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Abstract 

 

This thesis was proposed in the context of the social licence to operate for a new gold mine in 

West Africa that necessitated the relocation of subsistence farmers and asked the question:  

Can land suitability assessments for agriculture be carried out effectively using the data 

by-products of mining exploration, without the necessity for and cost of additional data 

acquisition? 

The project objectives were to develop a land suitability assessment process that, firstly, was 

locally relevant with outputs usable by farmers in the vicinity of a new gold mine in the tropical 

south-west of Burkina Faso and, secondly, is transferable to other sites with different terrain, 

climate and styles of agriculture.  

The compensation maps prepared as part of the application for the mining licence provided 

known occurrences for locally grown crops, so facilitating the use of data-driven species 

distribution methods to produce crop suitability maps.  However, the clustered occurrences 

presented the likelihood of spatial sampling bias affecting models and the evaluation of results 

was complicated by the lack of test data outside of these areas. 

The maximum entropy algorithm (Maxent) was used to produce crop suitability models using a 

methodology that took advantage of the geographical separation of the presence data sites to 

develop cross-validation models trained on different sets of presence points. The accuracy of 

model predictions (using the area under the curve (AUC) of the receiver operator curve for test 

data) and similarity of resulting suitability maps (from correlations) were compared to assess 

model accuracy, robustness and sensitivity to sampling bias; however, region wide validation of 

results was not possible with the available data. The methodology was then applied to two local 

sites in South Australia for which region-wide verification data were available in order to validate 

the methods used and to demonstrate their transferability to other sites with different terrain, 

climate and styles of agriculture. 

Neither the categorical soil map supplied by the exploration company nor the publicly available 

global maps of commonly used soil properties were useful as model predictors. Algorithmic 

methods were devised to process both sources of soil data into a new set of hybrid soil layers 

(combining the fine spatial detail of the supplied map with the multi-dimensionality of the soil 

property maps) that proved effective in modelling. The thesis contributes to the application of 

species distribution modelling by presenting this new method for converting categorically valued 

maps into continuously valued raster layers for effective use by modelling algorithms.  

The thesis also demonstrates effective cost-free and language-independent mapping solutions 

that overcome the local challenges of illiteracy and poor access to technology. Paper maps were 

designed for map users without access to other technology, and interactive maps were produced 

for map users with access to electronic devices, with and without internet access. 

The method of predicting local agricultural land suitability presented in the thesis has been shown 

to be transferrable to other sites. It is particularly well suited to mining applications in developing 

countries where detailed data on local agriculture are collected as part of the environmental and 

social impact assessments. As such, it could become a model for future mining projects and 

contribute to more successful collaborations between the mining sector and local communities in 

developing countries.  
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Chapter 1  Introduction 

1.1 Overview 

This research project was proposed in the context of the establishment of a large new industrial 

gold mine in south-west Burkina Faso and the ongoing disruption to the livelihoods and way of life 

of the existing communities in that region. Large scale surface gold mining projects generate 

extreme environmental and social impacts. Badly managed, they can result in damaging long term 

effects for affected regions and the resident populations. However, well managed projects that 

are able to engage positively with host communities have the potential to stimulate regional 

development and result in sustainable improvements in standards of living and quality of life for 

resident communities. 

 
Source: https://www.iamgold.com/English/operations/operating-mines/essakane-gold-mine-burkina-faso 

Figure 1-1 Map of West Africa showing the site of the new gold mine in Burkina Faso 

Burkina Faso is a very poor country and the dry Sahel region in the north is very vulnerable to 

impacts of climate change. The south-west, where this project is located, is very fertile, and has 

the potential to become the bread-basket for a country struggling to ensure national food security 

for its people into the future. However, farming in the south-west is still primarily rain-fed 

subsistence agriculture, and farmers are constrained in their attempts to improve production by 

lack of access to capital, credit and agricultural technology. The injection of capital by way of 

wages and compensation payments from mining will stimulate regional development in the short 

term. But lasting benefits will only be derived by ensuring a productive and sustainable 

agricultural sector that will last beyond the life of the mine.  

In this project, mining exploration data is used to develop an objective evidence-based 

agricultural land suitability assessment tool to support the sustainable development of the region. 

The background information provided below addresses the three major aspects of this project: (1) 

mining context, to understand the geopolitical factors behind the project; (2) land evaluation, to 

New gold 

mine 

https://www.iamgold.com/English/operations/operating-mines/essakane-gold-mine-burkina-faso
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explain the particular nature of the research; and (3) research site and local communities, shaping 

the character of the land evaluation task. The research questions explored in this project are 

discussed in Section 1.7 and the thesis outline is presented in Section 1.8. 

1.2 Mining in the developing world 

Abundant mineral resources (and especially gold) can offer enormous potential wealth to a 

country. And yet, the term “resource curse” has been coined to describe mining in the developing 

world, where the countries without mineral resources typically out-perform the countries rich in 

mineral resources in terms of economic growth Kumah (2006).  

The impacts of mining are wide ranging and include environmental damage, land conflict, and 

societal impacts for affected communities, with the most extreme impacts sometimes including 

environmental catastrophes and human rights abuses (Kumah 2006, Schueler, Kuemmerle et al. 

2011). Following an investigation of twenty years of land use change due to mining in Brazil, 

Sonter, Moran et al. (2014) concluded that there is a need to have sustainable development goals 

both within the mining community and beyond to manage environmental and societal impacts.  

 
Marco Chown Oved/Toronto Star 

 

 
Hugh Brown/Pulitzer Center 

 
Hugh Brown/Quartz Africa 

Figure 1-1 Essakane open cut gold mine in Burkina Faso (left), artisanal gold mining scenes (right) 

In relation to the impacts of surface gold mining in West Africa, a 2006 assessment of the impact 

of gold mining in Ghana (a southern neighbour of Burkina Faso) reported multiple negative 

impacts, as follows: (1) only 10% of the earnings from gold exports were actually retained in the 

country; (2) there were low labour absorption rates in mining communities (the mines were not 

creating jobs for Ghanaians); (3) the displacement of farmers and resident small scale miners had 

caused unrest; (4) there had been multiple cyanide spills; (5) land degradation had occurred as a 

result of large scale mining and agricultural intensification; (6) dust pollution was causing disease; 

(7) relocation schemes had led to loss of land and resources, chronic impoverishment and social 

disruption; and (8) there had been human rights abuses (Kumah 2006). The damaging 

environmental impacts of surface gold mining can be observed in Figure 1-1 which shows both an 

industrial gold mine and scenes of artisanal mining in Burkina Faso. 
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Mining projects are capital intensive, and so poor countries rely heavily on foreign investment for 

financing their mining projects. The recognition that African countries have generally drawn little 

benefit from foreign owned mining projects is now leading to efforts to obtain better outcomes 

from mining, such as negotiating fairer deals, greater transparency, better channelling of 

revenues back to local populations and, particularly related to this project, positive engagement 

by the mining companies to benefit local communities (Kimani 2009).  

1.2.1 Social license for mining 

Local communities have emerged as important governance actors in the mining sector and there 

is now widespread recognition that developers need to gain a social license to operate (SLO) from 

local communities to avoid potentially costly conflict and exposure to social risks. An SLO is 

considered to exist when a mining project is seen as having the ongoing approval and broad 

acceptance from society and host communities to conduct its activities (Prno and Slocombe 

2012).  

The term ‘social license to operate’ was introduced in 1997 by Jim Cooney when talking about 

political risk at a World Bank conference on the future of mining (Canada Science and Technology 

Museum 2017). In 1999 Ian Thompson explained that a social licence to operate had become 

essential for success in international exploration as a consequence of globalization. He cited the 

main drivers as: (1) the internationalisation of environmental and social issues; (2) the rise of 

international civil society to monitor the activities of companies and hold them accountable; and 

(3) the explosive growth in communications which has empowered communities to challenge 

mining companies as they now have access to support and information networks to assist them in 

challenges (Thompson 1999). 

An SLO is not a single licence granted by a particular community but rather a continuum of 

multiple licences that must be achieved across various levels of society. Dare, Schirmer et al. 

(2014) observe that achieving an SLO is important for organisations with long time horizons and 

high exposure to global markets, and that community engagement is critical in achieving it. The 

path to securing and holding an SLO is through building trust with local communities. The results 

of Moffat and Zhang (2014) highlight the importance of fair treatment and high quality 

engagement when dealing with communities to build this trust, alongside mitigation of 

operational impacts. Meaningful dialogue is central to the process of engagement. Mercer-

Mapstone, Rifkin et al. (2017) examined dialogue outcomes from the perspective of community 

engagement practitioners and identified sixteen outcomes from meaningful dialogue that 

included trust, relationships, social acceptance, shared decision-making and legitimacy. 

in 1998, the International Finance Corporation (IFC) adopted a set of environmental and social 

safeguard policies to assist private sector businesses address development challenges. These 

policies were revised to form the IFC Performance Standards on Environmental and Social 

Sustainability, introduced in 2006 and further revised in 2012 (IFC 2016).  They prescribe a set of 

eight performance standards that an IFC client is to meet throughout the life of an investment by 

IFC. Performance Standard 1 (Assessment and Management of Environmental and Social Risks 

and Impacts) deals with the social licence to operate (IFC 2012). 

Although early applications of SLO focused primarily on positive engagement with local 

communities, Komnitsas (2020) looks to the future of mining and observes that “the SLO may 

prove an important tool in future mining in order to safeguard the supply of raw materials, 

minimize the environmental footprint and improve the quality of life in the affected regions.” 
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1.3 Gold mining in Burkina Faso 

Burkina Faso is one of the poorest nations in the world with 80% of its population engaged in 

agriculture, mainly supporting subsistence livelihoods (USAID 2021). In 2020, Burkina Faso had a 

per capita gross annual income of US$ 858 (World Bank Group 2022) and was ranked 173 out of 

192 countries in terms of GDP(PPP)1 by Global Finance Magazine (Ventura 2022). However, 

Burkina Faso is also very rich in gold reserves. In 2009 gold surpassed cotton as the country’s 

leading commodity export (USAID 2017), and by 2012, Burkina Faso had become the fourth 

largest gold producer in Africa (Côte 2016). So the issue of obtaining benefits for its population 

and mitigating the damaging impacts from mining is now of critical importance in Burkina Faso. 

 

 

Figure 1-2 Map of 2012 exploration permits in Burkina Faso (shaded in gold) - reproduced from 

2012 Burkina Faso EITI Report (IETI 2014). The Banfora Gold Project region is outlined in red. 

Gold mining has a long history in Burkina Faso with gold being extracted since ancient times from 

the Poura mines near the Black Volta River (Rupley, Bangali et al. 2013). However, the recent 

increase in the importance of gold mining has only occurred since the 1980s when several severe 

droughts resulting in famine caused many farmers to turn to gold mining (Luning 2008) – see 

Figure 1-1. Artisanal gold mining is dangerous work and often involves the use of toxic chemicals 

(mercury and cyanide) for extracting gold (Al Jazeera English 2012, Al Jazeera English 2014). 

Artisanal gold mining continues in Burkina Faso as a means of livelihood for an estimated 400,000 

miners, but it is the industrial gold mines set up by international mining companies that are now 

having the biggest impact, and this change has happened very rapidly (Gongo and Bax 2016).  

                                                           
1 Gross domestic product (GDP) based on purchasing-power-parity (PPP) per capita - a measure commonly 

used for comparing the relative wealth of countries that takes into account the impact of exchange rates. 

Banfora 
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The liberalization of the Burkina Faso mining code in 2003 led to increased investment in 

prospecting by over 30 international companies (Rupley, Bangali et al. 2013). So, whilst only two 

exploration permits were granted in Burkina Faso in 2001, by 2012, 660 were held covering most 

of the country (Côte 2016) – see Figure 1-2. 

For large scale mining projects, companies referred to as Juniors typically specialise in exploration, 

and companies referred to as Majors specialise in extraction (Luning 2008). Several Australian 

companies have been involved (as Juniors) in gold exploration in Burkina Faso. One of these, 

Gryphon Minerals Limited, formerly based in Perth, supplied the data for this research project 

from its Banfora Gold Project in the south-west corner of the country.2 In June 2016, Gryphon 

Minerals was acquired by a Major (Teranga Gold Corporation) in order to bring the Banfora Gold 

Project (now renamed as the Wahgnion Gold Project) into production. 

As a nation, Burkina Faso has to manage its extractive industry to avoid the damaging impacts of 

mining and ensure revenues are properly channelled to promote development and enhance the 

wellbeing of its people. Burkina Faso was one of the first countries to join the Extractive Industries 

Transparency Initiative, which is a global standard to promote open and accountable 

management of natural resources (Kimani 2009). And the mining code compels exploration 

companies to negotiate with communities and acknowledge local practices (Luning 2012).  

The state owns all land in Burkina Faso and issues the licences for exploration and mining. 

Research permits are issued for plots of 250 square kilometres. In order to transform a research 

permit into a mining permit, a company must submit an application to the Ministry of Mines that 

includes a feasibility study containing geological data and an inventory of houses to be moved and 

agricultural fields to be compensated (Luning 2008). Once the mining permit is granted, local 

residents can proceed to negotiate a compensation deal. The potential benefits to a community 

for hosting an industrial gold mine include development of the village, paid jobs, water if there is 

construction of dams, and improved transport connections to broader markets. So there can be 

competition between communities to host the mine. Luning (2012) has observed that initial 

contacts with the mining companies are often marked by promises and expectations but, later, 

disappointments can start affecting alliances and increasing tensions in neighbourly relations. 

1.3.1 Wahgnion Gold Project 

The Wahgnion gold project (formerly known as the “Banfora Gold Project”) is located in the 

south-west corner of Burkina Faso in one of the wettest and most fertile parts of the country. The 

project comprises a mine licence area of 89 km2 and a regional exploration land package of 1,093 

km2 in the Niankorodougou Commune of Léraba Provence in the Cascades Region. The mining 

licence was granted in February 2014 and the social impact assessment was completed in 

November 2014 (Intersocial Consulting 2014). Early construction works commenced in 2017 and 

the expected life of the mine is nine years following the first gold pour in 2019 (Mining technology 

2018).  

The area impacted by the Wahgnion gold project mining activity is presented in Figure 1-3. The 

establishment of the new mine will involve compensation for, and relocation of, four agricultural 

communities (Nogbele, Fourkoura, Stinger and Samavogo). For some of the displaced people from 

these communities there will be paid jobs in the mine, for others there will be new business 

                                                           
2 The new mine is situated in Léraba province. Banfora, in Comoé province, with a population around 

100,000 people is the largest town in the vicinity. 
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opportunities from the access to capital and new markets, but for most there will be the need to 

re-establish farming livelihoods in new locations.  

 

 

Figure 1-3 Map of the Burkina Faso project region showing: (1) elevation and drainage channels; 

(2) mine boundary (in black); and (3) areas where compulsory land acquisition will occur (in red) 

Concerned about its social licence for mining, Gryphon Minerals offered The University of 

Adelaide the detailed data acquired during exploration to aid agricultural land use mapping with 

the goal of identifying suitable new farming land close to the planned mining complex.  This is a 

land evaluation process that involves assessing the suitability of available fertile land for particular 

land uses and this process is discussed in the next section.  
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1.4 Land evaluation process 

1.4.1 FAO framework 

Decisions on land use are part of the evolution of human society (FAO 1976). The development of 

a standardised international framework for land evaluation commenced in the early 1970s when 

the Food and Agriculture Organisation (FAO) of the United Nations standardised existing country 

specific land assessment systems in a draft framework that was widely circulated for comment. In 

1976 the FAO published “A framework for land evaluation” (FAO 1976) setting out the principles 

and procedures for land suitability assessment in what continues as the international standard. 

This was followed by the publication during 1983 to 1993 of specific FAO guidelines for rain-fed 

agriculture, forestry, irrigated agriculture, extensive grazing and land use planning.  

Using the FAO Framework, relevant land uses are identified and the requirements for these land 

utilisation types determined. These requirements are then matched against measured land 

qualities (such as climate, soil type, landform, water availability, vegetation, etc.) to assess the 

degree of suitability of particular land mapping units for particular land uses. Other factors such as 

availability of technology, labour intensity and socio-economic factors are also relevant in the land 

suitability assessments. A hierarchical classification scheme with five main classes is used in the 

FAO framework for rating of the fitness of a given type of land for a defined land use.3 

The FAO Framework is being revised in recognition of the fact that the scope and purpose of land 

evaluation has shifted from land use planning and land development projects to the sustainable 

management of land resources (FAO 2007). The value of local knowledge is stressed more 

strongly in the proposed revision, and the use of environmental models is recommended for 

quantifying changes and identifying future risks. Importantly, improved data availability and 

knowledge of its spatial variability (with the aid of Earth observation techniques) has allowed the 

creation of many global datasets relating to climate and land resources for use in these models.  

The growing availability of computer-based information systems led to the development of 

automated land use planning tools and databases based on the FAO Framework (see reviews in 

Rossiter 1996, George 2005). Early land suitability evaluators used expert systems designed for 

individual problems. Later, Rossiter’s microcomputer-based Automated Land Evaluation System 

(ALES) allowed users to build their own knowledge-based systems (Rossiter 1990). Integration 

with geographical information systems (GIS) (from the mid-1990s onwards) has greatly increased 

the usefulness and user-friendliness of such systems (for example, Elsheikh, Shariff et al. 2013). 

1.4.2 GIS-based approaches 

GIS-based land suitability assessments typically combine multiple GIS layers representing land 

qualities according to subjectively defined suitability criteria. Malczewski (2004) provides a critical 

overview of these methods. Overlay mapping is the simplest and typically uses Boolean 

operations and weighted linear combinations of layers – both easy to implement in a GIS 

environment using map algebra. Multi-criteria decision making (MCDM) methods manipulate 

                                                           
3  The five main classes in the FAO Framework classification are: Class S1 = suitable; Class S2 = moderately 

suitable; Class S3 = marginally suitable; Class N1 = unsuitable for economic reasons but otherwise 

marginally suitable; and Class N2 = unsuitable for physical reasons. Subclasses are used to reflect kinds of 

limitations (e.g. moisture deficiency, erosion hazard), and further subdivision into land suitability units 

allows detailed interpretation at the farm planning level if this is required. 
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geographical data according to specified rules defined by decision maker preferences, with the 

Analytical Hierarchy Process (AHP) technique often employed in GIS-based MCDM applications to 

aid decision making and derivation of suitable weights. Fuzzy logic techniques (allowing degrees of 

set membership between 0 and 1) are also often applied to spatial data to develop fuzzy 

suitability ratings for use in MCDM, with experts typically involved to specify the membership 

functions. 

Attua and Fisher (2010) illustrate the MCDM process with fuzzy logic in their land suitability 

assessment case study for pineapple production in Ghana:  

1. Seven criteria maps were standardised to a continuous suitability scale using seven fuzzy 

membership functions, and three Boolean constraint maps were produced; 

2. Weights for each criterion were derived by a panel of experts using the AHP; 

3. Weighted linear combination of GIS layers was performed and the resultant image 

multiplied with three Boolean constraint maps to produce a final fuzzy suitability map; 

4. The fuzzy suitability map was then reclassified as marginally, moderately and highly 

suitable based on threshold values for the pixels. 

Other case studies using GIS-based MCDM methods to assess land suitability for crops in tropical 

regions include: an assessment of sites in Jamaica suitable for coffee growing, also using AHP 

(Mighty 2015); assessment of mango suitability in Malaysia, as a prototype for a decision support 

tool for tropical and subtropical crops (Elsheikh, Shariff et al. 2013); and the development of an 

agroforestry suitability map for a region in eastern India (Ahmad, Goparaju et al. 2017). 

Criticisms of GIS-based approaches include: inappropriate methods of standardising suitability 

maps; unverified assumptions of independence among selection criteria; and oversimplification 

by focusing only on what can be represented in a GIS (Malczewski 2004).  

Other sources of uncertainty in GIS-based land suitability assessments are described by Liu, Zhan 

et al. (2017) and include: 

• Spatial data uncertainty deriving from the degree of accuracy of the source data; 

• Raster data uncertainty necessarily occurring with the discretization of continuous 

features and with unavoidable loss of accuracy during the conversion of vector data to 

raster data;  

• Index weight determination uncertainty;  

• Classification uncertainty when suitability results are converted to a choropleth map. 

1.4.3 Data-driven approaches 

The methods described above are knowledge-based approaches to land suitability assessment 

that synthesise the opinions of experts and other relevant knowledge to formulate defined 

algorithms for deriving suitability results. Often the detailed knowledge needed by these methods 

is not easily available or is unreliable.  

Correlative approaches, on the other hand, do not require detailed knowledge of the necessary 

environmental conditions for a species to thrive. Instead, they are empirical methods that are 

based on the assumption that the current distribution of a species is a good indicator of its 

ecological requirements, and so link the locations of known occurrences of a species (referred to 

as “presence” data) with geospatial environmental data to derive the species-environment 

relationships. Such methods are now commonly used in species distribution and environmental 

niche modelling. 
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The simplest correlative approach is profile modelling, which defines the environmental niche for 

a species using the ranges of values of the environmental variables at presence locations. More 

complex correlative approaches include statistical models that estimate the coefficients for the 

models from the input data using statistical regression, and machine learning where models are 

typically “trained” using one part of the input data, with the remaining data used to test the 

accuracy of the trained model. 

The Biodiversity and Climate Change Virtual Laboratory (BCCVL)4 online platform developed in 

Australia provides an excellent introduction to species distribution modelling and the commonly 

used algorithms (Hallgren, Beaumont et al. 2016). The BCCVL interactive interface offers two 

profile models, six machine learning models and four statistical regression models (as listed 

below). All of these models have also been implemented as R software packages if a programming 

environment is preferred.5 

Profile Models 

• Bioclim 

• Surface Range Envelope (SRE) 

Machine Learning Models 

• Artificial Neural Network (ANN) 

• Boosted Regression Tree (BRT) 

• Classification Tree Analysis (CTA) 

• Generalised Boosting Model (GBM) 

• Maximum entropy modelling (Maxent) 

• Random Forest (RF) 

Statistical Models 

• Flexible Discriminant Analysis (FDA) 

• Generalised Additive Model (GAM) 

• Generalised Linear Model (GLM) 

• Multivariate Adaptive Regression Splines (MARS) 

The statistical and machine learning models are able to fit complex relationships and can also 

account for interactions between variables. All can be rerun multiple times using different sets of 

input data in order to test robustness. Most of the algorithms (with the exception of the profile 

models and Maxent) use both presence and absence occurrence data, or can generate pseudo-

absence data if true absence data is not available. 

Data-driven correlative methods such as these are increasingly being used in the context of 

agricultural land suitability assessment. An explicit comparison of a mechanistic model (DSSAT6) 

and empirical models (GAM and Maxent) was performed by Estes, Bradley et al. (2013) in the 

context of crop suitability and productivity of dryland maize in South Africa. The empirical models 

achieved the same or better results than the mechanistic model, with the authors noting 

                                                           
4 See http://bccvl.org.au/ 

5 Bioclim and BRT are implemented in the ’dismo’ package, GBM is implemented in the ’gbm’ package, and 

all others are implemented in the ‘biomod2’ package. 

6 Decision Support System for Agrotechnology Transfer (DSSAT) is a software application program that 

comprises dynamic crop growth simulation models for over 40 crops. See https://dssat.net/ 

http://bccvl.org.au/
https://dssat.net/
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“Empirical modelling thus appears to be a better choice for mapping suitability/unsuitability in 

this study area, since it had comparable accuracy while requiring less research effort.” 

1.4.4 Presence-only models 

Presence-only correlative models (such as Maxent) would seem very appropriate for the task of 

agricultural land suitability assessment as actual cropping locations are a very reliable source of 

presence data, and there is no need to speculate with regard to absence data. The usefulness of 

geographic presence-only modelling for land suitability mapping was assessed by Heumann, 

Walsh et al. (2011) who used Maxent to map agricultural crop suitability of lowland paddy rice 

and upland field crops in rural Thailand. They performed 1,000 runs of each model (using a 

random seed to partition crop locations into different training and test sets) in order to generate 

confidence intervals of model output and concluded that presence-only modelling is a very 

promising technique. In the Hawaiˋi Island Crop Probability Map project, Maxent was also used to 

assess the environmental conditions at the current locations of agricultural crops on Hawaiˋi 

Island in order to predict the probability of suitable conditions existing for the same crop at other 

locations on the island (Kemp 2012). Kemp noted that “the Maxent technique can produce good 

results even when given a large number of correlated variables” and that “unlike traditional 

statistical techniques, such correlations do not invalidate the modelling process.” 

1.5 The research site and local communities 

The project area corresponds to the regional exploration land package for the Wahgnion gold 

project and covers almost 1,100 square kilometres of tropical woodland savannah in the south-

west corner of Burkina Faso at altitudes of 300-400 metres (refer Figure 1-3 above). It is located in 

Léraba province of the Cascades region and is one of the wettest and most fertile parts of the 

country. The Léraba River defines the boundary with Mali and Côte d'Ivoire in this area. The river 

is shaded by riparian forests along most of its length and provides an important habitat for 

wildlife.  

Inland valleys are common landscapes in the upper reaches of African river systems and many 

occur in this region. They are defined as seasonally flooded wetlands comprising valley bottoms 

and hydromorphic fringes, and generally have high agricultural production potential (Rodenburg, 

Zwart et al. 2014). Inland valleys represent 36% of the total area covered by wetlands in sub-

Saharan Africa and perform important ecological functions such as water purification, carbon 

sequestration, protection against flooding and erosion, and providing habitat for many wildlife 

species (Kiepe 2006). From this perspective they may be viewed as fragile ecosystems. However, 

from an agricultural perspective they are assumed to form the basis of robust production 

systems. Their economic functions include crop and vegetable production, fishing, as a source of 

materials for thatching, fencing and basket weaving, and as a water source and grazing area for 

livestock during the dry season. They are less sensitive than adjacent uplands to degradation due 

to the frequent inflows of water bringing nutrients and organic debris. (Kiepe 2006). 

Rodenburg, Zwart et al. (2014) addressed the conflicting agricultural and ecological perspectives 

on wetland management in their examination of African inland valleys and have proposed a 

methodology for fulfilling the agricultural potential of inland valleys to benefit rural livelihoods 

while safeguarding other ecosystem services. In characterising typical agricultural use of these 

valleys they observe that the valley bottoms are usually planted with rice as it is the only major 

food crop that can be grown in temporarily flooded conditions; dry land rice and cash crops like 

cotton are grown on the hydromorphic slopes; high value fruit trees (e.g. mango and cashew) and 
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fodder crops are grown on the upper slopes; and maize and sorghum are grown on the crests. In 

peri-urban areas inland valleys are used mainly for vegetable production (Rodenburg, Zwart et al. 

2014). Examples of inland valley agriculture within the project region are shown in Figure 1-4. The 

valley bottoms (bas-fonds) are used almost exclusively for growing rice, while the hydromorphic 

slopes are suitable for other field crops. 

 
Worldview2 image April 2010 

 
Worldview2 image April 2010 

Figure 1-4 Dry season satellite images of inland valleys showing rice fields (left) and irrigated 

vegetable plots along a permanent watercourse within close proximity to a village (right) 

Within the project region agriculture is mostly subsistence, with food crops including maize, 

sesame, peanut, millet, sorghum and beans, and cotton is grown as a cash crop. Rice is grown in 

the water courses and small market gardens are also cultivated. There is little mechanical 

agriculture and most fields are ploughed by oxen (see Figure 1-5). Additional income is derived 

from mangos, cashews and kerite nuts (used to produce shea butter and widely used in 

cosmetics).  

 
   Source: Gryphon Minerals Ltd 

Figure 1-5 Oxen used for ploughing fields in the project region, June 2011 

Agroforestry, whereby trees are integrated into agricultural landscapes to bolster food security 

and environmental resilience, is widely practised in much of sub-Saharan Africa (Garrity, 

Akinnifesi et al. 2010). Agroforestry is very important in the project region with trees typically 

grown around crops and on pastureland, as well as being native vegetation. The trees provide 

important sources of income and of wild food, and perform environmental functions such as 
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regulating climate, mitigating erosion and providing habitat for wildlife. Figure 1-6 shows 

examples of agroforestry practices near Banfora.  

  
Source: I. Ahmer Source: I. Ahmer 

Figure 1-6 Cropping with agroforestry near Banfora, July 2018 

The local climate has distinct wet and dry seasons with rainfall of around 1100mm per year falling 

primarily during May to October and peaking in August. Drainage is seasonal but there are some 

permanent water courses. Agriculture is primarily rain-fed with preparation and planting 

occurring at the beginning of the wet season although dry-season farming has been increasing 

since the introduction of diesel powered water pumps to the region in 2004. Dry season crops had 

been mainly rice and vegetables for market; however, a national food security campaign 

(Operation Bondofa) was launched in the region in 2011 to promote dry season maize (Dowd-

Uribe, Roncoli et al. 2012). Export agriculture has enabled greater access by farmers to technology 

and inputs (fertilisers, insecticides, improved varieties, etc.) compared to the rest of the country, 

nevertheless local farmers are still constrained in their attempts to improve agricultural 

productivity by lack of access to credit, capital and agricultural technologies (Ingram, Roncoli et al. 

2002). 

 
Source: Gryphon Minerals Ltd 

Figure 1-7 Village community in the project region, June 2011 

Diversification of production and livelihood systems is the main strategy for risk mitigation used 

by Burkinabe households (Ingram, Roncoli et al. 2002, Tincani 2012). Within households, 

diversification is achieved by engaging in non-farm income generating activities (e.g. crafts, trade, 

brewing) and by supplementing the diet with wild foods (Tincani 2012). Agricultural diversification 

involves planting combinations of crops and crop varieties that have different growing times and 

water requirements in a constellation of fields in different locations so as to minimise the impact 
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of adverse climatic events. These plantings can be adjusted to respond to different climate 

predictions. For example, if higher than average rain is predicted then farmers can plant more 

upland fields, plant more cash crops, and plant rice instead of maize or cotton in lower lying fields. 

Conversely, if lower than average rainfall is predicted they may plant maize and sorghum in low 

lying fields (Ingram, Roncoli et al. 2002).  

 
Source: Gryphon Minerals Ltd 

 
Source: Gryphon Minerals Ltd 

Figure 1-8 Farm scenes from the project region, June 2011: granaries (left) and farmstead (right)  

Land is not privately owned in Burkina Faso. In the south-west customary institutions play the 

main role in allocating land parcels, either as a donation (don) to authochthons7 or as a loan (prêt) 

with restricted usage rights to migrants (Engels 2014). Most people in the project region live in 

village communities, maintaining a permanent residence in the village and only travelling to their 

farms when there is work to do there (see Figure 1-7 and Figure 1-8).  

Education levels amongst the adult population of the project region are very low. The Banfora 

Gold Project Social Impact Assessment reports that 55% of males and 78% of females aged 20+ 

have had no formal education (Intersocial Consulting 2014). Although French is the official 

language for Burkina Faso many adults are not literate in French, but may be literate in local 

languages. Adult literacy programs have been run across the country in a number of local 

languages with the three most commonly used languages being Dioula (spoken in the south-

west), Moore and Fulfuldé (Konate 2016). The social impact assessment reported that only 3% of 

the local population could read French. However, 8% of males and 7% of females in the survey 

population indicated that they had recently attended literacy schools, primarily in the Dioula and 

Senoufo languages (Intersocial Consulting 2014). 

Major changes to the region will occur over the lifetime of the mine and many of these will affect 

agricultural production. For example, the mine itself will have an impact on local water resources: 

the water pumped out of the mine will cause drawdown of the water table in the vicinity of the 

mine but will be far in excess of the needs of the mine. The excess water can be stored in dams 

and so be available for use in irrigation to improve local agricultural production, and can be 

filtered to provide clean water for drinking and domestic use to improve health outcomes 

(Williams 2016). The mine will bring other potential opportunities for agricultural development, 

including the increased access to capital to stimulate the use of new farming technologies, and 

access to broader markets which may lead to the cultivation of new crops.  

                                                           

7 Original or indigenous inhabitants of a place. 
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The land suitability assessment tool proposed in this research project is being developed to aid 

sound land use planning by local farmers and land managers in this changing environment. The 

food sovereignty movement (launched in 2007 in Mali) is based on environmental, social and 

economic sustainability and aims to empower local farmers in the production, distribution and 

consumption of food (Via Campesina 2007). In keeping with these principles the assessment tool 

will offer information relevant and useful to its users that is independent of the technologies and 

resources that may be available to them or that they may choose to use. In this way it is hoped 

that the tool will be able to offer ongoing value as the region develops and so support decisions 

affecting sustainable agriculture. 

1.6 Aims and objectives 

This project aims to demonstrate that agricultural land suitability assessment can be done 

effectively using the data by-products of mining exploration. The objective of this project is to 

develop a land suitability assessment process that, firstly, is locally relevant with outputs usable 

by farmers in the vicinity of a new gold mine in the tropical south-west of Burkina Faso (West 

Africa) and, secondly, is transferable to other sites with different terrain, climate and styles of 

agriculture.  

1.7 Research questions 

The primary purpose of this research project was to answer the question:  

1. Can land suitability assessments for agriculture be done effectively using the data by-

products of mining exploration, without the necessity for and cost of additional data 

acquisition? 

In undertaking this research other secondary research questions were answered, including:  

2. How can existing cropping patterns inform us with regard to potential expansion 

areas for particular crops? 

3. Are the soil categories used for mining exploration useful as soil categories for 

agricultural land suitability models? 

4. How can land suitability assessment results be delivered to subsistence farmers in 

remote locations? 

1.8 Thesis outline 

This chapter has outlined the background to the research project, noting that the high-resolution 

geospatial and Earth observation data collected in modern mining exploration potentially has 

immense value for regional planning by communities and governments.  Chapter 2 explores the 

data supplied by Gryphon Minerals Ltd and its potential for use in agricultural land suitability 

modelling for the project region. 

Chapter 3 explains maximum entropy modelling and its use in identifying the fundamental 

environmental niches for species. Chapter 4 then applies this modelling technique for the purpose 

of agricultural land suitability modelling for the West African research site. The final crop 

suitability maps result from crop specific models produced by the Maxent algorithm. The 

robustness of these models is tested by comparing the results of crop models trained on different 
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sets of presence data; however, region wide validation of results is not possible with the available 

data. 

The purpose of Chapter 5 is twofold: firstly, to validate the methodology used in Chapter 4 by 

applying it to sites for which region-wide validation data are available; and secondly, to 

demonstrate the transferability of the method to other sites with different terrain, climate and 

styles of agriculture. The methods used in Chapter 4 are duplicated for two local sites in South 

Australia for which region wide validation data are available and that can be visited to assess 

results and evaluate prototype presentation methods. 

Chapter 6 addresses the special challenges that illiteracy and poor access to internet resources 

bring to the task of disseminating informative maps. The crop suitability maps produced in 

Chapter 4 are presented in a printable format suitable for illiterate users without access to 

electronic devices. An electronic version suitable for display on a computer, tablet or mobile 

phone is also developed, but the author is mindful that commonly used base-maps served from 

the internet are unlikely to be available to most target users. 

Finally, Chapter 7 concludes that the method of predicting local agricultural land suitability 

presented in the thesis is transferrable to other sites with different physical characteristics and 

styles of agriculture, and is particularly well suited to mining applications in developing countries 

such as Burkina Faso and Ghana where detailed data on local agriculture is collected as part of the 

environmental and social impact assessments. As such, it could become a model for future mining 

projects and contribute to more successful collaborations between the mining sector and local 

communities in developing countries. 
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Chapter 2  Data for land suitability assessment 

2.1 Introduction 

The FAO Framework for land evaluation (FAO 1976) defines land evaluation as: 

“… the process of assessment of land performance when used for specified purposes, 

involving the execution and interpretation of surveys and studies of landforms, soils, 

vegetation, climate and other aspects of land in order to identify and make a comparison 

of promising kinds of land use in terms applicable to the objectives of the evaluation.” 

The objectives of this evaluation are to assist farmers from four farming communities subject to 

compulsory land acquisition in south-west Burkina Faso to identify suitable alternative locations 

for cultivation of their crops. The reason for the compulsory acquisition of this land and 

resettlement of its farmers is the establishment of a new surface gold mine at these sites.  

Most of the data for this land evaluation were supplied by the exploration company, Gryphon 

Minerals Ltd, who successfully applied for the mining licence for the new mine. These data include 

both the geospatial and earth observation data for the region collected for the purpose of 

exploration, as well as the detailed community land use maps of the areas subject to 

compensation compiled for the mining licence application (refer Appendix A). The mining 

company, Teranga Gold Corporation, supplied the social impact assessment report containing 

socio-economic data for the region and, later, soil sampling results. Additional publically available 

data for the region has also been sourced. 

This chapter explores the data available for the evaluation and considers its potential for use in 

agricultural land suitability modelling across the project region. The community land use files 

provide detailed information on the existing local agriculture in the four affected communities 

and are examined first. Following this, data on the climate, terrain and soils of the region are 

investigated with the goal of producing useful maps of land qualities relevant to the evaluation. 

2.2 Local agriculture 

Section 1.5 described the agriculture of the general area where the mine leases are located. It is 

mostly subsistence with food crops predominating. Cotton is grown as a cash crop and additional 

income is derived from mangos, cashews and kerite nuts. The agriculture is primarily rain-fed and 

there is little use of technology.  

2.2.1 Current agricultural land use 

The community land use maps produced for Gryphon Minerals as part of the 2014 social impact 

assessment provide a very detailed picture of agricultural activity being undertaken in the four 

affected communities at that time. Figure 2-1 shows the community land use map for the largest 

compulsory acquisition site (Nogbele). Maize and cotton are the dominant crops at this site, and 

many small rice plots are cultivated along the river courses.  

Figure 2-2 shows the compensation maps for the three smaller sites (Fourkoura, Samavogo and 

Stinger) for comparison. It can be observed that a larger proportion of the land is used for 
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growing cotton at Nogbele and Stinger compared to the other two sites, and that cashews are not 

being cultivated at Fourkoura. 

 

Figure 2-1 Crop compensation map for largest compulsory acquisition site (Nogbele) 

 

Fourkoura Samavogo Stinger 

   

Figure 2-2 Crop compensation maps for the three smaller compulsory acquisition sites (using the 

same legend as Figure 2-1) 

Analysis of the compensation maps yields detailed information regarding the land use and crops 

cultivated in these areas.  The four mining lease communities contained 2,230 agricultural plots in 

an area of 2,557 hectares (refer Table 2-1 and Appendix B). Nogbele is the largest community, 

accounting for more than half of the total area, and has the largest number of plots. The average 

plot size across the four sites is 1.15 hectares. Samavogo has the largest average plot size at 1.26 

hectares and Fourkoura has the smallest at 0.93 hectares. 
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Table 2-1 Comparison of mining lease communities: cultivable area and number of plots 

  FOURKOURA NOGBELE SAMAVOGO STINGER Total 

Area (hectares) 286.0 1,382.9 547.6 340.8 2,557.3 

% total area 11.2% 54.1% 21.4% 13.3% 100.0% 

Plots (number) 308 1,186 434 302 2,230 

% total plots 13.8% 53.2% 19.5% 13.5% 100.0% 

Average plot size (hectares) 0.93 1.17 1.26 1.13 1.15 

Other aspects of land use that can be determined from these community land use maps include: 

• Land ownership: The majority (86% by area) of the land is cultivated by the customary 

land owners (“Owner and user”). The proportion of “Users only” cultivation is less than 

10% overall – it is almost negligible in Nogbele (at 2%), but accounts for almost a third of 

cultivation at Samavogo.  

• Irrigation: The mining lease agriculture is almost entirely rain-fed with only 0.3% of the 

combined area having amenities for irrigation. Stinger has the highest proportion of 

irrigated land although still less than one percent. Almost all irrigation was used for rice. 

• Land management:  Land that has been fallow for over two years makes up 21.4% of the 

mining lease area, varying from 30.9% at Fourkoura down to 18.6% at Nogbele, with a 

further 1.7% fallow for less than two years. Only 0.2% of the land is described 

“uncultivable”, although 4.7% is recorded as “never cultivated”.  A local erosion 

mitigation method referred to as “stony cords” occurs on plots making up 3.2% of the 

Fourkoura site. 

2.2.2 Crops grown 

Table 2-2 Main crops grown in the mining lease communities: area cultivated and number of plots* 

Crops grown 
Cultivated area  

(hectares) 

 

         % 

Number  

of plots 

 

        % 

Average plot 

size  

(hectares) 

Beans 27.3 1.1% 64 2.9% 0.43 

Cashew 65.5 2.6% 32 1.4% 2.05 

Cotton 510.9 20.0% 224 10.0% 2.28 

Cowpea 36.5 1.4% 41 1.8% 0.89 

Earth pea 34.1 1.3% 39 1.7% 0.87 

Maize 615.6 24.1% 346 15.5% 1.78 

Millet 86.0 3.4% 71 3.2% 1.21 

Peanut 122.8 4.8% 132 5.9% 0.93 

Potato/Yam 7.9 0.3% 40 1.8% 0.20 

Rice 103.2 4.0% 674 30.2% 0.15 

Sesame 269.1 10.5% 207 9.3% 1.30 

Sorghum 60.7 2.4% 42 1.9% 1.44 

Fallow 683.5 24.1% 314 14.1% 2.18 

Mine leases 2557.3 100% 2230 100% 1.15 

* Note: Cultivated hectares and numbers of plots per crop do not sum to the totals for the mine leases as not all crops 

are included and some plots support more than one crop. 
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The twelve main crops grown in the mining lease communities are listed in Table 2-2, and a 

breakdown of these crops by community is provided in Appendix B. Maize and cotton are the 

most important, accounting for 24% and 20% of the area respectively. The plot sizes vary 

significantly with the type of crop grown: an average size rice plot (0.15 hectares) is less than a 

tenth the size of an average maize plot (1.78 hectares); and potatoes, yams and beans also have 

smaller plots. 

Other local crops identified from the community land use maps, but accounting for very few plots, 

include banana, sorrel, okra, aubergine, cassava and sterculia (used in traditional medicine). The 

main crop cultivated was listed as orchard on five plots and as mixed on eleven plots without 

additional information to identify the particular crops grown. 

The soil type of each plot was characterised as one of four types: clayey, sandy, gravelly or bas-

fonds. The distribution of the crop planting locations across these soil types is shown in Table 2-3. 

Bas-fonds are the valley bottoms of seasonally flooded inland valleys and are used almost 

exclusively for growing rice. Gravelly soils dominate for most other crops (typically making up 

more than 80% of the area cultivated), with the exception of potato/yam, which are often 

cultivated in clayey soils and sometimes in bas-fonds. 

Table 2-3 Soil type for the main crops grown in the mining lease communities (% area cultivated) 

Crops grown Bas-fonds Gravelly Sandy Clayey  Total 

Beans 1.8% 80.4% 14.8% 3.0%  100% 

Cashew 0.4% 86.0% 13.6%   100% 

Cotton 
 94.6% 3.5% 1.9%  100% 

Cowpea 0.4% 78.7% 18.9% 1.5% 0.4% 100% 

Earth pea 
 97.6% 0.8% 1.6%  100% 

Maize 1.8% 82.1% 10.9% 4.9% 0.3% 100% 

Millet  91.0% 8.9%  0.1% 100% 

Peanut 1.1% 88.3% 10.0% 0.1% 0.5% 100% 

Potato/Yam 23.9% 27.4% 15.2% 33.5%  100% 

Rice 75.7% 14.0% 0.3% 8.2% 1.8% 100% 

Sesame  85.7% 8.5% 5.8% 0.0% 100% 

Sorghum 4.0% 94.4% 1.6%   100% 

Fallow 3.0% 87.4% 5.0% 4.5%  100% 

Mine leases 4.7% 77.1% 10.4% 4.1% 3.8% 100% 

2.2.3 Implications for land suitability modelling 

Implicit in the current agricultural land use pattern is the (heuristically acquired) local knowledge 

of the land qualities necessary for the successful agriculture of these crops in this locale. That the 

farmers have chosen to cultivate these crops implies their suitability to the local climate and 

farming methods and that markets for this produce exist. The planting locations embody existing 

local knowledge about land suitability and so should allow individual crops to be matched to the 

land qualities best supporting their cultivation.  
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2.3 Climate 

Burkina Faso crosses three major climatic zones: (1) across the north is a hot desert climate 

referred to as Sahelian; (2) across the centre is a hot semi-arid climate referred to as Sudano-

Sahelian; and (3) in the south is a tropical savanna climate referred to as Sudanian. The total 

annual rainfall in the Sahelian zone is less than 600mm, it is between 600 and 900mm in the 

Sudano-Sahelian zone, and greater than 900mm in the Sudanian zone (De Longueville, Hountondji 

et al. 2016).  

The project region is situated in the Sudanian zone, which is alternatively classified as having a 

tropical savanna climate (Aw) according to the Köppen-Geiger climate classification system or a 

wet and dry tropical climate (V3) according to the Troll-Paffen system (Müller 1982). Historical 

climate records are not available at fine spatial resolution in Burkina Faso as there are only seven 

synoptic stations and thirteen rain gauges across the country. The closest synoptic weather 

station to the project region is at Bobo Dioulasso, approximately 80km north-east, and the closest 

rain gauge is at Banfora to the east (De Longueville, Hountondji et al. 2016).  

The average monthly rainfall and temperatures at Bobo Dioulasso (sourced from Climate-

Data.org8) are plotted in Figure 2-3 and listed in Table 2-4.  

