use of alternative methods such 

as multiple baseline designs has been proposed (Bucci et al., 2019; Clough & Casey, 2015a; 

Kumar et al., 2013), but to date there are few examples to demonstrate the theorised benefits 

of these approaches.   

The final proposed strategy is to develop a greater theoretical understanding of the 

active ingredients in different types of wearable device interventions, and the factors that 

might moderate the effect of those mechanisms.  Theory development can help to understand 
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possible explanations for the effects under study, as opposed to merely quantifying those 

effects (Borghi & Fini, 2019).  Developing theory would thus help to inform the development 

of more effective devices, but also allow provide some objective guidelines for evaluating 

devices (potentially augmenting the first strategy described above).  Furthermore, theoretical 

models might suggest which factors could moderate the effectiveness of any given 

intervention, helping to gauge whether changes to wearable software and hardware are likely 

to have an impact upon intervention effectiveness. 

In regard to the Muse EEG meditation headband, an important avenue for future 

research will be evaluation in clinical populations.  One objective of this work would be to 

determine whether the presence of psychopathology affects the efficacy of the device, as 

mentioned in the discussion of limitations.  A recent systematic review found that stand-alone 

mindfulness exercises have small-to-medium effect sizes for symptoms of both anxiety (g = 

0.39) and depression (g = 0.41; Blanck et al., 2018).  The results of Study 4 suggest that 

neurofeedback during meditation could amplify these effects, however it is possible that these 

additional benefits of neurofeedback could be moderated by the presence of clinical 

symptoms.  It would therefore be valuable to test whether the device has specific efficacy in 

the presence of anxiety or depression symptoms, which are common mental health problems.  

Device efficacy could also be differentially affected by the presence of common 

neurodevelopmental disorders, such as Autism Spectrum Disorder or Attention Deficit 

Hyperactivity Disorder. 

Another important question regarding assisted meditation is whether it may have the 

potential to be unhelpful or even harmful for some meditators.  It is theorised that monitoring 

for distractions is one of the key skills trained in focused-attention meditation (Lutz et al., 

2008).  While supporting this ability with feedback may aid the meditation process in the 

short term, there may be a point at which this aid becomes an unhelpful crutch if it substitutes 
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for the meditator developing their own monitoring skills.  Furthermore, iatrogenic effects 

have been observed in connection with both neurofeedback and meditation, although these 

effects are not well understood at present (Hammond & Kirk, 2008; Van Dam et al., 2018).  

Future work should consider whether the level of meditation experience or the presence of 

particular risk factors might contraindicate aided meditation.  Researchers should also collect 

data about adverse events in order to better understand possible harms. 

Clinical trials could consider a range of secondary questions that are pertinent to 

wearable devices.  Digital mental health interventions are theorised to enhance engagement 

(Lui et al., 2017; Naslund et al., 2017), which is pertinent since there are some common 

barriers to engaging with meditation (Hunt et al., 2020; Russell et al., 2018).  It would 

therefore be worthwhile to determine whether the use of a meditation aid such as Muse led to 

increased adherence and retention in therapy relative to a comparable meditation intervention 

that was unassisted.  These behavioural data form one measure of retrospective acceptability, 

but should also be complemented with self-report data in order to achieve a more 

comprehensive evaluation (Sekhon et al., 2017).  Furthermore, evaluating the prospective 

acceptability of devices used in clinical trials may give insight as to device-level factors such 

as specific modalities or features that influence the likelihood of using particular devices.  

This data could complement the individual-level predictors of prospective acceptability that 

were reported in Study 2. 

Further research into the use of feedback during meditation could help to determine 

how the quality and source of the feedback signal might moderate the benefits to meditation 

practice.  For example, a newer version of the Muse EEG meditation headband, Muse 2, also 

collects data from a gyroscope, accelerometer, and pulse oximeter, which can be used to 

provide feedback on the basis of body movement, breath, and heart rate during meditation 

(InteraXon Inc., 2021).  It is possible that these data could have incremental validity in 
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predicting mindfulness during meditation, increasing the accuracy of feedback.  It is not clear 

whether any increase in accuracy would further enhance the effect of neurofeedback during 

meditation on state mindfulness.  However, one potential benefit of increased signal accuracy 

may be greater convergence of device feedback with subjective meditation experience, 

increasing the face validity of the technology and potentially enhancing device acceptability. 

