The Generalised Instrument
Dissertation for the degree of Master of Engineering Science

George Vokalek

January 27, 1991

Contents

Abstract X
Acknowledgements x1
Statement of Originality xii

1 Introduction 1
2 System Overview 4
2.1 Specificationso e s e 4
2.9 OVEIVIEW - o o o o e e e e e e e e e e e e e e 9
291 Software Overview : SPaM v vcv s 10

299 Hardware OVELVIEW . . o . o v o v v v oms o oo m s e 12

3 Hardware System Detail 13
3.1 Operations requiredo .13
3.2 Major Design Decisions oo 13
391 Selection of Basic Hardware Formato vvvv oo e 13

3.2.9 Selection of PCB Format« v o vv oo n v oo s 14

3.2.3 Selection of Signal Processor o «ov e e 15

3.9.4 Justification for a Control Processor« vcvccv 16

3.2.5 Analogue Front-end Performance oo o e 17

3.3 Implementation 25
3.3.1 Control PIOCESSOT . « « v v v v v o oe e e e e e e 27

3.3.2 Digital Signal Processor oo s e 29

3.3.3 Analoguefrontendo 31

4 Software Architecture 33

4.1 ReqQUITEMENtS v v o o v oo e 33
42 Major Design DeCiSIONS . . . o« o oo v s 34
4.3 HOSt SOFEWATE . o+« v v v o e e e e e e e 36
4.3.1 The Lexical Analyser. « . o v v v o oo oo oo 37
4.3.2 The PAISET .« o v v o v e e e e e e e e 38
4.3.3 The Program Execution Unit oo v oo 39
434 The Math Function, and Primitive Math Operation Libraries 42
4.35 The Graphics Libraryot 43
43.6 TheInput Event Filter 46
4.3.7 The GI Hardware Control Libraryo 47
438 OnlineHelp« o v i 47
4.3.9 SPaM as an Object-Oriented Environment oo ve e 47

4.4 Control Processor Software oo 48
45 DSP SOFEWATE . . « o o v o e e e e e e e s 50
4.6 Application Level Softwareo 52
5 SPaM Reference Information 57
5.1 SPaM : Philosophy of Design« o v v v v v in e e 57
51.1 The User Interface o oo v v v v v oo i i 58

5.2 SPaM Programming Language o« - o cce e s 61
591 Genmeral Rules« c it oo e 64
5.9.2 SPaM Entering Program Text : Script Files 65
593 SPaM Variables and Numbers oo o oo 65
594 SPaM Control Statementso 71
595 User Defined Functions o« oo o v oo 73
5.9.6 User Defined Handlers« v v v v v v v oo v o oo o n i m s 74
5.2.7 Shelling to MS-DOS oot e 75

5.3 The Graphical User Interface« oo v v v v oo e 75
53.1 Mouse & Keyboardo v i e e 76
53.9 The Console Window vt v v v v v oo o m o as e 76
5.3.3 The Backdrop Window« o v v oo v v s 78

11

5.3.4 Creating Screen Objects With Menuso v v v ee e e 78

5.3.5 Interactions with Screen Objects o o 0o oo v i 80
5.3.6 Programmed Generation of Screen Objects v ¢ v v v v v v e 89
5.3.7 Poster Mode . . . o v v v e i e e 94
5.3.8 Printing the Screen Contents to a Printer cov oo 95
5.4 Loading and Saving Variableso 96
541 SPaM diskfileformat o oo 96
5.5 Very Large Matrices o o oo oo i e e 98
55.1 Creatinga VLMot e 98
552 Usinga VLMt 98
55.3 Cachinga VLMt 98
5.6 SPaM Language Referenceo oo 100
56.1 SPaM Reserved Words and Symbols.o oo oo 100
5.6.2 Mathematical Functions o o oo i i s i e e 104
5.6.3 Generalised Instrument Control Functions cvv oo e 110
5.6.4 Graphics Management Functions« vvvv e 113
5.6.5 Program Flow Control oo 118
5.6.6 Disk Access Functions h e 120
5.6.7 Miscellaneous Functions« o oo s 121
57 Online Help . . . o o o v vt i e 125
Integration Issues 126
6.1 Aspects of the RS232 link between host and GI . . . s s e aom o s s 126
6.1.1 Link Error Management« oo n s e 127
6.1.2 Host to GI Synchronisation oo 127
6.2 Control Processor to Signal Processor Synchronisationo e 130
6.3 Integrating Software and Hardware o ..o e 130
System Evaluation 133
7.1 DSP Throughput oo v oo oo 133
7.1.1 A/D System Performance 134
7.1.2 Link Throughput« . . o oo v o s 134
7.2 Experience with the GI in a Teaching Laboratory . . . v v v v v vv e e o 134

1il

7.3

Areas for Future Progress« v v v v i i i s i e e

8 Conclusion

Bibliography

A The Generalised Instrument Hardware Design

Al

A2

The 68000 Control Processor Module v oo o oo i
A.1.1 Control Processor Module Specifications 00
A12 CON-0000 o e e e e e e e e e s
A 1.3 CON-0001 . . o o o o e e e e e e e e e e
Al4d CON-=0002 v o e e e e e e e e e
A15 CON-0003 . . .« o o o o e e e e e e e e s
A16 CON-0004 e e e e e e e
A7 CON=0005 . . o o o o e e e e e e e e e e e e e e e
A1.8 CON=0006 . .« v o o e e e e e e e e e e
A1.9 CON-0008 . . . o o o e e i e e e e e e
A1.10 CON=000D . . . o o ot e e e e e e e e e e
A 111 CON-00I0 o o i e e e e e e e e e e e e e e e e
A1.12 CON-0012 . . o o o o e e e e e e e e e e e e e e e
A 113 CON-0018 . . . e e e e e e e e e e e
A 114 CON-0014 . . . o o o e e e e e e e e e e e
The TMS320C25 Digital Signal Processor Moduleo
A.2.1 DSP Module Specifications o0 oh s
A292 DSP-0000 . . . o e e e e e e e e e e e e
A.2.3 DSP-0001 . . . o o o e e e e e e e e e
A4 DSP-0002 . . . o i e e e e e e e e e
A25 DSP-0003 e e e e e e e
A26 DSP-0004 e e e e e e e e e
A27 DSP-000D . . . o o e e e e e
A28 DSP-0008 . . . o o e e e e
A.2.9 DSP-000T . o o o e e e e e e e e e e e
A210 DSP-0008 e e e e e

138

140

141

A211DSP-0009 . . . o v e e e e e e e s 203

A212DSP-0010 . o v o o e e e e e e e e e 204

A213 DSP-0011 . . . v e e e e e e e e e e e 207

A2 14 DSP-0012 . . . o o e e e e e e e e n e e s e e e 208

A.3 A Prototype Analogue Interface Module oo 210
A.4 Guidelines for Designing New Modules v oo 214

B Control Processor Onboard Software 215
B.1 Interactive Monitor Commands ¢« v v v v e s e e e 215
B.1.1 Memory Displaying Commands 216

B.1.2 Memory Modifying Commands o 217

B.1.3 DSP Module Control Commands -+« o v v vt v a e 219

B.1.4 Commands for Data Transfer« oo v oo oo oo oo 220

B.1.5 System Control Commandso oo ot 220

B.2 Command Mode v v vt ot e e e e 221
B.2.1 Available Commands. o s i b e e s e e e e 222

C Creating a Virtual Instrument Using SPaM 229
C.1 Example TMS320C25 Code oo v oo cv v e 233

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

The Generalised Instrument System o o v v oo e 5
SPaM Graphics SCTeen o o v e e 11
Typical PC-card DSP System oo 17
DSP stand-alone syStem e e o e e e s e e 18
Analogue Interface block diagramo 18
Loss of A/D resolution in terms of =o 21
Loss of A/D resolution in terms of £2o e 22
FIR Filter and decimator+« o v v v o v e e s e e e e 23
Commutated FIR filter and decimator « . . oo v v oo oo oo e 24
Loss of A/D resolution in terms of w/we o oo 25
Major GI hardware modules oo e 26
Control Processor Module block diagram« o v v o cv v e e 27
Digital Signal Processor module block diagramcccee s 29
DSP and Control processor interprocessor port oo oo 30
A sample Sigproc SCript v i e e 34
Sigproc command self prompting 34
Sample SigProc codeo v i e 35
SPaM block diagram v v e u e e e e 37
SampleyaccTule 39
SPaM execution model L e e e e e e e 40
CRT WINAOW .« « o o o e e e e e e et e e e e e e e e 44
Graph WIndow o vt v v i s 45
Argand Windowo s 45

vl

4.10
4.11
4.12
4.13
4.14
4.15

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16

6.1
6.2
6.3
6.4
6.5

Al

C1

Buttons & NUMETICS . . « o v« v o o vm s s e o m e e e 46
Control Processor Software v oo v v v e n s s 49
DSP code execution SEqUENCE v v s e e e h s e aa e s s 51
Application generated graphics screen 53
Application script exampleo 54
Application script flow chart 55
SPaM execution lOW . . v v v e e e e e e e 59
Execution of commands from scripts o v v e 60
Nesting of script files oo oo 61
Chaining multiple input scripts oo e 66
MouUSE DULLONS + « « v v v v e e e e e e e e i e e e e e e e e e 77
Console window on graphic screen oo s 78
Creating a display window with the mouse v v ov oo 82
Moving/resizing graphics windows 84
SPaM button activabion« o« .o e e e e e e 85
Setting the value of a numeric o v 87
Making measurements in CRT window oo 88
Making measurements on argand Window c e 88
Graph before scaling o oo e 92
Graph following scaling o« oo 92
Graph showing waveform clipping . . « .. .o v v v v 93
Annotated poster displayo 95
SPaM software Jayers v v v oo n v e e e e e e 126
Host—=GI Data Transfer . . « v o o v oo v o v o v m v oo v mm s oo s s e be e 128
GI=>Host Data Transfer v oo v vt v o m v v oo e e s 129
Control Processor IDLE State o v v v v v v v v v oo v o 130
SPaM GI control SCript . . . « v v v v v v e e e 132
Prototype AIM block diagram« o oo vvvcoh s 211
A Digitiser / FFT Analyser Implemented with SPaMo e o 232

vil

List of Tables

9.1 Generalised Instrument Specifications oo e s s 6
3.1 Prototype AIM Specifications v v vt 32
4.1 Sample pseudOPTOIAM« o v v v b e e 41
4.2 SPaM numeric object attributeso 43
4.3 Example of type-dependent addition oo e 49
5.1 SPaM graphical screen objects . . .« ..o 62
5.2 SPaM predefined variableso e 71
5.3 Mouse Button Functions o v o o e e s e 76
5.4 Keypad key functionso e e 77
5.5 Menu for the Screen Backdrop oo e 79
5.6 CRT Window Menu Options« o oo v v oo v oo oo v n s 89
5.7 Graph window menu options e e .. 90
5.8 Poster MOde MEMU . . . « o « o o v v v e o e e e e 94
5.9 Various ways of printing graphics v o v oo e 96
5.10 SPaM file formato e e e e e e e e e 97
511 SPaM tOKENS« v v o e e e e e e 100
5.12 SPaM special symbols (0perators)ociecc e 102
5.13 SPaM special symbols (s & logicals)o oo 103
A.1 Drawing index for Control Processor Moduleo e 142
A.2 Control processor module specificationso e e e 143
A.3 Setting jumpers for EPROM capacity oo o 145
A4 Setting jumpers for RAM capacityo 145

viil

A5 EPROM & SRAM Address Map« .. oo oo 145

A.6 Jumpers for wait state controlo 156
A.7 System time intervals for various master clock oscillator frequencies. 159
A.8 Control Processor Memory Map« o v o v i v c e e 168
A.9 Control Processor control register bit assignments oo 173
A.10 Control Processor board status register 175
A.11 Drawings of the DSP Moduleo e 178
A.12 TMS320C25 DSP Module Specifications oo v oo oo e 179
A.13 DSP wait state JUMPET . . . « . o v v v v e e e 181
A.14 DSP Module Backplane Memory Mapo 185
A.15 Board Control Area Memory Map o oo 186
A.16 1O space address correspondenceo 186
A.17 DSP RAM type jumper settings« 194
A.18 TMS320C25 BIO’ signal SOUTCES . . . o o« o v v v v o v v e 200
A.19 DSP-accessible control register bit assignmentso 200
A.20 TMS320C25 onboard Interrupt sources« . o oo oo e e e 203
A.21 DSP Module Control Register o v 207
A.22 DSP Module Status Register« o oo 208
A.23 Prototype AIM Specifications 211
A.24 Production IOM Registers oo e 212
A.25 Production IOM PGA Gain Settings o oo v oo w213
B.1 Command Packet Structure« o oo e e 221
B.2 Valid Command Byte values.« ..o 222
B.3 Command Mode, Reset Modifier values 223
B.4 Command Mode, Hold Modifier Values oo 223
B.5 Command Mode, Download Modifierso oo 224
B.6 Command Mode, Download Command Field Assignments 224
B.7 Set-Baud-Rate Command Field Allocations« .o 227

X

Abstract

This thesis sets out and discusses the architecture of a signal processing system known as The
Generalised Instrument (GI). Composed of both hardware and software, the GI system is a viable
solution to the need for versatile measuring instruments which are not bound to any specific task.

By providing an integrated platform of hardware and software which lays the foundation of the
machine’s performance and interaction with the user, applications which fall within the bounds set
by this performance can be developed as high-level software applications, without the deep system
knowledge required for traditional programming. By using one hardware system, and a library of
application specific software, a wide variety of measuring instruments can be emulated.

Acknowledgements

The Generalised Instrument Project involved many people during its progress. The following techni-
cal staff contributed not only labour, but practical insights: Norman Blockley, Carmen Constantini,
Garry Cox, Keith Ford, Clive Fuller, Peter Hunter, Ian Linke, and Geoff Pook.

Gang Yun Yuan served as the first ‘test-pilot’ for the GI system, and has my appreciation for his
suggestions and criticisms.

My supervisor, Professor R.E. Bogner, has my gratitude for supporting the project through all of
its phases.

x1

Statement of Originality

To the best of my knowledge, this thesis is an original work, and contains no material accepted for
any other degree. Except where references are provided, no material is included herein which has
been previously published.

I grant permission for this thesis to be made available for loan and duplication if accepted for the
degree of Master of Engineering Science.

/ v George Vokalek

xil

Chapter 1

Introduction

As single-chip digital signal processors have become established, custom DSP hardware has become
cheaper to build, and a variety of programmable DSP hardware has appeared in the marketplace.
Software packages for signal processing have also become available at all levels, from the high-end
workstations to the low-end personal computers found on most engineers’ desks.

The systems of interest here are those in which software packages are designed to work in conjunction
with a hardware signal processing system. Many of the recent software packages are designed to
support the common DSP peripherals available for personal computers, aiming to provide a high-
level control interface to that hardware.

The Generalised Instrument consists of both a hardware DSP system and a software package to
support it on a host machine. There are important differences between the GI and other commercial
systems, not the least of which is the open architecture of the GI. Whereas commercial hardware
and software tend to come from different sources, the GI has been designed as an integrated system
where the connection between hardware and software can be made invisible to the user.

A programmable hardware acquisition and processing system, controlled by powerful yet intuitive
software, allows new instrumentation functions to be created with a minimum of engineering, and
with very low resulting reproduction cost.

The limitations of traditional, stand-alone instrumentation

e Modern laboratory techniques require sophisticated instrumentation. Some examples are fre-
quency domain analysers, storage oscilloscopes, transfer function analysers, and so on. The
cost of such equipment is high.

Much of this cost is replicated in a laboratory, since most instruments have similar front-
end (analogue and A/D) circuitry, and display circuitry. The major differences exist in the
processing of the signals which occurs between acquisition and display.

There is also the physical problem of having many boxes, with each having its own operating
procedures.

e Laboratory measurements must often be logged on a computer for storage or further analysis.
In many cases, a computer is required to support the instruments.

o Interfacing instruments to a computer often means writing support software to implement that
interface. This software, if internally written in the organization, is usually limited in features,
since it will have been written to fill a specific need. Should other features be required at a
future time, the software engineering is non-trivial.

By combining many test instruments into one ‘box’, the Generalised Instrument adds new features
which were either difficult to obtain, or simply unobtainable, in traditional stand-alone instrumen-
tation.

Advantages of programmable instrumentation systems such as the Generalised Instru-
ment

e reduced cost since only a single hardware platform is required to provide the signal acquisition
and processing system. The processing 1s programmable in nature. The cost of the hardware
is reduced to that of one "box’.

Provided that the required signal acquisition performance falls within the range of the GI, the
same hardware can be used for many instrumentation applications. Therefore, manufacturing
is reduced to one set of system components, reducing cost.

o integration of software into a single suite of PC software which acts as both the control scftware
for the hardware ’box’, and as a data analysis and display package.

The software provides not only the flexibility of a large number of built-in signal processing
functions, which can be used in an algebraic language, but also a graphical shell which provides
a simple interface to control emulated instruments. The front panel of an instrument can be
emulated on the PC screen.

e customisable behaviour, since the behaviour is controlled by software which can be easily
modified at relatively low cost.

o low replication cost. Once an instrumentation application has been developed for the GI, the
cost of manufacture of that instrument is virtually negligible, since the application consists of
software. Therefore, to existing users of the GI, new applications can be supplied at low cost.
The cost of development of software has lower capital cost and risk than hardware development,
making development more attractive.

e The hardware of the GI can be used for multiple applications simultaneously. The software
could simultaneously provide the facilities of multiple test instruments.

o If the hardware of the GI does not meet the performance requirements, a new module can be
designed to meet that performance, and be incorporated into the GI without interfering with
the GIs performance.

For instance, many different acquisition cards built for specific applications could coexist within
a single GI. Since the same base core GI hardware can be used, as well as the same host software,
there is no replication, and costs are lower, for this type of development compared to building
a completely new system for every application.

o As well as being useful for measurement-only tasks, the GI’s signal processor has the ability
to process signals in real time. By providing it with suitable signal output hardware, the GI
becomes a development system for DSP work, or indeed it could be embedded into a larger
(presumably analogue) system as a programmable component.

One application which comes to mind is that of control systems, where the GI's DSP could
digitally implement control strategies, or in telecommunications research (where modem algo-
rithms could be tested.)

Since the GI is a stand-alone unit, the host PC need not be connected at all times. Once GI
is set-up, the PC could be removed. Ultimately, the GI could be programmed to implement
only the user’s program from power-on. In this way, the same hardware would serve for both
fixed- embedded applications, and programmable ones.

The system described in this text is functional, and has been used successfully in undergraduate
laboratories for teaching.

It is important to note that the GI is a system, and not simply a signal processor with some at-
tached software. Importantly, the user can install the system and begin signal processing operations
immediately, since many of the required functions are already built in. The host software (SPaM,
an acronym for Signal Processing & Mairices) features a built-in algebraic language which technical
users can use with less practice than traditional programming languages.

Since single-chip DSP devices have become readily available, the emphasis has been on using them
for embedded applications where a complete hardware system is designed for each new application.
For research and teaching applications, such an approach is not acceptable since it implies high cost
and a delay in having functional hardware.

The alternative of purchasing PC peripheral boards offers a better solution, but still has two disad-
vantages of high cost (DSP products are still regarded as ’exotic’, with exotic prices) and limited
flexibility. The user is limited to whatever hardware facilities are provided by the manufacturer, and
whatever software is available to control that hardware.

At the high-end of the DSP marketplace, there are products with great flexibility. For instance, based
systems are available which allow control processors, signal processors, and acquisition systems to be
mixed and matched in unlimited configurations. However, attendant capital cost of such hardware
is high.

The GI hardware falls into a category midway between the expensive but flexible VME based
systems, and the cheaper but more restricted PC based systems. Being a card-based system, the GI
offers the flexibility of future expansion of the hardware capabilities, and using the PC as the host
gives the benefit of low cost to the user.

Chapter 2 of this work gives an overview of the requirements which shaped the design of the GI
system as a whole. The following chapters 3 and 4 discuss actual implementation issues of the
hardware and software separately.

A comprehensive guide to the PC software suite (called SPaM) can be found in chapter 5. Though
developed as part of the GI system, SPaM is a self-contained numeric processing package which
can be used without the GI hardware.

The issue of integrating the hardware and software into a manageable system is treated in chapter

6.

The electrical drawings from which the hardware was created are given in Appendix A. Appendix B
contains the detailed information about the onboard software of the Generalised Instrument’s control
processor, and Appendix C gives an example of a virtual instrument created with the Generalised
Instrument.

Chapter 2

System Overview

A diagram of a typical system using the GI is shown in figure 2.1. Those parts of the system which
are dealt with in this document are the GI hardware system, and the software which runs on the
host PC. The remainder of the system consists of standard commercially available computer and
peripheral equipment.

The specifications for the GI hardware and software follow. Unfortunately, the budget of this project
did not allow grand specifications to be written at the outset, and met in any way possible. The
requirement of keeping the cost of the final system low meant that goals had to be adjusted as the
design proceeded, tailoring it to what was affordable and available within reasonable time.

The question of availability is an important one. One of the principal goals of this project was to
design a system which would be manufacturable. In the A/D-D/A area especially, there are many
exotic components available which suffer not only from the disadvantage of high price, but from
poor availability (This is intolerable: if the delivery time is too long, a potential customer will reject
the affected product and go elsewhere). Such considerations are not technically interesting, but do
have a great bearing on the evolution of any system designed to be built in numbers greater than
one.

2.1 Specifications
The requirements set at the inception of the GI project were:

I It is required to build a system which will acquire, process, and display signals in a manner
which can be made to emulate common laboratory instruments, such as CROs, spectrum
analysers and other common instruments.

II It should be possible to create new applications without extensive study of the system.

III The signal inputs of the device are to allow signals in the range 0-500kHz, voltage levels in the
+10V range, and sampling rates of the order of 1MHz.

IV The system will be based around a low cost personal computer which will provide the keyboard
and display which the user will use to control the instrument, and view the results.

V Though it is to be used in conjunction with a host computer clone, the hardware of the Gl is
not to be dependent on the hardware of the host computer.

Host

Computer

=" ~., RS-—-232
Printer {
-]
Plotter :
Generalised Instrume’

CARD CAGE
ADC/DAC Control

Figure 2.1: The Generalised Instrument System

Requirement

Achieved

Fast Numeric Processing

10MIPS
Using a dedicated signal processor (TMS320C25) capable of exe-
cuting 10 million-instructions per second. Refer to section 3.3.2.

Program and Data Memory

64k-words each.

The full complement of 64k-words of local program and data mem-
ory is implemented in the TMS320C25 module. Refer to section
3.3.2.

Host Interface

RS232.
The link has a throughput of 57600kbps, equivalent to about 2800
samples (16-bit) per second. Refer to section 3.2 and 7.1.2.

Control Processor

MC68000.

One control processor per GI is responsible for managing communi-
cation between the host and the GI, and for controlling the system
on behalf of the host. The control processor can manage up to 15
additional modules. Refer to section 3.3.1

Analogue inputs in the range
415V, sampling up to 1IMHz

a 3dB bandwidth of 350kHz, and a maximum sampling rate of
1MHz.
Refer to section 3.3.3 and A.3.

Host Software

A suite of software called SPaM has been written. SPaM controls
the GI hardware, and features a built-in programming language.
Refer to section 2.2.1.

Functionality

Determined by software.

All functions are software controlled. Any application which falls
within the performance limits of the hardware can be implemented
as a software algorithm. Refer to section C. ‘

Hardware Architecture

Modular.

The various system modules are implemented on separate circuit
boards in a backplane based system, allowing systems to be cus-
tomised to particular needs.

Expandability

New functional modules can be added.

As a modular system, the GI allows new hardware modules to be
added to existing systems, or multiple existing modules to be added
to one system. Refer to section A.4.

Software expandability is implicit, since new DSP algorithms can
be written, and new SPaM scripts created to provide the interface
between the user and the signal processor. An example of the
necessary programming is given in appendix C.

Table 2.1: Generalised Instrument Specifications

VI The system is to have a high processing throughput, especially on numerically intensive algo-
rithms, such as those found in digital signal processing.

Items IV and V above define the basic environment in which the device will be working, and also
the way in which the device will be built. Some further consideration is required here, for instance:

1. As the Gl is to be used as a peripheral to a host computer, which host should be used? Clearly,
it should be a machine which is readily available, inexpensive, and common. The machines
which meet these requirements are

e The IBM-PC and clones.
e The Apple Maclntosh.
¢ Workstations (eg Suns).
e Mainframes (eg VAX).

In numbers sold, the IBM-PC, its derivatives and clones, is the most common computer in use
at the time of writing. The availability of most types of engineering software for this machine
makes it, in most cases, the machine of choice for engineers. For the software developer, the
PC marketplace offers low cost and high performance software development tools.

The Apple MacIntosh series provides a platform which in many ways is superior for the intended
purpose, since it supports a built-in graphical user interface which is essential for the GI.
However, it is less common in engineering establishments, and is more expensive, than the PC.

Workstations and Mainframes offer important features such as superior computing power,
multi-user and multi-tasking operating systems. However, the variety of machines and soft-
ware in this area requires greater effort to ensure that the GI is compatible with all possible
configurations. In the area of operating systems and graphical user interfaces, there has been
little standardisation until recently. The widespread acceptance of standard operating sys-
tems (such as Unix) and graphical user interfaces (such as X-windows) will make software
development on these systems more attractive in the future.

There are many other personal computers which have not been mentioned here. While some
are impressive in price (but low in performance), and others are impressive in performance {but
not in price), none offer the advantages of the mass-market computers listed above. A widely
used standard computer architecture, (such as the IBM-PC and its clones) has the advantage
that through competition (between various manufacturers and authors of software), it forces
prices to decrease, performance to increase, and software quality to improve as time passes.

In considering the economics of these various potential hosts for the GI, it is necessary to
include not only the initial cost of the hardware which the end user must purchase, but also:

e The cost of authoring software for the platform. Such tools as compilers and debuggers
are required. The quality of these tools is not automatically high. It has taken several
years (up to 5) for the current high quality tools to evolve for the IBM-PC.

o The cost of manpower to author and maintain software. By using a well established in-
dustry standard architecture, information and expertise become more commonly available
and therefore less expensive.

o The performance of the machine. If the host is lacking in computing throughput for the
desired operations, what are the options to increase the throughput?
In the case the machines listed above, most run in families which are fully compatible
with one another, but with different performance figures.
As an example, the IBM-PC clones currently on the market span approximately 2-orders

of magnitude in computing power, with a corresponding 1-order of magnitude range in
price.

e What hardware the user already owns. Most potential users of the GI would wish to
maintain compatibility with their current computing equipment.
New and alien computing hardware requires time to be allocated to training in its use,
and may result in increased delays if problems occur and need to be fixed.

The IBM-PC was chosen as the host for the GI. The next choice to be made is which operating
system to support. The PC market offers a variety of operating systems, including MSDOS
(the most common), OS/2 (still under development), and Unix (a highly fragmented market).
The reasons for choosing the PC, such as low cost and compatibility with available software
packages and hardware, suggest that MSDOS be the operating system used.

The rate of evolution in the PC market is very high. However, the magnitude of the existing
software market indicate that MSDOS based software will be supported and viable for many
years to come.

9. Given that the host will be a computer running the MSDOS operating system, most of the
hardware requirements could be met by existing, commercially available, plug in PC cards.

It was decided at an early stage to avoid building an internally mounted PC peripheral, since
such a device would be completely dependent on its host. Such dependence is not desirable
for several reasons:

(a) PCs are available which have few or no slots for peripheral cards. While the GI was in
the conceptual stage, one such PC was a likely host computer.

(b) The inside of PC represents an electrically noisy environment.

(c¢) Applications are envisioned where the GI would be used for an extended time as an
embedded part of a system. In such cases the host PC would be little more than a case
and power supply.

(d) Many users will need to install more cards within their PC than there are slots available.

(e) The rate of evolution of PC technology is so rapid that the user will probably change
hosts a number of times during the lifetime of the GI. Similarly, the large number of PC
variants available now and in the future means that hardware compatibility is always in
question.

A recent example is the introduction of the EISA bus, in which manufacturing tolerances
in PC plug-in-cards determines whether they will function correctly.

3. There will be users of the GI who wish to run the system with a host other than an MSDOS PC.
The most likely hosts would be unix-based workstations and PCs running OS/2. The design
of the GI as a stand-alone system means that costly redesign is avoided, and the customer
does not have to purchase entirely new hardware when she upgrades her host computer.

4. As a stand-alone box, the GI can be placed closer to the source of the signals it is to process,
without the associated host computer needing to be placed there also. The connecting cable
can then be run to the PC.

To meet specifications I and 1II, it is necessary to design the host software in such a manner as to
allow users (who are technically competent, but not necessarily expert in the details of the GI) to
construct new applications. To fulfill the dual (and seemingly contrary) requirements of flexibility
and simplicity, the host software will need to incorporate some sort of macro language’ which allows
the user to string together the high-level, easily understood, commands to obtain a desired result.

It is not sufficient to generate a library of, say, C-callable code which the user could use to produce
her own, standalone, programs. The reasons for this are multiple:

1. The user should not have to be proficient in any particular programming language. Program-
ming languages generally require a greater level of detailed understanding which is not directly
relevant to carrying out signal processing computations.

9. The user would be required to possess a particular type of (commercial) language compiler,
which implies added expense. The great number of compilers available on the market means
that either the SPaM library would have to be compatible with all (possibly implying multiple
libraries), or the user would be forced to buy a particular one.

Considerations of these requirements has led to a stand-alone system which incorporates a TMS320C25
digital signal processor, as well as a 68000 processor to control the system and communicate with
the host. A sophisticated software package has been developed as the interface between the user
and the signal processor. This package, called SPaM, features full programmability to allow the
generation of new and varied user interfaces without extensive programming.

Item VI of the requirements states that some form of specialised numeric processing circuitry be
used. It is not acceptable to use most microprocessors such as the 68000 for this task, since their
throughput in numeric processing is so low that only low frequency operation would be possible.

Acceptable alternatives are the use of semi-custom hardware, for instance bit-slice processors, and the
use of single chip digital signal processors, which are now available from a variety of manufacturers.
The single-chip DSP was chosen for the following reasons:

1. Single-chip DSP devices are now available which will reach performance levels of the same
order of magnitude bit-slice processors in the same silicon-technology.

Single-cycle instruction execution, memory caching, and other techniques are now becoming
standard features in DSP devices.

2. To achieve similar programmability and versatility, a bit- slice system would consist of much
more circuitry than a single-chip DSP.

3. The widespread use of single-chip DSP devices is pushing their cost down dramatically. Bit-
slice technology is more expensive, due to less widespread use and more complex designs.

For several years, modern microprocessors and digital signal processors have been converging in
respect to performance and architecture. Microprocessor designers have been implementing single
cycle instruction execution (the so called 'RISC’ paradigm), and separate instruction and data busses
(eg the AMD29000 series), while DSP designers have been providing richer instruction sets, larger
address spaces, and so on. The result will be that standard microprocessors will be suitable for
numerically intensive real-time tasks in the near future.

2.2 Overview

A block diagram of the GI system is shown in figure 3.9. The GI consists of hardware and software
components, which together with a host computer create the instrument. The computer supported
so far is the ubiquitous IBM PC clone, since this is probably the most widely used class of computer
used in engineering and research.

Running on the PC is an environment called SPaM, which provides the user with the following
facilities.

e An interpreter for performing algorithmic calculations.

o A graphical shell for displaying results, and interacting with the instrumentation hardware.
o Storage and retrieval of data to and from fixed media (eg hard disk.)

e Generation of hardcopy of the results on a printer.

The hardware of the GI consists of sets of circuit boards, each of which is a self-contained functional
module. Specific details are given in section 3, and in appendix A. A typical configuration includes
a control processor, a signal processor, and an analogue sampling board, as shown in figure 3.9.

2.2.1 Software Overview : SPaM

The suite of software which runs on the host is called SPaM, which is an acronym for Signal
Processing & Matrices. The software is not unlike the package MatLab, in that it provides the user
with an algebraic programming language which implicitly understands real and imaginary numbers,
vectors and matrices. These are the data types most commonly encountered in DSP work.

SPaM is built around a central compiler for its embedded language. The compiler can accept
input either from the user via the host’s keyboard, or from script files stored on disk. This allows
prepackaged applications to be stored on disk simply as scripts, allowing the system to perform
actions automatically without the user’s intervention.

The user may interact with the system through a text only interface, where algebraic expressions
are entered from the keyboard, processed by SPaM, and the results displayed to the screen. These
expressions may include builtin functions, user defined functions, and various standard mathematical
operators. In this mode of operation, SPaM 1s able to carry out manipulation of data vectors and
matrices as directed by the user. The text-only display is sometimes preferable to a graphic display,
the main advantage being more rapid text printing.

An alternative way of using SPaM is via the graphical shell. When operating in this mode, SPaM
presents the user with a graphical screen on which the user may open windows, and create objects,
to display various pieces of information. Arrays of data may be displayed in windows, and ’buttons’
may be created to call user defined programs when the user clicks on them. The graphical shell is
designed to work with both a mouse and keyboard.

Using the flexibility of the embedded language, and the uncluttered presentation offered by the
graphical shell, complex screen displays may be created to simulate familiar instruments, as shown
in figure 2.2.

As well as interacting with the user, SPaM handles interactions with the GI hardware. The GI
hardware interfaces to the host via an RS232 interface. The protocol used in the communication is a
packet based one. Packets (of variable size) containing commands, or data, are transmitted between
the GI and the host. An error detection and correction protocol is implemented by associating a
CRC! with each packet. If a packet is corrupted during transmission, the sender is informed and it
is resent.

Such a protocol raises the possibility of the GI and its host being remote from one another, con-
nected through some sort of data link (for instance, via modem over the dial-up telephone network.)
The error detecting and correcting features of the protocol provides the necessary immunity to
transmission errors over such a link.

1CRC is an acronym for Cyclic Redundancy Check, which is a validity value akin to, but more robust, than a
checksum.

10

kConsole Window

You are looking at the waveform and the spectrum of the function
y=sin(x/i) + cos(3¥x/i) + n¥noise

You may vary the value of i by clicking on the gadgets.

The value of % is equal to the array index at any p»oint.

free space 1979, free heap 101336

>u

S i S Sk s W S A S S A S A WA S S S B S T e W A S N S S TS S S s e R
e e e e o e T T T L L L L T T T T T T T T T LT LT
o e T L L L L L L T L L L L T T T T LT LI

RT e e T T L T T L L LT T T T LT T LT LT T T
i P S S i W A S B S P e S D (A A 550 SBNS SN N S S O N I)

CONSOLE WINDOM

BUTTON
GRAPH
Mmagn
1 ."V portrait n_dec
NUMERIC
n_ine
-3.01
maglog
-0
—69 AAARRRIERD] Ty IEAARRINNNARENNE] LA LA LAAL T
1 Al LAY LA T L} L) LALLAJ LA LA LiLJ 64

Figure 2.2: SPaM graphics display screen, showing waveforms and
control buttons.

11

2.2.2 Hardware Overview

The GI hardware is a ’black box’ which attaches to the host computer via an RS232 connection.
The GI box contains hardware modules which perform specific duties within the system:

1. The control processor module. This is responsible for overall system control, and communica-
tion with the host.

2. The signal processor module. This module contains a single chip digital signal processor, which
performs the mathematically intensive operations.

3. Signal acquisition module. This is the A/D and D/A interface board. The current module
connects to the DSP board to provide the analogue front end for the signal processor. The
design of this module is critical to the overall performance of the instrument, but unlike the
digital circuitry it is difficult to design with certainty.

A block diagram of the GI hardware is shown in figure 3.9.

Providing that the signal parameters fall within the performance limits of the GI hardware, the op-
eration of the hardware is transparent to the user. In cases where extended performance is required,
additional hardware modules can be mated to the GI, and appropriate software modifications made
to support them.

12

Chapter 3

Hardware System Detail

This chapter looks in more detail at the architectural aspects of the hardware component of the GI.

3.1 Operations required
The basic operations and features required of the GI hardware are summarised below:

1. To provide an interface method to the host computer.

2. To provide a protocol and command set over that interface to allow the host to command the
GI to perform specific actions.

3. To provide a means of transferring data to and from the GI over the interface.

4. To provide a connection to analogue signals, both as inputs to the GI, and outputs from the
GL

5. To build the GI around a fast DSP device which allows the rapid processing of signals. The
results of the processing are to be sent to the host for inspection by the user, or used to
generate an output from the GI in real time.

3.2 Major Design Decisions

In this section some of the major design decisions are discussed and clarified. In a large system
such as the GI, there are often alternative ways of doing things. Making the correct choice is often
difficult, since bad choices are invisible until the system is either in manufacture or active use.

3.2.1 Selection of Basic Hardware Format

Should the GI be built as a PC peripheral card, or a stand alone unit?

This questions was addressed in section 2.1, and the main points are reiterated here. It is desired
that the GI be physically independent of its host so that it can be used with any host.

13

The only host computer currently supported is a IBM-PC compatible running the MSDOS operating
system. The majority of such computers are equipped with multiple internal slots, which could be
used for a plug in card. However, there are classes of PCs which have either limited or no slots.
At the time the GI was being designed, a likely host seemed to be the locally produced Microbyte
PC230, which is limited to one or two internal short cards, these being insufficient to hold all of the
GI circuitry.

Another class of potential host is the laptop or portable PC, which is becoming more common as
costs fall. Such PCs provide PC compatibility in a portable briefcase sized unit, and would be
suitable portable hosts for a portable GI.

There are two common interfaces provided by virtually all PC compatible computers, even those
mentioned above. They are the Centronics compatible 8-bit parallel interface, and the RS232 serial
interface.

It was decided to use the RS232 interface to communicate with the GI after considering the most
common uses for these ports. On the majority of PC computers machines, the parallel port is used
to drive a printer. Since the majority of PCs feature only one parallel Centronics port, this port is
unavailable in many cases.

The RS232 interface is universally available in the commercial computer industry. By being separate
from the PC host, connecting to it via a standard interface, the Gl is better able to resist obsolescence.
When the host is superseded by the next generation of PC, the user can be assured that (for the
foreseeable future) an RS232 connection will be available to facilitate connection to the GI.

The majority of computers have, or are capable of having, two R5232 ports. One of these is required
for the GIL.

The majority of R5232 ports on PC-compatibles use an Intel 8250 compatible UART, which is
capable of transmission at 57600bps and higher. This speed corresponds to about 5.8k-bytes per
second.

In a typical application of the GI, spectral analysis is performed on a signal using a 1024-point FFT
algorithm. The results of the calculation will be 512 16-bit integers representing the magnitudes of
the signal in 512 frequency bins. Thus 1024 bytes must be uploaded to the host PC for display,
corresponding to a delay of 0.2 seconds.

In practice the delay between screen refreshes will be longer, due to host-processor intensive op-
erations such as screen updating, and the transfer time will lose its dominance in determining the
response time of the system.

Even so, the serial port communication does represent a bottleneck for the transfer of large amounts
of data. To overcome this, a parallel port will be designed into future versions of the GI to speed
the transfer process.

The universality of the RS232 interface means that computers running the Unix operating system
could become hosts for the GI. Such hosts would allow a major leap forward in the host software,
due to the more advanced nature of their operating systems (eg multi-tasking), and graphical user
interfaces.

3.2.2 Selection of PCB Format

Should the GI be designed as a one-circuit-board or multi-board system?

This is an extremely important question, since it plays a large part in determining the economics
and manufacturability of the the hardware.

14

The prototype of the GI was designed as one, large printed-circuit board. The rationale was to
minimise the interconnections required, and the cost of a cage to hold multiple cards.

A constraint imposed by the limited budget was that only 2 layer PCBs could be used (due to the
prohibitive! cost of multi-layer ones). The side-effect of using 2 layer boards in processor circuits is
that the component density on the PCB becomes low, since much area is required for the routing
of data, address, and control busses. For a circuit with a large number of components, this results
in a large PCB.

An obvious means of reducing board space is to use multiple boards, connected via a backplane bus.
This adds cost by increasing the cost of connections, and card cage, etc. However, since the busses
have been moved offboard, each circuit board can be more densely populated, even using 2-layer
PCB technology.

The added benefits of multiple circuit boards, as compared with a single board, include:

o Easier assembly.

o Easier testing, since there is less circuitry per board to test, and a test-jig can be constructed
in which all boards which are present are known to work correctly, allowing one new board to
be plugged in and tested in an otherwise fully verified system.

e Expandability. The user may design new cards to fit into an existing system, so that new
functions can be added to the system. For instance, since the digital signal processor is
isolated on its own board, other boards could be designed for other signal processors, and yet
would work within the same system. Alternatively, multiple DSP boards could be fitted in the
same system, allowing an MIMD (Multiple-Instruction, Multiple-Data) multiple-processor to
be built.

o Selective evolution of modules. Modules can be individually redesigned without affecting the
rest of the system. This feature allows the GI to keep pace with technology by minimizing the
amount of redesign which must be done.

e Standard enclosures may be used, if an industry standard card format is adopted (as has been
the case.)

e Higher component density on each circuit board means a lower overall volume, resulting in
a more compact device. For 2-layer PCB technology, the multi-board system allows higher
component density than a single board because the wide system signal busses are moved onto
the backplane. Areas occupied by busses cannot generally be used for other circuitry, resulting
in low overall density.

3.2.3 Selection of Signal Processor

Which Digital Signal Processor should be used?

When choosing a DSP device for any particular application, the designer must weigh up a number
of factors.

1. Performance of the DSP device in the intended role.

2. Cost of the device itself.

1T illustrate the point, the 2-layer prototype boards which were produced cost $70 each. A corresponding 4-layer
board would have cost $500, and 6-layer board $700 each.

15

3. Cost of placing the device in circuit, ie are any special mounting techniques or hardware
required.

4. Cost of software tools (compilers, assemblers, simulators, etc).

5. Availability of the devices.

During the early design stages of the GI, the TMS320C25 was one of the few readily available and
well supported signal processors available, and it was consequently chosen for the GI.

Since then, other signal processors have become available which have comparable architecture, and
higher computational performance. Experience with the prototype GI, however, demonstrated that
when the host computer was involved in the data-flow process (as in transferring data to the host
and having that data displayed on the screen), the computational performance of the DSP in the
GI was not critical, since the main bottlenecks were elsewhere in the system.

The unit cost of signal processors, like other semiconductors, decreases with time as volume pro-
duction and distribution take effect. During the course of this project the TMS320C25 unit cost
has dropped from over $200 to about $70. A major contribution to cost is the package in which
the device is sold. A pin grid array is generally the first package type released, but is expensive to
manufacture. Once demand for the device exists, and the silicon has been finalised, less expensive
plastic packaging (such as PLCC) is released. The recent release of new versions of the TMS320C25,
featuring higher clock speeds and more internal program and data memory mean that the perfor-
mance of the GI will be suitably increased. These new processor versions are pin compatible with
their ancestors, so PCB redesign is unnecessary.

While other manufactures had devices whose performance exceeded that of the TMS320C25 in many
areas, other considerations weighed against them. The lack of available production silicon, was (and
continues to be) a major problem.

3.2.4 Justification for a Control Processor

Should a separate control processor be used, or should the Digital Signal Processor be
the sole processor in the system?

The purpose of the control processor is to be a fixed servant of the host computer, allowing the host
computer to exercise complete contro] over the signal processor(s), and any other system components,
even if those components go out of control.

For instance, if the user’s DSP code is somewhat ’experimental’ and unstable, it would be very
difficult to regain control of the DSP without being able to perform basic tasks such as asserting the
RESET signal to the signal processor. A plug-in PC card has access to the necessary signals from
the host, but a stand-alone unit requires some reliable way of converting the command-stream from
the host into hardware actions.

Were the GI to be built as a PC plug-in card, there would be no need for a control processor as such,
since the PC itself would fill that role, as shown in figure 3.1. The arguments against building the
GI as a peripheral card for one type of computer have already been presented, and so the problem
of reliable overall control of the GI system remains.

Without a control processor, basic tasks such as the transfer of data from host to Gl would have to
be performed by the DSP itself. While it could perform such tasks with little difficulty, this would
require that the DSP code for such operations be kept in ROM in the GI. The code in this ROM
would not be trivially small, and would decrease the (already small) memory available (64k) to the
signal processor for signal processing code. This could be cured by using various memory mapping

16

Digital to Analogue| |Analogue to Digital

$:

Digital Signal Processor 1
; Control
Registers
DSP Memory Array
§ §
IBM PC Expansion Bus

Figure 3.1: A typical PC-card DSP System. The PC host performs
all system management functions.

schemes, but one is still left with the possibility of the system entering a state from which it cannot
be remotely removed.

Communication with the host computer is a task accomplished under software control by a processor
(hypothetically, the signal processor itself), as in the system shown in figure 3.2. The processor must
receive command and data packets from the host, and transmit data packets to the host. Actions
specified in the command packet must be carried out. All of these operations require processing
time, which is then unavailable for the execution of signal processing algorithms.

Conceptually, it may be possible to integrate tightly the system management and signal processing
software to achieve the required performance. However, this defeats a design goal of the GI which
was to design a system where new applications could be prototyped very quickly.

The presence of a control processor (figure 3.9) in the system gives a great deal of flexibility in the
control of the system. The DSP need not be affected at all by communication between host and
GI. Indeed, as is described in the later sections, the communications between the DSP and control
processor are such as to impose as little delay as possible on the DSP when transferring data to the
host.

A control processor is essential for a multi-DSP system, which can be produced with the current GI.
Signal processors can then be individually accessed and controlled without any effect on the others.

3.2.5 Analogue Front-end Performance

What should be the performance of the analogue front end?

Prototypes of the GI revealed that the analogue front end of the DSP systems is really the most
important part of the system (on a par with the user interface). The analogue front end determines
what magnitudes and bandwidths of signals can be acquired, and therefore almost entirely defines
the performance of the system in these areas.

17

t . . Signal In
To Hos Link j ++| Analogue to Dlgu.al._g—-

+| Digital to Analogue Signal Out

DSP

Fixed Program
ROM ™

(Bootstrap Code)

Writable Program
RAM

Writable Data
RAM

Figure 3.2: A stand-alone system could be built around the sig-
nal processor alone, but there the requirement to perform signal
processing and system-administrative tasks would limit the capa-
bilities of such a system.

There are several important issues which must be addressed in the design of a analogue to digital
interface system. These are

Input lSignal

Input Protection

}

Programmable Gain
¥
Programmable Offset

'
Anti-aliasing Filter

'

Sample and Hold Voltage
Sample Clock | A toKl):) Converter Referegl;lce

Di;éita] Signal
Processor

Figure 3.3: Analogue Interface block diagram

18

1. Acceptable input signal amplitudes.

The restrictions of analogue circuitry limit the internal signals of the GI to a range of £12V.
There will be further restrictions imposed by specific parts of the system, such as the A/D.

A greater input range can be accommodated by using resistive attenuators. at the input. On a
CRO or similar instrument, such attenuators are controlled by a multi- position switch. Since
the GI is to operate as an autonomous device, the switching must be done with relays.

Solid state switches should not be used at this front, since they will either be susceptible to
overload, or will detrimentally affect the bandwidth of the system (due to internal on-resistance
(and capacitance).

There are several points flowing on from using a resistive divider at the input:

o The resistor chain must not significantly load down the circuit under test. A high input
impedance can be achieved by allowing the input attenuator to be switched out of circuit
completely when not needed.

o The resistor chain resistance must not be so high as to combine with parasitic capacitance
to form a low-pass filter.

o The buffer amplifier following the divider must be of high input impedance, and low input
capacitance.
The poles created in the transfer function of the input by resistance (from the attenuator)
and capacitance (parasitic) will cause low- pass behaviour. This effect can be alleviated
somewhat by using feed-forward capacitors.
Compensating values must be determined from circuits once built, since the parasitic
capacitance will be largely distributed, requiring a test and set procedure during manu-
facture.

2. Input overload protection.

While it is not difficult to protect against slight overloads by clamping the input voltage to the
power rail using diodes, it is less easy to protect against order-of- magnitude overloads (such
as connecting 240V to the input.)

The aforementioned attenuators would provide such protection if used properly (eg start with
the highest attenuation when measuring an unknown voltage.)

Probably the most cost effective means of protection is to minimise possible damage rather
try to prevent it altogether. This can be achieved by having attenuators, in which case it is
only resistors which are destroyed by an overload, and by placing a buffer amplifier between
the input and expensive converter ICs. In this way, cheaper components are sacrificed before
the overload can reach the expensive components.

3. Programmable gain control

In order to obtain the highest possible signal-to-noise ratio in the conversion process, it is
necessary that the signal occupy as much of the A/D converter’s input range as possible. To
effect this, programmable gain is required.

(a) For practical reasons, 1LSB of the A/D converter should not be less than 1mV. Below
this level, induced noise will be expensive to eliminate.

(b) A programmable gain amplifier will amplify not only the signal voltage at its input, but
also the input offset voltage. For this reason an offset subtraction mechanism must be
provided.

(c) For a converter with a full-scale input range of 3V (typical, eg AD7870), a gain of 100
will cause a full-scale reading for a 30mV signal. Gains in the range 1 to 200 will provide
resolution comparable to standard oscilloscopes (eg 1mV/div). Input attenuators will
provide the sub-unity gain needed for signals of amplitude larger than the input range of
the converter.

19

4, Input offset adjustment

Rarely does a signal have zero DC component. To allow the full use of an A/D converter’s
input range, it is necessary to remove the DC component so that the AC component can be
acquired. This is done on an analog CRO by use of a capacitor coupled input, or vertical trace
position controls.

A capacitively coupled input has the disadvantage that it adds a zero to the input transfer
function, resulting in high-pass behaviour. One of the great advantages of digilal signal pro-
cessing over processing in the analogue domain is its suitability for very low frequency work.
Capacitive coupling at the input would destroy this ability.

Instead, the DC component can be removed by generating an offset voltage using a D/A
converter, and subtracting that offset from the input signal.

Such a scheme has the added advantage of being able to accurately zero the instrument for
any configuration. For instance, in the prototype it was found that programmable amplifiers
amplify their input offset voltages, as well as the input voltage. Unless this amplified offset is
removed, the useable range of the A/D converter is reduced.

5. Signal bandwidth, Sampling rate.

When designing A/D interfaces, it is not sufficient to simply ensure that the A/D samples at
the Nyquist frequency implied by the signal bandwidth.

There are two bandwidth limitations imposed by any acquisition system. The first and most
obvious is the maximum frequency of the input signal as dictated by the Nyquist sampling
theorem. This imposes the limit that the input signal may contain no frequencies higher than
one-half of the sampling frequency.

The second bandwidth limitation is that imposed by the analogue preprocessing circuitry which
preceeds the A/D converter, and the analogue bandwidth of the converter’s input stages®.

The input circuitry to the sampling system is typically a combination of passive and active
components: resistors, inductors, capacitors, and op-amps. The passive properties may be
lumped in physical components, or distributed, as in the PCB tracks forming the connections.
The result of these components is multiple poles in the input transfer function, leading to
low-pass behaviour. Note that this low-pass behaviour is distinct from the anti-aliasing filter.