 
Figure 2-3 Average monthly rainfall and temperatures for Bobo Dioulasso 

Table 2-4 Average monthly climate data for Bobo Dioulasso (Source: https://en.climate-data.org/) 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Avg. Temperature (°C) 25.2 27.6 29.7 30.2 29 26.9 25.6 25 25.4 27.2 26.9 25.3 

Min. Temperature (°C) 17 19.5 22.5 24 23.3 21.7 21 20.7 20.7 21 19.1 17.1 

Max. Temperature (°C) 33.5 35.7 36.9 36.4 34.7 32.1 30.2 29.4 30.2 33.4 34.8 33.5 

Precipitation (mm) 1 3 20 45 105 135 204 281 187 60 8 2 

The climate has distinct wet and dry seasons with rain falling primarily during May to October and 

peaking in August. Temperatures are lower during the wet season and in mid-winter (December 

                                                           

8 Climate-Data.org publishes global climate data at 30 arc second resolution from a climate model based on 

twenty years of observation data from thousands of weather stations around the world. 

https://en.climate-data.org/
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and January), and highest in March and April at the end of the dry season. The wet season 

corresponds to the growing season for field crops and harvest is usually completed by the end of 

December. The extensive cloud cover during the wet season hampers the use of satellite imagery 

to view this region during the growing season.  

The average annual rainfall is estimated at 1,051mm at Bobo Dioulasso and 1,086mm at Banfora. 

Rainfall increases further towards the south, with estimates for two locations within the project 

area being 1,122mm at Baguera and 1,139mm at Fourkoura. 

Figure 2-4 shows a time series of annual recorded rainfall at Bobo Dioulasso climate station from 

1981 to 2017. Complete records exist for only eleven years out of the 37. Nevertheless, the 

variability of the rainfall is apparent with 1,346mm rainfall recorded during 1982, compared to 

just 644mm during 2011, and only four of the eleven years exceeding the average predicted 

rainfall.  

 

Figure 2-4 Annual rainfall recorded at Bobo Dioulasso climate station 1981 to 2017 for years 

where complete records exist (Source: https://en.tutiempo.net/climate/ws-655100.html) 

2.3.1 Implications for land suitability modelling 

De Longueville, Hountondji et al. (2016) observe that West Africa is characterized by a very sparse 

network of weather stations and the spatial distribution of the existing rain gauges throughout 

Africa is not sufficient to allow relevant description of local, regional or sub-regional climatic 

phenomena. Interpolated rainfall maps are typically used as inputs for agricultural land suitability 

models, reflecting the critical importance of available water for agriculture. However, spatially 

variable rainfall data are not available for this small region so cannot be included in the models 

developed here. Instead, rainfall will be assumed to be constant across the project area (and this 

is not an unreasonable assumption given the small area), with the patterns of dispersal of the 

rainfall runoff across the terrain modelled instead to produce an alternative and more useful 

measure of available water for rain-fed agriculture. 
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2.4 Terrain  

Geomorphometry is the science of quantitative land surface analysis (Pike, Evans et al. 2009). It 

involves the extraction of spatial measures and features from digital topography to produce 

digital models of terrain.9 Raster maps showing topographic elevation, referred to as digital 

elevation models (DEMs), provide the basis for digital terrain modelling in a GIS environment.  

From these maps many land-surface parameters may be derived using GIS analysis, which is 

typically implemented using neighbourhood operations on DEM cells (Jordan 2007). Note, 

however, that because these parameters can be generated by different algorithms or sampling 

strategies, and vary with spatial scale, no DEM-derived map is definitive (Pike, Evans et al. 2009). 

The topography of a landscape strongly influences its land use and suitability for agriculture. 

Measurable terrain characteristics include elevation, slope and orientation. Many other relevant 

land qualities may also be derived from the terrain, such as the surface water flow and 

distribution, and the amount of solar radiation that may be received at a location. Several DEMs 

showing the surface structure of the landscape at different scales were available for further 

terrain analysis in the project region. These DEMs and the derivation of terrain parameters 

relevant for agricultural land suitability assessment are described in the following sections. 

Most GIS software platforms provide functions for terrain analysis from DEMs. The System for 

Automated Geoscientific Analyses (SAGA) is a comprehensive and globally established open 

source GIS platform for scientific analysis and modelling. It was originally developed as a 

specialized tool for digital terrain analysis and was first released in 2004 (Conrad, Bechtel et al. 

2015). SAGA can be run interactively through its graphical user interface (GUI) or using a 

command line interface.  The R software package RSAGA provides access to geo-computing and 

terrain analysis functions of the SAGA GIS from within R by running the command line version of 

SAGA (Brenning, Bangs et al. 2018). All of the terrain layers developed for this project were 

created using SAGA. 

2.4.1 Digital elevation model 

Gryphon Minerals DEMs 

The data supplied by Gryphon Minerals included several files representing digital elevation 

models for parts of the project area (refer Figure 2-5): 

1. Single raster image taken by the Shuttle Radar Topography Mission (SRTM) in 2000 and 

covering 100% of the project region. (Cell size of 30m by 30m, signed integer values for 

altitude.) 

2. Single raster image taken by the Advanced Land Observing Satellite (ALOS) in 2011 and 

covering approximately 85% of the project region, but not including the southern-most 

area and three of the mining leases. (Cell size of 5m by 5m, floating point values for 

altitude.) 

                                                           

9 Digital terrain models have been used in geoscience applications since the 1950’s and are now a major 

constituent of geographical information processing. Chapter 19 of Maguire, Goodchild et al. (1991) provides 

a review of fundamental digital geomorphometry techniques. 
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3. Raster image of the combination of 8 tile images taken by the WorldView-2 satellite in 

2010 covering approximately 40% of the project area in the south and including the 

regions missed by the ALOS image. (Cell size of 1m by 1m, floating point values for 

altitude.) 

4. Raster image taken by the WorldView-2 satellite in 2012 covering approximately 10% of 

the project area towards the north-east, including the Samavogo mining lease and 

adjoining the larger WorldView-2 image. (Cell size of 1m by 1m, floating point values for 

altitude.) 

All the DEMs used the WGS 1984 UTM Zone 30N projection and had been resampled using the 

nearest neighbour method. 

The SRTM DEM supplied by Gryphon Minerals covered the entire project region and so appeared 

potentially suitable as a basis for further terrain modelling. However, it had retained integer 

values for altitude meaning that all altitude differences between cells could only be measured as 

integer multiples of a metre. This coarse discretization of a naturally continuous variable 

suggested that this DEM (left as is) would be undesirable as a basis for further terrain modelling. 

Alternatively, a finer resolution DEM with 5 metre cell size and floating-point altitude could be 

created by combining the ALOS DEM with the southern WorldView-2 DEM, however the 

compatibility of the two DEMs would first need to be assessed. 

  
   

metres SRTM ALOS WorldView-2 WorldView-2 

Figure 2-5 Digital elevation models supplied by Gryphon Minerals, overlaid with drainage channels 

(in blue) and mining leases (in black) 

SRTM DEM 

The high-resolution topographic data resulting from NASA’s Shuttle Radar Topography Mission in 

2000 has been publicly available since 2014 and can now be downloaded as 1° by 1° grids with 

spatial resolution of 1 arc-second (approximately 30 metres) from the USGS Earth Explorer 

website.10 The SRTM 1 Arc-Second Global tile containing the project region (SRTM1N10W006V3) 

was thus acquired to allow comparison with the supplied DEMs. The coordinate reference system 

of the downloaded SRTM tile was GCS_WGS_1984, with altitude recorded using signed integer 

values. 

The new SRTM tile was reprojected to the WGS 1984 UTM Zone 30N coordinate system and 

resampled using the bilinear method to 30m cell size with floating point values for altitude. Each 

of the supplied DEMs was then subtracted from the new SRTM DEM to observe any differences. 

Table 2-5 summarises the differences between the DEMs. 

                                                           

10 https://earthexplorer.usgs.gov/ 

https://earthexplorer.usgs.gov/
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Table 2-5 Summary of differences between the new SRTM DEM and the four DEMs supplied by 

Gryphon Minerals Ltd 

DEM 
Minimum  

(m) 
Maximum  

(m) 
Mean  

(m) 

Standard 
deviation 

(m) 

Root mean 
squared 
error (m) 

Mean 
absolute 
error (m) 

Gryphon SRTM -30.25 55.49 0.00 1.37 1.37 0.97 

ALOS -116.11 81.62 3.18 4.92 5.85 4.63 

WorldView-2 northern -37.22 -11.07 -24.27 1.96 24.35 24.27 

WorldView-2 southern -31.76 26.43 4.93 2.30 5.45 4.99 

The most extreme differences in altitude between the DEMs occurred in the north-west corner of 

the project region where an extensive and dramatic series of rock formations called the Sindou 

Peaks are situated (see Figure 2-6). The large differences in altitude in this location and other 

areas with rugged terrain are readily understandable as data by-products of the different grid 

sizes of the ALOS and WorldView2 DEMs and the different interpolation method used for the 

Gryphon SRTM DEM.  

The various mean differences between the supplied DEMs and the new SRTM DEM demonstrated 

that the ALOS and WorldView-2 DEMS were inconsistent with respect to true metres above sea 

level. Given such variations in base altitude detected between the supplied DEMs, the new SRTM 

DEM was selected as the most reliable basis for further terrain modelling.    

  
Source: www.traveladventures.org/continents/africa/sindou-peaks11.html Source: www.traveladventures.org/continents/africa/sindou-peaks08.html 

Figure 2-6 Images of Sindou Peaks rock formations in the north-west of the project region 

Terrain modelling DEM 

The final DEM that was used in all subsequent terrain modelling was derived from the 

downloaded SRTM tile and post-processed by: (1) projection to the WGS 1984 UTM Zone 30N 

coordinate system with resampling using the bilinear method to 30m cell size and floating point 

values for altitude; and (2) applying a simple smoothing filter of radius 3. 
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2.4.2 Terrain layers 

Five new terrain layers were created from the DEM using the SAGA’s digital terrain analysis 

functions. The RSAGA package was used to create terrain layers for slope, solar radiation and 

wetness index. Layers showing the index values for multi-resolution valley bottom flatness 

(MRVBF) and multi-resolution ridge top flatness (MRRTF) were created interactively using the 

SAGA GUI as these functions are not available in RSAGA. The derivation of these five layers is 

described below and Figure 2-7 shows the maps and histograms of their values. 

Slope 

The slope layer was generated using the SAGA morphometry function for calculating slope, aspect 

and curvature, implemented in RSAGA as the function rsaga.slope.asp.curv.  

Flat and gentle slopes dominate across the project region, as is shown by the histogram values in 

Figure 2-7. The mean slope is 1.68 degrees with standard deviation of 1.94, implying that 95% of 

the terrain has slope of less than 5.6 degrees and 68% has slope less than 3.6 degrees. 

Solar radiation 

The solar radiation layer was generated using the SAGA lighting function for calculating incoming 

solar radiation, implemented in RSAGA as the function rsaga.pisr2. This function will calculate the 

solar radiation at a given latitude using dates and time steps specified by the user. Latitude was 

specified as 10 degrees and the time variables were left to the default of half hour time steps on 

31 October 2015 which is around the end of the growing season and the start of harvest. 

Wetness index 

The patterns of dispersal of rainfall runoff across a landscape can be digitally modelled from its 

DEM. The Topographic Wetness Index (TWI) is a commonly used measure of soil moisture 

availability that is derived from the catchment area size and local slope at sites in a landscape 

(Mattivi, Franci et al. 2019). However, the TWI was designed for hillslope catenas and so the 

physical concepts behind it are not valid for channels and extremely flat areas. The SAGA Wetness 

Index (SWI) is similar to the TWI, but it is based on a modified catchment area calculation that 

tends to assign more realistic and higher potential soil wetness to those grid cells situated in 

valley floors and having a small vertical distance to a channel (Brenning, Bangs et al. 2018). The 

wetness index values reveal the relative variation in soil moisture availability across the landscape 

but are themselves unit-less. 

An important pre-processing step in automated DEM-based modelling of surface rainfall runoff is 

the creation of a hydrologically sound elevation model. This is done by identification and removal 

of surface depressions (referred to as ‘filling sinks’) and preservation of downward slopes along 

flow paths. One of the methods implemented in SAGA for filling surface depressions is based on 

the concept of spill elevation and uses the least-cost search technique to progressively build the 

optimal flow paths (Wang and Liu 2006). 

A hydrologically sound DEM was generated using the SAGA terrain analysis pre-processing 

function that fills sinks using the Wang Liu method, implemented in RSAGA as the function 

rsaga.fill.sinks with the parameter method="wang.liu.2006". The wetness index layer was then 

generated from this new DEM using the SAGA hydrology function for calculating the SAGA 

Wetness Index, implemented in RSAGA as the function rsaga.wetness.index.  
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Multi-resolution valley bottom flatness 

The distinction between hillslopes and valley bottoms can be very important in agriculture. It was 

observed in Table 2-3 that the bas-fonds (valley bottoms of seasonally flooded inland valleys) had 

a very distinct cropping profile compared to other soil types and were used almost exclusively for 

growing rice.  

Distinguishing valley bottoms from hillslopes is important in hydrologic and geomorphic analysis 

to separate erosional and depositional areas and in characterising sediment deposits (Gallant and 

Dowling 2003). The multi-resolution valley bottom flatness (MRVBF) measure was developed to 

identify valley bottoms based on their topographic signature as flat and low‐lying relative to their 

surroundings. The algorithm to compute MRVBF is described in Gallant and Dowling (2003) and 

uses a combination of local lowness and flatness indices computed at a range of scales from a 

DEM. The MRVBF is a continuous measure that divides into classes corresponding to the different 

resolutions and slope thresholds as follows: 

• Values less than 0.5 are not valley bottom areas.  

• Values from 0.5 to 1.5 are considered to be the steepest and smallest resolvable valley 

bottoms for 25m DEMs.  

• Flatter and larger valley bottoms are represented by values from 1.5 to 2.5, 2.5 to 3.5, and 

so on. 

Both the MRVBF and MRRTF layers for the project region were created interactively in SAGA using 

the morphometry function for calculating Multi-resolution Index of Valley Bottom Flatness. It can 

be observed in Figure 2-7 that there is a strong correspondence between high MRVBF values and 

high wetness index values in areas at lower elevations.  

Multi-resolution ridge top flatness 

MRRTF is a topographic index designed to identify high flat areas at a range of scales that 

complements the MRVBF index. Zero values for MRRTF indicate areas that are steep or low, with 

values 1 and larger indicating progressively larger areas of high flat land (Gallant and Dowling 

2003). There is a strong correspondence between high MRRTF values and high wetness index 

values in areas at higher elevations (see Figure 2-7).  
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Elevation (metres) 

 

 

Slope (degrees) 

 

 

Solar radiation (J/cm2) 

 

 
Wetness index 

 

Valley bottom flatness 

 

 

Ridge top flatness 

 

 

Figure 2-7 Maps and histograms of values for terrain layers  
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2.5 Soils 

The project region is situated in a geological domain dominated by volcanic and volcano-

sedimentary belts and is regarded as the result of juvenile crust formation and the reworking of 

older crust that has been disaggregated (Belousova 2016 ref). In West Africa large areas are 

characterised by soils with surface layers that can become hardened by iron and clay compounds. 

Figure 2-8 has been reproduced from the Soil Atlas of Africa (Jones, Breuning-Madsen et al. 2013) 

and shows the major soil types occurring in south-west Burkina Faso. In the project region 

Plinthosols (marginal soils with iron accumulation that harden irreversibly when exposed to air 

and sunlight) are dominant and there is a localised area of Acrisols along the border with Ivory 

Coast (these are strongly acidic marginal soils that also harden irreversibly). However, the central 

third of the area is characterised as Cambisols (young soils that are moderately developed) that 

are classed as excellent soils for agriculture.  

 

Soil type 

 

ACpl = Plinthic Acrisols (Very acid with a clay-rich subsoil. 

Iron-rich, humus-poor clay-rich horizon which hardens 
irreversibly.) 

 
CMeu = Eutric Cambisols (Moderately developed soil 
which is not acid) 

 
LVgl = Gleyic Lixisols (Soil with clay accumulation in subsoil. 

Showing water logged conditions.) 

 
NTdy = Dystric Nitisols (Deep red with well developed nut-
shaped structure. Acid.) 

 

PTpt = Petric Plinthosols (Soil with an accumulation of iron 

that hardens irreversibly when exposed to air and sunlight. 
Having a strongly cemented or indurant layer.) 

Project region 

Figure 2-8 Soils of south-west Burkina Faso, from Soil Atlas of Africa (plate 9, pages 96-97) 

The maps available in the Soil Atlas of Africa are informative at a regional level, but lack the fine 

detail required for land suitability analysis at community level. 

2.5.1 Gryphon Minerals soil map 

In contrast, the soil map of the project region supplied by Gryphon Minerals Ltd (shown in Figure 

2-9) contains very fine spatial detail. It is derived from a regolith map and identifies eight major 

soil types grouped into four soil and terrain forming regimes (Bolster 1999). These are: 

• curaisse (soil codes Fp and Fh) – often referred to as “desert armour” and having a hard 

crust formed from the weathering of iron-rich soils;  

• erosional (soil codes Eo and Es);  

• depositional (soil codes Da, Dc and Dd); and  

• residual (soil code Rs). 

The detailed descriptions for the soil types are shown in the map legend. The distribution of these 

soil types across the project area and in the mining lease communities (both individually and 

combined) is presented in Table 2-6, following the map. 



Land Suitability Assessments for Agriculture using the Data By-products of Mining Exploration 

30 Chapter 2  Data for land suitability assessment  

 

Figure 2-9 Soil map of the project region supplied by Gryphon Minerals Ltd11 

                                                           
11 Note: Villages and artisanal mining sites were also identified in the supplied map, but accounted for less 

than one percent of the total area (refer Table 2-6). The ArcGIS geoprocessing tool Dissolve was used to 

simplify the map by merging these tiny polygons with neighbouring soil polygons. 
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As can be observed in Table 2-6, residual soils make up 80% of the landscape. These soils have 

weathered in place and so their chemical makeup is determined by their underlying geology. 

There are ten distinct classes of residual soils identified in the Gryphon Minerals soil map, with 

mafic, felsic and intermediate residual soils prevailing. Depositional soils account for almost 10% 

and occur along the river valleys. Curaisse plateaus and curaisse dominated hills account for 

almost 5% of the landscape. The remaining 5% of soils are in the erosional regime either as 

skeletal soils and outcrop, or erodible soil on escarpments. The Stinger mining lease, with 50% of 

its area being curaisse plateau, has a very different soil profile from the other mining leases and 

from the project area as a whole. The Fourkoura mining lease also has a different soil profile, 

having a much higher proportion of depositional soils (18%). 

Table 2-6 Distribution of soil types in the Burkina Faso project area and the four mining lease 

communities (%*) 

Soil  
code 

Soil description 
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Da Alluvium 8.8 1.9 3.0 2.7 3.0 7.0 

Dc Colluvial clay and sandy soils 9.4 3.5 0.0 0.0 2.9 2.0 

Dd Swamp / black soil plains 0.0 0.0 0.0 0.0 0.0 0.3 

Eo Skeletal soils and outcrop 0.4 0.2 0.0 0.0 0.2 2.9 

Es Latosol / pedolith and saprolith on escarpments 0.3 1.7 2.4 0.6 1.5 1.7 

Fh, Fp Cuirasse (primarily plateaus) 4.9 2.5 2.6 49.8 9.3 4.5 

Rs Residual soils 74.8 89.3 91.7 46.3 82.4 80.8 

Vil, Orp Not classified (village/town, artisanal gold mining) 1.4 0.9 0.3 0.6 0.8 0.8 

Total  100.0 100.0 100.0 100.0 100.0 100.0 
* Percentages based on numbers of pixels in a 30m x 30m cell raster of the supplied soil map 

Table 2-7 Distribution of soil types in the planting locations of crops in the four mining lease 

communities (%*) 

Soil code 
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Da 1.3 1.6 0.5 2.7 0.8 2.3 0.3 0.3 7.8 38.5 0.3 1.9 3.0 

Dc 3.5 0.0 0.5 0.2 0.5 2.7 0.4 0.8 3.3 22.0 0.8 0.1 2.9 

Dd 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Eo 0.0 0.0 0.1 0.5 0.0 0.1 0.0 0.0 0.0 0.0 0.3 0.0 0.2 

Es 0.3 0.1 0.9 0.0 0.3 0.7 0.0 0.9 0.0 0.4 0.5 0.3 1.5 

Fh, Fp 15.2 1.1 7.5 0.7 9.1 6.0 11.8 11.3 16.7 3.7 9.7 5.2 9.3 

Rs 78.4 96.1 90.0 95.7 87.8 87.6 86.7 86.0 72.2 35.2 88.2 91.2 82.4 

Orp, Vil 1.3 1.1 0.5 0.2 1.6 0.7 0.8 0.6 0.0 0.2 0.3 1.2 0.8 

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
* Percentage based on numbers of pixels in a 30m x 30m cell raster of the supplied soil map 
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In Table 2-7 the soils used for the planting locations of the twelve main crops are compared. 

Residual soils are predominant in the planting locations for most of the crops. However, Rice, has 

a very different soil profile from the other crops, with the majority of rice fields (60.5% by area) 

being on depositional soils (alluvium and colluvium). 

The Gryphon Minerals soil map was produced using a combination of field work and the remote 

interpretation of high-resolution satellite imagery and topographic data, supported by 

radiometric and geophysical image interpretation. It was supplied as an ESRI shape file with the 

attributes identifying the soil and terrain forming regime and the underlying geology (as can be 

seen in the map legend), but lacking any of the attributes that would typically be used in 

agricultural suitability modelling (such as soil depth, pH, salinity, and the proportions of clay, sand, 

silt, carbon etc). 

2.5.2 SoilGrids 

Global soil maps that predict many of these soil properties are now freely available. In 2014, ISRIC 

(International Soil Reference Information Centre) released a global soil information system called 

SoilGrids that provided predictions of soil properties and soil classes at 1km spatial resolution. 

These predictions were refined to produce SoilGrids250m released in 2016, the development of 

which is documented in Hengl, Mendes de Jesus et al. (2017).   

SoilGrids250m is a global 3D soil information system providing predictions at 250m spatial 

resolution for many standard numeric soil properties at different depths, plus depth to bedrock 

and soil classes in both World Reference Base (WRB) and USDA classification systems. The 

predictions of soil qualities (in raster format) were made at seven standard depths (0, 5, 15, 30, 

60, 100 and 200cm). 12 

The SoilGrids250m layers likely to be relevant to this project were the soil properties and depth to 

bedrock layers (listed in Appendix D).  In order for these files to be usable in the project, initial 

processing was required to download the global raster layers (119 tiff files, each approximately 1 

Gb in size), clip each raster to the project area, and then resample and reproject at 30m pixel 

resolution (resulting in 119 rasters varying in size from 1.4 Mb to 17 Mb).  

Suitability modelling using seven depth predictions for each soil property was not practical. 

Instead, an estimate for the top 30cm of soil was produced (following the recommendation by 

Hengl, Mendes de Jesus et al. (2017)) by numerically integrating the layers using the trapezoidal 

rule: 

1

𝑏 − 𝑎
∫ 𝑓(𝑥)𝑑𝑥 ≈  

1

𝑏 − 𝑎
.
1

2

𝑏

𝑎

∑(𝑥𝑘+1 − 𝑥𝑘)(𝑓(𝑥𝑘) + 𝑓(𝑥𝑘+1))

𝑁−1

𝑘=1

 

where N is the number of depths, xk is the k-th depth and f(xk) is the value of the soil property at 

depth xk. This resolves to a simple weighted average of the soil property values in the top four 

layers, easily implemented as the raster calculation: 

1

60
(5(𝑠𝑙1 + 𝑠𝑙2) + 10(𝑠𝑙2 + 𝑠𝑙3) + 15(𝑠𝑙3 + 𝑠𝑙4)) 

where sli is the cell value in the i–th soil layer for the target soil property.  

                                                           

12 SoilGrids250m map layers are available for download via www.SoilGrids.org under the Open Database 

License (ODbL). GeoTiffs can also be obtained from ftp://ftp.soilgrids.org/data/. 
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Two examples of the resulting soil layers are shown in Figure 2-10. Other layers are displayed as 

maps in Appendix D. Figure 2-11 presents boxplots of the values in these two soil layers showing 

the median, interquartile range and outliers for: (a) the project area as a whole and each mining 

lease community; (b) the planting locations for the twelve main crops; and (c) each of the soil 

types in the Gryphon Minerals soil map. Analysis of such boxplots for all the new soil layers (not 

reproduced in this thesis) revealed considerable variation in raster values between the different 

soil types and crop planting locations. 

 
BLDFIE – Bulk density (fine earth) in kg per 

cubic-meter 

 

OCDENS – Soil organic carbon density in kg per 
cubic-meter 

 

Figure 2-10 SoilGrids250m layers resampled to 30m pixels and consolidated for the top 30cm of 

soil 

Maps for the new multi-dimensional set of soil layers derived from the SoilGrids250m data are 

provided in Appendix D. If the SoilGrids250m source maps are reliable for this region then these 

new SoilGrids layers may provide useful inputs for the agricultural suitability modelling task and 

overcome the limitations of the categorical map of soil type supplied by Gryphon Minerals. 

However, caution must be exercised when using these new soil layers. The SoilsGrids250m 

predictions have not been validated globally and, in particular, have not been validated for this 

local area, so their accuracy cannot be relied upon. In addition, the spatial resolution of the 

source data (250m cell size) is much coarser than processing resolution (30m) and so may not 

capture important changes in soil characteristics occurring at the finer scale. 
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 BLDFIE – Bulk density (fine earth) in kg  
per cubic-meter 

OCDENS – Soil organic carbon density in kg  
per cubic-meter 
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Figure 2-11 Analysis of SoilGrids values for the region and by mining lease, crop location and soil 

type 
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2.5.3 Hybrid soil layers 

Attempts to use the Gryphon Minerals map of soil types and the SoilGrids layers in the 

agricultural suitability modelling (described later in Chapter 3) each produced very unsatisfactory 

results. The two sources of soil data are compared in detail in Figure 2-12 and Figure 2-13. Each 

figure shows high-resolution satellite imagery for a small cultivated area alongside the 

corresponding soil polygons from the Gryphon Minerals soil map and the raster values from four 

SoilGrids layers. The influence of the soil type on agriculture is clearly visible in both figures.  

In Figure 2-12, the boundary between residual and depositional soils is clearly observable in the 

satellite image and is marked by the change in style of agriculture. Intensive rice cultivation occurs 

on the alluvial soils whereas the residual soils support dryland cropping and agroforestry. The 

impediment to agriculture posed by the erosional escarpments is also observable in the image as 

uncleared bush. 

Gryphon Minerals soil map Satellite image SoilGrids 

 

Figure 2-12 Comparison of Gryphon Minerals soil map and four SoilGrids layers with Worldview2 

satellite image (true colour) April 2010 

Again, in Figure 2-13, the influence of soil type can be observed in the cultivation patterns. Here, 

the rice fields visible in the satellite image match closely the large polygon of colluvial clay and 

sandy soils from the Gryphon Minerals map. Agroforestry of other dryland crops occurs on the 

residual soils and the erosional escarpments have not been cleared. 

In comparison, the corresponding SoilGrids maps reveal no readily observable relationships 

between the SoilGrids values and (1) the soil types from the Gryphon Minerals map, or (2) the 

agricultural patterns and topographic features visible in the satellite images. Figure 2-11 

demonstrated that the distribution of SoilGrids values does vary between soil types and also 

between the planting locations for different crops. However, the changes in soil type observable 

in the figures above, that are very relevant to agricultural land suitability modelling, could not be 

detected using just the SoilGrids data. To be able to include useful soil data in the modelling it 

became desirable to devise a way to combine the detailed and accurate soil map supplied by 

Gryphon Minerals with the coarse resolution but multi-dimensional soil data from SoilGrids.  
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Gryphon Minerals soil map Satellite image SoilGrids 

 

Figure 2-13 Comparison of Gryphon Minerals soil map and four SoilGrids layers with Worldview2 

satellite image (true colour) April 2010 

New sets of hybrid soil layers were created using the soil polygon boundaries from the Gryphon 

Minerals map and the SoilGrids values for the respective soil types. Figure 2-14 illustrates this 

process. The top left map shows the SoilGrids values for bulk density (fine earth) in kg per cubic-

meter (BLDFIE) in the top 30cm of soil. The top right map is a raster derived from the Gryphon 

Minerals map that plots the mean BLDFIE value for each soil type. The general pattern of low 

BLDFIE values in areas of skeletal and depositional soils and higher values for residual soils is 

sharpened in the new map.  However, with only 17 distinct soil types, this is still essentially a 

categorical map. To address this limitation variability was introduced to the layers using three 

different methods: 

Adding Gaussian noise - a noise layer was generated using random values from a normal 

distribution with mean=0 and standard deviation=0.5. To prevent anomalous outliers, any 

noise values with magnitude greater than 2 were reset to zero. A raster of the standard 

deviation of BLDFIE values for each soil type was also generated (centre left map). The final 

hybrid soil layer (centre right map) was generated from the mean, noise and standard 

deviation (std) rasters using raster arithmetic:  

hybrid_1 = mean + noise*std 

Adding SoilGrids values in the ratio 50:50 - the bottom left map shows the mean by soil type 

raster (top right map) added to the corresponding SoilGrids raster (top left map) in equal 

proportion:  

hybrid_2 = mean*50% + SoilGrids*50% 

Adding SoilGrids values in the ratio 75:25 - the bottom right map shows the mean by soil 

type raster (top right map) added to the corresponding SoilGrids raster (top left map) in the 

proportion 75% to 25%: 

hybrid_3 = mean*75% + SoilGrids*25% 
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SoilGrids values (top 30cm) Mean for soil type 

  
Standard deviation for soil type Mean for soil type + Gaussian noise 

  
Mean for soil type (50%) + SoilGrids (50%) Mean for soil type (75%) + SoilGrids (25%) 

  

Figure 2-14 Derivation of hybrid soil layers from Gryphon Minerals soil map and the SoilGrids (top 

30cm) BLDFIE layer 

Sets of twenty hybrid soil layers were derived in this manner for potential use in the agricultural 

suitability modelling (see Table 2-8). Each raster layer reflects the precise landscape detail from 

the Gryphon Minerals soil map and is informed by the SoilGrids250m soil quality values averaged 

by soil type. 
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Table 2-8 List of hybrid soil layers derived from SoilGrids250m 

2.6 Radiometrics 

Radiometrics (gamma ray spectrometry) measures the natural radiation at the Earth’s surface and 

a radiometric survey typically measures the spatial distribution of three radioactive elements 

(potassium - K, thorium - Th and uranium - U) in the top 30-45cm of the Earth’s crust. The 

abundances of K, Th and U are measured by detecting the gamma rays produced during the 

natural radioactive decay of these elements. Since weathering modifies the concentration and 

distribution of the radioactive elements relative to fresh bedrock, radiometric measurements 

provide information on geomorphic processes and properties of the regolith and soils (IAEA 

2003). 

A low level airborne geophysical survey of the project area was commissioned by Gryphon 

Minerals Ltd, with magnetic, radiometric and elevation data acquired during the period 10-19 

April 2010. The radiometric component of this survey (only) was supplied to the research project. 

It comprised eight raster files in ER-Mapper data format showing gamma ray counts and 

estimated ground concentrations as follows: 

• Total count (counts/sec) 

• Dose rate (nGy/hr)  

• Potassium (counts/sec) 

• Potassium ground concentration (%) 

• Thorium (counts/sec) 

• Thorium ground concentration (ppm) 

Layer name Soil quality Description 

ACDWRB Acid grade Grade of a sub-soil being acid e.g. having a pH < 5 and low BS 

BDRICM Bedrock depth Depth to bedrock (R horizon) up to 200cm 

BDRLOG Bedrock depth Probability of occurrence (0-100%) of R horizon 

BDTICM Bedrock depth Absolute depth to bedrock (in cm) 

BLDFIE Bulk density Bulk density (fine earth) in kg per cubic-m 

OCDENS Carbon - density Soil organic carbon density in kg per cubic-m 

ORCDRC Carbon - organic Soil organic carbon content (fine earth fraction) in g per kg 

OCSTHA Carbon - stock Soil organic carbon stock in tons per ha 

CECSOL Cation capacity Cation exchange capacity of soil in cmolc/kg 

PHIHOX pH acidity Soil pH x 10 in water  

PHIKCL pH KCl Soil pH x 10 in Potassium chloride 

CLYPPT Texture - clay Clay content (0-2 micrometre) mass fraction in % 

CRFVOL Texture - coarse Coarse fragments volumetric in % 

SNDPPT Texture - sand Sand content (50-2000 micrometre) mass fraction in % 

SLTPPT Texture - silt Silt content (2-50 micrometre) mass fraction in % 

AWCh1 Water available Available soil water capacity (volumetric fraction) for h1 

AWCh2 Water available Available soil water capacity (volumetric fraction) for h2 

AWCh3 Water available Available soil water capacity (volumetric fraction) for h3 

AWCtS Water available Saturated water content (volumetric fraction) for tS 

WWP Water available Available soil water capacity (volumetric fraction) until wilting point 
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• Uranium (counts/sec) 

• Uranium ground concentration (ppm)  

Each raster had cell size of 25m x 25m and had been projected to the WGS 1984 UTM Zone 30N 

coordinate system. To maintain consistency with the terrain files, all rasters were reprojected to 

30m x 30m cell size.  
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Figure 2-15 Maps and histograms of values for radiometric layers 

The maps and histograms in Figure 2-15 show the numeric ranges and spatial distribution for the 

intensity of radioactive dose rate, the percent ground concentration of potassium, and the ground 

concentrations for thorium and uranium estimated in parts per million. The maps for dose rate, 

thorium and uranium exhibit a similar spatial pattern of low and high values, with the lowest 

values occurring in areas with high altitude and rugged terrain. Higher concentrations of 

potassium are observable along some of the water courses and drainage channels. 
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The radiometric response differs for fresh bedrock, weathered rocks and transported material and 

so these data may be used to identify areas of active weathering and distinguish erosional and 

depositional terrain forming processes. However, the gamma ray response to weathering is 

typically specific to the local geology so radiometric data are usually interpreted in conjunction 

with other sources of information such as topography, aerial photography and satellite imagery 

(IAEA 2003). The radiometric data described in this section were used by Gryphon Minerals Ltd in 

refining the soil map discussed in Section 2.5.1, but may also be useful for the agricultural land 

suitability assessment task. 

2.7 Other data 

Appendix A lists the mining exploration spatial data that were supplied for use in this research 

project. The community land use maps, the regional soil map, the DEMs and the radiometric data 

have been described in this chapter. The other datasets, not used directly to generate 

environmental layers for suitability modelling, are described below. 

2.7.1 Satellite imagery 

The very fine resolution WorldView2 imagery is extremely useful when trying to gain insight into 

the terrain and land use across the region. Detail from the 2010 dry season image that covers the 

entire project region was seen in Figure 1-4, Figure 2-12 and Figure 2-13. Similar satellite imagery 

for parts of the project region in 2012, 2013 and 2014 was also supplied by Gryphon Minerals Ltd 

but has not been used in this project.  

Note that the extensive cloud cover during the wet season hampers the use of satellite imagery to 

view this region during the growing season. Table 2-9 shows the average cloud cover by month 

for images from two high-resolution Earth observation satellites over the period 2010-2018. 

Images for wet season months had high levels of cloud cover peaking at an average of 78% for 

August. For this reason, no further satellite imagery was sourced for this project. 

Table 2-9 Average cloud cover for images of the project region taken by the AIRBUS satellites SPOT 

and Pléiades during 2010-2018 (192 images), by month 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Cloud cover 4.3% 6.9% 7.6% 26.5% 29.3% 49.2% 66.6% 78.1% 58.6% 12.5% 16.3% 8.2% 

2.7.2 Drainage 

The location of drainage channels is powerfully informative with regard to the shape of a 

landscape and this vector layer has been frequently used as an overlay to improve the clarity of 

terrain maps. In particular, it has been used in the map outputs from this project (described later 

in 0) to make these maps more intuitively understandable and so enhance their readability. 

Although descriptive in their shapes, the drainage channels had no measurements to indicate the 

size or duration of flows. Referring back to Figure 1-3, a sparse network of drainage channels can 

be observed in the low flat areas, compared with a much denser network in rugged terrain. This 

suggests that distance to a drainage channel would not be a valid indicator for soil moisture in this 

terrain. The wetness index layer described in 2.4.2 provides much richer data on water 

availability. 
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2.7.3 Contours 

The elevation contour lines have not been used analytically as all raster terrain layers have been 

derived from the DEM. However, they have been used as descriptive map overlays. 

2.7.4 Regolith and soil samples 

The regolith files initially looked very promising. However, they proved to be a raster tile set 

showing an image only (with no attributes) of a soil/regolith map with the locations for soil 

samples marked. An attributed version of this map was reported to exist, as was a detailed 

spreadsheet of soil sample properties. An effort was made to acquire these additional datasets 

from ex-Gryphon Minerals members and from Teranga Gold Corporation. Eventually, Teranga 

Gold Corporation supplied two Access databases containing soil sample results; however, they 

had a great deal of missing data and used undocumented codes rather than numeric values for 

the soil attributes. The code descriptions were able to be obtained from an ex-Gryphon Minerals 

member but proved unsuitable for interpolation to generate any environmental layers of interest. 

2.7.5 Vegetation 

An Excel spreadsheet containing the locations of 66 named trees was supplied. Unfortunately 

these locations did not match tree crowns in the satellite image so could not be used for spectral 

analysis or object detection, and there were insufficient numbers of trees of any particular species 

to use as presence data for modelling.  

Gryphon Minerals Ltd also supplied shape files showing the distribution of Baobab, Kerite and 

Nere trees in the area around Nogbele. However, these were found to be the results of in-house 

trials of directed classification using WorldView-2 imagery. As the accuracy of these shape files 

could not be established they were not used in the project. 

2.7.6 ASTER imagery 

Thirty-one raster images derived from Advanced Spaceborne Thermal Emission and Reflectance 

Radiometer (ASTER) were supplied showing mineral distributions. The data files are enhanced 

compressed wavelet (.ecw) images with three raster bands. Only ten images display in ArcGIS (for 

alumite, b1_grey, calcite1, calcite2, carbonate, dictate_b5, iron, jarosite1, jarosite2 and kaolinite) 

with the other images triggering an “invalid raster dataset” message. No documentation was 

provided on how these images were derived from the 14 ASTER bands or what the values in each 

of the three bands represented and so they have not been used in the project. 
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2.8 Summary 

This thesis asks whether land suitability assessments for agriculture can be done effectively using 

the data by-products of mining exploration, without the necessity for and cost of additional data 

acquisition. This chapter has examined in detail the spatial data supplied for the research task by 

the exploration company (Gryphon Minerals Ltd) and has also investigated other sources of freely 

available spatial data that could potentially be used to supplement it. 

The annotated shape files of the crop compensation maps proved a rich source of data regarding 

the local agriculture in the affected communities, showing both the crops grown and their chosen 

planting locations. These data show the existing cropping patterns in four small areas of the 

project region and the locations used to grow individual crops can be spatially linked with other 

data to reveal the environments selected by farmers for their cultivation. 

The topography of a landscape strongly influences its land use and suitability for agriculture. 

Many relevant land qualities are derivable from digital elevation models and six terrain rasters 

were created for the project region (elevation, slope, received solar radiation, and indices of 

wetness, valley bottom flatness and ridge top flatness). The supplied digital elevation data had 

been purchased by the exploration company and represented an expensive data acquisition at 

that time. However, since 2014, high-resolution topographic data resulting from NASA’s Shuttle 

Radar Topography Mission in 2000 has been publicly available, and so acquiring a DEM no longer 

represents a cost to projects. 

A recently updated and finely detailed categorical soil map that classified soil according to regolith 

forming regime and original rock type was supplied by the exploration company; however, these 

soil categories were not easily interpretable in an agricultural context. Global maps predicting 

multiple commonly used soil properties are publicly available, although mostly at very coarse 

spatial resolutions that would be unsuitable for this project. In 2016 SoilGrids released its 3-

dimensional soil information system at 250m resolution and these data were downloaded to 

supplement the supplied soil map. However, the resolution of these SoilGrids rasters was still too 

coarse for effective modelling, and so algorithmic methods were devised to process both sources 

of soil data into new sets of hybrid soil layers (that combined the fine spatial detail of the supplied 

map with the multi-dimensionality of the SoilGrids soil property predictions) that might prove 

useful for modelling. 

The radiometric survey commissioned by the exploration company provided further detailed and 

accurate source data potentially useful for modelling. However, other supplied data that had 

been purchased or explicitly created by the exploration company were found to be useful for their 

descriptive value only (high resolution satellite imagery and the map of drainage channels) or 

insufficiently documented to be able to be used in modelling (regolith image tiles, vegetation 

data, ASTER imagery). Spatially relevant climate data were not supplied and were not elsewhere 

available (due to the very sparse network of weather stations in Burkina Faso). 
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Chapter 3  Environmental niche modelling and Maxent 

3.1 Introduction 

This research is performed in the context of a new mine in West Africa that necessitates the 

relocation of subsistence farmers from four sites. It asks the question: 

Can land suitability assessments for agriculture be carried out effectively using the data by-

products of mining exploration, without the necessity for and cost of additional data 

acquisition? 

If the answer to this question is yes, then meaningful assistance in determining suitable 

alternative farming locations could be offered to the affected farmers by the mining company. 

The major challenge with this research is in determining how such a land suitability assessment 

can be performed given the available data.  

Chapter 2 has documented the main data resources available for the research. These were 

supplied by Gryphon Minerals Ltd (the exploration company for the new mine) at the start of the 

project or were derived from publicly available data sources. Attempts to obtain further data of 

use to the project are constrained by several significant issues: 

• In 2016, Gryphon Minerals Ltd was taken over by Teranga Gold Corporation and it is now 

very difficult to obtain further exploration data not included in the original data supply.  

• It will not be possible to visit the project region to inspect environmental conditions, to 

talk with agricultural experts and affected farmers, or to ground truth results, due to the 

project region bordering Mali and falling within an Australian Department of Foreign 

Affairs and Trade defined “do not travel” zone13. 

• Global datasets, e.g. for land cover, land use or other environmental factors typically have 

coarse spatial resolutions of inappropriate scales for this analysis and their accuracy for 

the project region cannot be relied upon as they have not been locally validated. In 

addition, most of the freely available satellite data commonly used in identifying growth 

patterns of crops proves ineffective for this region due to the extensive cloud cover 

during the growing season.   

Reviewing the available data resources, some secondary research questions emerge:  

How can existing cropping patterns inform us with regard to other potential planting locations 

for particular crops? 

Are the soil categories used for mining exploration useful as soil categories for agricultural 

land suitability models? 

The agricultural compensation maps provide a rich data source for identifying significant crops 

and existing cropping patterns. Using the FAO land evaluation approach (refer Section 1.4.1), the 

physical requirements of these crops would be matched against measured land qualities such as 

climate, soil type, landform, water availability, etc. to assess the degree of suitability of particular 

land for particular crops. However, closer inspection of these crop data reveals sufficient 

                                                           
13 Parts of Burkina Faso are currently rated “do not travel” due to the threat of kidnapping and terrorist 

attack. 
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ambiguity in the crop descriptions to undermine rigorous application of this approach. For 

example, “rice” could refer to high yield Asian varieties or native African varieties grown using 

irrigated, dryland or floating cultivation (National Research Council 1996). Does “potato” refer to 

white potatoes or sweet potatoes? Which species of legume are referred to by the term “bean”? 

Are multiple crop varieties planted by farmers and do these varieties differ in their responses to 

the environment? Without the opportunity to clarify such questions it is not possible to reliably 

specify the physical requirements of the crops. 

Attempts to craft a GIS-based solution (refer Section 1.4.2), e.g. using multi-criteria decision 

making (MCDM), are also hampered by the prohibition on travel to the region.  Effective MCDM 

solutions rely heavily on expert opinion to ensure that input layers and overlay weights are 

realistic and to assist with the interpretation of final results. The travel ban makes finding such 

experts almost impossible, and also prevents in situ validation of results if such an approach was 

tried. 

The limitations to further data collection and access to relevant experts preclude a knowledge-

based solution in this project. In contrast, data-driven approaches that use empirical methods to 

derive the species-environment relationships are not similarly constrained by a lack of expert 

knowledge. These methods correlate known occurrences of a species with the environmental 

characteristics at those locations and then extrapolate these relationships to identify other areas 

that have similar environmental conditions. They simply require the locations for known 

occurrences of a species and geospatial environmental data for the target region to match it 

against. And very detailed crop location data are available to the project in the form of the crop 

compensation maps. 

3.2 Exploring data-driven environmental niche modelling using the BCCVL 

Environmental niche models predict suitability for a species as a function of given environmental 

variables. The fundamental niche for a species is the set of conditions that allow for its long term 

survival, whereas the realised niche is the subset of the fundamental niche that it actually 

occupies. The environmental conditions at the presence locations, by definition, constitute 

samples from the realised niche, and the realised niche in relation to agricultural crops are those 

places chosen for their cultivation. 

The BCCVL (Biodiversity and Climate Change Virtual Laboratory) offers a useful platform for 

experimenting with species distribution and environmental niche modelling algorithms (refer 

Section 1.4.3) and was used to explore their performance in relation to the research task.  

Initial tests of the ten BCCVL statistical regression and machine learning algorithms used presence 

data for the twelve main crops (derived as the centroids of the fields in the crop compensation 

maps) and three terrain derived environmental layers (slope, solar radiation, wetness index). The 

suitability maps generated by seven of these algorithms showed clearly the influence of terrain on 

the areas identified as more suitable for individual crops.14 The results were consistent with 

common sense expectations regarding suitable planting locations for particular crops and so were 

very encouraging as evidence that this approach was appropriate for the task. 

                                                           
14 The ANN model failed in all runs so produced no output, and the suitability maps generated by the 

Boosted Regression Tree (BRT) and Random Forest (RT) models were not meaningful. 
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The use of absence data was explored. Most of the SDM algorithms allow absence data to be 

supplied by the user but will simulate absence data if the user does not supply it. An absence 

dataset was explicitly created by selecting points in the landscape unlikely to support cropping 

(steep slope, skeletal soils, swampy). The resulting suitability maps using these absence data were 

very different from the initial tests, with these poor modelling results most likely due to the 

exaggerated differences between the presence and explicitly (but naively) defined absence data. 