A related research question is whether degradation of the neurofeedback signal 

accuracy substantially reduces the benefits of feedback on meditation.  It is presumed that 

accurate feedback is a necessary element of biofeedback (McKee, 2008), although other 

mechanisms affecting attention, motivation, self-efficacy, and locus of control may play a 

significant role (Alino, 2016; Thibault & Raz, 2017; Weerdmeester et al., 2020).  The effect 

of degradation of other signal characteristics, such as feedback frequency, is another 

theoretical question.  A recent study by Patsenko et al. (2019) tested a mindfulness training 

paradigm similar to Muse, in which feedback was provided during a mindfulness-based game 

app.  Feedback was based upon tapping the screen with each breath, similarly to the Breath 

Counting Task; the correct response was a single tap for the first four breaths, and a double 

tap for the fifth breath.  Since participants only received feedback with each tap, the 

frequency of the feedback signal would be around six times per minute (a typical paced 

breathing rate), whereas the measure of mind wandering produced by Muse is sampled at 1 

Hz (i.e., once per second).  Patsenko et al. found that two weeks’ practice with the app led to 

significant changes in connectivity in fronto-parietal areas thought to be involved in attention 

regulation, relative to a control group who played an attentionally demanding game.  

However, it is unclear from this work whether feedback of this type has incremental benefits 

over meditation practice without feedback.  Future research might therefore compare this 

type of mindfulness game to a conventional app-based mindfulness intervention, or to other 

forms of feedback such as Muse.  If feedback based on behavioural data such as breath 
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counting is comparable to that from neural data, this could obviate the need for wearable 

devices, thus increasing access to meditation-supporting technologies. 

7.6 Conclusion 

Wearable devices are one part of a broader move toward the digitalisation of mental 

healthcare, and have potential for enhancing the accessibility, acceptability, and effectiveness 

of psychological interventions.  The present thesis adds to a growing body of evidence for the 

use of wearable devices in treating mental health problems.  Overall, the results of the present 

research program are consistent with research in the wider digital mental health field.  A 

diverse range of innovative therapeutic interventions are increasingly available (Study 1; cf. 

Mohr, Burns, et al., 2013).  These interventions show broad appeal with clients and hold 

promise in reaching those who may not use or respond to conventional therapies (Study 2; cf. 

Klein & Cook, 2010; March et al., 2018).  The results of the present thesis therefore support 

the notion that wearable devices are an emerging category of digital mental health 

interventions that may have distinct benefits for engaging consumers.  

Generating an evidence base for the effectiveness of digital health interventions 

remains one of the most difficult problems in the field, given their vast number and rapid 

turnover (Coffey & Coffey, 2016; Torous & Roberts, 2017a).  The present thesis used a 

process-oriented approach, novel relative to other work in this area, to contribute new 

knowledge about neurofeedback-assisted meditation.  The results provide preliminary support 

for the use of synchronous feedback to enhance the therapeutic benefits of meditation 

practice.  Moreover, the observed data were consistent with the mechanisms through which 

neurofeedback is theorised to function.  This work thus complements existing theoretical and 

empirical studies in the area.  

Wearable devices will continue to evolve and are likely to be influenced by 

innovation in areas like digital phenotyping, the use of smart devices to track observable 
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markers of mental health.  Future directions could include greater integration with social 

media, or with virtual and augmented reality systems.  These developments undoubtedly 

represent new and demanding challenges for the field.  Given the potential importance of 

wearable devices in future mental healthcare systems, continuing clinician and researcher 

engagement with the development and evaluation of these devices is essential. 
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Description of wearable devices shown to participants 

Wearable devices for mental health: 

§ are small devices like headbands, clips which attach to the ear or finger, or 

wristbands/watches 

§ might be used to improve general wellbeing or to treat mental health problems detect 

body signals like breathing, heart rate, skin dryness or level of brain activity generally 