Now to ensure that the analogue circuitry does not interfere with conversion, any cutoff frequen-
cies must lie far above the Nyquist frequency. The relationship of the input circuit bandwidth
to signal bandwidth will be explored in the following paragraphs. The intention is to determine
what effect a realistic input circuit will have on the measured signals.

Consider the case of an M-bit A/D converter. Suppose that the converter is preceeded by a
N-th order low-pass system, whose transfer function is simplistically modeled as

1

Hjw) = ——%
(jw) (1+]'%N

(3.1)

Let us further assume that the anti-aliasing filter has a very steep cutoff, so that the A/D
converter can convert signals all the way to its Nyquist limit, given by E-Z-i

Now, let us inject a sinusoid of amplitude 2M units into the system, which would, if unat-
tenuated, fully exercise the converter’s dynamic range. The presence of the analogue filter
will, however, produce attenuation so that the amplitude the converter sees is 2™, for some m

(where 0 < 2™ < 2M).
0 1 4
L _ogm-M [+
5 = 2 <1+(;‘”z 2) (3.2)

2Note, this is distinct from the Nyquist frequency, and is determined by the analogue properties of the A/D
converter

20

Since the original signal was of amplitude 2M and the resulting measured signal has an
amplitude of 2™, we can consider the quantity (M — m) to be the number of bits of resolution
which has been lost by the system, due to the action of the analogue preprocessing. For
instance, if the input circuitry halves the signal amplitude at the working frequency, only one
half of the A/D dynamic range will be exercised, and one bit of resolution will be lost. Let us
define

Mposr = J]\vl—m
Tlog,(1+(22)%)

The graph in figure 3.4 shows the nature of this function. The above expression is not yet
meaningfull because it does not relate to the sampling rate of the system.

(3.3)

It is worth noting that figure 3.4 is somewhat deceptive. The loss of resolution is from the
most significant bit of the converter. Thus, a loss of 1-bit of resolution means a halving of
input signal amplitude.

Lost bits as function of w/wc for real pole, order N

-

I

o
T
222222

0 | | ! |] |

0 02 04 06 08 1 1.2 14 16 138 2
w/wc

Figure 3.4: Loss of A/D resolution in terms of 3=, for the real-pole
system of equation 3.1.

We can incorporate the sampling rate by setting w = ws/2, where wg is the angular sampling
frequency. In effect, this tells us the number of bits lost at the Nyquist rate, which represents
the maximum possible signal frequency which the system is permitted to sample.

We now rearrange equation 3.3 to be dependent on a new variable, k = wc /wg, to give equation
3.4. The graph of the function is shown in figure 3.5. This graph shows, for a given ratio of
system cutoff frequency to sampling frequency, the number of bits lost by the system.

Mnyquist = % log, (1 i (27“)_3)_2))
(3.4

= ZXlog, (1+(2k)7?)

Equation 3.4 is valid for all values of %< > 0. For values of k = wc/ws close to zero, the
argument of the logarithm will be large and the resulting loss in bits will also be large. The

21

reason for this is clear: if the analogue circuitry has a cutoff frequency much lower than the
sampling rate (so that wc/ws = 0F), then the attenuation at the Nyquist frequency will be
high, and MyyquiIsT will also be high.

Conversely, for a value of k = wc/ws which is very large, the argument of the logarithm will
be marginally greater than one, and the number of lost bits will approach zero. Again, this
is reasonable, since analogue circuitry will not greatly affect the sampled signal if the 3dB
bandwidth is many times greater than the sampling rate.

It should be noted here that the number of bits lost, eg Mrost or Mny gursT are subtracted
from the resolution available. For instance, if the system uses a 10-bit A/D converter, and is
preceeded by a 2nd order analogue circuit whose cutoff frequency is one half of the sampling
rate (k= 0.51n equation 3.4), then MyyquisT = 1. Therefore, at the Nyquist frequency, our
10-bit converter becomes a 9-bit converter.

Since a negative resolution is meaningless, the number of bits lost in practice cannot exceed
the number of bits which are physically available.

Lost bits at Nyquist frequency, as function of w¢ Jws

16 T T T T T
14 - Noy A
12 I]:I:i A
10| NZ§ — -
8 |- b
6 |- Y
4 b i
2 J
0 4

0 0.5 1 1.5 2 2.5 3

we /ws

Figure 3.5: Loss of A/D resolution as a function of ¥, for real-pole
system described in equation 3.1.

Clearly, the higher the cutoff frequency we, the less will be the effect of the analogue system
at low frequencies below Fs.

The essence of this information is that the analogue system must generally have a bandwidth
far greater than the maximum sampling rate in order to maximise the effectiveness of the
converter. The situation is complicated further by the presence of the anti-aliasing filter
(discussed below), which must have a cutoff frequency of Fs/2.

While the analogue circuitry determines the system bandwidth, it is the digital circuitry which
determines the maximum achievable sampling rate.

A choice must be made whether the sampling is to be performed as an action of software
(executed by the DSP), or is to be implemented as a hardware feature. The former option has
the advantage of low cost, and is limited by the speed of the DSP device. The latter has the
advantage of much higher sampling rates, at the expense of circuit complexity and cost.

The software sampling option is the one chosen for the initial analogue module for the GI.
With the TMS320C25 clocked at 40MHz (thereby achieving 10MIPs), a maximum sampling

22

rate of approximately 1MHz is achievable. At such a high speed, the DSP is doing nothing
but moving data from A/D to memory. At lower sampling rates, the intersample time may be
sufficiently long to carry out processing.

. Anti-aliasing filtering
For a system such as the GI, the anti-aliasing filtering provides particular challenges.

As outlined in the previous section, the sampling rate of the system may vary over six or more
orders of magnitude. To devise an antialiasing filter capable of variation over the same range
would be very difficult, and not economical.

For low frequencies (eg 0-100kHz), a viable solution is provided by microprocessor programmable
switched capacitor filters. Such devices are available commercially, and allow programmed fil-
ter response over that range.

For higher frequencies, the only viable alternative is the use of switchable filter banks. Such
filter banks would be tuned for particular cutoff frequencies, and would be switched into the
signal path as appropriate. The economics of such filters would limit the choice of cutoff
frequencies to a small number.

Following a different route, antialiasing filtering could be performed digitally by oversampling
the signal, using a digital filter process to band-limit it, and decimating the filter output to
the desired (lower) sampling rate. The only antialiasing required in this case would be at the
high (oversampled) sampling rate. If the high speed sampling were always to be performed at
the one, high rate, then only one analogue filter would be required.

There are some difficulties with this technique. In order to preserve desirable linear phase
characteristics, the digital anti-aliasing filter of choice is an FIR filter. However, to achieve a
rapid cutoff, the filter needs many taps. Using brute-force, the FIR will need to be processed
once per input sample. ie many taps at a high rate. Using current signal processing devices,
the primary sampling rate would be limited to tens of kilohertz. For this frequency range
solutions are available using switched capacitor techniques, so nothing is gained.

Signal In
T|T S T
Fs
! :
hy | [h2 o fn M:1
' Decimator
o Signal Out
T e[S0
FIR Filter =

Figure 3.6: Cascaded FIR Filter and decimator. This implemen-
tation is not efficient, since for every one output sample, M FIR
outputs are generated, and M — 1 outputs of the FIR filter are
discarded.

However, by applying a commutation operation to the combination filter and decimator, an
alternative representation of the system is produced.

By commutating the coefficient weighting operations of the traditional FIR structure with the
decimation operation which would follow it, we arrive at a modified FIR in which the decima-
tion operation precedes the coefficient weighting operations (see figure 3.7). The important
result of this is that the FIR computations (multiply-add) need only be performed at the
decimated (ie lower) output rate of the filter[7].

23

Signal In

T T T
F
A Fs]
UM JlM| 5w UM| M:1 Decimators
s Fe
5 1 &1
hy ho e hn | FIR x+ operators
El Es
1 | M4 i
Signal Out
+ =
M

Figure 3.7: The FIR filter and decimator in figure 3.6 has been
modified by commutating the decimation and multiply-add opera-
tions. This yields a much more efficient system in which the time
consuming operations (multiply-add) are performed at the output
rate, which is M times lower than the input rate.

For a decimation rate of M, M less computations are required for this new structure than for
the unmodified one. A further reduction in the number of multiplication operations can be
achieved by exploiting the symmetry of the FIR impulse response.

The resulting reduction in computation allows much higher primary rates to be achieved. The
benefit of a higher primary sampling rate is that the primary anti-aliasing filter can be of low
order, since it has an extended frequency range (between the highest frequency of the signal
which one wishes to retain, and the primary sampling frequency.)

Whatever the technique used to achieve anti-aliasing at the final sampling frequency, the
system will need one primary analogue antialiasing filter. The discussion of system bandwidth
in the previous item suggests that the slow roll off of the all-real-pole filter makes it unsuitable
for this role.

A better filter is the Butterworth[9] filter. An N-th order butterworth filter has the desirable
properties of maximal flatness in the passband, and relatively low variation in group delay in
the transition region. A near-constant group delay (analogous to a linear phase characteristic)
ensures that the filter has an acceptable transient response. This is necessary to ensure that
accurate time domain representations of waveforms can be recorded by the GIL

The characteristics of the Butterworth filter are shown in figure 3.8. Even for a 6-th order
filter, considerable aliasing will occur unless the cutoff frequency is moved to Fs/3 (for an
8- bit converter.) This will allow the use of 66% of the converters bandwidth for valid signal
measurement, with the remaining one-third being the transition region of the antialiasing filter.

. Sampling precision

Being a sampled data system, this module will have a finite sampling precision, usually either
12 bits or 8 bits. Converters of 8-bit precision are available with very high conversion rates (eg
9200MSPS in the case of the AD770). Such rates are achieved by employing flash conversion
techniques, which use one voltage comparator for each of the possible output codes of the
converter (256 in the case of 8-bit), and a priority encoder to generate the resulting binary
code.

Flash 8-bit converters with conversion rates of 20MSPS were used in the prototype analogue
interface of the GI, The high speed of the flash converters is achieved at the cost of silicon area
on the die: a single extra bit of precision requires twice the components. An additional penalty

24

Lost bits for Nth order Butterworth, as function of w/wc

-3

o

]
222222
I U
Oy O QO N =

0 1
0 02 04 06 038 1 1.2 14 16 1.8 2
w/wc

Figure 3.8: Loss of A/D resolution as a function of w/wc, for N-th
order Butterworth filter.

is the need for accuracy in the reference voltages supplied to the voltage comparators within
the flash converter, to ensure the linearity of the device. These two factors have prevented
flash techniques from being scaled to arbitrary precision.

While 20MSPS flash converters are relatively common, higher precision flash converters are
not. Devices of 12-bit precision are now appearing on the market which employ a two step
flash conversion process, where the first step provides the six most significant bits, and the
second step the least significant 6-bits.

As well as converters, associated circuitry such as voltage references and sample-hold amplifiers
are required. Fortunately, there now exist integrated sampling converters which combined all
of these features.

At the time of design, fast (>1MHz rate) 12-bit converters are still prohibitively expensive for
use in the GI. However, lower sampling rate (100kHz) 12-bit devices are expected to be used
in future analogue interface designs.

3.3 Implementation

This section discusses the detailed implementation issues of the hardware. An architectural overview
of the whole system is shown in figure 3.3. The system is card-based, which provides a considerable
degree of flexibility in that new boards can be incorporated into the system without difficulty.
Multiple boards of the same type (for instance multiple DSP boards) can coexist in the one system,
allowing the system to be easily configured for more specialised applications.

A block diagram of the major GI system modules is shown in figure 3.3. The backplane bus does
not conform to any industry standard, since considerable engineering effort (ie cost) and circuitry
is required to conform to present 16-bit bus standards. The bus is an asynchronous one, largely
based on the 68000’s external timing. It is a single master bus, capable of addressing 16 megabytes
of address space. The data paths in the system are 16-bit.

25

Control Processor
Link to host Module
computer
Signal Processor
Module B
System
Backplane
Signal Output Analogue Interface Bus
Module ==
Signal Input
Future Modules -

Figure 3.9: Major GI hardware modules

The control processor acts as the slave of the host computer, and controls the GI according to
commands transmitted from the host. In normal operation, the processes are invisible to the user,
who simply sees that the appropriate data has been displayed on the screen.

In some cases the user will need to see more deeply into the system, as in the process of software
development for the signal processor. The control processor aids in software development by allowing
the user to inspect in detail the program and data memory areas of the TMS320C25. The signal
processor’s support for multiprocessing (specifically, its ability to hand control of its busses over to
another processor) allows the user to examine program and data memory before, during, and after
DSP program execution.

As well as being useful for software debugging, this feature is useful for the following reasons.

1. The ability to load program code into the TMS320C25’s program memory without intervention
from the DSP allows the whole 64k words of external program memory to be implemented.

If the program memory could not be accessed from outside the DSP module, the signal proces-
sor would need to be supplied with bootstrap code in ROM. This bootstrap code would then
communicate with the control processor to move downloaded program code into the DSPs
program Imemory.

The presence of such bootstrap code would reduce the address space available for downloaded
code. It would also mean that 3 distinct operating systems are involved in the GI (the host,
the control processor, and the DSP), adding undesirable complexity.

2. Since the input/output ports of the TMS320C25 share the same address and data busses as the
program/data memory, the control processor can directly access real world interfaces (A/D,
D/A, digital ports) without the DSP.

This is feature is essential when the user needs to verify the correct operation (or calibration)
of interface hardware without having to write DSP software first.

26

3. Test during manufacture. A test-jig can be created with a control processor and backplane
assembly. The control processor can be programmed to fully test all circuitry on the DSP
board, allowing any fault to be localised.

3.3.1 Control Processor

SCSI Interface
(Implemented but presently unused)

RS232 to..lffl Host Interface Ports

CPU Activity and Inactivity

Monitor
Local
64k bytes CPU Operating System %{?Sdlﬂe
ROM

64k bytes CPU scratch RAM

|7 68000 CPU |

Backplane Attention Management

Backplane Bus Interface

Figure 3.10: Control Processor Module block diagram

As can be seen in figure 3.10, the control processor module is composed of the following major
subsections.

e CPU, with associated ROM, and local RAM.

The CPU, a 68000 family processor, was chosen because of its low cost, simple circuit imple-
mentation, and 16-bit bus structure (which makes it compatible with the 16-bit structure of
the digital signal processor.)

The card is equipped with 64kbyte ROM which contains the operating system for the control
processor, allowing it to communicate with the host as soon as power is applied.

There is a local RAM area of 64kbytes. This RAM is for local use by the control processor,
and is used to store temporary variables, and data in transit between the host and the signal
processor. It is not intended as a sample storage area. Future expansion for the GI will include
large memory arrays for storage of sample data.

¢ Serial port to host.

The serial port is RS232 compatible, allowing the GI to be connected directly to any host
equipped with such a port. This allows virtually all PC-clones to be used as host without any
modification.

Communication over the serial port occurs at a rate of up to 57600bps, giving a maximum
throughput of 5.76k bytes per second.

Communication over the serial link uses a packet-based protocol featuring error detection and
automatic retransmission. Such a scheme is needed to prevent corrupted transmissions from
causing incorrect system behaviour.

27

e Backplane interface.
The control processor acts as the master of the backplane bus. On that bus it can address a 16
megabyte address space (minus the 512k reserved for its own peripherals and local memory),
which can be fully populated with peripherals.

All slave modules (eg the DSP module) feature configurable decoding, allowing multiple iden-
tical modules to exist within the 16 megabyte address space.

16M
Available Memory
Space
512k
Control Processor Module 0

e CPU activity and inactivity monitor

The control processor has fixed ROM code for the reason that it should operate in a predictable
manner from powerup, and it should operate reliably under all conditions, so that the host
may maintain control of the GI at all times.

There are two circuit conditions which could cause the control processor to deviate from normal
operation.

1. Attempting to access a device in an unused area of the control processor memory map
will cause an indefinitely extended bus cycle. :
To detect this condition, a bus activity timer has been implemented which causes the
extended cycle to be aborted after some tens of microseconds. The 68000 at this time be-
gins bus-error exception handling, which culminates in a return to the IDLE COMMAND
state, in which it awaits further host commands.

2. Execution of a corrupted instruction by the 68000, or a software flaw, may cause the
68000 to enter an inactive state (eg after executing the STOP opcode, or experiencing a
double bus fault). In this case, the 68000 would normally need to be physically RESET.
An inactivity timer detects this condition by looking for an extended period during which
the 68000 initiates no bus cycles. Should this happen, the timer automatically resets
the 68000. If the hardware is still functional, the control processor will enter the IDLE
COMMAND state, and wait for host commands.

e parallel port to host, SCSI port

These ports have been implemented to allow future evolution of the GI. They are not used in
the current system.

The parallel port, in conjunction with a plug-in-card for the PC host, would provide a much
faster communication link between the GI and the host (although the RS232 link will always
be available.)

28

The SCSI port is intended to allow the GI to control an SCSI hard disk, with the goal of
storing samples directly to hard disk. This will allow sampling at medium rates for extended
periods. The data will then uploaded to the host , in packets of manageable size, for processing
and display.

The SCSI interface provides a high bandwidth (up to 1.5 megabyte/second) interface which
is available on many PCs and workstations, and therefore is a possible successor to the GI’s
RS232 link. Unfortunately, most PCs equipped with SCSI can only use the bus for mass
storage devices, and not for intelligent peripherals in general.

3.3.2 Digital Signal Processor

Interface to 64k words 64k words
To AIM«—1 Analogue Module PRIC{EI}\{/IAM DATA RAM

}

i

Local signal processor bus

i ! i

Input Output TMS320C25 DSP Status
FIFO FIFO Digital Signal [+—| DSP Control
Processor Registers

t i H ;
Module decoding, Identity ROM, bus buffers

:

Backplane Bus

Figure 3.11: Digital Signal Processor module block diagram

A block diagram of the DSP module is shown in figure 3.11. The main features of that module are:

o The Digital Signal Processor, a TMS320C25
The version used in the design is capable of execution at 10MIPS (1 MIP =1 Million Instruc-

tions Per Second), though new versions of that device are now available with greater and lesser
performance.

e Program RAM
The TMS320C25 is capable of directly addressing 64k words of program memory, and 64k
words have been implemented on the board. Note that the TMS320C25 supports only 16-bit
words, whereas the 68000 supports 8, 16, and 32-bit words.

e Data RAM

The DSP can address 64k words of data memory, and the full 64k has been implemented on
the board.

The TMS320C25 processor is structured around *Harvard Architecture’, which is an over-used
term used to state that it has separate internal data and program busses. Unlike a standard

29

microprocessor, in which data coexists in one degenerate RAM area with program instructions,
the TMS320C25 separates them into distinct partitions.

While this architecture has benefits within the silicon of the TMS320C25 itself (for instance,
instruction fetches can occur simultaneously with data moves), it is of no benefit outside of
the device, since program RAM and data RAM must share a common data and address bus.

e Bus interface

The address, data, and control busses of the TMS320C25 may be disabled, allowing another
processor to take over its operation. This feature has been exploited to allow the control
processor (via the backplane bus) to take complete control of the DSPs busses.

While this involves considerable circuitry, this facility is necessary for several reasons, as de-
scribed in section 3.3.

e Interprocessor Communication

While the bus interface allows the control processor to invade the address spaces of the
TMS320C25 at any time, it may not be desirable to do this (except possibly when debug-
ging DSP code) while the DSP is executing its programs. If the DSP is executing real-time
code, such intrusions will interfere with correct operation, for instance by delaying sampling
instants.

To allow interprocessor communication without the problems of bus contention, a bidirectional
port mechanism has been provided which allows data to be transferred between the control
processor and the DSP without the DSP delegating control of its busses.

Data from 1 word deep FIFO

backplane bus
’ £ 7 Data to DSP
1

Data t
b:cljplzne bus 1024 word deep FIFO

-+ Bin 1l —/L—
16 1-——— Bin 2 16

Bin 3

Bin 4 e

Bin b

in 1024

Figure 3.12: DSP and Control processor interprocessor port

The interprocessor port is bidirectional, but not symmetrical, as explained below.

— Control Processor to DSP

The port from the backplane bus (ie from the control processor) to the DSP is one word
deep. That means that the control processor may write one 16-bit word into that port,
and must wait for the DSP to read that word out before the next word can be written to
the port.

— DSP to Control Processor

The port from the TMS320C25 to the backplane bus is a 1024 word deep FIFQO. This
means that (assuming the FIFO is initially empty) the DSP can write 1024 words to it
without waiting for the control processor to read any out.

30

In practice, the DSP will be executing signal processing code, possibly in real-time. The
control processor will be communicating with the host, and may have a poor response
time for servicing the DSP.

Therefore it is important to move any communication bottlenecks away from the DSP, so
that it does not waste time waiting for communication channels to clear before resuming
computation.

The FIFO devices used in the DSP module are industry standard parts, allowing 4k
and 8k words of FIFO to be implemented by choosing suitable (pin compatible) devices,
though at increased cost.

Both the DSP and the control processor may access the ports asynchronously. Hardware flags
may be tested to determine whether the ports are full, or available for data transfer. If a port
is full, the processor must wait until it is cleared (by the processor on the other side of the
port reading data out of it) before more data can be transferred.

The FIFO system has not been built symmetrically. The intended uses of the GI at the current
time will see the GI returning digital data to the host. The larger FIFO was placed into that
data path to allow the signal processor to resume computation with minimum delay.

e Attention Request Mechanism

Since the system is designed to support multiple boards (which may or may not be DSP boards)
on the backplane bus, a mechanism has been provided to allow boards to request service from
the control processor without the need for the control processor to continually poll the boards.

The attention mechanism consists of 8 attention request signals. Different client boards can
signal their request for servicing on different signals. These signals generate vectored interrupts
to the control processor, allowing rapid response.

3.3.3 Analogue front end

The analogue front end described herein is a prototype unit which has been used for testing, and
also for teaching in the laboratories. While it is functional, it provides only a bare minimum of
facilities, and should only be used as a simple example by those building more complete analogue
interfaces.

A block diagram of the module is shown in figure 3.3 while the important features are shown in
table 3.1.

Antialiasing filters were omitted in the initial design. The difficulty associated with making vari-
able bandwidth filters has already been discussed, and the use of external filters was considered
reasonable.

Flash A/D converters have the desirable property of fast conversion, in this case 50ns. This is less
than the instruction execution time of the DSP, allowing triggering to be immediately followed by
reading of the resulting value. Two input channels are provided, and are triggered simultaneously
to begin conversion.

Two channels of D/A are provided, which are also updated simultaneously. Both input and output
channels have variable gain and offset, which are set using trim resistors. Control of these circuit
parameters must be made digitally programmable in future versions of the module, since thermal
drift and component variations cause the loss of accuracy in the A/D and D/A process.

The GI, designed as it is for measurement purposes, must be constructed to yield a precise rela-
tionship between the numbers being viewed in the machine (ie the samples), and the voltages which
they represent.

31

Input Channels

2x8-bit.

Input conversion time

50ns

Input sampling

Simultaneous

Input Gain

Digitally programmable
gain = [1,2,4,8,16] x [1,2,4,8,16]
Only one value is chosen out of each set in []

Anti-aliasing filter

None

Input Bandwidth

approx 350kHz

QOutput Channels

2% 8-bit.

Output updating

Simultaneous

Table 3.1: Prototype AIM Specifications

Modules such as the prototype AIM (Analogue Interface Module), which rely on calibration by a
user (via trimpots) are prone to drift and incorrect calibration. For this reason, future versions
of the analogue interface module will be based on precise voltage references and tight-tolerance

components, which will provide the necessary precision without user intervention.

More information about the this AIM is found in appendix A.

32

Chapter 4

Software Architecture

As the major point of interaction with the Generalised Instrument, the software plays a crucial role
in determining the usefullness of the system. As well as providing a control environment for the GI
hardware, the software must provide a means of displaying the data generated by the GI on the PC
screen, and enable the user to interact with that data in useful way.

Since the goal of the Generalised Instrument was to design a system which could emulate different
instruments, the host software must also be flexible enough to allow such emulation. This may mean
presenting a different screen display, causing different DSP algorithms to be used, and performing
different data manipulations within the host itself.

4.1 Requirements

Listed below is a basic set of features which the host software must exhibit.

1. Provide communication to the GI hardware, and control over its various modules. This in-
volves: .

e Transfer of data to and from the digital signal processor within the GI.

Transfer of program to the DSP.

e Provide control over the execution status of the DSP.

Debugging facilities for DSP code.

2. Management of arrays of data, as may be uploaded from the GI.

3. A graphical user interface which allows the user with minimal training to interact with the GI.
This interface must support both display and interaction.

4. A means of storing data on the PC’s disk for future analysis.

5. A means of creating a preprogrammed application environment, which the user can invoke
easily. Such environments would typically emulate different test instruments, such as a CRO
or spectrum analyser.

6. Management of a library of DSP code modules which will be used in conjunction with the
preprogrammed applications to process data in a required manner.

7. Generation of hardcopy of data displays.

33

4.2 Major Design Decisions

In this section major design decisions which affected the construction of the software are discussed.
The engineering of the GI project was split approximately in equal amounts between the hardware
and the software.

It is often difficult to appreciate the complexity of a software system, since it is largely invisible.
Unlike hardware, where an experienced engineer can gauge the performance of a system just by
inspecting the printed circuit board, the depth of a software system is hidden until one begins to
use it.

To compile or interpret? — That is the question!

Two main approaches to the host software were explored. Their main difference was in the way
that the user’s input (ie textual commands) was processed. Early work with an interactive signal
processing package, Sigproc[5], showed it to be an effective tool, especially for teaching. Sigproc is a
command line driven signal processing package which has a repertoire of signal processing commands.

The commands are effectively invoked as soon as the user types the command’s name. The command
is usually followed by arguments, which are processed differently by each command’s code. Therefore,
the same argument could mean different things to different command handlers.

chirp signall 0 200 generate a chirp 0-200Hz, place values in array ’signall’
window;hamming signall signal2 apply a window function to ’signall’, place result in ’signal2’
fft signal2 signal3 'signal3’ now holds fft of ’signal2’

plot signal3 graph the values of ’signal3’

Figure 4.1: A sample Sigproc script. The first word on each line is
the command name, the words following it are arguments (usually
either numbers or array names.)

A merit of such a command line interpreter exists in the ability, of program code for each command,
to check the user’s input at each stage. The user may be prompted for further information (or
corrected information) if required:

chirp (incomplete command line)
What is the name of the destination array? signall

What is the starting frequency? 0

What is the ending frequency? 200

Figure 4.2: Sigproc commands may prompt for missing arguments.
This reduces the mind-load on the user, since each command
presents a standard form for the entry of vital information.

This is a useful way to build an interactive system, since it is highly tolerant of errors in the user’s
commands. If the user supplies incorrect or ambiguous information, the code can take corrective
action, or simply assume default values for parameters which the user omitted.

There are three main reasons why Sigproc was deemed unsuitable as a model for the host software.
1. Sigproc lacked the ability to understand expressions.

34

Rather than allowing a form such as a = b X ¢, Sigproc required a specific multiplication
command which was invoked as 'mult a b ¢’. The latter is less natural for mathematically
inclined users. While some form of expression handling could have been built into Sigproc, it
would not have been a pleasant marriage, since its use would have been restricted by Sigproc’s
general syntax.

. Sigproc lacks control structures, such as IF-THEN, WHILE, and others which programmers
are familiar with. While Sigproc is useful for interactive processing, where a user is present
to type in commands, it is not able to execute algorithms which are not hard-coded into the
Sigproc package. Sigproc did not provide any of the execution flow-control structures needed
to write effective algorithms.

The most important result of the inability to control program flow is that the Sigproc language
is unsuitable for writing signal processing algorithms. If the user must implement an operation
which is not in Sigproc’s dictionary, the only way of performing the operation is to either a)
write a new command into Sigproc to perform the desired operation, or b) write an external
program to implement the user’s algorithm.

In both cases, the user must be a proficient programmer (or have access to such), and be
familiar with Sigproc’s internal construction. Neither is a suitable solution.

Sigproc’s lack of support for control structures follows from the way in which Sigproc executes
lists of commands. Sigproc may be given a list of commands to execute from a file, but in
reality this is no different from the user typing them at the keyboard. Each command is
interpreted, executed, and discarded before the next is processed. Because each command is
discarded after execution, all sense of algorithm structure is lost. No branches can be taken,
since the code which would be branched to has either not yet been processed, or has been

discarded.

It would not be impossible to add primitive control statements to interpreters such as Sigproc,
but the result would be a language which would more closely resemble an assembly language
than a high-level language (see figure 4.1.)

. As an interpreter, Sigproc parses its input as text. Were it to be given some form of looping
ability (as was done in an experimental version of Sigproc), at each pass through the loop it
would be parsing the same textual program code. Now, since Sigproc cannot modify the text
program which it executes, it would be parsing identical code on each pass through the loop.
The command statements would be identical, as would the text names of the arguments to
those commands. The values of the arguments may be different on each pass through the loop,
but the textual name of the argument is not.

start: % label
upload foo % get a packet of samples from GI
fft;polar foo foomag foophase % fft it to get the magnitude
display foomag % display the result
goto start

Figure 4.3: Sample Sigproc code

For instance, consider the script in figure 4.3. The data values contained within the array
called ’foo’ may change each time the loop is executed, but the code being executed within
the loop is always the same. Therefore, interpreting the text of the program on each pass of
the loop is wasteful of time. The first pass through the interpreter caused all of the necessary
actions to be performed.

35

There exists a way to extract the user’s intended algorithm from the text of her program: it
is the process of program compilation. This is the technique used by SPaM, and is described
in detail the section 4.3.

What style the User Interface?

Several choices were available for the user interface:

1. Command line driven (example: Sigproc).
Here the user would type commands, which would be executed and the results displayed.

The commands would either be taken directly from the keyboard or from prepared script files.

2. Text menu driven.

In this scenario, the user would be presented with text menus. She would choose an option
from a menu, resulting either in an action being taken by the system, or another menu being
presented.

3. Graphical.

A full graphical interface with interactive screen displays is ideal for the GI. It will allow the
PC to simulate on screen the controls and display one would expect to see on the front panel
of a physical test instrument.

By providing an air of familiarity, the display will allow the user to begin work immediately,
without needing to study a user manual.

Like the GI as a whole, the host software must be sufficiently flexible to allow it to be moulded
for new applications without extensive low level programming. For this reason a combination of
command line and graphical display was chosen.

A command line interface was considered essential as it provides the most expressive way for the
user to state her requirements. When processed by a well-designed parser, the command line is
capable of processing full arithmetic expressions, and allows advanced loop constructs to be used to
build new algorithms.

SPaM’s command line interaction can be carried out on the graphical display screen. The commands
and their responses are displayed in a window reserved for that purpose (called the *console window’),
and share the screen with other display window. This eliminates the need to constantly switch
between text and graphics displays (as in Sigproc), which can be distracting.

4.3 Host Software

The software package which runs on the host PC is called SPaM This section will deal with the

architectural aspects of SPaM. A detailed reference for the SPaM language can be found in chapter
5.

A block diagram of the SPaM package is shown in figure 4.4.

The essential parts of SPaM are described below.

36

User Input

|

.| Lexical Analyser

: UseE Variable Graphic
Parser & Program & Object
Program Generator | | A & Array Lists
rray Storage
. Lists

Program
Execution Unit

} § §
SPaM Code Libraries

: i :
|—.- Graphic Interface Disk Files Printer

Figure 4.4: SPaM block diagram. The logical link between the
lexical analyser and the graphic interface represents the mixing of
user-generated events from the keyboard and mouse.

4.3.1 The Lexical Analyser

The lexical analyser is a piece of code which examines the source input to SPaM (which may be
text commands typed by the user at the keyboard, or fetched from a file on disk), and breaks them
up into ’tokens’. The tokens are then passed to the parser (see next item).

A token is an atom of language. It consists of one or more character symbols. These symbols may
be alphabetic letters, numeric digits, or other keyboard symbols. The boundaries of a token are
defined by either the occurrence of a whitespace character (space, tab, or newline) or a character
not consistent with the current token’s type.

For instance, if the lexical analyser encounters a numeric character, then that character forms the
beginning of a numeric token. Further characters will be read (and a number will be constructed)
until a non-numeric character is encountered. When encountered, this boundary defines the end of
the current token and the beginning of the next (but whitespace is skipped.)

Consider the following line of text.
WHILE (i<100)
i=i+1;
END
The tokens in this short program are shown below, each token surrounded by [J.

[WHILE] [(1 [i] [<] [100] [)1 [il [=] [i]1 [+] [1] [;1 (END]

In the example above, the analyser can identify all of the tokens except for the occurrences of the
letter i which are not part of the token WHILE. When confronted by such an unknown token, the

37

lexical analyser must come to a decision as to how to classify the token, so that the parser may
decide whether the user is making sense or not. The following rules are used by the lexical analyser
to make its decision.

1. If the token begins with a numeric digit, assume it is a number (a constant). Keep reading
characters until the first non-numeric character is encountered, and form a number from those
digits. Return that number to the parser.

9. If the unknown token appears on a line all by itself, it may be the name of a command file!
which the user wishes to run. Look for a command file of that name in the search path.

If such a file exists, open it for reading and make it the standard input (so that the file will be
read as command input.)

If no such file exists, fall through to rule 3.

3. Search the list of user defined functions. If the token is the same as the name of a function,
return a corresponding symbol to the parser.

4. Search the list of existing variables. If the unknown word is the same as the name of one of
those variables, notify the parser of that fact.

5. I the unknown word corresponds to none of the above, assume that it is the name of a variable
which does not exist (simply because this is the first time it has been encountered), and mark
it as having an undefined type.

From this point on, an occurrence of the same token will be caught by rule 4.

Variables need not have a known type at compile time, as long as their type 1s clear at run
time. A variable’s type is fixed when a value is assigned to the variable.

The lexical analyser is called from the parser (described below). As the lexical analyser splits the
input stream into tokens, each token is returned to the parser.

4.3.2 The Parser

The parser is that part of SPaM which inspects the tokens being produced by the user, and decides
how they must be processed. '

When the user types a stream of character into the SPaM command line, it will either make sense
or it will not. In software jargon, it is said to either parse correctly, or not.

The parser decides whether something makes sense by comparing it to a set of rules which define
the SPaM language. In fact, the parser was created from these very rules by the automatic parser
generator called bison, which is a public domain derivative of the Unix yacc[8] program.

For each rule in the SPaM grammar, there is a corresponding program action to be performed when
an occurrence of that rule is encountered in the user’s program text.

An example of a rule is shown in figure 4.5. This rule describes how a valid expression is constructed.
According to this rule, an expression may consist of either a number or variable (both of which yield a
value without having to be broken down further), or some arithmetic combination of other (simpler)
expressions.

In the case of SPaM, each an occurrence of a rule causes SPaM to add the appropriate code to its
pseudoprogram for execution after the entire input has been parsed.

1A command file is simply a text file containing a SPaM program. Programs may be entered into SPaM
interactively, or read from a disk file.

38

An example of the code generated by SPaM for a numeric expression in shown in table 4.1.

expressiocn : number (action: yield a value)
| variable (action: yield a value)
| expression '+’ expression (action: add)
| expression ’-’ expression (action: subtract)
| expression ’#’ expression (action: multiply)
| expression '/’ expression (action: divide)

Figure 4.5: Sample yacc rule. The SPaM parser is built by yacc
from a complete, formal, specification of the language, similar the
the above. The vertical bar | means ’or’. The parentheses enclose
the actions to be performed when an occurrence of that rule is
found.

The parser can understand self-referencing rules, which makes it a powerful tool for breaking down
complicated expressions. In the rule of figure 4.5, expressions consist either of literals (ie constants,
variables, or symbols like ’+’), or combinations of smaller expressions. Thus complex program
structures are broken down into manageable pieces.

In the rule of figure 4.5, the number and variable case correspond to actual tokens identified by the
lexical analyser. If the tokens arriving from the lexical analyser do not correspond to any known
rules, the parser will signal the user that a syntax error has occurred.

As rules are successfully matched to the arriving tokens, corresponding program code is written
to an array maintained by SPaM. This array holds pointers to functions which will carry out the
actions specified by the rule (and its matching tokens supplied by the user.)

This array of pointers becomes the ’program’ which is executed after the compilation process has
been successfully completed.

4.3.3 The Program Execution Unit

After the parsing step, during which the *compilation’ actually occurs, the array of function pointers
which now represents the user’s program must be ’executed.’ It is during this execution phase that
the results which the user seeks are generated.

Execution of the ’program’ is accomplished by stepping through the array of function pointers which
was generated during the parsing phase, and calling each one of those functions in turn.

The execution phase of SPaM emulates a virtual processor. The functions which are called from the
’program’ array represent the object-code instructions of this virtual processor. The ’object code’
representation of the user’s code is generated during the parsing phase.

The nature of the virtual processor is important since it determines how complex arithmetic expres-
sions will be processed. The SPaM virtual processor uses a stack-based architecture[6], which is
very convenient for arithmetic computation (see table 4.1.)

The virtual processor stack is used to hold pointers to numeric objects, and arguments and return-
values for functions calls. The program for a stack-based processor resembles programming languages
such as FORTH. The stack is also called the ’evaluation stack’, due to its role in evaluating expres-
sions. A stack based processor does not have general purpose registers; the stack is used instead.

39

SPaM Program Array

!

Pointer to ABC()

Arguments for ABC()

[Function ABC |
Written in C

Implements single
primitive SPa
operation

Pointer to DEF()

Arguments for DEF()

SPaM executes the
compiled program by
successively calling
the functions in the

[Function DEF |
Written in C

Pointer to GHI()

!

list created by the
parser

[Function GHI |
Written in C

Figure 4.6: The SPaM execution model. During compilation
(parsing), SPaM places pointers to functions in the Program Ar-
ray. This pointer table is the pseudoprogram which is then ex-
ecuted by calling each of the corresponding functions in turn. In
this diagram, execution begins at the top of the array and proceeds

toward the bottom.

40

For example, consider the following text line as the input to the parser.

x=((y+3)*2)

After passing through the parser, the program array will have the contents shown in table 4.1.

Program Index Operation/Operand Comment

1 PUSH CONSTANT The item from the following array element
is pushed onto the evaluation stack.

2 3 This is an argument to the preceeding in-
struction, and is skipped.

3 PUSH VARIABLE The following variable is pushed onto the
evaluation stack.

4 y This is an argument to the preceeding in-
struction, and is skipped.

5 ADD Pop two arguments from the evaluation
stack, add them in a manner appropriate
to their type, and push the result back
onto the evaluation stack.

6 PUSH VARIABLE The following variable is pushed onto the
evaluation stack.

7 4 This is an argument to the preceeding in-
struction, and is skipped.

8 MULTIPLY Pop two arguments from the evaluation
stack, multiply them in a manner appro-
priate to their types, and push the result
back onto the evaluation stack.

9 PUSH VARIABLE The following variable is pushed onto the
evaluation stack.

10 b4 This is an argument to the preceeding in-
struction, and is skipped.

11 ASSIGN Pop a variable from the evaluation stack,
and then pop a value from the stack. As-
sign the value to the variable.

12 PRINT Pop one value from the evaluation stack,
and print it to the screen.

13 STOP Halt program execution.

Table 4.1: An example of the program which the parser creates.
This one would implement the expression z = ((y + 3) x 2).

41

The ’program index’ value in column 1 of table 4.1 is the effective ’address’ of each program in-
struction. It states where an instruction may be found in the array, and is therefore analogous to
the address in a microprocessor system. The Program Array in figure 4.6 can be considered to have
address 0 corresponding to the top of the array.

To understand the pseudoprogram in table 4.1, one must remember that SPaM implements a stack
based virtual processor to execute the pseudo programs. All fundamental operations of that processor
(ie its assembly language, as exemplified by PUSH VARIABLE, ADD, MULTIPLY in table 4.1) are stack
operations.

This means that all pseudo-instructions expect to find the correct number of arguments on the
stack when they are called, and all results are placed on the stack. The evaluation stack provides a
supremely simple mechanism for connecting multiple instructions in sequence.

The example of table 4.1 has been somewhat simplified by omitting the actual way in which objects
such as the constant ’3’ and the variable 'x’ are treated. SPaM is an object-oriented system which
manages objects in a linked list. All atoms of the language, be they constants (such as the '3,
variables (such as x,y,z), or other, are represented by objects. An object can be considered as a
'box’ containing some value. The numeric value, and the type of numeric value, can change during
the calculation. Section 4.3.9 further discusses SPaM’s internal object types.

Operators, such as the ADD and MULTIPLY operators seen in table 4.1, process objects. When called,
these operators pop their requisite number of objects from the evaluation stack, and based on the
type of the arguments, perform the required action. The addition operator, ADD, pops two objects
from the stack, adds their values, and places the result back on the stack.

Due to the variety of data types found within SPaM, it is possibly to specify arguments of in-
appropriate type, in which case a runtime error will be signalled, and the user’s program will be
halted.

4.3.4 The Math Function, and Primitive Math Operation Libraries

The math function library implements transcendental and other high level functions, while the
primitive math library contains elementary operations such as +, -, *, / and logical-test operations.
The main difference between the two is that the primitive library performs its operations in the
representation of the arguments, while the math function library performs much of its calculations
in floating point representation.

SPaM uses object oriented program techniques to process its multiple object types. Object oriented
programming (OOP) is a paradigm for software systems in which similar operators (for instance,
the standard *, /, +, - operators) are required to operate on many different classes of objects. The
code which implements the operation must be capable of recognising arguments of different type,
and adjusting its behaviour accordingly.

SPaM implements many numeric attributes, as shown in section 4.2. Numeric variables of any type
may be mixed freely. Where possible, SPaM carries out operations in the same representation as
the arguments, and produces a result of in the same representation. For instance, multiplying an
integer by an integer yields an integer.

If the operands are of different type, SPaM will choose the type most appropriate to represent the
result. For instance, multiplying an complex integer by a real floating-point number ylelds a complex
floating point number.

42

The advantages of operators which operate on different types differently are:

1. The user has control over which representation is used, allowing integer based algorithms (such

as those found on integrated DSP devices) to be simulated.

2. Computation can be sped up. On PCs without floating point accelerators, floating point
calculation is cumbersome. Integer operations provide a way of speeding up such computation.

The numeric representations available within SPaM are summarised in table 4.2. There are several

groups of attributes, with the attributes within each group being mutually exclusive.

All numeric objects have one attribute which determines the numeric representation used within the
object (integer, floating, etc), another attribute determines whether the numeric quantity is real or

complex, and yet another determines whether the object is a scalar or matrix quantity.

Attribute Meaning
INTEGER The number is represented as a 16-bit 2’s complement integer.
LONG The number is represented as a 32-bit 2’s complement integer.
FLOATING The number is represented as a double precision floating-point
number.
REAL The numeric object represents a real quantity.
COMPLEX The numeric object represents a complex quantity.
SCALAR The numeric object is scalar.
MATRIX The numeric object is a matrix.
VLM The numeric object is a Very Large Matrix (refer to 5.5.
STRING The numeric object is a text string. This attribute alone defines
strings, the above attributes are meaningless in the presence of this
one.

Table 4.2: SPaM numeric object attributes. One attribute from
each group (groups are separated by a thick line) applies to any
numeric object.

4.3.5 The Graphics Library

The graphics library contains code to manage the SPaM graphic environment, including all of the

graphical display items outlined below.

e CRT Windows.

CRT windows are designed for displaying waveforms without any additional information (such

as axis numbering or titling.)

The waveform to be displayed is stored in a matrix variable. The dimensions of the data

matrix determine how it will be displayed:

43

1. Matrizis 1 x N
In this case, the the X axis represents the index value of the array. The first array
element (eg foo(1)) is displayed on the leftmost side of the window, and the last element
(eg foo(N)) is displayed on the right-hand edge of the window.

The array is first scanned to determine the maximum and minimum value, to allow
the display to be autoscaled (autoscaling can be turned off if desired.) Then the array
elements are plotted, with each array element determining the vertical ordinate of the
waveform at that index point.

2. Mairiz is M x NN # M

If the matrix is rectangular, and the smaller dimension is greater than 1, then SPaM
assumes that the matrix represents a set of vectors to be plotted in the same window.

SPaM assumes that the smaller dimension is the number of vectors, and that the larger
dimension is the length of each of those vectors.

Thus, a 3 x 4 matrix would be plotted as a set of 3 distinct vectors of 4 elements each.

Autoscaling in this case is performed based on the value of the first vector in the matrix.
3. Matriz is N x N

If the matrix is square, then each row is assumed to be a data vector.

Figure 4.7: A typical CRT Window

e Graph Windows.

The graph window is similar to the CRT window, the difference being that a graph window 1s
divided into 2 parts. One part is used for waveform display, and behaves in exactly the same
manner as the CRT window.

The remaining area of the graph window is dedicated to the display of axis labels and number-
ing. By default, the X-axis is numbered according to the index position of the element being
examined. The user may specify X-axis start and end values, which SPaM uses to calculate
the value for any intermediate index position in the array.

The Y-axis is numbered simply according to the values in the array elements. The user may
perform any desired algebra on these values before displaying them to get the required ’units’
of display.

e Argand Windows.

The CRT and graph windows exist specifically to display one dimensional data, eg a signal
the amplitude of which varies over time, sampled at some rate.

The argand window exists to display two dimensional data. The data is displayed on a complex
plane, and so the data must be complex. The real part is displayed as an X-coordinate, while
the imaginary part is displayed as the Y-coordinate.

44

o i it e A] e e e v e e T I PO e 0 R ¢
T

LI T ITTITIT

v 4 M TR 1Y 5 3
T

= T
T T) N R N e R S A SN S S S R B S B N O S S | LI LT

maglog

-5

dB

I W S S e S O S B S S N A N Y S N S 1 S S s e T
T I T L L L L L L L L T T T T T T T T T LI I

S o M M P e s W U S e A S S A A S O S N S 5 400 O Y 0 S S w8 S
T L S R B L B | G IO S Sk L S S e C o Rt B NN I RO B BB N

Figure 4.8: A typical graph window

1
- S S . S A 0 S R B I T S S LI X
;NN S P P o B N S S ¢ ki R 0 o T e
O s e i T —— - LI I s
4
I I T T LT et it et s e e o e o
A e e e e e e e T L L T T T LT T T T T T I TI
[Wit W S S S) S (G G P S 5 WO N BT S e SRS W N N I S
T LI T L T T L L L LT T T T YT T LTI TIL]

Figure 4.9: A typical argand window

The argand window allows polar diagrams to be displayed by SPaM (though the polar coor-
dinates must be converted to rectangular coordinates.)

¢ Buttons.

A button is a rectangular window on the screen designed to be ’pressed’ by the user, in the
same way as a physical push-button switch would be pressed. The user ’presses’ a button by
clicking the left-mouse-button (LMB) over it.

When a button is activated by clicking on it with the LMB, SPaM looks for a handler with the
same name as the button. A handler is analogous to a user- defined function, or subroutine.

% 1 Ll inc
-
oot

Figure 4.10: A typical button and numeric.

SPaM will execute the code in the handler corresponding to the button. This allows the user
to create screen objects which can directly cause the execution of specific code modules.

¢ Numerics.

A numeric is a window dedicated to the task of displaying the value of a scalar variable.
Whereas the CRT, graph, and argand windows display vector or matrix data, the numeric
displays scalar data.

4.3.6 The Input Event Filter

SPaM accepts user input from the keyboard, and the mouse. To make the mouse and keyboard
interchangeable, all input events (an input event is any operation which the user may do with the
keyboard or mouse, such as pressing a key or a button) pass through a software “filter” where they
are converted into a single stream which SPaM can process. This allows the keyboard to take the
place of the mouse, and vice versa, without additional code being required.

Keyboard |,

~ Single input stream
% Input Filter | to SPaM

Mouse |»

The input events generated by the user include:

e Normal keyboard character input.

46

o Keyboard ABORT signal (ESC, CTRL-BRK, CTRL-C)

Mouse LEFT button, clicking on button windows.

e Mouse MIDDLE button, used to make measurements on waveforms in CRT windows.

Mouse RIGHT button, used to pop up menus.

By combining input events into a single stream, the mouse and keyboard can be made equivalent.

4.3.7 The GI Hardware Control Library

A library of commands exists for communicating with the Generalised Instrument hardware. The
library contains functions to perform the following:

e Download and upload data to and from the GI hardware.

Download DSP program code from host to GI.
e Control the execution state of the signal processor in the GIL.

e Communicate with the GI onboard monitor software.

4.3.8 Online Help

SPaM has an online help facility which may be called at any time from within SPaM.

The text database is external to SPaM, allowing it to grow without being limited by system memory.

4.3.9 SPaM as an Object-Oriented Environment

The diversity of data types which are encountered in signal processing is considerable, with the main
structures being scalars, vectors, and matrices. Additional variation exists in the choices of real or
complex data, and the form of the numeric representation (see 4.2).

A simplistic programming methodology would dictate that those types of data most likely to be
encountered be adopted and the rest discarded, despite their usefullness.

SPaM implements most operations directly on the various combinations of argument types. Within
SPaM, there are libraries of code which operate, at the user level, not on numbers or vectors, but on
objects. An object is an abstract entity which may take the form of a constant, variable, or graphical
entity (such as a CRT window.)

When the lexical analyser scans the user’s program, it creates new objects to represent tokens which
it does not understand. In all cases (barring spelling mistakes), these objects will refer to some user
defined entity, for instance a variable or a function. Pointers to these objects are embedded in the
program generated by the parser.

The parser does not, however, type-check the use of objects. This is sensible, since in most cases
the objects will be undefined until assigned a value in some part of the user’s program. The benefit
resulting from not type checking at the parse stage is that objects can change type on-the-fly during
the execution of a program. For example, matrices can change dimension during program execution,
as shown below:

47

x=1; Y x is now a scalar of value 1

print x
x=eye(3); Y, x is now a 3x3 identity matrix
print x
x=[0,x:x,0]; % build a new matrix which looks like
%
% new x = fo100]1
% Loo0o10]
% [ooo01]
% [1000]
yA [0100]
% Loo010]

%

In the above example, the variable x changes type from scalar to 3 x 3 matrix to 6 x 4 matrix.
Variables may change type at any time without problem if the operations carried out on those
variables are compatible with all of the forms which the variable takes.

Though type checking is not done at compile (parse) time, it is certainly performed at run time. All
library code within SPaM checks the types of the arguments on which it is about to operate. Based
on these types, the code chooses the most appropriate action. This action may include aborting
program execution if the arguments are quite incompatible.

Consider the addition ’+’ operation as an example of how SPaM treats its arguments.

4.4 Control Processor Software

The control processor (a 68000 family device) exists within the GI hardware to control the operation
of the GI hardware system, and to facilitate communication between it and the host computer.