Following these results, user defined absence data were not used in further tests.  

The number of pseudo-absence/background points generated by the models is determined by the 

number of presence points and the absence ratio. Increasing the absence ratio from 1 (the 

default) to 20 improved the appearance of the suitability maps giving smoother results with less 

speckling. However, further increasing the absence ratio to 200 resulted in no further discernible 

improvement.  

The creation of effective soil layers was challenging and ultimately unsuccessful during this 

exploratory phase. The soil map provided by Gryphon Minerals has categorical data (17 soil 

types). The BCCVL statistical and machine learning models can use environmental layers with 

categorical values, so the soil map was converted to a raster and uploaded to the BCCVL as a 

categorical layer. The models were run using the three terrain layers plus the new soil layer. The 

resulting suitability maps were very unsatisfying. The shapes of the soil polygons dominated the 

maps producing intuitively unrealistic results. As some soil types did not occur at the training data 

sites the algorithms would have no data to assess the influence of these soil types on cropping 

locations. The suitability maps generated using the rasterised soil map may well have been 

accurate for the four training data sites (this was not investigated), but they were a very poor 

solution for the region. 

The unsuitability of the supplied soil map led to the search for an alternative source of soil data. 

The SoilGrids global layers for soil properties had been released at 250m resolution in 2017 – 

these were downloaded and processed to create suitable environmental layers for the modelling 

(refer Section 2.5.2). Five of these new layers were uploaded to the BCCVL and tests were run, 

first using the five layers alone, and again with the addition of the three terrain layers from the 

initial tests. These results were also very unsatisfying. There was no evidence of the influence of 

terrain factors in the blotchy suitability maps. As many soil forming processes are related to 

terrain, the results were also clearly unrealistic. 

Experimentation with different environmental layers and combinations of layers exposed serious 

problems with interpretation and comparison of suitability maps. There was very limited 

knowledge about agricultural conditions outside of the four training data sites and intuition was 

an unreliable guide due to the unfamiliar landscape and styles of agriculture. Another site would 

be needed to properly test the methodology – one with validation data for the entire region; that 

was familiar to allow intuitive assessments; and that could be visited if necessary to verify results 

or collect more data. A parallel test region located near Adelaide in South Australia was defined 

(refer Chapter 5 for more detail). To duplicate the conditions of the Burkina Faso task, the same 

environmental layers were created and presence data for six locally grown crops was simulated in 

four small training sites. Any crop suitability maps generated by the BCCVL algorithms could be 

readily compared to published data on land use potentials for these crops allowing region-wide 

validation of results.  

At the time of testing the BCCVL had not fully implemented a bulk download function for the 

outputs of its experiments. With twelve crop models generated for each experiment for the 

Burkina Faso site and six crop models for the Adelaide site, managing the manual download of 



Land Suitability Assessments for Agriculture using the Data By-products of Mining Exploration 

46 Chapter 3  Environmental niche modelling and Maxent  

outputs for post-processing was an unwieldy task. So, although the BCCVL had proven to be a 

valuable tool for exploring the multiple data-driven algorithms and experimenting with 

combinations of environmental layers, it was not a suitable platform for the main research. 

The major conclusions drawn from the BCCVL testing were as follows: 

1. Presence data reflecting cropping patterns are derivable from the crop compensation 

maps; 

2. Absence data are not required; 

3. Most of the SDM models (excluding ANN, BRT and RT) are appropriate for the agricultural 

land suitability task; 

4. The Generalised Boosting Model (GBM) and Maxent produced the best results;15 

5. Neither the soil map supplied by the exploration company nor the generated SoilGrids 

layers were useful in their current forms; 

6. A parallel site that allowed region-wide testing of results was needed to validate the 

methodology; 

7. A more easily manageable software platform was needed. 

3.2.1 Selected modelling algorithm (Maxent) 

Of the ecological niche modelling algorithms tested, the Maxent algorithm seemed the most 

naturally suited to the agricultural land suitability task. Although often referred to as a presence-

only model, it is technically a presence/background method (Peterson, Soberón et al. 2011) with 

the predictions interpretable as indices of habitat suitability (Merow, Smith et al. 2013). The 

open-source release of the Maxent Java software package (Phillips, Anderson et al. 2017) was 

tested and proved suitable for use in the main research. 

 

Figure 3-1 Maxent inputs and outputs. Warmer colours on the map indicate areas of higher 

suitability, and the presence points used for training and testing are shown in white and 

purple, respectively. 

Figure 3-1 depicts the inputs and outputs for the Maxent software package and shows a typical 

crop suitability map for the West African study region. The presence points are the surveyed 

planting locations for that crop at the four mine sites (refer Section 2.2.1) and are visible on the 

                                                           
15 As measured by the area under the curve (AUC) of the receiver operating characteristics (ROC) curve, 

refer section 3.3.6 below. 
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map. The environmental conditions occurring at the presence locations form the basis for the 

suitability predictions across the entire study region (shown in the map).  

The experimental development of agricultural land suitability models for the crops grown locally 

in the West African project region (using the Maxent software package) is documented in Chapter 

4. Chapter 5 then duplicates the methodology for parallel sites in South Australia for which 

validation data are available. The remainder of this chapter explains how the Maxent algorithm 

works to generate ecological niche models, describes the Maxent software package and identifies 

evaluation techniques for assessing models. 

3.3 Maximum entropy modelling (Maxent) 

Maximum entropy modelling is a method for making predictions from incomplete data that 

comes from Information Theory, where ‘entropy’ is used as a measure of how much choice is 

involved in the selection of an event (Shannon and Weaver 1949). The probability function of 

maximum entropy is the one that is closest to uniform that agrees with everything that is known 

without assuming anything that is not known. The maximum entropy algorithm used for 

modelling species’ geographic distributions from presence-only data was developed by Steven J. 

Phillips at AT&T Labs with Miroslav Dudik and Robert E. Schapiro from the Department of 

Computer Science at Princeton University. It was presented first at machine learning conferences 

in 2004 (Dudík, Phillips et al. 2004, Phillips, Dudík et al. 2004) before being published for the 

ecological modelling community in 2006 (Phillips, Anderson et al. 2006). Its goal is to predict, from 

observations of a species’ occurrence, those areas within a region that satisfy the requirements of 

the species’ fundamental ecological niche and so form part of the species’ potential distribution. 

It is a statistical machine learning approach that allows all reasonable predictors to be input to the 

model and lets the algorithm decide which ones are important in relation to the presence data 

(Phillips, Anderson et al. 2006).  

3.3.1 Overview 

The three components needed for this type of species distribution modelling are a data model of 

species presence, an ecological model of the study area and a statistical model to model these 

inputs and derive relationships (Phillips, Anderson et al. 2006). Inputs for the data and ecological 

models are formulated in geographical space – the study area is defined as a set of map pixels for 

which measurements of environmental variables are available, with species presences being 

sample points from this set, referred to as presence points. These data are projected into 

environmental space to model and compare: (1) the environment where species are found; and 

(2) all available environments across the study area. Available environments in the study area are 

characterised by randomly sampling a large number of pixels for which presence is unknown 

(default is 10,000) and adding the known presence locations to create a set of background points 

that are used in the statistical modelling. An environmental niche model for the species is then 

optimised for these data and projected back into geographical space to produce a map rating the 

suitability of the environment for the species at each pixel in the study area. 

The goal of Maxent’s algorithm is to estimate the species’ potential distribution by finding the 

most uniform (spread out) probability distribution across the study area subject to constraints 

that are derived from the presence data.  
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3.3.2 Covariates / features 

The covariates for the model in their original geographic form are raster layers for environmental 

variables. These are transformed by Maxent into an expanded set of simple real-valued functions 

referred to as features to model the distribution of the species in environmental space. Maxent 

has six feature classes as shown in Table 3-1.  The constraints of the model are derived from the 

presence data and require that the expected value of each feature over all background points be 

close (within some error bounds governed by a regularisation parameter) to the empirical mean 

over the presence points. All features are rescaled to the interval [0,1] to make coefficients 

comparable. 

Table 3-1 Maxent feature classes (Phillips, Anderson et al. 2006, Phillips and Dudík 2008) 

Feature class Description Samples 

Linear A continuous variable 2+ 

Quadratic The square of a continuous variable 10+ 

Product The product of two continuous variables 80+ 

Threshold Step function based on a continuous variable, that has value 1 when the 
variable value is above a given threshold and 0 otherwise 

80+ 

Hinge Similar to threshold but allowing a linear response below or above the 
threshold:  

• A forward hinge has value 0 below the threshold and increases 
linearly to 1 above the threshold 

• A reverse hinge has value 1 at the minimum value and decreases 
linearly to 0 at the threshold  

15+ 

Categorical A binary feature is created for each categorical value, with feature value 
of 1 for that categorical value and 0 otherwise  

15+ 

Maxent can build complex response curves by using multiple features for a variable. The feature 

classes used for a model by default depend on the sample size for presences (refer Table 3-1) but 

may also be explicitly chosen. One linear and one quadratic feature are constructed for each 

predictor, product features are constructed for each pair of predictors, and binary features are 

created for each categorical value. The number of possible piecewise features (threshold and 

hinge) depends on the number of presences, with Maxent permitting these features between 

each pair of successive values of a predictor. Only the most useful features from this potentially 

enormous collection are retained by Maxent for the final model (Merow, Smith et al. 2013). 

Note that hinge features were not part of the original release of Maxent and were added later to 

model arbitrary piecewise linear responses to environmental variables (Phillips and Dudík 2008). 

With their introduction the default use of threshold features has been omitted, resulting in 

improved model performance generally and models that are smoother and simpler and hence 

likely to be more realistic (Phillips, Anderson et al. 2017). These authors also found that the use of 

product features barely improved average performance and could usually be omitted in order to 

make simpler and more easily interpretable models. Quadratic features, on the other hand, are 

recommended by Merow, Smith et al. (2013) who observe that ecological theory suggests 

response curves for fundamental niches are often unimodal.  
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3.3.3 How it works 

To produce the final probability distribution the Maxent algorithm starts with a fully uniform 

distribution over all background points and conducts an iterative optimisation routine to 

maximise the probability of the presences. Without regularisation the error bounds for all feature 

constraints are 0. In this situation the distribution with maximum entropy16 (among all possible 

distributions satisfying the constraints) has been proved to be the same as the unique Gibbs 

distribution maximising the likelihood of samples (Dudík, Phillips et al. 2004). This distribution is 

exponential in a linear combination of features and takes the form: 

𝑃(𝑥) =
𝑒𝑐1𝑓1(𝑥)+𝑐2𝑓2(𝑥)+𝑐3𝑓3(𝑥)+⋯

𝑍
    (3-1) 

where the ci  are constants, the fi are features and Z is a scaling constant that ensures P sums to 1 

over all background points.17 

The likelihood of the samples indicates how closely the model is concentrated around the 

presences. It is expressed in terms of gain which is defined as the average log probability of 

presence samples minus a constant that makes the uniform distribution have zero gain. Gain 

starts at zero (the gain of the uniform distribution) at the beginning of a Maxent run and increases 

with each iteration (as the weights on the features are adjusted) until the change in gain between 

consecutive iterations falls below a convergence threshold or until a specified maximum number 

of iterations have been performed. This final distribution becomes the basis for the predictor 

variable coefficients that are used to estimate the probability of presence (Phillips 2017).  

The Maxent algorithm adjusts the weights on the features sequentially (one at a time) rather than 

in parallel, so is robust for large number of features. It starts with the uniform distribution (ci=0 

for all fi in equation 3-1 above). At the start of each iteration Maxent calculates (for all features) 

the change in gain resulting from a small change in each feature’s weight (whilst keeping all other 

weights unchanged). The feature producing the largest such change is selected for weight 

adjustment during that iteration. This boosting-like approach permits the selection of the best 

target feature from a potentially very large number of features, so allowing the use of very large 

feature spaces (Dudík, Phillips et al. 2004, Phillips, Dudík et al. 2004).  

Regularisation 

Regularisation is a technique often used in optimisation problems to obtain a solution that is less 

likely to be the result of overfitting. Maxent uses a form of L1-regularisation to lower gain by an 

overfitting penalty equal to a weighted sum of the absolute values of the model coefficients. This 

is the sum  ∑ 𝛽𝑖𝑖 |𝑐𝑖| where each βi is a non-negative constant corresponding to a relaxed 

constraint for feature fi. The relaxed constraint specifies that the expectation of fi over all 

background points need only to be within βi of the empirical mean of the presence points, rather 

than equal to it.  

The use of L1-regularisation has several significant benefits for model building. Firstly, 

regularisation enhances model accuracy by reducing model variance. Secondly, the use of the L1 

                                                           

16 For a probability distribution p over domain X, the entropy of p is defined as H(𝑝) = − ∑ 𝑝(𝑥) ln 𝑝(𝑥)𝑥∈𝑋  

17 This maximum likelihood exponential model can also be obtained from an inhomogeneous Poisson 

process (IPP). A brief overview of the IPP formulation followed by discussion on its implications for 

interpretation of model inputs and outputs is given in Phillips, Anderson et al. 2017. 
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norm (sum of absolute values) in solving optimisation problems promotes sparser solutions 

(making use of fewer features) with model coefficients that are either zero or not near zero. In 

addition, the inclusion of this weighted sum of coefficients in the regularised gain penalises the 

use of large feature weights and so encourages smaller model coefficients. 

“Such models are less likely to overfit, because they have fewer parameters; as a general 

rule, the simplest explanation of a phenomenon is usually best (the principle of parsimony, 

Occam’s razor).”  (Phillips, Anderson et al. 2006) 

The feature error bounds (betas) are intended to reflect the sample variation. However, sample 

data are often biased and so, for this reason and to simplify model fitting, Maxent instead uses 

pre-tuned default beta values based on sample size and feature class (Elith, Phillips et al. 2011). 

The empirical tuning of these values is described in Phillips and Dudík (2008) and the resulting 

regularisation parameters used by Maxent are shown in Table 3-2. 

Table 3-2 Regularisation parameter settings* (reproduced from Phillips and Dudík (2008) Table 3) 

 Number of occurrence records 

Feature classes  0  6  10  17  30  100  

Linear features: βL  1.0  1.0  1.0  0.72  0.2  0.05  

Linear and quadratic features: βL, βQ  1.3  1.0  0.8  0.5  0.25  0.05  

Linear, quadratic and product features: βL, βQ,βP 2.6  2.0  1.6  0.9  0.55  0.05  

Threshold features: βT  2.0  1.94  1.9  1.83  1.7  1.0  

Category indicators, a single categorical variable, "low": βC  0.2  0.2  0.2  0.1  0.05  0.05 

Category indicators, "intermediate": βC  0.65  0.53  0.45  0.25  0.15  0.05 

Hinge features: βH  0.5  0.5  0.5  0.5  0.5  0.5 

* Parameter settings tuned using presence-only data. Values in boldface were determined exactly, values in italics are 

linearly interpolated or extrapolated, with the exception that the values to the right of the listed ranges remain constant. 

For category indicator features, the "low" settings were determined using a single (categorical) variable, while the 

intermediate settings were chosen to approximate the geometric average of the "low" setting and βL. (Phillips and Dudík 

2008) 

The default beta values can be scaled up or down together by multiplying all values by a user-

specified constant referred to as the regularisation multiplier. Scaling of the beta values will result 

in models having more/less generality or complexity. Maxent’s experimental settings also allow 

the beta values for feature classes to be explicitly specified, with separate beta values available 

for the threshold, categorical and hinge feature classes, and a fourth beta value applying to the 

linear, quadratic and product feature classes.  However, Merow, Smith et al. (2013) suggest that 

the default regularisation values (having been chosen based on performance across a wide range 

of taxonomic groups) may be more useful when building models for multiple species 

simultaneously. 

3.3.4 Model calibration 

Model calibration is done with the goal of producing predictive models that fit well to known data 

but do not overfit in ways that cause low predictive ability for independent data. The calibration 

and evaluation of ecological niche modelling algorithms is discussed in detail in Chapters 7 and 9 

of Peterson, Soberón et al. (2011), with particular attention to the issues of data splitting, variable 
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selection, model complexity and overfitting. Aspects of model calibration relevant to Maxent are 

discussed below. 

Data splitting 

An important calibration task is the selection of appropriate data on which to train a model and 

suitable test data for evaluating its predictive performance. Data splitting is the process of 

partitioning the known presence locations into two sets used respectively for model calibration 

(training) and model evaluation (testing). Ideally, evaluation data are fully independent from 

calibration data (points are not spatially or temporally correlated). However, fully independent 

datasets seldom exist and so other techniques are used to split the data. For example: 

• Random test percentage – the algorithm randomly selects a specified percentage of 

presence points to use as test data and uses the remaining presences to train the model.  

• Spatially structured partitions – presence points are separated into calibration and 

evaluation datasets by geographic area. This technique can be useful in identifying 

overfitting due to sampling bias. 

Replication involves building multiple models using different calibration/evaluation datasets and 

allows for cross-validation of results. Common replication techniques (all offered by Maxent) 

include: 

• K-fold cross-validation – data is randomly divided into K pools. K models are then built by 

setting aside one of the pools and using it for evaluation.  

• Subsampling – sample the data points without replacement to create a validation set then 

use the remaining data points to calibrate a model. Typically many iterations (500-1000) 

are done.  

• Bootstrap – sample the data points with replacement to create multiple calibration and 

validation datasets from the same set of presence points. 

K-fold cross-validation improves on the single split approach because each presence point will 

appear in one evaluation dataset, thus making better use of small datasets (Phillips 2017). The 

subsampling and bootstrap techniques are typically used when very large numbers of presence 

points are available.  

Variable selection 

The selection of the environmental variables to use for a model should be based on biological 

reasoning and, where possible, include specific variables known (or suspected) to affect a species 

distribution. In general, using larger numbers of environmental variables provides more 

information on which a model can be based and enables more complex models to be built, 

whereas smaller numbers of variables can help to avoid overfitting by limiting model complexity 

(Peterson, Soberón et al. 2011, p. 115).  

Many data-driven modelling algorithms (refer Section 1.4.3) require the predictors to be 

uncorrelated, with multi-collinearity being a problem particularly for statistical methods (Merow, 

Smith et al. 2013). This can necessitate the removal of correlated variables from the predictor set, 

or the use of uncorrelated predictor variables created using techniques such as principal 

component analysis (PCA).  

In contrast, Maxent can handle unlimited numbers of environmental predictors and its algorithm 

is robust to correlated variables. The sequential optimisation routine, together with the 
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regularisation method, decide which predictors are most important in relation to the presence 

data and the less important variables from the calibration set are excluded from the final model.  

Although undemanding with regard to prior knowledge of the importance of environmental 

variables and interactions between them, Maxent can produce many types of output useful for 

evaluating environmental predictor importance (refer Section 3.3.5, below). Selecting these 

outputs in preliminary models can provide insight into which environmental layers are most 

significant and whether some make no contribution. Reducing the number of environmental 

layers can improve runtimes, particularly where replication is performed; and evidence for the 

significance of layers can inform decisions about data collection for similar modelling at other 

locations. 

Tuning model parameters 

All algorithms have their own calibration methods with sets of parameters and constants that can 

be adjusted to influence model performance. In the case of Maxent, the most important 

parameters affecting the structure of the final models are: (1) the allowable feature classes; and 

(2) the regularisation parameters (both discussed above). Other parameters that can be specified 

when running Maxent to influence the model building process include: the maximum number of 

background points; the random test percentage for data splitting; whether a different random 

seed is used for each run; the maximum number of iterations of the algorithm; and the 

convergence threshold for the change in gain. 

Phillips and Dudík (2008) who undertook the empirical tuning for Maxent’s default parameter 

settings (e.g. Table 3-2) observe that the resulting default settings achieve almost as good 

performance as tuned parameters sets.  This is supported by Radosavljevic and Anderson (2014) 

who tested nine regularisation multipliers ranging from 0.25 to 10 for several different data 

splitting regimes and found a performance peak for the default value of 1. In a systematic 

literature review of Maxent parameter configuration for small sample sizes Morales, Fernández et 

al. (2017) found that less than 20% had user-defined feature classes and less than 10% had user-

defined regularisation multipliers. However, Peterson, Soberón et al. (2011) warn: 

 “… although theoretical and empirical research may have led to the suggestion of default 

settings by the researchers developing the software, it is generally poor practice to use 

default settings provided by software without justification, testing and exploration of 

these values for a particular application.” (Peterson, Soberón et al. 2011, p. 113) 

3.3.5 Outputs 

The Maxent software package produces a suite of outputs that includes details for the generated 

model, statistical analysis of model performance, and a range of optional analyses that allow 

insight into the predictive importance of environmental variables. These outputs and the run-time 

parameters to generate them are well described in the Maxent tutorial written by Steven J. 

Phillips (Phillips 2017). The statistical analysis of model performance will be discussed later in 

Section 3.3.6. The other outputs are briefly explained here. 

Environmental niche model 

The primary output from Maxent is the map of predicted suitability for the modelled species 

across the study area. The model values correspond to the suitability scores and can be expressed 

using four alternative output formats. These formats are monotonically related (so they rank sites 

in the same order) but are scaled differently and have different interpretations, as follows: 



    

 Chapter 3  Environmental niche modelling and Maxent 53 

1. Raw – this is the output from the Maxent exponential model. These values are 

probabilities in the range 0 to 1 such that the values for all cells used in training sum to 1 

(making raw values very small).   

2. Cumulative – for a particular raw value r the corresponding cumulative value c is equal to 

the percentage of the Maxent distribution that has a raw value less than or equal to r. The 

values for c are in the range 0 to 100. 

3. Logistic - for a particular raw value r the corresponding logistic value is equal to  
𝑒𝐻𝑟

1+𝑒𝐻𝑟
 

where H is the entropy of the distribution. These values are also probabilities in the range 

0 to 1 but are scaled up in a non-linear way for easier interpretation as a probability of 

presence.  

4. Cloglog – for a particular raw value r and distribution entropy of H the corresponding 

cloglog value is equal to 1 − 𝑒−𝑒𝐻𝑟. Cloglog values are the default output format and can 

also be interpreted as estimates between 0 and 1 of probability of presence. 

Both logistic and cloglog values can be interpreted as approximations of the probability of 

presence and so are useful for comparing models with different spatial scales (Merow, Smith et al. 

2013).18.Cumulative values are best interpreted in terms of predicted omission rates since a 

binary prediction generated using a cumulative threshold of c would result in an omission rate of 

c% on samples from the Maxent distribution and we would predict a similar omission rate for 

samples from the species distribution. 

When replication is performed, the results of the cross-validation runs are averaged to obtain a 

single probability score for each location on the map. 

Evaluating environmental predictor importance 

A natural question to ask in relation to ecological niche modelling is: which environmental 

variables are most important for the species being modelled? Maxent can produce a range of 

outputs that allow insight into the predictive importance of environmental variables, as described 

below. 

Response curves 

Maxent produces two sets of response curves to show how each environmental variable affects 

the Maxent prediction. The first are marginal response curves that each show how predicted 

suitability changes when only a single environmental variable is changed and all other 

environmental variables are fixed at their sample mean value. These can be hard to interpret if 

there are strongly correlated variables so Maxent also creates a set of single predictor response 

curves derived from a set of new Maxent models each trained using a single environmental 

variable.  

When replication is performed, error bars of one standard deviation are shown on summary 

response curves for the set of models. 

Analysis of variable contributions 

Percent estimates of the relative contribution of environmental variables to the final model are 

provided by the algorithm and accumulated during model training. Each iteration of the Maxent 

algorithm increases the gain by modifying the coefficient of a single feature. The program assigns 

                                                           
18 For a more detailed explanation comparing the logistic and cloglog outputs refer to Phillips, Anderson et 

al. 2017. 
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the change in gain to the environmental variable that feature depended on and so keeps track of 

the contribution each environmental predictor makes to the overall gain.  

Jackknife test of variable importance 

When the jackknife test of variable importance is selected for a run, Maxent builds multiple 

models trained on different sets of environmental variables to compare predictive performance. 

For each environmental variable Maxent builds one model trained using all environmental 

variables except this variable, and another model trained using only this variable. The results are 

displayed in a set of three bar charts (for regularised training gain, test gain and AUC) that each 

compare the results of all these models to the model created using all variables.  

Interactive exploration of predictions 

The Explain tool is an interactive interface provided in Maxent for investigating how Maxent’s 

prediction is determined by the predictor variables across the study area. The tool displays the 

map of the prediction model or of any environmental layer alongside the response curves for all 

environmental variables. Clicking on a point in the map shows its location in each response curve 

and the contribution of each variable to the prediction at that point. 

The Explain tool assumes the model is additive (without interactions between variables) and so is 

only available for examining models created without product features. 

3.3.6 Running the Maxent software package 

The Maxent Java software package can be run either interactively or in batch mode under both 

the Windows and Linux operating systems. When run interactively, the Java program maxent.jar 

presents a graphical user interface (GUI) that allows the user to specify the input files, the location 

for the output files, and various run-time parameters. Alternatively, Maxent can be run in batch 

mode by invoking maxent.jar and specifying all run-time parameters at the command prompt, or 

by calling maxent.jar from within a shell script that is executed from the command prompt. 

Input files 

The inputs for Maxent are species presence points and raster environmental layers: 

• Presence points: The presence data input files are text files (CSV format) containing the 

geographical locations (defined using either a projected or geographic coordinate system) 

for each known occurrence of the species to be modelled. For multi-species presence 

data the species names are also required. All presence data can be included in a single file 

with Maxent randomly partitioning the points into training and test data for the models. 

Alternatively, the presence data can be explicitly partitioned into separate training and 

test files.  

• Environmental layers: Any number of environmental layers can be used in the models, but 

Maxent requires all environmental layers to be in identical ASCII raster grid format using 

the same coordinate system as the presence data.  

Output files 

Each run produces a log file and a summary spreadsheet showing key results for all species 

modelled in the run. Multiple output files are generated for each species model, as follows: 

• Suitability map: an ASCII raster grid of the modelled region showing the environmental 

suitability ratings for the species across the region. 
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• Model analysis: an informative HTML file providing a description of the Maxent model for 

the species and containing embedded plots and pictures showing: 

o Analysis of omission/commission 

o Pictures of the model 

o Response curves for the environmental variables 

o Analysis of variable contributions 

o List of processing parameters 

• Model coefficients: the coefficients (lambdas) and minimum and maximum values of the 

features used by the model. 

• Threshold analysis: the fractional predicted area and rates of training and test omissions 

for various suitability thresholds. 

• Prediction strength: the values predicted by the model for all training and test presence 

points. 

3.4 Evaluation of species distribution models 

Visual inspection of model outputs offers an intuitive means of assessing the credibility of models 

– do the distribution maps of predictions seem plausible? do the response curves conform to 

known tolerances?  – but, to establish whether a model is statistically valid and of sufficient 

quality to meet the needs of a project, it must be formerly evaluated.   

The predictive performance of a model is measured using evaluation statistics of two types: (1) 

measures of performance that characterise how well or poorly the model achieves its predictive 

goal; and (2) tests of significance that determine the level of probabilistic confidence with which 

the model predictions on evaluation data differ from random predictions. The evaluation of 

ecological niche models is discussed in detail in Chapter 9 of Peterson, Soberón et al. (2011). The 

authors present key concepts and commonly used quantitative measures for model performance 

and significance but advise that there is no single “best” approach to evaluation. 

Maxent’s predictions are reported using a continuous score in the range 0 to 1. In order to 

generate many evaluation statistics these scores must be converted to binary predictions of 1 or 

0. This is done by choosing a threshold value for suitability (or presence) and classifying localities 

as either suitable (present, value of 1) when the prediction value is greater than or equal to the 

threshold, or unsuitable (absent, value of 0) when the prediction value is less than the threshold. 

Evaluation statistics based on binary classifications are then referred to as threshold-dependent 

when they apply to a single threshold and threshold-independent when they report over all 

possible thresholds. 

The predictive performance of models is evaluated by comparing the model predictions against 

verification data. Maxent uses the presence points from model training and testing as verification 

data to calculate standard evaluation statistics for models. Verification data for a particular 

project may also be available in map format, allowing direct comparison with model predictions in 

geographic space. When a verification map contains suitability ratings for a modelled species then 

statistical measures of similarity between the verification map and the model outputs can be 

calculated. Correlations can be performed between the maps of model predictions and 

continuously-valued verification maps. For verification maps with binary suitability ratings, 

interrater comparisons with thresholded maps of model predictions can be performed. 

Land surface observations, in the form of high-resolution satellite imagery, present another form 

of verification data that can be assessed in geographic space. In this case, subjective assessment 
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as to what is observed in the image at any location can be directly compared to model predictions 

at that location. These subjective assessments are valuable when considering the plausibility of 

models.  

Each of the evaluation techniques used in this thesis is explained in greater detail in the following 

sections. 

3.4.1 Threshold-dependent evaluation 

Once a threshold has been set, the binary classification of the model prediction for a locality can 

be compared to its observed value. These results, for any set of evaluation data, can be 

summarised in a confusion matrix, as shown in Table 3-3, showing the numbers of evaluation 

points correctly or falsely classified by the model. A falsely classified data point may be an 

omission error (false negative) or a commission error (false positive).  

Table 3-3 Confusion matrix for evaluation of binary classifications 

  Observation 

  Present Absent 

Prediction Present A  

true positive 

B  

false positive 
(commission error) 

 Absent C  

false negative 
(omission error) 

D  

true negative 

Note:  A+B+C+D = N where N is the total number of points in the evaluation dataset. 

Various threshold-dependent evaluation statistics can be calculated from the numbers in the 

confusion matrix (A = true positives, B = false positives, C = false negatives, D = true negatives), as 

follows: 

• Sensitivity (true positive rate) = 
𝐴

𝐴+𝐶
 

• Omission error rate (false negative rate) = 
𝐶

𝐴+𝐶
 

Note: sensitivity + omission error rate = 1 

• Specificity (true negative rate) = 
𝐷

𝐵+𝐷
 

• Commission error rate (false positive rate) = 
𝐵

𝐵+𝐷
 

Note: specificity + commission error rate = 1 

• Accuracy = 
𝐴+𝐷

𝐴+𝐵+𝐶+𝐷
  

• Misclassification rate = 
𝐵+𝐶

𝐴+𝐵+𝐶+𝐷
  

Note: accuracy + misclassification rate = 1 

Sensitivity measures the responsiveness of a model by how well it correctly detects presences, 

whereas specificity measures the discriminatory capacity of the model by how well it correctly 

detects absences. An effective model and well-chosen threshold would result in high values for 

both. 
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Presence only model evaluation 

When only presence data are available for evaluation (as in the case of Maxent) the specificity 

and commission error rate statistics cannot be calculated (since B=D=0 in the confusion matrix). In 

this situation, sensitivity equals accuracy, and the omission error rate equals the misclassification 

rate.  

In order to provide a measure of specificity for presence only model evaluation, the true negative 

rate is instead quantified by considering the fraction of the region predicted as being unsuitable 

for the species (Phillips, Anderson et al. 2006). The fractional predicted area for a given threshold 

is the fraction of all pixels that are predicted as suitable for the species using this threshold.  

Specificity for presence only models is then defined as follows:  

• Specificity (true negative rate) = 1 – fractional predicted area 

Significance testing 

The accuracy statistic characterises the performance of the binary model for the given threshold. 

Its statistical significance is measured using binomial probabilities. Suppose there are N test 

localities for a model with an omission error rate r and a fractional predicted area a. A one-tailed 

binomial test can test whether the model predictions at the test localities are significantly better 

than random predictions. The null hypothesis for the test states that the test points are predicted 

no better than by a random prediction with the same fractional predicted area. The test calculates 

the probability P of having at least N(1 – r) successes out of N random trials, each with probability 

of success of a. This probability, called the p-value, is the probability of the observed result or 

better assuming the null hypothesis was true. A small p-value (typically P ≤ 0.05) is evidence to 

reject the null hypothesis and accept the alternative hypothesis that the predictions are not 

random. 

Selecting thresholds 

The choice of threshold affects results considerably, as different thresholds will result in different 

binary distribution maps, different omission rates and different levels of statistical significance.  

Published methods for selecting the threshold of presence that are commonly used in species 

distribution modelling are summarised by Peterson, Soberón et al. (2011, p. 119). The Maxent 

program produces evaluation statistics for the following thresholds: 

• Fixed cumulative value N (for N = 1, 5, 10) – threshold for which N% of pixels are classified 

as unsuitable. 

• Minimum training presence – the lowest predicted presence value corresponding to a 

training presence record.  

• 10 percentile training presence – threshold for which 10% of training locations are rated 

unsuitable. 

• Equal training sensitivity and specificity – the threshold at which sensitivity and specificity 

are equal, calculated from the training data.  

• Equal test sensitivity and specificity – as above, but calculated from the test data. 

• Maximum training sensitivity plus specificity – the threshold at which the sum of 

sensitivity and specificity is maximised, calculated from the training data. 

• Maximum test sensitivity plus specificity– as above, but calculated from the test data. 

• Balanced – minimizes the weighted sum: (6 x training omission rate) + (0.04 x cumulative 

threshold) + (1.6 x fractional predicted area) 

• Equate entropy of thresholded and original distributions 
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For each of these thresholds Maxent lists the corresponding cumulative and logistic threshold 

values, the fractional predicted area, training and test omission rates and the p-value for the 

thresholded model. Many of the thresholds listed above can only be determined by comparing 

the evaluation statistics for all possible thresholds. 

Although thresholds are necessary for calculating the evaluation statistics described above and 

the threshold-independent evaluations described below, thresholds are usually unnecessary 

when presenting model results. Merow, Smith et al. (2013) instead recommend embracing the 

continuous and probabilistic nature of Maxent’s model predictions, observing that this also avoids 

placing undue confidence in predictions.  

3.4.2 Threshold-independent evaluation 

Threshold-independent evaluation compares model performance over all possible thresholds. 

Performance graphs can be created by plotting pairs of evaluation statistics for all thresholds, 

allowing threshold independent metrics to be calculated from the combined results. Maxent 

generates two threshold independent performance graphs for each model to facilitate the 

analysis of model performance and to inform decisions regarding the selection of individual 

thresholds for categorically symbolised distribution maps. These graphs are described below. 

ROC Curve and AUC 

The receiver operating characteristic (ROC) curve is a commonly used performance graph for 

quantifying the performance of predictive models and is commonly used to measure performance 

of species distribution models. The ROC curve plots the true positive rate (sensitivity) against the 

false positive rate (1 – specificity) for all possible thresholds on the model predictions. The area 

under the curve (AUC) provides an overall measure of the model’s performance at all thresholds. 

AUC values less than or equal to 0.5 suggest the model is no better at distinguishing presence 

from absence than random prediction. Values greater than 0.5 indicate that model performance is 

better than random, with higher AUC values indicating better predictive performance, and a value 

of 1 indicating perfect prediction. 

 

Figure 3-2 Receiver operating characteristic (ROC) curve – example from Maxent output 
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When only presence data are available the false positive rate cannot be calculated for the ROC 

plot. Instead, Phillips, Anderson et al. (2006) plot the true positive rate against the fractional 

predicted area (1 – specificity) to generate the ROC curve (refer Figure 3-2) and restate the 

classification problem as the task of distinguishing presence from random. The area under the 

curve (AUC) is then interpreted as the probability that a random positive instance is ranked above 

a random background instance. 

A consequence of this reinterpretation of the ROC curve is that AUC values are lower for 

presence/background evaluations than for comparable presence/absence evaluations (Peterson, 

Soberón et al. 2011, pp 170-174). The maximum achievable AUC value for a Maxent ROC curve is 

less than 1 and is dependent on the prevalence of the species (Wiley, McNyset et al. 2003). In 

particular, Phillips, Anderson et al. (2006) state that “If the species’ true distribution covers the 

fraction α of the study area, then the maximum achievable AUC can be shown to be exactly 

1 – α/2,” but note that random prediction still corresponds to an AUC of 0.5, and that AUC scores 

higher than the maximum achievable AUC value may occur in practice. Table 3-4 shows the 

theoretical maximum achievable AUC value for species’ ranges between 0% and 100% of the 

study area and demonstrates that higher AUC values are achievable for species with smaller 

ranges. 

Table 3-4 Fractional predicted area and corresponding theoretical maximum achievable AUC 

Fractional area  α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Maximum AUC 1 – α/2 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 

Although widely used as a measure of performance in species distribution modelling, the AUC has 

been criticised as being misleading. A review by Lobo, Jiménez-Valverde et al. (2008) questioned 

its reliability as a comparative measure of model results and did not recommend its use for five 

main reasons: 

1. AUC scores ignore the actual probability values and the goodness-of-fit of the model. 

2. The AUC summarises test performance over regions of the ROC space that are not useful 

in practice. 

3. The AUC weights omission and commission errors equally, whereas misclassification 

errors frequently have different costs. 

4. The ROC plots do not provide any information about the spatial distribution of errors so it 

is impossible to know if the errors are homogeneously distributed across the study area 

or if they reflect incapacity to predict in a specific region. 

5. The geographical extent of the model highly influences AUC scores, with higher scores 

obtainable by increasing the extent outside the environmental domain of presence. 

Jiménez-Valverde (2012) further observes that the AUC is not an appropriate performance 

measure when the goal of the research is to estimate the potential distribution of a species. 

Commission errors in relation to a realised niche for a species may not be errors in relation to its 

fundamental niche; however, they are weighted equally to omission errors in the AUC. In 

addition, the realised distribution for a species, being smaller, will have a higher achievable AUC 

score than the potential distribution. 

The dependence of the AUC value on the prevalence of the species in presence/background 

evaluation invalidates it as a comparative measure for models of different species or over 

different geographical regions. However, AUC values can be validly used to compare the 
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performance of models for the same species and study area that were created using the same 

algorithm, e.g. that have been trained using different calibration datasets, environmental layers 

or parameterisations of the modelling algorithm (Peterson, Soberón et al. 2011). 

Omission and predicted area 

The omission rate and the fractional predicted area for a model are both threshold dependent, 

with higher threshold values resulting in smaller predicted ranges and higher omission rates. This 

is illustrated in Figure 3-3 which plots: (1) the fractional predicted area for the species against the 

cumulative threshold values; and (2) observed omission rates on the training and test data for 

each threshold value compared to the predicted omission rate.  

 

Figure 3-3 Graph of omission and predicted area – example from Maxent output 

Note that the predicted omission rate is, by definition, equal to the cumulative value (refer 

Section 3.3.5) and deviations from it suggest sample bias. 

3.4.3 Interrater reliability of binary suitability maps 

A binary suitability map created by thresholding is referred to in statistics as a “rater”. Each pixel 

in the map is rated as either suitable (present) or unsuitable (absent) for the target species. 

Interrater comparison of two thresholded suitability maps uses the confusion matrix of presences 

and absences to compare the predictions and allow calculation of evaluation statistics (refer 

Section 3.4.1).  

The accuracy statistic measures the proportion of predictions that are the same in both maps. The 

accuracy rate is calculated by adding the numbers of true positives and true negatives from the 

confusion matrix and dividing by the total number of samples. The accuracy rate measures 

agreement of predictions due to both correct prediction and chance. 

The kappa coefficient, proposed by Cohen (1960) and denoted using the lower case Greek letter κ, 

is a standardised measure of agreement between the categorical scores of two raters that 

corrects for chance agreement. Similar to the correlation coefficient, a kappa value of 1 indicates 

perfect agreement between the raters, and a kappa value of zero indicates random agreement 

(i.e. no more than would be expected by chance). Kappa values less than zero are possible and 

indicate interrater agreement that is worse than random. 
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The calculation of kappa for binary raters is presented in McHugh (2012) and summarised below 

using the terminology of the binary confusion matrix for raster map comparison.19  

From the interrater comparison of two binary rasters, denote the numbers of pixels recorded in 

the confusion matrix by: A = true positives; B = false positives; C = false negatives; D = true 

negatives; and N = A + B + C + D = total number of pixels. Let 𝑝𝑜 denote the proportion of 

observed pixel agreement (accuracy) and 𝑝𝑒 denote the proportion of pixel agreement expected 

due to chance. Then the kappa coefficient for the raster comparison is calculated as follows: 

𝑝𝑜 =  (𝐴 + 𝐷)/𝑁        = observed agreement (accuracy) 

𝑝𝑒 =  (𝐴 + 𝐵)(𝐴 + 𝐶)/𝑁2 + (𝐶 + 𝐷)(𝐵 + 𝐷)/𝑁2    = expected chance agreement 

𝜅 =
𝑝𝑜 − 𝑝𝑒

1 − 𝑝𝑒
       = kappa coefficient 

When there is perfect agreement between the raster maps (𝑝𝑜 = 1) then kappa will evaluate to 

1, regardless of the value for 𝑝𝑒.  When there is no more agreement than would be expected by 

chance (𝑝𝑜 =  𝑝𝑒) then kappa will evaluate to zero. When the observed agreement is less than 

the expected agreement due to chance (𝑝𝑜 <  𝑝𝑒) then the kappa value will be negative. 

In the situation where one map represents a verification map against which to compare the 

predictions from alternative suitability models, the accuracy and kappa values from interrater 

comparisons with this map become performance measures that can be used to compare and rate 

the effectiveness of the models.  

Comparing suitability maps with equal predicted areas 

The threshold chosen for a continuous suitability map determines the fractional predicted area 

(FPA) for the resulting binary suitability map. When comparing two binary suitability maps with 

equal FPA, it is observed that: 

• the true positive rate plus the false positive rate must equal FPA;  

• the false positive rate must equal the false negative rate; 

• the true positive rate cannot exceed FPA; 

• the true negative rate cannot exceed (1 – FPA). 

Table 3-5 tabulates the accuracy and kappa values for interrater comparisons of binary maps with 

equal FPA for a range of FPA values and different sensitivity values (true positive rate). Perfect 

agreement occurs when sensitivity equals FPA, always giving accuracy = 1 and kappa = 1.  

From the table it is observed that the kappa value for a particular degree of accuracy varies 

depending on FPA. For example, for FPA of 50%, the kappa value for 80% accuracy is 0.6 (very 

good); but for FPA of 10% or 90% the kappa value for 80% accuracy is -0.11 (worse than random 

prediction). 

 

                                                           

19 Accuracy and kappa values from interrater comparisons are calculated by the confusionMatrix 

function from the caret package in R. 
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Table 3-5 Accuracy and kappa values from interrater comparisons of binary suitability maps with 

equal fractional predicted area; pe is the expected accuracy due to chance agreement* 

Fractional 
 predicted area 

Sensitivity = true positive rate 

0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 

0.10 Accuracy         1.00 0.90 0.80 

pe = 0.82 κ         1.00 0.44 -0.11 

0.20 Accuracy       1.00 0.90 0.80 0.70 0.60 

pe = 0.68 κ       1.00 0.69 0.38 0.06 -0.25 

0.30 Accuracy     1.00 0.90 0.80 0.70 0.60 0.50 0.40 

pe = 0.58 κ     1.00 0.76 0.52 0.29 0.05 -0.19 -0.43 

0.40 Accuracy   1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 

pe = 0.52 κ   1.00 0.79 0.58 0.38 0.17 -0.04 -0.25 -0.46 -0.67 

0.50 Accuracy 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 

pe = 0.50 κ 1.00 0.80 0.60 0.40 0.20 0.00 -0.20 -0.40 -0.60 -0.80 -1.00 

 

Fractional  
predicted area 

 Sensitivity = true positive rate 

0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 

0.60 Accuracy       1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 

pe = 0.52 κ       1.00 0.79 0.58 0.38 0.17 -0.04 -0.25 -0.46 -0.67 

0.70 Accuracy     1.00 0.90 0.80 0.70 0.60 0.50 0.40     

pe = 0.58 κ     1.00 0.76 0.52 0.29 0.05 -0.19 -0.43     

0.80 Accuracy   1.00 0.90 0.80 0.70 0.60         

pe = 0.68 κ   1.00 0.69 0.38 0.06 -0.25         

0.90 Accuracy 1.00 0.90 0.80             

pe = 0.82 κ 1.00 0.44 -0.11             

* Missing data corresponds to invalid situations where the true positive rate would exceed FPA or the true 

negative rate would exceed (1 – FPA). 

3.4.4 Correlations of suitability maps 

The similarity of two continuously valued suitability rasters can be formally measured by 

calculating their correlation coefficient. The Pearson correlation coefficient measures the strength 

of the linear relationship between two variables and can take values between -1 and 1. Values 

close to 1 or -1 indicate a strong association, and values close to zero indicate a weak association. 

A correlation of 1 indicates a perfect positive correlation (i.e. the bivariate scatterplot is a straight-

line with positive slope); a correlation of -1 indicates a perfect negative correlation; and a 

correlation of zero indicates that there is no relationship between the two variables (McMurray, 

Pace et al. 2004). 

Pairwise correlations between multiple variables are often visualised as a correlation matrix chart. 

Figure 3-4 shows correlation matrix charts for pairwise correlations of five raster suitability maps 

produced using the chart.Correlation function from the PerformanceAnalytics package in R. The 

components of the correlation matrix chart are as follows: 
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• above the diagonal are the correlation coefficients for the map comparisons (with text 

size scaled according to the strength of the correlation), plus the significance level 

symbolised using stars: 

p-values Symbol 
0.0 – 0.001 *** 
0.001 – 0.01 ** 
0.01 – 0.05 * 
0.05 – 0.1 . 
0.1 – 1 No symbol 

• the diagonal shows the distribution of values in each map as a histogram; 

• below the diagonal are bivariate scatterplots for each pair of maps, with fitted line. 

    

Figure 3-4 Example correlation matrix charts for five suitability rasters showing strong 

correlations (left) and weaker correlations (right)  

When calculated for suitability maps, where the raster values are model predictions, a correlation 

coefficient close to 1 indicates very similar predictions. When comparing multiple alternative 

suitability maps for a species, strong correlations between the raster values provides evidence for 

the robustness of the predictions. 