work through relaxation training and give the user feedback about signals of 

relaxation or stress in the body 

§ may be worn either all day or for brief periods of time 

§ are low cost - around the same as one session with a psychologist, or less 
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Spearman correlations between all study variables 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
1. Age — -.11c -.13c -.04 .10 -.20a -.26a -.24a -.27a -.19a .10d .07 -.14b -.10d -.01 -.08 .18a 
2. Socioeconomic disadvantage -.11c — .03 -.03 .09 -.10d -.05 -.04 -.01 .02 -.03 -.08 -.01 -.03 -.03 .02 -.04 
3. Previous knowledge -.13b .03 — .16b .00 -.02 .04 .00 .00 .19a .05 .05 .12c .07 .00 .04 -.08 
4. Perceived effectiveness -.04 -.03 .16a — .15c .02 .13c .13c -.01 .17b .23a .51a .46a .20a .24a .26a -.04 
5. Satisfaction with prior treatmente .10d .09d .00 .15b — -.20a -.12d -.11d -.35a .12d .30a .09 -.06 .01 -.19a -.08 .15c 
6. Depression -.20a -.10c -.02 .02 -.20a — .60a .61a .39a -.01 .06 .02 .02 .12c -.04 -.05 -.02 
7. Anxiety -.26a -.05 .04 .13b -.12c .60a — .71a .39a -.04 .13c .10d .10d .15b -.04 .00 -.04 
8. Stress -.24a -.04 .00 .13b -.11c .61a .71a — .38a -.02 .14c .14b .12c .16b -.01 -.01 -.04 
9. Barriers to treatment (total) -.27a -.01 .00 -.01 -.35a .39a .39a .38a — -.13c -.21a -.08 .10d .17b .10d -.01 -.18a 
10. Technological readiness -.19a .02 .19a .17a .12c -.01 -.04 -.02 -.13b — .06 .10d .11d -.07 .04 .15b .01 
11. TT .10c -.03 .05 .23a .30a .06 .13b .14b -.21a .06 — .44a .01 .04 -.54a -.06 .34a 
12. WB .07 -.08d .05 .51a .09d .02 .10c .14b -.08d .10c .44a — .47a .19a .45a .29a .29a 
13. WS -.14b -.01 .12c .46a -.06 .02 .10c .12c .10c .11c .01 .47a — .46a .43a .59a -.65a 
14. OS -.10c -.03 .07 .20a .01 .12c .15b .16b .17a -.07 .04 .19a .46a — .12c -.39a -.36a 
15. WB v TT -.01 -.03 .00 .24a -.19a -.04 -.04 -.01 .10c .04 -.54a .45a .43a .12c — .34a -.09 
16. WS v OS -.08 .02 .04 .26a -.08 -.05 .00 -.01 -.01 .15b -.06 .29a .59a -.39a .34a — -.35a 
17. WB v WS .18a -.04 -.08d -.04 .15b -.02 -.04 -.04 -.18a .01 .34a .29a -.65a -.36a -.09d -.35a — 
Note:  N = 427. Significance values shown in the upper right triangle are adjusted using the false discovery rate method.  TT = talk therapies, 

WB = wearables (blended), WS = wearables (self-help), OS = other self-help. 
ap < .001, bp < .01, cp < .05, dp < .10 
eFor respondents who had previously consulted a mental health professional (n = 359). 
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Table A2 
Spearman correlations of continuous predictors with hypothetical acceptability of four 
mental health treatments  
 TT WB WS OS 

Age  .10^ .07 -.14** -.10^ 
Socioeconomic disadvantage -.03 -.08 -.01 -.03 
Previous knowledge .05 .05 .12* .07 
Perceived effectiveness .23*** .51*** .46*** .20*** 
Satisfaction with prior treatmenta .30*** .09 -.06 .01 
Years affected by conditionb -.03 .01 -.12 -.14^ 
DASS     

Depression .06 .02 .02 .12* 
Anxiety .13* .10^ .10^ .15** 
Stress .14* .14** .12* .16** 

Barriers to treatment (total score) -.21*** -.08 .10^ .17** 
Stigma -.24*** -.12* .11^ .22*** 
Lack of motivation .00 .07 .09 .13* 
Emotional concerns -.18*** -.06 .11* .18*** 
Neg. evaluation of therapy -.29*** -.18*** .05 .05 
Misfit of therapy to needs -.33*** -.17** .08 .13* 
Time constraints -.11* .02 .19*** .11* 
Participation restriction .06 .00 .01 .04 
Availability of services -.04 .04 .08 .09 
Cost .05 .02 -.02 .08 

Technology readiness (total score) .06 .10^ .11^ -.07 
Optimism .13* .20*** .13* -.01 
Innovativeness .02 .04 .10^ .00 
Discomfort -.03 -.02 -.04 .13* 
Insecurity -.01 -.04 -.02 .12* 

Note:  TT = talk therapies, WB = wearables (blended), WS = wearables (self-help), OS = 
other self-help. 
aFor respondents who had previously consulted a mental health professional (n = 
359). 
bFor those who reported a diagnosed condition and reported duration (n = 234). 
^ p < .10, * p < .05, ** p < .01, *** p < .001 (adjusted using the false discovery rate 
method). 
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Table A3 
Categorical predictors of hypothetical acceptability of four mental health treatments (M ± 
SD) 
 TT WB WS OS 
Gender     