The software executed by the 68000 is fixed in EPROM. This ensures that on power-up, the GI
powers up in a known state, allowing the host to communicate with it immediately. The control

processor is the only module of the GI system which has a program fixed in hardware (though it
may be updated by changing EPROMs.)

The control facilities provided by the 68000 include

1. Direct control of the TMS320C25 RESET and HOLD signals.

2. Monitoring of TMS320C25 program execution to determine when DSP algorithms have com-
pleted execution.

3. Bidirectional transfer of data words from host to TMS320C25 data memory.
4. Bidirectional transfer of program words from host to TMS320C25 program memory.

5. Direct read and write operations to TMS320C25 I/O ports.

Communication between the host and the control processor is (at time of writing) via an RS232
link. Communication over the R$232 link is accomplished using a custom protocol. The protocol
is packet based, and has error-detection and correction provisions. A typical command sequence is
shown in figure 6.2.

48

z y z=z+y
scalar scalar scalar z =z 4+ y
scalar matrix matrix zj; = yi; + 2
matrix scalar matrix z;; = zij + ¥
matrix matrix If z and y are of the same dimension, then
matrix z;; = Tij + Yij
otherwise an error is signalled and program execution is stopped.
real real real z=x 4y
real complex complex (zg + jz1) = (Yyr +2) + jyr
complex real complex (zr + jzr) = (zr +y) +jz1
complex complex complex (zr + jzr) = (zr + yr) + j(z1 + yr)
integer integer z is integer
integer float z is floating point
float integer z is floating point
float float z is floating point
Table 4.3: Example of type-dependent addition
Host Link Command
Software Interpreter

The link may also be used to download new control processor software using Motorola S-record
format. This facility is for development and is not used within the GI system under normal circum-

stances.

Data Packet
Trans/receive

S-Record
Download

!

Downloadable
Code
Library

ROM
Code
Library

" Backplane
Control Bus

" “Backplane
Data Bus

" Backplane
Address Bus

Figure 4.11: The GI Control Processor Software

49

As shown in figure 4.11, the control processor receives command packets from the host via the RS232
link, and controls the backplane bus according to those commands. Typical commands will order
the control processor to change the state of TMS320C25 control signals, and to transfer data to and
from the TMS320C25 address spaces.

4.5 DSP Software

At the core of the Generalised Instrument lies the signal processor, At the time of writing a
TMS320C25 device. The great computational rate achieved by this device (and comparable de-
vices from other manufacturers), combined with its self-contained nature and low cost has made the
GI realisable with reasonably little circuitry.

The GI implementation of the TMS320C25 provides the signal processor with full address spaces of
alterable RAM. Therefore, no executable DSP code exists in the GI when the machine is powered
up. All DSP code is downloaded from the host computer.

This scheme provides maximum flexibility since

o It is envisioned that many different DSP code modules will be written in the future, making a
host-based library necessary to ensure that the latest version of DSP code is available.

e The user can modify existing DSP code to suit her own needs. Source code to DSP code
modules will normally be available, allowing customisation.

o Code which may be too large to fit into the address space of the TMS320C25 can be split into
multiple modules which can be downloaded and executed in turn.

e Efficient DSP software development requires the fastest turn-around time on the edit-compile-
test sequence, which the downloading of code permits.

Despite these advantages, there are situations (such as embedded DSP) where DSP algorithms must
be available without being supplied by the host computer. Though the GI does not support the
inclusion of non- volatile storage in the DSP program address space, the DSP code may be stored in
the control processor (68000) EPROMs, and the control processor may be programmed to:transfer
the DSP code to the TMS320C25 at powerup. This is an example of a simple behaviour modification
which would allow the GI to be used in a different way, and may be implemented at some future
time.

50

}

Assert TMS320 HOLD’/RESET’
Download TMS320 Code

b
Deassert TMS320 HOLD’/RESET’

}
TMS320 Samples signal, and
performs preprocessing

¥
Following sampling, main
processing is performed

!
TMS320 signals completion

!

Assert TMS320 HOLD’/RESET’
Transfer results to host.

|

Figure 4.12: DSP code execution sequence

There are several broad categories of DSP code which have been written for the GI:

1. Sample Acquisition.

With the prototype analogue interface module, all signal sampling is performed under software
control by the TMS320C25 itself, at a rate determined by the DSP’s onboard timer.

Sampling code must read sample values from A/D converters, and store them as arrays of
values in TMS320C25 data memory.
2. Preprocessing

This includes windowing functions, and the subtraction of DC levels from signals.

3. Processing

Examples of processing implemented so far include Fast- Fourier Transform, correlation, and
transfer function analysis [4].

4. Postprocessing
Postprocessing is performed to reduce the workload of the host.

An example is the FFT algorithm, which produces its results as rectangular complex numbers
(though this is a result of the implementation). To display a meaningfull frequency spectrum
to the user, there are two choices available:

One is to upload the real and imaginary data to the host, where the magnitude and phase are
calculated. For an N- point FFT, this requires the transfer of 2(N/2) = N words to the host
(since half of the spectrum is redundant for a real signal.)

The second alternative is to cause the signal processor, (which is a faster mathematical pro-
cessor than the host, after all) to calculate the magnitude. This would require only N/2 words
to be transferred to the host, thus saving time in both computation and transfer.

Clearly the second choice is preferable. This is an example of postprocessing the data within
the GI to reduce workload on the host, thus improving the response time of the instrument as
a whole.)

51

Following execution of the DSP code, the system must alert the host computer that the results of
the computation are available. In the present implementation this signalling is done through the
interprocessor port (see 3.3.2). The host then initiates a command to upload that data into an array
variable.

4.6 Application Level Software

From the beginning, the aim of the Generalised Instrument project has been to produce a sys-
tem which could emulate other test instruments, or serve as a testbed to create completely new
instruments.

The preceeding discussion has addressed the hardware and software issues of building such a system,
but it has not brought the ideas together. This section examines how the system can be customised
and controlled by the user’s program script to achieve the desired function.

In order for the GI to function successfully as a test instrument, several things must be accomplished.

1. The hardware of the GI must be made compatible with the signals to be examined. We will
assume that the GI is limited to signals which are compatible with its input range.

2. Appropriate DSP code must be written to perform the necessary sampling and processing of
the signal data.

3. A SPaM script must be written which does the following:

e Sets up the graphics screen with all necessary waveform display windows, buttons, and
numerics to provide control of the virtual instrument.

e Sends the necessary DSP code to the GI, and causes its execution.

Downloads any necessary parameters to the GI (eg sampling rate, gains, etc).

Causes the DSP to execute the code, and waits for the DSP to signal completion of
execution.

e Uploads the processed data from the GI, and displays it to the user.
We will now examine the SPaM script in figure 4.14 in more detail.

e Lines 1-6

This is a comment field. The %’ character marks the beginning of a comment. All characters
between the ‘%’ and the end of the text line are ignored.

The comments at the beginning of a file are of special significance. If the user were to type:
help spectrum

then SPaM would look for a disk file called SPECTRUM. M. If such a file exists, then the comment
field at its beginning is printed. This provides a means of putting accessible documentation
into script files.

e Line7
This line sets the PC screen to display graphics.
e Lines 9-15

The variables which are used in the script are initialised here. Initialising them ensures that
there will be some default waveforms displayed when the script is run.

52

nsole Window

R<co

ion

ing at the waveform and the spectrum of the funct

You are look

d>
king on the gadgets.

+ cos(3%x/1i

)
i

(x/1i
is equal to the array

sin

You may vary the value of

The value of x

y=

i1cCc

by cl

int.

dex at any poi

in

free heap 186680

free space 1999,

>

LI L TT

T e Y R A

T

5 el o
o g
T LI LT XY TTI

v s e e B

D I U B I B

W T e N BN S e

e N N D S T

L LY

T

L LI L L L L L LI

e T L L L L LT T T T T T L L L T T T T T Lo

L L L L L LT

I

o O S S I N U P 1 s

¢ L8

it

portra

. 0 S 0 P A

rhasen

] ¥

r = 4] 5]

L] o c L]

L] - -]

i i HHHHH
i i HHHHHI
i [o | LHHHHH
8 H HHHHHH

. S B D I e S S

A

RIS REARIERERRI R RN ARt R RN

magn

-9.01
magloy

-58

S S T R T o

TT T T

T T T T rr T rrrrrrrrr s

L/ I B R

L[N S B N ENE I N EEE BN N MR R L

pes 3
T

1CS scCreen

tion generated graph

ica

Appl

Figure 4.13

53

O 0 N0 bW

This script demonstrates thbe use of CRT and Graph windows,
as well as Buttons for control, and Numerics for the display

% of scalar quantities.
%
I3 George Vokalek, 1990.
%
graphic
%
=0:127;
i=1.0;
y=sin(x/i) + cos(3*x/i);
z=fft(y);
magn = z[:,1:64];
maglog = 20*log(magn)/log(10);
phasen = z[:,65:128];
%
auto crt y 200 100

auto graph magn 300 100

set label "magn" “Freq" "Amplitude"
set xaxis "magn" 0 100

auto graph maglog 300 100

set label '"maglog" "Freq'" “DB"

set xaxis "maglog" O 100

auto crt phasen 200 100

auto numeric i 40 40

%

auto button "inc" 50 50
auto button "dec" 50 50
auto button "portrait" 100 50

%

handler portrait

poster(“magn")

%

%
%
%
)/
%
%
%

%
%

%

=

%
%

a4

set graphic display mode
set some initial variable values

generate a signal vaveform
calculate the FFT of the signal
extract the magnitude of the FFT.
calculate the LOG() of magnitude
extract the phase of the FFT

make a display window for y
one for magn

set the axis numbering

display maglog

set axis numbering

make window for phasen

display the value of i

make a screen BUTTON called IEC
another called DEC

and another called PORTRAIT

do this code when PORTRAIT
button is depressed.

i be decremented to

Force recalculation of all data

end
%
handler inc % do this code when INC button
i=i+1; % is depressed.
y=sin(x/i) + cos(3*x/i); % Force recalculation of all
z=fft(y); %, data in accordance with the
magn = z[:,1:64]; % new value of i.
phasen = z[:,65:128];
maglog = 20%log(magn)/log(10);
update
end
%
handler dec % do this code when DEC button
i=i-1; % is depressed.
if(i==0.0) % Do not let
i=1.0; % a value less than 1.
print 'cant decrement i below 1.0"
end
y=sin(x/i) + cos(3%x/i); %
z=fft(y); % using the new value of i.
magn = z[:,1:64];
phasen = z[:,65:128];
maglog = 20*log(magn)/log(10);
update
end
%
print "You are looking at the waveform and the spectrum of the function”
print y=sin(x/i) + cos(3*x/i)"
print “You may vary the value of i by clicking on the gadgets."
print "The value of x is equal to the array index at any point."

Figure 4.14: Application script example. The line numbers are not
part of the script: they are present only for ease of reading in this

listing.

54

Execute from
File

Declare Screen

’spectrum.m’

Objects

Install Button

1 Handlers

Wait for next

user command

lick Execute Code
User clicks declared as
Button 'INC’ handler called
INC?

User

generated Wait for next

—
user generated event

P Execute Code

User clicks declared as
Button 'DEC’| handler called
'DEC’

Figure 4.15: Application script flow chart

e Lines 17-29

These lines contain the declarations for the graphic display objects which are to be present on
the screen. The objects which are used in this script include:

1. CRT Window

CRT Windows display waveforms without axis labelling.
2. Graph Window

Graph Windows display waveforms with axis labelling.
3. Buttons

Buttons are similar to real pushbutton switches. When the user clicks on one with the
mouse, a corresponding handler (defined in the user’s script) is executed.

4. Numerics

A numeric is a window which displays a scalar numeric value, unlike graph and CRT
windows which display matrix values.

For further information about these objects, refer to section 4.3.5.

e Lines 31-33

A handler is a subroutine. When the user clicks a button on the graphics screen, SPaM
checks whether a handler of the same name has been defined by the user. If so, that handler
is executed immediately as a subroutine.

These three lines define a handler called portrait. When the button called portrait is clicked
by the user, this handler is executed. Its effect is to expand the graph window called magn to
full screen.

e Lines 35-43

The handler called inc increments the value of variable i, a simple integer value, and recal-
culates the main waveform arrays. The waveform used in this example is generated according
to the formula:

55

3z

.z
= sin - + C0S —
7)

so that increasing the value of i increases the wavelength of the observed waveform.

o Lines 45-57

This handler, called dec, is similar to inc, described above, except that it decrements the
value of variable i. Lines 43-46 contain a conditional statement to ensure that the value of 1
does not fall below 1.

e Lines 59-62

The print statement prints the following text in the console window, as can be seen in figure
4.13.

Examples of controlling the GI hardware from a script file can be found in section 6.3.

A simplified flowchart of the script can be seen in figure 4.15. The script sets up the display screen
with the programmed objects, installs the handlers for the screen buttons, and then waits for the
user’s next command. The user may continue to type commands in the same way as before the script
was executed. If the user clicks a screen button, the handler for that button will be executed, and
control will be returned to the user. Since the script contains no loops, SPaM will always return to
wait for the next user command after any part of the script is executed.

96

Chapter 5

SPaM Reference Information

SPaM is the latest in a set of signal processing packages which have evolved over recent years in
the Department of Electrical & Electronic Engineering at the University of Adelaide.

Some of these packages were stand-alone software systems, for experimenting with signal processing,
while others were designed also to control programmable signal processing hardware.

The SPaM software system has followed in the footsteps of a package called Sigproc[5], an adaptation’
of which was used to control the Generalised Instrument. The Generalised Instrument 1s a pro-
grammable signal processing "box’ which together with SPaM, emulates test instruments.

SPaM is a self-contained package for generating, processing, and displaying data. It has been
created for use in signal processing work, but its use is in no way restricted to that field alone.
SPaM features a built in algebraic language, which should be familiar to users of the popular
Matlab package. The programming language, discussed in section 5.2, allows the user to implement
algorithms not hard-coded into SPaM.

As well as providing a responsive command line environment, SPaM provides a full-screen graphical
user interface, with which the user can interact using keyboard and mouse. This screen may be used
to display and manipulate waveforms in a more intuitive manner, and is ideally suited for use with
programmable hardware such as the Generalised Instrument. The graphical environment is discussed
in section 5.3.

5.1 SPaM : Philosophy of Design

In this section some of the important design decisions behind SPaM will be discussed. Great changes
have occurred in the style of the DSP software which the author has experienced, almost all of which
has been at the top level, the so called ’user interface.’

The algorithms of DSP itself remain similar or identical across implementations, but the way the
user interacts with those algorithms is of profound significance in determining whether a package
will be pleasant to use, or a burden. The ideal package would be so intuitive that the user can
concentrate on signal processing and not the vagaries of a computer program.

18igproc was originated by Prof.R.E.Bogner at the University of Adelaide as a set of Fortran signal processing
programs. The same name was given to a single DSP program written by Richard Lane in the C language. The latter
was the basis for prototype software in the GI project, before SPaM was written,

57

5.1.1 The User Interface

The *user interface’ is that part of the software with which the user must interact directly. It may
simply be a command line, or a graphics screen with icons symbolising functions.

While the next section espouses the virtues of the graphical, intuitive, user interface, it is worth
remembering that SPaM actually has both a graphical and command-line user interface. The
former is most suitable for novice users and fixed applications, but the latter is essential for wizards
who wish to access fully the signal processing algorithms lurking within the machine.

What came before, and what was wrong with it.

Earlier signal processing packages with which the author has had experience had all consisted of a
command interpreter style interface. Such programs accept a textual command, and respond to it
immediately. The command may instruct the program to generate a sinusoid, transform a signal,
or any one of many possible activities. Command words are followed on the command line by
arguments, for example the frequency of the sine wave to be generated.

After the program has finished its task, it asks the user for the next command, and so on. Such
systems are imperalive, and break signal processing tasks down into a sequence of ’orders’.

In many cases, especially for teaching purposes, such an interface is quite reasonable, since the
number of commands required is often small, errors are reported and acted on immediately, and the
individual commands can question the user further if they require more information than was given
on the command line.

The main disadvantage of command line interfaces is that the user is required to read documentation,
and create a logical sequence of actions to get the desired result. Instead of saying 'l want to see
the spectrum of the signal on channel 2’, the user has to think ’acquire from channel 2’ - ’spectrum
analyse result’ - 'display spectrum’ etc.

Another disadvantage of imperative interfaces is that they have no structure. A sequence of com-
mands in an imperative interface is executed starting at the top, and ending at the bottom (assuming
no errors occur.) There is no way to modify the flow of execution of the ’program’.

Such ’imperative’ interfaces have been dominant in the computer industry until recently. Witness
the MS-DOS user interface prevalent on most PCs, and the interfaces of their predecessors. Only
since the mid 1980’s have user interfaces steered toward a more symbolic and intuitive approach.

Instrumental in popularising such interfaces was the Apple MacIntosh. Since then, similar interfaces
have appeared on personal computers and workstations. As the display and processing capabilities
of computers improve, such interfaces will become dominant.

SPaM adopts the "WIMP’? environment of these modern GUIs (Graphical User Interfaces), though
it copies none in detail. One of the pleasant features of the GUIs available today is that though
they may be numerous, and each having specific features, they all obey enough common rules of
behaviour to enable a novice user to learn the interface quickly (usually by experimenting.)

Old-style signal processing packages like Sigproc were akin to MS-DOS. Unless the user reads a
manual, she simply does not know what commands are available. A WIMP interface alleviates this
by allowing the author of software to place icons (gadgets, menus, etc) on the screen which represent
a core of possible activities, allowing the user to start immediately.

If the programmer is sufficiently careful, all the user’s required activities may be directly represented

2Windows, Icons, Mouse, Pull-down menus - a modern paradigm of user interface design.

58

by objects on the screen. In this way the computer becomes a machine with a finite repertoire of
actions. It may be capable of other actions, but they are irrelevant to the user, and may be hidden
from her sight.

Potential user’s are often discouraged when presented with a manual for a system (be it software
or hardware), where there is far more detail than is required to solve the problem at hand (the
author certainly is.) A WIMP style interface largely removes the mental anguish associated with
the realisation that there is much studying to be done before even the simplest problems can be
solved.

The SPaM User Interface

As mentioned in the previous section, the SPaM user interface consists of a command-line interface

and a GUIL

The command-line interface is loosely modelled on Matlab, a commercial numerical mathematics
package. Matlab is widely used, since it is very convenient for implementing numerical algorithms
without detailed programming. Many DSP algorithms exist in the Matlab language (or may be
quickly implemented,) and many of its features have been incorporated into SPaM to allow the
execution of those programs (with minor changes, if any.)

SPaM’s Graphical User Interface (GUI) is loosely consistent with commercial GUIs. It is designed to
be used in conjunction with a mouse (though all mouse actions can be emulated from the keyboard.)

The Command Line Interface

The Command Line Interface (CLI) simply presents a prompt to the user, and waits for the user
to type in a line of text. The line of text is analysed (called ’parsing’), and if it is a syntactically
correct (ie the right types of words appear in the correct places) then the appropriate actions are
carried out.

I‘-‘iyogram Source
s
(Tqm us é‘) or

|

t Compilation

Execution

Program executes
until it exits
normally, or the
user aborts.

l Execution finishes

Figure 5.1: SPaM execution flow

It is worth emphasising at this stage that there are two phases in the response of SPaM to commands.
The first phase is the compilation phase, where the user’s input is analysed for correctness according

59

to rules of grammar defined for SPaM, while the second is the execution phase, where the actions
specified by the user are actually executed.

In this regard, SPaM differs from command interpreters such as Sigproc, which begin execution
of commands before all of the user’s input had been analysed. This allowed the program code
for individual commands to carry out analysis of their own arguments. In some cases this was an
advantage, since optional qualifiers could be defined, and missing arguments prompted for. If SPaM
finds an error in its input, it signals the user to correct the error and aborts the compilation process.
The user must correct the error before resubmitting her program source to SPaM.

The disadvantage of an interpreter such as Sigproc is the difficulty (for the programmer) in efficiently
processing complex elements such as numeric expressions and loops. A large amount of text scanning
is required to interpret such structures, and this processing must be repeated each time the structure
is encountered as the program runs. SPaM performs its interpreting (generally called parsing) only
once. During the parsing step, it constructs a more concise and efficient representation of the
algorithm to be performed. This new representation is then 'run’ to generate the desired results.

The commands can be either accepted from the keyboard, or they can be stored in files. The
commands in a file may be executed by simply typing the name of the file. The file must have an
extension of ?.m’, so that to execute the commands in file *foo.m’, you would type *foo’. The file

'foo.m’ is simply a text file of commands, arranged just as if they were to be typed directly into
SPaM.

User types foo<CR>

|

SPaM checks its If not found, scan
internal lists of specified disk paths
Variables for file called

Functions T FOO.M
Eandlerg If found, get future
ey input from that file.
1f found, continue

Continue with parsing.

v

Figure 5.2: Execution of commands from scripts

Files of commands may be nested to a depth of five. That is, one file can cause commands from
another file to be compiled as part of its own compilation.

Once a program is executing, the CLI will not respond unti] that program has completed execution.
You will know when this happens because a new prompt will be printed to the screen.

To abort the execution of a program, the user may press CTRL-C (the CTRL and C keys simulta-
neously.), the ESC key, or the CTRL-BRK key.

For more detailed information about the commands which can be used from the CLI, see section
5.6.

60

User User initiates activity by typing name
foo of first seript (foo).
File foo ¢ File fool File foo2 File foo3 File foo4
fool foo2 foo3 foo4
Scripts may call each other up to a depth
of 5.

Figure 5.3: Nesting of script files

The Graphical User Interface

To allow simulated instruments to be created on the PC screen, and to allow the display of infor-
mation in flexible manner, SPaM has a versatile Graphical User Interface (GUI).

The GUI allows the user to manipulate objects, and cause actions, in a very intuitive way. The GUI
is designed to be used with a mouse, so that many actions simply become a matter of ’point-and-
shoot’.

The reduction in workload for a casual user will be enormous, since applications may be prepared
which have all options easily visible on screen, and require little or no documentation to be read.

In its elemental state, the GUI provides the following functions:

¢ A mouse pointer or cursor.

The pointer may be moved by moving the mouse across the desktop. It is important to
remember that the mouse behaves differently when positioned over different classes of object.
These objects are summarised in table 5.1.

e Pop-up menus.

If the mouse is positioned over the background (brickwork pattern), and the right-mouse-
button (RMB) is depressed and held, then a pop-up menu will appear.

This particular menu is the top-level menu. It allows you to create new objects, and also to
select actions which affect the whole screen.

Once you have created some objects, different menus will appear depending over which object
you have the pointer positioned, and those menus will affect only the object over which the
mouse pointer is positioned.

Various classes of objects may then be added to display screen to perform specific operations, as
listed in table 5.1. Once created, screen objects may be manipulated by the user in various ways, as
described in section 5.3.5.

5.2 SPaM Programming Language

The SPaM programming language is a simple language, designed mainly for the rapid writing of

mathematical expressions and procedures. It is based loosely on Matlab, but also closely resembles
BASIC.

61

buttons

Buttons are displayed on the screen as a box which has the appear-
ance of an electrical pushbutton switch. When the user positions
the mouse pointer over the button and clicks the left-mouse-button,
SPaM will search its internal lists for a user-defined handler (see
section 5.2.6 and execute the code defined in that handler.

In this way, simple click actions of the mouse can cause prepro-
grammed events to occur within SPaM and the GL

numerics

A numeric is a window on the screen whose purpose is to display

the value of a scalar variable.

CRT

A CRT is a window whose purpose is to display the value of a
vector or matrix variable as a two dimensional graph.

A CRT is analogous to a graph window, except that a graph win-
dow displays axis titles and numbering, whereas a CRT window
does not.

The xaxis of a CRT window represents the index value into the ar-
ray, while the vertical axis represents the value of the array element
at that particular index value.

If the variable being displayed in a CRT or graph window is a
matrix, it is displayed as a collection of vectors of data, with each
vector being a separate trace in the window. The longer dimension
of the matrix is assumed to define the length of the vectors, with
the shorter dimension defining the number of vectors.

graph

A graph window, like a CRT window, can be opened to display the
value of a vector or matrix as a two dimensional graph. A graph
has other properties, such as axis labels, and axis numbering.

argand

Whereas the CRT and graph windows display the values of real
vectors and matrices, the argand diagram is designed to display
the values of complex vectors.

The argand window occupies a region of the complex plane (hence
it is called an Argand diagram). Each complex number in the
vector being displayed is plotted as a point on the complex plane.
Points from consecutive array elements are connected by lines.

Table 5.1: SPaM graphical screen objects

SPaM’s essential features inciude:

e No variable declarations.

Normal® variables need not be declared. They are simply used as required. Variables can be

of one of several different types, as detailed in the following pages.

The type of a variable is checked each time an operation is to be performed on it, and if a

method for handling that type exists, then the operation proceeds normally.

3some special variables, such as VLMs, do need to be declared

62

See section 5.2.3.

Multiple numeric types.

Three base numeric types are supported: 16-bit integers, 32-bit integers, and double-precision
floating point numbers. The integer types are present to allow easy interfacing of SPaM to
integer signal processors, without the need for explicit conversions to take place.

See section 5.2.3

Real and Complex numbers.

Complex numbers are fully supported by SPaM (except in most transcendental functions).
By default, the variable ’j’ has the value of v/—1, s0 that a complex number 3 + j4 is formed
by typing 3 + j*4.

See section 5.2.3.

Scalar and Matrix quantities.

SPaM allows scalar and matrix quantities to be easily defined and used. Vector quantities
are simply a trivial case of a matrix (having one row and many columns, or vice versa.)

Most mathematical operations operate directly on matrix data as easily as scalar data.

Assignment of individual elements of a matrix are allowed, as are assignments of regions within
a matrix. Portions of a matrix, as defined by ranges of rows and columns, may be extracted.

Matrices can be as large as memory will allow, and larger matrices still (called VLMs) may
reside on disk.

See sections 5.2.3, 5.3

Execution flow control.

Statements may simply be executed one after the other, or loops constructed. SPaM supports
the following loop constructs: GOTO, WHILE..., FOR..., IF.. .THEN...ELSE....

See section 5.2.4.

Conditional tests.

Operators such as <,>,<=,>=,==, !=are available for testing of numeric quantities. These tests
can be used in conjunction with the WHILE... and IF... statements to control the execution
of the user’s program.

Refer to section 5.2.4

User defined functions.

The user may define her own functions. The functions may have any number of arguments,
and return any number of results.

The variables used within a user-defined function are all local. That is, they are not visible
to other parts of the program, and assignments to these internal variables will not affect the
values of similarly named variables in other parts of the program.

The only way to get values into a user-defined function is to pass them as arguments. The
only way to get values out of a function is to return them as results.

See section 5.2.5.

User defined handlers.

A handler’ is akin to a user-defined function except that it takes mo arguments (ever), and
returns no results. Handlers are designed to allow the user to implement often used code only
once, and from then on to call that code with a single word (the handler’s name.)

Also unlike a user-defined function, a handler has no local variables. It has full access to all
of the variables of the block in which it was compiled.

63

If the declaration of the handler was part of the main body of the program, then the variables
which the handler access will be the (globally accessible) variables of the main program.

If, however, the handler was declared within a user-defined function, the variables which it is
able to access will be those local variables of the user-defined function.

See section 5.2.6.

¢ Built-in functions.

SPaM includes a set of built-in functions for numeric computation, graphic display control,
and communication with the Generalised Instrument hardware

See sections 5.6.4, 5.6.3, 5.6.2.

¢ Loading and Saving Variables.

Variables may be loaded from, and saved to, disk. They are stored in a readable ASCII format,
which allows the user to prepare files of data outside SPaM, and allows other programs to
interface to SPaM via disk files.

See section 5.4

e Externally defined text editor.

SPaM allows you to call an external text editor from within it, so that you can edit program
scripts without leaving SPaM (thus preserving your environment and variables.)

The name of the editor is fixed by an environment variable, and any small text editor can be
used. The author recommends the shareware editor QEDIT.

See section 5.2.2.

o Shelling to DOS.

SPaM allows the user to drop into DOS to carry out any operations which are compatible
with the reduced memory available in such a situation. On completing her operations, the
user can return to SPaM by typing ’exit’. The SPaM environment and variables will be
restored to its previous state.

See section 5.2.7

e Communication to Generalised Instrument hardware.

SPaM includes multiple functions to allow the transfer of data to and from the GI box, and
other functions control the state of the signal processor in the GI.

A terminal mode is also implemented to allow direct communication to the GIs onboard
monitor, for debugging of signal processing code.

5.2.1 General Rules

The following are general rules which must be observed when using SPaM:

e SPaM is case sensitive. All keywords must be in lower case.

e Variable names must begin with an alphabetic characters (a-z, A-Z), but may also contain
numeric digits in the remaining body of the variable name.

e Variable names may not be the same as any of SPaM’s reserved .words, which are listed in
section 5.6.1.

o User defined function and handler names may not be the same as any of SPaM'’s reserved
words. The set of reserved words are listed in section 5.6.1.

64

o Expressions separated by a space may be concatenated. For instance, the character sequence ”1
-1” (where a space exists between the minus sign and the preceeding digit) will be interpreted
as the expression 1 — 1 which evaluates to zero. To ensure correct separation, use a comma.
This is especially important in matrix and vector assignments.

e Variable assignments such as ’z = 3’ will cause the value of z to be echoed to the screen unless
the assignment is followed by a semicolon, eg 'z = 3;’, in which case nothing is printed to the
screen.

5.2.2 SPaM Entering Program Text : Script Files

The user interacts with SPaM by typing in program statements.. SPaM compiles one statement at
a time, and executes it. A statement can consist of an expression, in which case SPaM will return
a numeric tesult once the code which represents the expression is executed, or a command which
causes SPaM to change some aspect of the system.

It would be tedious in practice if the user had to type in commands from the keyboard, and thus
SPaM has the ability to execute commands from disk based files, called script files. A script file is
simply a text file written by the user using a text editor or word processor, which contains program
text in the same form as the user would type to the keyboard. Unlike keyboard input, SPaM
compiles the entire text of a script file before it begins executing the code.

The user can create a script from within SPaM by calling an external editor. SPaM allows this by
simply typing

edit

at which point SPaM shells to the user defined external text editor. The default editor is the share-
ware QEDIT.EXE program, but the default can be changed by modifying the SPAMEDIT environment
variable (see the local installation guide.)

After invoking the editor, the user creates the script file, ensuring that it has a *.m’ extension. The
file can be saved to any of the directories which SPaM searches for scripts. SPaM first searches
the current directory, then those directories specified in the SPAMPATH environment variable (see the
local installation guide.)

To invoke the script file, the user must simply type its name. For instance, if the file which was
created was called ’foo.m’, then it can be invoked by typing

foo

SPaM will then compile the all of program statements from that file, execute them, and then return
control to the keyboard (unless the script contained the chain command, see section 5.6.6.)

5.2.3 SPaM Variables and Numbers

A variable is a box in which a value is stored. It is like the memory in a pocket calculator. SPaM
understands two fundamental types of variables : numbers and strings.

String variables hold a sequence of characters, usually just text, which the user may want to print
at certain times, use as a label for a graph, and so on.

Numeric variables are not so simple. They may have several attributes associated with them, as
detailed in the following pages.

65

Programl

Read source input Programl contains the statement

%;ZZE;]: chain ”program?2.m”
l Program?
Read source input Program?2 contains the statement
Compile . ”
Execute chain ”program3.m
i Program3
Read source input Program3 contains no
Compile chain statement, so
Execute control returns to user (keyboard).

|

Figure 5.4: Chaining multiple input scripts

Variables are referred to by name. Usually, if SPaM encounters a word which is not in its vocabulary,
it assumes that the word is the name of a variable, and inserts that name into its list of known
variables.

Examples:

speed = 200.0
name = "Lamborghini"

The first assignment would create a new variable called speed which would take the floating point
value 100.0, and the second assignment would create a string variable called 'name’ whose value
would be the string "Lamborghini.” The name of a variable must begin with an alphabetic character
(a-z, A- Z), but may include numbers and the underscore .. A wariable may not be given a name
which is the same as a SPaM keyword (see section 5.6.1 for a list of keywords). Note this facl,
since SPaM will detect this as a syntaz error, and the cause may not be obvious.

If a variable already exists when an assignment takes place, the contents of that variable are first
deleted. If any extra storage was associated with the variable (for instance a matrix), it is reclaimed
by SPaM for future use.

Note that in the above cases SPaM echoes the results of the assignment. In response to the first
case, SPaM would have printed the following:

speed =
200.0

To suppress the printing of the result of an assignment statement, the statement should be followed
by a semicolon ’;’. For example:

speed = 200.0;

would not echo the result.

66

To see a list of presently defined variables, type who followed by <CR>.
Numeric Representation

A number in SPaM can be represented in one of the following forms.

1. 16-bit integer.
Numbers of this type faithfully represent any integer in the range (-32768...32767).
example: counter = 100;
A numeric literal (eg the 100 in the above example) is stored as a 16-bit integer f and only
ifit is in the above range and it does not contain a decimal point.

2. 32-bit integer.
Numbers of this type faithfully represent any integer in the range (—2%'...2% —1).
example: counter = 100000;

A numeric literal (eg the 100000’ above) is stored as a 32-bit integer if and only if it lies
within the above range, but outside the range for a 16-bit integer and does not contain a
decimal point.

3. Double precision floating point.

Any number which contains a decimal point is converted into a floating point number and
stored in this format.

examples:
a = 1.23;
b = 1.0e10;

Real and Complex

Numbers can be either real or complex. For scalar values, a real value is essentially the same as a
complex value with a vanishingly small imaginary part. For matrix values, however, a real value
only requires half of the storage space of a complex value of the same numeric representation.

Generally, numbers are interpreted as being real by SPaM. Expressions may return a complex result
if they involve a complex variable, or the square root of a negative number. For instance, ’x=3+j%4’
is an expression containing only real literals, but a complex variable (j) which causes the expression
to evaluate to a complex result.

By default, SPaM assigns the variable ’j’ with the value of v/—1 on startup. There is nothing,
however, to prevent the user from assigning a different value to j, or assigning the value of v/—1 to
a different variable.

Examples of assigning a complex number:

x=3+j*4;
y = sqrt(-1);

Scalar and Matrix

Matrices can be created in a number of ways.

67

1. Returned by functions which create matrices.

For instance, the function eye(n) returns an identity matrix of size n x n.

2. By using a range constructor.

A range is a vector of numbers built as an arithmetic sequence from user specified start and
end values, and optionally a step value. For example,

x=0:10; y=0:0.1:10;
The first case creates a 1 x 11 matrix . The values of the elements of that matrix are [0.0
1.0 2.0 3.0 4.05.06,07.08.09.0 10.0].

The second case creates a matrix of size 1 x 101. The first element contains the value 0.0, the
second 0.1, the third 0.2, and so on, until the 101th element which contains the value 10.0.

Thus if only the start and end points of the range are specified, the default increment of 1.0 is
used. A user specified increment may be used, in accordance with the syntax:

range = start.value : increment : end_value
The elements of a matrix generated using a range constructor are always real floating-point
types.

3. By explicit matrix specification

An entire matrix may be explicitly specified by using square brackets ’{]’ to enclose the
contents. Within the square brackets, elements separated by a space or comma will be assumed
to exist on the same row. When a semicolon ’;’ is encountered, the current row is terminated,
and the next one begun.

The size of the matrix is defined by the number of rows encountered, and the longest row
encountered (which determines the number of columns).

Example:
x=1[1; 23; 456; 789 10];

will create the matrix

1 00 O

. 2 3 0 0
14 5 6 0
7 8 9 10

NOTE: To avoid confusion, the comma °,’ rather than the space ’ > should be used as the
element separator, for the following reason. Consider the matrix specification -

x = [1-2-34];
in response to which, SPaM will create the following matrix:
x = [-4 4]

because SPaM reads 1 -2 -37 as 1 — 2 — 3 which equals —4. The syntax which should be
used for the declaration is-

X = [1)—2,—3»4] H
4. By referring to a specific matrix element.

The assignment ’x(4,5)=1.2; will create a matrix x which has 4 rows and 5 columns. The
element at (4,5) is assigned the value 1.2.

Now, there are some points to remember about such assignments.

68

(a) If the variable x did not exist, it is created from scratch. The numeric representation of
the elements of matrix x will be set entirely by the right hand side of the equality. In this
case, the value is 1.2, which is a real floating point value.

Consequently, matrix x is created as a matrix of real floating point values.

(b) If the variable x did exist, but was not a matrix, then the same rules apply as if x had
not existed.

(c) If the variable x did exist, and it was a matrix, then the right hand side of the equality
is converted to the same type as the elemental type of the existing matrix x.

WARNING: If the matrix x is a matrix of integers, then the value (1.2) in the above
example would be truncated (to 1) before insertion into the matrix.

Now, it is possible that one or both of the indices of assignment (4 and 5 in the above
example) are outside of the range allowed by the current size of matrix x. In this case,
matrix x will be enlarged enough so that the assignment can take place.

Since the enlargement of matrix x may make available more new elements than the as-
signment will affect, all of the new elements are set to zero first.

The values inside a matrix can be extracted as single elements, or as submatrices of the parent
matrix. For instance,

y=x(3,4); Y= T34

z=x(2:3,1:3); =z = Ta1 P22 %23
31 32 T33
The first case simply extracts the element in row 3, column 4 of matrix x and assigns its value to
the variable y. The second case extracts a submatrix from matrix x, consisting of rows 2 and 3,
columns 1, 2, and 3, and assigns that submatrix to the variable z.

A special type of range, called a mazimum eztent range allows either all rows or columns to be
specified. For instance,

a=x(1,:);
b=x(:,1);
c=x(:,:);

Consider the following matrix as an example.

1 2 3 4
|5 8 7 8
=l 9 10 11 12
13 14 15 16

After execution of the preceeding commands, the arrays a, b, and ¢ would have the following values.

1 1 2 3 4
5| |5 6 7 8
a=[1 23 4].b=1| g |i¢=| g 30 11 12
13 13 14 15 16

The first case creates a row vector ’a’ to which it assigns the value of the first row of matrix x. The
lone ’:’ means ’all columns’ in this case.

The second case creates a column vector 'b’ to which it assigns the value of the first column of

5.

matrix x. In this case the ’:> means ’all rows’.

69

In the third case, the two '’ symbols mean ’all rows and columns’, so that the resulting matrix c is
identical to matrix x.

So far, we have discussed only methods of extracting numbers from a matrix. What about methods
of putting numbers into a matrix? An example above showed how to set individual matrix elements,
but SPaM allows the user to do more than that. SPaM will allow matrices to be copied into
matrices. Consider the following example.

1 2 3 4

z 5 6 7 8
-1 9 10 11 12
13 14 15 16

100 101 102

y=| 103 104 105
106 107 108

x(3,3)=y;

The result will be-
2 3 4 0

1

5 6 7 8 0
9 10 100 101 102
13 14 103 104 105
0 0 106 107 108

rT =

The matrix y has been pasted into the matrix = starting at row 3, column 3. Because matrix y was
larger than the remaining space available within matrix z (to the right of element (3,3), and down
from element (3,3)), the matrix z had to be extended by 1 row and 1 column.

A VLM is a special case of a matrix. Normal matrices are stored in main memory, and processed
without difficulty. A VLM is a matrix whose data is not entirely stored in main memory, but is kept
on disk (usually hard disk).

Since the memory resources of a PC are finite, the VLM method allows matrices to be built which
by far exceed the memory available. Some mathematical operators can operate on VLMs directly,
but most will not?. The way around this is to copy data into and out of the VLM as necessary.
Most DSP functions operate on packets of data from a larger set, and such operations can be readily
implemented using the matrix addressing methods described above. VLMs are discussed further in
section 5.5.

Variable Assignments and Undefined Variables

As shown in the above examples, variables are simply given values by using statements such as -
var = expression;

Now the assignment will only proceed if the value of expression can be evaluated. The value of
expression may not always be defined. One reason for this is that it may contain references to

4 Currently, VLMs are only allowed to contain 1 type of data, which is floating point real numbers. This may
change in future

70

other variables whose values have not yet been defined. SPaM does not assume any default value
(such as zero) for an undefined variable.

Attempting to access the value of an undefined variable will cause SPaM to abort the execution of
a command (or program) and signal an error.

If the expression can be evaluated, then the variable var is checked to see whether it currently has
a value. If so, any extra storage associated with that value (such as the storage associated with a
matrix of elements) is returned to the system. The value of expression is finally assigned to var.

Multiple Assignments

A mechanism for assigning multiple variables with values in the same statement exists within SPaM.
It is provided mainly to cater for functions which return multiple values. One example of a built-in
function that returns two values is the size() function, which returns the row and column dimensions
of a matrix. An example of the multiple assignment of this functions results is shown below.

{row,column} = size(mymatrix);

The variables to be assigned (row,column) are enclosed by braces {}. Any number of variables can
be assigned in this way. See section 5.2.5 for examples on how user declared functions may return
multiple values.

Predefined Variables

Several variables are defined automatically by SPaM. This is done simply for the convenience of
the user. The variables are listed in table 5.2.

These variables are not protected in any way, so the user is free to reassign them. However, after
the execution of a clear statement, the variables will all return to the values shown in table 5.2.

Variable Name Default Value
pi 3.14159265359
e 2.718281828

j VT

Table 5.2: SPaM predefined variables

5.2.4 SPaM Control Statements

Rather than simply executing statements in the same order, SPaM has control statements which
allow the order of execution of a program to be changed dynamically, based on decisions made by
the program.

The following control statements are implemented in SPaM.

o if expression statements... else statements... end
if expression statements... end

Following the if must be an expression. That expression is evaluated, and if the result is
non-zero, then the statements between the ezpression and the else keyword will be executed.

If the result of the control expression is zero, then the statements between the else and the
end will be executed.

The control expression may be any expression which returns a scalar value. Matrix values (ie
a value which is a matrix itself) are not acceptable as the result of the control expression®

The following examples indicate some typical expressions.

if(a==b) print "a=b" end

i£(a11([1;2;31==([2;4;61/2))
print "elements of second are twice that of first"
end

if(a-b>0) print "a>b" end

The conditional tests which SPaM allows are listed in table 5.13.

e for v=m statements... end

The for statement allows the execution of the enclosed statements a precise number of times,
each time with a different value of the control variable v.

Each time the loop starts, v is assigned the value of the next column of matrix m. The first
time through the loop, v will take the value of the first column of matrix m, the second time
through it will have the value of the second column of matrix m, and so on.

If you simply want to use the loop as you would in BASIC, say, where v takes on scalar
consecutive values, you would make m a 1xN matrix, as shown in the following example:

for i=[1:10]
print i
end

The expression °®[1:10]’ generates the matrix [1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
10.0], and each of the (scalar) elements will be assigned to 1 in turn. :

If the matrix in the control expression is not a vector, for example

12 3
=14 5 ¢

for i=x
print i
end

will produce the following results.

(1]
(4]
(2]

5T, make a test on a matrix expression, you can use the all() function to convert a matrix result into a scalar
result which the if statement can digest.

72

[5]
[3]
(el

As can be seen, the variable i is successively assign the value of each column from the matrix
which is the the result of the control expression.

e while expression statements... end

The while loop will execute its enclosed statements only if the result of expression is not
zero. Tt will keep executing the statements until the result of expressionis zero. For example:

i=1;

while (i<10)
print i
i=i+1;
end

The conditional tests which SPaM allows are listed in table 5.13.

5.2.5 User Defined Functions

As well as providing a library of predefined (built-in) functions, SPaM allows the user to define her
own. The following examples shows how to define a function.

function y=myfunc(x)
¥y = X*¥X + x + 1;
end

The first line contains the interface information for the function. Following the function keyword
(which begins the definition) is the form which the function will take in practice.

The text ’y=myfunc(x)’ states that the function is to be called myfunc, it will have one argument
which will be referred to as x within the function body, and it will return one argument called y
within the body of the function.

Now note that the names of the arguments (in this case x) and the names of the return variables (in
this case y) are only for use within the body of the function. When the function is actually called
from outside, the names of arguments and return values on the outside can be quite different. At the
time the function is called, the arguments from outside are copied to the argument variables used
inside the function (this prevents the outside arguments from being corrupted by processes within
the function). At the end of the function, the return variables used within the function are copied
to the outside return variables.

Functions need not be restricted to one argument or return value. In fact, they can return as many
values as the user wishes, and take as many arguments as the user wishes. Consider the following
example.

function half,quarter,eighth=fractions (x,y,2)
sum = X+y+z;
half = sum/2;
quarter = half/2;
eighth = quarter/2;
end

73

In the above example, the function fractions takes three arguments, and returns three values. To
call such a function, you would use the multiple assignment syntax (see section 5.2.3) as shown
below.

{h,q,e} = fractions(1,2,3)

Which would result in h being given a value of 3, q of 1.5, and e of 0.75. The multiple targets of the
assignment must be surrounded by braces {}.

A point worth mentioning about the declaration of fractions() is that the variable sum which is
used within the function is a local variable, and exists only within the function. It is not visible from
outside of the function, and will not affect the value of an outside variable with the same name.

Finally, the return values half, quarter, eighth are treated simply as normal variables within
fractions(). They can be assigned to multiple times (it is only the last assignment before the end
of the function which determines the returned value) and used within expressions.

5.2.6 User Defined Handlers

Unlike functions, which take arguments, return values, and have local variables, handlers take no
arguments, return no values, and have no local variables.

Handlers operate on global variables only. They should be thought of as subroutines, not as functions.
An example is shown below.

handler increment
i=i+1;
j=itl;
k=k+1;
end

The user can invoke the handler simply by typing its name. When invoked from within a program
script, the handler will be executed, and then the main program will resume immediately after the
call to the handler. For instance,

increment
print i
print j
print k

will result in the display

i =
2

j:
3

k =
4

74

User-defined handlers serve the dual purposes of providing a shorthand way of invoking operations
on global variables, and of providing a means to perform operations from the GUI (see section 5.3.5.)

5.2.7 Shelling to MS-DOS

The user can execute MS-DOS commands without leaving SPaM by invoking a DOS shell. By
typing

dos

the user calls the DOS command interpreter COMMAND . COM, making it appear as though she has quit
SPaM altogether. SPaM is, however, still resident in memory, but is ’asleep’. If the screen was

in graphic display mode before the dos command was executed, it is first switched to text display
mode.

DOS SHELL spam

) Dos commands | . _:» resumes at

spam dos’ | ‘may be used X" | point where
though with it was
wii.}:1 éf,? c?r(;'Ed halted.

Since SPaM is still resident in memory, there may not be sufficient program memory left to execute
large programs, but most small ones should run without problem. The situation also depends on
how much memory was occupied by variables (esp. arrays) before the user shelled to DOS.

After completing her DOS operations the use can return to SPaM by typing
exit

to the DOS command line. If SPaM was originally in graphic mode, the graphics screen will be
reopened and redrawn. The text which was in the text window before the dos command was invoked
is not refreshed, however.

There is no need to shell to DOS to run a text editor, since this can be done with SPaM’s edit
command (5.2.2.)

5.3 The Graphical User Interface

SPaM’s Graphical User Interface (GUI) is a graphical environment which acts as a buffer between
the user and SPaM’s internal processes. In essence it consists of a graphical display with which the
user interacts through the keyboard and the mouse.

Certain classes of objects can be created (as described briefly in section 5.1.1) and manipulated
using the GUI. These operations are intuitive and do not require the user to memorise any SPaM
commands. Creation of screen objects is described in section 5.3.4.

Once created, the user can interact with screen objects in various ways. Buttons can be clicked with
the left mouse button to cause certain preprogrammed events to occur, Numerics can be used to

75

explicitly set the values of variables, and CRTs/graphs can be used with to make measurements on
waveforms represented by arrays of data. These interactions are detailed in section 5.3.5.

As well as creating such objects interactively, the objects can be created by a script executed from
disk (see section 5.2.2 where the execution of scripts is described), which is detailed in section 5.3.6.

5.3.1 Mouse & Keyboard

The use of the mouse (or its emulation via the keyboard) is fundamental to the operation of the
GUI, The mouse is assumed to be a 3 button mouse, with the three buttons fulfilling the functions
shown in table 5.3.

The mouse is of prime importance in its interactions with screen objects, such as buttons, CRTs
and graphs. These interactions differ for each object, and are described fully in section 5.3.5.

Left Button (LMB) Clicking on buttons to active handlers (5.2.6), or when in poster
mode the positioning of annotation

Middle Button (MMB) If the MMB is depressed and held when the mouse pointer is over
the waveform display in a CRT, graph, or argand window, a cursor
will appear in that window.

If the mouse is then moved left to right (while the MMB is held
depressed) the cursor will move back and forth along the waveform.
The current index value, and the value of the waveform at that
index position, is displayed in the top right corner of the window.
Using this technique, measurements can be made on the waveform.

Right Button (RMB) The RMB is used exclusively to pop up menus by depressing the
RMB and holding it down until a menu choice has been made.
Once a menu is opened, the user chooses one of the options con-
tained in that menu by moving the mouse so that the desired option
is highlighted (inverted).

At that point, the RMB is released and SPaM performs the re-
quested action.

Table 5.3: Mouse Button Functions

5.3.2 The Console Window

When the SPaM display is set for text mode, the user may interactively type statements and
expressions, which SPaM then evaluates. When in graphic display mode, this facility is still available
through the console window, which emulates the display seen in the text screen mode.

If no SPaM program is running, the console window will provide interaction of the same type as
the text-only display.

When a SPaM program is being run, messages printed by that program (caused by either the
print statement, or by variable assignments which are not followed by ’;’) will appear in the console

76

INS Toggle state of Left Mouse Button
HOME Toggle state of Middle Mouse Button
PGUP Toggle state of Right Mouse Button

END Simulate click of left mouse button

CURSOR-KEYS

Move mouse pointer

CTRL-CURSOR-KEYS

Move mouse pointer quickly

CTRL-HOME Move to next screen button
CTRL-END Move to previous screen button
CTRL-PGUP Move to next screen window
CTRL-PGDN Move to previous screen window

Table 5.4: Keypad key functions

LMB MMB RMB

Mouse

Figure 5.5: Mouse buttons
LMB = Left Mouse Button
MMB = Middle Mouse Button
RMB = Right Mouse Button

77

window, as will any error messages encountered during program execution.

The console window may be resized and moved to other parts of the screen (The default location is
the top third of the screen.)

kConsole Window

free space 20800, free heap 117704
>pi
ri =
3.1415927
free space 2000, free heap 117704
>e
e =
2.7182818
free syace 20800, free heap 117784

Figure 5.6: Console window on graphic screen
The console window allows direct interaction with SPaM’s pro-
gramming language while in graphic display mode.

5.3.3 The Backdrop Window

The backdrop is that part of the screen which is not covered by some user created object, and is
tiled with a brickwork pattern. The only important operation which the user can perform with a
mouse over the backdrop window is to use the RMB to call up the menu shown in table 5.5.

5.3.4 Creating Screen Objects With Menus

As described in section 5.3.3, the user may create all of the available screen objects with a mouse,
by selecting the appropriate creation option from the menu which opens over the backdrop screen
pattern.