3.4.5 Information from high-resolution satellite imagery 

The use of high-resolution Earth observation images is commonly used for validating research 

results in many geographical applications. For example, Google Earth and other services that 

provide high-resolution images can be used for the validation of land cover maps and to generate 

training and test data for the classification task.   

Woodhouse (2021) in reviewing the use of the term “ground truth” quotes from an editorial in 

Nature Methods (2011): 

 “Researchers using satellite imaging to remotely observe features on the Earth enjoy the 

luxury of a simple solution for verifying the interpretation of their data with the truth on 

the ground or 'ground truth'. They or a surrogate can go observe it firsthand.” 

Examples of the visual detail available from Earth observation data in the Burkina Faso project 

region and in South Australia are provided in the Figure 3-5 and Figure 3-6, respectively. Individual 

buildings and trees are distinguishable and the presence of cultivated land is clearly recognisable. 
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In the Burkina Faso images, farmsteads with their clusters of round granaries are observable in 

landscapes of dryland agriculture. Areas of rice cultivation, distinguishable by small fields with 

raised boundaries to trap water, are also easily recognisable. The patterns of agriculture in the 

South Australian landscape are very different from those in Burkina Faso but are similarly very 

easy to recognise from high-resolution Earth observation data. 

 

  

  

Figure 3-5 High-resolution satellite images of farmland in the Burkina Faso project region 

(Worldview2 true colour image April 2010 supplied by Gryphon Minerals Ltd) 

Although not directly usable for quantitative measures of model performance, this imagery 

provides a rich source of qualitative data against which to compare predictions. The models 

developed for the Burkina Faso project region in this research use samples from a species’ 

realised niche to estimate the fundamental niche for the species across the region. It was 

observed by Jiménez-Valverde (2012) that commission errors in relation to the realised niche are 

not necessarily errors in relation to the fundamental niche. So, predictions of agricultural 

suitability in areas where cultivation is not observed in the landscape do not necessarily 

correspond to commission errors by the models, but may instead identify potential areas of 

expansion for those crops. 

Omission errors, on the other hand, can provide evidence of poor model performance in those 

areas where they occur. Although the Earth observation data cannot definitively identify 



    

 Chapter 3  Environmental niche modelling and Maxent 65 

individual species growing at a location, it can reveal whether cultivation is occurring and the 

general style of agriculture that is being performed. In the Burkina Faso project region, dryland 

cropping and rice cultivation have distinctive landscape patterns, and orchards are readily 

distinguishable from bush due to the regularity of tree placement. In South Australia, broad-acre 

farming is unmistakeable in the imagery (often the tracks of the farm machinery are visible in the 

images), and vineyards and orchards are also easily recognisable.  

 

  

Figure 3-6 High-resolution satellite images of farmland in South Australia (ESRI base maps, 

January 2022) 

Comparing model predictions with the observable evidence on the ground is important for 

assessing the plausibility of the models. It would be expected that the predictions of the crop 

suitability models showed consistency with existing agricultural practices. The failure of suitability 

models for the major crops grown in an area to predict agricultural suitability at locations where 

this style of agricultural cultivation is clearly observable in the satellite imagery is strong evidence 

for omission errors occurring in the models and cannot be ignored. 

3.5 Summary 

This chapter has been primarily theoretical and has explained the theory underpinning maximum 

entropy modelling and various evaluation methods that can be used to assess generated models. 

The traditional approaches to land suitability modelling (FAO framework and GIS-based 

approaches) were first shown to be unsuitable for this project. However, experiments with 

species distribution modelling (using the BCCVL) demonstrated that correlative data-driven 

approaches could be readily applied to the research task. The presence/background algorithm 

Maxent seemed best suited for the modelling task, with species occurrences (but not absences) 

being derivable from the crop compensation maps and Maxent’s output maps interpretable as 

models for the fundamental environmental niches for species and so aligning well with the 

research goals.  

The maximum entropy modelling algorithm implemented in the Maxent software program was 

explained in detail, with descriptions given for how it works, calibration methods and the range of 

outputs available. The purpose of this detailed description is to inform readers unfamiliar with the 

algorithm so that they have appropriate context for interpreting the methodologies used and the 
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tests run that are described in the following two chapters. A similar approach was taken in 

explaining methods used for evaluating species distribution models. 

There is no single “best” approach to evaluating model performance and the methods that can be 

applied in a particular project will depend on the type of evaluation data that is available for 

assessing model predictions. Continuously valued suitability predictions can be converted to 

binary predictions of species presence or absence by the use of thresholds to facilitate formal 

comparison with binary evaluation data (e.g. using a confusion matrix for point data or interrater 

reliability scores for binary verification maps). The AUC (area under the receiver operating 

characteristic curve) is a commonly used measure for assessing model performance that is 

calculated over all possible thresholds. 

Most commonly used evaluation statistics in species distribution modelling are calculated using 

known occurrences and presumed absences that were not used in training the models; however, 

only occurrences can used in the case of Maxent as background points do not represent 

presumed absences. This affects the interpretation of the evaluation statistics and the ranges of 

possible values for them. In particular, the theoretical maximum AUC values achievable for 

Maxent’s predictive models depend on the species’ range, with higher AUC values achievable for 

species with narrow environmental niches than for species with less restricted habitats. 

Clustered occurrence data presents problems with both the testing and training of species 

distribution model models. Where test data are clustered in small areas, the formal evaluation 

statistics will only measure the accuracy of the model in those areas and cannot be relied on as an 

indicator of model accuracy elsewhere. Spatially clustered training data can result in models that 

are distorted by spatial sampling bias. This bias is observable when very different patterns of 

prediction occur for models that were trained on spatially different subsets of the presence points 

using the same predictors. Correlating the predictions from such models is useful for detecting 

spatial bias. 

Visual inspection of model outputs offers an intuitive means of assessing the credibility of models. 

High-resolution Earth observation imagery provides a rich source of qualitative data against which 

to compare model predictions and can be used to detect obvious omission errors that provide 

evidence of poor model performance in the areas where they occur. 

In the modelling that is described in the following two chapters the configuration of the presence 

data presents a high risk of spatial sampling bias in generated models.  Evaluation of these models 

will require the use of multiple complementary evaluation techniques to assess their feasibility 

and the accuracy and robustness of their predictions. 
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4.1 Introduction 

The goal of this research is to spatially predict suitable land for growing agricultural crops by 

estimating their fundamental ecological niches. The chosen methodology uses maximum entropy 

modelling (refer Chapter 3) to generate ecological niche models and resulting suitability maps 

using information on known occurrences for each species and environmental factors. 

This chapter documents the development of suitability maps for crops grown locally in south-west 

Burkina Faso. The purpose of these maps is to assist farmers subject to compulsory land 

acquisition to identify other potential planting locations in the region for their crops. The reason 

for the compulsory acquisition of this land and resettlement of its farmers is the establishment of 

a new surface gold mine. The crop suitability models described in this chapter were developed 

using data acquired by the Australian company Gryphons Minerals Pty Ltd during the exploration 

phase for the mine (refer Chapter 2).  

The community land use maps described in Section 2.2 are polygon shapefiles of surveyed fields 

where crops were recorded to be growing in 2014 when the Social Impact Assessment for the 

proposed mine was prepared. These data identify known occurrences for many locally grown 

crops in the form of presence locations (note that absence locations are not derivable from these 

maps). The presence points used by the modelling algorithm Maxent are sample points from the 

areal occurrence locations in these compensation maps. 

Each ecological niche model created using Maxent is determined by the inputs to the algorithm. 

These inputs are: (1) presence points characterising known suitable locations for the target crop; 

(2) raster layers of predictor environmental variables; and (3) the algorithmic parameters 

specified for the run. Varying any of these inputs will change the suitability model that is 

generated, and some input combinations may produce unrealistic models. When the presence 

points used to train a model are not fully representative of the species’ fundamental niche then 

spatial bias may be apparent in the generated model, with either significant areas of suitability 

omitted from the predictions or overprediction in areas unsuitable for the species. 

The four agricultural communities from which the presence data in this study have been sampled 

grow similar crops. Many of the environmental conditions at these sites will be characteristic of 

land suitable for agriculture in general or these crops in particular; however, some may simply be 

incidental to geographic location and have no influence on suitability for cultivating crops (an 

example is longitude).  When the presence data exhibits spatial sampling bias the contribution to 

the predictions of incidental environmental factors may be magnified and lead to the generation 

of unrealistic suitability models. 

Which combinations of environmental predictors and Maxent parameters will generate realistic 

niche models for the crops is not known a priori and can only be determined by heuristic 

methods. The methodology used in this research generates multiple crop suitability models using 

different sets of environmental layers and model parameters, then compares the performance of 

the various models to identify those factors contributing most effectively to producing useful crop 

suitability models.  
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The configuration of the presence data for this research makes validation of results and 

assessment of model performance particularly challenging. All presence points occur within the 

four small areas where compulsory land acquisition will occur (refer Figure 1-3), so accuracy 

measures based on presence points alone (e.g. AUC) can only measure accuracy at these sites and 

not across the whole project region. The presence points exhibit geographical sampling bias and 

this can result in spatially biased ecological niche models. These issues of addressing spatial 

sampling bias and assessing model performance are discussed in more detail below, prior to the 

formal explanation of the methodology used in the research. 

4.1.1 Spatial sampling bias 

The presence data used in this modelling are an example of incidental occurrence data collected 

for a different purpose. They are a by-product of the formal application by Gryphon Minerals Ltd 

for a mining licence in the region and were gathered for the Social Impact Assessment. As such, 

the presence points do not represent a broad and representative sample across the target region 

but are spatially clumped in four small areas. Overrepresentation of some regions in the presence 

data can cause spatial bias and lead to environmental bias in resulting models, and so must be 

addressed (Hijmans 2012, Kramer-Schadt, Niedballa et al. 2013, Boria, Olson et al. 2014). 

Model performance is commonly assessed using cross-validation data. Common cross-validation 

data splits of the presence data, such as random test percentage and those used in the replication 

methods built into Maxent, for this project, will result in test points taken from all four presence 

sites and in close proximity to training points. Such an approach cannot reveal the effects of 

sampling bias, and the spatial autocorrelation between training and test data can artificially 

inflate measures of model accuracy and perceived quality of predictions (Hijmans 2012). 

There are a number of documented techniques for correcting sampling bias in Maxent species 

distribution models. Kramer-Schadt, Niedballa et al. (2013) compared two common strategies to 

cope with uneven sampling effort: spatial filtering addresses sampling bias by reducing the 

number of presence points in oversampled regions; and background manipulation uses a bias file 

that allows the user to choose background data with the same bias as the presence data. Both 

methods can produce substantial improvement in the quality of model predictions. However, 

spatial filtering increases the risk that the number of records will become too few to build 

statistically sound models, and background manipulation uses arbitrary values for the bias file 

that imply prior knowledge about the species’ distribution that often is not available. Hijmans 

(2012) described pairwise distance sampling to remove spatial sorting bias but observed that this 

approach is not relevant when testing sites are very far away from training data. These techniques 

are not applicable to the configuration of presence data available to this project. 

An alternative approach, identified by Merow, Smith et al. (2013), is to build a model using 

potentially biased samples and evaluate it against a spatially independent dataset. Accurate 

predictions from the model imply negligible sampling bias. As a general recommendation, these 

authors advise evaluating models based on their predictive accuracy on spatially independent 

cross-validation data using fit metrics based on sensitivity and avoiding thresholding whenever 

possible. However, they observe that it is usually challenging to obtain test data that is statistically 

independent of training data. 

The configuration of the presence data for this project lends itself to this alternative approach. 

Partitioning of the samples to use three sites for training allows the fourth (spatially independent) 

site for cross-validation testing. Implementing this form of cross-validation allows four different 

combinations of spatially independent training and test data to be created from the same 
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presence data, and allows parallel models to be built and compared. This is the approach that has 

been taken in this project. 

4.1.2 Assessing model performance 

The exploratory ecological niche modelling performed using the BCCVL (refer Section 3.2) 

highlighted problems with the interpretation and comparison of suitability maps and 

demonstrated the capacity of the algorithms to generate highly unrealistic models at times. 

Maxent is a machine-learning algorithm that creates models based on the data presented to it in 

training; different sets of training data may result in very different suitability maps; or models may 

overfit to produce excellent predictions at the known locations used in training but very poor 

predictions elsewhere. These issues pose the questions: “what constitutes a good model?” and 

“how can we recognise and justify good results?” and so present the challenge of how to 

effectively validate results. 

The purpose of ecological niche models is usually prediction rather that explanation or hypothesis 

testing, so estimates of predictive power are often more relevant that significance (Hijmans 

2012). The predictive performance of a model is commonly evaluated through cross-validation 

whereby the model makes predictions for new data that were not used to estimate it. Typically, 

the available presence data are partitioned into sets for training and testing and the model’s 

predictive performance is calculated from the accuracy of the test data predictions.  

The available validation data for the models are the crop presence points at the four mine sites 

(used to calculate AUC measures) and high-resolution satellite imagery of the entire region that 

reveals existing land use. The detail in the imagery allows dryland agriculture to be distinguished 

from bas-fonds rice fields or uncleared land (refer Figure 2-12 and Figure 2-13 on page 35), but 

cannot distinguish particular dryland crops or definitively distinguish rangeland unsuitable for 

cultivation from fallow fields with bush regrowth. 

In this chapter, multiple models are developed for each crop to explore the factors that contribute 

to good models or that may lead to production of poor models. These models differ in the 

combinations of predictors and partitions of presence data used to train and test the models. In 

particular, suites of similar models using the same predictors and Maxent settings but trained 

using different subsets of the presence points are compared to assess the model robustness and 

sensitivity to variations in the selection of training data. 

In comparing the performance of different models and suites of models several formal and 

informal criteria are applied: 

• AUC – the area under the curve (AUC) for receiver operation characteristic (ROC) curve is 

a formal accuracy measure that is valid for comparing alternative suitability models for 

the same crop. However, there are cautions against relying on AUC alone (refer the 

discussion of ROC curve in Section 3.4.2) and its accuracy is doubtful when there are very 

small numbers of test points from which to calculate it. 

• Suitability map correlations – the similarity of map pairs is formally measured by 

computing their correlation coefficient.  Well-correlated suitability maps for the same 

crop from similar models trained using the same predictors but different sets of presence 

points is evidence for model robustness. 

• Qualitative assessment using satellite imagery – visual comparisons of suitability maps to 

the satellite imagery provides an informal method for assessing accuracy and may 

invalidate a model that has achieved good scores using the formal measures. For 
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example, a model that predicts very poor suitability for dry land crops or rice over large 

areas where that type of agriculture is clearly observed must be judged as a poor model. 

In characterising good models, we would expect them to be realistic, with suitability ratings that 

did not contradict observable patterns of agricultural activity. Evidence for their accuracy and 

robustness would be high AUC scores and highly correlated suitability maps across the suite of 

similar models that varied only in the sets of presence points used in their training.  

4.2 Methodology 

Figure 4-1 provides an overview of methodology employed in this chapter to produce crop 

suitability models using the data sources described in Chapter 2. The methodology used takes 

advantage of the geographical separation of the four presence data sites to address the inherent 

problem of sampling bias in the presence data.  

In order to detect the presence of sampling bias in relation to the environmental layers used as 

predictors, each test of environmental predictors or Maxent parameters is replicated five times to 

produce five parallel models for each crop. Each of the five models is trained and tested using 

different partitions of the presence data, four of which have test data that is spatially 

independent of the training data. These partitions of the presence data are referred to in this 

thesis as model scenarios. The accuracy of the test predictions and resulting suitability maps from 

the five model scenarios for a particular set of predictors are compared to assess model accuracy 

and robustness and to identify sensitivity to sampling bias.  

 

Figure 4-1 Data flow diagram showing inputs and outputs used to generate parallel crop 

suitability models in five model scenarios  

4.2.1 Model scenarios 

Table 4-1 documents the five model scenarios used in this research. The first model scenario uses 

a random presence data split of 75% for training and 25% for testing and so contains training and 

test presence points from each of the four mine sites. The four other model scenarios are 

Crop 

compensation 

maps (4 sites) 

Environmental layers Presence points 

SoilGrids Soil type K, Th, U DEM 

Hybrid soils Radiometrics Terrain 

Suitability maps (5) 

MAXENT x 5 

Compare 

Correlation coefficients AUC Outputs 

Inputs 

Train 

Test 

P1 P2 P3 P4 P5 
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designed using a leave-one-out cross-validation partition of the mine sites and have spatially 

independent training and test sets of presence points. The model scenario names explicitly 

identify the set of presence points used to test the models (and, by inference, the set of presence 

points used to train the models). 

Table 4-1 Model scenario definitions 

Scenario  Name Test data for models Training data for models 

P1 Random 25% 25% of presence points – 
randomly selected 

Remaining 75% of presence points 

P2 Fourkoura Presence points at Fourkoura Presence points at the other 3 sites 

P3 Nogbele Presence points at Nogbele Presence points at the other 3 sites 

P4 Samavogo  Presence points at Samavogo  Presence points at the other 3 sites 

P5 Stinger Presence points at Stinger Presence points at the other 3 sites 

4.2.2 Presence data 

The presence data for the crop models are derived from the crop compensation maps that were 

discussed in Section 2.2 and displayed in Figure 2-1 and Figure 2-2. The centroids of all fields 

recorded as growing a particular crop were used as presence data for that crop. The number of 

presence points created for each of the twelve crops is shown in Table 4-2, as well as the number 

of training and test points used for each crop in each model scenario. 

Table 4-2 Number of training and test presence points used for each crop in each model scenario  
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P1 Random 25%  Training 48 24 168 31 29 260 53 99 30 506 155 32 1434 

     Random 25%  Test 16 8 56 10 10 87 18 33 10 169 52 11 478 

P2 Fourkoura  Training 47 32 199 36 32 296 64 109 21 583 187 39 1645 

     Fourkoura  Test 17  25 5 7 50 7 23 19 91 20 3 267 

P3 Nogbele  Training 30 14 67 24 31 152 30 71 26 345 116 37 943 

     Nogbele  Test 34 18 157 17 8 194 41 61 14 329 91 5 969 

P4 Samavogo  Training 63 20 211 26 21 289 64 102 38 475 162 15 1486 

     Samavogo  Test 1 12 13 15 18 57 7 30 2 199 45 27 426 

P5 Stinger  Training 52 30 195 37 33 301 55 114 35 619 156 35 1662 

      Stinger  Test 12 2 29 4 6 45 16 18 5 55 51 7 250 

 Total 64 32 224 41 39 346 71 132 40 674 207 42 1912 

4.2.3 Environmental layers 

Chapter 2 described the development of the environmental layers for the modelling. Multiple 

terrain, soil and radiometric layers were produced, although no meaningful climate layers could 

be developed because there is only slight variation in climate over the region.  All environmental 

layers were created as ASCII raster grids with cell size of 30metres by 30metres. 
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Terrain layers 

The terrain layers include the DEM and five further layers derived from it: slope, wetness index, 

solar radiation, index of valley bottom flatness, and index of ridgetop flatness. These layers are 

described in Section 2.4 and shown in Figure 2-7.  

Soil layers 

The development of effective soils layers for use in suitability modelling proved the most 

challenging aspect of this research project. Two sources of soil data were available to the project. 

The supplied Gryphon Minerals map of soil types had very fine spatial detail. However, it was 

simply a categorical polygon map with 17 soil categories. The raster soil maps from SoilGrids 

quantified multiple soil qualities, but had coarse spatial resolution and their accuracy was not 

verified for the project region. Early experimentation using the BCCVL (described in Section 3.2) 

showed that neither were useful as environmental predictors for suitability models. This led to 

the development of sets of hybrid soil layers that combined these two data sources in various 

ways (documented in Section 2.5.3).  

The hybrid soil layers had both the fine spatial detail from the Gryphon Minerals soil map and the 

multi-dimensionality of SoilGrids. Four sets of hybrid soil layers were developed as follows: 

• Mean SoilGrids values for soil types 

• Mean SoilGrids values for soil types plus Gaussian noise 

• Mean SoilGrids values for soil types (50%) plus SoilGrids value (50%)  

• Mean SoilGrids values for soil types (75%) plus SoilGrids value (25%)  

The twenty soil property layers included some redundancy (e.g. two layers for pH, three layers for 

carbon content and five layers for water holding capacity). Nine soil properties were selected 

from each set of hybrid soil layers for use in the modelling, as follows: 

• BLDFIE – Bulk density (fine earth) in kg per cubic metre 

• OCDENS – Soil organic carbon density in kg per cubic metre 

• CECSOL – Cation exchange capacity of soil in cmolc per kg 

• PHIHOX – Soil pH x 10 in water  

• CLYPPT – Clay content (0-2 micrometre) mass fraction in % 

• CRFVOL – Coarse fragments volumetric in % 

• SNDPPT – Sand content (50-2000 micrometre) mass fraction in % 

• SLTPPT – Silt content (2-50 micrometre) mass fraction in % 

• WWP – Available soil water capacity (volumetric fraction) until wilting point 

Radiometric layers 

Four radiometric layers, for radiometric dose rate and ground surface concentrations of 

potassium, thorium and uranium, were created for use in the modelling. These layers are 

described in Section 2.6 and shown in Figure 2-15. 

Correlated layers and principal component analysis 

Principal component analysis (PCA) is often used in predictive modelling to reduce the 

dimensionality of a problem by converting large sets of potentially correlated predictors into 

smaller sets of uncorrelated predictors. The correlation coefficients for pairwise comparisons of 

the environmental layers described above are presented in Appendix E and demonstrate highly 

correlated soil and radiometric layers.  
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Although the Maxent algorithm has no requirement that predictor layers be independent, some 

authors still discuss the detection and removal of correlated layers in the context of Maxent. For 

example, The Banta Lab20 for integrative evolutionary and conservation biology offers a tutorial 

on its website for this process in preparation for running Maxent. Further, Dan Warren’s 

ENMTools software for quantifying the similarity of environmental niche models  generated by 

Maxent (Warren, Glor et al. 2010) offers a correlation function that is described in the user 

manual as “useful for eliminating spatially correlated variables prior to the modelling process, or 

as another measure of similarity between models.” The use of principal component analysis (PCA) 

to generate sets of uncorrelated environmental layers has also been used for Maxent, e.g. as 

described in Cruz-Cárdenas, López-Mata et al. (2014). 

The use of PCA was explored in this research to evaluate whether this technique would improve 

the measured accuracy and robustness of the models. Standardised PCA was applied to sets of 

environmental layers to derive sets of principal component predictors for use in modelling, as 

follows: 

• PCA of all environmental layers – seven PCA layers derived from the complete set of six 

terrain layers, nine soil layers (hybrid soil layers with added Gaussian noise) and four 

radiometric layers. 

• PCA of 17 environmental layers – seven PCA layers derived from 17 environmental layers, 

excluding the DEM and MRRTF. 

• PCA of soil layers – four PCA layers derived from the nine soil layers; repeated for three 

sets of hybrid soil layers. 

4.2.4 Software implementation 

The Maxent software was run on an Ubuntu Linux virtual machine implemented using Oracle 

Virtual Box on a Windows10 workstation. Perl scripting was used to automate the generation of 

suites of Maxent crop suitability models based on specified sets of environmental layers. Each 

separate run created suitability models for all 12 crops in each of the five model scenarios, 

producing potentially 60 individual crop suitability models for that set of predictors. Maxent failed 

to generate a suitability model for Cashew in scenario P2 due to the absence of test data and so 

only 59 models were generated during each run.  

Presence data for model scenario P1 consisted of all presence points. The presence points for 

each crop were randomly partitioned by Maxent at run-time into 75% for training and 25% for 

testing. Note that the seed for Maxent’s random number generator was fixed so that the same 

partition of presence and background points was created in all runs. The training and test 

presence datasets for the four other model scenarios were explicitly created, as per Table 4-1 and 

Table 4-2.  

Each environmental layer was assigned an alphanumeric code, as shown in Table 4-3. The user 

interface for the automated processing presented the list of codes for selection of environmental 

layers, and the codes were used in labelling the output directories to explicitly identify the model 

predictors used for each run.  

                                                           

20 See https://sites.google.com/site/thebantalab/home 
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Table 4-3 Environmental layers used in modelling: codes and descriptions 

Code Name Type Layer description 

0 DEM Terrain Digital elevation (meters) 

1 Slope Terrain Slope (degrees) 

2 Wetness Terrain Wetness index 

3 Solar Terrain Solar radiation (J/cm2) 

A BLDFIE Soil Bulk density (fine earth) in kg / cubic metre 

B OCDENS Soil Soil organic carbon density in kg / cubic metre 

C CECSOL Soil Cation exchange capacity of soil in cmolc / kg 

D PHIHOX Soil Soil pH x 10 in water  

E CLYPPT Soil Clay content (0-2 micrometre) mass fraction in % 

F CRFVOL Soil Coarse fragments volumetric in % 

G SNDPPT Soil Sand content (50-2000 micrometre) mass fraction in % 

H SLTPPT Soil Silt content (2-50 micrometre) mass fraction in % 

I WWP Soil Available soil water capacity (volumetric fraction) until wilting point 

M MRVBF Terrain M = Terrain - valley bottom flatness index 

N MRRTF Terrain N = Terrain - ridge top flatness index 

P PC1 PCA Principal component 1 

Q PC2 PCA Principal component 2 

R PC3 PCA Principal component 3 

S PC4 PCA Principal component 4 

T PC5 PCA Principal component 5 

U PC6 PCA Principal component 6 

V PC7 PCA Principal component 7 

W Dose rate Radiometric Dose rate (nGy/hr) 

X Potassium Radiometric Potassium ground concentration (%)  

Y Thorium Radiometric Thorium ground concentration (ppm)  

Z Uranium Radiometric Uranium ground concentration (ppm)  

Run-time parameters 

Run-time parameters are used by Maxent to specify the location of input files, tune the modelling 

algorithm and select desired outputs. The run-time parameters to be used were encoded in the 

Perl script and edited when necessary to change parameters for particular runs.  

The following run-time parameters were used for all, or some, runs: 

• Output format of Cloglog was selected for all runs to produce an estimate between 0 and 

1 of probability of presence (refer Section 3.3.5). 

• Number of background points = 10,000. 

• Random seed for creation of background points was set to FALSE for all runs, and writing 

of background predictions to a .csv requested for one run. 

• Response curves produced for all runs. 

• Jackknife results produced for some runs. 

• Features classes were specified for some runs. 

• The beta multiplier parameter was specified for some runs. 
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Replication 

Maxent offers three methods of model replication: K-fold cross-validation, subsampling and 

bootstrap (refer discussion on data splitting in Section 3.3.4). Experimentation with each of these 

methods was performed interactively using the Java software package. However, as these 

methods are unable to address the problem of sampling bias inherent in the input data, these 

results are not reported in the body of this thesis.  

Summary results from the replication runs are included in Appendix F for comparison with the 

results of other runs. 

Post-processing 

Post processing of the Maxent outputs was performed using R programs for the following tasks: 

• Consolidate and plot suitability maps from each run (59 models) 

• Consolidate and plot AUC results from each run (59 models) 

• Consolidate and plot omissions from each run (59 models) 

• Consolidate and plot environmental contributions from each run (59 models) 

• Calculate correlation coefficients for pairwise comparisons of suitability maps for each 

crop in each run (10 map comparisons for most crops, 6 for Cashew; total of 116 per run) 

• Summarise AUC and correlation results for all runs to allow comparisons between the 

different tests of predictors and parameters used by each run 

• Smooth suitability maps and recalculate AUC and omissions for tests that used jittered 

hybrid soil layers. 

4.2.5 Outputs 

In total, 47 separate tests of predictors and parameters were run using the methodology 

described above. These runs resulted in the generation of 2,773 individual crop suitability models. 

Appendix F lists the 47 runs, identifying the environmental predictors and Maxent parameters 

that were used for each run and providing some summary test AUC results. 

In addition to the standard outputs generated by Maxent for each model, summary plots were 

produced from each run to allow visual comparison of the results from all 59 models at once, as 

follows: 

• Facet grid plots indexed by crop and model scenario for the following outputs: 

o Suitability maps 

o ROC curves 

o Omission and predicted area plots 

o Environmental layer contributions (histograms) 

• Correlation chart matrices of suitability map comparisons for each of the 12 crops to 

document the similarity of the crop suitability maps from the different model scenarios. 

These summary plots were copied to an Excel spreadsheet with 47 data rows to facilitate 

comparisons of outputs from different runs and inform qualitative assessments of relative model 

performance.  



Land Suitability Assessments for Agriculture using the Data By-products of Mining Exploration 

76 Chapter 4  Agricultural land suitability modelling: West Africa  

4.3 Results and discussion 

The results of 47 runs, each representing a separate test of environmental predictors or Maxent 

parameters, are reported and discussed in this chapter. Figure 4-2 and Figure 4-3 show the 

distributions of the test AUC scores for all models and the correlation coefficients for pairwise 

comparisons of suitability maps for the same crop in all model scenarios from all 47 runs. 

Test AUC scores 

 

 

Figure 4-2 Distribution of test AUC scores for models from all runs, by crop and model 

scenario (red line shows AUC = 0.5, random prediction) 

Correlations between suitability maps 

 

 

Figure 4-3 Distribution of correlation coefficients for pairwise comparisons of parallel 

suitability maps, by crop and model scenario (red line shows correlation coefficient = 0) 
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The 47 runs generated 235 (= 47 x 5) models for each crop (188 models for Cashew), resulting in 

2,773 crop suitability models in total. Each box in the Figure 4-2 boxplots summarises the 47 test 

AUC scores for one crop in one model scenario. 

Each run produced five parallel suitability maps per crop (four for Cashew). In order to test the 

similarity of predictions from the five model scenarios, each suitability map was compared with 

each of the other four maps for the same crop from the same run (three others for Cashew) and 

the correlation coefficients calculated. Figure 4-3 shows the correlation coefficients from these 

comparisons for all runs. Each box in the boxplots summarises 188 (= 47 x 4) correlation 

coefficients for comparisons with the maps for one crop in one model scenario (141 = 47 x 3 

coefficients for Cashew).  

The crop suitability models were built using different sets of environmental layers and model 

parameters with the purpose of identifying those factors contributing to good or poor models. 

Multiple similar models trained using different partitions of the presence data were generated to 

reveal the potential for sampling bias. 

The numbers of presence points varied greatly between crops (refer Table 4-2) and, when 

partitioned for training and testing according to the model scenarios, resulted in some small test 

sets. Seven of the crops had less than 100 presence points: Beans (64), Cashew (32), Cowpea (41), 

Earth pea (39), Millet (71), Potato/yam (40) and Sorghum (42); and 15 of their test datasets had 

less than 10 presence points from which to calculate the test AUC. The plots in Figure 4-2 and 

Figure 4-3 show large variation in AUC scores and correlation coefficients for many of these crops. 

Only five crops had more than 100 presence points: Cotton (224), Maize (346), Peanut (132), Rice 

(674) and Sesame (207). These are the main crops grown by the farmers and the discussion of 

results will focus on these five crops. 

4.3.1 AUC scores 

Models with very low test AUC scores (very poor models) 

The plots in Figure 4-2 reveal some very low test AUC scores for some crop models. Table 4-4 lists 

the number of models for each of the five main crops that achieved test AUC scores of less than 

0.5 (i.e. performed worse than random prediction). These 149 crop models make up 12.7% of the 

total 1,175 models for the five crops in the five scenarios.  

Table 4-4 Number and percentage of models with test AUC scores less than 0.5 for the five main 

crops, by model scenario 

Model scenario Cotton Maize Peanut Rice Sesame Total % 

P1 Random 25% 0 0 0 0 0 0 0.0% 

P2 Fourkoura 2 2 0 0 2 6 2.6% 

P3 Nogbele 1 1 2 0 0 4 1.7% 

P4 Samavogo 7 7 6 4 9 33 14.0% 

P5 Stinger 13 27 27 4 35 106 45.1% 

Total 23 37 35 8 46 149 12.7% 

% 9.8% 15.7% 14.9% 3.4% 19.6% 12.7%  

All the models in scenario P1 Random 25% performed better than random prediction. Very low 

test AUC scores occurred only in the model scenarios that used spatially independent training and 
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test data. Inspection of the models with very low test AUC scores provides insight into some of 

the factors that can contribute to poor models: 

• Only linear features were used in building most of the very poor models in scenarios P2 

Fourkoura and P3 Nogbele (4 of 6 and 3 of 4 models, respectively). 

• In scenario P4 Samavogo, 27 (82%) of the 33 poor models used environmental layers 

whose values are influenced by elevation (DEM, MRVBF or MRRTF). Samavogo has the 

highest altitude of the four sites and sampling bias is apparent when samples from this 

site are not used for training models built using these layers. 

• In model scenario P5 Stinger, 45% of the 235 crop models performed worse than random 

prediction. This is almost certainly due to the effect of sampling bias as a consequence of 

Stinger’s distinctive soil profile and lower altitude. 

Stinger, with 50% cuirasse soils, has a very different soil profile from the other mining lease sites 

that each have between 2% and 5% curaisse soils (refer Table 2-6 in Section 2.5.1). In scenario P5, 

the crop models are trained using data from the other three sites where residual soils 

predominate, but the test AUC score for scenario P5 is calculated using presence data from 

Stinger alone where 50% of cultivation is on curaisse soils. The extreme sampling bias evident in 

scenario P5 is not evident in the other four scenarios where training data for models includes 

presence data from Stinger. 

Fractional predicted area and test AUC values 

This research aims to model the ecological niches for crops and so identify potential planting 

locations across the study area. The theoretical maximum AUC value for Maxent ecological niche 

models corresponds to 1 – α/2 where α is the fraction of the study area corresponding to the 

species’ true distribution (refer Table 3-4 and discussion in Section 3.4.2). The fractional predicted 

areas for the crops in this study are not known, but analysis of the tables of soil type in Section 

2.5.1 allows some estimates to be made. 

At the four known sites (mining leases) approximately 60% by area of rice cultivation is on 

depositional soils (codes Da and Dc), and it is observed that rice is planted in preference to other 

crops on these soils. The remaining 40% of rice cultivation is on nearby residual soils and curaisse. 

With depositional soils (codes Da and Dc) making up 9% of the project area, we can extrapolate to 

estimate a fractional predicted area for rice of approximately 15%, and hence a theoretical 

maximum AUC for Rice suitability models of 0.93. 

In contrast, over 97% (by area) of cotton, peanut and sesame and over 93% of maize grown at the 

four mining leases is on residual soils or curaisse. These crops thrive in similar environments and 

are typically planted next to each other in patchworks of mixed fields at the discretion of farmers 

(refer Figure 2-1 and Figure 2-2 on page 18). Residual soils and curaisse make up 85% of the 

project region. If 100% of these soils were suitable for cultivation, the theoretical maximum 

achievable AUC value for suitability models for these crops would be 0.58. If 90%, 80% or 70% of 

these soils were suitable, the corresponding maximum achievable AUC values would be 0.62, 0.66 

and 0.70, respectively. 

Models with high AUC scores (good models) 

Table 4-5 tabulates the numbers of suitability models achieving high test AUC scores by crop and 

model scenario, where a high score for Rice models is defined to be greater than 0.9, and a high 

score for other crop models is defined to be greater than 0.7.  
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Overall, almost 30% of the 1,175 suitability models achieved high test AUC scores, including over 

two thirds of models for scenario P1 Random 25%. However, only 15 of the models from P5 

Stinger (6% of 235) achieved high test AUC scores. 

Table 4-5 Number and percentage of models with high test AUC scores for the five main crops, by 

model scenario: high test AUC scores are > 0.9 for Rice and > 0.7 for Cotton, Maize, Peanut, Sesame  

Model scenario Cotton Maize Peanut Rice Sesame Total % 

P1 Random 25% 29 35 30 31 34 159 67.7% 

P2 Fourkoura 18 10 8 17 13 66 28.1% 

P3 Nogbele 5 11 6 7 7 36 15.3% 

P4 Samavogo 20 8 5 21 6 60 25.5% 

P5 Stinger 2 2 2 7 2 15 6.4% 

Total 74 66 51 83 62 336 28.6% 

% 31.5% 28.1% 21.7% 35.3% 26.4% 28.6%  

4.3.2 Variable contributions and permutation importance  

The relative importance of the environmental variables to a Maxent model is measured using two 

metrics (Phillips 2017): 

• Permutation importance measures the drop in training AUC for the final model when the 

values for an environmental layer are randomly permuted among the training points 

(both presence and background) and the suitability scores recalculated. A large decrease 

in training AUC indicates that the model depends heavily on that variable. 

• Variable contribution is accumulated during model training by assigning the increase in 

gain at each iteration to the environmental variable that the feature being modified 

depends on. 

Both metrics are normalised to percentages to allow comparison between environmental 

variables. However, Phillips (2017) advises that variable contributions should be interpreted with 

caution when predictor variables are correlated. 

 
Figure 4-4 Distribution of permutation importance and variable contribution values for 

environmental layers in good suitability models (test AUC > 0.9 for Rice and > 0.7 otherwise) for 

the five main crops 

The environmental layers used for training the models are listed in Table 4-3. Figure 4-4 uses 

boxplots to show the distribution of values for permutation importance and variable contribution 

from the 336 good models (refer Table 4-5) for 19 environmental predictor layers. The models 
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used different numbers and combinations of predictors and the width of each boxplot is indicative 

of the number of models that used that predictor. Note that, although some of the models also 

used PCA layers (PQRSTUV), these layers are not shown in the plot. 

Reasonably similar patterns for permutation importance and variable contribution can be 

observed in Figure 4-4 for the terrain layers (0123MN) and radiometric layers (WXYZ). For the 

highly correlated soil layers (ABCDEFGHI) the permutation importance of each layer is typically 

very low, whereas the variable contributions exhibit much more variation. 

Figure 4-5 compares the permutation importance of these environmental layers for good and very 

poor models. For Rice, the MRVBF (M) layer has very high permutation importance in both sets of 

models. In contrast to the good models, the importance of the DEM (0) and MRRTF (N) terrain 

layers was also high for the very poor Rice models. The only soil layer with non-negligible 

permutation importance for Rice was soil organic carbon density (B) in the good models. 

For the other four crops, the permutation importance of the correlated soil layers (CDEFGHI, see 

Appendix E) is higher for the good models, whereas wetness (2) has higher importance in the very 

poor models. 

 

 
Figure 4-5 Distribution of permutation importance values for environmental layers in Rice 

suitability models (top) and Cotton, Maize, Peanut and Sesame suitability models (bottom): good 

models have test AUC > 0.9 for Rice and > 0.7 otherwise; very poor models have test AUC < 0.5 

4.3.3 Model parameters 

The most significant Maxent run-time parameters are the regularisation parameter (referred to as 

the beta multiplier) and the choice of feature classes to use in the modelling. The default beta 

multiplier value is one, and the default set of feature classes used by a model depends on the 

number of training samples (refer Table 3-1). To assess the effect of changing these parameters, 

sets of tests were performed using identical environmental layers and varying just one of these 

parameters. The results for each test are summarised over the five model scenarios for each crop, 

with the mean and minimum test AUC values reported for comparison between tests. Two 

summary statistics are used to compare overall accuracy (mean test AUC over all five crops) and 



    

 Chapter 4  Agricultural land suitability modelling: West Africa 81 

similarity of model results (mean of all pairwise map correlations from the five model scenarios 

for crops) between tests. 

Regularisation 

Table 4-6 reports the effect of using beta multiplier values of 1, 2 and 4 for models built from 

identical environmental layers using default feature classes. Small changes in model performance 

are observable, with both the mean and the minimum test AUC values for crops reducing as the 

beta multiplier value increases. 

Table 4-6 Summary test AUC values for models built from uncorrelated environmental layers 

(123ABWX) using different beta multipliers, by crop  

Beta Cotton Maize Peanut Rice Sesame 5 main crops 

multi-
plier 

Mean 
AUC 

Min 
AUC 

Mean 
AUC 

Min 
AUC 

Mean 
AUC 

Min 
AUC 

Mean 
AUC 

Min 
AUC 

Mean 
AUC 

Min 
AUC 

Mean 
AUC 

Mean map 
correlations 

1 0.66 0.51 0.65 0.49 0.60 0.43 0.90 0.88 0.61 0.45 0.68 0.84 

2 0.66 0.50 0.65 0.48 0.59 0.42 0.90 0.88 0.60 0.43 0.68 0.83 

4 0.65 0.50 0.64 0.48 0.57 0.40 0.90 0.88 0.59 0.42 0.67 0.81 

These results are consistent with the findings of Radosavljevic and Anderson (2014) whose 

systematic testing found peak model performance for the default beta multiplier value of one. 

The similarity of suitability maps also decreased as the beta multiplier value increased. No further 

experiments were performed in relation to regularisation and the default beta multiplier of one 

was used in all other tests. 

Feature classes 

Table 4-7 and Table 4-8 report the effect of increasing the complexity of the feature classes used 

in models built from identical sets of environmental layers. (Note: as there were fewer than 80 

training samples for Cotton and Peanut in scenario P3 Nogbele product features were not used 

for these two models.) 

Table 4-7 compares the effect of using different sets of feature classes for models built from just 

terrain layers (1=slope, 2=wetness, 3=solar radiation, M=MRVBF and N=MRRTF). The results show 

that the combination of linear, quadratic and product features (LQP) performed better than linear 

features (L) alone, giving higher mean and minimum test AUC values across the five model 

scenarios for all crops. Adding the hinge feature (H) degraded test AUC results for Cotton, Rice 

and Sesame, but improved results for Peanut. Significantly, the addition of the hinge feature 

resulted in one very poor Rice model that had test AUC value of just 0.29. 

Table 4-7 Summary test AUC values for models built from terrain layers only (123MN) using different 

combinations of feature classes (L=linear, Q=quadratic, P=product, H=hinge), by crop 

 Cotton Maize Peanut Rice Sesame 5 main crops 

Features 
used 

Mean 
AUC 

Min 
AUC 

Mean 
AUC 

Min 
AUC 

Mean 
AUC 

Min 
AUC 

Mean 
AUC 

Min 
AUC 

Mean 
AUC 

Min 
AUC 

Mean 

AUC 

Mean map 
correlations 

L 0.55 0.35 0.52 0.36 0.49 0.35 0.77 0.57 0.60 0.37 0.59 0.80 

LQP 0.62 0.52 0.58 0.45 0.54 0.45 0.80 0.65 0.63 0.44 0.63 0.78 

LQPH 0.61 0.42 0.58 0.46 0.58 0.49 0.73 0.29 0.59 0.42 0.62 0.80 
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Table 4-8 compares the use of different sets of feature classes in models built from three terrain 

layers (123) and all nine soil layers. The results show that the use of linear feature alone produced 

the lowest overall accuracy (as measured by mean test AUC), but the highest overall similarity of 

resulting suitability maps (as measured by the mean of the correlation coefficients for pairwise 

comparisons of suitability maps for the same crop). The best overall model performance occurred 

with the use of linear, quadratic and product features (LQP), and the further addition of the hinge 

feature (H) degraded overall performance slightly. Inspection of the variable contributions for all 

the models in this set of tests showed very similar variable contributions for corresponding LQ 

and LQP models (i.e. same crop and model scenario). However, the contribution of the wetness 

environmental layer was far higher in the LQPH models. 

Table 4-8 Summary test AUC values for models built from terrain and soil layers (123ABCDEFGHI) 

using different combinations of feature classes (L=linear, Q=quadratic, P=product, H=hinge), by crop 

 Cotton Maize Peanut Rice Sesame 5 main crops 

Features 
used 

Mean 
AUC 

Min 
AUC 

Mean 
AUC 

Min 
AUC 

Mean 
AUC 

Min 
AUC 

Mean 
AUC 

Min 
AUC 

Mean 
AUC 

Min 
AUC 

Mean 

AUC 

Mean map 
correlations 

L 0.59 0.50 0.57 0.39 0.62 0.54 0.86 0.77 0.59 0.41 0.64 0.89 

LQ 0.64 0.55 0.61 0.43 0.62 0.51 0.88 0.82 0.58 0.39 0.67 0.87 

LQP 0.65 0.57 0.63 0.47 0.64 0.57 0.89 0.83 0.62 0.40 0.69 0.88 

LQPH 0.65 0.57 0.61 0.47 0.62 0.48 0.89 0.84 0.59 0.40 0.67 0.86 

4.3.4 Environmental layers 

The next two sections investigate how particular environmental layers influence the predictive 

performance of models. This section explores the effect of using terrain, radiometric and PCA 

layers in developing crop suitability models. The development of suitable soil layers was the most 

problematic element of this research and so discussion on the soil layers is treated separately in 

Section 4.3.5.  

All the mine sites are agricultural communities that grow similar crops. Many of the 

environmental conditions at these sites are characteristic of land suitable for agriculture and 

some are incidental due to geographic location. Inspection of the distributions of values from 

environmental layers gives insight into the potential for spatial bias in some tests and model 

scenarios.  

Terrain layers 

Figure 4-6 shows the distributions of values from the six terrain layers at the four mine sites. 

Violin plots show the shapes of the distributions, with black bars identifying mean values. The red 

line in each layer plot represents the mean value across the project region for that environmental 

predictor. 

It is observed that the average slope at all four sites is slightly lower than the region average, as 

might be expected for agricultural communities, and the amount of solar radiation received at all 

sites is similar to the region mean. Site variations are noticeable in the plots for the 0-DEM and 2-

Wetness. Overall, site P5 Stinger is lower in altitude and wetter than the other sites, whereas site 

P4 Samavogo is higher in altitude and has lower wetness values. The distribution of MRVBF and 

MRRTF values varies greatly between the sites, with P2 Fourkoura having no values for MRVBF 

greater than five and P4 Samavogo being the only site with MRRTF values greater than six. 
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Figure 4-6 Violin plots of terrain layer values at the four mine sites (P2 Fourkoura, P3 Nogbele, P4 

Samavogo and P5 Stinger) with mean value (black bar) compared to the mean for the project 

region (horizontal red line) 

Table 4-9 presents results for models trained using terrain layers only. All the very poor models 

(test AUC < 0.5) occurred for model scenarios P5 Stinger and P4 Samavogo where the terrain 

values for the test data were less similar to the values used in training. 