Female 5.71 ± 1.61 5.37 ± 1.53 4.00 ± 2.01 4.56 ± 1.72 
Male 5.47 ± 1.71 5.17 ± 1.74 4.01 ± 1.88 4.41 ± 1.77 
d .14 .12 .00 .08 
pFDR .322 .483 .971 .632 

Relationship status     
Single/divorced/separated 5.65 ± 1.61 5.14 ± 1.75 3.90 ± 1.97 4.40 ± 1.85 
Married/committed relationship 5.58 ± 1.68 5.37 ± 1.54 4.07 ± 1.94 4.55 ± 1.67 
d .04 -.13 -.08 -.08 
pFDR .829 .392 .632 .632 

Remoteness     
Major cities 5.64 ± 1.61 5.28 ± 1.57 4.19 ± 1.97 4.58 ± 1.75 
Rural/remote 5.53 ± 1.76 5.30 ± 1.76 3.56 ± 1.82 4.29 ± 1.72 
d .06 -.01 .34 .17 
pFDR .742 .947 .011 .278 

Current wearable usage     
No 5.58 ± 1.69 5.14 ± 1.70 3.84 ± 1.91 4.46 ± 1.75 
Yes 5.71 ± 1.53 5.78 ± 1.20 4.58 ± 1.98 4.62 ± 1.70 
d -.07 -.49 -.41 -.13 
pFDR .742 <.001 .005 .519 

Education     
Diploma or below 5.44 ± 1.76 5.22 ± 1.71 3.91 ± 2.01 4.47 ± 1.86 
Bachelor degree 5.66 ± 1.66 5.25 ± 1.61 4.07 ± 1.95 4.48 ± 1.72 
Postgraduate degree 5.92 ± 1.32 5.51 ± 1.43 4.08 ± 1.81 4.60 ± 1.48 
η2 .01 .00 .00 .00 
pFDR .252a .632 .823 .941 

Household income     
< $35,000 5.56 ± 1.70 5.25 ± 1.75 4.00 ± 2.02 4.56 ± 1.88 
$35,000-$65,000 5.64 ± 1.63 5.22 ± 1.73 3.43 ± 1.93 4.04 ± 1.83 
$65,000-$105,000 5.54 ± 1.66 5.15 ± 1.56 4.10 ± 1.88 4.51 ± 1.57 
> $105,000 5.68 ± 1.66 5.48 ± 1.47 4.38 ± 1.87 4.77 ± 1.62 
η2 .00 .01 .03 .02 
pFDR .950 .632 .026 .079 

Consulted a professional     
No 4.79 ± 1.75 5.26 ± 1.62 4.65 ± 1.76 4.50 ± 1.82 
Yes (no longer seeing) 5.42 ± 1.72 5.20 ± 1.68 3.96 ± 1.91 4.55 ± 1.63 
Yes (still seeing) 6.37 ± 1.12 5.45 ± 1.52 3.75 ± 2.05 4.40 ± 1.90 
η2 .11 .00 .02 .00 
pFDR <.001a .632 .033 .871 

Mental health diagnosis     
No 5.08 ± 1.70 5.18 ± 1.71 4.26 ± 1.86 4.58 ± 1.71 
Yes (no longer impacting) 5.51 ± 1.89 5.16 ± 1.66 3.69 ± 1.86 4.14 ± 1.67 
Yes (still impacting) 5.90 ± 1.50 5.37 ± 1.57 3.97 ± 2.00 4.56 ± 1.77 
η2 .05 .00 .01 .01 
pFDR <.001 .632 .312 .380 
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Note:  TT = talk therapies, WB = wearables (blended), WS = wearables (self-help), OS = 
other self-help.  t-tests used to infer significance of two-group variables and ANOVA 
for more than two groups.  p-values adjusted using the false discovery rate method. 
aLevene’s test indicates non-homogenous variance; interpret p-values with caution..  
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Interpretation of Muse Scores 

Additional to the discussion in the accompanying paper, the following issues require 

consideration when interpreting the measures produced by Muse: 

1. The measure used in the accompanying paper, Muse mind wandering, is not directly 

reported by the Muse app or clinical platform.  The score found there, “Muse points”, 

is calculated by apportioning 0, 1, or 3 points for each second of meditation spent 

within the active, neutral, and calm bands, which represent the three tertiles of the 

scoring range.  The measure used in the paper, Muse mind wandering, is calculated by 

extracting the raw score (ranging from 0-100) for each second of meditation, and 

taking the mean of these scores.  It can therefore be estimated by viewing the charted 

session progress, as shown in Figure 1 (overleaf). 