All of the creation operations are similar, and the user is prompted through them with text messages,
so there should be little confusion.

For instance, to create a CRT window, the user selects the Make CRT option as shown in table
5.5. After doing this, the user will see a message similar to the following:

Move mouse to upper left corner of CRT.
Click LEFT mouse button once.

Move mouse to lower right corner of CRT.
Click LEFT mouse button once.

Click any other button to abort.

These instructions are self-explanatory. The user is simply being asked to point to the diagonally
opposite corners of the rectangle which will define the bounds of the new CRT window. Once the
boundary of the window is defined, the user is presented with a input window in which the following
question is asked:

78

Print Screen

Dump the whole screen to the printer.

Refresh Screen

Cause the whole screen to be redrawn

Make Button

Prompt the user through the process of making a button on the

screen.

Make Numeric

Prompt the user through the process of making a numeric on the

screen.
Make CRT Prompt the user through the process of making a CRT window on
the screen.
Make Graph Prompt the user through the process of making a graph window

on the screen.

Make Argand

Prompt the user through the process of making a argand window

on the screen

Dump Screen Setup

Choosing this option causes SPaM to write a text file called
SCRLOG.M in the current directory.

This file contains the SPaM script commands to recreate the
screen exactly as it appeared at the time the file was created.
This feature is useful when the user manually designs a screen
layout, and wants to incorporate that layout into her own script
file. The setup can first be dumped to the file SCRLOG.M, and then

incorporated into the user’s program script using a text editor.

Table 5.5: Menu for the Screen Backdrop

79

What is the name of the variable to display in the CRT -

The user simply types the name of the variable which she wishes to be displayed in that window,
for instance *x’, and presses the return key. The CRT window will then be created on the screen.

If the variable which the user has specified for that window is already defined, a graph should appear
in that window. If the variable is undefined, the symbols >???" will be drawn at the center of the
window to indicate that the variable is undefined.

The creation process for all other screen objects is similar to the one described above, and certainly
no more difficult.

Once screen has been set out according to the user’s wishes, she can keep a permanent record of the
layout by selecting the Dump Screen Setup option described in table 5.5.

5.3.5 Interactions with Screen Objects

Interactions with screen objects occurs in two distinct ways. Firstly, there is direct interaction, such
as clicking on a button. Secondly, there is the less direct interaction of using menus.

Menu operations fall into two main categories: those that are generic to all screen objects, and those
that are object specific. The generic operations are detailed in the following paragraphs, while the
object specific menu operations are detailed in the following sections.

¢ Move/Resize

This option allows screen objects to be repositioned or resized. Basically, the user is asked to
define a new bounding box for the object, in a process similar to the one used to create the
object (if it was created interactively, of course.)

After the user has defined the new bounding box, the object will be erased and redrawn in the
position.

o Delete

The selected object will be erased from the screen, and deleted from SPaM’s internal list of
objects. If the object is linked to a variable, for example a CRT is linked to the variable which
it displays, the variable will not be deleted when the object is deleted.

Interactions with Buttons

The most important button interaction with a button is the clicking of the Left Mouse Button (LMB)
over the screen button. A click is defined as the pressing of the LMB and releasing it immediately.

When the user clicks on a button, SPaM searches through its internal lists for a user-defined handler
which has the same name as the button. If such a handler is found, its code is executed immediately.
If no corresponding handler is found, then an error message is printed. See section 5.2.6 for details
on defining handlers.

There are no menu options specific to buttons.
Interactions with Numerics

The only interaction possible with a numeric is the explicit setting of the value of the variable which
it displays. This action is generated by the one numeric-specific menu option, called Set Value.

80

Console Window

free heap 117704

free space 2000,

1415927

3
free spyace 2000,

>e

free heap 117704

7182818

2.
free space 2000,

>n

free heay 117704

o e e

Print Screen

Refresh Screen

Make Button

Make HNumeric

Make Graph
Make Argand

Dumpy Screen Setup

' -
T

indow

Console W

free heap 111512

free space 2000,

>Move mouse to upper left corner of CRT.

Click LEFT mouse button once.

Move mouse to lower right cornex of CRT.

Click LEFT mouse button again.

Click any other button to abort.

81

[ANN|

s e e e e R
i S L o D e e Y

=

) S e i s s N I e S

o A

T T - — -

ITITITTIT

free heay 111512
ion Reguest

I S g S S M B S B

-

. o et i
o s

o o

- >xB
T
T s s B o

in CRT

e T U IS I O B S5

Name of the Variakle to display

W e s A S P

Move mouse to lower right cornexr of CRT.

>Move mouse to upper left corner of CRT.
Click LEFT mouse button again.

Click LEFT mouse button once.
Click any othexr bhutton to abort.

Console Window
free space 2000,

T

Crrr Infornat

g
B e o ¢
LLLEILT
v W - |

S o e 8 S
LTI LI TIX
o

B D s e e e
T I T I LI LTI ITITTTIITIITX

T

:

o = -
LELLX

i

VUV

1L 1
dow

1s win

I

N T e

T TN R S W s

T T T T LX

(d)

T

()

" WA TR T Y S e s
) W N T

AARLAAL L

lay window with the mouse

isp
(a) Select Option from menu

o i P e s Al I Y GO
LI LT LTI L LI

Creating a d

free heap 111512
>Move mouse to upper left cornexr of CRT.

Click LEFT mouse button once.

(c) Enter name of variable to display in th

(b) Outline boundary for desired window
(d) Resulting window.

Figure 5.7

i S e M T S |

Move mouse to lower right cornexr of CRT.

Click LEFT mouse button again.
Click any other button to abort.

Console Window
free space 2000,

S S S e

indow

Console W
free space 2000,

free heap 111512

ight corner of CRT.

>Move mouse to upper left corner of CRT.
Click LEFT mouse button again.

Click LEFT mouse button once.
Click any other button to akort.

Move mouse to lower »

i~
LILLLI

G iow S TS NS WY S e e e S S e e e B i e |

Ve e B

y W e o A e S e |

LI L L

i % 8 o
.Auu.mt% v ¥
I Dnrnmwtn
”nedu.mfmuﬂ
1 |l 8 v & o a2
1 (e 32 %

H —_—H

! M
=]

1 =

! I =

i [

] ==

1 ——
=]
”nﬁﬂu

B =

i (i el

H B

1 i

¢ ———H
=== i

i xﬂHHHwHHHHV”

: i

i i

Move

Resize

T T T T T T Y

indow

Console W
Click LEFT mouse button once.

ht cornex of CRT.

Click LEFT mouse button again.

Move mouse to lower »

1y
Move mouse to uppexr left corner of CRT.

Click any other button to akort.
Click LEFT mouse button once.

ht corner of CRT.

ig
Click LEFT mouse button again.

Move mouse to lower »

Click any other button to akort.

tiihinhhhhlhh
|

|
I

|
[

P |
=

nnlh”

e |
nﬂllllll\v
R

el
B

e
B

T
=

|
——

|
n..“”vlhu

|
=

=]
|

——""]
X AL,Jll\IUv..
- SRARF
2 HRTHE

LI J S T B DO BN L B N BN A B DR B N)

T

) v e o
| S T N I N N ED SN BD B B D M BN R SN R B O B N BRI

83

Console Window

free heap 115416
>Move mouse to upper left corner of CRT.

Click LEFT mouse button once.

free space 2000,

Move mouse to lower right corner of CRT.

Click LEFT mouse button again.

Click any other button to abort.

HHHHHHHHHHHHEHHH E

et e M S A F S ST U e U 0 N NS T B N P W P S e e S s S S B I

AAAAAAAAAAAAANN
VVVVVVVVVVVVVVVY

e e S s T S A S S W S S S S S 8 S RS AN N W S S S S T (N A G R N N B O S S S S

(a) Selecting the menu option with the right-mouse-button

(b) Drawing the new window boundary

Figure 5.8: Moving/resizing graphics windows
(¢) The result.

T

84

Move mouse to lower right corner of button.

Click LEFT mouse button again.
Click any other button to abort.

Click LEFT mouse button once.

Console Window

incremented

has been

i

incremented
incremented
incremented
incremented

has been
has been
has been
has been

-

-

-

wl

|

M L S i

i
i

T

;o e A e S S e S T s B B |
o e S D T T T 0 o

W B g e e S

¢ ot i

T

S o
L LT L LT

o S B S e R A e e S S S A B

) B SN e e N S Y T O AN G S N N

T

-1

s st e
T LI T T T ITTITT

I I I I I I L L L L L L L L T Y T T T T 1T T L1
o O SN S A O S e S N S S I S P S S S S S S A S 4

| TN S W A e vle e S TN Y W S
) a2 s o S Y P PO P P

PO T T s+
LT T LI TIT

B -

a)

(

handler increment

Y% semicolon so new value is not printed each time

print "i has been incremented"

end

i+1;

i=

(b)

Figure 5.9: SPaM button activation

(a) Button being clicked. Results are printed in the console win-

dow. Buttons are clicked with the left-mouse-button.

ton is clicked. The value
can be seen In the console

(b) Handler which is executed when but
printed by the handler called ’increment’

window.

85

After choosing this menu option, a requestor window will open and the user will be requested to
type in the numeric value to be assigned to the variable. When the user hits RETURN, the variable
will be assigned that value.

Note that the value typed in by the user will be coerced to the same number-representation present in
the variable before the operation was selected. As an example, if the numeric-window was displaying
a variable whose type was 16-bit integer, and the user types in the new value of 1.23, the value will
be coerced to a 16-bit integer, and will end as a simply 1.

Interactions with CRTs

The effect of using Middle Mouse Button on CRT

This section applies equally to graph and argand windows. If the user positions the mouse pointer
over the waveform displayed in the window, and depresses (and holds) the MMB, a vertical cursor
(or a crosshair for argands) will appear. Moving the mouse left and right while holding the MMB
down will move the cursor along the waveform.

As the cursor is moved, the current index value of the cursor, and the value of the waveform at that
index position, is displayed in the top right corner of the window.

Releasing the MMB freezes the cursor at its last position, and the last numeric values remain in the
top right corner of the display.

A new cursor may be generated by repeating the operation any number of times, but only the
numeric values of the current (or last used) cursor will remain in the top right corner of the window.

Menu options for CRT windows

The menu options applicable to CRT windows are detailed in table 5.6.

Interaction with Graphs

A graph window consists of two parts. The area where the waveform is drawn behaves exactly like
a CRT, and the operations described in section 5.3.5 are applicable.

The area where the axis labels and numbering are displayed is the place where graph-specific oper-
ations are performed. In this area, the menu operations shown in table 5.7 are applicable.

Interaction with Argands

Interaction with an argand window is very much like that with a CRT window, except that instead
of a vertical line cursor, a cross-hair cursor appears when the MMB is pressed and held over the
window. The crosshair travels over the complex plane, following the data, as the mouse is moved left
and right. The complex value at the current crosshair position is displayed in the top right corner
of the argand window. Refer to figure 5.12.

The menu operations of the CRT and graph windows also apply to the argand window.

86

) S S T U S50 T

P e W S S N S N P RO S S B N S R

ize/Move

Res

L L L L L L LT T T T T T TIT

D et i S S

e e S G

) VRN S S T S A S N A S e D S o I S S S S S D T s e |

)

(

RTINS TN TN T TR PO O O T Y N T 0 N 1 |

T
) S i B S N S S P N S S |

¢ i |

S SN W2 o v e A N S N NN D R G S S A S N R GO S S S I S

[AEVEVEF] H
» H
o % M
bR
¥l A H
1] 1
R —— =
c L
|y
| oy HH
| g HH
L] U
£| * [l
£l o
w| 8 [H
cl ¥ HH
| HH

L
|
8
-
8
HH -
H H
HH}
L
-
-

C
C

)

b

(

Figure 5.10: Setting the value of a numeric

(a) choosing the menu option

(b) entering the new value for the numeric variable

(¢) the resulting numeric window

87

T
. o

;W o T IS U VR S o e S A P G S S N R S

\ 1w siin e £2I1 B8 AT Y V8 R

= ham e st 4 Y OO P

-

) B 1

o -

LI LLIL LT TIT

) M . S N N RS O S 0 R S P U O

CLLLLI I LT T

B S S SN D SO N R S U S S

P e RN N DO S S S N

L L L LILLTT

,@9.7914) |y

(31

Y P e e

Ylll,illlll_!_lllilllllll

T I L L LI T I TITTTT

p WS S S S

Fa

o o

fa¥

VAV

B N T T

B T e s P i e
i 1 v e v i

w1

L LTI LTI TTLI

== AVARVA

\ S S N 0 .

. =

. o I T A S
LS S B G e S I S S R B N Nt B

L LT LT T ITI T ITTTTT

TTrTrTTrTT T T T T TN

T
T
o e i i s B I N T N o e

TTrrrrrrorrorT

FrrrTTTTrT T T TR Y

. S S B N N N PO S R S S R B U S o B
L L L L L T L T T T L LY

. S TSN DD N I SR S D O 68 SR A P P

\ o sl S SN N Y R S S Y A

rrr I I L LI T ITTITTITT

while the top right hand corner of the window displays the (z,y)

The crosshair indicates the measurement point on the waveform,
values.

Figure 5.11: Making measurements in CRT window

I I LT

bl
|~
15y
e
1]
=
~
15
1L
o
15
1L
1|0
I(

S N B U S S 0 S S (M M S B e S

I T I I I T T T TTTITI

Figure 5.12: Making measurements on argand window

88

Save Data

The user will be prompted to type in a file name. SPaM will then
write the contents of the variable displayed in the CRT window
into the specified disk file.

Load Data

The user will be prompted for a file name. SPaM will attempt
to read the contents of the file into the variable displayed in the
current CRT window. The window will then be refreshed to display
the data.

Posterise

The current CRT window is expanded to full-screen size, and
SPaM switches into poster-mode. A new set of menus applies
here, as detailed in section 5.3.7.

Print

The image within boundaries of this CRT window is dumped to
the printer.

Refresh

The contents of this CRT are redrawn.

Copy

Before this option is invoked, the user must have generated two 2
different cursors, as detailed in the preceeding paragraphs.

When this menu option is selected, the user is prompted for a
variable name. The variable need not already exist. When the
name of the variable has been given, the range of the array (which
is displayed in the current CRT) bounded by the 2 cursors is copied
to the variable whose name the user has given.

In effect, the piece of waveform between the last 2 cursors in that
CRT window is copied to a new variable.

Paste

Prior to selecting this option, the user must have defined 1 cursor
on the current CRT window.

When this option is selected, the user will be prompted for the
name of a variable. That variable must already have been defined.
Once the user has supplied the name, SPaM will insert the element:
values from the specified variable into the variable in the CRT
window at the last cursor position.

After the insertion, the window will be refreshed.

Table 5.6: CRT Window Menu Options

5.3.6 Programmed Generation of Screen Objects

It would be tedious indeed if the user had to manually create all of the necessary display objects

each time SPaM was run. Fortunately, there is a way to automate the process.

Screen objects can be created by commands typed on SPaM'’s command line, and therefore from
within SPaM program scripts. Objects can be fully specified by the user, or simply the size of the

object specified and SPaM allowed to place it in a free part of the screen.

A mid-point between these two approaches allows the user to interactively create objects on the
screen with the mouse, and then dump the setup in text form to a file. The file may be edited to

89

X Axis Label When this option is selected, the user is prompted for a text string. This
text string is then displayed in the graph window as the x-axis label.

X Axis Min Val By default, the x-axis in a graph window is numbered with the array index
numbers. For example, if the array of data it displays has 1024 elements,
the x- axis is numbered 1...1024.

If the X-Axis minimum value, and the maximum value (see below) are both
defined, then they will be used to generate an alternate numbering scheme
for the x-axis of the waveform display, according to the following formula.

i

label(z) = Xmin + (Xma:: - Xma'n)

ima:c
where 1,4z 1s the maximum index value of the array (ie the array has index
values 1..imqz).

To reverse this numbering, and revert to index numbering, the X Axis

Index menu option (below) should be selected.

X Axis Max Val Together with the X-Axis minimum value (above), setting this value allows
the numbering of the x-axis to be customised.

Y Axis Label See X Axis label.

Y Axis Min Val By default, the y-axis of a graph window is auto-ranging. That is, the array
of data is scanned for maximum and minimum values, and the display is
scaled to those proportions.

If the user wishes to have a constant scaling on the y-axis, she must set
the y- axis minimum and maximum values, using this menu option and
the one below. The minimum value will be the one at the bottom of the
graph window, and the maximum value will be one at the top of the graph
window.

If the waveform to be displayed extends outside of the range limits imposed
by the user, the display will be clipped. :

Y Axis Max Val See Y Axis Min Val.

X Axis Index If the user has set custom x-axis numbering using the X Axis Min Val
and X Axis Max Val menu options, the user can revert back to index-only
numbering of the x-axis by selecting this menu option.

Y Axis Auto If the user has used the meny options Y Axis Min Val and Y Axis Max
Val to set the range of display on the y- axis, the display can be made to

return to vertical autoranging by selecting this meny option.

Table 5.7: Graph window menu options

make minor changes, and executed directly as a script to recreate the same display at some future
time. The method for dumping the screen state to a file is described in table 5.5.

The graphics screen is a bit mapped display of some vertical and horizontal resolution. Objects are

90

generated at specific positions on this bit-mapped display, and have specific sizes. SPaM allows
the exact sizes and positions of objects to be specified, giving full control over the way the screen
is drawn. It also allows the user to specify only the sizes of objects, trusting SPaM to place them
automatically. The latter method represents less work to the user, but can have unpredictable
results. It is most useful for quickly placing objects on the screen for test purposes.

Automatic Placement of Objects

Objects are automatically placed using commands of the following syntax.

xsize = 100;
ysize = 50;
s_var = 10;
v_var = 0:100;

auto button "name'" xsize ysize
auto numeric s_var xsize ysize
auto crt v_var xsize ysize
auto graph v_var xsize ysize

In each case, only a variable must be specified (or a string constant in the case of a button creation),
and the x and y size of the object in screen pixels.

SPaM maintains a tiling list of objects which are declared in this way, and will place subsequent
objects in a screen tile which is not occupied. If it cannot find sufficient unallocated screen space
for the object, it will return with an error message.

Controlled Placement of Screen Objects

To retain full control over the placement of objects on the graphics screen, the following functions
must be used.

lu_x = 10; % Left Upper x

lu_y = 10; % Left Upper y
rb_x = 10; % Right Bottom x
rb_y = 10; 4 Right Bottom y

button{"name",lu_x,lu_y,rb_x,rb_y)
numeric{var,lu_x,lu_y,rb_x,rb_y)
crt{var,lu_x,lu_y,rb_x,rb_y)
graph{var,lu_x,lu_y,rb_x, rb_y)

Objects placed in this way are not tracked by SPaM in the same way as the automatically placed
objects. A screen using both automatically and manually placed objects will be prone to corruption,
so the user should use one or other method.

By interactively creating objects (using mouse & menus), the user can create a screen which can be
preserved by dumping the screen setup (see table 5.5. The dump file has a format much like the
above example, and may be incorporated directly into a script to generate the required screen.

91

Changing Attributes of Screen Objects

Some screen objects have attributes which can be set separately from from the initial creation
operations of the preceeding section. For example, the graph window has optional parameters such
as axis labels and axis minima and maxima.

These parameters may be set separately, using the meny operations listed in table 5.7, or using the
following commands.

auto graph x 400 100 % first create a graph window

set labels "x'" "X Axis" "Y Axis" % set the axis labels

set xaxis "x" 0.0 1.0 % x axis is now labeled 0.0 ... 1.0
set yaxis "x" -10.0 10.0 % y range is now -10.0 ... 10.0

T I
T I TT
T I T
T

- I

Figure 5.14: Graph following z and y scaling

Note that in the above example, the third parameter following the set...statement is the name of
the variable whose display window is being modified, surrounded with double quotes ” ”.

92

T
I
T

T |
) S S PO N T S
‘ pon v
T

X
-
. e o
LI T
1

s me f
r
=
T

T T T

1 oo o e s
LT T ITITTITY
IT LI T
LI L LI LIT

T I
T T I T

I —
T I I

T
I
T T |

LI LT ILI LTI
v o

T T I
T I T

T
I I T

H
L

Figure 5.15: Graph showing waveform clipping.

Clipping occurs if the vertical limits over too narrow a range are
imposed.

The x-axis of a displayed waveform corresponds to the index of the array element at that point. The
default numbering of the x-axis is according to the array index at each point. The ’set xaxis .. S

statement simply causes SPaM to change the numbering on the x-axis, without any effect on the
waveform display itself.

The statement ’set yaxis ...’ actually sets the display range for the y-axis in that window. Only
those parts of the waveform which lie in that range will be displayed on the screen, the remainder
will be clipped at the top and bottom of the display window, as shown in figure 5.15.

To reverse the above operations, and return the attributes of the display window to their default
values, the following statements can be used.

clear labels "x"
clear xaxis "x"
clear yaxis "y"

Updating Screen Objects

Screen objects which represent SPaM variables, such as numerics, CRTs, and graphs, are not
automatically redrawn when the values of those variables are changed.

The user must force a redraw operation. This is achieved using the update statement, which
causes SPaM to check its internal lists for variables which have changed value since the screen was
last redrawn. Screen objects which display these variables are redrawn. Since this can be a time
consuming operation, it is left for the user to specify when the screen should be refreshed.

The user can force a selective object refresh by selecting the Refresh option from the object’s menu

(see table 5.6). A full screen refresh can be produced by selecting the Refresh Screen option from
the backdrop window menu (see table 5.5.)

93

5.3.7 Poster Mode

The poster-mode of display is designed for producing hard-copy prints for documentation purposes.
Only one CRT, graph, or argand can be displayed on the screen in poster-mode, and it occupies the

whole screen area.

In poster mode, the menu shown in table 5.8 is called up by the RMB.

LOAD DATA SPaM prompts for a file name, and loads data from the specified file into
the variable which is currently displayed in the poster window. The window
will be updated to show the new value.

SAVE DATA SPaM prompts for a file name, and will save the contents of the variable

currently being displayed in the poster window to the specified file

EXIT POSTER

Returns to normal screen display mode.

ANNOTATE (border)

Annotation is a means of labeling points of interest on the waveform being
displayed.

To annotate the waveform, the user first uses the MMB to position a cursor
at the point of interest, and then selects this menu option.

At this time, the mouse pointer will disappear, and will be replaced by a
rectangle which represents the size of the annotating text.

The user moves the mouse to position the text in a desired part of the
screen (where it will not obstruct or be obstructed), and presses the LMB
to lay the text down.

This particular option draws a black border around the annotating text to
highlight it. The text that is printed is in the form:

(z,v)

where z is the z—value of the cursor, and y is the waveform value at that
point.

Note that annotations and comments will disappear if a REFRESH is
caused by the user. i

ANNOTATE

Identical to the ANNOTATE (border) menu option except that no high-
lighting border is drawn around the annotating text.
Note that annotations and comments will disappear if a REFRESH is

caused by the user.

COMMENT

This option is used to place text strings on the screen display, such as a
title for the waveform plot.

Note that annotations and comments will disappear if a REFRESH is
caused by the user.

PRINT

Dump the current screen to printer.

Table 5.8: Poster mode menu

The user may annotate the waveform displayed in poster mode with comments and numeric values.
Numeric annotation is accomplished by moving a cursor (using middle mouse button, refer to section

94

5.3.5) to the desired part of the waveform, and then choosing the Annotate option from the poster
menu. The user then positions the displayed rectangle (which represents the size of the text to be

placed) in the desired position on the screen.

(32,0.04158)

8.8 | |

\
Save Data

(63,0.0168139)

| i
¢— (€31,0.06415807)

1

Load Data
Exit Postexr
Comment
Load Comments
Save Comments
Edit Comments
Annotate
Print
Refresh

|

(41,-0.818277> > &— (53,-0.832267)

Waveform with Clipping

YTy S G T N B B B R YT YT YT Ty ey B [[5 O BB S O B 6 0 O R T B F N A0 BN B 02 i‘I!IIFIr‘J"Qg'

Figure 5.16: Annotated poster display

5.3.8 Printing the Screen Contents to a Printer

The GUI screen can be printed either in whole or in part. By selecting the PRINT SCREEN
menu option over the background tile pattern, or by pressing SHIFT-PRTSCRN on the keyboard,

the whole screen will be printed.

Similarly, when in poster-mode, the PRINT menu option will cause the whole screen to be printed.

To print only the contents of a CRT, graph or argand window, position the mouse cursor over the
window and select the PRINT menu option. Only the contents of that window will then be printed.

To be able to print, the program PRTSCRN . EXE must be run before SPaM is run from DOS. Currently,
printing can only be done on EPSON compatible impact printers. Table 5.9 summarizes the means

by which hardcopy can be generated.

95

Action How to Resylt

SHIFT-PRTSCRN Keyboard Pressing the two keys SHIFT and PRTSCRN simultane-
ously will cause the current screen to be dumped to the
printer provided that the PRTSCRN.EXE program was run
before SPaM.

Print Screen Menu The whole screen is dumped to printer, provided that the
PRTSCRN.EXE program was run before SPaM.

Print Menu The object over which the mouse pointer was positioned
before the menu was opened is dumped to the printer,
provided that the PRTSCRN.EXE program was run before
SPaM.

Table 5.9: Various ways of printing graphics

5.4 Loading and Saving Variables

Variables can be loaded from disk, and saved to disk. This enables data values to be preserved on
disk, and recalled into SPaM at some later stage.

The values of variables can be saved using the write() function, and reloaded using the read()
function. The following example shows how.

x=[12 3
456
7 8 9]
write(x,"x.dat"); Y semicolon since write() returns 1 if ok.
% file "x.dat' created in current directory
p o b Y, the matrix value of x is now erased, replaced with 1
x=read("x.dat"); % contents of file "x.dat'" in current directory are

% reloaded into variable x.
The files created by write() are created in the current directory, and those read by read() are
assumed to lie in the current directory.

The loading and saving of variables may also be accomplished by menu operations if the screen is set
for graphic display, and the variable is bound to a display window (either CRT, graph, or argand).
The relevant menu operations are shown in tables 5.6 and 5.8.

5.4.1 SPaM disk file format

SPaM saves and reads ASCII data files, in which the data is represented textually. This allows
data files to be created from scratch by the user or other programs, at the expense of file size and
processing speed.

The file format used is documented in table 5.10.

96

Line No. Alternatives Effect
1 matrix The data in this file represents the elements of a matrix.
scalar The datum in this file represents a scalar value.
2 real The data/datum in this file is to be read as real numbers.
complex The data/datum in this file is to be read as complex numbers.
3 integer The data/datum in this file is to be stored in memory as 16-bit
integer values.
long The data/datum in this file is to be stored in memory as 32-bit
integer values.
float The data/datum in this file is to be stored in memory as double-
precision floating point numbers.
4 Rows Columns If the entity is a matrix (as specified in line 1 of the file, this line
holds the number of rows, followed by the number of columns.
real_part If the entity is a real scalar, this line holds the real part of the the
number, and represents the last valid line of the file.
real_part imag_part If the entity is a complex scalar, this line holds the real part and
the imaginary part, separated by a space, and represents the last
valid line of the file.
5 real_part If the entity is a real matrix, the remaining N lines of the file each
: contain 1 element of that matrix.
N +4 The matrix m is filled starting with element mj;, which is read

real_part imag_part

from line 5, proceeding across the row to element m;jc -where C is
the number of columns, then wrapping around to the start of the
next row.

The total number of elements in the file must be N = Rows x
Columns. If there are not sufficient elements in the file to meet
this criterion, SPaM will abort the read process with an error.

If there are more elements than necessary, SPaM will ignore the
remainder.

If the entity is a complex matrix, the real and imaginary parts of
each element must be placed on the same text line in the file.

The filling of the matrix proceeds as indicated for the real matrix
above.

Table 5.10: SPaM file format

97

5.5 Very Large Matrices

It is inevitable that some users of SPaM will wish to process arrays or matrices of data which are
larger than permitted by the available memory of their computer. To provide a partial solution,
a mechanism was created whereby the data objects are stored on disk (which usually has a larger
capacity than main memory), and referenced elements extracted from the disk files as needed. Such
objects are called Very Large Matrices (VLM).

Of course, the penalty is a long access time for elements, but reasonable performance can be achieved
by loading a set of values (rather than individual values) into memory where they can be processed
quickly.

At the time of writing of this document, the only numeric type which can be stored in a VLM is
a real floating point number. This will changed at some future time to include all numeric types
supported by SPaM.

5.5.1 Creating a VLM

Unlike normal, memory resident variables which are simply created whenever used, VLMs must be
explicitly declared before use. This allows SPaM to create a disk file of the appropriate size (first
checking to make sure that there is sufficient disk space), and to fill that file with zeros. VLM 1s
created with a command such as the following following:

create vlm x 100 200

A VLM variable called ’x’ is created, of size 100 rows by 200 columns. The only restrictions on the
size of VLMs is that the product of the number of rows and the number of columns must be less
than 23!, and the VLM must fit within the available disk space.

A double precision floating point number occupies 8 bytes of storage, so that a VLM requires 8 bytes
of disk space per element of the matrix. Thus for the above example, where the matrix has 20000
elements, the disk space required would be 160000 bytes.

5.5.2 Using a VLM

Using a VLM is little different from using a memory resident matrix. The main difference is that
with a memory resident matrix, any assignment to a matrix element outside of the current matrix
dimensions will cause the matrix to be suitably enlarged.

A VLM cannot be enlarged in this way. It size specified in the declaration (see section 5.5.1) is
represents the boundary for that variable for all time.

In all other ways, a VLM variable behaves like a normal memory resident matrix. The properties of
matrices are detailed in section 5.2.3.

5.5.3 Caching a VLM

Since VLM variables are stored on disk, references to their internal elements are slowed down by the
disk access time. Often, the operations performed on VLMs are ones which scan the elements of the
VLM in a linear fashion, so that if a whole row (or column) were read in at one time, the average
access time would be decreased.

98

SPaM provides a caching mechanism which allows SPaM to read in more than just the one element
being sought in a reference to the VLM. The user defines how many elements are to be read in at
a time. When the user (or her program) script refers to an element of a VLM, the cache is first
examined to determine whether the element has already been read from disk. If it has, it is simply
returned directly from the cache. SPaM therefore provides not only caching, but look-ahead fetching
of matrix elements.

If the required element does not exist in the cache, it is read from the disk file which represents the
VLM. At the same time, the cache is filled with the elements in the file which follow the specified
element.

The user specified cache is split into 2 halves of identical size, to form two distinct caches. These are
used according to a simple LRU (Least Recently Used) rule, so that the cache which is filled with
new data is not the one which was last read from. The cache is not associated with any one VLM
in particular.

This principle is important when a mathematical operation is being carried out on two distinct
VLMs. Since the cache will try to service both, then thrashing would result if only one cache buffer
existed. By having two buffers with an LRU algorithm, each VLM will effectively have its own
buffer. Similarly, operations which refer to elements in two distinct areas of a VLM will benefit from
this dual buffer scheme.

Since most mathematical functions in SPaM operate on one or two operands, the dual buffer scheme
provides the major increase in performance for VLM operations. Adding more buffers would increase
performance further, at the expense of memory consumption and complexity, but with decreasing
improvement. Most operations carried out in SPaM will be of the form:

x=func(y(i,j)); % where y is a VLM.
Z=X1Yy; % where z,x,y are VLM,
and these operations typically have only one or two VLMs on the right hand side of the assignment.

To cache a VLM the user must first create a cache variable. A cache variable must be a floating
point matrix. The data area of the matrix is used as the cache buffer. Since the user can create the
cache variable to be of a given size, she can determine the cache buffer size. An example of how to
create a cache variable follows:

cache v(40)=0.0;

Assuming that the variable cache_v had previously been undefined, this operation would create a
1 x 40 matrix, which would be used by SPaM as two 20 element caches. Note that there is no simple
formula for determining the optimal cache size. It depends on the operations being performed, the
access speed of the computer’s disk, and the size of the VLM matrices.

To cause SPaM to use the cache variable, the following instruction must be executed.
cache(x);

SPaM will now use the variable x as the cache for all subsequent VLM operations. The user should
forget that x exists, since no useful data can be read out of it by the user, and setting the value of
x will corrupt the cache contents.

To remove caching, the following statement is used.

cache off

99

5.6 SPaM Language Reference

In the SPaM language there are a several types of tokens. A token is simply a collection of contiguous
characters. Tokens are separated by spaces, tab characters, or newline characters, and therefore a
token may not include any of those characters®.

Tokens fall into broad classes, each of which has certain rules associated with it. The rules are shown
in the following table.

keyword A keyword is part of the SPaM language. An example of a keyword
is while, which is used as a loop constructor.
SPaM’s repertoire of keywords is shown in the following tables.

function (built-in) SPaM has a collection of built-in functions. The names of these
functions are reserved words, which means that they may not be
used in any context but as function calls.

The user may not use variables with names identical to the names
of built-in functions, but she may define her own functions with
the same name as a built-in function. In this case, her function
will replace the built-in one.

variable name If a token begins with a alphabetic character, and does not corre-
spond to a keyword, or a function or handler, SPaM will assume
it is a variable.

If the token is found to be an existing variable, that variable will
be referenced. Otherwise, a new variable is created, and declared
as empty until a value is assigned to it.

A variable name must begin with an alphabetic character, but may
contain numeric digits and the underscore symbol .

numeric constant Any token beginning with a digit is assumed to be a numeric con-
stant. Numeric constants are converted into one of three repre-
sentations : 16- bit integer, 32-bit integer, and double precision
floating point. The applicable rules are listed in section 5.2.3.

: The semicolon is used to prevent the printing of the results of an

expression evaluation.

Table 5.11: SPaM tokens

5.6.1 SPaM Reserved Words and Symbols

The following table lists SPaM’s reserved words. They are explained in detail in the following
sections.

o Mathematical functions

Sexcept when the token is surrounded by double quotation marks ’ " ', indicating that it is a string constant

100

sin, cos, abs, tan, log, ceil, sinh, cosh, asin, acos, atan, tanh, floor, exp, real, imag, mag, phaséy-
rand, root, sqrt, unwrap, det, fft, eye, size, zero, all, range, mean, integrate, deriv, stddev,
compatre, inv, solve, mod, atantwo, chirp, int, long, float, max min, lu
e Graphics Screen Manipulation
yaxis, xaxis, window, screen, hide, mouse, update, move, crt, button, slider, argand, numeric,
graphic, graph, mmb, lmb, rmb, reqtext, poster, movemenu, auto
¢ Generalised Instrument Control
cts, cfs, cits, cifs, upload, term, mon, send, run, download, upload, sdownload, pdownload,
supload, getports, sendports, getport, getcd, freqgen, sendport, set, dsp, port, restart, baud
e Miscellaneous functions

chain, input, banner, prstack, time, cache, cachestat, read, write, beep, , while, if, else, end,
abort, exit, for, function, procedure, goto, label, print, info, whof, who, whoe, whoi, clear,
dir, handler, dos, edit, wait, new, show, help, cls, trace, notrace, memifree, vlm, bind, create,
declare, external,

Neither variables, functions, nor handlers may have names which are identical to reserved words.
Any attempt to use reserved words as names will be flagged as a syntax error by SPaM.

Since SPaM is case sensitive, reserved words may be used as names if the case of at least one
character in the word is changed.

101

Multiplication operator
example c=a*b;

Addition operator
example c=atb;

Subtraction operator
example c=a-b;

Division operator
example c=a/b;

Double quote, surrounds string literal
example s="hello";

Assignment operator
example x=1

Echo suppression operator
example x=1; will not echo the value of x after the assignment.

A Exponentiation operator
example x=2A8;
@ Unstructured multiplication operator

For scalars this operator is identical to the ’*’ operator. However, for matrices,
z=xQy; ylelds z;; = zi; X ¥ij

Pre-inversion operator

example z=x\y

1

is equivalent to z = y/z if x is a scalar, and z = 7" x y if x Is a matrix.

Conjugate - transpose operator
example x=y’;
will assign to x the transposed and conjugated value of y.

Transpose operator

example x=y*;

will assign to x the transpose of the value of y. Note that no complex conjugation
is performed for this operator.

Table 5.12: SPaM special symbols (operators)

102

> Greater than
example if (x>1) ...

< Less than

example if (x<1) ...

>= Greater than or equal to
example if (x>=1) ...

<= Less than or equal to
example if (x<=1) ...

Equal to
example if (x==1) ...

1= Not equal to
example if (x!=1) ...

&& Logical AND
example if (x>1)&&(y>0) ...

I Logical OR
example if (x==1)I1(x==2) ...

! Logical NOT
example if !(x==1) ...

Table 5.13: SPaM special symbols (conditionals & logicals)

103

5.6.2 Mathematical Functions

abs
abs(x) - return the absolute value of x

If x is real, x is returned.
If x is complex, the magnitude of x is returned.

x may be scalar or matrix, but not VLM.

acos
acos(x) - return the arc cosine of x

x and y must be real, and must both be either scalar or matrix. If matrices, x and y must be of
identical size.

all
all(x) - returns 1 if all elements of matrix x are not zero 0 if any elements of matrix x are zero.

This function allows matrices to be used in conditional tests by turning a comparison of every matrix
element into a single logical result. For instance, if x and y are matrices of the same dimension, then

if(all(x==y)) print ratrices are the sameénd

asin
asin(x) - return the arc sine of x

x and y must be real, and must both be either scalar or matrix. If matrices, x and y must be of
identical size.

atan
atan(x) - returns the arctangent of x

The argument x may be scalar or matrix. If a matrix, the result is a matrix whose elements are the
arctangents of the elements of x. At present x must be real.

atantwo
atantwo(x,y) - returns the arctangent of x/y

The arguments x and y may be scalar or matrix. If a matrix, the result is a matrix whose elements
are the arctangents of the elements of x/y. At present x/y must be real.

104

ceil
ceil(x) - returns the smallest integer larger than x.

x must be real, but may be either scalar or matrix.

compare
compare(x,y) - compares two matrices X,y.

The elements of x,y must be greater than or equal to zero, and real. X and Y must also have the
same dimension.

The value returned is the probability that x and y are samples of the same body of data. The closer
to 1.0 the result is, the higher the probability.

cos
cos(x) - returns the cosine of the argument x.

The value returned is floating point. If x is a matrix, the result will be a matrix whose elements are
the cosines of the elements of x. At present x must be real.

det
det(x) - returns the determinant of matrix x

The matrix x must be real. The determinant is calculated using the cofactor method.

deriv
deriv(x) - estimate the first derivative of data.

y=deriv(x); the result is an array of data in which y(i) = x(i+1)-x(i) and y(N) = y(N-1) since
x(N+1) is undefined.

exp
exp(x) - returns the exponential of x

The argument x may be scalar or matrix. If a matrix, the result is a matrix whose elements are the
exponentials of the elements of x. At present x must be real.

eye
eye(n) - returns an identity matrix of size nxn

The identity matrix will be of type integer.

105

fit
fit(x) - returns the FFT of vector x

Note that x must be a 1 x n or n x 1 vector, where n = 2* for some integer k. FFT of matrix is not
presently supported. X may be either real or complex.

float
float(x) - returns the floating point value of x

The value of x is returned, represented as floating point. If x is a matrix, a matrix is returned.

floor
floor(x) - returns the largest integer smaller than x.

x must be real, but may be scalar or matrix.

imag
imag(x) - returns the imaginary part of complex number x.

The imaginary part will be returned in the same format as x, ie floating-point, integer, or long
integer.

If x is real, then the an error will be signalled. Imag() operates on scalars and matrices.

int
int(x) - returns the integer value of x

The value returned consists of the truncated integer value of x. If x is a matrix, a matrix is returned.
The result consists of 16bit integers.

integral
integral(x) - estimate the integral of an array of data.

This function returns the arithmetic sum of all elements in x. X must be real and a matrix, but not
a VLM.

inv
inv(x) - return the inverse of a matrix

The inverse is calculated by LU decomposition and back substitution. The determinant of the matrix
is checked, and if less than le-14, the matrix is assumed to be singular, and an error will be signalled.

106

log
log(x) - returns the natural logarithm of x

The argument x may be scalar or matrix. If a matrix, the result is a matrix whose elements are the
logarithms of the elements of x. At present x must be real.

Although not defined, a logarithm of 0 is signalled as a warning at present, and is assigned a value
of 0. In the future this may be flagged as an error.

long
long(x) - returns the long integer value of x

The value returned consists of the truncated integer value of x, represented as a 32bit integer. If x
is a matrix, a matrix is returned.

Ia

lu(x) - return the LU decomposition of matrix x.

mag
mag(x) - returns the magnitude of complex number x.

If x is real, then the value returned is identical to x. If x is complex, then each value in the result is
the magnitude of the corresponding complex number in X, calculated as:

mag(k) = sqrt(Xr(k)*Xr(k) + Xi(k)*Xi(k))

where Xr(k) and Xi(k) are the real and imaginary parts of x, respectively.

max
max(x,y) - returns the larger of two arguments.

The arguments must be real and scalar. The larger of the two is returned.

mean
mean(x) - return the mean of the values in matrix x.

x must be real.

min
min(x,y) - returns the smaller of two arguments.

The arguments must be real and scalar. The smaller of the two is returned.

107

mod
mod(x,y) - return the remainder of x/y

x and y must be real, and must both be either scalar or matrix. If matrices, x and y must be of
identical size.

phase
phase(x) - returns the phase values of complex number x.

If x is real, an error is signalled. If x is complex, the result consists of phase values calculated as :

pha(k) = atan(Xi(k)/Xr(k))

where Xr(k) and Xi(k) are the real and imaginary parts of x, respectively.

rand
rand(x) - returns x random floating point numbers.

If x = 1, then the result is a scalar.
If x > 1, a vector of size (1,x) is returned, the elements of which are different random numbers.
If x < 1, an error is signalled.

range
range(x) - prints the range of the argument x

The minimum and maximum real and imaginary values of x are displayed, but not returned. Range()
should be thought of as a procedure and not a function, though this may change.

real
real(x) - return the real part of complex number x.

The real part will be returned in the same format as x, ie floating point, integer, or long integer. If
x is real, then the value returned is identical to x. Real() operates on scalars and matrices.

root
root(x) - returns the complex roots of polynomial.

The polynomial is represented by vector x which is a (1,M) vector, which represents the coeficients
of a polynomial of degree M-1.

The x(1,1) element represents the zero-power coefficient, while the x(1,M) element represents the
M-1 power coefficient.

108

The vector x may be real or complex, but the result will always be complex.

sin
sin(x) - returns the sine of the argument x.

The value returned is floating point. If x is a matrix, the result will be a matrix whose elements are
the sines of the elements of x. At present x must be real.

size
size(x) - returns the row and column dimensions of the matrix x

This function is normally used in a double assignment such as row,col=size(x) If only the row value
is required, an assignment such as row = size(x) can be used.

solve
solve(A,B) - solve a system of simultaneous equations.

Given a system of simultaneous equations represented as AX = B where A is an nxn matrix, and B
is an nx1 vector, the solve() function will return the solution vector X.

If A is not square, an error will be flagged.

sqrt
sqrt(x) - returns the square root of x

The argument x must be scalar, but can be either complex or real. Negative real x results in a
complex result.

stddev
stddev(x) - returns the standard deviation of the elements in matrix x.

x must be real.

tan
tan(x) - returns the tangent of the argument x.

The value returned is floating point. If x is a matrix, the result will be a matrix whose elements are
the tangents of the elements of x. At present x must be real.

109

Z€ero
zero(x,y) - returns a zero matrix with x rows, y cols.

The matrix will be of type integer.

5.6.3 Generalised Instrument Control Functions

download
download(variable,start) - download array to HarPS.

The *variable’ must be an array or scalar of 16-BIT INTEGER type (either real or complex). An
error will be signalled if any other type is specified.

The ’start’ parameter is the address in TMS320C25 data memory to which the array will be down-
loaded.

example:

x=[10 20 30 40];
download(x,0);

See also
upload

getport
getport(n) - returns the value on TMS320C25 input port n.

The value returned is a 16-bit integer, representing the value seen on the input port n of the DSP
device. The allowed range for n is 0j=n;j=15.

See also
getports, sendport, sendports

getports
getports(mask) - return the values on TMS320C25 input ports

"mask’ is a 16-bit integer number. A ’1’ bit in one of its bit positions (say N, 0j=N;=15) will cause
the value to be read from input port N of the TMS320C25. A ’0’ bit in a position prevents the
reading of the corresponding input port.

getports() always returns an 1x16 matrix. The first element corresponds to input port 0 of the DSP,
while the last element corresponds to input port 15 of the DSP.

110

Values in the array at positions corresponding to ’0’ bits in the value of 'mask’ have a default value
of zero.

Example:
regs = getports(15); A read input ports 0,1,2,3 only.

See also
getport, sendport, sendports ”

monitor
monitor - talk directly to HarPS onboard debug monitor.

This command turns the PC into a terminal, and connects it to the HarPS onboard debug monitor.
This is a debugging facility which should not normally be needed.

See also
terminal

restart
restart - restart the DSP in the HarPS system.

A reset PULSE of short (microsecond) duration is sent to the DSP in the HarPS hardware system,
causing it to restart execution of its current program. The restart’ command waits for the DSP to
request attention before returning control to the user spam script.

See also
send, run

run
run ”filename” - execute DSP code in disk file.
Issuing this command is equivalent to issuing:

send "filename"
restart

See also
send, restart

send
send ”filename” - send a file of TMS320C25 code to HarPS.

The file called *filename’ is assumed to be an unformatted binary file of code for the DSP, which is
loaded into the DSP program memory starting at address 0 (the code must therefore include the
reset vector).

111

The processor is NOT released from its indefinite RESET state (and therefore cannot execute the
code) until the ’restart’ command is issued.

Example:
send "c:\dsp\sampler.bin"

See also
restart

sendport
sendport(n,data) - causes a value to be written to a TMS320C25 output port.

The output port number n (where 0j=nj=15) of the DSP will have the value of ’data’ written to it.
The value must be an integer, so *data’ is first converted to a 16-bit integer.

See also
getport, getports, sendports

sendports
sendports(mask, data) - set TMS320C25 output ports.

This function causes the values in the matrix ’data’ to be written to those TMS320C25 output ports
which correspond to a 1 bit in the value of mask’.

'data’ must be a matrix of 16 elements (the shape is not important), and it must be real. It is first
converted to 16-bit integer type. The 16-bit integer values are then written to the ports.

'mask’ is converted to a 16-bit integer, which has bits numbered 15 to 0 (from left to right). If a
bit N (0j=Nj=15) is set to 1, then element number N is taken from the matrix data’ and stored to
TMS320C25 output port N.

If the value of bit N is zero, no write operation to output port N occurs.
For example,

foo(16)=0; Y, cause foo to be 1x16 vector
foo(9)=1234; % the value to write to port 8

sendports(256,foo) % 256 = binary 0000000100000000
% so only port 8 is written to.

See also
getport, getports, sendport

terminal
Terminal - enter direct terminal mode to the serial port.

This turns the PC into a terminal to the serial port.

112

upload
upload(start,end) - return data from DSP data memory.

The ’upload’ function returns as its result an array of number uploaded from the HarPS DSP data
memory. The range begins at TMS320C25 data memory address contained in the variable ’start’,
and ends at the address given by ’end’.

The total number of words uploaded is therefore (end-start+1).

example:
x = upload(0,1023);

See also
download

5.6.4 Graphics Management Functions

argand
argand - create a window to display complex array data.

The complex data contained in the array is displayed on an Argand diagram, with the real axis
horizontal, and the imaginary axis vertical.

See also:
set, crt, graph.

auto
auto - automatically place objects on the screen.

Auto must be used with other keywords, as shown in the example below.

auto numeric k 50 50

auto slider volt 50 50

auto button "START" 100 100
auto graph myarray 200 100
auto crt myarray 200 100

auto argand mycomplex 200 200

Instead of having to specify exact screen coordinates for objects, the ’auto’ keyword lets you specify
only the desired size of the object, and it tries to place that object in a spot on the screen that is
free.

See also:
crt, button, graph, argand, slider, numeric.

113

button

A button is a rectangle on the screen which simulates a pushbutton switch. When the LEFT MOUSE
BUTTON is pressed and released within the rectangle, spam tries to execute HANDLER (a user
defined procedure) to do perform some action corresponding to the button (see handler’.)

There are two ways to create buttons. The first is to call a function:
Y make a button called START with top left cormer (10,100)

% and bottom right cornmer (110,200).
button("START",10,100,110,200)

The second is to use the *auto’ keyword to automatically place the button on the screen.

% we want a button 100 pixels by 100 pixels, put it anywhere
Y, on the screen where there is room.
auto button "start' 100 100

See also:
auto, handler, buttons, mouse, Imb

crt
crt - create an array display window.

See ’graph’

dump
Graphic screen dump - printing the graphics screen.

Printing of the graphic screen can be done in several ways.

1. type the command ’print screen’

2. Press the keys CTRL-PRTSCR on the IBM keyboard. Note that the PRTSCRN.EXE file
must have been executed before spam was run.

3. Use the mouse and menus to selectively print objects. If you hold down the RIGHT MOUSE
BUTTON to bring up a menu, you will see an option in the menu called "PRINT".

MENU ’print’ over backgound pattern prints whole screen.
MENU ’print’ over object prints only that object.

In all cases, an EPSON compatible printer is assumed.

graph

graph - create a graphing window to display array data.

114

There are two ways to display array data. One isin a window called a CRT, which displays no
numbering or labeling on its axes, the other called GRAPH, which displays both. The numbering
and labeling is done using the ’set’ command.

Both CRT and GRAPH can only display arrays of REAL data. To display arrays of complex data,
use the ARGAND window.

To create a GRAPH window, use either of the following.

% create a graph window to display values of array ’x’.
% Top left hand corner at (10,100), bottom right at

% (110,200).

graph(x,10,100,110,200)

% create a graph window 100x100 pixels, put it anywhere
% on the screen where there is room.
auto graph x 100 100

See also:
auto, crt, set

graphic

graphic - move from text display mode to graphics display mode.

either:

graphic<return>

enters graphics mode and creates a console window about 600x200 pixels in size.
or:

graphic N1 N2<return>

enters graphics mode and creates a console window N1xN2 pixels in size.
Currently supported graphics devices include EGA, VGA, HERCULES.

See Also,
text

Imb
Imb(x) - set the state of the LEFT MOUSE BUTTON.
This launches an event into the input stream of SPaM which looks like the user doing something

with the LEFT MOUSE BUTTON.

Y simulate the user pressing the left mouse button
Imb(1);
Y simulate the user releasing the left mouse button
1mb(0);

115

Since the LEFT MOUSE BUTTON is used to press BUTTONS, its effect will depend on the current
location of the mouse cursor.

See also:
button, rmb, handler

move
move - move an object

MOVE is used in conjunction with other keywords to move screen objects from their current screen
location to a new one.