Table 4-9 Summary test AUC values for models built from terrain layers only (0=DEM, 1=Slope, 

2=Wetness, 3=Solar, M=MRVBF, N=MRRTF) using default feature classes and beta multiplier value 

 Cotton Maize Peanut Rice Sesame 5 main crops 

Layers 
Mean 
AUC 

Min 
AUC 

Mean 
AUC 

Min 
AUC 

Mean 
AUC 

Min 
AUC 

Mean 
AUC 

Min 
AUC 

Mean 
AUC 

Min 
AUC 

Mean 

AUC 

Mean map 
correlations 

0123 0.65 0.56 0.62 0.49 0.60 0.47 0.66 0.14 0.64 0.42 0.64 0.87 

12 0.63 0.54 0.60 0.47 0.57 0.48 0.75 0.65 0.60 0.38 0.63 0.87 

123 0.66 0.53 0.61 0.46 0.58 0.45 0.75 0.66 0.63 0.40 0.65 0.88 

123M 0.65 0.54 0.60 0.44 0.55 0.47 0.83 0.67 0.61 0.41 0.65 0.84 

123MN 0.61 0.42 0.58 0.46 0.58 0.49 0.73 0.29 0.59 0.42 0.62 0.80 
 

The effect of particular terrain layers was most pronounced for the Rice suitability models. The 

use of M=MRVBF as a predictor substantially improved the performance of Rice models in terms 

of test AUC (but also slightly degraded the performance of models for the dryland crops). Using 

0=DEM as a predictor resulted in a very poor Rice model with test AUC of 0.14 for scenario P5 

Stinger, and the use of N=MRRTF resulted in a very poor Rice model with test AUC of 0.29 for 

scenario P4 Samavogo.  

Figure 4-7 shows correlation results for pairwise comparisons of Rice suitability maps produced by 

the five model scenarios in each run. The highest measures of map similarity occurred for models 

using layers 12 or 123 only, and the lowest similarity scores occurred for the models using layer 

N=MRRTF. 

Examination of the scatterplots for the 123M, 123MN and 0123 models reveals many divergences 

in model predictions between the suitability maps from different model scenarios. This means 

that, for large parts of the project region, models developed using the same set of environmental 

predictors have produced contradictory results – one model predicting very poor suitability and 

another predicting high suitability for the same location. As the suitability maps compared in each 

of the scatterplots differ only in the samples used for training, these results demonstrate that 

these models exhibit substantial spatial bias derived from the training samples.  
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Figure 4-7 Rice suitability map correlations between the five model scenarios, from models built 

using combinations of terrain layers only: 0=DEM, 1=Slope, 2=Wetness, M=MRVBF, N=MRRTF 

Radiometric layers 

Figure 4-8 shows the distribution of radiometric layer values at the four mine sites. All sites had 

higher mean potassium values than the project region as a whole. As potassium is usually related 

to clay content in soils, this suggests that soils with higher clay content may be preferred for 

cropping. 

 

Figure 4-8 Violin plots of radiometric layer values at the four mine sites (P2 Fourkoura, P3 

Nogbele, P4 Samavogo and P5 Stinger) with mean value (black bar) compared to the 

mean for the project region (horizontal red line) 
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Table 4-10 provides summary test AUC results for models built using radiometric layers. Run 

WXYZ used only radiometric layers as predictors. The addition of terrain layers 1=Slope, 

2=Wetness and 3=Solar as predictors increased mean AUC for all crops. The further addition of 

two soil layers for run 123ABWX of uncorrelated predictors increased test AUC for Rice, but made 

little change to AUC results for the dryland crops. 

Table 4-10 Summary test AUC values for models built using radiometric layers: W=Dose rate 

(nGy/hr), X=Potassium (%), Y=Thorium (ppm), Z=Uranium (ppm) 

 Cotton Maize Peanut Rice Sesame 5 main crops 

Layers 
Mean 
AUC 

Min 
AUC 

Mean 
AUC 

Min 
AUC 

Mean 
AUC 

Min 
AUC 

Mean 
AUC 

Min 
AUC 

Mean 
AUC 

Min 
AUC 

Mean 
AUC 

Mean map 
correlations 

WXYZ 0.57 0.43 0.61 0.54 0.57 0.53 0.80 0.69 0.55 0.43 0.62 0.85 

123WXYZ 0.67 0.51 0.66 0.52 0.60 0.47 0.85 0.82 0.62 0.47 0.68 0.85 

123ABWX 0.66 0.51 0.65 0.49 0.60 0.43 0.90 0.88 0.61 0.45 0.68 0.84 
 

Principal component layers 

Standardised PCA was applied to sets of terrain, soil and radiometric environmental layers to 

derive sets of seven principal component predictors (PQRSTUV) for use in modelling. Two sets of 

PCA layers were generated from these layers, as follows: 

• PCA-19 – based on all 19 environmental layers (0123ABCDEFGHIMNWXYZ) 

• PCA-17 – based on 17 layers, excluding the DEM and MRRTF (123ABCDEFGHIMWXYZ) 

Suitability models were built using these sets of principal component layers as predictors and the 

test AUC results from these runs are presented in Table 4-11. Comparing the PCA-19 and PCA-17 

results shows that the exclusion of the DEM and MRRTF from the source layers for PCA resulted in 

a small improvement in predictive performance overall.  

Table 4-11 Summary test AUC values for models built using seven standardised PCA layers 

(PQRSTUV) derived from 19 and 17 source environmental layers 

 Cotton Maize Peanut Rice Sesame 5 main crops 

PCA 
version 

Mean 
AUC 

Min 
AUC 

Mean 
AUC 

Min 
AUC 

Mean 
AUC 

Min 
AUC 

Mean 
AUC 

Min 
AUC 

Mean 
AUC 

Min 
AUC 

Mean 

AUC 

Mean map 
correlations 

PCA-19 0.62 0.53 0.64 0.54 0.61 0.50 0.87 0.83 0.60 0.50 0.67 0.84 

PCA-17 0.62 0.51 0.66 0.57 0.60 0.51 0.89 0.83 0.65 0.59 0.68 0.85 
 

The PCA models had test AUC values of at least 0.5 for the five main crops in all model scenarios, 

indicating mitigation of the effects of spatial sampling bias. However, the use of PCA obscures the 

contributions of individual environmental layers to the final models and so provides little insight 

as to which environmental layers are more significant as predictors.   

Application of PCA to the soils layers only was also tested, and the results of these tests are 

reported in the next section.  
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4.3.5 Soil layers 

The development of four sets of hybrid soil layers is documented in Section 2.5.3, and the nine 

soil properties used for suitability modelling are listed in Section 4.2.3 and in Table 4-3. For clarity 

in the presentation of results, the sets of hybrid soil layers are named in this section as follows: 

Means = mean SoilGrids values for soil types 

Means + jitter = mean SoilGrids values for soil types with the addition of Gaussian noise 

Means + SG (50:50) = mean SoilGrids values for soil types plus SoilGrids values in ratio 

50:50 

Means + SG (75:25) = mean SoilGrids values for soil types plus SoilGrids values in ratio 

75:25 

The effectiveness of each set of hybrid soil layers was tested by generating suitability models with 

these layers as environmental predictors. Principal component analysis of the nine hybrid layers in 

each set was also performed, and models built using the first two principal components as 

environmental predictors. 

Hybrid soil layers 

Figure 4-9 illustrates the differences between the sets of hybrid soil layers by showing 

corresponding pixel-level map detail for layer G=SNDPPT (sand content mass fraction in %) from 

the SoilGrids (top 30cm) raster and the hybrid soil layers. 

 

Figure 4-9 Corresponding map detail from the SoilGrids (top 30cm) and hybrid soil layer rasters for 

the sand content soil layer G=SNDPPT (darker colours indicate higher values) 

Figure 4-10 illustrates the distribution of values in the SoilGrids (top 30cm) rasters and the four 

hybrid soil layers for the soil predictors A=BLDFIE (bulk density fine earth in kg per cubic metre) 

and B=OCDENS (soil organic carbon in kg per cubic metre). Violin plots show the shapes of the 

distributions for the background points and for the presence points at the four mine sites, using 

black bars to identify mean values.  

The continuous values from the SoilGrids raster are resolved into seventeen discrete values for 

the soil type means (see Means plots). All seventeen values occur in the background distribution; 

however, fewer values occur at each mine site and some values do not occur at any of the mine 

sites. The distributions of values where Gaussian noise was added to the means (Means + jitter) 

shows greater similarity across the four mine sites when compared to the original SoilGrids values 

or to the hybrid soil layers where the SoilGrids values were added to give variation about the 

mean values (Means + SG (50:50) and Means + SG (75:25)). 
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Figure 4-10 Violin plots of values with mean (black bar) from SoilGrids and the hybrid soil 

layers at background points (B) and at the four mine sites (P2=Fourkoura, P3=Nogbele, 

P4=Samavogo, P5=Stinger) for layers A=BLDFIE and B=OCDENS 

Models were trained using each of the sets of hybrid soil layers plus three terrain layers (1=Slope, 

2=Wetness, 3=Solar) and summary AUC results for these models are given in Table 4-12. All 

models used linear, quadratic and product feature classes (LQP) and the default beta multiplier of 

one.  

Note that the suitability maps for the Means + jitter models all exhibited random noise, 

consequent of the noisy predictor layers used in the models. Two passes of a simple smoothing 

filter of radius 3 were applied to these suitability maps to remove this random noise (refer Figure 

4-11) and AUC values were recalculated from the smoothed maps. 

 

Figure 4-11 Corresponding suitability map detail showing the results from smoothing Maize 

and Rice models built using the Means + jitter hybrid soil layers 
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Table 4-12 Summary test AUC values for models built from terrain and soil layers (123ABCDEFGHI) 

for four sets of hybrid soil layers constructed using different methods 

Soil layers = ABCDEFGHI Mean test AUC (5 model scenarios) 5 main crops 

Method Cotton Maize Peanut Rice Sesame 
Mean 
AUC 

Mean Map 
Correlations 

Soil type means 0.71 0.70 0.66 0.91 0.66 0.73 0.87 

Means + jitter 0.65 0.63 0.64 0.89 0.62 0.69 0.88 

Means + jitter: smoothed maps 0.68 0.65 0.67 0.91 0.64 0.71 0.89 

Means (50%) + SG (50%) 0.76 0.74 0.74 0.81 0.72 0.76 0.81 

Means (75%) + SG (25%) 0.74 0.72 0.70 0.86 0.71 0.75 0.81 

From the test AUC results reported in Table 4-12, the best performing models would appear to be 

those using soil layers created by adding the SoilGrids raster values to the means by soil type, i.e. 

using the Means + SG (50:50) and Means + SG (75:25) hybrid soil layers. These models achieved 

mean test AUC scores over 0.7 for dryland crops – higher test AUC scores for these crops than all 

other suitability models reported so far; however, the mean test AUC values for the Rice models 

were lower compared to models trained using the other hybrid soil layers. The models for the 

hybrid soil layers with Gaussian noise (Means + jitter) had the lowest test AUC scores overall, even 

after smoothing of the suitability maps.  However, their suitability maps achieved the highest 

mean map correlation score indicating greater similarity of predictions across the five model 

scenarios for each crop. 

Figure 4-12 shows the suitability maps for Maize (model scenario P1) from the sets of models 

listed in Table 4-12. Contrasting geographical patterns of suitability for maize across the region 

are apparent in the maps:  

• The predictions from the Means model are closely related to the soil types from the 

Gryphon Minerals soil map, with shapes of soil polygons detectable in the suitability map 

(compare Figure 2-9).  

• The Means + jitter model predicts large areas of suitability across the landscape, and 

comparison with the terrain layers (Figure 2-7) reveals that the areas rated unsuitable by 

this model correspond to locations with extreme values for elevation and wetness (very 

high or very low values). 

• The suitability maps from the Means + SG (50:50)  and Means + SG (75:25) models are 

quite similar to each other, predicting small pockets of suitability across a landscape that 

is mostly rated as unsuitable for maize. 

 

Figure 4-12 Suitability maps for Maize across the Burkina Faso project region from models 

built using terrain and soil layers (123ABCDEFGHI) for each set of hybrid soil layers 
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PCA of hybrid soil layers 

Principal component analysis was applied to the nine soil layers in three sets of hybrid soil layers 

to generate corresponding sets of PCA soil layers. Figure 4-13 uses violin plots to show the 

distributions of values for the first two principal components (PC1, PC2) in each set of PCA soil 

layers. 

    

Figure 4-13 Violin plots of PCA soil values with mean (black bar) at background points (B) and at 

the four mine sites (P2=Fourkoura, P3=Nogbele, P4=Samavogo, P5=Stinger) for layers P=PC1, 

Q=PC2 

Suitability models were trained using three terrain layers (123) and layers P=PC1 and Q=PC2 from 

the sets of PCA soil layers (all used feature classes LQP and beta multiplier = 1). Summary test AUC 

results for these models are presented in Table 4-13.  

Table 4-13 Summary test AUC values for models built from terrain and PCA soil layers (123PQ) for 
three sets of PCA soil layers constructed using different methods 

Soil layers = PQ Mean test AUC (5 model scenarios) 5 main crops 

Method Cotton Maize Peanut Rice Sesame 
Mean 
AUC 

Mean Map 
Correlations 

PCA of Means + jitter 0.62 0.60 0.54 0.89 0.59 0.65 0.86 

PCA of Means (50%) + SG (50%) 0.84 0.77 0.81 0.77 0.79 0.80 0.92 

PCA of Means (75%) + SG (25%)  0.85 0.80 0.84 0.87 0.82 0.84 0.94 

Comparing Table 4-12 and Table 4-13 it can be observed that the use of PCA on the hybrid soil 

layers reduced measured accuracy when used on the Means + jitter layers. However, it noticeably 

improved overall measured accuracy when used on the Means + SG (50:50) and Means + SG 

(75:25) layers, with the latter resulting in mean test AUC scores of over 0.8 for the four dryland 

crops. The very best overall model performance for the dryland crops from all 47 runs, in terms of 

the highest mean test AUC scores and the highest mean map correlation scores, occurred for the 

run that used PCA layers derived from the Means + SG (75:25) hybrid soil layers.  

Figure 4-14 shows the suitability maps for Maize (model scenario P1) from the sets of models 

using PCA layers listed in Table 4-13. When comparing the PCA suitability maps to the 

corresponding maps in Figure 4-12 it is observable that the predictions are very similar for the 

Means + jitter maps, but that using PCA layers for Means + SG (50:50) and Means + SG (75:25) 

models has resulted in greater areas of predicted suitability for maize across the region. 
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Figure 4-14 Suitability maps for Maize across the Burkina Faso project region from models 

built using terrain and two PCA soil layers (123PQ) for each set of hybrid soil layers 

Qualitative assessment using satellite imagery 

The suitability maps illustrated in Figure 4-12 and Figure 4-14 present differing geographical 

patterns of predicted suitability from models for the same crop across the region and pose the 

question: which models (if any) are feasible as predictors of agricultural land suitability for the 

crop?  

The use of some of the hybrid soil layers and their corresponding PCA layers has resulted in very 

high test AUC scores for many crops, possibly exceeding the theoretical maximum achievable AUC 

for these widely grown crops. Test AUC values are calculated solely from the predictions for 

presence points; however, in this project the presence points have not been sampled across the 

project region but are clustered in four small areas. Measures of accuracy based on these points 

cannot, on their own, provide evidence of good models. It is also necessary to be able to 

demonstrate that the models are realistic; i.e. that they do not contradict visual interpretations of 

land use observable in high-resolution Earth observation imagery such as that available in Google 

Maps, Bing Maps and ESRI’s base maps for ArcGIS. 

The Worldview2 satellite image of the project region supplied by Gryphon Minerals is used in this 

chapter to provide visual comparisons between observable land use patterns and modelling 

results. The image has 0.5 metre pixel resolution and was taken in April 2010 during the dry 

season and after harvest. Agroforestry is widely practiced in this region, so visible soil surrounding 

trees in post-harvest images typically indicates areas of cultivation. Note that white areas in any 

parts of the image indicate patches of cloud cover and that shadows from clouds may also visible. 

The next three figures compare suitability maps (from model scenario P1 Random 25%) produced 

by the models reported in Table 4-12 and Table 4-13 to observed land use in three different 4km 

by 4km areas of the project region. In each figure the suitability maps are displayed next to the 

satellite image of the area, with corresponding maps of the DEM (altitude), wetness index values 

and soil polygons from the Gryphon Minerals soil provided below to help illustrate factors 

affecting suitability for cropping.  

Figure 4-15 compares the suitability maps for Maize and Rice in a 4km by 4km area that includes 

the Stinger mine site. The presence points for the two crops are overlaid on the satellite image 

and on all relevant suitability maps. The reader is reminded that the models from scenario P1 

Random 25% do not use spatially independent training and test data but use 75% of the presence 

points from all sites (including Stinger) for training and the remaining 25% for testing and 

calculation of AUC scores. 
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Satellite image Suitability maps 

 

Figure 4-15 Comparison of suitability maps derived using hybrid soil layers for Maize and Rice to 

corresponding true colour Worldview2 satellite imagery (April 2010) and environmental maps for 

the Stinger mine site region 

The predictions from the Means and Means + jitter suitability maps in Figure 4-15 are consistent 

with the known occurrences for the two crops, predicting suitability or marginal suitability at 

almost all presence point locations. In contrast, the Means + SG (50:50) and Means + SG (75:25) 

models demonstrate poor predictive power for the Stinger site – almost all the maize presence 

locations are rated unsuitable for maize and most rice presence locations have low suitability 

ratings for rice. The application of PCA to these two sets of hybrid soil layers improved model 

performance within the Stinger site and their PC1,2 equivalent models have produced predictions 

that are far more consistent with the evidence of the presence points. A broad area of visible soil 

that is indicative of agroforestry cropping can be observed along the left edge of the satellite 

image. This area is predicted to be unsuitable for both maize and rice by the Means + SG (50:50) 

and Means + SG (75:25) models, and their PC1,2 equivalents have predicted this area to be 

unsuitable for maize. In contrast, most of this area is predicted to be suitable for either maize or 

rice by both the Means and Means + jitter models.  

Figure 4-16 and Figure 4-17 compare the suitability maps produced by the models reported in 

Table 4-12 and Table 4-13 for Maize and Rice with satellite imagery of two 4km by 4km sections of 

the project region that are distant from the mine sites. Enlargements of the areas marked by 

black rectangles on the satellite images are shown in Chapter 2 (Figure 2-12 and Figure 2-13) and 

inspection of these enlargements is helpful for interpretation of the image detail. 
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In Figure 4-16 dryland agriculture across most of the landscape is observable in the satellite 

image, with pockets of rice cultivation visible in areas corresponding to the areas of colluvial soil 

in the soil map. The curaisse plateaus and escarpments marked in the soil map are echoed in the 

DEM and wetness maps, and are observable in the satellite image as changes in soil colour and 

lines of uncleared bush.  

Satellite image Suitability maps 

 

Figure 4-16 Comparison of suitability maps derived using hybrid soil layers for Maize and Rice to 

corresponding true colour Worldview2 satellite imagery (April 2010) and environmental maps 

(refer Figure 2-13 on page 36 for enlarged image of marked area); white in the satellite image 

indicates cloud cover 

Inspection of the Maize suitability maps shows great variability in the predictions from the seven 

models. The Means + jitter (smoothed) suitability map appears consistent with the information in 

the satellite image and environmental maps. Areas of steep slope and lower wetness values are 

predicted as unsuitable for maize, with all other areas predicted as suitable. The corresponding 

PC1,2 suitability map is almost identical and both seem feasible.  

In contrast, the Maize suitability map produced using the Means hybrid soil layers seems highly 

infeasible, predicting unsuitability for maize over a large area where the satellite image shows 

dryland agriculture occurring. It should be noted that the soil type Rs-ME3 does not occur at any 

of the four mine sites so would not occur in training samples for this model. The maize suitability 

maps from the Means + SG (50:50) and Means + SG (75:25) models and their PC1,2 equivalents 

also show little correspondence to either the visual evidence in the image or observable features 

in the environmental maps, and so also seem infeasible. Areas suitable for rice growing are closely 

linked to soil type. The Rice suitability maps in Figure 4-16 show the areas of colluvial soil sharply 
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defined in the Means map as very suitable for rice. These areas are also rated very suitable in the 

Means + jitter map. Neither the Means + SG (50:50) model nor the Means + SG (75:25) model 

predicted high suitability for rice across the area of rice cultivation visible near the centre of the 

region. However, the PC1,2 equivalents for both models did make correct predictions for rice 

suitability for this area. 

Satellite image Suitability maps 

 

Figure 4-17 Comparison of suitability maps derived using hybrid soil layers for Maize and Rice to 

corresponding true colour Worldview2 satellite imagery (April 2010) and environmental maps 

(refer Figure 2-12 on page 35 for enlarged image of marked area) 

The region depicted in Figure 4-17 contains a large extent of rice cultivation that is visible in the 

satellite image and corresponds to the areas of alluvium in the soil map. The Rice suitability maps 

for the Means + jitter model and its PC1,2 equivalent rate this whole area as highly suitable for 

rice cultivation, and most other areas as unsuitable. This rice growing area is also clearly visible in 

the Means suitability map, but with slightly lower suitability scores. It is not so clearly 

distinguished in the Means + SG (50:50) and Means + SG (75:25) maps or their PC1,2 equivalents. 

With regard to Maize, the Means + SG (50:50) and Means + SG (75:25) models predict almost no 

areas of suitability in this region and the Means model predicts only a small area of suitability in 

the top left of the map. This seems at odds with the large areas of dryland agriculture visible in 

the satellite image. The Means + jitter map and its PC1,2 equivalent both identify areas of 

unsuitability for maize that correspond to escarpment or to wet alluvial soils and show large areas 

that are rated as suitable or marginally suitable for maize.  
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Although qualitative assessment using satellite imagery is illustrated for only three sites and two 

crops in this thesis, similar examples of predictions inconsistent with observed agriculture occur 

across the landscape for many of the models. Superficially, the region wide Means suitability map 

in Figure 4-12 appears unrealistic, in spite of the high mean test AUC scores from the Means suite 

of models. Recognition, early in the project, of the insufficiency of categorically valued soil layers 

as useful predictors had prompted the development of the other sets of hybrid soil layers. So, the 

high formal accuracy scores for the Means models provide a useful reminder of the potential for 

overfitting to training data and cautions against the use of AUC scores alone as a measure for 

goodness of fit. 

The Means + SG (50:50) and Means + SG (75:25) models achieved high formal accuracy scores in 

terms of mean test AUC, and their PC1,2 equivalents also achieved high mean map correlations 

scores for similarity of predictions across the model scenarios. However, comparison of the 

predictions of these models with presence point locations and with observed land was unable to 

provide qualitative evidence for their feasibility as crop suitability models. From the qualitative 

assessments illustrated above, only the Means + jitter maps and their PC1,2 equivalents show 

sufficient consistency with the Earth observation evidence to appear realistic. 

4.4 Choosing the best models 

This chapter has described the development of multiple crop suitability models to explore the 

factors that contribute to good models or may lead to the production of poor models. Good 

models should seem realistic, with suitability ratings that do not contradict Earth observation 

evidence. Formal evidence for their accuracy are high test AUC scores, and evidence for their 

robustness are highly correlated suitability maps across a suite of similar models that vary only in 

the sets of presence points used in their training.  

Model parameters 

The exploration of Maxent model parameters (refer Section 4.3.3) indicated that the default 

regularisation values were suitable for this data (beta multiplier = 1), and that the choice of linear, 

quadratic and product feature classes (LQP) produced the best overall results.  

Environmental predictors 

Sections 4.3.4 and 4.3.5 explored the effectiveness of environmental predictors. Models were 

built using combinations of terrain, soil and radiometric layers, and the use of PCA layers was 

tested. The presence data for this project were spatially clumped in four small areas so cross-

validation was used to detect the occurrence of spatial bias in models resulting from the use of 

certain predictors.   

Experiments using terrain layers only showed that models using layers 1=Slope, 2=Wetness and 

3=Solar as predictors produced more robust results than models with additional predictors 

0=DEM, M=MRVBF or N=MRRTF. They also showed that the use of layers 0=DEM and N=MRRTF, 

in particular, exacerbated spatial bias in resulting models. 

The use of radiometric layers was tested and produced good results in combination with terrain 

layers. However, the radiometric layers are highly correlated with the soil layers (refer Appendix 

E) and these data were used in refining the Gryphon Minerals soil map, and so became redundant 

when used in combination with soil layers. 



    

 Chapter 4  Agricultural land suitability modelling: West Africa 95 

Early tests using supplied and found soil data (the Gryphon Minerals soil map and SoilGrids layers, 

respectively) demonstrated the necessity of developing hybrid soil layers in order that soil 

predictors could be used by the models. Four sets of hybrid soil layers were constructed using 

different methods, but only the Means + jitter hybrid layers produced feasible suitability models. 

Comparison of the results for models that used the sets of hybrid soil layers (and their PCA 

equivalents) exposed the weakness of relying on formal performance scores alone as the 

measures of a good model. The models using hybrid soil layers that achieved the highest test AUC 

scores and had the most highly correlated suitability maps were demonstrated to be poor models 

by qualitative assessment using satellite imagery of the region. 

Best models 

The best set of models from the 47 runs used three terrain layers (123) and the nine jittered 

hybrid soil layers (ABCDEFGHI) as predictors, and used linear, quadratic and product (LQP) feature 

classes. The 25 models (for the five crops from the five model scenarios) are compared in the 

following section, and the best models from this set were chosen as the final output suitability 

maps for the Burkina Faso project region. 

4.4.1 Characteristics of the best set of models 

This set of models comprise suitability models for the five main crops created using five model 

scenarios that differed only in the composition of their training sets of presence points. Four of 

the model scenarios used spatially independent training and test data and so, in order to provide 

context for the following results, the numbers and percentages of crop presence points at each of 

the mine sites are presented in Table 4-14.  

Table 4-14 Number and percentage of presence points (centroids of agricultural plots) for each 

crop at the four mine sites 

Mine site Cotton % Maize % Peanut % Rice % Sesame % Total % 

Fourkoura 25 11.2 50 14.5 23 17.4 91 13.5 20 9.7 209 13.2 

Nogbele 157 70.1 194 56.1 61 46.2 329 48.8 91 44.0 832 52.6 

Samavogo 13 5.8 57 16.5 30 22.7 199 29.5 45 21.7 344 21.7 

Stinger 29 12.9 45 13.0 18 13.6 55 8.2 51 24.6 198 12.5 

Total 224 100 346 100 132 100 674 100 207 100 1,583 100 

More than half of all presence points occurred at Nogbele. In the case of Cotton, 70% of presence 

points were from Nogbele, so the model for Cotton in scenario P3 Nogbele, that used training 

data from the other sites, would have more than twice as many test points as training points. 

Test AUC scores 

The test AUC scores for the models are presented in Table 4-15. Stinger is wetter and has a 

different soil profile from the other three sites and the test AUC scores for P5 Stinger models are 

very low for the four dryland crops. This example shows how failing to include representative 

training samples for a site can reduce the predictive capability of resulting models for that site. 

This is not always the case as can be seen from the Rice model for scenario P2 Fourkoura and the 

Cotton model for P4 Samavogo that both achieved the highest test AUC score for their respective 

crop despite having no training samples from the test site.  
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Table 4-15 Test AUC scores for the five main crops in the five model scenarios from models built 

using terrain layers (123) and hybrid soil layers with added Gaussian noise (ABCDEFGHI)  

Model scenario Cotton Maize Peanut Rice Sesame Mean 

P1 Random 25% 0.71 0.72 0.72 0.89 0.70 0.75 

P2 Fourkoura 0.66 0.61 0.68 0.94 0.69 0.71 

P3 Nogbele 0.62 0.69 0.64 0.83 0.65 0.69 

P4 Samavogo 0.71 0.65 0.61 0.90 0.64 0.70 

P5 Stinger 0.57 0.47 0.57 0.87 0.40 0.58 

Mean test AUC 0.65 0.63 0.64 0.89 0.62 0.69 

Suitability map correlations 

The 25 suitability maps for the five crops in the five model scenarios are plotted in Figure 4-18 for 

visual comparison to observe similarities and differences.  

 
Figure 4-18 Suitability maps from models built using terrain layers (123) and hybrid soil layers with 

added Gaussian noise (ABCDEFGHI): degree of suitability indicated by greenness 
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The maps show a high level of consistency regarding the landscape patterns of suitability for each 

crop across the model scenarios, providing evidence of the robustness for crop models generated 

by this set of predictors. The qualitative assessments illustrated above in Figure 4-15, Figure 4-16 

and Figure 4-17 demonstrated how Maxent models trained using different inputs can produce 

contradictory suitability predictions for a particular crop in an area, e.g. with one model predicting 

high suitability for the crop and another rating the area completely unsuitable. Such contradictory 

results are not evident in Figure 4-18. The maps predict very similar areas of suitability and very 

similar areas of unsuitability for each crop in all model scenarios, with the main visible difference 

between the maps being the degree of predicted suitability. Figure 4-19 presents the correlation 

coefficients for pairwise comparisons of the suitability maps for each crop from the five model 

scenarios. 
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Figure 4-19 Correlations of suitability maps between the five model scenarios from models built 

using terrain layers (123) and hybrid soil layers with added Gaussian noise (ABCDEFGHI)  

The Rice suitability maps from all model scenarios are almost identical and record a mean 

correlation value from pairwise comparisons of maps of 0.97. The Maize maps are also quite 

similar and have a mean correlation value of 0.93. The Sesame suitability maps from scenarios P1-

P4 are very similar to each other but show less similarity to the map from scenario P5 Stinger.  

For both Cotton and Peanut, the lowest correlation coefficients occur for the comparisons with 

the P3 Nogbele suitability maps. The P3 Nogbele models for Cotton and Peanut both had less than 

80 training samples (67 and 71, respectively) so only linear and quadratic features were used for 

these models (refer Table 3-1). All other models also used product features for building response 

curves. 
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Major divergences in model predictions that would demonstrate substantial spatial bias (such as 

observed in some of the correlation matrix charts in Figure 4-7) are not apparent in Figure 4-19. 

The scatterplots reveal some differences in the degrees of predicted suitability for crops between 

models from different scenarios, but contradictory predictions are outliers. As the suitability maps 

compared in each of the scatterplots differ only in the samples used for training, these results 

demonstrate that these models exhibit only minor spatial bias derived from the training samples.  

Environmental contributions 

The environmental layer contributions for the models are presented in Figure 4-20. The 

histograms illustrate model reliance on particular layers and show how including or excluding a 

site from the set of training data may influence the makeup of the crop models. 

The environmental profiles of the Rice models are very similar across all model scenarios and have 

resulted in highly similar Rice suitability maps. This is also the case for the Maize and Sesame 

models, with similar environmental profiles across their respective sets of models and high mean 

correlation coefficients for pairwise comparisons of suitability maps across the model scenarios.  

 

Figure 4-20 Environment contributions (%) to suitability models built using terrain layers (123) and 

hybrid soil layers (ABCDEFGHI) with added Gaussian noise  

The environmental profiles of the Cotton and Peanut models from scenario P3 Nogbele are least 

similar to the environmental profiles of the parallel models for these crops. Product features were 

not used for modelling these two crops in scenario P3 Nogbele and training data for the models 

did not include samples from Nogbele.  In the case of Cotton this has resulted in layer C=Cation 

exchange capability emerging as the most significant contributor to this model and the P3 

suitability maps being least similar to the other Cotton suitability maps. In the case of Peanut, 

layer 2=Wetness index has disappeared as a predictor and the importance of F=Coarse fragments 

has been magnified, with the P3 suitability maps also being least similar to the other Peanut 

suitability maps. 

The five P5 Stinger models have no Stinger training samples and all have very low % contributions 

for layer F=Coarse fragments. All other models (that had training samples from Stinger) have 

higher contributions from this layer, and this is especially obvious in the case of Peanut. 
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4.5 Final suitability maps 

Of the five model scenarios, P1 Randon 25% is expected to have produced the best set of crop 

models for the project region as a whole as these models were trained using a broader 

geographical range of environmental training samples and so are least likely to exhibit training 

sampling bias. The models from this model scenario have been chosen as the final outputs for this 

project. 

The final suitability maps, illustrated in Figure 4-21, are the smoothed suitability maps from model 

scenario P1 Random 25% created using three terrain layers (1=Slope, 2=Wetness, 3=Solar) and 

nine jittered hybrid soil layers (ABCDEFGHI), using feature classes LQP and beta multiplier of 1. 

The crop models achieved test AUC scores likely to be near the theoretical maximum achievable 

scores for the target crops, and comparison of the suitability maps with the terrain and soil maps 

in Chapter 2 shows that they are realistic. 

 

Figure 4-21 Final crop suitability maps for the five main crops from models built using terrain 

layers (123) and hybrid soil layers (ABCDEFGHI) with added Gaussian noise  

From the maps it can be seen that some areas are rated as unsuitable for all crops, e.g. outcrops 

with skeletal soils or very steep terrain. Rice has the most restricted habitat with only the wetter 

soils near watercourses rated suitable for rice growing. For dryland crops, predicted suitability is 

higher on better drained soils.  

A major challenge with this project was the difficulty in validating results as it is not possible to 

visit the project area to assess the suitability maps in situ. Satellite imagery proved useful for 

qualitative assessment, but its usefulness in assessing accuracy is limited. Instead, the detailed 

planting data for the four mining sites are used to inspect how well the predictions agree with 

these known planting locations. 

Predictions compared with planting locations 

Figure 4-22 plots the presence points (using black crosses) for the five main crops over the 

corresponding suitability maps to allow detailed inspection of the accuracy of predictions for 

known occurrences. The results are very encouraging, showing that overwhelmingly the known 

planting locations for each crop occur on land rated by the models as suitable or very suitable for 

that crop. 

The planting locations for rice are densely clustered over land rated very suitable for rice, with 

very few outliers. For example, near the south-western edge of Stinger the models predict rice as 

the only crop suitable to grow there, and the planting locations reveal that only rice is actually 

grown there. 
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The planting locations for the dryland crops avoid the areas rated highly suitable for rice and 

other areas unsuitable for agriculture such as skeletal outcrops and escarpment.  Where the 

planting locations occur in areas rated marginally suitable for the crop it is not clear whether 

these demonstrate limitations of the models or are examples where farmers must make do with 

the land available. 

 

Figure 4-22 Predictions compared to planting locations (+) for the five main crops at the four mine 

sites - models built using terrain layers (123) and hybrid soil layers (ABCDEFGHI) with added 

Gaussian noise 
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4.6 Summary 

This chapter has demonstrated the application of species distribution modelling techniques to the 

task of land suitability assessments for agriculture. The primary data sources for the modelling 

were originally acquired for the purpose of mining exploration and these were supplemented with 

additional freely available spatial data from public data sources. 

The environmental niche modelling algorithm Maxent was used to develop crop suitability models 

for a region of Burkina Faso in West Africa where subsistence farmers would be relocated to make 

way for a new gold mine. The compensation maps prepared as part of the application for the 

mining licence provided known occurrences for locally grown crops and were used to generate 

presence points for training and testing Maxent. The configuration of the presence data, clustered 

in four small areas, presented the likelihood of spatial sampling bias affecting models, and the 

evaluation of modelling results was also complicated by the lack of test data outside of these four 

small areas. 

The methodology that was devised for the task took advantage of the geographical separation of 

the four presence data sites to develop cross-validation models. Modelling for particular sets of 

predictors and model parameters was replicated in five model scenarios using different partitions 

of the presence data for training and testing, four of which had test data that was spatially 

independent of the training data. The accuracy of the predictions (using test AUC) and similarity 

of resulting suitability maps (from correlations) then were compared to assess model accuracy, 

robustness and sensitivity to sampling bias.  

Multiple tests of environmental predictors and parameters were performed in order to identify 

those predictors and parameters contributing to the most accurate and robust models. Summary 

results were presented for twelve crops, however detailed results were presented only for the 

five main crops (with more than 100 presence points). Estimates for fractional predicted area and 

thus theoretical maximum AUC provided useful model accuracy benchmarks for the five crops. 

Testing of Maxent parameters showed that the combination of linear, quadratic and product 

feature classes together with the beta multiplier value of 1 were optimal overall for this task. The 

tests using different sets of environmental layers revealed that the use of certain layers degraded 

model results (DEM and index of ridge top flatness) and some layers became redundant when 

used in combination with other layers (index of valley bottom flatness and radiometric layers). 

Use of principal component layers was found to mitigate extreme sample selection bias, but did 

not improve overall results. 

Developing effective environmental layers to characterise soil properties was a major challenge in 

the project. The categorical map of soil type (from Gryphon Minerals) had proven unsuitable as a 

predictor for Maxent, as had the raster layers of soil properties derived from SoilGrids. Four sets 

of new raster soil layers were synthesised from the categorical and raster soil data: using the 

mean soil property value in each soil category for the first set (17 discrete values per layer); 

adding Gaussian noise to the means for the second set; and adding the soil property raster values 

to the means in different proportions for the third and fourth sets. Principal component layers 

were also created from the last three sets. The effectiveness of these seven sets of hybrid soil 

layers as model predictors was quantitively compared using AUC and correlation results, and later 

qualitatively assessed by comparing the suitability maps with high-resolution satellite imagery and 

with the locations of known occurrences. 

Using the first set of hybrid soil layers (soil means) produced suitability maps dominated by the 

shapes of the soil polygons that appeared unrealistic, but still achieved high test AUC scores.  The 
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layers with added Gaussian noise resulted in realistic looking models, but with lower measured 

accuracy. The final sets of hybrid soil layers (with added SoilGrids values) resulted in models with 

very high test AUC scores and their PCA versions had even higher scores, far exceeding the 

estimated theoretical maximum AUCs for all dryland crops. 

The suitability maps from models trained using the different sets of hybrid soil layers presented 

markedly different geographical patterns of predicted suitability for the same crop across the 

landscape, posing the question: which models (if any) are feasible as predictors of agricultural 

land suitability for their target crop? Comparing the suitability maps with the satellite imagery 

revealed numerous examples of predictions inconsistent with observed agriculture occurring 

across the landscape. The qualitative assessment demonstrated that, for most of these models, 

the high test AUC scores calculated from the clustered presence data were not indicative of 

model accuracy elsewhere.  

Only the models using the hybrid soil layers with added Gaussian noise had produced results that 

were consistent with the visual interpretations of land use in the satellite images. The test AUC 

scores for these crop models was also consistent with the estimated theoretical maximum AUC 

scores achievable for the crops. All the suitability maps from these models exhibited random 

noise as a consequence of the noisy soil predictor layers. Smoothing the maps improved their 

visual appearance and also increased the AUC and correlation scores. These models were used for 

the final project output.  

For this final set of models, the five models for each crop (from the five model scenarios) 

exhibited similar patterns of predicted suitability across the region, indicating that spatial 

sampling bias was minor. The environmental contributions to the models for each crop were also 

similar. The final crop suitability maps chosen as the outputs for this project were the smoothed 

maps produced in the first model scenario that used training data from all four occurrence sites. 

These maps will appear again in Chapter 6 where methods for presenting these predictions for 

dissemination to the intended target users are explored.  
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Chapter 5  Validation of method: South Australia 

5.1 Introduction 

The agricultural land suitability assessment described in Chapter 4 predicted suitable land for 

growing particular crops across a 1,100 square kilometre region in Burkina Faso using inputs 

derived from the detailed maps of agricultural land use at four small communities in the region. 

Rich data were available to test the accuracy of these predictions within the four communities. 

But data were not available to test the predictions outside of the communities and it would not 

be possible to travel to the region to assess their usefulness in situ.21 Any doubts as to the 

robustness of the method or questions as to the accuracy of predictions at other locations distant 

from the communities could not be resolved using the available data. As observed in Section 3.2, 

another site that allowed region-wide testing of results was needed to validate the methodology. 

In this chapter, the methodology from Chapter 4 is duplicated at two local test locations for which 

region-wide validation data exists. These locations have landscapes that are familiar to the 

researcher and that can be visited to verify results or collect more data. A parallel test region of 

dimensions 40km by 40km was initially defined near Adelaide in South Australia. Parts of this 

region had missing data for soils and radiometrics, so a second test region of the same size was 

created north of Adelaide in an area where these data were complete. To duplicate the conditions 

of the Burkina Faso task, the same environmental layers were created and presence data for 

locally grown crops was simulated in four small training areas at each site. Published maps 

showing land use potentials for these crops could be compared to the crop suitability maps 

generated by the models, allowing region-wide validation of results. 

5.2 Parallel test regions 

5.2.1 Selection 

To mimic the configuration of the modelling from Chapter 4, the parallel test regions are the same 

size as the Burkina Faso project region and each contains four small local areas for presence data 

to be generated. The Adelaide test region, in Greater Adelaide, was chosen as it contained 

agricultural land close to where the research was being undertaken.  The Marrabel test region, 

north-east of Adelaide, was created later in order to test the effectiveness of radiometric data in 

the modelling. As proxies for the Burkina Faso local communities, four agricultural towns were 

selected at random from each test region and a two-kilometre buffer was drawn around each 

town. Maps showing the location of the parallel test regions and satellite imagery of the two 

regions are given in Figure 5-1. The precise geographic locations of these test regions are provided 

in Appendix C. 

                                                           

21 The Burkina Faso project region borders Mali and falls within an Australian Department of Foreign Affairs 

and Trade defined “do not travel” zone. 
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Figure 5-1 ERSI base maps showing: Marrabel test region (top right); Adelaide test region (bottom 

right); locations of the test regions (top left) with Greater Adelaide Capital City Statistical Area 

(source ABS) outlined in blue; Australia and location of Adelaide (bottom left). 

The choice of crops to model for each test region was based on: (1) which crops were typically 

grown there; and (2) whether validation data existed showing agricultural land suitability for the 

crops across the region. Very detailed crop planting maps, such as the Burkina Faso community 

land use maps, were not available for the South Australian sites. However, detailed maps showing 

the agricultural land potential for growing a wide range of crops across the South Australian 

agricultural zone were available. These maps are presented in the AgInsight interactive mapping 
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portal22 and are discussed in more detail in Section 5.3. The land use potential maps provided the 

validation data needed for comparison with model generated crop suitability maps, and also 

provide a sound basis from which to generate pseudo presence data for the small training sites 

(described in Section 5.4.2) 

5.2.2 Marrabel test region 
The Marrabel test region is characterised by broad acre farming, with grain production and sheep 

grazing predominating (refer Source: I. Ahmer  

Figure 5-2). Six crops were selected for suitability modelling at the Marrabel site following a visit 

to the region to observe local agriculture: Barley, Canola, Chickpeas, Lucerne (dry land), Olives 

and Wheat. Buffers of radius two kilometres were defined around the towns of Marrabel, 

Ngapala, Saddleworth and Tarlee, and these four locations were used for the development of 

pseudo-presence data for the six crops. 

 

 
Source: I. Ahmer  

Figure 5-2 Landscape at Marrabel with wheat field in the foreground (August 2019) 

5.2.3 Adelaide test region 
The Greater Adelaide region (outlined in blue in the top left panel of Source: I. Ahmer  

Figure 5-2) has a rich agricultural sector and produces most of the vegetables and much of the 

fruit grown in South Australia. The Adelaide test site is situated in the Greater Adelaide region and 

also intersects two of the state’s top wine regions: McLaren Vale in the south and Adelaide Hills to 

the east.  

Six crops were selected for suitability modelling at the Adelaide site: Apples, Brassicas, Faba 

beans, Grape vines, Olives and Potatoes. Buffers of radius two kilometres were defined around 

the towns of McLaren Flat, Meadows, Oakbank and Uraidla, and these four locations were used 

for the development of pseudo-presence data for the six crops. 

                                                           
22 The AgInsight mapping portal is available at https://www.aginsight.sa.gov.au/. It provides comprehensive 

agricultural and economic data from South Australia and received awards in 2016 for public sector digital 

innovation and geospatial excellence. 

https://www.aginsight.sa.gov.au/
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5.3 Validation data 

Land use potential is defined as the potential of soil and land to sustain a specific crop. It 

describes the capability of land for a particular use and is very relevant in agricultural land 

suitability assessments (which often consider additional influences such as economics, climate, 

pest and disease incidence, regulations, social factors, etc) (Rowland, Maschmedt et al. 2016). 

The Land use potential maps used by the AgInsight mapping portal are based on regional scale soil 

and land mapping undertaken by the South Australian Government. The spatial datasets are 

available for download from Data.SA (https://data.sa.gov.au/) – the South Australian Government 

Data Directory. The Land use potential assessments for the crops and the mapping methodology 

employed to generate the maps are summarised in Rowland, Maschmedt et al. (2016). 

The Land use potential spatial datasets were developed for 45 crops and pasture types using an 

assessment scheme described in the Maschmedt (2002) document “Assessing Agricultural Land.” 

Five Land use potential classes were defined based on land and soil attributes only (and assuming 

management according to standard industry practices), as listed in Table 5-1, with a sixth class to 

denote land unsuitable for agriculture. 

Table 5-1 Land use potential class definitions, source: Rowland, Maschmedt et al. (2016) 

Class  Potential  Definition  

Class 1  High  Land with high productive potential and requiring no more than standard 
management practices to sustain productivity.  

Class 2  Moderately 
high  

Land with moderately high productive potential and / or requiring specific, 
but widely accepted and used, management practices to sustain productivity.  

Class 3  Moderate  Land with moderate productive potential and / or requiring specialized 
management practices to sustain productivity.  