2. The measurements produced by Muse are dependent on the calibration process that 

occurs at the beginning of each session.  During this calibration, the wearer is asked to 

just let their thoughts flow naturally.  If the wearer purposefully attends to the breath 

during the calibration, then the device will tend to show poorer performance during 

the meditation.  Conversely, if the wearer purposefully adopts a “busy mind” during 

the calibration, the device will tend to report better performance during the 

meditation.  It is therefore important to ensure that any improvements observed are 

not due to the calibration process being “gamed”. 
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Figure B1 
Screenshot of a session summary shown in the Muse app, with description of measures 

 

A. Plot of mind wandering 
score throughout the 
session.  The upper 
extreme represents a score 
of 100 and the lower 
extreme a score of 0. 

 

B. “Muse points” – a score 
derived by apportioning 3 
points per second in the 
“Calm” band and 1 point 
per second in the 
“Neutral” band.  Not 
analysed in the 
accompanying paper, as 
the raw mind wandering 
score was expected to 
contain more information.  
 

C. Count of recoveries 
within the session, as used 
within the accompanying 
paper. 
 

D. Count of “birds”, which 
are heard when mind 
wandering is low for 
extended periods.  Not 
analysed in the 
accompanying paper, due 
to its extremely high 
correlation with mind 
wandering score.    
 

A 

C 

D 

B 
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Table C1 
Written feedback items 
Day Item 
2 Why did you decide to try meditation in this trial?  
2 What are your initial impressions of meditation as practiced with the Muse app 

and headband?  
5 During today’s meditation session, how did you feel when you heard the sounds 

indicating that your mind was wandering?  
5 Do you think these sounds helped or hindered your meditation practice? Why?  
8 What aspects of using the Muse app and headband (if any) are you finding most 

helpful to your meditation practice?  
8 What aspects of the Muse app and headband (if any) are you finding distracting or 

stopping you from meditating effectively?  
14 Have your feelings about meditation changed throughout this trial? If so, how 

have they changed, and why do you think this is?  
14 If you were going to meditate again in future, would you prefer to do so using the 

Muse app and headband, or without this assistance? Why?  
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158 Table C2 
Correlations between key study variables 
Variable na M SD 1 2 3 4 5 6 7 8 9 10 11 12 
No feedback condition                
1. Mean Muse mind wandering 35 44.52 18.51                         
2. Muse recoveries 35 21.46 18.46 .65**                       
3. BCT proportion correct 35 0.49 0.32 -.50** -.48**                     
4. BCT proportion reset 35 0.30 0.29 .47** .30 -.81**                   
Auditory feedback condition                
5. Mean Muse mind wandering 35 41.58 16.31 .90** .62** -.34* .28                 
6. Muse recoveries 35 19.60 17.92 .66** .86** -.44** .27 .74**               
7. BCT proportion correct 35 0.52 0.27 -.28 -.35* .61** -.37* -.27 -.37*             
8. BCT proportion reset 35 0.22 0.19 .31 .20 -.59** .62** .30 .23 -.63**           
Other lab responses                
9. Easier condition 35 4.89 1.98 .06 .12 .17 -.09 .14 .15 .01 .03         
10. Control over feedback (lab) 35 2.97 1.48 -.08 -.24 -.05 .12 -.12 -.22 .33* -.11 -.46**       
Home practice                
11. Control over feedback 

(home) 
29 4.38 1.61 .28 .07 -.09 -.06 .28 .06 .08 .14 -.24 .06     

12. Mean Muse mind wandering 29 39.02 7.36 .23 .41 -.43 .42 .53* .53 -.18 .21 .15 -.01 -.26   
13. Muse recoveries 29 17.53 9.11 -.06 .22 -.49 .60* .23 .32 -.30 .46 .23 .02 -.24 .77** 
Note: BCT = Breath Counting Task. aThe intersection of lab (n = 35) and home (n = 29) data was n = 14 cases. 
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Table C3 
Hierarchical linear model of trajectory of mean Muse mind wandering between no feedback 
and auditory feedback conditions 
 Coefficient Std. Error p 

Fixed effects (B)    
Intercept 51.97 4.05 < .001 
Period: First 3.26 0.62 < .001 

(1199 parameter estimates follow – as per Figure 5) 
Random effects (SD)    

Participant 16.55   
Residual 16.87   

AR(1) correlation (ϕ) 0.85   

Note: n = 42 000. 
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