% the following command moves the mouse cursor to screen
Y, coordinates (200,200)
move mouse 200 200

% the following command moves the mouse cursor to the center
Y. of the button called ’START’
move mouse button "START"

numeric

A NUMERIC is a rectangle on the screen which displays the value of a scalar variable (as opposed
to a GRAPH or CRT which displays the value of an array.)

To create a NUMERIC, two methods can be used:

Y% the first is to specify exactly the position of the numeric on the
Y screen. In this case, we want the value of variable ’'rate’ to

%, be displayed in a rectangle with top left hand corner at (10,100)
% and bottom right hand at (110,200).

numeric(rate,10,100,110,200)

Y% or we can simply specify the size of the rectangle, and let SPaM
% place it in a free part of the screen.
auto numeric rate 100 100

See also:
auto

rmb
rmb(x) - set the state of the RIGHT MOUSE BUTTON.

This launches an event into the input stream of SPaM which looks like the user doing something
with the RIGHT MOUSE BUTTON.

% simulate the user pressing the right mouse button

116

rmb(1);
% simulate the user releasing the right mouse button
rmb(0);

Since the RIGHT MOUSE BUTTON controls pull-down menus, its effect will depend on the position
of the mouse cursor at the time.

See also:
menu, lmb

slider
slider - create a sliding bar button.

This command produces a control simulating a linear control such as a potentiometer. It is not
concretely defined at present.

update
update - update all objects on the graphics screen.

This command causes all CRTs, NUMERICs, GRAPHs, and ARGAND:s to be redrawn, so that any
changes which may have occurred in the variables that they represent are reflected on the screen.

xaxis
xaxis - refer to x axis of a GRAPH or CRT or ARGAND.

The ’xaxis’ keyword is used in conjunction with either the ’set’ or ’clear’ command to carry out
operations on graphic objects.

When used with ’set’, it allows minimum and maximum values to be specified for GRAPH windows,
and with the ’clear’ command to clear those values.

The X axis of a GRAPH window is by default numbered with the index values of the array which
it is displaying. If the ’set’ command is used to set minimum and maximum values, then the left
hand end of the graph (index = 1) will take the minimum value, and the right hand end (index =
size of array) will take on the maximum value. Index positions in between the two extremes are
appropriately scaled.

See also
set, clear, yaxis, label

117

yaxis
yaxis - refer to the y axis of a GRAPH or CRT or ARGAND.

In conjunction with the ’set’ or ‘clear’ command, this keyword causes either setting of the mini-
mum/maximum y axis display values , or the clearing of those values, respectively.

Unlike the setting of X axis min/max values, the Y axis min/max values have a profound effect
on the way that the data is displayed. The bottom of the display window, corresponding to the
minimum Y value, takes on the value specified, as does the top of the display window, corresponding
to the maximum Y value.

The waveform of the array is then drawn to scale on the new range of the y axis. If the waveform
fits within the range specified, it will be seen in its entirety. If the waveform wanders outside of the
specified range, it will be clipped.

If no min/max Y values have been specified, or if they have been cleared using the ’clear yaxis..’
command, the waveform will be automatically scaled to fit exactly into the display window.

See also
set, clear, xaxis

5.6.5 Program Flow Control

abort
abort - abort execution of the current program and resume source input.

There may be occasions when you wish an event (such as the user hitting a BUTTON) to stop
the execution of a program script. The ’abort’ command does this, and source entry resumes. By
default, source is read from the keyboard.

If a call to the *chain()’ function was made beforehand, then source input will resume from the file
specified by that call.

See also
chain

for
for - loop construct.

The use of the FOR loop is demonstrated in the following example:

118

for i=0:100
print i
end

The control expression (in the above example it is *0:100’ must evaluate to a vector (ie 1xn matrix).
On consecutive passes, the loop variable (in the above example it is ’i") will take the value of
successive elemnents of the vector, starting with the first, and ending with the last.

goto
goto - goto a label.

The goto statement allows program execution to jump from one part of a program to another. The
destination of the GOTO is defined by a LABEL statement. If no LABEL statement of the specified
name has been encountered, an error will be signalled.

example

label start <----—-
goto end -
éc'ato start o
fabe et <t

See also
label

if

if - start a conditional statement

The syntax for the IF construct is shown by the following example:
if (1>2)

print "There is something wrong in our universe!"
end

If the conditional test is true, all statements after the conditional will be executed until a ’end’
keyword is encountered. The IF-ELSE construct is shown below.

if(1>2)

print "There is something wrong in our universe!"
else

print "Normality has been resumed."
end

119

while
while - loop construct.

The use of the WHILE loop is demonstrated in the following example:

i=1;

while (i<10)
print i
i=i+l;
end

If the condition is true, all statements following the conditional expression and the ’end’ keyword
are executed. Execution is continued until the condition fails.

Note that if the condition is never met (even the first time), then the inner statements may never
be executed.

5.6.6 Disk Access Functions

chain
chain(”filename”) - get input from file after current program finishes.

When the current program finishes, instead of waiting for the user to type in a command, SPaM
will get its input from the specified file. The current input file is closed, so that there is no limit on
how many times one file can chain to a new input file.

The commands in the new file are compiled/executed only after the current program has finished,
they are NOT included into the current program.

dir
dir - display names of available .m files

The names of SPaM script files (.m files) in the current directory, and those directories defined by
the environment variable SPAMPATH, will be displayed.

The name of the path where the script is located will also be displayed.
To find out what a script does, simply type
help name

where the name is the name of the script WITHOUT the *.m’ extension. If the script contains any
help information in its first few lines, that information will be printed.

See also
scripts

read

120

read(fname) - returns the value of the data in the data file whose name is in the variable fname.
fname can either be a string variable, or a string literal (surrounded by double quotes).

The disk file itself is a text file of a specific format, see the documentation for further details. eg

x = read("x.dat");

write
write(fname,x) - writes a variable to a disk file.

The variable x is written to the disk file whose name is in fname. eg

write(x,"x.dat")

5.6.7 Miscellaneous Functions

clear

clear - clear a value in an object which has been SET, or clear the value of one variable, or clear the
value of all variables.

The ’clear’ keyword must be used in conjunction with other keywords, as shown below.

Y, remove axis labels on graph called ’y’

clear label "y"

Y clear minimum and maximum x axis values in graph called 'y’
clear xaxis "y"

Y clear minimum and maximum y axis values in graph called 'y’
clear yaxis "y"

Typing clear on its own will cause all of SPaM’s internal lists to be purged. All variables, user
defined functions and handlers, and all graphics objects will be forgotten.

Typing clear followed by the name of a variable will cause that variable to be forgotten, and any
memory that was associated with it to be returned to the free memory pool.

See also
label, xaxis, yaxis, set

cls
¢cls - clear console window.

If in text display mode, the text screen is cleared.
If in graphics mode, the console window is cleared.

121

dos

DOS - shell out to MSDOS.

The user is placed into a DOS COMMAND.COM shell, where he may use DOS commands as normal,
though with much reduced memory available.

To return to SPaM, the user must type ’exit’.

If the user was in GRAPHIC mode, the screen will be restored to its state before the ’dos’ command
was issued.

See also
edit

edit
edit - invoke an external text editor.

A DOS shell is created and a text editor is run, allowing the user to edit SPaM command scripts
without having to exit SPaM.

Once the editting is finished, the user should save the text file and quit the editor. This will cause
SPaM to resume in the state which existed before the ’edit’ command was given.

The text editor to be used is specified by the DOS environment variable "SPAMEDIT’, set in DOS
as follows:

set SPAMEDIT=c:\dos\q.exe

This will cause an editor called ’q’ to be run each time the ’edit’ command is given.

See also
dos

input
input(prompt) - prompts for and returns a floating point value.

The argument prompt is either a literal string (surrounded in double quotes), or a variable to which
a literal string has been assigned. The prompt will be displayed, the program will wait for the user
to type a number, and the value of that number will be returned. eg

x = input(’Input the value for x - ”);

notrace
notrace - prevent the compiler from echoing input

This command reverses the effect of the ’trace’ command, so that source code input is not echoed
to the screen.

See also
trace

122

print
print - prints the value of a symbol

PRINT prints the value of a variable, constant, or expression. For instance:

> print "This is a string"
This is a string
> print x
X =
42.0
> print 1+2+3+4
10

Note that in all cases the same result could be obtained by just typing the expression to be printed.
Unless the expression (or assignment) is followed by a semicolon ’, its value will be printed by
default.

Information about graphics screen printing can be found under the title ’"dump.’

See also
dump

time
time(x) - returns either:

if x=0 , time in seconds since SPaM started,
if x=1 , time in seconds since time() last called.

trace

Trace - echo source input to the compiler

This command causes the compiler to echo all input until a 'notrace’ command is given.

Echoing of input allows the user to easily see where syntax errors are occurring in the source code.

See also
notrace

vim
vlm - stands for Very Large Matrix.

Normal matrices are memory resident - that means they are stored in the PCs memory between
uses. The memory of the PC imposes limits on the size of a matrix. To overcome this limit, VLMs
were created.

A VLM never exists in memory, but is instead stored in a file on the hard disk. When elements are
to be accessed, they are read/written from/to that file. This means access is slower for a memory

123

resident matrix.

The best way to use VLMs is to read parts of them into memory resident matrices, which the user
can then process. Many math functions are not able to directly access VLMs directly, so the user
will have to process them in pieces in any case.

VLMs must be explicitly created using the ’create vim’ command.

A VLM may be any size allowed by the computers disk capacity, the only restraint being that (rows
* columns) j 23! — 1. The elements in a VLM are REAL FLOATING numbers, though more types
may be implemented in the future. Each element occupies 8 bytes, so an N element VLM will
require at least 8N bytes of disk space. In practice, it will require more due to operating system
overhead.

SPaM checks the default drive to make sure that there is enough space for the VLM to be created,
and if there is not an error will result.

See also
create

wait
wait(x) - wait for x seconds before continuing.

The number x may be floating point to pause the program for a fraction of a second, but the
resolution of the interval timing is only 1/(18.2) second.

124

5.7 Online Help

SPaM has an built-in help system which the user may invoke to obtain information about SPaM
language and operation. An index of help topics is displayed by simply typing:

help
This will display a screen similar to the following:

The following topics exist in my help index:

abort abs acos all argand

asin atan atantwo auto button

ceil chain clear cls compare

cos create crt det deriv

dir dos download dump edit

environment exp eye fft float

floor for functions getport getports

goto graph graphic harps if

imag input int integral inv

keys 1mb log long lu

mag matrix max mean menu

min mod monitor move notrace

numeric operators paths phase print

rand range read real restart

rmb root run send sendport

sendports set sin size slider

solve spam sqrt stddev tan

terminal time trace update upload

vim wait while write xaxis
yaxis zero

Type HELP "subject" where ’subject’ is from the above list.
The user can obtain more specific information about any of the topics named In the index. For

instance, if help about mathematical operators is required, the user types:

help "operators"

125

Chapter 6

Integration Issues

This chapter deals with system integration issues which were encountered during implementation
of the GI. The GI consists of many different parts, some hardware and some software, which were
integrated to form the whole.

The interaction between the GI hardware and SPaM is carried out on several levels, as shown in
figure 6.1. The Application layer (user program) is the highest level of software within SPaM. The
user program calls various functions which interface to the protocol layer, which in turn transmits
and receives characters to and from the GI hardware.

User Program

§
SPaM Function Laye

i

Protocol Layer

;

Signal Processor
Character I/0O Me:%ory & Control

i

Control Processor

i
Physical Link RS5232
Control

Figure 6.1: SPaM software layers

6.1 Aspects of the RS232 link between host and GI

The RS232 link connecting the GI hardware and the host computer poses several problems on its
own. As a long distance link, it is susceptible to outside interference. The high data rates involved
also mean that internal PC activity can sometimes interfere with communication. For this reason,
effective management of transmission errors is essential, as discussed in the following section.

126

The synchronisation of host and GI is another crucial point. Communication occurs according to a
state-transition diagram such as that shown in figures 6.2 and 6.3. Any deviation from the predefined
paths would cause a loss of control. These issues are discussed in section 6.1.2

6.1.1 Link Error Management

The link between the host and GI is an RS232 interface for reasons stated in section 3.2, and this
brought its own problems.

In order to increase the responsiveness of the system (by decreasing its response time), the highest
possible serial bit rate is used. The bit-per-second rate of the GI hardware is 57600, which still
allows a maximum throughput of 5.76kbytes per second (8 bits per byte, plus start bit and stop bit,
yield 10 bits per byte).

Though communication on most PCs with standard serial ports is reliable at this speed, transmission
errors can and do occur. The main reason is interference by higher-priority interrupt devices in the
PC. Even the smallest probability of a link transmission error occurring means that the software at
both ends must be programmed to detect and correct errors. The error detection and correction
mechanism exists within the protocol layer of figure 6.1.

The way this was done was to implement a packet based protocol in which packets of bytes of known
size are transmitted between host and GI. These packets have an embedded cyclic redundancy code
which allows the receiver to determine, with a high degree of certainty, whether the packet has been
corrupted during transmission.

Two types of packets are currently implemented: Command packets and data packets. Command
packets originate only from the host computer, and contain commands for the control processor, as
well as any numeric arguments required by those commands. Data packets can originate in either
the host or control processor module.

On receipt of a packet, the receiving device must issue a response which tells the sender whether the
packet was correctly received or not. If the packet arrived intact, the sender may proceed to send
the next logical packet. If the packet arrived corrupted, the sender will retransmit it. A limit is
placed on the number of times packets may be resent during a transmission. If this limit is exceeded,
the link is considered faulty and the user notified.

6.1.2 Host to GI Synchronisation

In order for communication to begin, the host and control processor must be synchronised — that
is, they must be in the same state (idle state.)

The host can monitor the state of GI by sending NULL characters to the GI, and waiting for a *-’
character in response to each one. If the response character is received, then the GI is in the idle
state and may be sent a command packet to perform a given action.

If no response character is received, the host may force the GI to pay attention by sending a break
character (actually a non-character, consisting of an extended time of transmit data signal inversion.)

Figure 6.4 shows in highly simplified form the activity of the control processor (CP) in and around
its idle state. In this state, the CP waits for the host to send a 'magic number’ which signifies the
start of a command block. Just as the *-> character is used to inform the host that the CP is alert,
the magic number is used to synchronise to the start of a command block.

After receiving the magic number, the CP assumes that the following group of characters represents

127

GI Action Host Action

v

Host Sends Command Packet

[Fax]

Q
=]
Q
5
]
!
o

A

GI Checks for Valid CRC

ACK CRC Valid
A 4

NAK

Y

Host Sends First Data Packet

Q
]
Q
g
=
o

A

GI Checks Packet CRC

ACK CRC Valid

»Host Sends Second Data Packet

» Host Sends Last Data Packet

4
NAK CRC Invalid

GI Checks Packet CRC

ACK

3

GI Waits for Command Packet

Figure 6.2: The state-diagram for Host to GI
data transfer.

Note:

CRC = Cyclic Redundancy Check

ACK = Acknowledge

NAK = Negative Acknowledge

128

Host Action

Host Sends Command Packet

5

GI Action
o '
GI Checks for Valid CRC 4
GI Sends First Packet
-
NAK

Host Checks CRC

Y

GI Sends Second Packet

...............

CRC Invalid

A

NAK

GI Sends Last Packet

Host Checks CRC

3

CRC Invalid

..

NAK

Host Checks CRC

ACK CRC Valid

Y

GI Waits for Command Packet

Figure 6.3: The state-diagram for GI to Host

data transfer.
Note:

CRC = Cyclic Redundancy Check

ACK = Acknowledge

NAK = Negative Acknowledge

129

IDLE STATE

Wait for
Magic Number

1

Receive Command| Invalid
Packet (NAK)

1 Valid (ack)

Process
Command

(cf fig 6.2)
\

Figure 6.4: Control Processor IDLE State

a command block. After receiving the block, the CP checks the embedded cyclic redundancy code
(CRQC) to confirm the validity of the packet. If the block is valid, the CP acknowledges it, and
proceeds to carry out the actions specified within the command packet.

Should the command packet prove to be invalid, the CP sends a NAK character to the host, and
returns to the idle state. Under most circumstances, the host will attempt to resend the command
packet (the exception being when the maximum number of retries is exceeded.)

6.2 Control Processor to Signal Processor Synchronisation

In practice, the user (or her program) sends a file of DSP code to the GI, and causes the code to be
executed by the TMS320C25. In order for the following operations to be correctly sequenced, the
host must be informed when the signal processor has completed execution of the code.

This synchronisation is achieved using the interprocessor port, which connects the TMS320C25 and
the 68000 control processor. The DSP code, as a final action, asserts an attention-request signal
which is detected by the control processor. The host is then informed that calculation is complete,
so that it can issue commands to retrieve the results.

The commands provided within SPaM for control of the GI handle this sequence of operations in a
manner which is invisible to the user. The only requirement is that users who write their TMS320
code must follow convention and end their program with instructions which assert the attention
request signal. An example of such code can be found in the sample TMS320 program in section C.

6.3 Integrating Software and Hardware

This section discusses the steps which must be performed by a GI application script to emulate a
test instrument. A script is a disk based text file containing SPaM commands (see section 4.6.)

130

The following actions must be performed by the user’s script:

1. Set up graphics screen.

The graphics screen must be set to display the required waveforms, provide the necessary
control buttons, and display any necessary numeric values.

An example of such a screen is given in figure 4.13, and the accompanying script in figure 4.14.

See lines 2-5 in figure 6.5.

2. Send the necessary DSP code to the GI.

The code module for the TMS320 is loaded from disk, and sent to the TMS320 program
memory. This operation is carried out using SPaM’s send command.

Unless multiple separate code modules must be run within the single application, the code
module needs to be sent only once, at the start of the script.

See line 6 in figure 6.5.

3. Download any operational parameters to the DSP.

An interactive instrument allows the user to set various parameters, such as sampling rate,
offset voltages etc. These can be downloaded into TMS320 program or data space as required
(the TMS320 code must be written to read these parameters and use them.)

See lines 18-22 in figure 6.5.

4. Start DSP program execution.

At this point, the TMS320 can be taken out of the RESET state, so that execution of the DSP
code begins. This is accomplished using SPaM’s restart command.

See line 24 in figure 6.5.

5. Wait for signal processor to finish.

This is done using the mechanism described in section 6.2. In practice, the user does not need
to take any specific action here, since spam’s restart command does not return control to the
user’s script until the DSP has finished execution.

See line 24 in figure 6.5.

6. Uploading of the computation results to the host.

SPaM'’s upload function fetches words from a specified area in TMS320C25 data memory,
and stores them in a SPaM array variable, which may then be displayed.

See line 26-27 in figure 6.5.

7. Repeat.

For as long as required, repeat the operations from step 3.

As demonstrated in figure 6.5, commands which control the GI hardware are implemented either as
direct keywords (eg send), or as functions which return a value (in the case of upload(), the value
returned is an array of numbers.)

131

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

time_interval = 10000;

old_time = O;

auto graph x 400 100

auto numeric time_interval 50 50
auto button "start"” 100 50

auto button "stop" 100 50

send "dspcro.bin"

handler stop
stop = 1;
end
handler start
stop = 0;
while(stop==0)
if(time_interval!=old_time)
pdownload(time_interval,20)
0ld_time=time_interval;
end

restart

x=upload(4096,4096+1023)
update

end
end

%
A
pA
%
A

sampling interval

create auto graph window for array ’x’
create a numeric display window

make a pushbutton called ’start’

make a pushbutton called ’stop’
download TMS320 code to GI

executed when ’stop’ button clicked
set this variable to stop loop.
end of handler.

this code is executed when the ’start’
button is clicked by the user
while stop==0, repeat the action.

while the user has not clicked ’stop’ ...

then the user has entered a new
time interval value

download sample interval value to
DSP program memory.

end of if statement

make the DSP execute its code,
and wait for it to finish.

upload 1024 words into array x.

update the graphic window
which displays x.

end of while loop.

end of handler.

Figure 6.5: SPaM GI control script
The line numbers are not part of the SPaM script.

132

Chapter 7

System Evaluation

This section compares the predicted performance of the system and its various parts to that measured
on manufactured units.

7.1 DSP Throughput

The TMS320C25 signal processor has achieved its rated performance in the DSP module. The only
possible barrier to such performance is the access time of the external memory, which may slow
accesses and thereby reduce throughput.

The DSP module has been run with both 0 and 1 wait-state in the DSP hardware. To achieve full
speed, fast memories of <50ns access time are required. Until recently, such memories (in suitable
configurations) were expensive, and so the DSP module was designed to allow standard (inexpensive)
commercial 100ns parts to be used with 1 wait-state accesses.

Fortunately, there has been a drastic decline in the price of fast SRAM, pushed largely by its
widespread use in consumer computer technology (eg cache RAMs), so that a 10-MIPS DSP module
can now be constructed for little more than one utilising slower SRAMs. ’

With 0 wait-state external accesses, the TMS320C25 has a maximum throughput of 10MIPS (mil-
lions of instructions per second). The actual throughput for particular algorithms is much more
complex and will not be discussed here, since it depends on the actual program and data flow. From
the hardware perspective, the DSP module is achieving its nominal design throughput.

Cost of the DSP hardware can be cut without sacrificing a great deal of performance, especially when
the signal processing algorithms to be used consist of small software loops. The TMS320C25 has
internal memory which may be configured as program memory. Small programs may be loaded from
external memory into this internal memory, and executed at full speed, even though the external
memory may require 1 wait state accesses.

The throughput of signal processing software cannot be simply defined or measured in a general
fashion. One software task which can be benchmarked is that of signal sampling. The DSP module
with the prototype AIM can achieve sampling rates of 1.2MSPS (performed by software). A minor
redesign of the AIM would double this to 2.4MSPS.

133

7.1.1 A/D System Performance

While only a prototype, the Analogue Interface Module (AIM) clearly showed the path which must
be followed for future designs. As an emulator of test instruments, the GI must be able to set all of
the essential characteristics of its circuitry under software control. These characteristics include:

1. Input stage gain.

2. Voltage offset at the A/D signal input.
3. Anti-aliasing filtering

4. Qutput range.

5. Output offset.

The prototype AIM does have programmable gain amplifiers, allowing one from a set of gains between
1 and 256. However, the amplifiers also amplify a selection of DC offsets within the AIM module,
causing a loss in effective resolution of the A/D. For this reason, as well as the obvious one of DC
signal cancellation, programmable offset removal must be provided.

7.1.2 Link Throughput

The link transfer burst rate of 57.6kbps was approached closely by the effective rate. In tests®, the
link protocol did not measurably degrade the serial link throughput.

During data transmission, the protocol overhead consists of 3 bytes per transmitted packet: two bytes
of cyclic redundancy code, and one handshake byte. The control packet preceding each transfer of
data represents an additional 15 byte overhead. Assuming that the link is used to send 1024 16-bit
words of data in packets of 256 words each (these are typical values used in the system), then the
link efficiency will approach 98.7%. The protocol therefore has negligible effect on link performance
when the link is error free.

The serial link does represent the major bottleneck in the system, however, when real-time perfor-
mance is required. The sample-transfer-display cycle for real-time instrument simulation can benefit
from improvements in each of those separate tasks.

The serial link may disappear in the future in favour of a high-speed parallel link, which would give
up to 20 times the throughput.

7.2 Experience with the GI in a Teaching Laboratory

Six Generalised Instruments were built and used by students in the undergraduate laboratories at
the University of Adelaide. The units worked well, but deficiencies were observed. These {ell into
the following categories:

e Slow response.

The PC-host computers used were XT-clones with processor speeds of 10MHz, and without a
numeric coprocessor. The refreshing of the display screen with new waveform data was slow.

Thost is a 80386/33MHz based machine

134

e aliasing in the A/D process.

The prototype analogue interface modules were built without antialiasing filters. It was there-
fore necessary for the user to choose sampling rates which would not produce aliasing. Such
a situation is not acceptable in the general sense, but it did prove to be educational for the
students.

e Input voltage range.

The limited input voltage range of the prototype analogue interface modules (£10V) required
users to avoid clipping. The input circuitry of the GI features programmable gain but not
(at this time) programmable attenuation. Programmable attenuation will be added to future
models.

A disturbing observation was that students were less likely to question the results of a measurement
presented to them by a computer, compared with other test instruments. One possible reason for
this is that normal test instruments have front panel controls which may be changed (twiddled) to
provide the desired display. During this "twiddling’ the user is able to judge the consistency of what
she is seeing, and to judge whether or not the display is valid.

The time lags in the GI measurement process cause the user to be less inclined to change settings,
since the process may take some seconds and will not necessarily produce a desirable result.

This psychological factor in the use of the GI will be tackled by improving the response time of the
whole system, and increasing the amount of control available to the user.

7.3 Areas for Future Progress
The development and use of the GI has revealed areas where improvements may be made:

e the host to GI communication link.

The RS232 link which links the GI with the host computer has too low a throughput to permit
rapid updating of displayed waveforms.

A faster interface will be implemented using the parallel port on the control processor module.
This will allow transfer rates at least an order of magnitude faster than those currently attained.
The disadvantage will be that a parallel interface card will need to be designed for the host
computer.

e the host to GI communication protocol.

The communication protocol between the host and GI allows the host to fully control the
behaviour of the signal processor, and other circuitry within the GI. This was desirable during
the development of the GI, but is now a limiting factor.

All events in the GI must currently be initiated by the host computer. For instance, to retrieve
the results of a computation by the DSP, the host commands the GI to notify the host when
the computation is complete, and another command to upload the data. Until the data arrives,
the host is idle.

A more efficient method would be for the signal processor to control the dynamics of the
communication, by simply sending the data to the host when complete. The signal processor
could then commence another calculation without being explicitly order to do so by the host.
The host would not need to be idle during this time; it would be processing commands from
the user or updating the display.

135

Such a protocol would be very different to the current implementation, though it may not
appear to be so. In the current system, the host acts as the master processor, while the signal
processor is the slave. In the proposed protocol, the host and signal processor would be peers
on a network. This network could link more than one signal processor. Communication within
the network would take place using message routed between processors.

The GI control processor would act as a central exchange where messages arrive and are routed
on toward their destinations. Possible destinations for a message would be signal processors
on a common backplane, or the host computer (via the RS232 link, or a faster link).

The upload() function, which is currently used to retrieve data from the signal processor,
would be made obsolete. Packets of data would arrive invisibly and be assigned to specified
variables (whose names would be contained in the packets) in the host’s memory.

the host’s graphical interface.

The present graphical interface lacks the ability to manage overlapping windows. Consequently,
only the area of the display screen is available for graphic rendering. By writing new display
software which is capable of managing overlapping windows, the total display area can be made
greater than the area of the screen, since windows could be stacked and overlapped, placing
those of immediate interest at the top of the pile.

The majority of functions of the present interface are not immediately visible on the display
screen eg menus which require a mouse button to be depressed before appearing.

This creates an uncluttered screen, but has the disadvantage making plain all of the possible
functions. An instrument such as an oscilloscope has all of its functions clearly visible on the
front panel. This often produces a cluttered control panel, but the presence of all controls
provides cues to the operator as she adjusts the instrument to achieve the desired display.

By increasing the overall display area (with overlapping graphic windows), more controls can
be placed onscreen.

the GI’s analogue interface.

The prototype Analogue Interface Modules suffered from:

1. the lack of antialiasing filters.
Strategies for implementation of antialiasing filters were discussed in section 3.2.5.

2. the lack of programmable signal attenuation.

The current AIM has programmable gains of unity and greater. In many cases the user
will wish to sample signals approaching or exceeding the specified £10V input range.

3. the lack of autocalibration for input signals.

The prototype AIM suffered from drift of DC levels within its analogue circuitry. Provi-
sion was made to trim both the gain and offsets at the converter. Unfortunately, the offset
voltage at the A/D is not constant, since it undergoes amplification in the programmable
gain amplifiers along with the signal.

A future AIM would incorporate auto-calibration circuitry with the ability to perform
the following:

— switch the input to an AC reference voltage of known amplitude.

— either trim the input stage gain, or store the digitised amplitude. The latter method
will allow subsequent sample values to be scaled back to a voltage, thus correcting
for linear effects within the circuit.

— switch the input to the analogue ground, and adjust the offset voltage until a reading
of zero is obtained from the A/D converter. In this way all voltage offsets up to the
ADC input can be cancelled.

136

e the creation of a TMS320 code generator for the SPaM compiler.

At present, the TMS320 code and SPaM script are written separately. The SPaM script is
compiled and executed by the host. The script controls the execution of the (separate) signal
processor code.

An alternative to this scheme is to compile the SPaM script directly into TMS320 code.
Instead of executing SPaM code itself, the host would simply act as a terminal and resource
server for the TMS320.

Such a compiler would eliminate the need to separately code TMS320 programs in assem-
bly language, and would allow direct programming of the TMS320 in a high level language
(SPaM).

As it is currently implemented, SPaM includes a number of code libraries which would need to
be rewritten for the TMS320 (eg the Math Function and Primitive Math Operation libraries.)
The size of the resulting code would very likely exceed the 64k-word address space of the
TMS320C25. A SPaM compiler would be more suitable for the TMS320C30, which has the
advantage of a greater address space and hardware support for floating point calculations.

137

Chapter 8

Conclusion

The GI has been used successfully in the laboratory as both a research and teaching tool. The
integration of multiple software and hardware modules into one system has been achieved, and the
seams are invisible in the resulting system.

This work has addressed the issues relevant to programmable instrumentation systems, which are
now appearing in the marketplace. The Generalised Instrument software and digital hardware has
been verified and used successfully.

The issue of the analogue front-end has been discussed, illustrating the many obstacles that must be
overcome in that part of the system. At the time of writing, the A/D-D/A module in existence was
an 8-bit system lacking many of the features discussed in section 3.2.5. Considerable future work
will be devoted to this area of the system. Techniques such as multirate digital signal processing
may need to be used if the system is to achieve a wide dynamic range of frequency. By transferring
the (anti-aliasing) operations into the digital domain, the cost of exotic analogue systems is spared
(for this reason multirate techniques are widely used in commercial digital audio equipment.)

A great advance in was made in the construction of the SPaM program for control of the GI.
Previous software, based on command driven software packages such as Sigproc, were limited in
their capabilities. The SPaM software, with its embedded algebraic language compiler, promises
rapid development of new applications by both the author and new users.

Unlike common commercial software, which is designed to implement specific signal processing op-
erations, with or without DSP hardware, SPaM provides a general control and display environment
within which customised signal processing applications can be created. Since the signal processing
carried out by the hardware is external to SPaM, the user can alter the performance of the system
by changing the signal processor code which is executed.

The SPaM program provides flexibility on several levels, including the DSP code itself, the SPaM
script which determines the behaviour of the host, and SPaM’s interactive support which allows the
user to perform new operations on the data which may not have been allowed for when the program
script was written.

One area which was touched on during this project was that of automated software generation tools.
Such tools allow software to be generated automatically from a specification of the functioning of
that software (as yacc generates a parser from a language specification file). Such tools are currently
available for filter generation (FIR/IIR), but new tools will be created which allow all phases of
the DSP process to be specified and the corresponding code generated. Such tools will be valuable,
since a great deal of time is spent writing and testing low-level signal processing software, usually
in assembly language.

138

Though based on the TMS320C25, there is no reason why the GI cannot use newer signal processor
devices as they emerge. The partitioning of the system means that typically only the DSP module
and the DSP code libraries will need modification. The recent emergence of low cost floating point
signal processors (eg TMS320C30) will significantly broaden the usefullness of the GI not only as a
signal processing system, but as a numeric processing system in general.

The modularity of the GI hardware lends itself to the implementation of multiple processor signal
processing systems. Such systems would fall into one of three broad categories:

e Systems in which multiple signal processors are responsible for processing distinct sets of
inputs and outputs, with either low bandwidth or no communication between processors. An
example of this is real-time filtering of multiple signals, and spectral analysis of multiple,
separate signals.

The characteristic of such a system is the absence of communication between signal processors
on separate modules within the GI.

SPaM directly supports such a system, which 1s functionally identical to a single DSP system
repeated N times.

e Fixed topology multi-processors. In these systems the multiple signal processors are intercon-
nected in a fixed, predetermined topology which has been chosen to suit the application. For
higher performance, the interconnections should be made with hardware. Software connection
is possible and is discussed in the next item.

SPaM is compatible with such systems, as the system is functionally similar to that discussed
in item 1, except that sample data flows will in many cases lead to other signal processors
rather than analogue signals (via A/D, D/A).

e Systems in which a set of inputs feeds into a digital signal processing system consisting of
N processors. The processors will be arranged in some sort of topology (either physically or
logically) to provide greater throughput than could be achieved using a single processor. This
topology may be a pipeline, or processors working on a partitioned data set.

The GI lends itself directly to logically connected signal processors, as data can be moved in
preprogrammed ways across the backplane between DSP modules. Physical topologies may be
created, but are expensive and give little or no flexibility.

Managing a multiprocessor DSP system with programmable topology requires sophisticated
control, something which neither SPaM nor the GI control processor provide at present. An
example of the way in which such a system may be built is to use the control processor as a
routing switch for data flowing from one DSP module to another.

Some recent developments in parallel software engineering, such as the Linda language promise
parallel processing software which is easy to understand and combine with current program-
ming languages, for example the C language. Replacing rigid processor scheduling at compile-
time by dynamic scheduling at run-time (as performed by systems such as Linda) is desirable,
since the result is more efficient use of a multiprocessor system under varying loads.

To practice the science of digital signal processing it is necessary to have a hardware and software
system which is suitable for use in research (and development), and which can then be used in
implementation with as few changes as possible.

The Generalised Instrument is such a system. By being separate from its host, it can be used with any
host (providing that the software is available). The inclusion of a built-in language in SPaM allows
the rapid prototyping and development of virtual instruments without extensive programming.

139

Bibliography

[1] Texas Instruments, TMS320C25 Users Guide, December 1987.

[2] Texas Instruments, May 8 1987. TMS320C1z/TMS320C2z Assembly Language Tools User’s
Guide

[3] Texas Instruments, May 14 1987 TMS320C25 C Compiler Reference Guide

[4] G.Y. Yuan. Transfer Function Analysis Using Correlation Technique, Dept. Electronic & Elec-
trical Engineering, University of Adelaide, 1989

[5] R. Lane, G. Vokalek, Sigproc Manual, Dept. Electrical & Electronic Engineering, University of
Adelaide, 1989.

[6] Brian W. Kernighan, Rob Pike, The Uniz Programming Environment, Prentice Hall 1984.

[7] Ronald E. Crochiere, Lawrence R. Rabiner Multirate Digital Signal Processing, Prentice Hall
1983

[8] Stephen C. Johnson, Yacc: Yet Another Compiler-Compiler, document in electronic form, origin
unknown.

[9] Arthur B. Williams, Fred J. Taylor Electronic Filter Design Handbook, 2nd Edition, McGraw
Hill.

[10] Motorola Inc., MC68681 Dual Asynchronous Receiver/Transmitter, Sept. 1985

140

Appendix A

The Generalised Instrument
Hardware Design

This document describes, in detail, the hardware design of the Generalised Instrument, a pro-
grammable signal processing system developed for research and teaching in the Department of
Electronic & Electrical Engineering, University of Adelaide.

At the time of writing, the GI control processor, and signal processor had been finalised and verified.
A prototype acquisition board was working, which is described herein.

The organisation of the first three sections is as a set of drawings. All of the drawings in a given
section together form the design for one circuit board module.

Section A.1 describes the 68000 control processor board which controls the GI system as a whole,
by forming an intelligent link between the host computer and the GI backplane.

Section A.2 describes the TMS320C25-based Digital Signal Processor module.

section A.3 describes the design of a prototype analogue-interface module. This module is not a
final production design, and has certain deficiencies discussed in that section.

Section A.4 discusses design considerations for those readers planning on building custom modules
for the GIL

A.1 The 68000 Control Processor Module

This section contains the drawings which comprise the design of the control processor module of the
GI. The control processor is essentially a self-contained 68000 board, with the following features:

1. Dual R5232 ports.

Dual unidirectional 8-bit parallel ports (1-input, 1- output).
SCSI port.

64/128kB EPROM

64kB RAM.

SIS

141

6. Bus timeout & inactivity monitors.

7. Backplane interface.

The drawings which are included in this section are summarised in table A.1.

Drawing Conlents
CON-0000 68000 CPU
CPU Clock
Power on reset
CPU single step circuit
CON-0001 EPROM
RAM
EPROM/RAM decoding
CON-0002 DUART
RS232 Transceivers
CON-0003 Parallel port transceivers
Handshaking PAL
CON-0004 Wait state generator PAL
CON-0005 Bus timeout detector
Inactivity monitor
CON-0006 Interrupt generator
CON-0007 Empty
CON-0008 Backplane bus interface
CON-0009 Control processor onboard decoding
Memory Map
CON-0010 Backplane bus attention request circuit
CON-0011 Empty
CON-0012 Board control register
CON-0013 Board status register
CON-0014 SCSI Interface

Table A.1: Drawing index for Control Processor Module

142

A.1.1 Control Processor Module Specifications

Processor 68000
Processor clock rate any of 8, 10, 12, 16MHz. Set by replacing crystal oscillator.
Onboard EPROM 64k-bytes or 128k-bytes.
Onboard RAM 64k-bytes
Onboard Interfaces 2 RS232 interfaces
2 unidirectional 8-bit parallel
1 SCSI

1 backplane interface

Other Bus activity timer to detect DTACK timeout
Bus inactivity timer to detect 68000 loss of control

Card Format 220mm x 100mm Eurocard format

Backplane Connector DIN41612 (proprietary bus)

Table A.2: Control processor module specifications

143

A.1.2 CON-0000

CPU AND CLOCK

Noles:

1. CPU clock rates up to 16MHz have been successfully used, though the speed of EPROMs and
SRAMs used on the board will mean that wait-states may need to be inserted (see CON-0004).
Backplane modules must generate their own wait states if needed.

9. The clock is provided by a TTL oscillator module which supplies 2xclock, and may be easily
changed by using a different oscillator.

3. A single step circuit can be selected by jumper (68KIMP1) to hold off DTACK to the 68000
until the user depresses a pushbutton connected to the pins called EXTSTEP.

This has the effect of extending the bus access indefinitely (until the switch is pressed), so that
control, address, and data lines can be examined with a logic probe/analyser.

I . % " " :II_/
LA e g
rEd 4 L LV
e "
9 » u s
et u
 fhi (o L b
“om . N " L Lo
£ “ " ear
4 Iy
N e » “ L L
\:ﬂ i s " " £
R - = s - i
A wle P L i
s “ i e | " oLV
N] e g 0 an s
N Wl P L :u- ;
£ L . s
M he o g - == :"'
= i Y s
Pl © T .
A £ " @ s
e = La—F
s Tree " e
ree [0 o
Y
"' b T -
=4 u | ' o '——]
ER L :: < e T e e cirs s '“":l “.‘ '
< 3 ——— s = —1t
e &t TR = " cn g X NTITIP
T Rizid
: :_.m:' ': e o o d) -
ING14 e SR F = -
LS (. aein
"
s B0k GO "
a = Iy
NG |
TR Ny 2=t
FUE EEv-4000 TEN RLERT ALt i
[**9
| o
-
o
“|o. 1ur aet
- M 74993

. nra

Q!
LS Q2] o g

Q " LM

144

A.1.3 CON-0001

EPROM and SRAM

Notes:

1. 2 EPROMs are catered for. The may be 256kbit or 512kbit devices, with a jumper (CJUMP1)
determining type. The EPROMs must be identical, and both must be present simultaneously

(the 68000 is a 16-bit processor).

CJUMP1 omitted

256kbit EPROMs

CJUMP1 inserted

512kbit EPROMs

Table A.3: Setting jumpers for EPROM capacity

9. 9 SRAMs are catered for. They may be 64kbit or 256kbit devices, with the jumper CJUMP2

determining which.

CJUMP2 omitted

64kbit SRAMs

CJUMP?2 inserted

256kbit SRAMs

Table A.4: Setting jumpers for RAM capacity

3. Wait states may be generated separately for EPROMs and SRAMs, as indicated in drawing

CON-0004 on page 156.

EPROM

256kbit devices
512kbit devices

$000000-$00FFFF
$000000-301FFFF

SRAM

64kbit devices
256kbit devices

$040000-3043FFF
$040000-$04FFFF

Table A.5: EPROM & SRAM Address Map

145

Name ramdecl;
Partno 20001;
Date 25/9/89;
Revision 01;
Designer GV;
Device pl6Ls8;
Format hH

/* SHEET CON-0001 */
/* eprom and sram decoder pal */

Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin

Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin

=W 0N O WN =

19
18

17 =
16 =
15 =
14 =

13
12

CJUMP1; /* if CJUMP1=1 then 27256, else 27512 */
CJUMP2; /# if CJUMP2=1 then 8kx8 SRAM, else 32kx8 sram */
CA13;
CA15;
CA16;
CALT;
CA18;
'OFFBOARD;
1CAS;
CAl14;

EPP1; /* pin 1 of EPROM %/

'EPCEO;

'EPCE1;

!SRCEO;

'SRCE1;

'EPROM;

'SRAM;

SRAMP26; /* pin 26 of SRAM socket */

$DEFINE ONBOARD !'OFFBOARD

EPP1 = CA16 # CJUMP1;

SRAMP26

EPCEO

EPCE

1

SRCEO

SRCE1

EPRO

SRAM

M

= CA14 # CJUMP2;

ONBOARD & CAS & !CA18 & !'CA17 & !CA16 & CJUMP1 #
ONBOARD & CAS & !CA18 & !CA17 & !CJUMP1;

ONBOARD & CAS & 'CA18 & !CA17 & CA16 & CJUMP1 #
ONBOARD & CAS & !'CA18 & CA17 & !CJUMP1;

ONBOARD & CAS & CA18 & 'CA17 & !CA16 & !CA15 & !CA14 & CJUMP2 #
ONBOARD & CAS & CAi8 & !CA17 & !CA16 & !CJUMP2;

ONBOARD & CAS & CA18 & !CA17 & 'CA16 & 'CA15 & CA14 & CJUMP2 &
ONBOARD & CAS & CA18 & !'CA17 & CA16 & !'CJUMPZ;

ONBOARD & CAS & 'CA18 & !CA17 & 'CA16 & CJUMP1 #

ONBOARD & CAS & !'CA18 & !CA17 & !'CJUMP1 %

ONBOARD & CAS & !CA18 & 'CA17 & CA16 & CJUMP1 %

ONBOARD & CAS & !CA18 & CA17 & !CJUMP1;

ONBOARD & CAS & CA18 & 'CA17 & !'CA16 & !CA15 & !CAl14 & CJUMP2 #
ONBOARD & CAS & CA18 & 'CA17 & !CA16 & !CJUMP2 #

ONBOARD & CAS & CA18 & 'CA17 & !'CA16 & !CA31S & CAi4 & CJUMP2 ¥
ONBOARD & CAS & CA18 & !CA17 & CA16 & !'CJUMP2;

146

Name
Partno
Date
Revision
Designer
Device
Format

/* SHEET

ramdec?2;
20001;
25/9/89;
01;

GV;
pl6L8;
Js

CON-0001 */

/* GENERATES MISC WR’ AND RD’ STROBES. */

Pin 1 =
Pin
Pin 3 =

[
L§

Pin 19
Pin 18
Pin 17
Pin 12 =

CHIOE

CLOCE

CHIWE

CLOWE

CRW;

1CUDS;
ICLDS;
'CHIOE;
ICHIWE;
'CLOOE;
!CLOWE;

CUDS & CRW;

CLDS & CRW;

CUDS & !CRW;

CLDS & !CRW;

RAMDEC1 RAMDEC2
CJUMPY et
— TJIUNPL L} i1} LPROMPI \CII-I i CHI OF
[: 10 00 - 1o oo p——m—-
GRD CJunr2 2 1 » CUnE 4 1
S——— s Cald 2 11} LPCED CLDS 3 CHIYE
CAlS 4 12 ol 17 EPCE} - . Il cLuor
N] L 4 17 cloor »
caunrz 13 102 — 13 102
w CALB] 18 SRCED - 3
cal ' 4 hes [} SRCET P_:‘l‘ e
AT 1
\Clll T X L] 14 I'.l‘ll)l_// T . o
-\Ol'ﬂiﬂll-l] . 102 13 SFaN L] . -
F A
N 17 106 4 —117 106
% CAS i L)
CAld n JU 12 SRAMP2R 11 j8 CLDYE
~ 1o o7 ~ iy oy ———
Yceo 20 10 oup ¥Cr 0) GND
vee GND VEC GND
PAL16LE PAL16LS

147

EPROMP! 1
Ald vee
CAl3 2
1 a12 WE/Al4
CAB 3
a7 VCC/A13
CA7 4
1 48 AB
CAS 5
S———1'A5 A9
CA5]
— 1 WE/AL1
CA4] _
a3 0E
[X} B
R (F ¥ ALD
cA2 v =
a1 CE
+~ Cal 10
e Y] § D7
~_CDO "
DO [= 2]
cD1 12
L ; D5
~ CD2 13
D2 <G D4
GND 14 o
GND D3

EPROML

26 vce

21 CAlD »
28 CAl4
2% CAS »
E1 CAlID »
23 CAl2
22 CLOOE
20 EPCEO0 -

CD7 »
ooy
1" Cbd
18 CD4 -
s . COR

epr

EPROMH

EPRONP!L 1
e Al vee
CA13 2
N—————A12 WE/Al4
CAB)
A7 VCC/A13
ca7 4
N 46 A8
CAB s
Y45 A9
CAS 1
——————— A4 WE/A11
CA4 7 —
————————— A3 0F
CA3]
R I 1 A10
CA2 v .
———————— 4l CE
CAl 10
e Y = D7
<\ CDB 1" o
Do [=BT]
cDo iz
S ; D5
cD10 12
Ne——————1{p2 =T D4
GND m o
——— 1 CND D3

28 vee

27 CAlS
28 CAl4
ERTZ
o1z
2 CHIOE
o . Chi)y
20 EPCE0
PRIy
17 cD13
ooz,
0 i1z

148

~ 28 vee ~ CAlS 1 28 vee
A4 LAY e ———= Al4 vee 1
N 2 CLOWE \ CA13 2z 27 CHI¥E -
A12 WE/A14 AL2 WE/AV4
= 28 SRAMP26 s CAB 3 26 SRAMP26
A7 VCC/A13 A7 VCC/A13
N 25 CAS9 ~ CA7 1 25 CA9 ~
AB AB Ab AB
~ 24 CAl10 N CAB 5 24 CAlO -
AS A9 A5 A9
Y 23 CAl2 - ~ CAS [} 23 CAl2
A4 WE/A11 | —_— Ad WE/A1l —_—
~ — |22 CLOOE ~ CA4 1 — | 22 CHI OE
A3 0E A3 0E
~ 21 CAll »~ ~ CA3] 21 Call
A2 AlLD —— A2 AlD
N 1] SRCEQ - s CA2] — | 20 SRCE0
Al CE ; t At CE
cD Al 10 cD15
NAL L v, =g e/ —————————— a0 = gl
N = 1s che \ CD8 1 ot 18 ChI4
Do a1 D6 Do o D6
17 cDS cD9 12 17 cp13
Ne——1 ; o5 b —— —/ ————————— D1 ; 05 p—
18 CD4 - 5. CD10 13 18 cD12
D2 <T D4 p2 <t p4 ———F
(w1 1% cb3 GND 14 (a4 15 cbi1
GND D3 — GND D3

149

A.1.4 CON-0002

Serial Ports

Notes:

1. There are 2 serial ports provided by the dual UART.

2. The port transceivers are MAX232 type devices, which internally generate the +10V RS232
rails.

3. Connection to the serial ports is via pin strips to which ribbon cable and header can be
connected.

4. The serial port may generate up an interrupt on several conditions (see [10]), including

e Transmit register empty (2 channels).
e Receive register empty (2 channels).

e Break signal detect (2 channels).

To aid in finding the cause of interrupts, the TXBINT, TXAINT, RXBINT, and RXAINT
signals may be read directly through the board status register (CON-0013).

150

¥er

"
(1114
F ; vee L toer
} ci+ v+
| ;IE — P CAP
10a? itar -
. b Heew v - i
L
| ;az ol CAP
11 P ey T ™
| P
10 e | £151 s
con = - dninr I 1
jp i Y oPD 13| e - | 13 RI1I
Aol wly, on b2 ———’.
R My, ore e — e A= 1 YE1
% CE3 L opa " o
s Bk ml L } RN
\:u] e ort ol "I 05733
u“ p ope | =—_—/ GRD
NG wl, g [TIRNT
w
\%——'-nn S e (-
LI P g i
LI PPN e |2 1onr A . oar
cad
vee S T 4Ea F——c1+ vip———
W CHeY 1P ree 3
2xdn? 1rastl .' oy res f 1oar] cL- : fi: o
S———1 |___
P1iCK TIiDA Lo L b
e RIbe [CAP ez- Cal
e | — '
fanaEr pace il 15 | 1 P i T2
s [p— - i Vs
ERCLIERNE LY feert RN L
19| = | (21
I—'D: Zaiex L
va " e aaln Wiz
12 ~J
LN P s L) niE: o
|
o
20 9
= vF GRD

(]
Tm “_bJ ps232

e

N [/N 1o —
RXI RTS1 NG o 3 RTSZ s
— 2

i . CTS) s NIX2 o sz s

My o Eee———=F N\ PO =7
GND GAD

~ 510 N s 19 /

1P R 10PI R

1561

A.1.5 CON-0003

Parallel Port

The parallel port system consists of two separate parallel port. One is an 8-bit output port with
handshaking, the other is an 8-bit input port with handshaking.

The parallel port(s) were added to facilitate a fast parallel interface to the host computer, to take
the place of the RS232 link at some time in the future.

Notes:

1. The state of the transmit and receive port may be separately determined by reading bits in
the status register (see CON-0013).

2. The board control register (CON-0014) may be programmed to allow either the receive port
or the transmit port (or both) to generate a hardware Interrupt (PARINT).

For the transmit port, the interrupt is asserted when the host acknowledges the last transmis-
sion, thus freeing the port for the next one.

The receive port can generate an interrupt when a byte is received from the host.

3. Terminator sites are provided around the pinstrip connector, allowing terminator resistor packs
to be used for impedance matching of long cables.