Class 4  Moderately 
low  

Land with marginal productive potential and / or requiring very highly 
specialized management skills to sustain productivity.  

Class 5  Low  Land with low productive potential and /or permanent limitations which 
effectively preclude its use.  

Class X  Not applicable  Urban, evaporation pans, quarry, water, rock, saline soil, reservoir, cliff, reef 
etc.  

The Land use potential maps were derived by characterising, for each crop, the polygons of a 

reference soil landscape map in terms of these classes. Many map units contained a mix of classes 

and so could not be assigned to a single class. To accommodate the variable land use potential 

within map units, a set of ten mapping categories was devised, and map units were categorised 

according to the proportions of each class occurring in the map unit.  

Table 5-2 Land use potential mapping categories, source: Rowland, Maschmedt et al. (2016) 

Mapping 
category  

Proportion of land with moderate 
to high potential  

Most common potential class  

Aa  More than 60%  High potential (mostly Class 1)  

Ab  More than 60%  Moderately high potential (mostly Class 2)  

Ac  More than 60%  Moderate to high (mixed)  

Ad  More than 60%  Moderate potential (mostly Class 3)  

B  30-60%  Low to high potential (mixed)  

https://data.sa.gov.au/
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C  10-30%  Moderately low to low potential (mixed)  

D  1-10%  Moderately low to low potential (mixed)  

Ea  Less than 1%  Moderately low potential (mostly Class 4)  

Eb  Less than 1%  Low potential (mostly Class 5)  

X  –  –  

Table 5-2 lists the ten Land use potential mapping categories, and the rules used to derive them 

from the Land use potential classes are provided in Appendix G.  

Maps of the Land use potential for the crops selected for modelling at the Marrabel and Adelaide 

test regions are shown in Figure 5-3 and Figure 5-4, respectively. 

 

 

Figure 5-3 Maps showing the Land use potential for the six crops at the Marrabel test region 

(Source: Data SA) 

The Land use potential crop maps make an impressive contribution to our understanding of South 

Australia’s agricultural landscape. However, in using these maps it is important to be aware of 

their limitations. Rowland, Maschmedt et al. (2016) identify a number of key considerations with 

respect to the use of the Land use potential models and maps, including: 

• The models are preliminary and have not been subject to field validation. 

• The models are based on soil and landscape properties alone and no account has been 

taken of water quality or availability, climatic factors or existing land use. 
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• Soil landscape map units are not homogeneous entities – the mapping category is 

intended to reflect the most common characteristics of the landscape and unspecified 

variations occur. 

• The boundaries between mapping units should be treated as transition zones between 

legend categories as these boundaries are rarely as sharp in the landscape as the maps 

imply. 

• The maps are intended to provide a regional overview and should not be used to draw 

conclusions about conditions at particular locations. 

• No account was taken of varietal or cultivar differences of individual crops. 

 

 

Figure 5-4 Maps showing the Land use potential for the six crops at the Adelaide test region 

(Source: Data SA) 
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5.4 Methods and data 

The methodology described in Chapter 4 is duplicated for both South Australian locations, with 

five model scenarios defined for each region and equivalent environmental layers prepared. 

Presence data was not pre-existing for the SA sites so had to be explicitly generated.  

Figure 5-5 provides an overview of the processing performed for the SA test regions and shows 

the processing inputs and outputs. The Land use potential maps have been used as the source for 

both the presence data and the verification maps. The availability of the region-wide verification 

maps allows the accuracy of the crop suitability maps to be formally measured – this was not 

possible for the suitability maps described in Chapter 4 for the Burkina Faso test region.  

 

 

Figure 5-5 Data flow diagram showing inputs and outputs used to model the SA test regions 

5.4.1 Model scenarios 

The five model scenarios defined for the Marrabel and Adelaide test regions are listed in Table 5-3 

and Table 5-4, respectively. Comparison of the results for the five model scenarios is useful in 

identifying those environmental layers most likely to result in sampling bias. 

Table 5-3 Model scenario definitions for the Marrabel test site 

Model Model name Test data for model Training data for model 

P1 Random 25% 25% of presence points – 
randomly selected 

Remaining 75% of presence points 

P2 Marrabel Presence points at Marrabel Presence points at the other 3 sites 

P3 Ngapala Presence points at Ngapala Presence points at the other 3 sites 

P4 Saddleworth  Presence points at Saddleworth  Presence points at the other 3 sites 

P5 Tarlee Presence points at Tarlee Presence points at the other 3 sites 
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Table 5-4 Model scenario definitions for the Adelaide test site 

Model # Model name Test data for model Training data for model 

P1 Random 25% 25% of presence points – 
randomly selected 

Remaining 75% of presence points 

P2 McLaren Flat Presence points at McLaren Flat Presence points at the other 3 sites 

P3 Meadows Presence points at Meadows Presence points at the other 3 sites 

P4 Oakbank  Presence points at Oakbank  Presence points at the other 3 sites 

P5 Uraidla Presence points at Uraidla Presence points at the other 3 sites 

5.4.2 Presence data 

Data showing actual crop plantings are not easily available for the South Australian test sites, and 

the field work that would be required to collect such data is outside the scope of this research 

project. In the absence of actual presence data for the crops to be modelled, pseudo-presence 

data has been generated using the crop suitability ratings from Land use potential maps. The 

mapping categories Aa, Ab, Ac and Ad (refer Table 5-2) identify areas with moderate to high 

potential for a target crop and so offer more likely planting locations for that crop.  

The pseudo-presence points for each crop have been created in those areas where the Land use 

potential for the crop was rated at Aa, Ab, Ac or Ad. The centroids of the Land use potential 

polygons could not be used as presence points: the polygons are very much larger than the field 

sizes from the Burkina Faso modelling and also are irregular non-convex shapes so that the 

centroid frequently occurs outside the polygon. Instead, the pseudo-presence data were created 

by using the polygons rated with moderate to high potential to clip grids of points. The spacing of 

the pseudo-presence points varied with the Land use potential rating to mimic the greater 

likelihood of more suitable areas being cultivated with that crop, as shown in Table 5-5. For areas 

rated as having high potential for a crop (Aa), each pseudo-presence point corresponds to one 

hectare spacing, matching the average plot size in the Burkina Faso data. The process for 

generating the weighted sets of pseudo-presence points for the individual crops is illustrated in 

Figure 5-6. 

Table 5-5 Density of pseudo-presence points for each Land use potential mapping category 

Mapping 
category 

Land use potential Grid spacing Corresponding area for each 
pseudo-presence point 

Aa High potential 100 metres 1 hectare 

Ab Moderately high potential 200 metres 4 hectares 

Ac Moderate to high 300 metres 9 hectares 

Ad Moderate potential 400 metres 16 hectares 

Note that there is overlap in the suitability areas that have been used to generate pseudo-

presence data for the crops at the South Australian sites. This is different from the actual crop 

plantings data for Burkina Faso, where typically only one crop occurs per plot. This resulted in 

much larger numbers of pseudo-presence points at the South Australian sites (3,882 for Marrabel 

and 3,191 for Adelaide for six crops) than true presence points at the Burkina Faso site (1,912 for 

twelve crops). To adjust for this discrepancy, a random sample of 1,000 pseudo-presence points 

was used for each of the SA parallel test sites. 
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Figure 5-6 Derivation of weighted pseudo-presence data for brassicas and faba beans at the  

Adelaide test site 

The numbers of pseudo-presence points used for each crop are documented in Table 5-6 for the 

Marrabel test region and Table 5-7 for the Adelaide test region. These tables identify the number 

of training and test presence points used for each crop in each of the five model scenarios tested 

at each location.  

Table 5-6 Number of training and test presence points used for each crop in each model scenario 

for the Marrabel test region 

 Model scenario Type Barley Canola Chickpeas Lucerne Olives Wheat Total 

P1 Random 25% Training 207 82 45 156 131 132 753 

 Random 25%  Test 68 27 15 51 43 43 247 

P2 Marrabel Training 187 87 54 172 146 154 800 

 Marrabel Test 88 22 6 35 28 21 200 

P3 Ngapala Training 236 98 45 175 136 162 852 

 Ngapala Test 39 11 15 32 38 13 148 

P4 Saddleworth Training 208 75 39 133 108 103 666 

 Saddleworth Test 67 34 21 74 66 72 334 

P5 Tarlee Training 194 67 42 141 132 106 682 

 Tarlee Test 81 42 18 66 42 69 318 

  Total 275 109 60 207 174 175 1000 
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Table 5-7 Number of training and test presence points used for each crop in each model scenario 

for the Adelaide test region 

 
Model scenario Type Apples Brassicas 

Faba 
beans 

Grape 
vines Olives Potatoes Total 

P1 Random 25% Training 102 86 65 289 123 87 752 

 Random 25%  Test 34 28 21 96 40 29 248 

P2 McLaren Flat  Training 107 69 29 268 122 66 661 

 McLaren Flat  Test 29 45 57 117 41 50 339 

P3 Meadows  Training 119 104 79 331 140 93 866 

 Meadows  Test 17 10 7 54 23 23 134 

P4 Oakbank  Training 109 65 76 257 126 81 714 

 Oakbank  Test 27 49 10 128 37 35 286 

P5 Uraidla  Training 73 104 74 299 101 108 759 

 Uraidla  Test 63 10 12 86 62 8 241 

  Total 136 114 86 385 163 116 1000 

5.4.3 Environmental layers 

The environmental layers used in the modelling for the two South Australian test regions were 

generated using the methods described in Chapter 2 for the Burkina Faso environmental layers. 

Where possible, the same data sources have been used (SRTM tiles for the DEM, and 

SoilGrids250m layers). 

Terrain layers 

A digital elevation model (DEM) was created for the Adelaide region by mosaicking four SRTM 

tiles (S34E138, S34E139, S35E138 and S35E139).  DEMs for the two test sites were created by 

clipping the mosaic tile, reprojecting to the WGS 1984 UTM Zone 54H coordinate system and 

applying a simple smoothing filter of radius 3. 

From each DEM, five additional terrain layers were generated using identical methods to those 

described in Chapter 2: 

• Slope – generated from the DEM using RSAGA tool slope.asp.curv. 

• Wetness index – derived from the DEM by first filling sinks using the RSAGA tool fill.sinks 

using method=wang.liu.2006, and then running the RSAGA tool wetness.index. 

• Solar radiation – derived from the DEM using RSAGA tool pisr2 for latitude=-35. 

• Multi-resolution valley bottom flatness – created from the DEM using SAGA 

Morphometry tool MRVBF. 

• Multi-resolution ridge top flatness – created from the DEM using SAGA Morphometry 

tool MRVBF. 

Maps of the six terrain layers used for the Marrabel test region are provided in Figure 5-7. The 

distributions of terrain layer values at the four data presence sites are compared in Figure 5-8 

using violin plots to show the shapes of the distributions and black bars to identify mean values. 

The red line in each plot represents the mean value across the test region for that environmental 

predictor. 
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Figure 5-7 Maps of the terrain layers used for the Marrabel test region 

 

Figure 5-8 Distribution of terrain layer values at presence data sites (P2 Marrabel, P3 Ngapala, P4 

Saddleworth and P5 Tarlee) compared to the mean for the Marrabel test region (horizontal red 

line) 

It is observed that site P3 Ngapala, at the highest altitude, has steeper slopes and is drier than the 

other three sites. Site P2 Marrabel is the wettest and has more flat land, evidenced by the lowest 

mean value for slope and highest mean value for valley bottom flatness. Sites P4 Saddleworth and 

P5 Tarlee are at lower altitudes – both are wetter and have lower mean slope than the test region 

as a whole. 

Maps of the terrain layers for the Adelaide test region are given in Figure 5-9 and distributions of 

terrain layer values at the presence data sites are compared in Figure 5-10. 
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Figure 5-9 Maps of the terrain layers used for the Adelaide test region 

 

Figure 5-10 Distribution of terrain layer values at presence data sites (P2 McLaren Flat, P3 

Meadows, P4 Oakbank and P5 Uraidla) compared to the mean for Adelaide test region (horizontal 

red line) 

Site P2 McLaren Flat, near the coast, has very low elevation and is much flatter than the region as 

a whole, as evidenced by lower mean slope and substantially higher mean valley bottom flatness. 

In contrast, site P5 Uraidla, at the highest altitude, has the most rugged terrain (highest mean 

slope) and is driest (lowest mean wetness index value). The terrain values for sites P3 Meadows 

and P4 Oakbank show the most similarity to the test region averages, with the exception of 

wetness index which shows that P3 Meadows is drier and P4 Oakbank is wetter on average than 

the region overall. 
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Soil Layers 

The preparation of soil layers for the two South Australian test sites duplicates the processing 

described in Section 2.5. Sets of hybrid soil layers were produced for both test sites from the 

SoilGrids rasters using a local map of soil type to substitute for the Gryphon Minerals soil map. 

South Australian soil map  

The polygon map of soil type used in the SA modelling identifies fifteen broad soil groups across 

South Australia’s agricultural zone. The soil groups are based on significant profile features 

observed and recorded by soil scientists during the course of the State Land and Soil Mapping 

Program (1986-2001) and are described in the reference book The Soils of Southern South 

Australia by Hall, Maschmedt et al. (2009).23 The maps of soil type for the Marrabel and Adelaide 

test regions are shown in Figure 5-11. 

 

 
Figure 5-11 Soil maps for the Marrabel test region (left) and Adelaide test region (right) 

SoilGrids  

SoilGrids250m layers, resampled to 30m pixels and consolidated for the top 30cm of soil, were 

created for the two South Australian test sites using the process documented in Section 2.5.2. 

Maps of these consolidated layers are supplied in Appendix D, for reference. 

                                                           
23 These data are available for free download from https://data.sa.gov.au/data/dataset/soil-groups.  View 

fact sheet at 

https://data.environment.sa.gov.au/Content/Publications/SoilAttrib_FactSheet02_SoilGroups.pdf.  

https://data.sa.gov.au/data/dataset/soil-groups
https://data.environment.sa.gov.au/Content/Publications/SoilAttrib_FactSheet02_SoilGroups.pdf
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Hybrid soil layers 

New sets of hybrid soil layers were created for each test site using the soil polygon boundaries 

from the South Australian soil map and the SoilGrids values for the respective soil types using the 

process described in Section 2.5.3 and illustrated in Figure 2-14.  

Soil and Landscape Grid of Australia layers  

In contrast to the Burkina Faso site, detailed information on soil attributes is available for 

Australian locations. The Soil and Landscape Grid of Australia (SLGA) provides raster maps for a 

range of soil attributes that were created by combining Australia-wide digital soil data and 

regional maps. The raster soil attribute data are provided at six defined depth levels and 3 arc 

second spatial resolution (approximately 90m x 90m pixels) and are accompanied by estimates of 

reliability for each pixel. 24 

The existence of these high-quality data allowed a formal comparison to be performed between 

the use of these data and the use of the hybrid soil layers in the Maxent modelling. Nine soil 

attributes that corresponded to the SoilGrids attributes used for the hybrid soil layers were 

selected, as shown in Table 5-8. The data were processed for use in the modelling by: (1) 

consolidating the data for the top 30cm (weighted average of values for depth levels 0 – 5cm, 5 – 

15cm and 15 – 30cm); (2) clipping the consolidated rasters to the test regions; and (3) 

reprojecting each resulting raster to a UTM projected co-ordinate system with cell size of 30m x 

30m using bilinear interpolation. 

Table 5-8 Soil and Landscape Grid of Australia attributes used to create environmental layers  

Layer Attribute Code Description Units 

A - BLDFIE Bulk Density (whole 
earth) 

BDw Bulk Density of the whole soil (including 
coarse fragments) in mass per unit volume 

g/cm3 

B - OCDENS Organic Carbon SOC Mass fraction of carbon by weight in the 
less than 2mm soil material  

% 

C - CECSOL Effective Cation 
Exchange Capacity 

CEC Cations extracted using barium chloride 
plus exchangeable H + Al 

meq/100g 

D - PHIHOX pH (CaCl2) pHc pH of 1:5 soil/0.01M calcium chloride 
extract 

none 

E - CLYPPT Clay CLY Less than 2um mass fraction of the less than 
2mm soil material  

% 

F - CRFVOL Coarse Fragments CFG Mass fraction of the soil material greater 
than 2mm 

% 

G - SNDPPT Sand SND 20um – 2 mm mass fraction of the less than 
2mm soil material  

% 

H - SLTPPT Silt SLT 2-20 um mass fraction of the less than 2mm 
soil material  

% 

I - WWP Available Water 
Capacity 

AWC Available water capacity  % 

                                                           

24 Refer https://www.clw.csiro.au/aclep/soilandlandscapegrid/ for data download and product descriptions. 

https://www.clw.csiro.au/aclep/soilandlandscapegrid/
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Radiometric layers 

The radiometric map for South Australia used in this project was produced by the Department of 

Primary Industries and Resources, South Australia in 2011 to aid geological exploration.25 The data 

were formatted as a three-band raster using the GDA94 coordinate system and cell size of 

approximately 100m.  The raster band values were unsigned integers scaled to the range 0-255.  

 

Figure 5-12 Maps showing the digital values for radiometric layers at the Marrabel test region 

 

Figure 5-13 Distribution of radiometric layer values at presence data sites (P2 Marrabel, 

P3 Ngapala, P4 Saddleworth and P5 Tarlee) compared to the mean for Marrabel test 

region (horizontal red line) 

The raster bands were each reprojected to 30m cell size using bilinear interpolation and clipped 

for the two SA test regions. The resulting radiometric layers for the Marrabel test region are 

shown in Figure 5-12 and the distributions of the layer values are plotted in Figure 5-13. Note that 

radiometric environmental layers were not produced for the Adelaide test region as radiometric 

data were not available for the western part of the region. 

  

                                                           

25 The radiometric grid of Australia is available for free download from Geoscience Australia, refer 

https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/131974.  

https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/131974
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5.4.4 Verification Maps 

The verification maps for the crops in each test region are raster maps derived from the Land use 

potential shapefiles described in Section 5.3. Suitability ratings were assigned to each of the Land 

use potential polygons based on the mapping category code as per Table 5-9. The shapefiles were 

converted to rasters using the suitability rating for the raster value to produce sets of crop 

suitability rasters with values in the range 0 to 1.  Note that the suitability rasters so created, with 

equivalent symbology, are visually identical to the crop maps in Figure 5-3 and Figure 5-4. 

Table 5-9 Suitability ratings assigned to Land use potential codes 

 Suitable Unsuitable  

Land use potential code Aa Ab Ac Ad B C D Ea Eb X 

Suitability rating 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 NA 

The Land use potential codes Ad, Ac, Ab and Aa denote areas of moderate to high potential for a 

crop, and so indicate areas suitable for growing that crop. Classifying these four codes as suitable 

and all other codes as unsuitable for a crop allows the fractional predicted area (FPA) for the crop 

to be calculated from its verification map. 

Table 5-10 shows the fractional predicted areas for the six crops modelled at the Marrabel test 

region. Most areas of the test region are suitable for most crops – Chickpeas have the smallest 

FPA at 71% and all other crops have FPAs of over 80%. The fractional predicted area for a crop 

affects the achievable AUC score for models (refer Section 3.4.2 and Table 3-4). In the case of 

Lucerne, with FPA of 96%, a test AUC score of 0.52 could be expected for a very good classifier. 

The maximum theoretical AUC is less than 0.6 for all crops except Chickpeas (0.65). 

Table 5-10 Fractional predicted area and corresponding theoretical maximum achievable AUC for 

crops in the Marrabel test region 

 Barley Canola Chickpeas Lucerne Olives Wheat 

Fractional predicted area 0.87 0.82 0.71 0.96 0.88 0.82 

Theoretical maximum AUC 0.57 0.59 0.65 0.52 0.56 0.59 

 

Table 5-11 shows the fractional predicted areas for the six crops modelled at the Adelaide test 

region. There is much greater variation in FPA for the crops in this test region, ranging from 25% 

for Faba beans up to 72% for Olives and Grape vines. The smaller FPAs result in higher achievable 

AUC scores for good models for these crops in this test region. 

Table 5-11 Fractional predicted area and corresponding theoretical maximum achievable AUC for 

crops in the Adelaide test region 

 Apples Brassicas Faba beans Grape vines Olives Potatoes 

Fractional predicted area 0.49 0.48 0.25 0.72 0.72 0.28 

Theoretical maximum AUC 0.76 0.76 0.88 0.64 0.64 0.86 
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Binary suitability maps 

The Land use potential raster verification maps described above can be converted to binary 

verification maps by mapping the raster cell values to 0 (unsuitable) if they are less than 0.5 or to 

1 (suitable) otherwise (see Figure 5-14). 

 

Figure 5-14 Corresponding maps of Land use potential and binary suitability for Barley at the 

Marrabel test region; Land use potential codes Aa, Ab, Ac and Ad are classified as suitable 

Maxent suitability maps can be converted to binary classification maps with known FPA by using 

the fixed cumulative value of 1-FPA to threshold predictions. The known FPAs for the six crops in 

each region (Table 5-10 and Table 5-11) are used to specify the thresholds for the Maxent 

predictions so that each binary classification map has the same FPA as its corresponding binary 

verification map, see Figure 5-15. The two binary maps may then be formally compared to 

measure the amount of agreement between the binary classifications (accuracy) and the degree 

to which this agreement is due to chance (kappa statistic). 

 

Figure 5-15 Corresponding maps of continuous and binary predicted suitability for Barley at the 

Marrabel test region; the area classified suitable is equal to fractional predicted area for Barley 

Interrater comparison of binary suitability maps 

The binary verification maps derived from the Land use potential maps provide the region-wide 

validation data used in this chapter for the Maxent predictions. These six binary suitability maps 

for each region provide benchmarks against which the crop suitability predictions generated by 

Maxent can be formally compared. Each Maxent suitability map is first transformed to a binary 

classification map with the same FPA as its corresponding binary verification map. Interrater 
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comparison of the two binary maps will calculate the accuracy and kappa values measuring the 

agreement between the prediction and benchmark maps. 

It is not possible to interpret these numbers as measurements for the correctness of predictions. 

The Land use potential maps have not been subject to field validation and have some limitations 

in relation to spatial accuracy. Their soil landscape map units are not homogeneous and, as can be 

seen from Table 5-2, soil polygons rated as suitable for a crop may include up to 40% unsuitable 

land. In addition, the boundaries between the mapping units represent transitions between 

suitability categories and are rarely as sharp in the landscape as the maps imply (Rowland, 

Maschmedt et al. 2016). This is illustrated in Figure 5-16 which shows corresponding map detail 

for Land use potential and modelled suitability predictions for Wheat, overlaid with soil polygon 

boundaries and elevation contours.  

 

Figure 5-16 Comparison of validation map (left) and suitability predictions (right) – soil 

polygons outlined in purple, 10m contour lines shown in brown 

Never-the-less, the binary verification maps derived from Land use potential maps provide a 

consistent and soundly based standard against which to compare the predictions from alternative 

suitability models. In the results presented below the accuracy and kappa values from interrater 

comparisons with the binary verification maps are used as performance measures to compare and 

rate the effectiveness of the crop suitability models.  

5.4.5 Outputs 

The same outputs as those listed for the Chapter 4 processing were produced for all runs for the 

South Australian test regions. Additional outputs were generated to facilitate region-wide 

validation of suitability models. These were:  

• Binary suitability maps created by thresholding the continuously valued suitability maps 

using the threshold value that results in the same fractional predicted area as the 

corresponding binary verification map; 

• The accuracy and kappa values resulting from the interrater comparison of the binary 

suitability maps and their corresponding binary verification maps. 
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5.5 Results and discussion 

The results from the crop suitability modelling for the Marrabel and Adelaide test regions are 

presented below. Model robustness and sensitivity to sampling bias is assessed by comparing the 

accuracy of predictions on test data (AUC) and the similarity of suitability maps (correlations) 

across the five model scenarios, as was done in Chapter 4. However, model accuracy is now 

formally measured using the accuracy and kappa values resulting from the interrater comparison 

of binary suitability maps and their corresponding binary verification maps.  

The crop suitability models that correspond to the “final suitability maps” from Section 4.5 are 

examined first to assess the effectiveness of the set of predictors and parameters used for the 

West African models for modelling at dissimilar sites. Results for models built using other 

combinations of predictors and parameters are then compared to assess whether the conclusions 

drawn in Chapter 4 also apply to these results. 

5.5.1 Marrabel test region 

The Marrabel test region has a similar terrain profile to the Burkina Faso project region, being 

relatively flat (mean slope < 2.5 degrees) but with some areas of steep slope and low wetness 

values that would seem unsuitable for agriculture. The maps of Land use potential (Figure 5-3) 

show that most of the Marrabel test region is cultivatable and rated suitable for the crops that 

have been modelled.  

Corresponding “final suitability maps” 

Figure 5-17 presents the crop suitability maps for the Marrabel test region (model scenario P1 

Random 25%) that were generated using the same environmental layers and parameters as the 

final models presented in Chapter 4. The predictors for these models were three terrain layers 

(slope, wetness index and solar radiation) and the nine hybrid soil layers created by adding 

Gaussian noise to the SoilGrids mean values by soil type. Linear, quadratic and product feature 

classes and the default beta multiplier of one were used for the models. The (smoothed) 

continuous predictions generated by Maxent are shown in the top row for comparison with raster 

verification maps created using the suitability values from Table 5-9. Below these are the binary 

prediction and verification maps created by thresholding each crop suitability map based on the 

known fractional predicted area for the crop across the test region.  

The maps of continuous predictions show similar overall patterns of suitability and unsuitability to 

the verification maps, but vary in places in the degree of suitability predicted. Predictions of high 

suitability are observable in a number of areas rated as moderately suitable in the verification 

maps, and vice versa.  However, it should be noted that the continuously valued suitability maps 

are not directly comparable with the discrete-valued verification maps that have just nine possible 

suitability scores.  

The binary verification maps are directly comparable to binary suitability maps for the same crop 

thresholded to the same fractional predicted area. Very similar patterns of suitability are 

observable between the binary prediction maps and their corresponding binary verification maps.  
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Figure 5-17 Visual comparison of Maxent predictions with verification data for Marrabel test 

region: (a) continuous predictions and (b) binary predictions based on fractional predicted areas 

for crops; models built using terrain layers (123) and hybrid soil layers with added Gaussian noise 

(ABCDEFGHI) 

Formal measures of accuracy for the predictions are provided in Table 5-12, both for the original 

Maxent predictions and after smoothing of the suitability maps.  These measures are: the 

threshold-independent test AUC scores from the continuously valued suitability maps; and the 

accuracy and kappa values from the interrater comparison of the thresholded binary suitability 

maps with their corresponding binary verification maps.  

The test AUC scores for the original Maxent predictions exceed the theoretical maximum AUC 

scores for all crops, and the maps have good measured accuracy with good kappa values 

indicating non-random predictive performance. The mean measured accuracy of the six binary 

maps from the Maxent predictions is 0.86 with mean kappa value of 0.44. Smoothing the maps 

improved mean measured accuracy slightly to 0.87 with mean kappa of 0.47. Smoothing 

produced the greatest improvement in binary accuracy and kappa values for Chickpeas (from 

accuracy of 0.70, κ=0.29 to accuracy of 0.75, κ=0.36), but also slightly reduced the Chickpeas test 

AUC score.  

The thresholded smoothed Maxent suitability maps for all crops except Chickpeas had accuracy 

greater than 85% and kappa values above 0.4. For Lucerne, with very high FPA of 96%, the 

predictions were 96% accurate when compared to the verification map, but the kappa value of 

0.4 demonstrated that this was not random agreement. 

(a) 

(b) 
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Table 5-12 Accuracy of crop suitability models built using terrain layers (123) and hybrid soil layers 

with added Gaussian noise (ABCDEFGHI) – Marrabel test region, model scenario = P1 Random 25% 

 Barley Canola Chickpeas Lucerne Olives Wheat Mean 

Fractional predicted area (FPA) 87% 82% 71% 96% 88% 82% - 

Theoretical maximum AUC 0.57 0.59 0.65 0.52 0.56 0.59 0.58 

 Maxent suitability maps  

Test AUC 0.75 0.78 0.69 0.72 0.76 0.71 0.73 

Binary accuracy (same FPA) 0.90 0.85 0.70 0.96 0.88 0.85 0.86 

Kappa for binary accuracy 0.55 0.49 0.29 0.38 0.43 0.52 0.44 

 Smoothed Maxent suitability maps  

Test AUC 0.76 0.80 0.67 0.75 0.75 0.73 0.74 

Binary accuracy (same FPA) 0.91 0.86 0.75 0.96 0.89 0.86 0.87 

Kappa for binary accuracy 0.56 0.51 0.36 0.40 0.44 0.52 0.47 

 

Comparing model scenarios – sample selection bias 

The maps presented in Figure 5-17 show the predictions of the crop suitability models from 

scenario P1 Random 25%. These models were trained using presence data from all four locations 

and so are likely to be the best set of models from the five model scenarios. The four other 

models for each crop in this suite of similar models were developed using the same set of 

environmental predictors and Maxent parameters, but used spatially independent training and 

test data. The robustness of the final models is assessed by comparing results from all models in 

the suite. Note: the tables and figures below compare the results for the smoothed Maxent 

suitability maps for the six crops in the five model scenarios. 

Table 5-13 shows the test AUC scores for the 30 crop models in the suite. Most crop models 

achieved test AUC scores higher than the theoretical maximum AUC for the crop. The P1 Random 

25% test AUC scores were highest for most crops; however, the models for Chickpeas and Olives 

in scenario P4 Saddleworth both achieved the highest test AUC score for their respective crop, 

despite having no training samples from the test site.  

Table 5-13 Test AUC scores for crops in the five model scenarios from models built using terrain 

layers (123) and hybrid soil layers with added Gaussian noise (ABCDEFGHI) – Marrabel test region 

Model scenario Barley Canola Chickpeas Lucerne Olives Wheat Mean 

Theoretical max AUC 0.57 0.59 0.65 0.52 0.56 0.59 0.58 

P1 Random 25% 0.76 0.80 0.67 0.75 0.75 0.73 0.74 

P2 Marrabel 0.77 0.78 0.51 0.73 0.65 0.70 0.69 

P3 Ngapala 0.45 0.35 0.42 0.42 0.48 0.42 0.42 

P4 Saddleworth 0.71 0.74 0.74 0.69 0.78 0.71 0.73 

P5 Tarlee 0.73 0.74 0.64 0.69 0.76 0.71 0.71 

Mean test AUC 0.68 0.68 0.60 0.65 0.68 0.65 0.66 

All models from model scenario P3 Ngapala had very poor test AUC scores. These models were 

trained using presence data from the other three sites but tested using presence data from 

Ngapala alone. The test site at Ngapala is the driest and most rugged of the four sites. Failing to 

include representative training samples from Ngapala has reduced the predictive capability of 

these models on test data from this site. 
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Table 5-14 presents the accuracy and kappa values for interrater comparisons of the binary 

suitability maps with corresponding binary verification maps for the six crops in the five model 

scenarios. The mean accuracy across all crop models is 0.87 with mean kappa value of 0.46.  

Comparing the results for the individual crops it is observed that the Lucerne models have highest 

accuracy (0.96) and the models for Barley have the highest kappa values (mean 0.55) in all model 

scenarios. The models for Chickpeas have the lowest accuracy of all the crop models in every 

model scenario. 

Table 5-14 Accuracy of thresholded maps from the five model scenarios – models built using 

terrain layers (123) and hybrid soil layers with added Gaussian noise (ABCDEFGHI) – Marrabel test 

region 

Model scenario Barley Canola Chickpeas Lucerne Olives Wheat Mean 

FPA 87% 82% 71% 96% 88% 82% - 

P1 - Random 25% 0.91 0.86 0.75 0.96 0.89 0.86 0.87 

    Kappa 0.56 0.51 0.36 0.40 0.44 0.52 0.47 

P2 - Marrabel 0.90 0.85 0.73 0.96 0.90 0.85 0.87 

    Kappa 0.55 0.48 0.34 0.41 0.48 0.50 0.46 

P3 - Ngapala 0.89 0.86 0.72 0.96 0.88 0.85 0.86 

    Kappa 0.51 0.50 0.30 0.36 0.44 0.50 0.43 

P4 - Saddleworth 0.91 0.85 0.74 0.96 0.89 0.85 0.87 

    Kappa 0.57 0.45 0.33 0.39 0.43 0.48 0.44 

P5 - Tarlee 0.91 0.87 0.77 0.96 0.89 0.87 0.88 

    Kappa 0.56 0.54 0.40 0.37 0.44 0.55 0.48 

Mean accuracy 0.90 0.86 0.74 0.96 0.89 0.86 0.87 

Mean kappa 0.55 0.50 0.35 0.39 0.45 0.51 0.46 

Comparing models for the same crop across all model scenarios reveals similar calculated 

accuracy and kappa values, with no model scenario resulting in strikingly different results for any 

of the crops. Overall, the binary suitability maps from scenario P5 Tarlee showed greatest 

agreement with the verification maps, but the mean accuracy and kappa values for this model 

scenario were only very slightly higher than those from the other four model scenarios. 

Figure 5-18 presents the scatter plots and correlation coefficients for pairwise comparisons of 

suitability maps from the five model scenarios for each crop to illustrate the degrees of similarity 

between the crop models. The suitability maps show high levels of similarity: the mean 

correlation coefficient overall is 0.92, and all results had high significance level (p-value < 0.001). 

The crop suitability maps generated in the four model scenarios P1, P2, P3 and P4 show very high 

similarity, having correlation coefficients between 0.9 and 1 for all pairwise comparisons other 

than with the P2 Marrabel map for Olives (0.88). Despite very poor test AUC scores from the 

spatially independent test data in scenario P3 Ngapala, the suitability maps produced by these 

models are extremely similar to the P1 Random 25% maps, with correlation coefficients greater 

than 0.95 for all crops and perfect correlation for Wheat (1.00).  

The continuous-valued suitability maps from the P5 Tarlee models (that had no training points 

from Tarlee) show the least similarity to the maps from other models (although their binary 

thresholded versions have already been shown to have very similar accuracy). The Tarlee site 

differs in that it receives less solar radiation on average than the other three test sites and the 

region as a whole (refer Figure 5-8).  
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Figure 5-18 Correlations of suitability maps between the five model scenarios from models built 

using terrain layers (123) and hybrid soil layers with added Gaussian noise (ABCDEFGHI) – 

Marrabel test region (mean = 0.92) 

The environmental layer contributions for the models are presented in Figure 5-19. The 

histograms illustrate model reliance on particular layers and show how including or excluding a 

site from the set of training data may influence the makeup of the crop models. For example, 

layer 3=Solar radiation makes a much smaller contribution to the P5 Tarlee models than to the 

crop models in the other model scenarios. 

Layer 2=Wetness index is the most significant environmental predictor for most models. The 

patterns of predicted suitability in the maps of continuously-valued predictions in Figure 5-17(a) 

match closely the patterns in the Wetness index map in Figure 5-7, with areas of higher wetness 

corresponding to areas of higher predicted suitability. When resolved into maps of binary 

predictions, these patterns of suitability, for most crops, match closely the patterns of suitability 

in the binary verification maps and result in high accuracy and kappa values from the interrater 

comparisons. 

The exception is Chickpeas. Compared to the other five crops, the Chickpeas models had the 

lowest test AUC scores and the least agreement with the verification maps. Close inspection of 

the maps for Chickpeas in Figure 5-17 reveals contradictory predictions of suitability for Chickpeas 

down centre of test region in an area that has high values for wetness index and valley bottom 

flatness (compare Figure 5-7). The suitability maps predicted high suitability for Chickpeas in this 

area in all model scenarios (only the maps for P1 Random 25% are shown) whereas the 
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verification maps derived from Land use potentials classify this area as unsuitable. Chickpeas are 

sensitive to waterlogging and prefer well-drained, non-acidic soils with medium to heavy clay 

texture (Pulse Australia 2016). Field validation would be required to establish whether 

waterlogging is a risk in this area. 

 

Figure 5-19 Environment contributions (%) to suitability models built using terrain layers (123) and 

hybrid soil layers (ABCDEFGHI) with added Gaussian noise – Marrabel test region 

Comparing alternative models 

All the models discussed above were generated using the same environmental layers and 

parameters as the final models presented in Chapter 4. The results for these models have been 

examined in detail to assess how well they predict suitability for the crops across the test region 

as a whole. Other suites of suitability models using different sets of environmental predictors and 

Maxent parameters were generated for the Marrabel test region as part of this research to test 

conclusions reached in Chapter 4. Summary results from these models are presented below. 

Table 5-15 presents summary performance scores for suites of models built to test different 

combinations of environmental layers. In Chapter 4, altitude (layer 0=DEM) was shown to be a 

poor predictor for suitability for the Burkina Faso project region. This is also the case for the 

Marrabel test region. The suite of models built using all 18 environmental layers performed very 

poorly, having mean test AUC of 0.4 (worse than random prediction) and the lowest scores for 

map similarity and accuracy from all the tests reported in the table. Removing layer 0=DEM as a 

predictor substantially improved mean test AUC to 0.64 (better than the mean of the theoretical 

maximum AUCs for the crops) and improved all other summary performance scores. 

The models built using only the three terrain layers 1=Slope, 2=Wetness index and 3=Solar 

radiation had the same mean test AUC and were almost as accurate as the more complex models 

built using 17 layers (without 0=DEM). Including additional terrain predictors M=MRVBF and 

N=MRRTF increased test AUC slightly but did not improve accuracy. The further addition of 

radiometric layers as predictors degraded all performance scores. This result is consistent with the 

findings from Chapter 4 that the use of radiometric layers and the terrain layers 0=DEM, 

M=MRVBF and N=MRRTF did not lead to increased predictive capability. The models 
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corresponding to the final suitability maps from Chapter 4 (123ABCDEFGHI) produced the best 

results in Table 5-15, achieving the highest scores for all performance measures.  

Table 5-15 Summary performance scores for models built using different combinations of 

environmental layers; means calculated from model scores for all crops in all model scenarios 

* Mean of correlation coefficients from pairwise comparisons of suitability maps for the same crop in all model 

scenarios 
# Soil layers are the mean SoilGrids values for soil types with added Gaussian noise (Means + jitter hybrid soils) 

Hybrid soils layers 

Table 5-16 compares results for suites of models built using the sets of hybrid soil layers created 

using each of the methods described in Section 4.3.5.  

Table 5-16 Summary performance scores for models built from terrain and soil layers 

(123ABCDEFGHI) using sets of hybrid soil layers constructed using different methods; means 

calculated from model scores for all crops in all model scenarios 

Soil layers = ABCDEFGHI 

PCA soil layers = PQ 

Method 
Feature 
classes 

Mean 
test 
AUC 

Mean 
correlation 
coefficient* 

Mean 
accuracy 

Mean 
kappa 

Means + jitter LQP 0.64 0.88 0.85 0.43 

Means + jitter: smoothed maps LQP 0.66 0.92 0.87 0.46 

PCA of Means + jitter LQP 0.66 0.90 0.86 0.32 

Means (50%) + SG (50%) LQP 0.59 0.69 0.83 0.37 

PCA of Means (50%) + SG (50%) LQP 0.67 0.84 0.82 0.36 

Means (75%) + SG (25%) LQP 0.60 0.73 0.86 0.45 

PCA of Means (75%) + SG (25%) LQP 0.65 0.81 0.84 0.37 

* Mean of correlation coefficients from pairwise comparisons of suitability maps for the same crop in all model 

scenarios 

Similar to the results reported in Chapter 4, the smoothed suitability maps from the models using 

the hybrid soil layers with added Gaussian noise (Means + jitter: smoothed maps) achieved the 

highest mean map correlation score measuring similarity of predictions across the five model 

scenarios for each crop. These suitability maps also achieved the highest mean accuracy and 

kappa scores of all the models using hybrid soil layers. 

It is noted that the very high test AUC values observed for some suites of models using hybrid soil 

layers in Chapter 4 are not apparent in the Marrabel results reported above. The West African 

presence points are true occurrences, whereas the South Australian presence points are samples 

Test 
description Environmental layers 

Feature 
classes 

Mean 
test AUC 

Mean 
correlation 
coefficient* 

Mean 
accuracy 

Mean 
kappa 

All layers 0123ABCDEFGHIMNXYZ# LQPH 0.40 0.63 0.81 0.29 

Without DEM 123ABCDEFGHIMNXYZ# LQPH 0.64 0.82 0.86 0.43 

Terrain + soil 123ABCDEFGHI# LQP 0.66 0.92 0.87 0.46 

Terrain only 123 LQPH 0.64 0.91 0.84 0.39 

Terrain only 123MN LQP 0.66 0.90 0.84 0.39 

+ Radiometric 123MNXYZ LQP 0.61 0.81 0.82 0.31 
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from locations predicted likely to be suitable for their crops. This difference may have mitigated 

the potential for overfitting to training data in the South Australian models. 

Comparison with Soil and Landscape Grid of Australia soil layers 

The lack of suitable available soil data for modelling agricultural suitability in the Burkina Faso 

project region necessitated the development of the hybrid soil layers that combined SoilGrids 

raster layers with a local polygon soil map. As the purpose of this chapter was to validate the 

methods used for the West African site, similar hybrid soil layers were produced for the two South 

Australian test regions and the results for Maxent crop suitability models using the hybrid soil 

layers as environmental predictors have been reported above. 

High-quality soil attribute data are available for Australian sites from the Soil and Landscape Grid 

of Australia (SLGA). The predictive performance of crop suitability models built using soil layers 

derived from these data is compared to models build using hybrid soil layers for the ‘best’ models 

(scenario P1 Random 25%) in Table 5-17, and across all models scenarios in Table 5-18. 

Table 5-17 Comparative performance of models using hybrid soil layers and SLGA soil layers as 

predictors for the ‘best’ models (models from scenario P1 built from terrain and soil layers 

123ABCDEFGHI) 

 Barley Canola Chickpeas Lucerne Olives Wheat Mean 

Fractional predicted area (FPA) 87% 82% 71% 96% 88% 82% - 

Theoretical maximum AUC 0.57 0.59 0.65 0.52 0.56 0.59 0.58 

 Hybrid soil layers with added Gaussian noise  

Test AUC 0.76 0.80 0.67 0.75 0.75 0.73 0.74 

Binary accuracy 0.91 0.86 0.75 0.96 0.89 0.86 0.87 

Kappa for binary accuracy 0.56 0.51 0.36 0.40 0.44 0.52 0.47 

 Soil and Landscape Grid of Australia soil layers  

Test AUC 0.81 0.83 0.81 0.82 0.86 0.80 0.82 

Binary accuracy 0.89 0.88 0.70 0.94 0.89 0.87 0.86 

Kappa for binary accuracy 0.55 0.59 0.29 0.21 0.49 0.57 0.45 

The measured accuracy against the validation data was similar for both sets of models for most 

crops, although higher accuracy scores for Chickpeas and higher kappa score for Lucerne are 

observed for the models using the hybrid soil layers.  

More similarity of predictions across the five model scenarios was observed for the suitability 

maps from the models using the hybrid soil layers than for the models using SLGA soil layers 

(mean correlation coefficients of 0.92 and 0.81, respectively). It is observed that the models using 

SLGA soil layers had much higher test AUC values for all crops in the ‘best’ models, but lower 

mean test AUC values across the five model scenarios. This indicates greater spatial bias occurring 

in the models using SLGA soil layers and that the models using hybrid soil layers are more robust 

against sample selection bias. 
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Table 5-18 Summary performance scores for models using hybrid soil layers and SLGA soil layers as 

predictors - models built from terrain and soil layers 123ABCDEFGHI, means calculated from model 

scores in all model scenarios 

 Barley Canola Chickpeas Lucerne Olives Wheat Mean 

Fractional predicted area (FPA) 87% 82% 71% 96% 88% 82% - 

Theoretical maximum AUC 0.57 0.59 0.65 0.52 0.56 0.59 0.58 

 Hybrid soil layers with added Gaussian noise  

Mean test AUC 0.68 0.68 0.60 0.65 0.68 0.65 0.66 

Mean map correlations (r) 0.93 0.92 0.88 0.91 0.93 0.92 0.92 

Mean binary accuracy 0.90 0.86 0.74 0.96 0.89 0.86 0.87 

Mean kappa 0.55 0.50 0.35 0.39 0.45 0.51 0.46 

 Soil and Landscape Grid of Australia soil layers  

Mean test AUC 0.61 0.67 0.58 0.58 0.68 0.63 0.63 

Mean map correlations (r) 0.79 0.81 0.74 0.80 0.83 0.85 0.81 

Mean binary accuracy 0.89 0.87 0.70 0.94 0.89 0.87 0.86 

Mean kappa 0.54 0.58 0.27 0.20 0.49 0.57 0.44 

Conclusions 

The results presented above demonstrate that the methods of predicting agricultural land 

suitability for crops presented in Chapter 4 can be used effectively at dissimilar locations. The final 

maps of Maxent predictions for the six crops in the Marrabel test region (produced identically to 

the final maps from Chapter 4) were realistic and had high measured accuracy when compared to 

region-wide validation maps. The cross-validation results also showed the models to be robust 

against sample selection bias from the training data.  

The hybrid soil layers with added Gaussian noise (synthesised from a detailed categorical map and 

coarse resolution raster layers) were effective environmental predictors for the Marrabel crop 

models. Their use resulted in model predictions that were stable across cross-validation scenarios 

with accuracy that was similar to that of models that used soil layers from high-quality soil 

property rasters (SLGA data). The other methods for creating hybrid soil layers that were tested 

all produced unreliable results that were both less accurate and more unstable. 

Similarly to the models in Chapter 4, the environmental predictors contributing to the best 

Marrabel crop models were slope, wetness index, solar radiation and the nine hybrid soil property 

layers with added Gaussian noise; and use of further terrain and radiometric layers was shown 

not to improve predictive capability.  
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5.5.2 Adelaide test region 

The terrain maps for the Adelaide test region show that it contains many areas with steep slope 

and low wetness values that would seem unsuitable for agriculture (refer Figure 5-9). The maps of 

Land use potential for the six crops modelled (Figure 5-4) show much variation in areas of 

predicted suitability for the different crops. Grape vines and Olives have the largest ecological 

niches with almost three quarters of the region rated suitable for each crop; for Apples and 

Brassicas about half the region is predicted suitable; and for Faba beans and Potatoes only about 

a quarter of the region is predicted suitable. 

Corresponding “final suitability maps” 

Figure 5-20 presents the crop suitability maps for the Adelaide test region (model scenario P1 

Random 25%) that were generated using the same environmental layers and parameters as the 

final models presented in Chapter 4, and compares these to the verification maps of land use 

potential.  

     

Figure 5-20 Visual comparison of Maxent predictions with verification data for Adelaide test 

region: (a) continuous predictions; and (b) binary predictions based on fractional predicted areas 

for crops. Models built using terrain layers (123) and hybrid soil layers (ABCDEFGHI) with added 

Gaussian noise. 

The thresholded maps of predictions for each crop show similar patterns of predicted suitability 

to those in the corresponding binary verification maps, although the degrees of predicted 

suitability in the continuously valued maps vary in places. Formal measures of accuracy for the 

binary predictions are provided in Table 5-19.  

(b) 

(a) 
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The highest accuracy scores occurred for the two crops with the smallest ecological niches – Faba 

beans and Potatoes. The theoretical maximum AUC scores for these crops were the highest (0.88 

and 0.86, respectively) and the models for both crops achieved test AUC scores very close to 

these values (0.88 and 0.84, respectively). Both crop models had binary accuracy scores greater 

than 80% with corresponding kappa scores greater than 0.5. In contrast, the model for Olives had 

the lowest test AUC score (0.57), and the model for Apples had the lowest binary accuracy score 

(68%, κ=0.36). 

Table 5-19 Accuracy of crop suitability models built using terrain layers (123) and hybrid soil layers 

(ABCDEFGHI) with added Gaussian noise – Adelaide test region, model scenario P1 

 Apples Brassicas 
Faba 

beans 
Grape 
vines 

Olives Potatoes Mean 

Fractional predicted area (FPA) 49% 48% 25% 72% 72% 28% - 

Theoretical maximum AUC 0.76 0.76 0.88 0.64 0.64 0.86 0.76 

 Smoothed Maxent suitability maps  

Test AUC 0.59 0.70 0.88 0.61 0.57 0.84 0.70 

Binary accuracy (FPA) 0.68 0.74 0.84 0.79 0.76 0.81 0.77 

Kappa for binary accuracy 0.36 0.49 0.56 0.46 0.32 0.54 0.45 

Comparing model scenarios – sample selection bias 

The different model scenarios were designed to test sensitivity to sample selection bias. The AUC 

results for both the Burkina Faso project region (Table 4-15) and the Marrabel test region (Table 

5-13) produced test AUC values less than 0.5 (worse than random) in only one model scenario 

(respectively, P5 Stinger and P3 Ngapala). For the Adelaide test region, test AUC values less than 

0.5 occurred for some crops in all model scenarios having spatially independent training and test 

data (scenarios P2, P3, P4 and P5). Only scenario P1 Random 25% had test AUC scores indicating 

better than random performance for all crops. And only the crops Faba beans and Potatoes had 

test AUC scores indicating better than random performance in all model scenarios. 

Table 5-20 Test AUC scores for crops in the five model scenarios from models built using terrain 

layers (123) and hybrid soil layers (ABCDEFGHI) with added Gaussian noise – Adelaide test region 

Model scenario 
Apples Brassicas 

Faba 

beans 

Grape 

vines 
Olives Potatoes Mean 

Fractional predicted area (FPA) 49% 48% 25% 72% 72% 28% - 

Theoretical max AUC 0.76 0.76 0.88 0.64 0.64 0.86 0.76 

P1 Random 25% 0.59 0.70 0.88 0.61 0.57 0.84 0.70 

P2 McLaren Flat 0.10 0.38 0.62 0.13 0.13 0.64 0.33 

P3 Meadows 0.62 0.53 0.80 0.47 0.56 0.80 0.63 

P4 Oakbank 0.28 0.56 0.78 0.35 0.38 0.77 0.52 

P5 Uraidla 0.30 0.41 0.57 0.33 0.35 0.60 0.43 

Mean 0.38 0.52 0.73 0.38 0.40 0.73 0.52 

Figure 5-21 presents the scatterplots and correlation coefficients for pairwise comparisons of the 

suitability maps for each crop from the five model scenarios. Major divergences in model 

predictions are apparent in many of the scatter plots, indicating substantial spatial bias in the 

predictions for all crops in some model scenarios.  
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Extreme sample selection bias is observable in all crop models from scenario P2 McLaren Flat.  

The mean test AUC from all crops models in this model scenario is just 0.33, and all correlation 

coefficient values that are negative or close to zero (other than for Apples) occur for pairwise 

comparisons with the maps from this model scenario. The McLaren Flat test site is distinctive in 

being much flatter and having a different soil profile to the other three test sites. Not including 

training samples from this site has resulted in very different patterns of predicted suitability 

across the region as a whole. 
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Figure 5-21 Correlations of suitability maps between the five model scenarios from models built 

using terrain layers (123) and hybrid soil layers (ABCDEFGHI) with added Gaussian noise – 

Adelaide test region; correlations with maps from scenario P2 McLaren Flat are shaded green 

The thresholded crop suitability maps from scenario P2 McLaren Flat, that had no training 

samples from McLaren Flat, are compared in Figure 5-22 to those from scenario P1 Random 25% 

that used training samples from all test sites. Contradictory predictions of suitability are 

observable for large sections of the western side of the test region – these areas are rated 

suitable for all crops in the P1 suitability maps, but rated unsuitable for all crops in the P2 

suitability maps. When training data from McLaren Flat is used (scenarios P1, P3, P4 and P5), all 

models produce very similar suitability predictions for Faba beans and Potatoes (correlation 

coefficients > 0.9) and for Brassicas (correlation coefficients > 0.8).  
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Figure 5-22 Thresholded crop suitability maps from P1 Random 25% models with training samples 

from all test sites and P2 McLaren Flat models with no training samples from McLaren Flat 

In the case of Apples, the correlation results reveal highly inconsistent suitability predictions 

between the model scenarios. As they grow, apple trees develop wide spreading root systems 

that have a few deep vertical anchoring roots and a network of fibrous roots in the top 1 m of soil 

system (Westwood 1988). The soil layers used as predictors for the Maxent models characterise 

soil qualities in the top 30cm only. The results for Apples, Olive and Grape vines suggest these 

layers are inadequate for modelling agricultural plants with deeper root systems. 

Comparison with Soil and Landscape Grid of Australia soil layers 

The predictive performance of crop suitability models built using soil layers derived from the Soil 

and Landscape Grid of Australia (SLGA) data is compared to models build using hybrid soil layers 

for the ‘best’ models (scenario P1 Random 25%) in Table 5-21, and across all models scenarios in 

Table 5-22. 

Table 5-21 Comparative performance of models using hybrid soil layers and SLGA soil layers as 

predictors for the ‘best’ models (models from scenario P1 built from terrain and soil layers 

123ABCDEFGHI) 

 Apples Brassicas 
Faba 

beans 
Grape 
vines 

Olives Potatoes Mean 

Fractional predicted area (FPA) 49% 48% 25% 72% 72% 28% - 

Theoretical maximum AUC 0.76 0.76 0.88 0.64 0.64 0.86 0.76 

 Hybrid soil layers with added Gaussian noise  

Test AUC 0.59 0.70 0.88 0.61 0.57 0.84 0.70 

Binary accuracy 0.68 0.74 0.84 0.79 0.76 0.81 0.77 

Kappa for binary accuracy 0.36 0.49 0.56 0.46 0.32 0.54 0.45 

 Soil and Landscape Grid of Australia soil layers  

Test AUC 0.82 0.84 0.91 0.79 0.76 0.91 0.84 

Binary accuracy 0.67 0.75 0.82 0.72 0.68 0.86 0.75 

Kappa for binary accuracy 0.34 0.49 0.52 0.30 0.21 0.65 0.42 
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Table 5-22 Summary performance scores for models using hybrid soil layers and SLGA soil layers as 

predictors; models built from terrain and soil layers (123ABCDEFGHI); means calculated from 

model scores in all model scenarios 

 Apples Brassicas 
Faba 

beans 
Grape 
vines 

Olives Potatoes Mean 

Fractional predicted area (FPA) 49% 48% 25% 72% 72% 28% - 

Theoretical maximum AUC 0.76 0.76 0.88 0.64 0.64 0.86 0.76 

 Hybrid soil layers with added Gaussian noise  

Mean test AUC 0.38 0.52 0.73 0.38 0.40 0.73 0.52 

Mean correlation coefficient 0.38 0.71 0.80 0.45 0.46 0.84 0.61 

Mean binary accuracy 0.63 0.72 0.82 0.76 0.73 0.80 0.74 

Mean kappa  0.25 0.43 0.51 0.35 0.26 0.50 0.38 

 Soil and Landscape Grid of Australia soil layers  

Mean test AUC 0.41 0.48 0.64 0.40 0.42 0.67 0.50 

Mean map correlations 0.59 0.66 0.66 0.58 0.59 0.74 0.63 

Mean binary accuracy 0.62 0.70 0.80 0.70 0.68 0.83 0.72 

Mean kappa 0.25 0.41 0.45 0.24 0.20 0.58 0.36 

As with the Marrabel results, both sets of models had similar measured accuracy. The models 

using SLGA soil layers also had much higher test AUC scores for all crops in the ‘best’ models, but 

lower mean test AUC scores across the five model scenarios. 

For both sets of models, the least similarity of suitability maps between model scenarios 

(measured by mean correlation coefficient) occurred for the crops with deeper root systems 

(Apples, Grape vines and Olives) and the greatest map similarity and highest measured accuracy 

occurred for the crops with the most restricted ecological niches (Faba beans and Potatoes). 

Conclusions 

The results for the Adelaide test region demonstrate limitations that are relevant to the 

application of the methods used in this thesis. The research design for the South Australian 

modelling mimicked the configuration of clustered West African occurrence data and used cross-

validation to detect and assess the influence of sample selection bias on generated models.  

The Adelaide test region contains a great deal of productive farmland on its coastal plains and 

hilly inland, and its diverse topography also includes many areas too rugged for agriculture. 

Unrepresentative training data makes spatial bias in models highly likely, and this is clearly 

observable in the suitability maps produced in model scenario P2 McLaren Flat. Having only 

training examples from hilly areas, these models were unable to detect suitability for growing 

crops on flatter land. This deficiency was overcome, in this case, by inclusion of representative 

training points from McLaren Flat in the other model scenarios. However, if a strong spatial bias 

applies to the full set of occurrence data available for training models then the problem cannot be 

corrected in this way. The risk of spatially biased training data is high in situations where presence 

data are incidental occurrence data collected for another purpose and may necessitate the 

collection of further training samples from other locations to address the problem. 

The selection of the environmental variables to use in modelling should be based on biological 

reasoning and, where possible, include specific variables known or suspected to affect a species 

distribution. The predictor layers used for the West African modelling were selected to model 
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suitability for field crops that grow in top 30cm soil. These predictors were effective for similar 

crops in the Adelaide test region, but proved inadequate as predictors for modelling tree crops 

that have deeper root systems.  

5.6 Summary 

The purpose of Chapter 5 has been twofold. Firstly, to validate the methodology used in Chapter 4 

by applying it to sites for which region-wide validation data are available. And, secondly, to 

demonstrate the transferability of the method to other sites with different terrain, climate and 

styles of agriculture. The methods used in Chapter 4 were duplicated for two local sites in South 

Australia for which region wide validation data are available and that can be visited to assess 

results and evaluate prototype presentation methods. 

The validation data for the South Australian sites was in the form of categorical maps of land use 

potential for a number of commonly grown crops. Occurrence data were not available for these 

sites but could be artificially generated from the validation maps. Pseudo-presence points were 

created for six locally grown crops at each site and were clustered into four small areas to mirror 

the configuration of the Burkina Faso occurrence data. Equivalent raster environmental layers 

were generated using the methods described Chapter 2. The Maxent software was then used to 

train crop suitability models from the pseudo-presence points and environmental predictors in 

five cross-validation model scenarios, as was done in Chapter 4. 

Evaluation of the crop models used test AUC and correlation coefficients, as in Chapter 4, 

together with region-wide accuracy scores obtained from comparison with the validation data. 

The validation maps of categorically valued land use potential polygons were not directly 

comparable to the continuously valued suitability rasters. To facilitate formal interrater 

comparison, the maps were converted to binary rasters with values indicating suitability or 

unsuitability for their target crop. The fractional predicted area (FPA) and theoretical maximum 

AUC were calculated for each crop from its binary verification map and each suitability raster was 

thresholded to produce a binary suitability map with the same FPA. Interrater comparison of the 

pairs of maps produced scores for accuracy and kappa coefficient. 

In the case of the Marrabel test region, the methods and environmental predictors used to 

produce the final suitability maps in Chapter 4 resulted in robust crop suitability predictions that 

closely matched the region wide validation data - evidenced by highly correlated suitability maps 

between model scenarios and high measured accuracy from the interrater comparisons of binary 

suitability and verification maps. 

In the Adelaide test region, the same environmental predictors were shown to be effective 

predictors for the field crops with root systems in the top 30 cm of soil, but not for modelling 

suitability for other crops with deeper root systems. Alternative sets of hybrid soil layers using 

different formulations of the source soil property rasters may have provided effective predictors 

for these crops (e.g. based on depth to bedrock, consolidated to greater depths, or 

unconsolidated at all depths) but were these not investigated during this project. 

A core theme in this thesis has been the use of cross-validation model scenarios that have 

spatially independent training and test data as a technique for detecting and assessing the 

influence of sample selection bias in resulting models. The Adelaide test region provided a 

powerful example of how biased training data can spatially distort model predictions, and this 

issue can never be ignored when data-driven modelling algorithms are used. In this chapter the 

feasibility of the South Australian crop predictions was readily assessable by comparison with 
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region-wide validation data (that also rendered the modelling task redundant for these sites). 

When a common bias affects all occurrence data the techniques of comparing test AUC scores 

and correlating suitability maps from cross-validation model scenarios are unlikely to detect it; 

further qualitative assessments (such as those used in Chapter 4) are required to establish the 

feasibility and goodness of models. 
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Chapter 6  Disseminating results 

6.1 Introduction 

This chapter investigates ways of presenting the crop suitability maps developed in Chapter 4 so 

that they can be effectively delivered into affected communities to inform farmers and land 

managers making decisions about land use. For the maps to be useful to their target audience 

they need to be designed to be usable by this target population and, in this case, illiteracy and 

poor access to internet resources bring special challenges to the task of producing informative 

maps.  

In designing a map for a particular use it is necessary to consider the context for the map which 

Griffin, White et al. (2017) define to include four components. These are: (1) the map user; (2) the 

environment where the map is being used; (3) the activity performed using the map; and (4) the 

graphical object that is the map. Distinct map contexts will emerge from individual map use 

situations. Here, the primary intended map users are subsistence farmers who will be displaced 

by a new gold mine in rural south-west Burkina Faso, with the primary map activity to be 

identifying the land use potential of particular land for growing particular crops. Different map 

production technologies (e.g. paper versus electronic maps) are available for developing these 

land use potential maps, with the different technologies producing different requirements for 

effective map design. 

This chapter first considers the map user profile to identify issues of significance for effective map 

design for this audience. The opportunities and constraints that apply to different styles of map 

production are then considered, leading to the development of several prototype maps designed 

specifically for the target audience. These map solutions are described in detail and include both 

printable formats suitable for users without access to electronic devices, and electronic versions 

suitable for browsing on a computer, tablet or mobile phone, with and without internet access. 

6.2 Map user profile 

The social impact assessment (SIA) prepared for the Banfora Gold Project (Intersocial Consulting 

2014) provides socio-economic baseline data for the local region and reports on very poor 

communities with low levels of education and literacy.   

Education 

The SIA reports very low levels of education for members of the affected population, with most 

having had no education and only a few having completed primary school. In the adult population 

over the age of 20, approximately 55% of males and 78% of females have had no formal 

education, and only 24% of males and 8% of females have completed primary school. Although 

education is meant to be compulsory and free for children aged 6-16 years, inadequate 

government resources means fees are often levied for the cost of school supplies and 

infrastructure, impacting school attendance in poor communities. The SIA reports that in Léraba 

Province almost 40% of children aged 6-11 years of age were not attending primary school, and 

just 29% of boys and 16% of girls aged 12-18 years were attending secondary school.  



Land Suitability Assessments for Agriculture using the Data By-products of Mining Exploration 

138 Chapter 6  Disseminating results  

Languages 

Burkina Faso is a linguistically diverse country with 59 spoken languages (Kone 2010). French is 

the official language but is not widely spoken and less than 15% of the population speak French 

on a daily basis (Kone 2010). The languages Dioula, Fulfulde and Mòoré are also recognised as 

national languages: Mòoré is the most widely spoken language with almost half the population 

being speakers; Fulfulde is a local lingua franca and widely spoken as a first language in the north 

and east of the country; and Dioula developed as a trading language and is spoken in western 

Burkina Faso (NALRC 2010). Many of the local languages are only spoken and do not have a 

written form.  

Dioula is the principal language spoken in the south-western Cascades Region (including the 

Banfora area) followed by Mòoré and Senoufo. Within the study region in Léraba Province the 

Senoufo ethnicity and language predominate, although Dioula is also spoken by most of the 

population and used to communicate with members of local authorities who are not native to the 

region (Intersocial Consulting 2014). The Dioula language has a written form that uses a phonetic 

alphabet but Senoufo has no written form. 

Literacy 

The literacy rate for Burkina Faso is low, with less than half the population able to read and write. 

In 2018 the literacy rate for the population aged 15 years and older was recorded as 39.3%, but 

this was a substantial improvement on the literacy rate of 22.5% in 2006 and of just 12.8% in 1996 

(UNESCO Institute of Statistics 2022). Kone (2010) suggests that the use of French as the language 

of formal instruction in schools has contributed to low literacy rates and high dropout rates. 

However, the author also observes that attempts to include first-acquired language as the 

medium of instruction in schools have generally proven unsuccessful due to the perception that 

spoken and written competence in French offers greater opportunities for social and physical 

mobility than literacy in local languages, and to the challenges of providing text books and 

teaching resources in multiple languages.  

Although French remains the primary language of instruction in schools, the government has 

created adult literacy classes in local languages to combat illiteracy across the broader population. 

The SIA reported that 8% of males and 7% of females in the survey population had undergone 

training in “alphabetisation” centres and many others in the focus groups had expressed interest 

in attending such courses (Intersocial Consulting 2014, page 49). 

The literacy levels for the population affected by displacement are quantified in the SIA. Overall, 

only one out of four community members can read or write. Knowledge of French is very limited: 

three quarters of the population reported not to speak, read or write any French, and only 3% had 

gained a good level of spoken and written French. The most common languages spoken by the 

affected communities are Senoufo and Dioula. Senoufo does not have a written form, but in all 

affected villages at least one person can read Dioula (Intersocial Consulting 2014, page 80). 
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Access to technology 

The SIA reports that cell phones are the one of the most commonly owned household assets in 

the survey population, with 90% of households having a cell phone. More than 70% of households 

also reported having a solar panel for electricity generation (Intersocial Consulting 2014, page 77). 

 

  
Source: I. Ahmer  Source: I. Ahmer  

Figure 6-1 Solar panels on Banfora rooftop; solar panels for sale in Banfora (2018) 

The rapid adoption of mobile phones across Burkina Faso was examined by Hahn and Kibora 

(2008) who observed that the growth of mobile phone usage in Burkina Faso and many other 

African countries has been faster than in Western countries, in spite of the difficult economic 

situation of many of the users.  The use of mobile phones in Burkina Faso commenced in 1996 and 

within ten years had penetrated the most remote areas of the country. Their use is now 

embedded in society, although SMS and MMS services are little used in a country with low 

literacy rates. Low priced new phones are imported, typically from Dubai, and second-hand and 

even damaged phones come from France and other European countries. This has given rise to a 

new business of mobile phone maintenance offering a variety of services such as decoding to 

remove prior network restrictions, replacement of broken parts, and recharging of batteries. In 

rural areas people creatively look for sources to charge their phone batteries, e.g. through solar 

panels and car batteries. In such a poor country many mobile phone owners try to adopt a ‘zero 

budget strategy’ to avoid ongoing usage costs and various local practices have emerged that use 

phones to communicate without incurring call costs (Hahn and Kibora 2008).  

In 2015 the Pew Research Centre conducted a survey of 40 countries to determine smart phone 

ownership and internet usage. The results of the survey for Burkina Faso showed that 79% of 

adults owned a cell phone, 14% owned a smart phone and 18% used the internet at least 

occasionally or reported owning a smart phone. The survey identified a strong relationship 

between per capita income and internet access, and demonstrated that younger, more educated 

and higher-income people everywhere had greater access to the internet (Poushter 2016). 

Although it is not anticipated that households in the project region own computers or smart 

phones, it is expected that some access to computers may be available. The SIA reports a large 

number of community committees and organisations across villages in the project area - if access 

to computers were to prove a significant issue, it would seem within the scope of the mining 

company’s social licence to also provide computers to some of these community groups. 



Land Suitability Assessments for Agriculture using the Data By-products of Mining Exploration 

140 Chapter 6  Disseminating results  

Implications for maps 

The profile of the map users raises several major issues that must be considered if the final maps 

are to be useful to them. Literacy and education levels are very low in the target community so 

the maps must be intuitive to understand, language independent and with sufficient embedded 

context for the users to correctly interpret the spatial dimensions of the maps. Further, to 

successfully deliver the information into such poor communities, the maps must have no costs 

associated with them.  

6.3 Styles of map presentation 

Maps can be designed to be printed on paper or be browsable on electronic devices such as 

computers, tablets or smart phones. The medium for presenting a map is the major technical 

context factor that constrains map design. Griffin, White et al. (2017) observe: 

“… many design decisions relate to the choice of which representations to use, which 

information to display on a device of a given size, and how to coordinate representations 

so that map users can (cognitively) fit all of the information displayed together.” 

Paper maps present a single static view of their content, whereas maps displayed using electronic 

devices can be dynamic applications that allow users to adjust the scale or alter the view in other 

ways. Both styles of map presentation present constraints to the map designer, but each has 

advantages that can be effectively leveraged for particular map use situations. 

6.3.1 Paper maps 

Traditional paper maps are static maps that present a single view of their subject. Their content 

does not change, so all map elements and symbology used in the original design are always 

visible. In contrast to electronic maps, paper maps have almost zero reliance on technology. They 

are easily reproduced and have high persistence (as paper is an enduring material). 

A paper map implementation imposes major design constraints in relation to the amount of 

information that can be fitted onto a page or that can be displayed in a single map. All map 

elements must be presented with fixed extent and scale, often severely limiting the amount of 

available detail that can be displayed. Complementary maps showing different content for an area 

often need to be presented as separate maps, with the user having to mentally combine the 

information on the maps (rather than turning features on or off as can be done with electronic 

maps).   

Although paper maps can be challenging to design, they provide a robust means for delivering 

content. The map user always views the entire map content as it was designed to be viewed, and 

it is not possible for the user to accidently hide content or otherwise change the view of maps 

presented. 

6.3.2 Electronic maps 

Electronic maps offer many advantages for the map user. As neither the scale nor the extent of 

the map is fixed, the user is able to pan to areas of interest and zoom in to view very fine detail at 

those locations. Overlaying the suitability maps on informative base maps allows the user to make 

additional intuitive assessments on issues such as proximity to infrastructure and terrain features, 

and an up-to-date base map of satellite imagery allows a user to closely inspect what currently 

exists at a location. 
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The most serious limitation with electronic map implementations is the high dependence on 

technology. Without access to an electronic device that can display maps and a reliable power 

supply the maps are inaccessible. Even with these basic requirements, access to the maps cannot 

be guaranteed. It may be beyond the skills of the user to install the necessary software to run the 

application, and the software may not run on a particular device for which it had not been tested. 

Even after successful installation on a target device the application may have weak persistence as 

hardware and software changes can easily impact the capacity to run it on the device. 

Base maps are commonly used to provide added context for subject maps in electronic map 

applications, and map applications designed to run with base maps often lose much of their 

functionality without the base maps. Many of the popularly used base maps are supplied as map 

tiles by map servers on the internet in real time and are unavailable without an internet 

connection.  

Whether target users have access to suitable equipment and sufficient computing skills to run the 

applications are critical issues to consider when designing electronic map applications. Awareness 

of internet availability and its cost is also an important consideration when using base maps from 

the internet. 

6.3.3 Maps for illiterate and semi-literate users 

For a map to be useful it needs to be functionally correct, pleasing and efficient to use, and easy 

to learn and remember. Illiteracy places strong limits on map design; firstly, because it requires a 

map to be understandable without relying on text components and, secondly, because map 

reading and map use skills of illiterate people may operate differently to those of literate people 

(Griffin, White et al. 2017). 

Medhi, Sagar et al. (2006) explored the development of map applications with text-free user 

interfaces for illiterate and semi-literate household workers in India for whom maps were not 

common artefacts. Their extensive field studies showed that graphics and photorealism were 

effective substitutes for text, numbers were also easily recognisable, and landmarks were 

important for geographic navigation. They also noted the importance of paying attention to 

subtle graphics cues as user responses may be affected by psychological, cultural or religious bias. 

The design and evaluation of a text-free online map interface for illiterate people and non-local-

language speakers is described by Bao (2016). Symbols, audio, photographs and video were all 

effective for replacing the traditional text. Although audio was the favoured medium for illiterate 

people using interactive electronic maps, it was not useful for non-native speakers who instead 

required text-free interfaces with the support of visual representations.  

6.3.4 Design and implementation issues for the crop suitability maps 

The profile of the map users raises several major issues that must be considered if the final maps 

are to be useful to them. Literacy and education levels are very low in the target community so 

the maps must be intuitive to understand, language independent, and with sufficient embedded 

context for the users to correctly interpret the spatial dimensions of the maps. To successfully 

deliver the information into such poor communities, the maps must also have no costs associated 

with them.  

The maps of crop suitability predictions for individual crops presented in Figure 4-21 are the 

subject maps for dissemination. These suitability maps are georeferenced raster images that are 

not suitable for overlay on each other and so must be presented as a set of complementary maps 
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that are each viewed individually. Additional reference maps and/or map data are required to 

supply the necessary geographic context for the map users to mentally locate themselves on the 

maps and identify locations of interest.  There are many types of reference maps that can be 

used: political maps show administrative boundaries; physical maps show terrain features (rivers, 

mountains, valleys, etc.) with topographic maps also using contour lines to show elevation; road 

maps show transport networks (roads, railways, etc.) and the locations of towns and villages. 

Satellite imagery, at appropriate resolution, can also be useful for viewing terrain, observing 

landcover and identifying landmarks.  

Readability is a critical consideration when designing maps: how much detail will fit into the 

available image space before the design becomes too cluttered and confusing for the map user to 

make sense of it? With paper maps, all detail must be readable at the scale at which the map is 

reproduced. With electronic maps, certain detail is often relevant only at certain scales (zoom 

levels) and can usually be suppressed if it clutters the display at other scales.  

Prototype maps that address these project specific issues have been developed for both paper 

and electronic presentation formats and are described in the following sections. 

6.3.5 Map prototypes 

The map prototypes from this thesis are available for inspection on the Box cloud storage system 

at the following links:  

https://universityofadelaide.box.com/s/q746bzprxljdw6wkgmqw1xgtb4b730j1 

https://tinyurl.com/448x9233  

The ‘Paper maps’ subdirectory contains each paper map prototype in both JPEG and PDF formats. 

The ‘Leaflet maps’ subdirectory contains the HTML files and supporting Leaflet files for each of 

the electronic map prototypes. In order to use the Leaflet maps it is necessary to download the 

entire folder ‘Leaflet maps’ (242MB compressed). Please decompress the generated ‘zip’ archive 

before using the online maps.   

Opening the HTML file for the map will display the map in a web browser. The Leaflet maps for 

the Burkina Faso project region that are described in this chapter are as follows: 

Map file Language Base maps 

B_Leaflet_maps.html English Internet 

B_Leaflet_maps_French.html French Internet 

B_Leaflet_maps_Dioula.html Dioula Internet 

B_Leaflet_maps_Dioula_standalone.html Dioula Within the maps 
 

The ‘Leaflet maps’ subdirectory also contains Leaflet maps to display the suitability maps and 

verification maps for the Marrabel and Adelaide test regions. These maps are not discussed in this 

thesis.  

https://universityofadelaide.box.com/s/q746bzprxljdw6wkgmqw1xgtb4b730j1
https://tinyurl.com/448x9233
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6.4 Paper map prototypes 

The choice of paper size constrains the amount of detail that can be included on a paper map. A 

map that can be printed using a normal desktop printer or photocopied at a standard paper size26 

usually has negligible reproduction costs and so can be an extremely low-cost artefact. Maps 

designed for A4 and A3 paper are easily reproduced and can be printed at larger sizes if required, 

but a map designed for poster display is rarely easily readable when printed at the smaller paper 

sizes and is usually much costlier or more difficult to print at actual size. To ensure ease of 

reproduction for the paper maps from this project, it is desirable that the map pages be no larger 

than A3 in size, but still be readable if printed on A4 paper. 

For a map to be useful it must offer enough information about geographic location and terrain for 

the users to readily locate themselves on the map and interpret results correctly. Paper maps are 

printed at a fixed scale and must be easily readable at this scale. Where the necessary map detail 

is greater than can be shown in the available image space, maps are typically partitioned into 

multiple smaller extents that are shown as separate maps using the map book approach of atlases 

and street directories. The map book approach increases the complexity of the map artefact as it 

requires an additional index map to look up the relevant map page, and often splits geographical 

areas of interest over multiple map pages, increasing the cognitive load on the map user. 

Whether a map book approach is needed is determined by the amount of detail that must be 

included in the maps. 

6.4.1 Map content 

The primary purpose of the map artefact is to disseminate mapped predictions of crop suitability 

across the project region.  

Subject maps 

The five crop suitability maps are raster images, each containing 1333 x 1333 pixels, 

georeferenced to cover the same physical extent. Each pixel represents a distinct 30 m x 30 m 

location in the project region, and the relative suitability for growing a crop at that location is 

indicated by the colour used to print that pixel in the relevant crop suitability map. Each of the 

five maps must be presented separately as overprinting of the rasters would distort their content. 

Each suitability map needs a title to identify the target crop and a legend for interpreting the pixel 

colours. However, if all maps are rendered using the same symbology, a single legend can be used 

for the five maps. 

Reference maps 

Reference map data are necessary to allow the map user to identify locations of interest in the 

subject maps. In some circumstances reference data can be overlaid as additional detail on the 

subject maps. But when the detail in the reference map would obscure the detail of the subject 

map it must be presented as a separate map with sufficient contextual cues for the map user to 

cognitively combine the content. 

The most useful context maps for the map users of this application are: (1) a navigational map 

showing roads and locations of towns and villages in the project region; and (2) a physical terrain 

                                                           

26 Measurements in mm for standard international paper sizes: A0 = 1188 x 841; A1 = 841 x 594; A2 = 594 x 

420; A3 = 420 x 297; A4 = 297 x 210. 
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map revealing landscape features. A locator map with an extent indicator for the project region is 

also necessary to pinpoint its geographical location at the global scale.  

Satellite imagery is often offered as a reference base map in electronic map applications, allowing 

a user to zoom in to inspect observable features in finer detail. Satellite imagery was tested as 

potential reference data for the paper maps but it proved ineffective and uninformative at all 

scales at which the maps could feasibly be printed, and so was not used.    

Navigation map 

The majority of the content for the navigation map comes from OpenStreetMap, a free 

geographic database of the world released with an open-content licence.27 When all relevant 

layers (roads, waterways, natural features, land use, and places with place names) were plotted 

for the project region the resulting map was uncluttered and was easily readable as a single 

printed map. Additional map detail to enhance the relevance of the map included the 

international border and local administrative boundaries.28  

Terrain map 

A digital elevation model (DEM), suitably symbolised using intuitive colours for elevation, provides 

an informative image of the physical landscape for a region. A light hill-shade effect can be 

applied to assist three-dimensional interpretation of the data and contour lines can be added to 

quantify the changes in elevation. Although relatively few permanent waterways are marked on 

maps of the project region, the paths of water flow in the landscape are particularly informative 

for farmers. These can be added to the terrain map using the drainage channel layer that was 

supplied by Gryphon Minerals Ltd. 

Locator map  

A simple country outline for Burkina Faso with a square to mark the extent of the project region 

proved sufficient as a locator map due to the easily recognisable border location of the project 

region. 

Combining the map content 

Exploration of the map content showed that the detail for the whole project region could be 

readily mapped at the scale of a printed page, and so it was unnecessary to partition the region to 

make an atlas of sub-regions. The crop suitability maps cannot be overlaid on each other, 

although reference map data can be overlaid on the crop maps or displayed adjacent to them. 

Thus, a map artefact to disseminate the suitability predictions will necessarily contain multiple 

map frames, and the size of each map frame will constrain the amount of map detail that can be 

included in it.  

Complementary design opportunities have been explored to create two prototype paper map 

solutions. The first is a single page map design that shows five small crop suitability maps, with 

navigation and terrain information presented in separate reference maps. The second prototype 

is a multi-page set of large suitability maps that have navigational and terrain information 

                                                           

27 The OpenStreetMap layers used in this project were downloaded from https://extract.bbbike.org.  

28 International border sourced from the ESRI World Countries map package. Administrative boundaries 

downloaded from https://data.humdata.org/dataset/cod-ab-bfa.  

https://extract.bbbike.org/
https://data.humdata.org/dataset/cod-ab-bfa
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overlaid. Both map prototypes are designed to be easily interpretable regardless of the language 

of the map user or personal level of literacy. 

6.4.2 Language independence 

The most serious map design challenge for this project is the diversity of languages used and the 

low level of literacy among the target map users. Three quarters of the community were reported 

to be illiterate, and those who can read are more likely to be literate in a local language such as 

Dioula than in the official language French.  

In order for the maps to be interpretable by illiterate map users, all the map legends are text-free 

(refer Figure 6-3 below). The terrain legend shows a landscape profile that has been coloured 

using symbology corresponding to the altitude values in the map. The single suitability map 

legend uses degrees of greenness to indicate degrees of suitability and indicates poor suitability 

by a graphical image of a brown dying plant and high suitability by an image of a healthy green 

plant. The symbology used for the suitability maps is visually distinct from the symbology used for 

the terrain map to avoid confusion of interpretation.  

The suitability map titles use a combination of photo-realism and text to identify the relevant 

crops (see Figure 6-2). A characteristic crop photograph is supplied for illiterate map users and the 

crop name is written in Dioula (red), French (black) and English (blue). Icons for the flags of 

Burkina Faso, France and United Kingdom are shown beside the crop names to provide 

explanation of the languages used.29 

 

Figure 6-2 Suitability map titles: crop photograph and text in Dioula (red), French (black) and 

English (blue) 

The title for each map, “prévisions d'aptitude des cultures”, is the French translation of “crop 

suitability predictions” and the word “terrain” has the same meaning in both French and English. 

These titles and the text in the scale bar are written only in French and shown in black type. 

6.4.3 Single page map prototype 

The paper map prototype combining all necessary content on a single page is shown in Figure 6-4. 

It was designed using the ArcGIS Pro software for printing on A3 paper. The layout presents a 

large navigation map referencing a small locator map in the top half of the page, and six smaller 

maps showing the terrain and suitability predictions for the five crops in the lower half of the 

page. 

                                                           

29 Diola translations sourced from https://www.webonary.org/dioula-bf; French translations sourced from 

https://www.translate.com/english-french.  

https://www.webonary.org/dioula-bf
https://www.translate.com/english-french
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The purpose of the navigation map is to allow map users to orient themselves in geographic 

space. Towns, roads and rivers are powerful landmarks – they are symbolised in the navigation 

map using intuitive colours and styles (e.g. brown lines of different weight for roads, blue rivers, 

dashed grey lines for administrative boundaries), thus making a legend for these features 

redundant.  A subtle indicator of terrain features has also been added using a pale grey hill-shade 

effect base layer.  

The reference maps and the suitability maps contain complementary content that must be 

combined in the mind of the map user in order for the maps to deliver their informational 

content. To make this synthesis possible, and to simplify the cognitive process, the maps need to 

contain compelling geographic reference cues to assist the map user. Grids with spacings of 

twenty kilometres (red), five kilometres (dark grey) and one kilometre (light grey) are printed over 

every map to facilitate identification of the same location on each individual map and allow the 

map user to link the content from the different maps. 

A scale bar is provided for the navigation map and the grids make scale bars redundant on the 

smaller maps. To provide further geographic reference cues, the locations of the towns and 

villages are also marked on each of the smaller maps (but are only named on the navigational 

map). Figure 6-3 shows corresponding detail from the navigation map, terrain map and two crop 

suitability maps at the size it would appear if printed on A3 paper. 

 

Figure 6-3 Detail from the centre of the navigation map with corresponding detail from the terrain 

map and two crop suitability maps (actual size when maps printed on A3 paper) 
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Figure 6-4 Paper map showing crop suitability predictions for five crops (designed for printing on 

A3 paper) 
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6.4.4 Multi-page map set prototype 

The multi-page paper map prototype is shown in miniature in Figure 6-5 and at larger scale in 

Figure 6-6 and Appendix H. The set of maps consists of a terrain map and five crop suitability 

maps, each designed using the ArcGIS Pro software for printing on A3 paper.  

 

   

   

Figure 6-5 Set of paper maps showing terrain and crop suitability predictions for five crops (each 

designed for printing on A3 paper) 
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Figure 6-6 Paper map showing crop suitability predictions for cotton (designed for printing on A3 

paper) 

The maps use the same titles and legends as the single page map prototype, but the larger map 

frames allow greater amounts of reference data to be overlaid on the raster images than was 
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possible in the previous prototype. Contour lines showing 20 metre changes of elevation are 

shown on all the maps to allow greater insight into the terrain features influencing suitability for 

particular crops. The locations of towns and villages are also identified on all maps. The rivers and 

major roads have been overlaid on the crop suitability maps, thus making a separate navigational 

map redundant. Gridlines of 1 km and 5 km spacing have again been provided to allow the map 

user to link map content for particular geographical locations. 

Figure 6-7 illustrates the complementary information presented in the terrain and crop suitability 

maps. Drainage channels and areas of steep slope are discernible in the terrain map. Although 

labelling the contour lines with their altitude was not practical on maps of this scale, the 

symbology of the terrain map quickly resolves any confusion as to whether one contour line 

marks an area of lower or higher altitude than another.  

 

Terrain map 

 

Maize suitability map 

 

Figure 6-7 Detail from the centre of the terrain and maize suitability maps - 20 metre contour lines 

shown in brown and major roads shown in red 
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6.5 Electronic map prototypes 

An effective electronic map application for this project needs to be cost-free, robust and simple to 

operate. The application should be able to run on any electronic device capable of displaying 

maps and require neither proprietary software nor technical support for its operation. The maps 

need relevant and descriptive context maps plus GPS positioning for mobile devices to answer the 

question: “I am here, what does this app have to say about this location?” 

6.5.1 Leaflet software 

“Leaflet” is free and open-source software for creating interactive maps that work efficiently 

across all major desktop and mobile platforms. The only software required to display a Leaflet 

map is a web browser, and this software now comes preinstalled on most computers, tablets and 

smart phones. Because Leaflet was designed with simplicity, performance and usability in mind, it 

offers intuitive map controls and allows GPS positioning.  

Leaflet is implemented as a JavaScript library but can also be accessed from within the R 

programming environment using the R package ‘leaflet’.30  A Leaflet map application developed 

using R is distributed as an HTML file with an associated subdirectory of Leaflet map files. Simply 

opening the HTML file will display the interactive map in the chosen web browser, regardless of 

internet connectivity. Access to the internet is relevant only when it is needed for map content. A 

map will display correctly without an internet connection if all map content has been provided by 

the map developer. However, if the geographic context for the application is provided using base 

maps served as map tiles from the internet, this context will be unavailable without a connection. 

6.5.2 Leaflet map with tiled base maps 

The use of base maps served from the internet using map tiles was popularised by Google Maps 

and is now used by nearly all interactive web maps. The amount of detail supplied by the base 

map tiles varies according to the zoom level chosen by the user, with more detail becoming visible 

as a user zooms in at a location. Base maps that show road networks, satellite imagery or terrain 

are easily interpreted so that there is no need for legends or even titles to explain them.  

Subject maps are typically overlaid on a base map using some transparency so that the geographic 

context from the underlying base map is still visible. A map user can navigate to an area of 

interest and compare the subject maps with geographic detail from the base maps. The Leaflet 

layer controls allow the user to switch between base maps and overlay a chosen subject map. 

Leaflet maps that overlay original map content on publicly available base maps can be developed 

very easily using R. Figure 6-8 shows examples of three language specific Leaflets maps created to 

disseminate the results of this research project. Three alternative base maps are offered: (1) 

OpenStreetMap - for navigation; (2) ESRI World Imagery - providing satellite photographs of the 

Earth’s surface; and (3) ESRI Shaded Relief - showing landform. Each of the five crop suitability 

maps can be overlaid on any of the base maps. The same symbology is used for each of the 

suitability maps so that only one legend is required. GPS positioning will identify the map user’s 

current location on the map if their display device is GPS enabled. 

                                                           

30 Refer https://leafletjs.com/ for the JavaScript library and https://rstudio.github.io/leaflet/ for the R 

package. 

https://leafletjs.com/
https://rstudio.github.io/leaflet/
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Figure 6-8 Examples of Leaflet maps with language specific controls showing alternative base 

maps: (1) English + OpenStreetMap; (2) French + satellite imagery; (3) Dioula + terrain; (4) Dioula + 

terrain + cotton suitability map 

A completely text-free or a multi-lingual interface would be difficult to achieve in a simple map as 

too many images or too much text would clutter the map controls. Instead, language specific 

versions of the maps have been created for English, French and Dioula. Text descriptions for the 

base maps are used in all versions for simplicity – their content is readily understandable, and 

appropriate map icons are difficult to design. The English and French maps assume literacy in that 

language to identify the target crops for the suitability maps, but images of the crops have been 

added to the Dioula version to assist illiterate map users. In addition, the legend in the French and 

Dioula versions expresses the suitability rating using the range 0% to 100% as this scale is more 

easily understandable than the 0 to 1 values of the suitability rasters used in the English version.  

Leaflet’s intuitive map controls make a user guide unnecessary. The legend and map controls are 

always kept visible in these maps (and so can’t accidently be hidden) to simplify the interface for 

users with little experience with using maps or electronic devices. Explorative use of the interface 

quickly reveals its functionality: checking a radio button selects the base map; the tick box for a 

crop turns on or off the overlay of its suitability map; and the pan and zoom functions are easily 

learned from more experienced users, as is the concept of GPS positioning. 

Using the maps involves selecting a base map and optionally choosing a crop suitability map to 

overlay. A user would typically use the navigation map or GPS positioning to identify a location of 

interest and inspect the suitability for growing the different crops at this location. Changing the 

base map to landform is informative as to the terrain most suitable for particular crops; the user 

may then change the base map to world imagery and turn off the display of the crop suitability 

map to inspect the current land use at the location of interest.  

The Leaflet controls do not prevent a user from displaying more than one crop suitability map at 

the same time, allowing for the possibility of user error and the potential for misinterpretation of 

results. However, the most serious limitation of these maps relates to internet connectivity. 

Access to the internet is critical for their usability as all geographical context is supplied by the 
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base maps. Without internet access the base maps do not display, and without this context it is 

not possible to meaningfully interpret the crop suitability maps. 

6.5.3 Standalone Leaflet map 

Although the electronic maps described above provide a simple and easy-to-use solution for 

disseminating the crop suitability maps, their dependence on the internet makes them impractical 

in situations where map users, due to issues of cost or location, do not have access to the 

internet. In this section an alternative Leaflet map solution is described that has all map content 

embedded within the application and does not require internet access for functionality. 

The standalone Leaflet map makes use of the geographical content developed for the paper 

maps. Its design reverses the role of the base and overlay maps used in the web-based Leaflet 

maps - rather than displaying the crop suitability maps over base maps with geographic context, 

the crop maps are used as the base maps and geographic content is overlaid, as required, to 

provide context and insight. 

The standalone Leaflet map offers seven base maps and three overlay maps. The first base map, 

for navigation, displays OpenStreetMap content on a hill-shade base layer. The second is the 

digital elevation model (DEM) showing landform, and the remaining five are the crop suitability 

maps. Only one base map can display at any one time, so the navigational and landform cues from 

the first two maps are lost when a crop map is displayed. To supply the necessary geographic 

context for the crop maps, three optional overlays are provided: (1) a simplified road map; (2) 

contour lines derived from the DEM showing 10 metre changes in altitude; and (3) drainage 

channels in the landscape (supplied by Gryphon Minerals Ltd). 

 

 
Figure 6-9 Detail from reference maps: (1) navigation map; (2) terrain map; (3) terrain overlaid 

with 10 metre contour lines; (4) terrain overlaid with contour lines and drainage channels 

The two reference base maps are illustrated in Figure 6-9. The first image shows the navigation 

map (which contains the same map detail as the navigation map in Figure 6-4). The following 

three images show corresponding detail from the terrain map and demonstrate how the overlays 
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enhance the image by quantifying the changes in elevation and mapping the flow of water in the 

landscape.  

Three crop suitability base maps are illustrated in Figure 6-10, with all three overlay maps visible. 

The closeness of contour lines indicates terrain steepness and the drainage channels mark areas 

of lower elevation; together they provide insight into the environmental niches of the individual 

crops. As only one crop map will display at a time, the possibility of user error that can occur in 

the web-based Leaflet maps is avoided. 