1562

Nane
Partno
Date

PARPORT;
20001;
25/9/89;

Revision 01;
Designer GV;

Device
Format

pl6L8;
i

/* SHEET CON-0003 %/
PAL implements the handshaking for the parallel port */

/* This

Pin 1
Pin
Pin
Pin
Pin
Pin

D e WN
I

Pin 8 =
Pin 9 =
Pin 11

Pin 189

Pin 18 =

Pin 17
Pin 16
Pin 15
Pin 14
Pin 13
Pin 12

LWFULL

LRFULL

LRDATA

'LPARRD;
'LPARWR;
'RLACK;

= !'RLDATA;

PARIREN;
PARIWEN;

TIMEOUT; /#* from CON-0005, this signal indicates DTACK’ timeouts */
1STATUSR; /#* from decoder, CON-0009 */
STATUS; /* from status register, CON-0013 */

'LRDATA;
LWFULL;
'RLACKB;
'LRACK;

= !PARINT;

LRFULL;
'CBERR;
CD15;

LPARWR #
(LWFULL & !'RLACKB);

RLDATA;

LWFULL;

LRACK = LPARRD;

RLACKB

PARINT

RLACK;

LRFULL & PARIREN #
RLACKB & PARIWEN #

/*
/*

/*

/*

/*

/*

/*
/*

local write port is full from the time we #/
write a value to it, to the time its acknowledged */

local read port is full when the incoming
RLDATA strobe is asserted */

signal to tell remote end that data is waiting
for it, just a buffered version of LWFULL */

ackknowledge to other end consists of this end
reading the incoming data port. */

a buffered version of RLACK */

we get an interrupt when our read port is full =*/
or other end has just ACKed our last xmission */

PARINT & ! (LPARWR # LPARRD); /# make this interrupt hang around until

CD15 = STATUS;
CD15.0E = STATUSR;

CBERR = 'b’1;
CBERR.OE = TIMEOUT;

/*

something happens */

this provides the tristate buffer for the
board status register */

153

PARCON

S EHD a
“ “ BND 1
= \ PAYDO 3
g = W FavH2 *
H] 8 w PAYD4 ¥
& &
- - s FAYDR L
H NI 1"
wyee w \!nn 13
L N raRDE e
= W FREDS "
E | _PARDE D
- | ~ OND 11
= = FLEATE 23
8] s FLATE "
H N
H
= 26PIN
o
- ree

154

= - I'-!D/
L] onn s B |
a ?A“H/ | J =
' [V | z
" PATLE - r . g
" PavOY = || -
14 FIIDI/ M Yoo o
o e
1 FARDY -
" PARDE e
i
20 PARDY o |]
n GND -
{8
u Lkoats s 5 g
— o %
L1 LEACE - 1.1
] H
4
H
8
H

PARPAL

LPARRD 1 19 LRDATA
N———j0 00—
% LPARWR 2 '
BLACE 3 10 LYFULL
Y12 101 ———"
BLDATE 4 17 ELiCEE
13 02—
PAR] REN] 16 LEICE
14 03—
PARI YEN] 1% PARINT
N5 104 ———
T 14 LRFULL
16 106 ———
SEE CON-0DOB TIMEOUY] 13 CEERR
N— 17 06—
NG
STATUS 11 12 CDIb
1y 07—
vce 20 10 GND
vee GNp f———
PAL1BLB
PAROUT
GRD 1| — 20 vee
— OE VDD
\ii‘lﬂ'fl 11 10 GND
CP VsS
3 2 PATDO
4 po nu (] Pl'Dl/
DI qQl -
1 6 PA'DE/
P2 Q2
L]] PA'DS}
D3 Q3
10 13 FA'DA/
14 g a 1% PAWDS
17 ns . 18 PA‘DS_/
18 . i 19 PA'D"/
07 Q7 -
THIRT T
LPARRD 19 | =— 20 vee
N EN vee
i 10 GND
DIR GND
GND
coo 2 18 PaARDD
chi 3 & ae 17 FARDI/
\(‘02 4 Ll LU 18 PARDZ/
\m P e T nnna/
\cnt 1 i T mm_/
3
\cns o L TS w.nns/
\CDS] L L 12 PARDH/
h A BS /
cby 9 11 PARDY
A7 BY f——————
7T4HC245

155

A.1.6 CON-0004

Wait State Generation

Noles:

1. DTACK must be generated for EPROM and SRAM in a manner which allows jumpers to
determine the number of wait states added.

9. Onboard devices other than EPROM and RAM are to be run with zero wait states.

3. Offboard devices may generate their own wait states. No DTACK is generated by the control
module for devices outside of its immediate address space ($000000- $7FFFFF).

Should the 68000 attempt to access an address for which no DTACK is generated at all, the
bus activity timer will detect this condition and generate a bus-error exception (see CON-0005.)

EPROM SRAM
Jumper Jumper WAIT \
SPEEDO SPEED1 STATES STATES

inserted inserted 0 0
omitted inserted 1 0
inserted omitted 2 0
omitted omitted 3 1

Table A.6: Jumpers for wait state control

156

Name dtack;
Partno 20001;
Date 25/9/89;
Revision 01;
Designer GV;
Device gl6v8;
Format js

/% SHEET CON-0004 */
/* DTACK generator for 68000 #/

/* SPEEDO and SPEED1 have the following meanings:
SPEED1,SPEEDO = 0,0 clock rate = 8MHz
SPEED1,SPEEDO = 0,1 <clock rate = 10MHz

SPEED1,SPEEDO = 1,0 clock rate = 12MHz
SPEED1,SPEEDO = 1,1 clock rate = 16MHz

*/

Pin 1 = 68KCLK; /* ref CON-0000 */

Pin 2 = 'EPROM; /* ref CON-0001 %/

Pin 3 = !SRAM; /* ref CON-0001 */

Pin 4 = SPEEDO;

Pin 5 = SPEED1;

Pin 6 = !DEVDTK;

Pin 7 = 'OFFBOARD;

Pin 8 = !CAS;

Pin 9 = !BDTACK;
/* Pin 11 = GND, !'OE of registered outputs */

Pin 19 IDTACKE; /# from eproms */
Pin 18 = !DTACKS; /* from SRAM %/

Pin 13 = !DTACKB; /¥ from backplane */
Pin 12 = !DTACKD; /* from devices */

Pin 17 = 'CAS1; /* !CAS delayed by 1 clock */
Pin 16 = !CAS2; /* 'CAS delayed by 2 clock */
Pin 15 = !CAS3; /#* !CAS delayed by 3 clock */
Pin 14 = !CAS4; /# !CAS delayed by 4 clock */

CAS1.D = CAS;

CAS2.D = CAS1 & CAS; /* make sure !CAS2 rises soon after 1CAS */
CAS3.D = CAS2 & CAS;

CAS4.D = CAS3 & CAS;

DTACKE.OE = EPROM;

DTACKE = EPROM & !SPEEDO & !SPEED1 #
EPROM & SPEEDO & !SPEED1 & CAS2 #
EPROM & !SPEEDO & SPEED1 & CAS3 #
EPROM & SPEEDO & SPEED1 & CAS4 ;

DTACKS.OE = SRAM;

DTACKS = SRAM & SPEEDO & SPEED1 & CAS2 #
SRAM & !SPEEDO #
SRAM & !SPEED1 ;

DTACKB.OE = OFFBOARD;

DTACKB = OFFBOARD & !SPEEDO & !SPEED1 & BDTACK #
OFFBOARD & SPEEDO & !SPEED1 & BDTACK & CAS2 #
OFFBUARD & !SPEEDO & SPEED1 & BDTACK & CAS3 #

OFFBOARD & SPEEDO

DTACKD.OE = DEVDTK;
DTACKD = ’'b’1;

SPEEDD

GRp | —

SPEED!

10E for regislered ouipuis

& SPEED1 & BDTACK & CAS4;

vee
e
XL \ 6BECLE 1 19 CDTACE s
vee — 10 00
S ErRou 2 -
S SRAN 3 18
12 101 e
SPEEDO 4 17 cas1
13 102 —
SPEED) 5 18 tas2
— 14 103 —
\ DEVDTEK [18 casd
e — [5 104 —
~ OFFBORD 7 14 Cas4
——— 16 105
% CAS L] 13
— 17 1086
\ BDTACK [l
18
_OND 11 12
19 07
vee 20 10 GND
—————{V(C GND |
PALIGR4

158

CAS®
C4S'
Cas’
CAS’

del ayed by)
delayed by 2
deloyed by 3
delayed by 4

clock
clocks
clocks

clocks

A.1.7 CON-0005

Bus Activity Monitor, Inactivity Monitor, Time Interrupt

This circuit consists of three parts.

1. Bus activity monitor.

This circuit measures the length of 68000 bus cycles. Should a bus cycle last longer than 64
master clock cycles, this circuit will assert the BERR signal to initiate exception processing.

Such a timeout will occur if the 68000 attempts to read non-decoded memory locations.

2. Bus inactivity monitor.

This circuit measures the time between successive bus cycles as initiated by the 68000. If this
time exceeds 2048 master clock cycles, this circuit will generate a RESET signal to the
68000, causing it to reboot.

It is assumed that such an extended period of non- processing can be caused only by system
faults which cause the 68000 to halt program execution.

3. Time Interrupt.

This circuit generates real-time interrupts to the 68000 at a rate of one every 65536 master
clock cycles. At a master clock frequency of 32MHz (CPU clock = 16MHz), this corresponds
to an interrupt rate of 488Hz.

The 68000 must acknowledge each time interrupt before the next one can occur. However,
timing accuracy is not compromised by the time taken to respond to the time interrupt.

Master Oscillator 12MHz 16MHz 20MHz 24MHz 32MHz

CPU clock 6MHz 8MHz 10MHz 12MHz 16MHz
Activity timeout 5.3us 4ps 3.2us 2.Tus 2us
Inactivity timeout 171us 128us 102.4us 85.3us 64 pus

Time Interrupt period 5461.3us 4096us 327Tus 2731us 2048us

Table A.7: System time intervals for various master clock oscillator
frequencies.

159

74383

4 CLEf238) EF qo :
Q!
» Ead L] NR Qz »
|] ASABSENT
Q3 1)
SEE CON-000%
1815 BIGNAL DLILCTSE
ABSLNCC OF A
6BKCNT3
74393
L Gl e Q0 ::
- Q!
~ Cal 111 MR QZ []
[] T1 MEOUT
qa pb— T/
THIB 51GMAL DCTECTS TINCOUT
DUL TD LACE OF DTACK
GBKCNTZ SEL COR-0DO0Y
74393 74393 74393 =
10
p LT LT By 5 D)
CLX/ I 13 P) 11 CLE/2EE) oF Q0 : 3 r Q0 :: |2 D PR Q @
q ql Q1
2IMR @2 R Q2 4 LA TR FLIPI
Q[j Qa] CLL 4008 qa]] l >CP
CLE/B4K
oNp
6BKCNTI §BKCNT2 6BKCNT3 -ls L,
cup ¢

160

13 T4L874A
A TTMEACK i

A.1.8 CON-0006

Interrupt Generator

The interrupt generator generates the prioritised interrupt signals for the 68000 from both onboard
interrupt request signals, and the backplane attention request signals.

The sources of interrupts are:

1. Serial Port receive register full, and transmit register empty.
SCSI interface data transfer.

Time interrupt.

T

Parallel port receive register full, and transmit register empty.
5. Backplane attention request.
Two PALs implement the interrupt system. The PAL called 68KINT is responsible for generating

the prioritised interrupt signals IPLO ... IPL2. The PAL called VECTOR generates 8-bit
interrupt vector numbers.

The interrupts from the control processor onboard devices are autovectored according to priority.
The large number of offboard interrupts (attention requests) possible, demands a more efficient
treatment to prevent the waste of CPU time in polling boards. The VECTOR PAL allows each of
the attention request signals ot have its own interrupt vector, by generating the appropriate vector
during the interrupt acknowledge phase of the 68000 exception processing cycle.

161

Name
Partno
Date

Revision
Designer

Device
Format

/* SHEET CON-0006 */

68kint;
20001;
25/9/89;
01;

GV;
p20L10;
js

/* Interrupt encoder for 68000 control processor on Siglab */

Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin

Pin
Pin
Pin
Pin
Pin

W~ O U W

o R B e e O
O 0 N U WO

23
22

14 =
21 =

20

TATNO;
TATN1;
'ATN2;
YATN3;
'ATNG;
TATNS;
ATNG;
VATNT ;
1CAS;
CFCO;

= CFC1;

CFC2;

= SCSIRQ;

!SERINT;
'PARINT;

= ITIMEINT;

ATTENTION;

'CIPLO;
'CIPL1;
!CIPLZ;
'VECIACK;
'CVPA;

FIELD INTLEVEL = [CIPL2..CIPLO];

CIPLO.OE
CIPL1.0E
CIPL2.0E =

$DEFINE ACHTUNG ATNO # ATN1
ATTENTION = ACHTUNG;

INTLEVEL = [’b°0,°b’0,’b’1]
['b’°0,’b’1,°b’0]
[Ib)o' 7b71, ’b’l]
['b’1,’b’0,’b’0]
['b’1,°b°0,°b°1]

)b)l;
7b)1;
)b)l;

ATN2 # ATN3 # ATN4 # ATNS # ATN6 # ATN7

& TIMEINT #
& PARINT #
& SERINT #
& SCSIRQ #
& ATTENTION;

VECIACK = CFCO & CFC1 & CFC2 & CAS;

CVPA = CFCO & CFC1 & CFC2 & CAS;

162

Name VECTOR;
Partno 20001;
Date 25/9/89;
Revision 01;
Designer GV;
Device Pp22v10;
Format js

/* SHEET CON-0006 */

/* Interrupt vector gene
Pin 1 = !ATNO;
Pin 2 = 'ATN1;
Pin 3 = !'ATN2;
Pin 4 = !'ATN3;
Pin 5 = 'ATN4;
Pin 6 = 'ATNS;
Pin 7 = !ATNG6;
Pin 8 = 'ATN7;

Pin 9 = CA1l;

Pin 10 = CA2;

Pin 11 = CA3;

Pin 13 = !VECIACK;
Pin 23 = CDO;

Pin 22 = CDi;

Pin 21 = CD2;

Pin 20 = CD3;

Pin 19 = CD4;

Pin 18 = CD5;

Pin 17 = CD6;

Pin 16 = CD7;

Pin 15 = !DTACKI; /=*

/% Pin 14 = !ENDEC ;

FIELD INTLEVEL=[CA3..
$DEFINE ATNINT ’H’A /#*
$DEFINE SCSINT *H’8 /%
$DEFINE SERINT ’H’6 /=%
$DEFINE PARINT °H’4 /=
$DEFINE TIMEINT *H’2 /*

FIELD DATA = [CD6..CD3];

FIELD ATNLEVEL = [CD2..C
$DEFINE ATNLEVO [’H’0]
$DEFINE ATNLEV1 ['H’1]
$DEFINE ATNLEV2 [’H’2]
$DEFINE ATNLEV3 [°H’3]
$DEFINE ATNLEV4 ['H’4]
$DEFINE ATNLEVS [’H’S]
$DEFINE ATNLEV6 [’H’6]
$DEFINE ATNLEV7? [’H’7]

ATNLEVEL.OE = VECIACK;
DATA.OE = VECIACK;

CD7 = VECIACK;

rator */

the interrupt dtack */
/ / enable decode of EPROMS */

CAl1l;

[’b’1,’b’0,’b’1]
=4 % 2 %/
3 %2 =%/
2 % 2 %/
=1 % 2 %/

D0J;

=5 % 2 , need this since we are using ca3-1 not ca2-0 */

163

CD6 = INTLEVEL:ATNINT;

ATNLEVO
ATNLEVO

INTLEVEL:ATNINT & !ATN7
{ (INTLEVEL: ATNINT) ;

'ATN6 & 'ATNS & 'ATN4 & 'ATN3 & !'ATN2 & !ATN1 #

ATNLEVEL = ATNLEV7 & INTLEVEL:ATNINT & ATN7 #

ATNLEV6 & INTLEVEL:ATNINT & !'ATN7 & ATN6 #

ATNLEVS & INTLEVEL:ATNINT & !ATN7 & 'ATN6 & ATNS #

ATNLEV4 & INTLEVEL:ATNINT & 'ATN7 & 'ATN6 & !ATNS & ATN4 #

ATNLEV3 & INTLEVEL:ATNINT & 'ATN7 & !'ATN6 & 'ATNS & !ATN4 & ATN3 #

ATNLEV?2 & INTLEVEL:ATNINT & 'ATN7 & 'ATN6 & !'ATNS & 'ATN4 & !ATN3 & ATN2 #

ATNLEV1 & INTLEVEL:ATNINT & 'ATN7 & 'ATN6 & !ATNS & !'ATN4 & 'ATN3 & YATN2 & ATN1 #
& &
&

6B8KINT VECTOR
vee - - GND vee - - axb
—————1 vCcC GND [——— ———=3 vee GND f———
W ATHD P . TIPLY T A - oo
— 10 00 — 10 00
N : . CIPLL AT . a iy
~ ATRE . l 1 101 - VECIACK/ \lTNZ . Il 101 - ch2 »
ATHD wdl w0 CVPA i 12 102 cna
N . - e P . ;
ATRA 13 103 ALTENTI ON \ITN‘ 13 103 CD4
N ey o e N 14 104 p——r-r
\ATHE i = TIKEINT , S ATKS 1 “ D5
— 15 105 —_— — 15 105
N L F 5 PARINT » ~ATHE ' B o6 s
N PEESIES T, T L6 106 o
cas q e ror ;C;IRQ \\CAI 17 107 TOTACE
. ' . i . ,
~ CFCO = e g o E-J_-P-l_?j tuz - e 108 & .
Ig 09 19 09
N CFCI " N C4D B
110 — 110
W CFC2 . \ FECI ACK “
111 111
PAL20L10 22V10

164

A.1.9 CON-0008

Backplane bus interface

Notles:

1. All memory locations at addresses higher than $07FFFF are assuined to lie offboard, and the
bus transceivers are enabled.

2. The backplane signals may be grouped into 4 main categories according to function:

(a) Address lines A1-A23.
Giving a total address space of 16Mbytes (minus the 512kbytes which reside on the control
processor board itself).

(b) Data lines D0-D15.
The data bus is 16-bit wide. Operations on 8-bit bytes are supported, by virtue of the
presence of the 68000 TUDS and LDS signals.

(c) Control signals.

e Strobes: AS, UDS, LDS,R/ W, BAS
e System control: DTACK, STOPDEC, BRESET
o Attention Request: ATNO ... ATN7

(d) Power supplies.
Logic supplies are available as standard (0,5V).

Two pins have been reserved for positive and negative analogue rails. The voltage to be
distributed on these rails has yet to be defined, and could be as high as +20 volts (to
allow regulators on plug-in modules to generate £15V.

165

BUSIF1 bus BUS] F4
19ycc GND wurrpi 80
% 1 | AL esr-Hn 1 |
z| iR © 18 2| DIR G 18
A1 BAL CDo | BDO
Jor s M BV s maz, ED1 3 "; B; 7 B0l
R B2 Iy 6ad, t0E 4 ‘3 : 16 BDZ
N T T) N 3y w03,
NZERH bl YRR NITIN bl T 1T
NZO— b s me, NG pofl NERLT D)
NN o o [z 817, G oy [1e_wuE,
Th [T o7 K]
NEAS 9] pg 1L A5/ pLLASS) B T .0
7415245 7415245
BUS1F2 BUS1F5
19 19
L] T
. .
2| bR © 18 2| DR € 18
CAS BA9 CDB BD8
CAl0) Al Bl 17 BAlO L a4 Ll B1 1% BOS
RN B2 IMya Bail, NG B2 HyEnIe
iz 5 |43 B3 Mg EAIZ, NG B3 My NI,
NS S B4 BAID oz g M B i,
N BS M maIe, tois | *° B5 My B01a
NIYEI) :‘; g: 12 BAIS » NG :: g: 12 T4
CAll | G 15 5]
LIS JH P ag L1 PALE, LT 1 IS g RS LIET
7415245 7415245
BUSIF3 BUSIF6
19 1: vee
. 1 [| FUE] T I R RO
— - i
2| me © |8 oz mr & |18 -
CAl? BAL1? A Euns BUDS ¢
A M Bl 9 BAi6 4 e R B [WLos
~Ea18 4 :: 22 15 BALS . A Eh 4 :: :2 18 BAS »
WCAZE & 15 EBAZD » [1%
izl e | M B4 RAz, e K B4 BR-"
EE I o s _wazz, N By —
tiza s | *¢ B8 M maza s | A8 86 2
1 L 7 f—— —— 1 47 By ——
ST s g L S——F e e j—
7415245 T4L5245 P

166

[

beo BUSCON
C B A
GND GND
1 g i
vee YCC
£ Al
BAL N\ BAZ
4 5
BAS , NBM)
; BAS , \(BAG -
_:' CEJ
BAT 4 N BAB
a CEY
BAD/ \BAlO
i BALL N\ BA12 -
o W
BAI3 BALL
4 7 +4
BALS , N BAIE
10 e TE 1w
) BAIT o \BAIB -
LR Ll
BALS , \BA20 iy
l; LA
BAZI BA22
1y T 5
BA23 BRESET
': BLDS BUDS o
L — I —— wr
BAS ;N\ BDTACK
T STOPBEC N BR-N s
e — —_— 4
- ATNO ATND)
w ATNZ ; \ATN3 -
+ ——— — it
ATNA ATNS
” 24 = e 2
ARG, N ATNT
i BDO N\ DI -
12 a]
BD2 \BD3
£5 irlr
Bb4 N BDS
2t bt
BDE o\ BD?
2 K}
BDA 802
BDI0 o N\ BDII
- CR
BDiZ o \BDI3
&8 o
BDI4 N\ (BDIS
-y i
vee
10 £a 2 n
w2y s s -2V)
w1l CND Ve
o8 it
C B A

MALE EUROCONNECTOR

167

A.1.10 CON-0009

Board decoding & memory map.

Of the 16MB accessible to the 68000 control processor, the bottom 512kB (address $000000-307FFFF)
are decoded onboard the control processor module itself. The remainder of the address space is avail-
able to slave modules. To function correctly, modules must obey the rules outlined in section A 4.

Address Device
$000000. . .303FFFF EPROM
$040000...307FFFF RAM
$060000 DUART select
$064000 Parallel port read
Parallel port write
$068000 Status register read
Control register write
$06C000 SCSI (NCR5380) device select
$070000 SCSI pseudo DMA select

Table A.8: Control Processor Memory Map

168

Name ONBOARD;
Partno 20001;
Date 25/9/89;
Revision 01;
Designer GV;
Device pl6L8;
Format jsi

/x SHEET CON-0009 */
/% This PAL detects onboard/offboard accesses. */

Pin 1 = CA23;

Pin 2 = CA22;

Pin 3 = CA21;

Pin 4 = CA20;

Pin 5§ = CA19;

Pin 6 = !STOPDEC;

Pin 7 = CRW;

Pin 8 = !CAS;

Pin 9 = PRESET; /* active high power on reset signal from CON-0000 */
Pin 11 = ASABSENT; /* this signal indicates lack of AS’ from CON-0005 */
Pin 19 = INVCAS; /#* inverted !CAS signal */

Pin 18 = BUFFDIR; /% bus buffer direction signal from CON-0008 */

Pin 17 = !VECIACK; /+* indicates interrupt vector request by 68k */

Pin 16 = !0FFBOARD; /* active when address is offboard */

Pin 15 = !CRESET; /% processor reset */

Pin 14 = !CHALT; /% processor halt */

Pin 13 = !BRESET; /* backplane reset */

Pin 12 = !'INVCRW; /% inverted RW strobe */

FIELD HIADR = [CA23..CA19];

OFFBOARD = ! (HTADR:000000) # STOPDEC # VECIACK; /* prevent all board decoding when
STOPDEC or VECIACK are asserted */

IBUFFDIR = !VECIACK & OFFBOARD & CRW # /#* backplane buffers point invard when we are x/
IVECIACK & STOPDEC & CRW; /* reading from backplane. */

INVCRW = CRW;

INVCAS = CAS;

CRESET = PRESET # ASABSENT;

CHALT = PRESET # ASABSENT;

BRESET = 'b’1;
BRESET.OE = CRESET; /* make backplane reset follow 68000 reset */

169

Name decode;
Partno 20001;
Date 25/9/89;
Revision 01;
Designer GV;
Device pl6L8;
Format i

/* SHEET CON-0009 */
/* 68000 control board decoder PAL */

Pin 1 = CA18;

Pin 2 = CA17;

Pin 3 = CA16;

Pin 4 = CAl5;

Pin 5 = CA14;

Pin 6 = !CAS;

Pin 7 = CRW;

Pin 8 = !OFFBOARD;
Pin 9 = !SERDTK;

Pin 19 = !SERSEL;

Pin 18 = !PARR;

Pin 17 = !'PARW;

Pin 16 = !STATUSR;

Pin 15 = !'CONTROLW;

Pin 14 = IDEVDTK; /#* to main DTACK PAL , CON-0004 */
Pin 13 = !ISCSDACK; /* used for pseudo DMA transfers */
Pin 12 = !SCSISEL;

$DEFINE ONBOARD !'OFFBOARD
FIELD DEVADR = [CA18..CA14];
SERSEL = DEVADR:60000 & CAS & ONBOARD;

PARR

DEVADR:64000 & CRW & CAS & ONBOARD ;

PARW = DEVADR:64000 & !CRW & CAS & ONBOARD ;

STATUSR = DEVADR:68000 & CRW & CAS & ONBOARD ;

CONTROLW = DEVADR:68000 & !'CRW & CAS & ONBOARD ;

SCSISEL = DEVADR:6C000 & CAS & ONBOARD ;
SCSDACK = DEVADR:70000 & CAS & ONBOARD ;
DEVDTK = (DEVADR:64000 #

DEVADR:68000 #
DEVADR:6C000 #
DEVADR:70000 #
(DEVADR:60000 & SERDTK)) & CAS & ONBOARD ;

170

DEC

DECODE OFFBORD
418] 19 SERSEL , 0423 3 e CaS #
10 0o 10 00
N ALY 2 ' A2z 2 0
s L41e L] 16 LPARRD s a2l 3 16 BUFFDIR
12 101 = 12 101 —_—
NFALd [17 LPARWR s ~ 0420 4 17 VECIACE s
13 102 —— 13 102 ——
414) 18 STATUSR o S CAIS 5 16 OFFBORD
— 14 103 — s 14 1038 ——
48] 15 CONTOLY A SToPNEC [} 16 CRESET
15 104 — 15 104 ——
NCR-Y 1 14 DEVDTER . S CR-¥ v 14 CEALT »
— — —— 16 105 — == 16 105 —
N OFFBORD] 13 SCSDACK o S Fas] 13 BRESEY
e 17 106 17 106
~SERDIK 9 I8 trom CON-DOOD ~ PRESET [e
N 11 12 SCSISEL - from CON-0008 ~ ASABSENT 11 12 CR-¥ -
119 07 19 07
vee 20 10 GND vee 20 10 GND
——— VCC GND — —— | VCC OND F—
PAL1ELB PAL16LE

171

A.1.11 CON-0010

Bus Attention Signals.

The bus attention signals are 8 active-low signals which pass directly to the PALs of the interrupt
encoder of CON-0006. The signals must be pulled high by resistors, but need no other conditioning.

The signals are asserted by a slave module (such as the DSP module) to request servicing by the
control processor. The method by which the attention signals are asserted and cleared is documented
in section A.2.9.

172

A.1.12 CON-0012

Board Control Register.

The board control register is an 8-bit register whose bits directly control signals in the circuit of the
control processor.

A control bit is written to by writing a 0 or 1 into data bit 15 of the word at the address shown in
table A.9.

Address Function
$68000 Not Used
$68002 Not Used
368004 Not Used
$68006 Not Used
$68008 Not Used
$6800A Time Interrupt Acknowledge (TIMEACK)
$6800C Parallel Read Interrupt enable (PARIREN)
$6800E Parallel Write Interrupt enable (PARIWEN)

Table A.9: Control Processor control register bit assignments

During execution of its coldstart (RESET) routine, the 68000 must set the TIMEACK bit to 1.
On receipt of a timer interrupt, it must pulse the bit to 0 (asserted), returning it to the deasserted
(1) state immediately. This pulse acknowledges the timer interrupt, and allows the next one to be
generated at the appropriate time. Without an acknowledge pulse, no future timer interrupts will
occur.

The acknowledge pulse may be generated at any time after the interrupt. If no timer interrupts are
to be missed, the delay must be less than one timer period (65536 master oscillator cycles, or 32768
processor clock cycles).

The PARIREN and PARIWEN signals, when set to 1, enable the respective interrupts from the
parallel port.

173

CON

CONT

s LAl i 4 CONTO »
AQ Qo

w CA2 2 5 CONT1 -

Al Q1 ~

~ CA3]] CONT2
A2 g2

7 CONT3 -~
I Q3

» CRESET 1| —] CONTd -

—_——— cL Q4 — ——

S CONTOLY 4a | — 1w TIMEACK -
EN Q5

. D15 (H] 11 PARIREN
D Q6

12 PARIVEN -
Q7

VCC 1e p GND

——{ VCC GND
7418259

174

A.1.13 CON-0013

Board Status Register.

The status register allows the 68000 to sample system signals directly. To read the status of any
signal allocated to a status register address (see table A.9), the 68000 must read a 16-bit word from
the corresponding address. The state of the signal is then reflected as bit 15 of that word.

Address Function

$68000 SCSIDRQ . If this signal is asserted (ie low) then the SCSI

controller is requesting data transfer, which is accomplished by

pseudo DMA on the control processor board.

$68002 LRFULL. If this signal is asserted, the parallel port read register
is full and waiting to be read.

$68004 LWFULL. If this signal is asserted, the parallel port write register
is full, and another byte may not be written to it until the signal

is deasserted.

$68006 RXAINT . If this signal is asserted, the DUART is asserting its
channel A receiver interrupt.

$68008 RXBINT . If this signal is asserted, the DUART is asserting its
channel B receiver interrupt.

$6800A TXAINT . If this signal is asserted, the DUART is asserting its
channel A transmit interrupt.

$6800C TXAINT . If this signal is asserted, the DUART is asserting its
channel B transmit interrupt.

$6800E SCSRDY . If this signal is asserted, the SCSI controller is indi-
cating it is ready for DMA transfers.

Table A.10: Control Processor board status register

175

STA

STATUS
N CAl o o K SCSDRQ ~ scsi puA REQUEST
(A2 ol 2 LRFULL # prRALLEL PORT READ FULL
N £A3 L 2 B L¥FULL # pypaLLEL PORT WRITE FULL

g M RXAINT /' SERIAL CH & RX
o K FXBINT /7 seRiaL cH B RX
MUST TRISTATE THIS

4 TXAINT o~ SppiaL CH A TX
g STATUS s 15 —
ONTO CD15 USING Rk . —
STATUSR' AS A STROBE . = / SERIAL CH B TX

~ STATUSR 7

1

) | |42 SCSEDY 7 scsi READY FOR DM
vec e] GND
——— vece onp p———

7415151

176

A.1.14 CON-0014

SCSI Interface.

The SCSI interface is built around a NCR5380 (or equivalent) SCSI interface controller. No DMA is
used in the interface, so all data transfers are performed using pseudo-DMA. The NCR5380 registers
are directly memory mapped. The user should consult the NCR5380 data sheet for programming

information.

The SCSI connection
processor board.

is provided via a 50-pin strip. Terminator resistors are provided on the control

s¢s
! 2 som *:?“|‘_'| 5380
3 4 '“_‘ 1 SDBP wl
5 8 == S 1D8T 1 il coy
7 g som - = = o7 v P——
—— B " SDBG 3| — » CDB
] 10 soee T 154 = — DBS D8
—— 1 - sDbs | — - D5 -
11 2 sees E T DBS D5 - o
13 14 soss | — =y " _—/CDE
15 16 som1 rhdee 1 oy ey P S =
— |) 2 7
1 7 18 e (4,11] b14 1}] o ” ': CBl -
— L
i9 20 — DBI D1 x
21 22 l—-——. bBO DO —I_“-/
23 24 | ok | —
1 = LI [DA
PIK 2% WUST BE KL 29 26 romovee : - SBSY 1 oo Ml a2
3 | T ,
27 28 - T BSY 2 Al =
29 30 GND E '__;:T_:‘l K ‘g A v"———‘/
31 32 | s = — = w oy
r - — =
33 34] T | il oS
35 36 o5y L == 7 v —
3 7 38 ‘Sﬁ‘ = " L‘/—D E n 5 SEL s
39 T = Ay _
41 TS - Y i n P s
43 44 sstb - 3 vee » e
— | u - vee —— | ™ SCSDACK
45 46 sc/o T = GND 0| DACK —
17 T [- Lo T =i
49 50 si/0 —— - 1R f—— scs'ﬁ::
C
spiobEl poapy e
GND 5 o P] N Bem

177

A.2 The TMS320C25 Digital Signal Processor Module

The digital signal processor module is based around the TMS320C25 digital signal processor, which
is a fast (10MIP) processor designed specifically for numerically intensive calculations.

The important features of this module are:

e TMS320C25 running at 40MHz.

e Up to 64k-words program RAM.

e Up to 64k-words data RAM.

e 1024x16 FIFO from DSP to backplane.

e 16-bit FIFO from backplane to DSP.

e Backplane interface allows direct access to DSP program, data, and IO spaces.

o Separate 10 bus connector.

Drawing Contents

DSP-0000 TMS320C25 signal processor
Clock

DSP-0001 Wait state generation for the DSP

DSP-0002 DSP module onboard decoding

DSP-0004 AIM interface

DSP-0005 Program and Data RAM
DSP-0006 Interprocessor Mailbox
DSP-0007 DSP-accessible control register

DSP-0008 DSP-accessible status register

DSP-0009 DSP Interrupts

DSP-0010 Backplane Attention Request Signals

DSP-0011 Module Control Register

DSP-0012 Module Status Register

Table A.11: Drawings of the DSP Module

The DSP module appears as a collection of memory mapped peripherals to the 68000 control pro-
cessor, as discussed in section A.2.5.

178

A.2.1 DSP Module Specifications

Processor

TMS320C25 (PGA or PLCC)

Processor clock rate

40MHz

Card can be configured to run with 0/1 wait state.

With 0 wait states, this gives 10MIPS peak performance. With 1
wait state, performance lies between 5-10MIPS, though 10MIPS is
still achievable using TMS320C25 internal program memory. Wait
states are chosen according to memory speed.

Program RAM

64k-words

Data RAM

64k-words

Analogue Interface

40-pin connector to offboard analogue interface module

Data transfer

The DSP module is fully accessible from the backplane bus. All
circuitry (outside of the TMS320C25) can be accessed by the back-
plane master.

FIFO

1024-word FIFO from DSP to backplane
1-word register from backplane to DSP.

Control Aspects

Backplane master has full control over RESET and HOLD
signals to the DSP.

Backplane Connector

DIN41612 (proprietary bus)

Table A.12: TMS320C25 DSP Module Specifications

179

A.2.2 DSP-0000

TMS320C25 and Clock.

Notes:

1. The clock to the DSP is supplied by a 40MHz crystal oscillator module.

2. The TMS320C25 may be either PGA or PLCC package. They are physically pin compatible
(when the PLCC is in a socket).

3. The STRB signal must have a pull-up resistor to prevent spurious activity when the
TMS320C25’s busses are tri-stated.

180

001
vee
Ik
L[4 ;e Ll D0 »
— X1 Do
DSPCLE " " D)
] x2 0 p—_—
ELEDUTI o " 102
N—————————— CLEDUTI b2
GRD CLEOUTZ e o 103
N1 rLEOUT2 3 f—_—
= D4
— M f—_——
L TPS e | « 105
— Ps by p————
108 Eis —_ o D8
‘———_,_ DS n p—
T an L 07
d2lk vee NEL B b7 f—————
TE=T e wr 1B
N -V P p——
T5TER e —_— (1] D9
N S5TRE T e —
an TLI0
D1 ODE roarn T - ——
_~1 5 THESTT | — w Wi
—D} SAN— . RS DIy
| e "l —— " mi2 s
5 100R K12 D12
TIRTY e| " I
w1 [T
vee TIKTO W o " 1014
i o D4 p———
THACE w | — " D15
‘;;——— TaeE g bis f—--—-r
100R "
Lu_T: KP-MC O
L] " TAQ
DI ODE 1008 Vi M— Tl o
/1 RDY 2 u Thl
<J = = A fp—_—
142
[I - L
" TAD
% 4
L
A
[m_____ TH
A5
o e
A8
" Ta?
A7
" T8
w p—_—
i 1A
A8
n T410
sy f———————
“ ThIN
M1
] TAl2
nz p——
W THid
M3
K Thl4 /
A4
e TAIS
AlS
My
YCCAlD
»e "
¥CCB10 ¥S5B1
» Li1)
YCCH2 ¥SSKENI
vee u GND
veeee ¥§5L2

A.2.3 DSP-0001

TMS320C25 Wait State Generation.

Notes:

1. The TMS320C25, when clocked at 40MHz, executes a maximum of 1 bus cycle per 100ns
CLKOUT period.

Of this 100ns, about 60ns is available (strobes active) for memory access. The cheapest memory
devices are of the order of 80ns-100ns, and may or may not function correctly under such
circumstances.

Therefore, it is necessary to either use fast, but expensive, memories, or slower memories with
1 wait state.

Both methods are supported in this module. The latter results in a decreased throughput
(5MIPs instead of 10MIPs), when executing programs in external program memory, though
this can be alleviated by transferring the programs into internal DSP memory and executing
them there at the full 10MIP rate (provided the programs are small enough to fit into the
internal memory.)

2. Devices such as input/output port latches, ADC, DAC, etc typically require no wait states.

3. No wait states need to be generated when the DSP is tri-stated (ie when the backplane busses
have been piped through to the DSP busses.)

4. This module can operate at full speed with zero wait states, or half speed with one wait state.
The mode of operation is set using the jumper PSTATES.

Jumper PSTATES Result
omitted 0 wait state
inserted 1 wait state

Table A.13: DSP wait state jumper

The wait states are generated with the aid of the MSC signal of the TMS320C25, as
documented in [1].

5. The PAL called DSPWAIT in this drawing generates the chip- select strobes for the program
and data memory.

181

Name dspwait;
Partno 20001;
Date 25/9/89;
Revision 01;
Designer GV;
Device p20L10;
Format ji

/* DRAWING DSP-0001 %/
/* This pal provides strobe decoding from the backeplane bus onto the

TMS320C25 busses, and generates the RDY signal which determines the
length of bus cycles, and provides decode strobes for RAM. x/

Pin 1 = !DECODE; /* combined with !'AS already in the decode process */
Pin 2 = BA18;

Pin 3 = BA17;

Pin 4 = !'HOLDA;

Pin 5 = TA15;

Pin 6 = TA13;

Pin 7 = !MSC;

Pin 8 = PRAMTYPE; /* 1 means 32k device, means 8k device #/

Pin 9 = DRAMTYPE; /=* means 32k device, means 8k device %/

Pin 10 = PSTATES; /*
Pin 11 = DSTATES; /*
Pin 13 = ISTATES; /*

means full speed, 0 means 1 wait state (using !MSC) =/
means full speed, means 1 wait state (using IMSC) */

[

0
0
means full speed, O means 1 wait state (using !MSC) */
0
0

Pin 23 = !PRAMOCE; /* lover program memory device select */

Pin 22 = !PRAMICE; /* upper program memory device select */

Pin 21 = !'DRAMOCE; /* lower data memory device select */

Pin 20 = !DRAMICE; /* upper data memory device select */

Pin 19 = !TSTRB;

Pin 18 = !TPS;

Pin 17 = !TDS;

Pin 16 = ITIS;

Pin 15 = ONBDRDY;

Pin 14 = !DSPSEL; /+* asserted when a request for DSP space is made */

TPS.OE = HOLDA;
TPS = DECODE & BA18 & BA17;

TDS.OE = HOLDA;
TDS = DECODE & BA18 & !BA17;

TIS.OE = HOLDA;
TIS = DECODE & !'BA18 & BA17;

TSTRB.OE = HOLDA;
TSTRB = DECODE & (BA17 # BA18); /# don’t assert when accessing control area */

DSPSEL = DECODE & (BA17 # BA18);

PRAMOCE = TPS & TSTRB & 'TA15 & PRAMTYPE #
TPS & TSTRB & !'TA13 & !PRAMTYPE;

PRAMICE = TPS & TSTRB & TA15 & PRAMTYPE #
TPS & TSTRB & TA13 & !PRAMTYPE;

DRAMOCE = TDS & TSTRB & !TA15 & DRAMTYFE #

182

TDS & TSTRB & !TA13 & !DRAMTYPE;

DRAMICE = TDS & TSTRB & TA15 & DRAMTYPE #
TDS & TSTRB & TA13 & !DRAMTYPE;

/%
ONBDRDY = TPS & PSTATES #
TPS & !PSTATES & 'MSC #

TDS & DSTATES #
TDS & !DSTATES & !MSC #

TIS & ISTATES #
TIS & 'ISTATES & !MSC;
*/

/* The following is a modified one which allows implementation in a 20L10 */

ONBDRDY = 'b?0;
ONBDRDY.OE = 'HOLDA & !PSTATES & MSC;

vee GND
w——i VCC GND
~ DECODE PRAMOCE ,
[o 00 —
“BA18 PRANICE o
11 101 —
~ BA17 DRAMOCE
= 12 102 —————
“HoLEA DRAMICE »
13 103
N TA1E TSTRB
14 104 —
1419 S s
— I5 105 ——
N\ MSC DS
16 106 =
S PRANTYPE s
I7 107
S DRAMTYPE ONBDRDY
I8 108 ——
N PSTATES DSPSEL
[9 09
N DSTATES
110
N STATES
[11
22V10

183

A.2.4 DSP-0002

TMS320C25 Onboard Decoding.

This drawing contains only references for the onboard device decoder, as that decoder has been
implemented in PALs which are documented elsewhere. This provides read and write strobes for 10
devices within the module.

Notes:
1. The strobes for program and data memory are generated by the DSPWAIT PAL in drawing
DSP-0001.
9. 10 Devices which must be selected by the DSP are:

o DSP-accessible status register (see DSP-0008).
e DSP-accessible control register (see DSP-0007).
o DSP-to-Backplane FIFO (see DSP-0006).

o AIM Interface (see DSP-0004).

3. The decoding is performed by the PAL in drawing DSP-0001 and DSP-0002.

4. The 10 space of the TMS320C25 has a capacity of 16 read- devices and 16 write-devices. Of
these, the first 2 read and first 2 write devices are decoded on the DSP board itself. The

remaining 14 of each are decoded to the AIM interface, which is assumed to be connected to
the AIM interface connector (see DSP-0004).

5. All IO devices must conform to zero wait-state access by the TMS320C25.

184

A.2.5 DSP-0003

TMS320C25 to Backplane Bus Interface.

To the backplane, the DSP Module appears as a 512kbyte area of memory. This 512k is divided
into 4 distinct regions or equal size.

Offset from Base Function

$000000 Board Control Area

This area contains read-write registers dedicated to board control.
The following registers are accessible in this space.

The nature of the registers is stated in table A.15.

$020000 DSP 10 Space

Only the first 16 16-bit words of this space have any meaning. They
correspond to the 16 IO words of the TMS320C25.

Reading or writing to this memory space will have the effect or
reading or writing straight through to the corresponding TMS320
IO port. This correspondence is stated explicitly in table A.16.
As discussed in the text of this section, access to this space causes
a HOLD / HOLDA sequence to allow the backplane master pos-
session of the DSP’s busses, after which the read/write operation
is performed.

Note that access to this memory space must be 16-bit only. Byte

operations are not supported.

$040000 DSP Data Space

The entire span of 128k bytes of this region is mapped into the 64k
words of DSP memory.

The text of this section provides information about how the HOLD
/ HOLDA protocol is used to access this section.

Note that access to this memory space must be 16-bit only. Byte

operations are not supported.

$060000 DSP Program Space

The entire span of 128k bytes of this region is mapped into the 64k
words of DSP program memory.

The text of this section provides information about how the HOLD
/ HOLDA protocol is used to access this section.

Note that access to this memory space must be 16-bit only. Byte

operations are not supported.

Table A.14: DSP Module Backplane Memory Map

The offset address is relative to the base address of the DSP mod-
ule, which is set using jumpers to a 512kbyte boundary in the
16Mbyte address space of the control processor.

The TMS320C25 provides a mechanism which allows another processor to gain full control of the

185

Address Offset R/W Function
$000000 R Identity PAL
$004000 R Module Status Register (see drawing DSP-0012
$008000 W Module Control Register (see drawing DSP-0011)
$00C000 R DSP-to-Backplane FIFO (see drawing DSP-0006)
$010000 w Backplane-to-DSP FIFO (see drawing DSP-0006)
$014000 w Attention Acknowledge (see drawing DSP-0010)

Table A.15; Board Control Area Memory Map
The Address offset is relative to the DSP module base address.

Offset relative Corresponding TMS320
to 10 base 10 Address
$000000 $0
$000002 $1
$000004 $2
$000006 $3
$000008 $4
$00000A $5
$00000C 36
$00000E $7
$000010 8
$000012 §9
$000014 $A
$000016 $B
$000018 $C
$00001A $D
$00001C $E
$00001E $F

Table A.16: 10 space address correspondence

186

DSP’s external busses. This mechanism is used to allow the backplane bus master (at present the
68000 control processor) to access all DSP memory and IO devices directly.

This is useful for many reasons, the most important being for testing and the loading of DSP
executable code into program memory.

Notes:

1. To gain possession of the DSP busses, the backplane bus master must assert the HTOLD

signal to the DSP and wait for that request to be acknowledged by the DSP asserting the
HOLDA signal.

Once HOLDA is asserted, the DSP has relinquished control of its busses, and bus transceivers
may be enabled to allow the backplane bus signals into the DSP modules core.

2. In the present DSP module, there are two methods for asserting the HOLD signal. If the
backplane master attempts to access the DSP program, data, or 10 spaces directly, the HOLD
/ HOLDA protocol will be used for that one bus cycle. Once the bus cycle has terminated,
the TOLD signal to the DSP is deasserted to allow the DSP to resume program execution.
The second method requires the backplane master to set a bit (set it to 0) in the Board Control
Register (see DSP-0011) which asserts the HOLD signal to the DSP for as long as that bit
is set (to 0). When this mechanism 1s used, there is no contention for the DSP’s busses, since
the backplane master always in control of them.

3. Full 16-bit address, 16-bit data, and control signals are buffered from the backplane into the
DSP circuit. Thus the backplane master can access all circuitry external to TMS320C25,
allowing full testing of the DSP board’s subsystems.

187

Name IDENT;
Partno 200013
Date 25/9/89;
Revision 01;
Designer GV;
Device gl6vs;
Format js

/* SHEET DSP-0003 =/
/* Identity PAL */

Pin 1 = BA3;

Pin 2 = BA2;

Pin 3 = BA1;

Pin 4 = !IDENT;
Pin 5§ = !DECODE;
Pin 6 = !DSPSEL;
Pin 7 = !PERMRES;
Pin 8 = !BRESET;
Pin 9 = !'HOLDA;
Pin 11 = BRW;
Pin 19 = BUFDO;
Pin 18 = BUFD1;
Pin 17 = BUFD2;
Pin 16 = BUFD3;

Pin 15 = !'BUF1EN;

Pin 14 = !BUF2EN;

Pin 13 = !TRESET;

Pin 12 = TRW;

FIELD DATA = [BUFD3..BUFDO];

DATA = ’b’0101 & 'BA3 & !BA2 & !BA1l
'p11010 & 'BA3 & !BA2 & BAl;

DATA.OE = IDENT;

BUF1EN = DECODE;

BUF2EN = DSPSEL & HOLDA;

TRESET = BRESET #
PERMRES ;

TRW = BRW;

TRW.OE = HOLDA;

188

Name DSPBUSiF;
Partno 20001;
Date 25/9/89;
Revision 01;
Designer GV;
Device gl6v8;
Format js

/% SHEET DSP-0003 */

/* Interface from bus to dsp */
Pin 1 = BA16;
Pin 2 = BA15;
Pin 3 = BA14;
Pin 4 = RDY;
Pin 5 = !DSPSEL;
Pin 6 = !DECODE;
Pin 7 = {PERMHOLD;
Pin 8 = 'HOLDA;
Pin 9 = BRW;
Pin 19 = !'BFIFOR;
Pin 18 = !BFIFOW;
Pin 17 = IBSR;
Pin 16 = !BCR;
Pin 15 = 'HOLD;
Pin 14 = !BDTACK;
Pin 13 = !BATNACK;
Pin 12 = !IDENT;
IDENT = DECODE & !DSPSEL & !BA16 & 'BA15 & !BA14 & BRW;
BSR = DECODE & 'DSPSEL & 'BA16 & !'BA15 & BA14 & BRW;
BCR = DECODE & !'DSPSEL & !'BA16 & BA15 & 'BA14 & !BRW;
BFIFOR = DECODE & !DSPSEL & !BA16 & BA15 & BA14 & BRW;
BFIFOW = DECODE & 'DSPSEL & BA16 & !BA15 & !'BA14 & !BRW;
BATNACK = DECODE & !DSPSEL & BA16 & !'BA15 & BA14 & !BRW;
HOLD = DSPSEL #
PERMHOLD;
/*
BDTACK = DSPSEL & HOLDA & RDY #
DECODE & !DSPSEL;
*/
BDTACK = DSPSEL & HOLDA # /* this is a hack to make BDTACK work on HOLDA asserted */
DECODE & !'DSPSEL;

BDTACK.OE = DECODE;

189

BEOPLY

DROUPLO

pIPROALF

e 1 o 00 "
A JETIER = wooee REFILN 1| — et it 1
EN vee EN vee 11 —
i CEE i chy LA 1 1mn BrFIPDY -
-y [——{DIR GND sy | ——{D1® crD . iz o R
N 1
8 1 4 AErE 1 " " o et =
4 1 0 LI 3 18 /
~ 40 BO A0 BOD S N 103
JH 3 1 »0PDL 3 17 [} [
N Bl PSR 104
\13! . 14 aorpi L) 1 14 BETACE
iz B2 iz B2 105 f—onru
a0 [1t sures ’ 11 13 BINIEE s
43 B 13 B 108
Ini ' 1 Bires ' 14
44 B4 14 B4
\‘.l * 13 nores A 13 1" 17
o ELIR L T8 By s ———s 0 f———
~ 18 BB 16 BE 4
i ' 11 BOrDY ' i v Tee a is e
17 B7 17 B? vCC GND
74BCE4S 74BC240 PilisLe
DROUPE1 DRUFHD 1DENT
BUF2EN | — i1 Yee RUFIIN 0| — " vee L HIJI'DII_/
IN vee EN vee 00
¥i-v | i oKD 1 18 cHp
DIR GND a-v ——DIR XD
101 i RUFDL
16 1 i »urDS 1 1 i 1 burp2
10 B0 10 BO 102 p——
\1II] ir BOrbe 1 1" LI L BUFDS
AR T s o oo — 102 v-——'_'
. pLo 4 1 LIUAY L
Az B2 Az B2 s 104 —/
Wb ' 1 BUPDI [l " [resier 1
A3 B3 18 Bl——— =18 105
\'lll L] 1] BUrR13 1] 1 up12
- s ERELE v —— —[ae B4 ————', e 106
1 1 5 ! \
\u i I MErELe 1 iodad I W “ 3
. i 1) i4 1 TR-¥
\Tlll L] Ab - i surpie L] g Be 11 lIlI/ o £
N a7 BT 7 B7 o
we e 10 oNp
vCC GND
T4BC24Y 74BCE4S
ABUFL AROPE
wBOLEA "W — k1] Tce HOLD4 i | =— 1) yce Yee
ER Ve EN Ve
ene i L ens i i GND eND
DIR GND DIE GKRD
T4t 1 19 o it 1 " K
“ o AL " 4 \‘ 1 G e
(1) 13 2 e (RS ate
\1 t q P '“J \9 Pl I [T N i
3 e 1 411
\I 2 1 i [T e, \nn A s T ey
i i s
\' . L] 49 Ba 1] it \1II' L o B3 " IAI!’
. "
N A4 B4 - g EU B4 <
Tat " 11 LI Ta1d 1 [IS}
\v e T vJ \| R I 3 (e
a L 1 B i L] Bl . 1] (1)
Tar 7%t Pl = \| s 77 o T yer \n 1 T3 M [T |
an .
N A7 B7 - N 47 B? s\ P7 Q7
74BC24S 7480248 74BCBB2
rec

190

fadan

ADRIL
1DEJ2
abRJI
1DRIL

ADRJIL

A.2.6 DSP-0004

AIM Interface.