Maize Rice Sesame 

 

Figure 6-10 Crop suitability maps for Maize, Rice and Sesame with navigation detail, 10 metre 

contour lines and drainage channels displayed 

A Dioula language version only of the standalone map was developed (for the translation of map 

text see Table 6-1). Images are used for each of the base maps in the map controls to assist 

illiterate map users, and the image for the terrain base map provides a legend for its symbology. 

Images were deemed unnecessary for the overlay maps as their content becomes readily 

understandable when used in combination with the reference base maps. A scale bar is provided 

on the interactive maps (not shown in the figures above); however, the altitude of contour lines is 

not marked as this detail would clutter most map views. 

Table 6-1 Translation of Dioula text used in the standalone Leaflet map 

Dioula English Dioula English 

kɔɔri cotton sirayiraja road map 

kaba maize dugukolo labɛnsigicogo land-form/relief/topography 

tigɛ peanut janya 10 m altitude 10 m 

malo rice jibolisira drainage channel 

bɛnɛ sesame   

 

The ability to view high-resolution satellite imagery showing current land cover and land use is a 

valuable feature of the web-based Leaflet maps but was not implemented in the standalone 

version. Similar to the paper maps, satellite imagery proved ineffective and uninformative at all 



    

 Chapter 6  Disseminating results 155 

resolutions that could feasibly have been used, and so was not included in the standalone Leaflet 

map. 

6.6 Summary 

This chapter explored mapping solutions appropriate for delivering the crop suitability maps from 

this project into the target communities. Socio-economic baseline data for the local region 

revealed very poor communities with low levels of education and literacy. Access to technology 

was not guaranteed and reliable internet access would be highly unlikely. For maps to be useful in 

these communities they must be easy to use and have no associated costs. 

The main map content consists of the raster images for the project area showing predicted 

suitability for growing five main local crops. Additional map detail is necessary to provide 

geographical context and the most useful for this task is navigational features (roads and locations 

of towns and villages) and a physical terrain map to reveal landscape features. 

Map text would be problematic for many target users who may be illiterate or have literacy in a 

different language. Making the maps language independent involved choosing intuitive map 

symbology wherever possible so that legends were unnecessary for these features, and designing 

clearly understandable text-free symbolic map legends when legends were necessary. Images 

were used in the suitability map titles to identify the relevant crops. 

Traditional paper maps and electronic maps are complementary styles of map presentation that 

each have their own advantages and limitations for map design and map use. Both styles of map 

presentation have been explored for disseminating the crop suitability maps from this thesis. 

Two paper map prototypes were designed for printing on A3 paper, but these maps could be 

printed at poster size for display and were still readable at A4 size if multiple copies were made as 

handouts. The first prototype fitted all map content on a single page, presenting multiple maps 

with common navigational cues to facilitate cognitive combination of the map content by the map 

users. The second prototype consisted of six full-page maps (terrain plus five crops) with 

reference detail overlaid on the raster images. 

The two electronic map prototypes have pan and zoom functions that allow map users to inspect 

areas of interest in great detail. Both display in web browsers without the need to install any 

further software. One version displays semi-transparent suitability maps over base maps 

(navigation map, shaded relief, satellite imagery) and uses image tiles served from the internet. 

The second version is complementary in its design, allowing the map user to overlay navigational 

and terrain information on the suitability maps – this version is fully functional without internet 

access. Images are used in the map controls and any complementary map text is presented using 

the local language Dioula, thus demonstrating the language independence of the maps to any 

non-Dioula speaking map users.  

Effective and free mapping solutions for this research task that are language independent and 

suitable for use by their target audience have been demonstrated in this chapter. Paper maps 

were designed for map users without access to other technology. Interactive maps were 

produced for map users with access to electronic devices, including a standalone version suitable 

for users without access to the internet and another web-based version that also allowed viewing 

of Earth observation imagery of the region, if the user had internet access. 
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Chapter 7 Conclusion 

7.1 Context for research 

Large scale surface mining projects generate extreme environmental and social impacts and 

create ongoing disruption to the livelihoods and way of life of their local communities. The 

establishment of a new mine often involves expropriation of land, relocation of communities and 

compensation payments. The FAO released its Voluntary Guidelines on the Responsible 

Governance of Tenure in 2012, with Section 16 specifically applying to expropriation and 

compensation (FAO 2012). The compensation guidelines were formulated to protect affected 

landholders from impoverishment and other risks. In examining the compliance of national-level 

legal provisions to the FAO guidelines, Tagliarino (2017) observed “robust compensation 

procedures established by law, coupled with respect for the rule of law, can help ensure that 

expropriations promote sustainable development outcomes that balance property rights with the 

public interest.”  

Compensation for compulsory land acquisition can take different forms. In countries with private 

land ownership (such as Australia) compensation is typically based on the market value of the 

property with additional payments to cover disturbance costs. In countries with customary land 

tenure (such as Burkina Faso) market value calculations do not apply. Instead, structural 

compensation is provided by building new villages to resettle displaced communities and crop 

compensation payments are made to farmers in recompense for economic displacement. Maps 

documenting community land use are critical for the crop compensation process. Tagoe, Mantey 

et al. (2012) describe the role of the land surveyor in the context of land acquisition for mining as 

being to accurately survey the farm, plot the farm polygons and generate an undisputable farm 

map known as the crop identification map from which compensation payments are calculated. 

This research project was proposed in the context of the establishment of a large new industrial 

gold mine in south-west Burkina Faso that necessitated displacement and compensation for four 

farming communities. Some of the displaced people might be offered paid jobs in the mine, for 

others there would be new business opportunities from the access to capital and new markets, 

but most would need to re-establish existing livelihoods in new locations. The purpose of this 

research project was to establish whether the detailed data acquired during exploration could be 

repurposed for agricultural land suitability mapping with the goal of identifying potential farming 

land close to the planned mining complex to assist relocated farmers. 

7.2 Summary of research 

The thesis answered the question “can land suitability assessments for agriculture be done 

effectively using the data by-products of mining exploration” (Research Question 1) in the 

affirmative by demonstrating how this could be done, using a combination of the supplied and 

publicly available data. The data supplied by Gryphon Minerals Ltd was location specific, up-to-

date (at the time) and finely detailed: the radiometric survey, crop compensation maps and 

updated soil map were created during the exploration phase and were augmented with 

purchased satellite images of the region. Some of the purchased imagery has since become freely 

available - the SRTM digital elevation model has been available for free download since 2014, and 
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there are now multiple sources of freely available high-resolution Earth observation imagery to 

use for qualitative assessment of model predictions. 

The maps documenting community land use that were prepared to support the application for 

the mining licence for the Wahgnion Gold Project both facilitated and proved crucial to the 

agricultural suitability modelling undertaken in this project. Important local knowledge was 

derivable from the crop maps in that the recorded crops had existing markets and were proven 

suitable for the local climate and farming methods, and the environmental conditions supporting 

their cultivation were implicit in the recorded planting locations. These maps were a highly 

reliable source of known occurrences for crop species that could be used to derive presence 

points to train data-driven environmental niche modelling algorithms and so allow existing 

cropping patterns to inform suitability maps showing potential expansion areas for the crops 

(Research Question 2). 

The chosen methodology (maximum entropy modelling) employed a correlative species 

distribution modelling approach that linked the locations of known occurrences of a species with 

geospatial environmental data to derive the species-environment relationships characterising the 

fundamental ecological niche for that species. However, the tightly clustered presence samples 

used to train and test the models presented an inherent risk of sampling bias causing unrealistic 

predictions. The most commonly used metric for assessing species distribution models (area 

under the curve (AUC) for the receiver operator curve) was demonstrated to be misleading for 

this application and so other validation methods were devised to assess the quality of predictions. 

Multiple cross-validation models, that used spatially independent sets of training and test data, 

were compared to detect sampling bias, and Earth observation imagery was used for heuristic 

assessment of the feasibility of model predictions. 

The thesis demonstrated that the soil categories used for mining exploration were ultimately 

useful as soil categories for the agricultural land suitability models, but the supplied categorical 

map of soil type was not effective as a model predictor in that format. Publicly available raster 

maps of predictions for multiple soil properties (SoilGrids) also proved ineffective due to their 

coarse spatial resolution. A new method was devised to process both sources of soil data into a 

set of raster layers that combined the soil categories and fine spatial detail of the supplied map 

with the multi-dimensionality of the soil property maps. These new soil rasters were effective as 

model predictors (Research Question 3).  

Region-wide validation of results was not possible with the available data and travel to the 

Burkina Faso project region was restricted, so the methodology was duplicated at two local sites 

in South Australia for which region-wide verification data were available. The South Australian 

results validated the methods used and demonstrated their transferability to other sites with 

different terrain, climate and styles of agriculture. 

Finally, the thesis showed how land suitability assessment results could be delivered to 

subsistence farmers in remote locations by producing cost-free and language-independent 

mapping solutions that would overcome the local challenges of poverty, illiteracy and poor access 

to technology (Research Question 4).  

7.3 Research contributions 

The thesis has demonstrated that species distribution modelling techniques, that are usually used 

to predict the geographic distribution of species for ecological purposes, can be applied to the 

task of land suitability assessment for agriculture. In this project the known planting locations 
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from crop maps produced for mining compensation were used to train the Maxent algorithm to 

predict the fundamental environmental niche for particular crops and so identify other potential 

planting locations for these crops. 

The thesis demonstrated the use of alternative methods for detecting sampling bias and assessing 

the quality of model outputs. The occurrence data available for this project were not sampled 

across the target region but were spatially clumped in four small areas. The issue of likely 

sampling bias that was inherent in the configuration of the training data for the models was 

explicitly addressed throughout the project by the use of complementary techniques to assess the 

quality of the model outputs in terms of feasibility, accuracy and robustness. In particular, the 

commonly used AUC metric was shown to be an unreliable and misleading measure of model 

goodness for models trained on these data. 

Importantly, the thesis presented a new method for converting categorically valued maps into 

continuously valued raster layers for use in environmental niche modelling (ENM). The default 

pixel values of a categorical raster are an unordered set of integers for the number of categories. 

ENM algorithms handle categorical predictors by decomposing their maps into a series of binary 

maps, creating one binary map for each category value, so exaggerating the differences between 

the classes and making no allowance for gradual transitions between classes or for mixed 

landscapes. In this project the values from SoilGrids rasters were used to assign meaningfully 

ordered values to soil type categories to create new soil property rasters for use as continuous 

model predictors – so overcoming the limitations of the binary data models imposed by the ENM 

algorithms for categorical data. Many available maps of potentially useful environmental 

predictors exist in the form of categorically valued polygon maps that partition the landscape into 

sets of mutually exclusive environmental classes – the techniques presented in this thesis have 

the potential to greatly improve the usefulness of such maps for ENM. 

7.4 Limitations 

The predictions for the fundamental environmental niches for the crops that were modelled in 

this project cannot be interpreted as recommended planting locations. Landscapes have potential 

for many different types of land use that offer differing and often conflicting ecosystem services. 

For example, from an agricultural perspective the wetlands in the inland valleys of African river 

systems are assumed to form the basis of robust production systems suitable for growing rice. 

However, from an ecological perspective, the wetlands are fragile ecosystems performing 

important ecological functions such as water purification, carbon sequestration, protection 

against flooding and erosion, and providing habitat for wildlife. The crop suitability maps 

produced by this project contribute to an understanding of the potential of the landscape for 

provisioning services (food production) only. The broader ecosystems involved and all services 

provided by them must be considered during land evaluation and planning to properly balance 

the agricultural and environmental benefits and impacts of any land use change.  

7.5 Significance 

This research project was undertaken in the context of gold mining under the Burkina Faso mining 

code; however, the methodologies developed during the project have the potential for far wider 

application. The methods in this thesis for predicting local agricultural land suitability are 

transferable to other sites with different terrain, climate, crops and styles of agriculture and are 

well suited to mining applications in developing countries where accurate records of local 
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agricultural activity (in the form of crop compensation maps) are produced as part of the 

environmental and social impact assessment. 

The extractive industries must engage positively with local communities to ensure sustainable 

coexistence and mutually beneficial outcomes. Community engagement involves working 

collaboratively to address issues affecting the social well-being of people affected by a mining 

project. It requires identifying the most critical challenges facing communities and then asking 

how the resources and competencies of the mining project can be used to help overcome these 

challenges (Baba, Mohammad et al. 2021). In relation to expropriation of farming land, affected 

farmers have an urgent and critical need to find alternative suitable land to continue their 

livelihoods. The thesis has demonstrated how existing mining exploration data and spatial 

technologies can be used to perform agricultural land suitability modelling to support local 

agricultural planning and so assist relocated farmers to obtain better agricultural outcomes. 

The reciprocity framework for community engagement in the extractive industries focuses on 

how mining projects can contribute to the capacities of individual community members who are 

affected by projects (Baba, Mohammad et al. 2021). In this thesis, the research results are 

presented using language-independent maps that would be accessible by the local population to 

enable individuals to use the results for their own decision making. 

In summary, this process of reusing of mining exploration data for land management purposes 

and presenting the results in a manner accessible by local populations could become a model for 

future mining projects and contribute to more successful collaborations between the mining 

sector and local communities globally. 
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 Appendices A-1 

Appendices 

 

Appendix A – Mining exploration data supplied for the project 

 

Description Date Data type Coverage 

Community land use (x4) 2014 Shape files (ESRI) Within mining lease 

Regional soil map 2013 Shape file (ESRI) Project area 

Drainage channels 2013 Shape files (Mapinfo) Project area 

Regolith 2011 Raster tileset (TNTmips) Project area 

Radiometrics (K, Th, U) 2010 (Apr) Raster  

(25m resolution) 

Project area 

ALOS satellite image – DSM 2011 (Jul 29) Raster  

(5m resolution) 

c. 85% project area (north) 

Contour lines – 2m, 5m 2010 Shape files (Mapinfo) c. 40% project area (south) 

Digital Elevation Model 2010 

2012 

Raster  

(1m resolution) 

c. 40% project area (south) + 

c. 10% project area (north) 

Landsat 7 satellite image  

– 9 bands 

2003 (Feb 8) Raster  

(30m resolution) 

Project area 

SRTM satellite image – DSM 2000 Raster  

(30m resolution) 

Project area 

Worldview2 satellite image  

– 4 bands 

2010 (Apr) Raster  

(0.5m resolution) 

Project area 

Worldview2 satellite image 

– 8 bands 

2010 (Apr) Raster   

(2m multispectral) 

c. 8% project area 

Worldview2 satellite image  

– 4 bands 

2012 (Apr) Raster  

(0.5m panchromatic,  

2m multispectral) 

c. 70% project area (includes 
most of mining lease) 

Worldview2 satellite image  

– 8 bands 

2013 Raster  

(0.5m panchromatic,  

2m multispectral) 

c. 60% project area (includes 
mining lease) 

Worldview2 satellite image  

– 4 bands 

2014 (Nov) Raster  

(0.5m panchromatic,  

2m multispectral) 

c. 25% project area (includes 
mining lease) 
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Appendix B – Land and crop analysis of mining lease communities 

 

  FOURKOURA NOGBELE SAMAVOGO STINGER Total 

Area (hectares) 286.0 1382.9 547.6 340.8 2557.3 

% total area 11.2% 54.1% 21.4% 13.3% 100.0% 

      
Plots (number) 308 1186 434 302 2230 

% total plots 13.8% 53.2% 19.5% 13.5% 100.0% 

Average plot size (hectares) 0.93 1.17 1.26 1.13 1.15 

      
Land ownership (% area)           

- 4.9% 3.8% 3.9% 2.1% 3.8% 

Owner and user 87.4% 93.9% 64.8% 89.1% 86.3% 

Users only 7.6% 2.2% 31.3% 8.8% 9.9% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 

      
Cultivation state (% area)           

- 4.9% 3.7% 3.9% 2.1% 3.7% 

In preparation 0.0% 0.0% 0.5% 0.0% 0.1% 

Cultivated 60.8% 64.8% 58.6% 70.2% 63.8% 

Harvest 0.8% 7.3% 1.1% 1.2% 4.4% 

Fallow < 2 years 0.7% 1.1% 4.3% 0.5% 1.7% 

Fallow > 2 years 30.9% 18.6% 21.3% 25.4% 21.4% 

Never cultivated 1.9% 4.4% 9.4% 0.2% 4.7% 

Uncultivable 0.0% 0.0% 0.8% 0.3% 0.2% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 

      
Type of soil (% area)           

- 4.9% 3.8% 3.9% 2.1% 3.8% 

Bas-fonds 4.2% 5.4% 4.0% 3.5% 4.7% 

Gravelly 73.9% 71.9% 88.6% 82.0% 77.1% 

Sandy 1.2% 14.7% 3.4% 12.0% 10.4% 

Clayey 15.8% 4.1% 0.0% 0.3% 4.1% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 

      
Amenities  (% area)           

- 4.9% 3.8% 3.9% 2.1% 3.8% 

Irrigation 0.0% 0.4% 0.0% 0.6% 0.3% 

Without amenities 91.8% 95.5% 96.1% 97.2% 95.4% 

Stoney cords 3.2% 0.2% 0.0% 0.0% 0.5% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 

 

  



    

 Appendices B-3 

 FOURKOURA NOGBELE SAMAVOGO STINGER Total 

      

Area (hectares) 286.0 1382.9 547.6 340.8 2557.3 

Maize 73.6 346.6 125.2 70.2 615.6 

Cotton 30.9 368.0 44.5 67.5 510.9 

Sesame 40.9 84.6 91.4 52.3 269.1 

Peanut 9.1 44.3 52.1 17.2 122.8 

Rice 12.7 52.5 31.4 6.7 103.2 

Millet 5.9 38.5 21.8 19.8 86.0 

Cashew 0.0 23.7 37.8 3.9 65.5 

Sorghum 0.9 2.2 54.0 3.6 60.7 

Cowpea 0.9 7.3 26.7 1.6 36.5 

Earth pea 2.9 3.7 24.2 3.3 34.1 

Beans 6.7 15.0 0.2 5.3 27.3 

Potato/Yam 3.4 2.3 0.8 1.3 7.9 

Fallow 94.7 318.9 179.1 90.8 683.5 

Number of plots 308 1186 434 302 2230 

Maize 50 194 57 45 346 

Cotton 25 157 13 29 224 

Sesame 20 91 45 51 207 

Peanut 23 61 30 18 132 

Rice 91 329 199 55 674 

Millet 7 41 7 16 71 

Cashew  18 12 2 32 

Sorghum 3 5 27 7 42 

Cowpea 5 17 15 4 41 

Earth pea 7 8 18 6 39 

Beans 17 34 1 12 64 

Potato/Yam 19 14 2 5 40 

Fallow 44 164 56 50 314 

Average plot size (hectares) 0.93 1.17 1.26 1.13 1.15 

Maize 1.47 1.79 2.20 1.56 1.78 

Cotton 1.24 2.34 3.42 2.33 2.28 

Sesame 2.04 0.93 2.03 1.02 1.30 

Peanut 0.40 0.73 1.74 0.95 0.93 

Rice 0.14 0.16 0.16 0.12 0.15 

Millet 0.84 0.94 3.11 1.24 1.21 

Cashew  1.32 3.15 1.95 2.05 

Sorghum 0.29 0.44 2.00 0.51 1.44 

Cowpea 0.19 0.43 1.78 0.40 0.89 

Earth pea 0.41 0.46 1.34 0.56 0.87 

Beans 0.39 0.44 0.23 0.44 0.43 

Potato/Yam 0.18 0.17 0.41 0.27 0.20 

Fallow 2.15 1.94 3.20 1.82 2.18 
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Appendix C – Geographical location of test sites 

 

 

Site B – Burkina Faso project area  

Size: 40km x 40km 

Coordinates 

UTM Zone 30P Northern Hemisphere 

Eastings: 224,010 to 264,000 

Northings: 1,136,010 to 1,176,000 

Longitude: -5.51966904 to -5.1571874 

-5° 31' 10.8084" to -5° 9' 25.8732" 

Latitude: 10.26686104 to 10.63100622 

10° 16' 0.6996" to 10° 37' 51.621" 

WRS1: Path=212, Row=53 

WRS2: Path=197, Row=53 

EPSG: 32630 

 

Site A – Adelaide project area 

Size: 40km x 40km  

Coordinates 

UTM Zone 54H Southern Hemisphere 

Eastings: 268,010 to 308,000 

Northings: 6,097,010 to 6,137,000 

Longitude: 138.45029 to 138.89887 

138° 27' 1.0" to 138° 53' 55.9" 

Latitude: -35.24326 to -34.89127 

-35° 14′ 35.7" to -34° 53′ 28.6” 

WRS1: Path=103, Row=84 

WRS2: Path=97, Row=84 

EPSG: 32754 

 

Site M – Marrabel project area 

Size: 40km x 40km  

Coordinates 

UTM Zone 54H Southern Hemisphere 

Eastings: 285,010 to 325,000 

Northings: 6,200,010 to 6,240,000 

Longitude: 138.66342 to 139.10588 

138° 39' 48.3" to 139° 6' 21.2" 

Latitude: -34.31892 to -33.96598 

-34° 19′ 8.1" to -33° 57′ 57.5” 

WRS1: Path=103, Row=84? 

WRS2: Path=97, Row=84? 

EPSG: 32754 
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Appendix D – SoilGrids250m data  

SoilGrids250m layers 

Filenames: XXXXXX_M_slN_250m.tif, where XXXXXX is the file and N is the level for seven 

standard depths: (1) 0cm ; (2) 5cm; (3) 15cm; (4) 30cm; (5) 60cm; (6) 100cm; (7) 200cm 

Soil quality File Description Units Range Levels 

Acid grade ACDWRB Grade of a sub-soil being acid 
e.g. having a pH < 5 and low BS 

grade 0-5 - 

Bedrock depth BDRICM Depth to bedrock (R horizon) 
up to 200cm 

cm 0-200 - 

Bedrock depth BDRLOG Probability of occurrence (0-
100%) of R horizon 

percent 0-100 - 

Bedrock depth BDTICM Absolute depth to bedrock (in 
cm) 

cm 0-5000 - 

Bulk density BLDFIE Bulk density (fine earth) in kg / 
cubic-meter 

kg / cubic-
m 

50-2650 1-7 

Carbon - 
density 

OCDENS Soil organic carbon density in 
kg per cubic-m 

kg / cubic-
m 

 

0-1000 1-7 

Carbon - 
organic 

ORCDRC Soil organic carbon content 
(fine earth fraction) in g per kg 

g / kg 

 

0-800 1-7 

Carbon - stock OCSTHA Soil organic carbon stock in 
tons per ha 

tonnes / ha 0-3000 1-7, 0-0.3m, 
0-1m, 0-2m 

Cation capacity CECSOL Cation exchange capacity of soil 
in cmolc/kg 

cmol / kg 0-2200 1-7 

pH acidity PHIHOX Soil pH x 10 in water  index*10 20-110 1-7 

pH KCl PHIKCL Soil pH x 10 in Potassium 
chloride 

index*10 20-110 1-7 

Texture - clay CLYPPT Clay content (0-2 micrometre) 
mass fraction in % 

percent 0-100 1-7 

Texture - coarse CRFVOL Coarse fragments volumetric in 
% 

percent 0-100 1-7 

Texture - sand SNDPPT Sand content (50-2000 
micrometre) mass fraction in % 

percent 0-100 1-7 

Texture - silt SLTPPT Silt content (2-50 micrometre) 
mass fraction in % 

percent 0-100 1-7 

Water available AWCh1 Available soil water capacity 
(volumetric fraction) for h1 

percent 0-100 1-7 

Water available AWCh2 Available soil water capacity 
(volumetric fraction) for h2 

percent 0-100 1-7 

Water available AWCh3 Available soil water capacity 
(volumetric fraction) for h3 

percent 0-100 1-7 

Water available AWCtS Saturated water content 
(volumetric fraction) for tS 

percent 0-100 1-7 

Water available WWP Available soil water capacity 
(volumetric fraction) until 
wilting point 

percent 0-100 1-7 
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Maps of SoilGrids layers (resampled to 30m pixels) – Burkina Faso project area 

Levels 1-4 consolidated to provide an estimate for top 30cm 

 

BLDFIE – Bulk density (fine earth) 
in kg / cubic-meter 

 
 

OCDENS – Soil organic carbon 
density in kg per cubic-m 

 

CECSOL – Cation exchange 
capacity of soil in cmolc/kg 

 

PHIHOX – Soil pH x 10 in water 
 

 
 

CLYPPT – Clay content (0-2 μm) 
mass fraction (%) 

 

CRFVOL – Coarse fragments 
volumetric (%) 

 

SNDPPT – Sand content (50-2000 
μm) mass fraction (%) 

 

SLTPPT – Silt content (2-50 μm) 
mass fraction (%) 

 

WWP – Available soil water 
capacity (%) until wilting point 
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Maps of SoilGrids layers (resampled to 30m pixels) – Adelaide project area 

Levels 1-4 consolidated to provide an estimate for top 30cm 

 
BLDFIE – Bulk density (fine earth) 
in kg / cubic-meter 

 
 

OCDENS – Soil organic carbon 
density in kg per cubic-m 

 

CECSOL – Cation exchange 
capacity of soil in cmolc/kg 

 

PHIHOX – Soil pH x 10 in water 
 

 
 

CLYPPT – Clay content (0-2 μm) 
mass fraction (%) 

 

CRFVOL – Coarse fragments 
volumetric (%) 

 

SNDPPT – Sand content (50-2000 
μm) mass fraction (%) 

 

SLTPPT – Silt content (2-50 μm) 
mass fraction (%) 

 

WWP – Available soil water 
capacity (%) until wilting point 
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Maps of SoilGrids layers (resampled to 30m pixels) – Marrabel project area 

Levels 1-4 consolidated to provide an estimate for top 30cm 

 
BLDFIE – Bulk density (fine earth) 
in kg / cubic-meter 

 
 

OCDENS – Soil organic carbon 
density in kg per cubic-m 

 

CECSOL – Cation exchange 
capacity of soil in cmolc/kg 

 

PHIHOX – Soil pH x 10 in water 
 

 
 

CLYPPT – Clay content (0-2 μm) 
mass fraction (%) 

 

CRFVOL – Coarse fragments 
volumetric (%) 

 

SNDPPT – Sand content (50-2000 
μm) mass fraction (%) 

 

SLTPPT – Silt content (2-50 μm) 
mass fraction (%) 

 

WWP – Available soil water 
capacity (%) until wilting point 
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Appendix E – Correlations between environmental layers 

Burkina Faso project area  

Table E-1 Pearson correlation coefficients for pairwise comparisons of environmental layers for the 

Burkina Faso project region (absolute values > 0.9 shaded green and > 0.5 shaded yellow) 

   Layer 0 1 2 3 A B C D E F G H I M N W X Y Z 

0 DEM 1 0.48 -0.81 0.02 -0.08 0.02 0.02 -0.02 -0.02 0.1 0.04 -0.03 -0.01 -0.45 0.02 -0.22 0 -0.08 -0.04 

1 Slope 0.48 1 -0.53 -0.15 -0.19 0.12 0.04 -0.01 0.01 0.08 0 -0.01 0.01 -0.33 -0.29 -0.09 0 -0.04 -0.02 

2 Wetness index -0.81 -0.53 1 0 0.05 0 -0.01 0.01 0.03 -0.1 -0.06 0.04 0.01 0.55 0.1 0.24 0 0.09 0.04 

3 Solar radiation 0.02 -0.15 0 1 0.02 -0.02 0 0 0 0 0.01 0 0 0.01 0.04 0.02 0 0.01 0 

A BLDFIE -0.08 -0.19 0.05 0.02 1 0.45 0.71 0.77 0.71 0.72 0.8 0.74 0.73 -0.03 0.05 0.49 0.76 0.72 0.77 

B OCDENS 0.02 0.12 0 -0.02 0.45 1 0.85 0.81 0.85 0.81 0.72 0.84 0.84 0.06 -0.03 0.49 0.82 0.76 0.8 

C CECSOL 0.02 0.04 -0.01 0 0.71 0.85 1 0.99 0.98 0.97 0.94 0.99 0.99 0 -0.01 0.61 0.99 0.92 0.98 

D PHIHOX -0.02 -0.01 0.01 0 0.77 0.81 0.99 1 0.98 0.97 0.96 0.99 0.99 0 0 0.63 1 0.94 0.99 

E CLYPPT -0.02 0.01 0.03 0 0.71 0.85 0.98 0.98 1 0.96 0.92 0.98 0.99 0.03 0 0.62 0.98 0.92 0.97 

F CRFVOL 0.1 0.08 -0.1 0 0.72 0.81 0.97 0.97 0.96 1 0.95 0.96 0.97 -0.07 -0.02 0.58 0.98 0.91 0.96 

G SNDPPT 0.04 0 -0.06 0.01 0.8 0.72 0.94 0.96 0.92 0.95 1 0.94 0.94 -0.07 -0.01 0.59 0.96 0.9 0.95 

H SLTPPT -0.03 -0.01 0.04 0 0.74 0.84 0.99 0.99 0.98 0.96 0.94 1 0.99 0.03 0 0.63 0.99 0.93 0.98 

I WWP -0.01 0.01 0.01 0 0.73 0.84 0.99 0.99 0.99 0.97 0.94 0.99 1 0.02 0 0.62 0.99 0.93 0.98 

M MRVBF -0.45 -0.33 0.55 0.01 -0.03 0.06 0 0 0.03 -0.07 -0.07 0.03 0.02 1 0.33 0.13 0 0.05 0.02 

N MRRTF 0.02 -0.29 0.1 0.04 0.05 -0.03 -0.01 0 0 -0.02 -0.01 0 0 0.33 1 0.02 0 0.02 0 

W Dose rate -0.22 -0.09 0.24 0.02 0.49 0.49 0.61 0.63 0.62 0.58 0.59 0.63 0.62 0.13 0.02 1 0.61 0.83 0.7 

X K percent 0 0 0 0 0.76 0.82 0.99 1 0.98 0.98 0.96 0.99 0.99 0 0 0.61 1 0.93 0.99 

Y Th ppm -0.08 -0.04 0.09 0.01 0.72 0.76 0.92 0.94 0.92 0.91 0.9 0.93 0.93 0.05 0.02 0.83 0.93 1 0.96 

Z U ppm -0.04 -0.02 0.04 0 0.77 0.8 0.98 0.99 0.97 0.96 0.95 0.98 0.98 0.02 0 0.7 0.99 0.96 1 
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Marrabel test region  
Table E-1 Pearson correlation coefficients for pairwise comparisons of environmental layers for the 

Marrabel test region (absolute values > 0.9 shaded green and > 0.5 shaded yellow) 

 Layer 0 1 2 3 A B C D E F G H I M N X Y Z 

0 DEM 1 0.29 -0.41 0.27 0.02 0.06 0.07 -0.17 -0.20 -0.04 0.16 0.17 -0.12 -0.25 0.00 -0.06 -0.01 0.17 

1 Slope 0.29 1 -0.67 -0.31 0.00 0.05 0.07 -0.19 -0.24 -0.01 0.19 0.17 -0.15 -0.58 -0.33 -0.02 -0.03 0.00 

2 Wetness index -0.41 -0.67 1 0.09 0.02 -0.06 -0.08 0.17 0.17 0.01 -0.14 -0.14 0.10 0.71 0.20 0.02 0.01 -0.09 

3 Solar radiation 0.27 -0.31 0.09 1 0.01 0.00 0.00 0.00 -0.01 0.00 0.01 0.01 -0.01 0.10 0.14 0.00 0.00 0.06 

A BLDFIE 0.02 0.00 0.02 0.01 1 -0.39 -0.32 0.13 -0.40 -0.12 0.43 -0.14 -0.48 0.03 -0.03 0.11 -0.05 -0.07 

B OCDENS 0.06 0.05 -0.06 0.00 -0.39 1 0.32 -0.23 0.25 0.04 -0.30 0.20 0.36 -0.05 0.01 -0.08 0.05 0.08 

C CECSOL 0.07 0.07 -0.08 0.00 -0.32 0.32 1 -0.22 0.16 0.03 -0.21 0.19 0.27 -0.06 0.00 -0.07 0.03 0.05 

D PHIHOX -0.17 -0.19 0.17 0.00 0.13 -0.23 -0.22 1 0.17 0.11 -0.10 -0.25 0.02 0.12 0.05 0.03 0.01 -0.02 

E CLYPPT -0.20 -0.24 0.17 -0.01 -0.40 0.25 0.16 0.17 1 0.16 -0.62 -0.08 0.59 0.10 0.09 -0.07 0.10 0.10 

F CRFVOL -0.04 -0.01 0.01 0.00 -0.12 0.04 0.03 0.11 0.16 1 -0.16 0.00 0.14 0.00 0.02 -0.05 -0.01 -0.01 

G SNDPPT 0.16 0.19 -0.14 0.01 0.43 -0.30 -0.21 -0.10 -0.62 -0.16 1 0.01 -0.60 -0.08 -0.08 0.08 -0.10 -0.10 

H SLTPPT 0.17 0.17 -0.14 0.01 -0.14 0.20 0.19 -0.25 -0.08 0.00 0.01 1 0.04 -0.09 -0.04 -0.04 -0.01 0.03 

I WWP -0.12 -0.15 0.10 -0.01 -0.48 0.36 0.27 0.02 0.59 0.14 -0.60 0.04 1 0.05 0.07 -0.09 0.10 0.11 

M MRVBF -0.25 -0.58 0.71 0.10 0.03 -0.05 -0.06 0.12 0.10 0.00 -0.08 -0.09 0.05 1 -0.04 -0.02 -0.03 -0.09 

N MRRTF 0.00 -0.33 0.20 0.14 -0.03 0.01 0.00 0.05 0.09 0.02 -0.08 -0.04 0.07 -0.04 1 -0.01 0.02 0.05 

X K percent -0.06 -0.02 0.02 0.00 0.11 -0.08 -0.07 0.03 -0.07 -0.05 0.08 -0.04 -0.09 -0.02 -0.01 1 0.50 0.40 

Y Th ppm -0.01 -0.03 0.01 0.00 -0.05 0.05 0.03 0.01 0.10 -0.01 -0.10 -0.01 0.10 -0.03 0.02 0.50 1 0.61 

Z U ppm 0.17 0.00 -0.09 0.06 -0.07 0.08 0.05 -0.02 0.10 -0.01 -0.10 0.03 0.11 -0.09 0.05 0.40 0.61 1 

Adelaide test region 
Table E-1 Pearson correlation coefficients for pairwise comparisons of environmental layers for the 

Burkina Faso project region (absolute values > 0.9 shaded green and > 0.5 shaded yellow) 

 Layer 0 1 2 3 A B C D E F G H I M N 

0 DEM 1 0.32 -0.61 0.12 -0.76 0.79 0.23 -0.27 0.02 0.23 0.13 0.01 0.11 -0.30 -0.45 

1 Slope 0.32 1 -0.02 0.14 -0.38 0.41 0.09 -0.17 -0.02 0.12 0.02 0.00 0.03 -0.33 -0.53 

2 Wetness index -0.61 -0.02 1 0.00 0.52 -0.56 -0.13 0.22 0.01 -0.15 -0.04 0.02 -0.05 0.00 0.00 

3 Solar radiation 0.12 0.14 0.00 1 -0.04 0.04 0.04 0.01 0.03 0.03 0.04 0.02 0.03 0.19 -0.43 

A BLDFIE -0.76 -0.38 0.52 -0.04 1 -0.82 -0.08 0.45 0.15 -0.09 0.03 0.16 0.05 0.33 0.43 

B OCDENS 0.79 0.41 -0.56 0.04 -0.82 1 0.38 -0.18 0.15 0.39 0.27 0.14 0.25 -0.35 -0.45 

C CECSOL 0.23 0.09 -0.13 0.04 -0.08 0.38 1 0.80 0.94 0.97 0.96 0.95 0.97 -0.08 -0.11 

D PHIHOX -0.27 -0.17 0.22 0.01 0.45 -0.18 0.80 1 0.91 0.79 0.86 0.92 0.88 0.14 0.18 

E CLYPPT 0.02 -0.02 0.01 0.03 0.15 0.15 0.94 0.91 1 0.93 0.96 0.98 0.98 0.01 0.01 

F CRFVOL 0.23 0.12 -0.15 0.03 -0.09 0.39 0.97 0.79 0.93 1 0.95 0.94 0.97 -0.08 -0.12 

G SNDPPT 0.13 0.02 -0.04 0.04 0.03 0.27 0.96 0.86 0.96 0.95 1 0.96 0.98 -0.02 -0.03 

H SLTPPT 0.01 0.00 0.02 0.02 0.16 0.14 0.95 0.92 0.98 0.94 0.96 1 0.99 0.01 0.01 

I WWP 0.11 0.03 -0.05 0.03 0.05 0.25 0.97 0.88 0.98 0.97 0.98 0.99 1 -0.03 -0.04 

M MRVBF -0.30 -0.33 0.00 0.19 0.33 -0.35 -0.08 0.14 0.01 -0.08 -0.02 0.01 -0.03 1 0.13 

N MRRTF -0.45 -0.53 0.00 -0.43 0.43 -0.45 -0.11 0.18 0.01 -0.12 -0.03 0.01 -0.04 0.13 1 
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Appendix F – Maxent runs for the Burkina Faso project area 

Tests of predictors and parameters 
      Mean test AUC 

 Environmental layers 
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1 0123 LQPH 1  Terrain only 0.63 0.64 0.63 0.66 

2 0123ABCDEFGHIMNWXYZ LQPH 1 Means + jitter All layers 0.63 0.65 0.63 0.71 

3 0123ABCDEFGHIMNWXYZ LQPH 1 Means + jitter Linear trend removed 
from DEM 

0.66 0.68 0.66 0.77 

4 0123ABCDEFGHIMNWXYZ LQPH 1 Means + jitter Quadratic trend removed 
from DEM 

0.62 0.63 0.61 0.70 

5 12 LQPH 1  Terrain only 0.61 0.63 0.60 0.75 

6 123 LQPH 1  Terrain only 0.63 0.65 0.62 0.75 

7 123 LQPH 1  Terrain – prototype layers 0.63 0.65 0.62 0.76 

8 123ABCDEFGHI LQPH 1 Means + jitter Terrain + soils 0.62 0.67 0.62 0.89 

9 123ABCDEFGHI L 1 Means + jitter Terrain + soils 0.60 0.64 0.59 0.86 

10 123ABCDEFGHI L 1 Means Terrain + soils 0.69 0.71 0.67 0.89 

11 123ABCDEFGHI LQ 1 Means + jitter Terrain + soils 0.61 0.67 0.61 0.88 

12 123ABCDEFGHI LQP 1 Means + jitter Terrain + soils 0.62 0.69 0.64 0.89 

13 123ABCDEFGHI LQP 1 Means Terrain + soils 0.69 0.73 0.68 0.91 

14 123ABCDEFGHI LQP 1 Means + SG (50:50) Terrain + soils 0.72 0.76 0.74 0.81 

15 123ABCDEFGHI LQP 1 Means + SG (75:25)  Terrain + soils 0.70 0.75 0.72 0.86 

16 123ABCDEFGHIMNX LQH 1 Means + jitter Mixed layers 0.61 0.65 0.61 0.81 

17 123ABCDEFGHIMNX Q 1 Means + jitter Mixed layers 0.60 0.65 0.60 0.88 

18 123ABCDEFGHIMNX Q 1 Means + jitter Rerun of test 0.60 0.65 0.60 0.88 

19 123ABEFGHIX LQPH 1 Means + jitter Mixed layers 0.64 0.69 0.64 0.91 

20 123ABMNWX LQPH 1 Means + jitter Uncorrelated layers 0.61 0.65 0.61 0.83 

21 123ABMWX LQPH 1 Means + jitter Uncorrelated layers 0.62 0.68 0.62 0.91 

22 123ABWX LQPH 1 Means + jitter Uncorrelated layers 0.64 0.68 0.63 0.90 

23 123ABWX LQPH 2 Means + jitter Test beta-multiplier 0.62 0.68 0.63 0.90 

24 123ABWX LQPH 4 Means + jitter Test beta-multiplier 0.60 0.67 0.61 0.90 

25 123M LQPH 1  Terrain only 0.61 0.65 0.60 0.83 

26 123MN LQPH 1  Terrain only 0.60 0.62 0.59 0.73 

27 123MN L 1  Terrain only 0.58 0.59 0.54 0.77 

28 123MN LQP 1  Terrain only 0.60 0.63 0.59 0.80 

29 123MNWXYZ LQP 1  Terrain + radiometrics 0.61 0.65 0.60 0.85 
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      Mean test AUC 

 Environmental layers 
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30 123PQ L 1 Means + jitter Terrain + PCA soils 0.57 0.59 0.53 0.86 

31 123PQ LQP 1 Means + jitter Terrain + PCA soils 0.61 0.65 0.59 0.89 

32 123PQ LQP 1 Means + SG (50:50) Terrain + PCA soils 0.79 0.80 0.80 0.77 

33 123PQ LQP 1 Means + SG (75:25)  Terrain + PCA soils 0.80 0.84 0.83 0.87 

34 123PQRS LQP 1 Means + SG (75:25)  Terrain + PCA soils 0.76 0.81 0.79 0.86 

35 123WXYZ LQPH 1  Terrain + radiometrics 0.65 0.68 0.64 0.85 

36 12ABCDEFGHI LQPH 1 Means + jitter Terrain + soils 0.61 0.66 0.60 0.89 

37 12ABCDEFGHI LQPH 1 Means Terrain + soils 0.68 0.70 0.65 0.91 

38 12ABCDEFGHIMNWXYZ LQPH 1 Means + jitter Mixed layers 0.58 0.62 0.57 0.80 

39 13ABCDEGHIMX LQPH 1 Means + jitter Mixed layers 0.63 0.70 0.65 0.90 

40 ABCDEFGHI LQPH 1 Means + jitter Soils only 0.59 0.65 0.60 0.85 

41 PQ LQPH 1 Means + jitter PCA of 17 layers 0.64 0.66 0.61 0.87 

42 PQR_SPCA2 LQPH 1 Means + jitter PCA of 123ABMWX 0.60 0.64 0.58 0.89 

43 PQRSTUV LQPH 1 Means + jitter PCA of all 19 layers 0.66 0.67 0.62 0.87 

44 PQRSTUV LQPH 1 Means + jitter PCA of 17 layers 0.65 0.68 0.63 0.89 

45 PQRSTUV LQPH 1 Means + jitter PCA of 123ABMWX 0.62 0.66 0.60 0.89 

46 PQRSTUV LQPH 1 Means + jitter PCA of 123ABWX 0.62 0.68 0.63 0.89 

47 WXYZ LQPH 1  Radiometrics only 0.60 0.62 0.57 0.80 

 Mean     0.64 0.67 0.63 0.84 

Replication runs 
      Mean test AUC 

 

Replication method 
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 5-fold cross validation LQPH 1 Means + jitter 123ABCDEFGHIMNWXYZ 0.75 0.80 0.76 0.95 

 25-fold cross validation LQPH 1 Means + jitter 123ABCDEFGHIMNWXYZ 0.76 0.80 0.76 0.94 

 Subsample – 25 iterations LQPH 1 Means + jitter 123ABCDEFGHIMNWXYZ 0.76 0.80 0.77 0.95 

 Bootstrap – 25 iterations LQPH 1 Means + jitter 123ABCDEFGHIMNWXYZ 0.81 0.82 0.79 0.95 

 Mean     0.77 0.80 0.77 0.95 
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Appendix G – Land use potential assessment criteria 

Land use potential class definitions 

Class  Potential  Definition  

Class 1  High  Land with high productive potential and requiring no more than 

standard management practices to sustain productivity.  

Class 2  Moderately high  Land with moderately high productive potential and / or requiring 

specific, but widely accepted and used, management practices to sustain 

productivity.  

Class 3  Moderate  Land with moderate productive potential and / or requiring specialized 

management practices to sustain productivity.  

Class 4  Moderately low  Land with marginal productive potential and / or requiring very highly 

specialized management skills to sustain productivity.  

Class 5  Low  Land with low productive potential and /or permanent limitations which 

effectively preclude its use.  

Class X  Not applicable *  Urban, evaporation pans, quarry, water, rock, saline soil, reservoir, cliff, 

reef etc.  

Rules used to assign Land use potential mapping categories to Soil landscape map units 

Mapping 

category 

Rules to assign Land use potential mapping categories (Mapping data)  Order of 

assignment 

Aa If Class 1 > 60%  2 

Ab If sum (Classes 1+2) > 60% (and mapping category not already assigned)  3 

Ac If sum (Classes 1+2+3) > 60% (and mapping category not already assigned)  5 

Ad Class 3 > 60% and (Classes 1+2) < 1% (and mapping category not already assigned)  4 

B If sum (Classes 1+2+3) > 30-60% (and mapping category not already assigned)  6 

C If sum (Classes 1+2+3) > 10-30% (and mapping category not already assigned)  7 

D If sum (Classes 1+2+3) > 1-10% (and mapping category not already assigned)  8 

Ea If Class 4 > 50% (and mapping category not already assigned)  9 

Eb Any remaining map unit with mapping category not already assigned  10 

X If Class X > 70%  1 

Land use potential mapping categories 

Mapping 

category 

Proportion of land with 

moderate to high potential  

Most common potential class  

Aa More than 60%  High potential (mostly Class 1)  

Ab More than 60%  Moderately high potential (mostly Class 2)  

Ac More than 60%  Moderate to high (mixed)  

Ad More than 60%  Moderate potential (mostly Class 3)  

B 30-60%  Low to high potential (mixed)  

C 10-30%  Moderately low to low potential (mixed)  

D 1-10%  Moderately low to low potential (mixed)  

Ea Less than 1%  Moderately low potential (mostly Class 4)  

Eb Less than 1%  Low potential (mostly Class 5)  

X –  –  
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Appendix H – Multi-page set of printable maps for crop suitability predictions 
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