The TMS320C25 features a separate connector to which Analogue Interface Modules (AIM) may be
connected.

The DSP Module has no analogue interface circuitry on it at all, it must all be provided on a separate
module. The AIM must be connected via a separate connector to the DSP module due to the high
data bandwidth which will usually be required of the system.

The backplane bus is provided only as a control bus, and while it is feasible for the control processor
to provide the data path between separate DSP and AIM boards, the system would fail to perform
at high rates, and would involve excessively complex software to coordinate the transfer. For this
reason, the AIM has a separate, direct, hardware connection ot the DSP module.

Notes:
1. The TMS320C25 can address 16 read-write 10 devices. The DSP module reserves the first 2
for onboard use, but the remaining 14 may be decoded on the AIM.
2. All data, address, and control lines passing between the DSP module and the AIM are buffered.
3. The TMS320C25 serial-codec support signals are also passed thought the AIM connector.

Jumper AIMJ1 allows the AIM to receive either the buffered STRB signal from the TMS320C25,
or the CLKOUT1 signal (10MHz clock).

191

ATHEUFT Al MBUF2

\Al NBEN 19 | — 20 vee 19 | — 20 vCcC
EN veC ——— EN VOO —
\TR—W 1 10 GND 1 10 GND
DIR GND f——— DIR GND ———
~ AL NDO 2 18 TDO Al MDB 2 18 TD8 »
~ Al MD1 3 A BO 17 TDI/ \AINDB 3 A0 £b 17 TDS
« AL MD2 4 o 2 18 TDZ‘/ \AIMDIO 4 . Bl 16 TD1O »
A 1
~_ Al ND3 5 A2 B2 15 TDS/ \lNDII 5 e ciE 15 TDI1
A A o
Al ND4 6 A3 i 14 TD4/ \A[NDIZ [A3 e 14 TD12
s e [14 O e
~ Al MD5 7 At e 13 TD5/ \Al ND13 7 g Ba 13 D13 »
Al NDB i) AS BS 12 TDG/ \AlMD!Ai 8 . - 12 TD14
N “li6 BS /N 46 BE —m
Al ND7] 11 TD7 \\AIMDI.’)] 11 TD15
NLRT Thar B A7 B ————
74HC245 74HC245
41 NBUF3 Al NBUF4
GND 19 | — 20 vVCC GND 19 | — 20 yCcce
W PIER vee —m— — %N veo p———
GND] 10 GND GND 1 10 GND
A "IDIR oND p——— — " IDIR GND f———
s Al NTAQ 2 18 TAQ CLEKX 2 18 AINCLKX »
AL NTA1 3 a0 BO 17 TAl/ \\CLKR 3 o & 17 Al NCLER
AL NTAZ 4 a . 16 TAZ/ \AIMDX 4 Al B1 16 DX »
———42 B2 7"\ A2 B2
Al MTA3 5 15 TASJ/ \DR 5 15 AL NDR
N Plas B3 A3 B3 f———
s, AL NR-W 6 14 TR—W/' \AIMFSX [14 FSX »
~ Al NTIS 7 a i 13 Tl_s FSR T hd B4 13 Al NFSR »
Al NSTRB |} o b 12 TSTRB/ \AIMBBIO 8 o i 2 I NBL
1 A 0
N———" 146 BS —/ N\ A6 B6 f——
~. Al NXF 9 11 XF » 9 11
A7 B7 —t A7 B?7 —*

74HC245 74HC245

192

AT MCON

s, GND 1 2 GND -
1 2

~, AT MDO 3 4 AL MD1 -
3 4

~ Al MD2 5 ‘ 6 Al MD3
5 6

~ Al MD4 7 8 AT MDS
7 8

~ AL MDB 2 10 AL MD? ~
9 10

~ TINTO 11 12 TINT1 »
11 12

~ Al MDB 13 14 Al MDY
13 14

~ ATMD10O 15 16 AIMDIL -
15 16

~AIMD1Z 17 18 AIMD13 -
17 18

AL MD14 19 20 AIMD1S »~
19 20

TINTZ2 21 22 GND
Ne—— 21 22 S L 4
Al MR-W 23 24 CLK/STRB
——— 23 24 ———

s AITMTIS 25 26 AIMBIO -
25 28

s Al MXF 27 28 RDY -
R7 28

~ AT MCLKX 29 30 AIMCLKR ~
29 30

~ Al MDX 31 32 Al MDR
31 32

~ Al MFSX a3 34 AIMFSR
33 34

AL MTAD 35 ae AIMTALl
35 36

~ AL MTAR 37 38 AIMTA3 ~
37 38

N, GND 39 40 GND ~
39 40 |

AT MSTRB

AT MJ1

CLKOUT1

193

A.2.7 DSP-0005

Program and Data RAM.

Notes:

1. Both 8kx8 and 32kx8 SRAM devices are supported. The former result in a full memory of
16k- words in each memory area, and the latter in 64k-words in each area.

The only restriction is that all SRAM devices on the DSP module must be of the same type.
The nature of the SRAM used is determined by jumper DRAMTYPE.

Jumper DRAMTYPE SRAM supported

omitted 32kx8

inserted 8k x8

Table A.17: DSP RAM type jumper settings

9. Devices with access times of below 50ns should be used if zero wait-state operation is required.
Devices of access time 150ns or less are suitable for 1 wait-state operation.

194

195

PRAMIL

PRAN1

H

ree Tali
e ver | - '/\'. A -
- a
R/aké L =R AN n Ll
.
veenn RN =
.l L) I
Wl Tak e Tid .
I s T .
U—l‘ - e ,_f‘l . s
" Tane i .
m fp——x" —u
P CRTE AN +l,,
"
a Tab vl g b V) (L1 S
i ul, = e TEe o e L
\:\:u i, ; o P :n/\:: ull,
- Jue LY U " AL "
o " o [T g0 "
L [1} ‘o0

" WEC 8 Tank
e |

PRAM2

H

an L1
L THE _ea T '

L s R/
o PRAVPES s TaT N

(L Sy s

o= "“’ s S “w
e P s /\:': = "wan
L 'm_‘ \'; a a
4
o /N = e
U N i a
= o L AN] ol = -
N4
- o [V wl = "
S~ " TH e TR " ~
= b
< o " TE e TH nle <
o g 1] TEL s B L1 [o
DRAMIL
wabs 1 et P EE N THNE i " e g
- ¥ Tae
ol i :"‘!\"" ; - [n.u‘ s
o i
weenn P 4 \' p - s
wl= Tl eI . i 3 g
u Tar s T0d . N T
" e oTmmm—— -
AT o s
e " [
" " Thin
sne —
— a IR e
er
= TELL s
o ”
& o [
™
3= 7
= " [
*
oz " s

DRANZL

s fane T3 e e 12 L] 3
\:l:' 2 "t LLELE) o o B3 Y s
aaarn
N Hu senn P AN
Tak
I “ - " - L asill .
Tah q - TR s Tab .
L "
N AR LA = wan
b\ S A = e iy o Lt I L. 5,
. — [T o s, T
\hl__!_ § a'—'“_‘/\“l " R UL
. "
A "l g i T AT v, é . e
W [T N T 8284 e 2 g b ten g
" 0w raes
N i ; b | " LA ; b | =
s Hi, < n " LA mle < “ ™mr_s
 EN1 L1 . o w A LN L . o o i

A.2.8 DSP-0006

Interprocessor Mailbox.

The interprocessor mailbox provides a means by which the TMS320C25 and the system control pro-

cessor can communicate without the control processor actively taking control of the signal processor’s
busses.

The mailbox actually consists of two distinct ports, each unidirectional. A single-word-deep port
communicates words from the control processor to the signal processor, while a 1024-word-deep
FIFO communicates words from the DSP to the control processor.

The asymmetry in the depth of the ports exists for reasons of economics and available PCB real-
estate. The DSP-to-backplane direction was given the deeper FIFO since the response time of the
control processor to an attention request may be long (if it is servicing an attention request from
another DSP, for instance), and this must the least delay in DSP operations.

The backplane-to-DSP direction is somewhat less critical, since the response time of the DSP to
servicing mailbox interrupts will be fast, so that a deep hardware FIFO is less necessary.

196

Name
Part
Date

no

mailbox;
20001;
25/9/89;

Revision 01;
Designer GV;

Devi

ce

Format

pl618;
AH

/* SHEET DSP-0006 */
/% Mailbox between the bus and the DSP */

Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin

Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin

TFIFOW =
TFIFOR =

TCR

AIMB

1
2
3
4
5 =
6
7
8
9
1

1

19
18

17 =
16 =
16 =

14
13
12

EN

FULL =

TRW;
TA3;
TA2;
TA1;
TAO;
ITIS;
PRINTEN;

= PWINTEN;
= 1EF;

= IBFIFOW;

= 'TFIFOW; /*
= ITFIFOR; /*
FULL; /*
FULLFLAG; /*
tINTO; /%
= !INT1; /*
= VAIMBEN; /*
= ITCR; /*

TIS & 'TA3 & !TA2
TIS & 'TA3 & !TA2
TIS & !TA3 & !TA2

BFIFOW #
FULL & !TFIFOR;

FULLFLAG = FULL & !BFIFOW;

INT1
INT1

INTO
INTO

DSP write strobe for DSP->BUS fifo %/
DSP read strobe for BUS->DSP fifo */
intermediate variable */

high when word in BUS->DSP fifo #/
TMS320C25 interrupt */

TMS320C25 interrupt */

AIM data buffer enable */

DSP write strobe for control register */

& ITA1 & !TAO & !'TRW;
& 'TA1 & 'TAO & TRW;
& 'TA1 & TAO & !TRW;

= TIS & (TA3 # TA2 # TA1); /* enable buffers for all except the

bottom 2 io locations */

.0E = FULLFLAG & PRINTEN;
= FULLFLAG & PRINTEN;
.0E = EF & PWINTEN;
= EF & PWINTEN;

197

F1FOL FI1FOH

| L 3UPB0 s 108 i = s soroe
ol BOTDI o N 108 :, . w_ worme
1 1
o L arz . N 1e4e e « i soroio g
o P LR B s | N LI
o B BUPRA s \1DI2 Ll ju__ wureiz
4
g b JUPBE o A 3E13 . o :5 i BUIDLS s
g o BUPDS s A 214 i o nwurn
] o8 o o
~ w BUPDY s\ THiS “ ~ " PDIE o
= © b? [
= w " L [s o w ”»
- | 3FIPOR iriroy L . N STIYoE
ik F ‘i ;1o i .
TREst |- - i TREART L —
UL AN 7y = '_"’ N = frg Sa—
Tee [L]) [—— - ; e ___ -
—_—inyn I — 3 = v T —
hE v |- — | W wNn | — "
—_n 1 n I —=
BFIFOL BFIFOB
AJriroe = 1) e 171 FDR L . 0 vee
S Brirer 1" " oHD A RFLTEY 1] 10 KD
cp ¥vss CP V§S pm—————
~JE Hoo &0 1 wuroe s %108 3 . 5 T BUFDE
70! il I a] BUPDL 1w L . ¥ BUPDE s
a8 LA o 0 BUFD2 ~Jpie A . Qz [BUFDID s
o3 LI [N N | 5OPDY g 1014 LIl :3 1 BUSELL
I 13 N . it BUFD4 g L] e " " BUFDIZ -
L] ul. o 1" BOFEE s g LM L) BUPDIY -
S8 " 6 = it buroe % 1Did LIl :S W BRI
161 1 1 BUPDY 1818 1" 1) BUFDIS
@ 4 N 1 Q7 S/
74BC374 T4BC374

XA LBOX L E D 5

— 1oom
TR-¥ i 19 1nroy LIS]
~ o o0 =g
TR g
2 1 19 ATIPOR o e DI ODE
141 5 e [T oL LED®6
\un] 13 102 10 FULLPLAG g xr s '
S— 14 103 — ba] b,
it ' " 1 -
T e I 1 bl . DI ODE
\rnnn i e I n:mu/
\'_. 17 106 /
oLl SR
n i 1 1 TR
i
N 18 0 4
e 20 [
YCC GND
PilieLe

198

A.2.9 DSP-0007

DSP-accessible Control Register.

The DSP-accessible control register allows the TMS320C25 to control the states of various signals
within its surrounding circuitry. The 8 control signals are documented in table A.19. The functions
of the signals fall into the following main categories:

e Attention Level Control and Assertion

The backplane bus supports an 8-level attention request mechanism which modules may use
to request service by the control processor.

A client module asserts an Attention Request signal by performing the following actions:

1. Set the Attention Request Select Bits 0-2 (ARSBO0-2) to form the binary representation
of the number of the ATNn backplane signal to be asserted.

For instance, to assert the backplane signal ATNG , the user must set ARSB0=0,
ARSB1=1, ARSB2=2.

9. Set the ATNREQ bit of the control register to 1. This bit must only be set moimentarily,
so it is cleared in the next operation.

3. Set the ATNREQ bit of the control register to 0.

At this time, the ATNn signal on the backplane will be asserted.

There is no way for the TMS320 to directly monitor the state of the attention request (to
see whether it has been cleared by the control processor.) However, the user may provide a
signal to the TMS320 by writing a value to the backplane-to-DSP FIFO, or the TMS320 can
monitor the Empty Flag (EF) of the DSP-to-backplane FIFO to determine when the control
processor has read out all of the waiting data.

¢ Enabling of Interprocessor Mailbox interrupts.

The Mailbox described in drawing DSP-0006 can generate interrupts for two distinct classes
of event:

1. The DSP-to-backplane FIFO is empty.
This implies that the next set of data can be written to the FIFO.
2. The backplane-to-DSP FIFO is full.

This means that there is a word waiting to be read from that port. Since this FIFO is
only 1 word deep, the DSP should read the value out of the port promptly.

FEach of these interrupts is enabled separately by bits in the DSP-accessible control register.

o Selection of BIO signal source.

The BIO signal input of the TMS320C25 provides a convenient, software testable input.
It is only one bit wide though, so a multiplexor has been used to allow it to sample one of 4
signals, as described in table A.18.

This multiplexor, together with the BIO input of the TMS320C25, form the DSP-accessible
status register discussed in drawing DSP-0008.

199

BIOSEL1 BIOSELO BIO Source
0 0 BIO signal from AIM connector
0 1 EF (Empty Flag) from DSP-to-backplane FIFO.
1 0 FF (Full Flag) from DSP-to-backplane FIFO.
1 1 FULLFLAG from backplane-to-DSP FIFO

Table A.18: TMS320C25 BIO’ signal sources

Value written to register

Effect

$0000 Clear Attention Level bit 0 (ARSBO)
$8000 Set Attention Level bit 0 (ARSBO)
$0001 Clear Attention Level bit 1 (ARSB1)
$8001 Set Attention Level bit 1 (ARSBI)
$0002 Clear Attention Level bit 2 (ARSB2)
$8002 Set Attention Level bit 2 (ARSB2)
$0003 Attention Request remains unchanged (ATNREQ)
$8003 Force Attention Request assertion (ATNREQ)
$0004 Disable backplane-to-DSP FIFO interrupt
$8004 Enable backplane-to-DSP FIFO interrupt
$0005 Disable DSP-to-backplane FIFO interrupt
$8005 Enable DSP-to-backplane FIFO interrupt
$0006 Clear BIO source select bit 0 (BIOSELO)
$8006 Set BIO source select bit 0 (BIOSELO)
$0007 Clear BIO source select bit 1 (BIOSEL1)
$8007 Set BIO source select bit 1 (BIOSEL1)

Table A.19: DSP-accessible control register bit assignments

200

CONTROL

~ TDO i 4ATNLEVOD
AD Qo0 |

+ TD! 2 s ATNLEVI
Al Q1

~ TD2 4 g ATNLEVZ
A2 q2

2 ATNEN
— Q3

~ TRESET 15| — sPRINTEN
—— CL Q4

~ TCR 14 _ 1®¥I NTEN -
E Q5

~ TD15 19 18] OSELO -
D Q6

arosei1
Q7

VCC 18 8 GND
— VCC GND |———

7418259

201

A.2.10 DSP-0008

DSP-accessible Status Register.

The DSP-accessible status register allows the TMS320 to monitor the state of three signals within
the module, and one signal from the attached AIM. Only one of these 4 signals may sampled at one
time, as they are fed through a multiplexor to the TMS320’s BIO signal input.

The multiplexor is controlled from two bits in the DSP-accessible control register, as described in
drawing DSP-0008. To use the status register, the TMS320 must first set these two bits to select
the desired signal to be multiplexed onto the BIO line.

The DSP software may then use the BIOZ instruction to test the state of that signal.

STATUS
Bl O0SELQ 11 4 Al NBBIO
N\ AQ 10 —
Bl OSEL1 10] EF »
Al 1} —
~ GND v g FF -~
A2 12
sy FULLFLAG »
GND x| == 13
i} E 15
14
J— 14
~ BIO 5 15 ¥
2 13
6| - 16 1
Z 12
17 1
vee 1"] GND
vecce GND
74LS15]

202

A.2.11 DSP-0009

DSP Module Interrupts.

The DSP module uses interrupts to alert the TMS320C25 of certain circuit conditions, these being:

1. The arrival of a word at the backplane-to-DSP FIFO.

2. The DSP-to-backplane FIFO being emptied by the control processor.

Each of these interrupts are enabled by a bit in the DSP-accessible control register described in
drawing DSP-0007.

The interrupt signals for these two conditions will be active for as long as the circuit condition
exists (ie while the word is waiting to be read from the backplane-to-DSP FIFO, or while the DSP-
to-backplane FIFQ is empty), so that the TMS320C25 should reenable interrupts only after it has
cleared the circuit condition which caused the interrupt.

Interrupts may also be generated by the Analogue Interface Module.

TMS320 Interrupt Causing Signal Enabling Signal Comment
TINTO EF PWINTEN DSP-to-backplane FIFO empty
TINT1 FULLFLAG PRINTEN backplane-to-DSP FIFO full

Table A.20: TMS320C25 onboard interrupt sources

The Interrupt Enable signals mentioned in table A.20 originate from the DSP-accessible control
register (see DSP-0007). The signals which cause the interrupts are associated with the interprocessor
mailbox (see DSP-0006).

The interrupt signals TINTO , TINTI, TINTZ may all be generated by the AIM. In this
case the user should program the DSP-accessible control register to disable the onboard interrupts.
The signals which cause the onboard interrupts can still be monitored by the TMS320 via the
DSP-accessible status register (see DSP-0008).

203

A.2.12 DSP-0010

DSP Module Attention Requests.

The DSP module may request attention from the control processor board in the system by asserting
any one of 8 attention request signals on the backplane bus (ATNO ... ATNT).

The method used to assert the desired attention request signal is described in CON-0007.

The control processor clears the attention request (effectively acknowledging it) by writing to the
memory address reserved for this in the DSP module control area (see table A.15.)

204

Name atnasert;
Partno 20001;
Date 25/9/89;
Revision 01;
Designer GV;
Device p1618;
Format i

/* SHEET DSP-0010 */
/* Misc. functions including tristating of status MUX and attention assert
control flip-flop. */

Pin 1 = ATNEN;

Pin 2 = !BATNACK;

Pin 3 = STATUS;

Pin 4 = !BSR;

Pin 5 = TA13;

Pin 6 = PRAMTYPE; /* 1 -> 32K RAM, 0 -> 8K RAM %/
Pin 7 = RAMTYPE; /* AS ABOVE */

Pin 8 = ONBDRDY;

Pin 19 = BUFD15;
Pin 18 = !ATNASRT;
Pin 17 = PRAMP26;
Pin 16 = DRAMP26;
Pin 15 = RDY;

Pin 14 = TRW;

Pin 13 = !TSTRB;
Pin 12 = NEWTRW;

ATNASRT = ATNEN #
ATNASRT & !BATNACK;

BUFD15 = STATUS;
BUFD15.0E = BSR;

PRAMP26 = !RAMTYPE #
RAMTYPE & TA13;
DRAMP26 = !'RAMTYPE #

RAMTYPE & TA13;

RDY.OE = !ONBDRDY;
RDY = ’b’0;

NEWTRW = !TSTRB # TRW ; /* only get write pulse when TSTRB active */

205

1 vl

ATNASERT ATNPAL
~ ATNLEVO 13 10 VCC ~ ATNEN 1 I o 00 19 BUFD1S -~
AQ YCC e ——
ATNLEV1] s GND ~ BATNACK 2
———————1 Al GND | i1 EE———
STATUS 3 18 ATNASRT
. N—— “li2 101 ———
Tl ATNS 2 WESR i3 102 |47, PRANPIG
\ATNLEVZ 1 . QA_] ¢ ATNS ~ TAl3 5 [4 [03 16 DRANPZE -
\ATNASRT 2 — L. s ATNS - ~, PRANTYPE 6 15 104 15 RDY -
E2 QA2 —
— ATNT DRAMTYPE 7 14
s ——rt N "l16 105 —=
ONBDRDY 8 13
— {17 106 —
m : ATN1 - 11 (€ 12
"7 @ w—119 07—
= —— ATN2
1 E4 QB2 “—__/’ c
— ATN3 vC 20 10 GND
s e ——— = lvgc GND p————
74LS156 PALIGLB

206

A.2.13 DSP-0011

DSP Module Control Register.

The Module Control Register (MCR) is a single bit wide register to which only the backplane bus
master has access. There are 2 individually addressable bits in the register, which directly control
the state of two signals within the DSP module.

The states of the two bit wide words are set by writing a 16-bit word to the addresses shown in table
A.19. Bit 15 of that word contains the value that will be written to the register.

Address Offset Signal Function
$008000 PERMRES Directly controls the state of the TMS320C25’s RESET signal.
$008002 PERMHOLD Directly affects the state of the TMS320C25’s HOLD signal.

If PERMHLD is asserted (ie low), the HOLD signal to the
TMS320 is asserted.

Table A.21: DSP Module Control Register
The Address offset is relative to the DSP Module base address.

BCR

~ BA1 1 4PERMRES
AD Qo0
~ BA2 2 sPERMHLD -
Al Q1
% BA3 3 [}
| A2 Q2 ¥
?
9

I Q3
~ BRESET 15| —
CL Q4

~_BCR 14| — 10
EN Q5 %

~ BUFD15 13 11
D qé

Q7

VCC 19 8 GND
— VCC GND

74LS259

207

A.2.14 DSP-0012

DSP Module Status Register.

By reading from this register, the backplane master can determine the state of the DSP board at
any time, without interfering with DSP program execution at all.

The module status register consists of 8 single bit registers which are read from the addresses shown

in table A.22.

Address Signal Comment

$004000 EF Empty Flag from the DSP-to- backplane FIFO.

$004002 FF Full Flag from the DSP-to- backplane FIFO.

$004004 HF Half Full flag from the DSP-to- backplane FIFO.

$004006 FULLFLAG Indicates full state of backplane-to-DSP FIFO.

$004008 Not Used.

$00400A DRAMTYPE Indicates type of SRAM chips installed in DSP board (see DSP-
0005).

$00400C ATNASRT If asserted, this signal indicates that this DSP module is requesting
attention (see DSP-0010).

$00400E Not Used.

Table A.22: DSP Module Status Register
The Address is relative to the DSP module base address.

The control processor reads a 16-bit word from the address shown in table A.22, and the value of
bit 15 of that word is the value of the corresponding signal.

208

121

BSR
w BA1l 11 1 EF »
AQ 10 —
N BA2 10 3 FF »
Al 11 —
~\ BA3] 2 HF
A2 2
1 FULLFLAG
~ GND T - 13
E 15 PRAMTYPE -
14
STATUS & 16 ———
A 13 ATNASRT
s = 16
1 17 12
17 %
VCC je 8 GND
vce GND
74L8161

209

A.3 A Prototype Analogue Interface Module

The drawings in figure A.1 are not detailed, since this module is undergoing redesign at the time of
writing. Detailed drawings are available from the technical staff in the department.

GAIN
DIGITALLY
Vin PROGRAMMABLE
AMPLIFIERS
PROTECTION
DIODES ||
8 LATCH
— H
DATA
BUS 8 & j/,/”
ADC
CONVERT H\\\:_W
B e
AD
RE OFFSET

(a)

The design is for a prototype analogue interface module. The module provides only very basic
facilities, and during testing and use clearly demonstrated the need for complete digital control of
more circuit parameters, including anti-aliassing filtering and programmable offset removal. No such
features are present on this prototype.

While quite suitable for applications such as the student laboratories, the prototype AIM has certain
flaws which must be removed in a future device. These include:

e The lack of anti-aliassing filtering. While it is difficult (if not impossible) to provide analogue
anti-aliassing filtering which can used over the entire range of possible sampling rates, it must
be provided in some manner. Digitally programmable switched-capacitor filters offer some
promise in this area.

e The lack of programmable voltage offset control. If the signal being digitised has a small
AC part superimposed on a large DC component, the system has no way to remove the DC
component.

To keep within the ADC input range, a low value of gain must be used, resulting in excessive
quantising noise for the AC signal.

Offsets should be removed by subtraction of a DC reference signal. The subtraction should
be done as close to the ADC signal input pin as possible, to allow any accumulating voltage

210

GAIN

WRITE 1 li;

LATCH | 8 DAC L
Vout(1)

8 i l OFFSET
DATA " ——1—
BUS
==
8 I— T OFFSET
Voul(z)
WRITEZ —
— LATCH 8 DAC
GAIN
UPDATE
(b)
Figure A.1: Prototype AIM block diagram
(a) Input circuitry (one channel shown)
(b) Output circuitry (both channels)
Input Channels 2 x 8-bit.
Input conversion time 50ns
Input sampling Simultaneous
Input Gain Digitally programmable
gain = [1,2,4,8,16] x [1,2,4,8,16]
Only one value is chosen out of the set in []
Input Bandwidth approx 350kHz
Anti-aliassing filter None
Output Channels 2x 8-bit.
Output updating Simultaneous

Table A.23: Prototype AIM Specifications

211

Port Number | Funclion
Read 10 Start Conversion Signal

to both ADCs
Read 11 Read contents of ADC 2 (input channel 2)
Read 12 Read contents of ADC 1 (input channel 1)
Write 10 Gain for ADC 1
Write 11 Load both DACs
Write 12 Next value for DAC 1 (output channel 1)
Write 13 Next value for DAC 2 (output channel 2)
Write 14 Gain for ADC 2

Table A.24: Production IOM Registers

offsets in the analogue circuitry to be removed at the last stage. This is especially important
for the programmable gain amplifiers (PGA), which amplify not only the signal by DC offsets
within the circuit.

e Too much calibration required. The prototype AIM requires calibration of output voltage
ranges and offsets, and of input offsets. Such calibrations are time consurning and prone
to error. A production AIM should include fixed, high-precision references in fixed circuit
configurations which will not require calibration by a technician.

The DSP IO port addresses for the various components of the AIM are as follows. Note that these
addresses are for the prototype GI boards (the single board version), and may be different for the
production boards, depending on how the production boards are interfaced to the AIM.

The Analogue to Digital Converters (ADCs) are 8-bit flash converters, and are linked to the data
bus as follows:

Bit15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 [Bit 7 | ... | Bit 0
ADC ADC ADC | ADC ADC ADC | ADC | ADC | Not | ... Not
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit2 | Bit1 [Bit 0 | Used | ... | Used

The ADCs share a common strobe signal which starts the conversion process, so that simultaneous
samples of both channels may be made.

The programmable gain amplifiers (PGA) are mapped into their registers as follows.

Bit 15 | ... | Bit 8 | Bit 7 | Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Not Not Not ILE | PGA1 | PGA1 | PGA1|PGAO | PGAO | PGAO
Used ... | Used | Used Bit 2 Bit 1 Bit 0 Bit 2 Bit 1 Bit 0

There are two PGAs in direct cascade for each of the ADCs. PGA 0 is the first in the pair, PGA 1
is the second, feeding into the ADC. Each of the PGAs has the following gains for each 3 digit code
in the above register.

The ILE signal (above) is connected to a pin of the DAC0830 converters with a similar name. This
pin is not used on the DAC0830, but is used on 12-bit converters (which are pin compatible with
the DACO0830) to select between low-byte and high-byte programming. In the current IOM the ILE
bit must be set to 1 for correct operation.

212

Bil 2 | Bit 1| Bit 0 | Resulling Gain
0 0 0 1
0 0 i 2
0 1 0 4
0 1 1 8
1 8X BX 16

Table A.25: AD526 Gain SettingsX = Don’t Care

The digital to analogue converters are 8-bit devices, and are connected to bits 0-7 of the data buss.
This means that only numbers between 0-255 should be written to those ports.

Since there are two PGAs in cascade, any product of the above gains is possible, resulting in a coarse
range of 1-256. A trimmable gain op-amp precedes the PGAs, allowing a symmetrical gain range of
0.0625 (1/16) to 16 to be implemented.

Typically, only the low gains of the PGAs should be used, since the amplifiers amplify not only
signals, but DC offset voltages within the analogue circuitry, leading to a reduction of effective
dynamic range of the converters.

To read the ADCs, code such as the following may be used:

*

* EXAMPLE CODE FOR READING THE ADC ON PRODUCTION IOM.
*

ADC_start = 10 ; read this location to start conversion
ADC2_data = 11 ; read value of channel 2

ADC1_data = 12 ; read value of channel 1

%*

temp = ; dummy data location

valQ = ; data location to store ADC 0 value
valil = : data location to store ADC 1 value

*

READ_ADC: IN temp,ADC_start ; trigger ADCs
IN val0,ADCO_data ; get ADC 0 value
IN vall,ADC1_data ; get ADC 1 value

Notes:
e The lower 8 bits of the 16-bit locations occupied by the ADCs are floating and should be
masked in software (by anding with $FF00, say) before the values are used.

o The ADCs are flash converters, and have valid data available about 50ns after triggering. Thus
there is no need to wait for a conversion complete signal.

e There is at present no hardware to generate a sampling clock. This must be generated by
software timing at present. The internal timer of the TMS320C25 may be used to generate
sampling intervals.

213

A.4 Guidelines for Designing New Modules

The designer of a new module for the Generalised Instrument must provide a number of basic services
on that module. These services are required if the module is to communicate in any way with the
GI’s backplane bus.

1. Address decoding. (Mandatory only for modules which interact with the bus.)

Notionally, the backplane address space of 16MB is divided in 32 512kB blocks. Boards are
assumed to occupy a minimum of 512kB of address space. Since it is unlikely that the full
complement of 32 boards will ever be present, there is sufficient memory space available for
such a seemingly wasteful scheme.

The reason behind this scheme is that boards should begin on a 512kB boundary, so that the
control processor can scan the 32 memory ’slots’ and attempt to identify the boards present.
This autoconfiguration feature is not presently implemented (though the necessary hardware
is present on the TMS320C25 module), but may be in the future. FEach board would have an
IDENTITY PAL which can be read by the control processor, allowing identification of boards
present.

The address decoding for the board therefore relies on A23-A19 of the backplane. Addresses
in the range $000000-807FFFF may not be decoded, since they are decoded within the control
processor module.

On current modules, the decoded address is set with jumpers. The DSP module is an example,
as shown in drawing DSP-0003.

2. Assertion of DTACK . (Mandatory)

The backplane has a DaTa ACKnowledge signal called DTACK which must be asserted
by the module when a valid module address has been decoded, and the bus cycle may be
terminated.

Failure to assert the DTACK signal will lead to a bus timeout after tens of microseconds,
causing the control processor to begin exception processing. The circuitry which detects this
condition is documented in drawing CON-0005.

3. Assertion of Attention Request. (Optional)

The backplane bus provides an 8-level attention request mechanism. This is akin to an 8-level
interrupt system. Priority coding and vectoring is performed within the control processor
module.

4. Access time of devices on the bus.

In order to run without wait-states, devices must conform to certain timing requirements. A
general rule of thumb is that the total backplane strobe active duration is 2 control processor
clock cycles.

For instance, if the control processor board (assuming 68000 based) is running at 10MHz CPU
clock rate, the maximum duration of active AS on the backplane will be 200ns.

The designer must further subtract the delay incurred by her board decoder circuit, and buffers,
to determine whether the board will be able to operate without wait- states.

214

Appendix B

Control Processor Onboard
Software

The Control Processor operates in two distinct modes: the command mode and the interaciive mode.
The interactive mode is designed to allow direct interaction with the user via a suitable terminal
(provided by SPaM). The interactive mode is similar in operation to the debug monitors found on
many microprocessor systems. The interactive mode of the CP expects ASCII input and output
over the RS232 connection to the host.

The command mode uses a binary-only communication protocol, and is designed for efficient and
reliable communication between the CP and a host (the PC) computer. Unlike the interactive mode,
the command mode uses full-binary representation of numbers.

On powering up the system, the default mode of operation of the control processor (CP) is the
command mode. To enter the interactive mode, the user should run SPaM on the host, and use
the mon command (see 5.6.) The commands available in the interactive mode are explained in detail
in the sections which follow. There are some points of interest about the power on sequence which
will be noted here.

B.1 Interactive Monitor Commands

The monitor commands consist of a command word with optional arguments. Arguments are either
necessary or optional. If a necessary argument is omitted from the command line, its value is set to
sero when the command is executed. The following symbols are used to define arguments.

< > surround a necessary argument.

example: baud <baud-rate>

states that the command baud be given an argument.
[] surround an optional argument.

example: port [value]
states that the command port has an optional argument. The command will perform different
actions depending on whether an argument is given or not.

| means ’or’. It is used to separate several alternative values.

215

example: hold <0|1>
states that the hold command has one necessary argument which must be either the number

0or 1.

B.1.1 Memory Displaying Commands

db <start-address> [end-address]
dw <start-address> [end-address]
tpdw <start-address> [end-address]
tddw <start-address> [end-address]
tidw <io-address>

xb <address>

xw <address>

db displays bytes in 68000 address space, beginning from the highest 16 byte address boundary less
than or equal to <start-address>, and continues to display memory bytes until it reaches the
lowest 16byte boundary greater than or equal to [end- address]. If [end-address] is omitted, 16
bytes will be displayed.

example:

command > db 100 120

00000100: - 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000110: - 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000120: - 00 00 00 00 00 00 00 00 00 0O 00 00 00 00 00 00
command >

dw displays memory words in 68000 address space. Rules are the same as for db. Note that since
this command operates on 68000 address space, the addresses supplied as arguments are byle
addresses!

example:

command > dw 100 120

00000100: - 0000 0000 0000 0000 0000 0000 0000 0000
00000110: - 0000 0000 0000 0000 0000 0000 0000 0000
00000120: - 0000 0000 0000 0000 0000 0000 0000 0000
command >

tpdw displays words in DSP program address space. Valid addresses are in the range $0000 to
$FFFF. Note that since we are referring to DSP space (which is comprised only of words),
these addresses are word addresses.

example:

command > tpdw 0 20

TMS320C25 Program memory words - (ESC) to quit, any key to pause
00000000: - CE06 C800 CA00 6060 E060 FE80 0018 CAO1

00000008: - 6060 E060 FES0 0018 CA02 6060 E060 FE80

00000010: - 0018 CA03 6060 E060 FE80 0018 FF80 0002

00000018: - D101 FFFF CD0O1 F580 001A CE26 5465 7374

1 compare this with tpdw and related commands where they are word addresses

216

00000020: - 696E 6720 3638 6B20 5241 4D20 6E6F 772E
command >

tddw displays words in DSP data address space. Valid addresses are $0000 to SFFFF.
tidw displays the contents of a location in DSP IO space. Valid addresses here are $30000-$000F.
Only one value is displayed, that of the specified address =

example:

command > tidw 0 10
CcD10
command >

xb displays the contents of one byte in the 68000 address space. The byte value is displayed to the
host, the cursor is then backspaced over the value on screen, and an updated value is written
over it. This refreshing process continues until a key is hit, at which time control is returned
to the monitor program.

xw displays the contents of a word in 68000 address space in a similar manner to xb, which displays
bytes. Remember that since this command operates on the 68000 address space, the address
argument is a byle address.

B.1.2 Memory Modifying Commands

mb <start-address>

mw <start-address>

tpmw <start-address>
tdmw <start-address>
timw <io-address> <value>

mb modifies bytes in 68000 address space, starting at <start-address>. The byte contents of each
consecutive address are displayed, and the user can do one of three things:-

1. Type in a new hex byte value for that location.
2. Hit Return to leave current address value unmodified, and proceed to next byte address.

3. Type q— to return to monitor without affecting current address contents.
example:
mw modifies words in 68000 address space, according to the same rules as db modifies bytes.

example:

command > mw 3000
Enter <CR> to skip to next word, or new value, or q to quit

00003000: -~ 202D abdd
00003002: - 4F2D 1234
00003004: - 2D20 ai2b
00003006: - 207C q
command >

2this prevents corruption of neighbouring IO registers

217

tpmw modifies words in DSP program address space. Valid values for <start-address> are $0000
to SFFFF. The procedure is then the same as for mb. Note that it is wise to HOLD the
TMS320C25 while such editting is in progress to avoid losing control of the DSP module.

example:

command > tpmw 100

TMS320C25 program memory space edit - enter value, or q, or <CR>.
00000100: - 5555 aaaa

00000101: - 5555 dddd

00000102: - 5555 q

command >

tdmw modifies words in DSP data address space. Valid values for <start-address> are as for
tpmw.

See tpmw for an example.
timw writes the value given to a single location in DSP 10 space. The IO space may access different

devices at the same 10 address, depending on whether a read or a write is performed, so that
it may not be possible to read the written value back into the DSP.

See tpmw for an example.
Notes

e Although specific instructions are provided for manipulating words in DSP address space, the
standard dw,mw commands can be used if the relationship between 68000 address space and
DSP address space is kept in mind.

If, for example, one wishes to examine location $0020 in DSP data address space, then the
following arithmetic must be performed to arrive at the correct address in 68000 address space,
which is used as the argument to dw or mw.

$0020 is a word address offset, so multiply by 2 to get the byte address $0040.

Obtain the byte address in 68000 address space where the DSP data memory is mapped. From
Table A.14 we see that this is $040000 plus the base address of the DSP module. Assume the
base address is $800000, then the address in 68000 space of the DSP data memory is $840000.

Add the offset to the base address to get the desired address in 68000 space, ie $840040.
If we now give a command such as
dw 840040
then it is equivalent to giving one such as
tddw 40
since both refer to the same physical memory location.
e When examining words in DSP address space, using any of the above commands, decide
whether it is necessary to halt the DSP before doing so. The memory displaying commands,

and the memory modifying commands arbitrate dynamically for possession of the DSP busses
while going about their business.

For example, the tpdw displays 8 words per line on the host screen. This means that during
the time it took to display that line, it made eight accesses to DSP memory space. The DSP
was tri-stated (effectively halted) during those accesses.

Since the amount of time taken to display the line of information is much longer than that
needed to perform 8 memory accesses, the DSP was able to continue execution for most of the

218

time during which the tpdw command was being executed. It is conceivable that the algorithm
begin executed by the DSP causes modification of the memory words which are being examined
by the control processor, causing those words to lose their relationship between successive read
operations.

It may therefore be wise to use the following instruction sequence to read information from
DSP address space: reset 1<

tddw 0040~

reset 0

B.1.3 DSP Module Control Commands

reset

(0—1]

hold <0—1>
port [value]

reset controls the state of the RESET signal to the DSP Module. The action performed on the

hold

port

RESET"’ signal is determined by the argument to this command.

reset 0 causes the RESET’ signal to the DSP to be deasserted (ie RESET’=1).
reset 1 causes the RESET’ signal to be asserted (ie RESET’=0).

reset with no arguments causes the RESET’ signal to be asserted for several microseconds,
then deasserted. This is useful for restarting the DSP, and is equivalent to issuing reset
1 and reset 0 commands in quick succession.

is one of two signals which determines the state of the HOLD’ signal to the TMS320C253.

The HOLD’ signal, when asserted, causes the TMS320C25 to give up control of its external
busses when execution of the current DSP instruction is complete. This HOLD’ signal is also
used for bus arbitration when the 68000 control processor invades DSP address space (as in
response to tpdw, tddw ...commands).

The HOLD’ signal provides a useful means of halting the TMS320C25, so that locations in its
address spaces may be examined without risk of them changing (due to TMS320C25 program
execution) during the examination.

is the monitor command used for examining/modifying the contents of the interprocessor port
(also called the interprocessor mailbox, see drawing DSP-0006). Values are written/read from
the 68000 side of the bidirectional port only at present.

port« is the syntax used for examining the state of the port and its contents.

port hhhh« is the syntax for setting the port contents to hhhh, a hex number. Note that
only the four least significant hex digits of hhhh will be used, since the port is 16 bits
wide.
The state of the port will be returned first, and even if the previous value has not been
read out by the DSP, the new one will be written in.

3The other is the decoded 68000 address strobe which indicates the 68000 is accessing a location in DSP address

space,

for which it must arbitrate using HOLD’/HOLDA'

219

B.1.4 Commands for Data Transfer

baud <baud-rate>
s

sg

Jowtpd

hightpd

lowtdd

hightdd

baud sets the baud rate of the serial link between host and CP. Valid values for <baud-rate> are
75,110,134,150,300,600, 1200,2000,2400,4800,1800,9600,19200.

s allows the downloading of data into 68000 scratch memory. Note that the s-record file is assumed
to contain bytes which are stored to the 68000 scratch memory as consecutive bytes. This
command will typically be used to download experimental code for the 68000 to execute, since
most cross-assemblers for this processor output Motorola S-record files.

sg similar to s, but when downloading has finished, execution begins at the address specified in the
S9 record of the downloaded file.

lowtpd downloads bytes into bits 0-7 of DSP program memory words using Intel Hex format. The
addresses contained in the Intel Hex format file are assumed to be word addresses in DSP
program memory. Bits 8-15 of the words are not affected.

Since the DSP memory is organised as 16-bit words (the bytes of which can not be address
separately as in 68000), and Intel Hex format supports only bytes, then the original file of
words (on the host computer) must be split into two files of bytes, one containing bits 0-7 (ie
the low-order byles of each word, and one containing bits 8-15 (the high-order bytes). The two
files must then be downloaded separately using commands such as lowtpd, hightpd.

hightpd downloads bytes into bits 8-15 of DSP program memory words, using Intel Hex format.
The addresses contained in the Intel Hex format are assumed to be word addresses in DSP
program memory. Bits 0-7 of the referenced words are not affected.

This command is complementary to lowtpd.

lowtdd downloads bytes into bits 0-7 of words in DSP data memory using Intel Hex format. Bits
8-15 are not affected. This command is complementary to hightdd.

hightdd downloads bytes into bits 8-15 of words in DSP data memory, using Intel Hex format. Bits
0-7 are not affected. This command is complementary to lowtdd.

B.1.5 System Control Commands

verbose <0—1>
warm

cold

command

verbose determines whether text messages are displayed to the host. Such messages slow down
communication, and are useful mainly only debugging of monitor code. An argument of 1
to this command enables the printing of response messages, while an argument of 0 disables
them.

220

warm forces a warm restart of the CP. A warm restart is distinguished from a coldstart by the lack
of memory testing (to prevent previously downloaded code from being corrupted).

cold forces a CP system coldstart. Note that RAM areas will be tested, corrupting all RAM
contents.

command forces the CP control processor to leave the interactive monitor, and begin executing
the binary communications software for automated communication with the host. This is
described in section B.2.

B.2 Command Mode

The command mode exists to allow more rapid and reliable communication between the host com-
puter and the Control Processor (CP). All communication is done in packets, which come in several
sizes, depending on what is being transmitted.

Command mode may be entered in one of two ways. When power is applied to the system, the CP
will default to command mode. Should the user enter the interactive mode of the CP when using
the host SPaM software, the CP will reenter the command mode when the user terminates the
interactive session.

The first step in using the command mode to talk to the CP is to wait for the synchronizing character
from the CP. The character is a >’ (ASCII value 4510). The host should continue to send a carriage-
return (ASCII 13;0) until it receives the synch character.

while received_character <> ’-’ do
send_character (chr(13))
wait (3 character times)

Note that a ’character time’ is the length of time needed to transmit a 10bit character at the baud
rate used. In the case of (default) 9600 baud communication, a character time is approximately 1
millisecond. Once it has received the synch character, the host can transmit a command packet to
the CP. A command packet has the structure shown in Table B.1.

Byte Offset Value Comment

$00-$01 $57BD Command Packet Identifier

$02 Command Byte | determines operation to perform
$03 Modifier Byte | determines method of operation
$04-$05 Field 1 nature dependent on operation
$06-$07 Field 2 nature dependent on operation
$08-509 Field 3 nature dependent on operation
$0A-$0B Field 4 nature dependent on operation
$0C-$0D CRC used for error checking

Table B.1: Command Packet Structure
CRC = Cyclic Redundancy Check

Within the command packet, the command byte determines which type of operation 1s to occur
eg. reset the DSP. Following the command byte is the modifier byte, which determines how the
operation is to be performed eg. assert RESET to DSP indefinitely.

221

The four word fields (8 bytes) which follow contain information which is interpreted differently by
the various commands. The final value is a CRC (Cyclic Redundancy Check) word which is used
to confirm the validity of the command packet. If the CRC sent is the same as the CRC calculated
by the CP, then the command packet is assumed to be valid, an ACK character (ASCII 61¢) is sent
to the host, and the command is executed. If the CRC indicates that an error has occurred during
the transmission of the packet, then a NAK (ASCII 21;0) is sent to the host, and the CP will wait
for the packet to be resent. Note that the $57BD Command Packet Identifer is not included in the
CRC calculation.

B.2.1 Available Commands

The currently implemented commands are given in Table B.2 along with their corresponding byte
values.

Byte Value | Corresponding Command

300 NULL Command

$01 Reset Command

$02 Hold Command

$03 Download Command

$04 Upload Command

305 Get IO Ports Command

$06 Put IO Ports Command

$07 Exit Command Mode

508 Change packet Size Command

$09 Change baud rate Command

$0A Wait for Interprocessor Port Command
$0B Clear Interprocessor Port Command
$0C Change Timer-based Baud rate Command
$0D Write to Interprocessor Port Command

Table B.2: Valid Command Byte values

Some of the commands require on or more arguments to be passed. These arguments are passed in
the modifier byte, and the four words which follow the modifier byte in the command packet. The
arguments required for each command are listed in the following section.

NULL Command

The NULL command does absolutely nothing. When a command packet containing the NULL
command is received by the Control Processor (CP), it causes the CP to wait for another command
packet. This feature is implemented to catch command packets which have not been initialised
properly (assuming a $00 byte is more likely to occur in uninitialised memory than a real command
value).

Reset Command

The Reset command performs the same set of functions as the Monitor reset command described
in section B.1.3. That is, it determines the state of the RESET signal to the DSP module.

222

The modifier bytes for this command dictate whether the RESET’ signal is asserted, deasserted or
toggled (to simulate pressing and releasing an imaginary reset switch on the DSP module), and are
listed in Table B.3.

Modifier Byte Value | Result of Resel operation

$00 No Change

$01 RESET’ to DSP 1s asserted

$02 RESET’ to DSP is deasserted

$03 RESET’ to DSP is asserted then deasserted

Table B.3: Reset Command Modifier values

Fields 1...4 of the command packet are ignored by this command.

Hold Command

The Hold command determines the state of the HOLD’ signal (a bus arbitration signal) to the DSP
module, and as such it performs a similar role to that of the interactive hold command detailed in
section B.1.3.

The modifier values for this command determine whether the HOLD’ signal will be asserted, or
deasserted according to the assignments shown in Table B.4.

Modifier Byte Value | Resull of Hold Command
300 No Change

$01 HOLD’ to DSP asserted
$02 HOLD’ to DSP deasserted

Table B.4: Hold Command Modifier Values

Fields 1...4 of the command packet are ignored by this command.

Download Command

This command is the one to use when transferring hex (whether it be program or data information)
from the host o the CP. This command can access any address space within the CP, and transfer
any number of words in one operation.

The transmission is performed using packets, by default 128 words (256 bytes) in size, though this
may be changed (see section B.2.1). Each packet is followed by a 16-bit CRC which the CP examines?
to determine if each downloaded packet is valid.

As the packet is received, each word is stored to a consecutive address in memory, beginning at an
address specified in the command packet which initiated the download operation. After each valid
packet is received, the base storage address is incremented by the current size of transmission packets.
The order of data within each packet is such that the data to be stored to the lower addresses 1s
sent first, and that to be stored to the higher addresses is sent last. All storage operations are word

4The CP does this by calculating its own CRC based on the data in the packet, and comparing this to the one
sent by the host

223

store operations performed by the 68000, and it is assumed that the high byte of each word arrives
first over the serial link, and the Jow byte of each word then follows.

After receipt of a valid packet, the CP sends the host an ACK character to initiate the sending of
the next packet. See figure 6.2 for a flow diagram of the download process.

Should the received CRC not agree with the calculated one, then the packet has somehow been
corrupted during transmission and must be resent. The CP sends the host a NAK character to
achieve this. The CP will continue to retry indefinitely: it is up to the host to count the number of
retries and abandon transmission when this number exceeds some limat.

As stated before, the command modifier byte determines which address space is to receive the
downloaded data, as given in Table B.5.

Modifier Byte Value | Address Space used in Download
300 None, operation aborted

$01 DSP Program Address Space
$02 DSP Data Address Space

$03 DSP 10 Address Space °

$04 Control Processor Address Space
$05 LMA Address Space

Table B.5: Download Command Modifier Values

Fields 1...4 in the command packet are all used by the download command, for the purposes shown
in Table B.6.

Field 1 | Bits 31-16 of word count
Field 2 | Bits 15-0 of word count
Tield 3 | Bits 31-16 of address offset
Field 4 | Bits 15-0 of address offset

Table B.6: Download Command Field Assignments

Fields 1 and 2 together form the 32bit number which determines how many 16-bit words will be
downloaded from the host to the CP. Fields 3 and 4 together form a 32bit address offset which is
added to a base address determined by the command modifier. The base addresses in 68000 address
space are listed in Table A.14.

Upload Command

The upload command works similarly to the download command, only the directions of data transfers
are from CP to host. The CP sends packets of data to the host, each followed by a 16-bit CRC
value. The host must decide whether the packets are valid. If the packet is valid, the host should
send an ACK character, otherwise a NAK should be sent.

If the CP receives any character other than NAK or ACK, it will abort the upload and wait for a
new command block. This makes recovering from an out- of-control upload easier.

Note that there is very little delay between characters in the upload (you should assume it to be no
more than 1 character time).

224

The modifier byte values are those given in Table B.5, and the field usage within the command block
is that given in Table B.6.

The sequence of events which occurs when an Upload command is issued is shown in figure 6.3.

Get I0 Ports Command

This command allows the host to read values from selected IO ports in the DSP module (ie locations
in DSP 10 space). Since these locations usually directly represent real-world devices, such as data-
converters or latches, then reading or writing them is a non-trivial matter since it could result in
system failure.

To prevent ’dangerous’ locations from being accessed, the GetIO command allows the host to mask
out those registers which it wants to read. The mask is a 16-bit word sent in the command packet.
Each bit of the mask word corresponds directly to 1 of the 16 available Input ports in DSP 10 space.
Bit 15 corresponds to Input Port 15, Bit 0 corresponds to Input Port 0, and the intermediate ones
have the same one-to-one relationship.

The mask word is contained in Field 1 of the command packet. The remaining fields of the command
packet are not used. The modifier byte of command packet is ignored by this command.

If a particular bit of the mask word is a ’1’, then its corresponding Input port is read and the value
is sent to the host. If the bit is a ’0’, then the Input port is not read and a zero ($0000) word is sent
to the host in its place.

After receipt of the command packet, the Control Processor (CP) examines the mask word, and
proceeds to send to the host a packet of 16 words, followed by a CRC value. The 16 words correspond
to the Input port values (wherever the mask bit was 1), or to zero words (where the mask bit was 0).
The order of transmission is high byte of Input port 15’s word value first, followed by the low byte
of Input port 15’s word value, and so on until the last byte which is Input port 0’s low byte. The
CRC value then follows the 16 words (32 bytes) of this packet. If the host responds with an ACK
character, the CP assumes the GetIO operation was completed successfully, and waits for another
command packet. If a NAK is received by the CP, the entire 10 block is resent ol

Put IO Ports Command

This command does the reverse of GetIO, in that it waits for data to arrive from the host which it
then sends to the Output ports (specified again by the mask word) in DSP 10 space. After receiving
the command packet holding this command, the Control Processor (CP) examines the mask word
within the command packet. It then waits for a packet of 16 words (the 10 packet) to be sent by
the host, followed by a CRC value.

The mask word is contained in Field 1 of the command packet. The remaining fields of the command
packet are not used. The modifier byte of the command packet is ignored by this command.

As the words of the IO packet arrive, the CP checks the corresponding bit of the mask word to see
if the newly arrived word should be stored to an Output port. If the corresponding bit of the mask
is a 1, then the word is stored to the corresponding Output port”. Note the words arrive at the CP
in the order of Output port 15’s value first (high byte then low byte), and Output port 0’s value
last.

6Note that at present, the IO ports are not buffered which could result in different values being present on those
ports when a re-transmit operation begins following a NAK

"Note that since this operation is currently not buffered, words are written to Output ports before the validity of
the 1O packet is checked using the CRC

225

Exit Command Mode

For debugging purposes, this command has been included to allow the host to enter an interactive
session with the Monitor on the Control Processor (CP). To re-enter command mode, the following
should be entered into the monitor:

verbose 0+
command «

Change Packet-Size Command

The Upload and Download commands use data packets with a default size of 128 words (256 bytes).
The user can change this value by using the Change Packet-Size command. The size of the packet
can be anywhere between 1...65536 words. The size of the packet to use is determined by several
criteria:

o Larger packets result in higher throughput on links where transmission is largely error free,
but lower throughput on links which have a high error rate.

e Small packets should be used when small amounts of data are being moved. In all cases, a
whole number of packets is sent, so using 1000 word packets to send 10 words is a waste of
time (and increases the opportunity for errors to occur).

o Larger packets should be used to reduce handshaking overhead on links which introduce a
transmission delay (modems for instance).

The modifier byte is ignored by this command. Field 1 in the command packet is the word value
representing the packet size to use in future transfers 8 A word value of $0000 represents 65536
word packets, $0001 represents 1 word packets,. .., and $FFFF represents 65535 word packets.

Change Baud-Rate Command

In certain circumstances it will be necessary to make the Command Packet (CP) work at a different
baud rate to 9600 baud used by default. If the host PC is not capable of reliable 9600 baud
communication (or is capable of higher speed communication), then it should send a command
packet to the CP to change the baud rate.

The modifier byte is ignored for this command. Field 1 and 2 combine to determine the baud rate
in the way shown in Figure B.7.

Fields 3 and 4 are not used. The baud rate used by the CP will be changed immediately after the
ACK for the command packet is sent. The host should change baud rate after it receives the ACK
character.

Change Timer-based Baud Rate Command

The previous command described how to change the serial-link baud rate by specifying the desired
baud rate directly. This only allows baud rates up to 19200 baud to be selected.

BNote that the GetIO and PutlO commands always send 16word IO packets, only the Upload and Download
commands have variable-length packets

226

Baud Rate | Field 1 Value | Field 2 Value
75 $0000 $0075
110 $0000 $0110
134 $0000 $0134
150 $0000 $0150
300 $0000 $0300
600 $0000 $0600
1200 $0000 $1200
2000 $0000 $2000
2400 $0000 $2400
4800 $0000 $4800
1800 $0000 $1800
9600 $0000 $9600
19200 §0001 $9200

Table B.7: Set-Baud-Rate Command Field Allocations

To achieve higher baud rates, it is necessary to bypass the internal baud rate generator of the
MC68681 and use the internal timer to generate the data clock. To facilitate this, a command was
created which allows the serial link to be switched to timer-based data clocking, and the word value
in Field 1 of the command packet is used as the 16-bit timer constant [10].

The lower the value placed in the timer register, the higher the resulting data clock frequency. The
minimum value is 2,6, which gives a 57600bps serial link speed. Higher speeds are achievable, but
require some hardware. Specifically, an output pin of the 68681 must be programmed to be driven
by the timer output, and this must be fed to an input pin (input and output pins belong to the
parallel port on the device) of the 68681. The serial port can then be programmed to accept its
clock from the input port.

Such a roundabout method is necessary to bypass the divide-by-16 counter which normally exists
between the data-clock source and the serial port. Using this method, we can go to the maximum
data rate of 115200bps, which is the maximum supported by the standard IBM PC serial port.

Fields 2-4 are not used in this command. The Change Baud Rate and Change Timer-based Baud
Rate commands may be used interchangeably.

Clear Interprocessor Port Command

This command forces the 68000 to read from the 16-bit interprocessor port, thus clearing the flag
associated with that port. The value read is discarded. This command has no arguments.

Wait for Interprocessor Port Command

After receiving this command, the 68000 will wait for 16-bit data words to arrive at the interprocessor
(68000—DSP) port. It will read the word from the port, and send it to the host via the serial link.

The number of words to be sent back to the host is passed as a 32-bit value in Fields 1-2 (high word
in Field 1, low in Field 2). Once the correct number of words has arrived and been sent on, the 68000
sends the CRC value for all of the returned words. The 68000 does not wait for an acknowledge
from the host before returning to the command loop, it does so immediately.

227

Thus, if the returned words contained a transmission error (as indicated by disagreeing CRCs), the
error can be either ignored, or the whole operation must be resumed. There is no retransmission on
NAK for this command.

Note also that there is no fixed time limit on when words arrive at the interprocessor port, this is
up to the DSP code author.

Requesting a read of 1 word from the interprocessor port is a useful way of detecting completion of
DSP algorithm. The DSP code can be written so that the last instruction causes the DSP to write
a word to the interprocessor port. The 68000 detects this, and sends the word on to the host. The
arrival of the word indicates to the host that processing has terminated, so that processed data can
be uploaded.

Before issuing this command, a command should be sent to the CP to clear the interprocessor port.

Write to Interprocessor Port Command

The 16-bit word in Field 1 of the command packet is written to the interprocessor (68000— DSP)
port. At present, no check is made to determine whether the port is empty, thus existing data may
be overwritten.

228

Appendix C

Creating a Virtual Instrument
Using SPaM

When writing applications which involve the DSP module, it is necessary to follow some conventions
if they are to function correctly with SPaM. These conventions are listed below:

1. The TMS320C25 code must be in pure binary format. This is accomplished by using the
INTL2BIN.EXE program supplied with SPaM to generate the binary file from the Intel format
MYPROG.LO and MYPROG.HI files.

The chain of files created by certain utilities is shown below.

MYPROG.ASM User’s source file
J Assembler (DSPA.EXE)
MYPROG.OBJ Object file

(] Loader (DSPROM.EXE -i MYPROG)
MYPROG.LO
MYPROG. HI Intel Hex .Format files

4 Intel to Binary converter (INTL2BIN.EXE)

MYPROG.BIN Suitable for use with SPaM

9 When SPaM’s send statement is used, the MYPROG.BIN file is loaded from disk, and down-
loaded to the program memory of the DSP module.

When the restart statement is used, SPaM turns off the RESET signal in the DSP
module, and the signal processor begins execution of its code.

The restart statement does not immediately return control to the user (or the script). It
waits for the signal processor to indicate that processing has finished. This allows the host and
the DSP module to synchronise, so that there is no doubt about valid data being available for
uploading to the host when the restart statement has returned.

To indicate the completion of code execution, the signal processor must enable its attention
request signal. This is described in detail in section A.2.9, and in the following code example.

3. If the user is writing real time code which will commence processing as soon as it is downloaded
to the DSP module, and will continue processing indefinitely, she should ensure that the code
asserts its attention signal immediately, before entering its main processing loop.

In this way, the restart statement in SPaM can still be used to begin execution. Note
that there is no restriction on the activity of the signal processor after it requests attention.
The control processor (at present) merely uses that request to synchronise the host to the
completion of DSP code.

229

4. At present, the data transfer functions in SPaM such as download() and upload() first place
the signal processor in a HOLD state which causes it to cease execution. The data is then
transferred. After the transfer, the signal processor is not allowed to resume execution.

A more transparent method of access will be incorporated into the onboard GI software in
the near future. At present, the only method by which data can be transferred from DSP
memory during real-time DSP processing is to use the interprocessor port, which is not directly
accessible through SPaM commands, yet.

The following SPaM script implements a combined signal digitiser and frequency analyser, whose
screen display is shown in figure C.1.

% This script implements a Waveform Digitiser and Spectrum Analyser
%
% First, do some initialising of variables.
%
FFT=[1,1];
Signal=[1,1];
z=int (zero(1,2048));
samp_rate=100000;
samp_divisor=100;
0ld_samp_rate=100;
half_sampling_rate=50000;
go = 03
gos=1;
gof=1;
Gain=1;
%
% Now enter graphic display mode with a small console window
%
graphic 600 50
%
% The following handler is not attached to a button, but is instead
% used as a ’subroutine’ by other handlers.
%
handler looper
if (samp_rate!=0ld_samp_rate)
samp_divisor=int(10000000.0/samp_rate);
samp_rate=10000000.0/samp_divisor;
pdownload(int (samp_divisor-1),26);
old_samp_rate=samp_rate;
half_sampling_rate=samp_rate/2.0;
update
end
if (gos==1)
pdownload(int(-32768),30);
restart
Signal=upload(4096,4096+1023);
end
if(gof==1)
pdownload(int(32768+16384+8192+4096+2048),30);
restart
FFT=upload(4096,4096+511);
end
update
end
%
% The handler ’AUTO’ is executed when the AUTO button is clicked,

230

% and continues to execute until the STOP button is clicked.
%
handler AUTO
go=1;
print “"Press STOP button to halt.”
vhile(go==1) looper end
end
%
% The STOP button works by simply setting the variable ’go’ to a
% value which will cause the main loop in the handler ’AUTO’ to
% fail, thus ending the loop.
%
handler STOP
go=0;
print "Stopped." |
end
%
% This handler determines whether FFT will be uploaded and displayed,
% or mnot.
%
handler TOGGLE_FFT
gof=1-gof;
end

% This handler determines whether the signal waveform will be uploaded
% and displayed, or mnot.

handler TOGGLE_CRO

gos=1-gos;

end
%
% This handler causes a screen dump.
%
handler PRINT

print screen

end
%
% Now set up the screen objects.
%
graph(FFT,5,55,500,190)
set xaxis "FFT" 0 half_sampling_rate
set label "FFT" "Freq" "Ampl."
graph(Signal,5,195,500,330)
set label "Signal" "Sample number" "Ampl."
button("AUTO",570,55,630,100)
button("STOP",570,105,630,150)
button("PRINT",505,55,560,150)
button("TOGGLE_CRO'",505,155,630,200)
button("TOGGLE_FFT",505,205,630,250)
numeric(Gain,505,255,630,290)
numeric(samp_rate,505,295,630,330)
%
% Now set up the serial port to the GI, and download the DSP code
%
set dsp baud 57600
send "dsp\combo.bin"
%
% Now do nothing until the user clicks a button

%

231

Console Window EEEE;

>Press STOP button to halt. %
ISR T i e

FFT
5000

PRINT

(sgegegepugngeysgogugaguyd

[

Signal
28

oA AAAAAAAAAAAANAN]
IAVRVAVAVRVAVRVAVAURVAVAVRVAVRY| mecan

-2 : 10000606
i Sample number 1824H

G Wi o S EY T T P S e S S T R A S S A S S B U I S S T L L L T I LT L T LT L L T T T T T T T T y e N D OB B D G S S M £ B S B
—rlllllllxlll|||axllll|||xllli|||11!l||||||'_[II|||||||1Ill|||||111III||J:A||1|II||
' I T L L L L L L T L LT T T T T T T T T T T LT LT LT ' T T LI T LT L L L L L L LT T T T LY LT T T T T LI L LI T LT
ﬁllllllxlllIIlA]lII‘Ili|I¥YIIIl‘jIlIIIIIx[j_'lIlIIIl'i_IIfllllilxlll‘llrlll'lIlIIIY

Figure C.1: A Digitiser / FFT Analyser Implemented with SPaM

232

C.1

Example TMS320C25 Code

The following TMS320C25 program was designed to be used with the SPaM script shown above,
to emulate an instrument which samples a signal, and displays the signal and its FFT.

Sampling routines

Processing routines, such as window scaling, FFT, magnitude calculation .

SPaM first downloads this program to the signal processor program memory, and then performs
the following actions.

E

x
¥
*
*
*
reset

timer

*

* The
*
TIM
PRD
MASK
*
temp
valo
valil
half
mask

Based on the user’s wishes (perhaps according to which onscreen buttons she clicks), SPaM
downloads a single 16-bit word to the address in program memory corresponding to the address
of the word OPCODE in the listing below.

Each bit of the word OPCODE causes a corresponding operating to be performed when the DSP
code is executed. For instance, if bit 15 of the OPCODE word is 1, then the sampling routine
will be executed first. If bit 15 is 0, then the sampling routine will not be executed. Similar
tests are carried out on bit 14 through to bit 0.

After setting the OPCODE word to the value which will cause the desired operations to be
performed, SPaM should then execute the restart command to cause the DSP program to
execute.

Once the program has terminated, the next SPaM statement will be executed. This will
usually be a call to the upload() function which will upload the processed data from the GI
to the host.

This is a combination sampling and processing program for the GI.
Operations include those shown in the diagram below.

Written by G.Vokalek, with code contributions from G.Y.Yuan.

_vector:
b start ; this is the reset vector
.long 0,0,0,0,0,0,0,0,0,0,0 ; unused vectors
_vector:
b timerhandler ; this is the vector for timer interrupt

following are TMS320C25 internal registers.

.set 2 ; timer register

.set 3 ; period register for TMS320C25 internal timer
.set 4 ; interrupt mask

.set 60H

.set 61H

.set 62H

.set 63H

.set 64H

trigger .set 65H

*
* The
*

div

following is the only patch site for this module.

.word 0100 : PATCH default rate is 10°7/100 = 100kHz.

233

.word
.word
.word
.word

trig
gainil
gain2
opcode

OPCODE
0000
P
1Ll
11l
111
ANy
(111

is a
0000
I
(RUR
111
REE!

OPCODE
of the

[B K B BT N TEE KBNS NEE RN SN N N

start:
rsxm
1ldpk
larp
lalk
tblr
lac
andk
bnz
samp_ret:
lalk
tblr
lac
andk
bnz
rtoc_ret:
lalk
tblr
lac
andk
bnz
windovw_ret:
lalk
tblr
lac
andk
bnz
fft_ret:
lalk
tblr
lac
andk
bnz
mag_ret:
lalk
tblr

[T ===

o O OO

16-bit word
0000 0000
RN
Py 1
RS
LD T

Here comes the code proper.

0 ;
0

opcode H
temp

temp

8000H ;
sample_start

opcode H
temp

temp

4000H B
rtoc_start

opcode 5
temp
temp
2000H ;
window_start

opcode H
temp

temp

1000H ;
fft_start

opcode 3
temp

temp

800H i
mag_start

opcode 4
temp

; trigger value

; channel 1 gain
; channel 2 gain
: this value determines which operations are performed

TINY AN\ \\\\- Not used.
Perform
Perform
Perform
Perform
Perform

FFT calculation
Window Operation

Complex to Real Conversion
Magnitude calculation on complex array

Real to Complex Conversion
Take 1024 signal samples.
is scanned from MSB to LSB, and the bits containing 1 cause execution
corresponding code in that order.

page 0 contains on chip registers

get list of operations
is bit 15 set? if so,
get list of operations
is bit 15 set? if so,
get list of operations
is bit 15 set? if so,
get list of operations
is bit 15 set? if so,
get list of operationms
is bit 15 set?

if so,

get list of operations

234

to do now

sample.

to do now

perform window function.

to do now

perform real->complex shuffle.

to do now

perform complex fft.

to do now

perform magnitude calculation.

to do now

lac temp

andk 400H ; is bit 15 set? if so, perform complex to real shuffle.
bnz ctor_start
ctor_ret:
lalk 8003H
sacl temp
out temp,1
lack 3
sacl temp
out temp,1 ; cause attention request.
%*
stop:
b stop ; we have finished, so hang around.
*

T T L e E e S e s Sl P e L bt bl
* SAMPLER - take N samples of 2 channels.

*

= INPUT 1 - 1024 samples stored at 1000H

* INPUT 2 - 1024 samples stored at 1400H

x

N equ 1024 ; number of samples

CH1START equ 1000H

CH2START equ 1400H

*

ADC_start .set 7

ADC1_data .set
ADC2_data .set 6

[3,]

CH1DATA equ 05 : write
CH2DATA equ 04 ; write
DACUPDATE equ 06 ; write

*

* Now the gain control registers.

*

CH1GAIN equ 07 ; write
CH2GAIN equ 03 ; write
*

sample_start:

larp 0
ldpk 0
*
lalk timerhandler ; get address of timerhandler
sacl temp
lalk timer_vector+1l ; get address of vector
tblw temp ; write address of handler to vector
*
lalk div ; load accumulator with address of ’rate’ variable
tblr PRD ; load the actual value of rate into PERIOD register
lark ar0,8
sar ar0,MASK ; mask timer interrupts
*
1rlk ar0,7fffH
sar ar0,half ; subtract from sample to get 2’s complement value
1rlk ar0,0FFOOH
sar ar0,mask
lalk trig ; get trigger value
tblr trigger ; read its value into trigger data memory
x
lalk gainl ; address of gainl word

tblr temp

235

lac temp

ork 40H : make sure ILE is set for DACO830
sacl temp
out temp, CH1GAIN

lalk gain2
tblr temp

lac temp
ork 40H ; make sure ILE is set for DAC0830
sacl temp
out temp, CH2GAIN
*
1rlk ar0,N-1
1rlk ar1,CH1START ; channel 1 table start
1rlk ar2,CH2START ; channel 2 table start
*
triglp
in temp,ADC_start ; trigger the converters
in temp,ADC_start ; trigger the converters
in temp,ADC1_data
zals trigger
subs temp
bgz triglp
in temp,ADC_start ; trigger the converters
in temp,ADC1_data
zals trigger
subs temp
bgz triglp
*
trigd
lalk div ; load accumulator with address of ’rate’ variable
tblr TIM ; load the actual value of rate into TIMER register
in temp,ADC_start ; cause the first conversion
eint ; enable interrupts
loop: b loop
*

ok ok ok ok o ok ok sk ok Aok ok kR KR Rk ok ok Ak kok Rkl skok R Rk kR kR R Rk kAR Rokkok ok kR kK
* This is the timer interrupt handler which performs the sampling.
e L e L Lt e S
*

timerhandler:
in temp,ADC_start ; trigger the converters
in *+,ADC1_data,ar0
*
banz no,*-,arl ; decrement ARO.
yes:
dint

1rlk ar0O,N-1
1rlk ar1,CH1START ; channel 1 table start

ssxm
1dpk
larp 1

manglelp:

lac *
and mask
subs half
sacl *+, ARO
banz manglelp,*-,arl

236

b samp_ret

no:
eint ; enable for next interrupt
ret ; return from interrupt server
*
Kokt ok Rk kR Rk KRR kAR R R AR R KRR KRR AR KRR Rk kR R XR KK KRR
* WINDOW - performs hamming window operation over data. (chl only).
* Based on code by G.Y.Yuan.
%

ONE EQU 1H
XI EQU 2H
YI EQU 3H
XL EQU 4H
YL EQU SH
XT EQU 6H
YT EQU TH
I EQU 8H
L EQU SH
ITE EQU OAH
LTE EQU OBH
SIN EQU 0CH
CON EQU ODH
IA EQU OEH
IE EQU OFH
HOLDN EQU 10H
QUARTN EQU 114
N1 EQU 12H
N2 EQU 13H
J EQU 14H
TABLE EQU 1E8H
HALF EQU 16H
ZEROD EQU 17H
TEMPEO EQU 18H
TEMPE1 EQU 19H
TEMPE2 EQU 1AH
TEMP EQU 1BH

*
*#********t**************************************##******#****t*****

This part of the program is using KAISER-BESSEL window
function to smooth the spectrum. Uses table lookup of window
function with table size N.

LR IR B .2
LR I N

5 sk o s ok ok o ok sk sk ok o ok s ok ok ok ok o ok ok sk ok ok e ok K Rk Ak ok ok ok Rk ok Rk ok ok ok sk skak ok sk sk sk kR ok
*
PRODUCT : ; Window applied subroutine

LAC TEMPE1

ADDK 1

SACL TEMPE1

TBLR TEMPE2

LT TEMPE2

LARP 1

MPY * ; mul by real part

PAC

SACH *+ ; store weighted imag part
LT TEMPE2

MPY * ; mul by imag part

PAC

237

SACH *+,0,ar0 ; store weighted imag part
BANZ PRODUCT , *-
RET

*

Sk koK ok kR Rk Rk R kR Rk kR ok Rk Aok Rk ARk ok ok Rk Rk kR ok R R
* KAISER window function table *
paappnsaneipper s P P T L R R L L e e

*

*x

TWIDD DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

0,
270,
365,
478,
601,
745,
908,

1091,
1295,
1521,
1769,
2042,
2340,
2663,
3012,
3388,
3791,
4222,
4680,
5167,
5681,
6223,
6792,
7388,
8010,
8658,
9330,
10026,
10743,
11482,
12240,
13015,
13806,
14610,
15426,
16252,
17084,
17921,
18760,
19599,
20434,
21264,
22085,
22894,
23689,
24467,
25225,
25961,
26671,
27353,

199,
281,
378,
489,
618,
764,
930,
1115,
1322,
1550,
1802,
2078,
2379,
2705,
3057,
3437,
3843,
4278,
4740,
5229,
5747,
6292,
6865,
7464,
8090,
8741,
9416,
10114,
10835,
11576,
12335,
13113,
13905,
14711,
15529,
16355,
17188,
18026,
18865,
19704,
20538,
21367,
22187,
22994,
23787,
24563,
25318,
26051,
26758,
27436,

209,
292,
391,
505,
635,
784,
952,
1140,
1349,
1581,
1835,
2114,
2418,
2748,
3103,
3486,
3896,
4334,
4799,
5293,
5814,
6363,
6938,
7541,
8170,
8824,
9502,
10203,
10926,
11670,
12432,
13211,
14005,
14813,
15632,
16459,
17293,
18131,
18970,
19808,
20642,
21470,
22288,
23094,
23885,
24659,
25411, 25504,
26141, 26230,
26844, 26930,
27519, 27601,

218,
304,
404,
520,
653,
804,
974,

1165,
1377,
1611,
1869,
2161,
2458,
2791,
3150,
3536,
3949,
4390,
4859,
5356,
5881,
6433,
7012,
7618,
8250,
8907,
9588,

10292,

11018,

11764,

12528,

13310,

14106,

14915,

15735,

16563,

17398,

18236,

19075,

19913,

20746,

21573,

22390,

23194,

23983,

24754,

228,
316,
418,
536,
671,
824,
997,
1190,
1405,
1642,
1903,
2188,
2498,
2834,
3197,
3586,
4003,
4448,
4920,
5420,
5948,
6504,
7087,
7696,
8331,
8991,
9675,
10382,
11110,
11858,
12625,
13408,
14206,
15017,
15838,
16667,
17502,
18341,
19180,
20017,
20850,

238,

327,

431,

552,

689,

845,
1020,
1216,
1433,
1673,
1937,
2225,
2539,
2878,
3244,
3637,
4057,
4505,
4981,
5485,
6016,
6575,
7161,
7774,
8412,
9075,
9762,
10472,
11203,
11953,
12722,
13507,
14307,
15119,
15941,
16771,
17607,
18446,
19285,
20122,
20954,
21676, 21778,
22491, 22592,
23294, 23393,
24080, 24178,
24849, 24943,
25596, 25688,
26319, 26408,
27016, 27101,
27683, 27764,

238

259
352
460
584
726
887
1067
1268
1491
1737
2007
2301
2621
2967
3339
3739
4166
4621
5104
5615
6154
6719
7312
7931
8576
9245
9937
10652
11388
12144
12917
13706
14509
15324
16148
16980
17816

249,
340,
446,
568,
707,
865,
1043,
1242,
1462,
1705,
1972,
2263,
2580,
2922,
3291,
3688,
4112,
4563,
5042,
5550,
6085,
6647,
7236,
7852,
8494,
9160,
9850,
10562,
11295,
12048,
12819,
13606,
14408,
15221,
16044,
16875,
17712,
18550, 18655
19389, 19494
20226, 20330
21057, 21161
21880, 21983
22693, 22794
23492, 23591
24274, 24371
25038, 25132
25779, 25870
26496, 26584
27185, 27269
27845, 27925

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

28005,
28623,
29206,
29752,
30257,
30721,
31141,
31516,
31844,
32123,
32354,
32534,
32663,
32741,
32767,
32734,
32650,
32514,
32328,
32091,
31805,
31471,
31091,
30665,
30196,
29686,
29135,
28548,
27925,
27269,
26584,
25870,
25132,
24371,
23591,
22794,
21983,
21161,
20330,
19494,
18655,
17816,
16980,
16148,
15324,
14509,
137086,
12917,
12144,
11388,
10652,

9937,

9245,

8576,

7931,

7312,

6719,

6154,

5615,

28084,
28698,
29276,
29817,
30317,
30776,
31190,
31559,
31881,
32155,
32379,
32553,
32676,
32747,
32765,
32726,
32636,
32494,
32301,
32058,
31766,
31426,
31040,
30609,
30135,
29619,
29064,
28472,
27845,
27185,
26496,
25779,
25038,
24274,
23492,
22693,
21880,
21057,
20226,
19389,
18550,
17712,
16875,
16044,
15221,
14408,
13606,
12819,
12048,
11295,
10562,

9850,

9160,

8494,

7852,

7236,

6647,

6085,

5550,

28162, 28240,
28772, 28846,
29346, 29415,
29882, 29946,
30377, 30436,
30830, 30884,
31239, 31287,
31602, 31644,
31918, 31954,
32186, 32216,
32404, 32427,
32571, 32689,
32688, 32698,
32752, 32757,
32763, 32761,
32718, 32709,
32621, 32605,
32472, 32450,
32273, 32245,
32024, 31990,
31726, 31686,
31381, 31334,
30989, 30937,
30552, 30494,
30072, 30009,
29552, 29484,
28992, 28919,
28395, 28318,
27764, 27683,
27101, 27016,
26408, 26319,
25688, 25596,
24943, 24849,
24178, 24080,
23393, 23294,
22592, 22491,
21778, 21676,
20954, 20850,
20122, 20017,
19285, 19180,
18446, 18341,
17607, 17502,
16771, 16667,
15941, 15838,
15119, 15017,
14307, 14206,
13507, 13408,
12722, 12625,
11953, 11858,
11203, 11110,
10472, 10382,

9762, 9675,
9075, 8991,
8412, 8331,
7774, 7696,
7161, 7087,
6575, 6504,
6016, 5948,
5485, 5420,

28318, 28395,
28919, 28992,
29484, 29552,
30009, 30072,
30494, 30552,
30937, 30989,
31334, 31381,
31686, 31726,
31990, 32024,
32245, 32273,
32450, 32472,
32605, 32621,
32709, 32718,
32761, 32763,
32757, 32752,
32698, 32688,
32589, 32571,
32427, 32404,
32216, 32186,
31954, 31918,
31644, 31602,
31287, 31239,
30884, 30830,
30436, 30377,
29946, 29882,
29415, 29346,
28846, 28772,
28240, 28162,
27601, 27519,
26930, 26844,
26230, 26141,
25504, 25411,
24754, 24659,
23983, 23885,
23194, 23094,
22390, 22288,
21573, 21470,
20746, 20642,
19913, 19808,
19075, 18970,
18236, 18131,
17398, 17293,
16563, 16459,
15735, 15632,
14915, 14813,
14106, 14005,
13310, 13211,
12528, 12432,
11764, 11670,
11018, 10926,

10292, 10203,
9588, 9502,
8907, 8824,
8250, 8170,
7618, 7541,
7012, 6938,
6433, 6363,
5881, 5814,
5356, 5293,

239

28472, 28548
29064, 29135
29619, 29686
30135, 30196
30609, 30665
31040, 31091
31426, 31471
31766, 31805
32058, 32091
32301, 32328
32494, 32514
32636, 32650
32726, 32734
32765, 32767
32747, 32741
32676, 32663
32553, 32534
32379, 32354
32155, 32123
31881, 31844
31559, 31516
31190, 31141
30776, 30721
30317, 30257
29817, 29752
29276, 29206
28698, 28623
28084, 28005
27436, 27353
26758, 26671
26051, 25961
25318, 25225
24563, 24467
23787, 23689
22994, 22894
22187, 22085
21367, 21264
20538, 20434
19704, 19599
18865, 18760
18026, 17921
17188, 17084
16355, 16252
15529, 15426
14711, 14610
13905, 13806
13113, 13015
12335, 12240
11576, 11482
10835, 10743
10114, 10026

9416, 9330
8741, 8658
8090, 8010
7464, 7388
6865, 6792
6292, 6223
5747, 5681
5229, 5167

DATA 5104, 5042, 4981, 4920, 4859, 4799, 4740, 4680
DATA 4621, 4563, 4505, 4448, 4390, 4334, 4278, 4222
DATA 4166, 4112, 4057, 4003, 3949, 3896, 3843, 3791
DATA 3739, 3688, 3637, 3586, 3536, 3486, 3437, 3388
DATA 3339, 3291, 3244, 3197, 3150, 3103, 3057, 3012
DATA 2967, 2922, 2878, 2834, 2791, 2748, 2705, 2663
DATA 2621, 2580, 2539, 2498, 2458, 2418, 2379, 2340
DATA 2301, 2263, 2225, 2188, 2151, 2114, 2078, 2042
DATA 2007, 1972, 1937, 1903, 1869, 1835, 1802, 1769
DATA 1737, 1705, 1673, 1642, 1611, 1581, 1550, 1521
DATA 1491, 1462, 1433, 1405, 1377, 1349, 1322, 1295
DATA 1268, 1242, 1216, 1190, 1165, 1140, 1115, 1091
DATA 1067, 1043, 1020, 997, 974, 952, 930, 908
DATA 887, 865, 845, 824, 804, 784, 764, 745
DATA 726, 707, 689, 671, 653, 635, 618, 601
DATA 584, 568, 552, 536, 520, 505, 489, 475
DATA 460, 446, 431, 418, 404, 391, 378, 365
DATA 352, 340, 327, 316, 304, 292, 281, 270
DATA 259, 249, 238, 228, 218, 209, 199, 0

DATADR .WORD 1000H ; address of data to window
*

window_start:

LDPK 4
ssxm
*
LARP 0
LRLK ARO,N ; debug was N
SBRK 1
LALK TWIDD
SUBK 1

SACL TEMPE1

LALK DATADR
TBLR TEMPEO
LAR AR1,TEMPEO

CALL PRODUCT

B window_ret
*

*
ook sk kR ok sk Rk d ok ok R kR R Rk ek dokok ok Rk R Ak ok Aok kR kR R kR kR kR Rk kR Kk kK
* rtoc - interleave consecutive real numbers with zero to

* make them complex.
*

rtoc_start:

rsxm

1dpk 0

lac 0

sacl temp

lalk N,1 ; N=2

subk 1 ; Acc is now offset of last imag part

addk CH1START ; Acc is now address of last imag part of dest
sacl temp

lar ar0, temp

240

lalk N

subk 1
addk CH1START : Acc now address of last real part of source
sacl temp
lar ari,temp
1rlk ar2,N
rtoclp:
larp 0
zac
sacl *-,arl ; store imag part = 0
lac *=,ar0 ; load real part from source
sacl *-,ar2 ; store real part in dest
sar ar0,temp
banz rtoclp,*-
*
b rtoc_ret
E 3
*

kR R AR R R R R R AR R R ER AR R R RRE RN R R Rk R R R TR IR RE
* FFT - perform 1024 point complex fft. Based on program by G.Y.Yuan.

*

M EQU 10 s N=2 =x M

*

ok ko Rk Rk ok R ok Rk Rk Rk kR kR sk kb Rk kR kR Rk ok ok Rk kR Rk Kk

This program is for implementing a single butterfly RADIX-2
Cooley-Tukey N-point FFT. All data is in external data memory
and uses Q15 data format. All DIT butterflies are implemented
with dynamic scaling to avoid arithmetic overflows. Uses table
lookup of coefficients with table size N # (3/4) for sines and
cosines.

L IR I 2 B .2
E 2R SR R IR R

**************t*****t**#t****#t****t**************¥********#********

*
fft_start:
ssxm
LDPK 4
LALK DATADR ; get address of DATADR variable
TBLR TEMPEO
CALL SUBFFT
*
B fft_ret
*
SUBFFT ; FFT subroutine for two channels
Py
LACK 1
SACL ONE
SACL 1IE ; Initialize IE =1
LALK SINE
SACL TABLE ; Table has address of cosine table
LALK N
SACL HOLDN ; Holdn = N
SACL N2
LAC HOLDN, 14
SACH QUARTN ; Quartn = N/4
*
LARK ARO,M-1 ; ARO contains K counter
KLOOP LARP 1
LAC N2,15

241

SACH N1,1 ; N1 = N2

SACH N2 ; N2 = N2/2
ZAC
SACL IA
SACL J
LAR AR1,N2 ; AR1 contains J value
MAR %= ; Start at N2-1
JLOOP LAC TABLE ; Table is full size
ADD IA
TBLR SIN ; Get twiddle factors
ADD QUARTN
TBLR CON
LAC IA
ADD IE
SACL IA : IA=1IA + IE
LAC J,1
SACL I 1 I =17
*
ILOOP LAC I
ADD N2,1 ;s L=1+ N2
SACL L
*
LAC I
ADD TEMPEO
SACL ITE ; Data stored from >0400
LAC L
ADD TEMPEO
SACL LTE
*x
LARP 6
LAR 6,ITE
LAC *+,15 ; scaling by 1/2
SACH XI
LAC *,15 ; scaling by 1/2
SACH YI
LAR 6,LTE
LAC *+,15 ; scaling by 1/2
SACH XL
LAC *,15 ; scaling by 1/2
SACH YL

*
ok kokok ke ok Aok ok ok kR ok ok kR R ko kR Rk ok ok Aok kR ok ok kR Rk A Rk ook
* Compute butterfly *
ok Rk ok kR kR ko kAR R ok Rk Rk KKK kKRR Rk Rk ok Rk Rk kR R Rk kR Rk kKR E
*

LAC XI

SUB XL

SACL XT ; XT = XI - XL
ADD XL,1

SACL XI ; XI = XI + XL
LAC YI

SUB YL

SACL YT ; YT = YI - YL
ADD YL,1

SACL YI ; YI = YI + YL
LT CON

MPY YT

PAC

LT SIN

242

MPY XT

SPAC

SACH YL,1 ; YL = COS*YT - SIN=*XT

MPY YT

PAC

LT CON

MPY XT

APAC

SACH XL,1 ; XL = COS*XT + SIN*YT
*
T e Tl Tl e e e T LR et 2 e L e L et sttt L
* Dutput results of butterfly *

****************************t*********t**********#*******#**********
*

LARP 6

LAR aré,ITE
LAC XI
SACL *+
LAC YI
SACL *

LAR 6,LTE
LAC XL
SACL *+
LAC YL
SACL *

*
*********#*#t****tt**********#******#*****#*****#***************#***

* Add increment for next loop *
Fokok ok ok kR Kok Rk kR Rk ok R Rk Rk kR Rk Rk kR Aok kR kR Rk kR Rk kR Rk kok
*

LAC I

ADD N1,1 ; I =1+ N1

SACL I

SUB HOLDN, 1 ; While I < N

BLZ ILOOP
*

LAC]

ADD ONE ; J =07 +1

SACL J

LARP 1

BANZ JLOOP ; AR1 <> 0 then pass to JLOOP
*

LAC 1IE,1

SACL IE ; IE = 2%IE

LARP 0

BANZ KLOOP ; ARO <> 0 then pass to KLOOP
*

¢ 5k 3k ok 3 o ke ok ok 3k ok sk ok sk ok e ok ok ok K ok ko ok sk dkak ok ok sk ok R sk ok sk kol ok ok ko sk kR ok ek ko ko ok ok kR R Rk k ko

*x Digit reverse counter for radix-2 FFT computation *
et Tt TP TR PR R L L L R e e L L e L L b
*
DRC2 ZAC

SACL L

SACL I

LARP 0

LAR ARO,HOLDN ; For I = 0 to N-2

MAR -

MAR *-
DRLOOP SUB L ; If I < L, then swap

243

BGEZ NOSWAP

*x
e L L e bt b
* Swap ITE and LTE values *

panpRRmppappaepeare e L P PRI TRE R ST L LT S L L e S R S L R L R RS
E 3

LAC I
ADD TEMPEO
SACL ITE ; Get ITE data address
LAC L
ADD TEMPEO
SACL LTE ; Get LTE data address
*
LARP 6
LAR 6,ITE
LAC *+ ; Get I value address
SACL XI ; Get real and imaginary parts
LAC *
SACL YI
LAR 6,LTE
LAC *+ ; Get L value address
SACL XL ; Get real and imaginary parts
LAC *
SACL YL
*
LAR 6,LTE
LAC XI
SACL *+
LAC YI
SACL *
LAR 6,ITE
LAC XL
SACL *+
LAC YL
SACL *
LARP 0
I
NOSWAP LAC HOLDN
SACL J ; J =N
INLOOP LAC L
SUB J ; If L >= J then
BLZ QUTL
SACL L i L=L-1
LAC J,15
SACH J 1 J=13/2
B INLOOP
OUTL ADD J,1
SACL L ; L=L+1J
LAC I
ADD ONE, 1
SACL I ; Increment I
BANZ DRLOOP ; ARO <> 0 then pass to DRLOOP
RET
*
*****#***t*#****#******#*******t#**************t**#*****************
* Coefficient table(size of table is 3N/4) *
R e T T DT TSR PR RS AR PP L S S P LT L L
*
*

244

SINE

COSINE

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

o,
1206,
2410,
3612,
4808,
5998,
7179,
8351,
9512,

10659,
11793,
12910,
14010,
15090,
16151,
17189,
18204,
19195,
20159,
21096,
22005,
22884,
23731,
24547,
26329,
26077,
26790,
27466,
28105,
28706,
29268,
29791,
30273,
30714,
31113,
31470,
31785,
32057,
32285,
32469,
32609,
32705,
32757,
32767,
32745,
32678,
32567,
32412,
32213,
31971,
31685,
31356,
30985,
30571,
30117,
29621,
29085,
28510,
27896,

201,
1407,
2611,
3811,
5007,
6195,
7375,
8545,
9704,

10849,
11980,
13094,
14191,
15269,
16325,
17360,
18371,
19357,
20317,
21250,
22154,
23027,
23870,
24680,
25456,
26198,
26905,
27575,
28208,
28803,
29358,
29874,
30349,
30783,
31176,
31526,
31833,
32098,
32318,
32495,
32628,
32717,
32761,
32766,
32737,
32663,
32545,
32382,
32176,
31926,
31633,
31297,
30919,
30498,
30037,
29534,
28992,
28411,
27790,

402,
1608,
2811,
4011,
5205,
6393,
7571,
8739,
9896,

11039,
12167,
13279,
14372,
15446,
16499,
17530,
18537,
19619,
20475,
21403,
22301,
23170,
24007,
24811,
255682,
26319,
27019,
27683,
28310,
28898,
29447,
29956,
30424,
30852,
31237,
31580,
31880,
32137,
32351,
32521,
32646,
32728,
32765,
32765,
32728,
32646,
32521,
323561,
32137,
31880,
31580,
31237,
30852,
30424,
29956,
29447,
28898,
28310,
27683,

603,
1809,
3012,
4210,
5404,
6590,
7767,
8933,

10087,

11228,

12353,

13462,

14553,

15623,

16673,

17700,

18703,

19680,

20631,

21554,

22448,

23311,

24143,

24942,

25708,

26438,

27133,

27790,

28411,

28992,

29534,

30037,

30498,

30919,

31297,

31633,

31926,

32176,

32382,

32545,

32663,

32737,

32766

32761,

32717,

32628,

32495,

32318,

32098,

31833,

31526,

31176,

30783,

30349,

29874,

29358,

28803,

28208,

27575,

804,
2009,
3212,
4410,
5602,
6786,
7962,
9126,

10278,
11417,
12539,
13645,
14732,
15800,
16846,
17869,
18868,
19841,
20787,
21705,
22594,
23452,
24279,
25072,
25832,
26556,
27245,
27896,
28510,
29085,
29621,
30117,
30571,
30985,
31356,
31685,
31971,
32213,
32412,
32567,
32678,
32745,

32757,
32705,
32609,
32469,
32285,
32057,
31785,
31470,
31113,
30714,
30273,
29791,
29268,
28706,
28105,
27466,

245

1005

2210

3412

4609

5800

6983

8157

9319
10469
11605
12725
13828
14912
16976
17018
18037
19032
20000
20942
21856
22739
23592
24413
25201
25955
26674
27356
28001
28609
29177
29706
30195
30643
31050
31414
31736
32014
32250
32441
32589
32692
32752

32752
32692
32589
32441
32250
32014
31736
31414
31050
30643
30195
29706
29177
28609
28001
27356

DATA 27245, 27133, 27019, 26905, 26790, 26674
DATA 26556, 26438, 26319, 26198, 26077, 25955
DATA 25832, 25708, 25582, 25456, 25329, 25201
DATA 25072, 24942, 24811, 24680, 24547, 24413
DATA 24279, 24143, 24007, 23870, 23731, 23592
DATA 23452, 23311, 23170, 23027, 22884, 22739
DATA 22594, 22448, 22301, 22154, 22005, 21856
DATA 21705, 21554, 21403, 21250, 21096, 20942
DATA 20787, 20631, 20475, 20317, 20159, 20000
DATA 19841, 19680, 19519, 19357, 19195, 19032
DATA 18868, 18703, 18537, 18371, 18204, 18037
DATA 17869, 17700, 17530, 17360, 17189, 17018
DATA 16846, 16673, 16499, 16325, 16151, 15976
DATA 15800, 15623, 15446, 15269, 15090, 14912
DATA 14732, 14553, 14372, 14191, 14010, 13828
DATA 13645, 13462, 13279, 13094, 12910, 12725
DATA 12539, 12353, 12167, 11980, 11793, 11605
DATA 11417, 11228, 11039, 10849, 10659, 10469
DATA 10278, 10087, 9896, 9704, 9512, 9319
DATA 9126, 8933, 8739, 8545, 8351, 8157
DATA 7962, 7767, 7571, 7375, 7179, 6983
DATA 6786, 6590, 6393, 6195, 5998, 5800
DATA 5602, 5404, 5205, 5007, 4808, 4609
DATA 4410, 4210, 4011, 3811, 3612, 3412
DATA 3212, 3012, 2811, 2611, 2410, 2210
DATA 2009, 1809, 1608, 1407, 1206, 1005
DATA 804, 603, 402, 201, -0, ~-201
DATA -402, -603, -804, -1005, -1206, -1407
DATA -1608, -1809, -2009, -2210, -2410, -2611
DATA -2811, -3012, -3212, -3412, -3612, -3811
DATA -4011, -4210, -4410, -4609, -4808, -5007
DATA -5205, -5404, -5602, -5800, -5998, -6195
DATA -6393, -6590, -6786, -6983, -7179, -7375
DATA -7571, -7767, -7962, -8157, -8351, -8545
DATA -8739, -8933, -9126, -9319, -9512, -9704
DATA -9896, -10087, -10278, ~10469 -10659, -10849
DATA -11039, -11228, -11417, -11605, -11793, -11980
DATA -12167, -12353, -12539, -12725, -12910, -13094
DATA -13279, -13462, -13645, -13828, -14010, -14191
DATA -14372, -14553, -14732, -14912, -15090, -15269
DATA -15446, -15623, -15800, -16976, -16151, -16325
DATA -16499, -16673, -16846, -17018, -17189, -17360
DATA -17530, -17700, -17869, -18037, -18204, -18371
DATA -18537, -18703, -18868, -19032, -19195, -19357
DATA -19519, -19680, -19841, -20000, -20159, -20317
DATA -20475, -20631, -20787, -20942, -21096, -21250
DATA -21403, -21554, -21705, -21856, -22005, -22154
DATA -22301, -22448, -22594, -22739, -22884, -23027
DATA -23170, -23311, -23452, -23592, -23731, -23870
DATA -24007, -24143, -24279, -24413, -24547, -24680
DATA -24811, -24942, -25072, -25201, -25329, -25456
DATA -25582, -25708, -25832, -25955, -26077, -26198
DATA -26319, -26438, -26556, -26674, -26790, -26905
DATA -27019, -27133, -27245, -27356, -27466, -27575
DATA -27683, -27790, -27896, -28001, -28105, -28208
DATA -28310, -28411, -28510, -28609, -28706, -28803
DATA -28898, -28992, -29085, -29177, -29268, -29358
DATA -29447, -29534, -29621, -29706, -29791, -29874
DATA -29956, -30037, -30117, -30195, -30273, -30349

246

DATA -30424, -30498, -30571, -30643, -30714, -30783
DATA -30852, -30919, -30985, -31050, -31113, -31176
DATA -31237, -31297, -31356, -31414, -31470, -31526
DATA -31580, -31633, -31685, -31736, -31785, -31833
DATA -31880, -31926, -31971, -32014, -32057, -32098
DATA -32137, -32176, -32213, -32250, -32285, -32318
DATA -32351, -32382, -32412, -32441, -32469, -32495
DATA -32521, -32545, -32567, -32589, -32609, -32628
DATA -32646, -32663, -32678, -32692, -32705, -32717
DATA -32728, -32737, -32745, -32752, -32757, -32761
DATA -32765, =-32766

*
*******t####**##******t*#****##****#**tt#***t*****#*#*****t#t#******
* mag - calculate magnitudes of complex numbers, using a modified

* form of Newton’s method to calculate the square root.

*

m_temp .set OH
m_sqrtemp .set 1H
m_shifts .set 2H
m_one .set 3H
m_vlo .set 4h
m_vhi .set 5h

*

* magnitude root code
*

mag_start:

larp 0
1rlk ar0,CH1START
1ldpk 4
lack 1
sacl m_one
*
1rlk ar3,N ; count the operations we do.

*

* assume ARO points to real/imag
*

ssxm

x
1p3:

larp 0

zac

1t *

mpy *+

1t

mpya *

apac

sach *— ; save in low-high format

sach m_vhi

sacl * ; low part comes first

sacl m_vlo
x

bz zero
*

larp 1

lark arl,0
1p4:

norm

bbz 1p4

247

*

sfr
sfr
addh
sach

m_one ; make sure estimate will be at least 1
m_sqrtemp ; first estimate is V/4

+ ar0 still points to same place, but memory now holds number_hi, number_lo

*

*
1p2:

1pi:

zcont:

*

1rlk

larp
lark
zalh

mar
sfl
bnc

sar
lack
sub
sacl

larp
zals
addh

1t
mpy
spac
neg

rpt
sfr

sub
neg

sacl
larp
banz

larp
sacl
lack
sacl

larp
banz

ar2,20 ; iteration counter

1 ; use arl as a counter
ari1,0 ; zero it
m_sqrtemp ; get x

*+
1pil

aril,m_temp ; save counter

16

m_temp ; now we have number of shifts to do
m_shifts

0
*+ ; get low part
*— ; get high part

m_sqrtemp

m_sqrtemp
; form v-x*x
; form x*x-v

m_shifts
: do one more shift than indicated by ’shifts’

m_sqrtemp ; form (x*x-v)/2p - x
; form x = (x*x-v)/2p

m_sqrtemp ;
2
1p2,*-

0

*+ ; store it in place
0

*+ ; zero high part

3
1p3, *-

* now move all the real parts together (remove interspaced complex parts)

*

movelp:

larp 0

1rlk ar0,1000H
1rlk arl,1000H
1rlk ar2,N

248

larp 0

lac *+,ari
sacl *+,ar0
mar *+,ar2
banz movelp, -
*
b mag_ret
*
Zero:
larp 0
lack 0
sacl *+
sacl *+
b zcont
I3

ok ok ok AR ARk kR Rk Rk ok kR ok ok ok R Rk kR Rk kR kR Rk kR kR Rk ok
* ctor - throw away imag parts to leave reals
*
cr_temp equ 60H
*
ctor_start:
1ldpk 0
1rlk ar0,CH1START
1rlk ar1l,CH1START
1rlk ar2,N

crlp:
larp 0
lac *+
mar *+,ari ; skip over imag part
sacl *+,ar2
banz crlp,*-
*x
b ctor_ret
*

s ok Fe e ok ok o ok sk s e ok sk ok ok b sk o ook ok sk ok ok ok gk ak ok ok ok bk ok sk ok ok kR R ek skokak ok ok Rk R ok ok ok ok

249

