
ã.r.'b 'q t

The Generalised Instrument

Dissertation for the degree of \¡Iaster of Engineering Science

George Vokalek

January 27,1991

Contents

Abstract

Acknowledgements

Staternent of OriginalitY

1 Introduction

2 Systern Overview

2.1 Specifications

2.2 Overview

2.2.1 Software Overview : SPaM

2.2.2 Hardware Overview

3 Hardware SYstem Detail

3.1 Operations required

3.2 Ndajor Design Decisions

3.2.L Selection of Basic Hardware Format

3.2.2 Selection of PCB Format

3.2.3 Selection of Signal Processor

3.2.4 Justification for a Control Processor

9.2.5 Analogue Front-end Performance

3.3 ImPlementation .

3.3.1 Control Processor

3.3.2 Digital Signal Processor

3.3.3 Analogue front end

x

xi

xlr

1

4

4

a

10

t2

13

13

13

1t1d

T4

15

16

t7

25

27

29

31

4 SoftwareArchitecture

4.I Requirements

4.2 À{ajor Design Decisions

4.3 Host Softwate

4.3.1 The Lexical AnalYser

4.3.2 The Parser

4.3.3 The Program Execution Unit '

4,3'4TheMathFunction,andPrimitiveMathoperationLibraries

4.3.5 The GraPhics LibrarY

4.3.6 The InPut Event Filter

4.3.7 The GI Hardware Control Library

4.3.8 Online HelP .

4.3.9 SPaM as an Object-Oriented Environment

4.4 Control Processor Software

4.5 DSP Software

4.6 Application Level Software

33

ó.1

34

36

37

38

39

42

43

46

47

47

47

48

50

52

5 SPaM Reference Information

5.1 SPaM : PhilosoPhY of Design

5.1.1 The User Interface

5.2 SPaM Programming Language

5.2.1 General Rules .

5.2.2 SPaM Entering Prograrn Text

5.2.3 SPaM Variables and Numbers

5.2.4 SPaM Control Staternents

5.2.5 User Defined Functions

5.2.6 User Defined Handlers

5.2.7 Shelling to MS-DOS

5.3 The GraPhical User Interface

5.3.1 Mouse & I(eYboard

5.3.2 The Console Window

5.3.3 The BackdroP Window

Script Files

57

57

58

61

64

65

65

7T

73

74

75

nÉIrJ

76

76

78

u

5.3.4 Creating Screen Objects With Menus

5.3.5 Interactions with Screen Objects

5.3.6 Programmed Generation of Screen Objects

5.3.7 Poster Mode

5.3.8 Printing the Screen Contents to a Printe¡

5.4 Loading and Saving Variables

5.4.1 SPaM disk file format

5.5 Very Large lt{atrices

5.5.1 Creating a VLM

5.5.2 Using a VLM .

5.5.3 Caching a VLM

5.6 SPaM Language Reference

5.6.1 SPaM Reserved Words and Symbols '

5.6.2 Mathematical Functions

5.6.3 Generalised Instrument Control Functions

5.6.4 Graphics Management Functions

5.6.5 Program Flow Control . ' ' '

5.6.6 Disk Access Functions

5.6.7 Miscellaneous Functions

5.7 Online HelP

6 Integration Issues

6.1 Aspects of the RS232 link between host and GI

6.1.1 Link Error Management ' '

6.L2 Host to GI SYnchronisation

6.2 Control Processor to Signal Processor Synchronisation

6.3 Integrating Software and Hardrvare

7 System Evaluation

7.1 DSP ThroughPut

7.I.1 A/D SYstem Performance

7.1.2 Link ThroughPut .

7 .2 Experience with tìre GI in a Teaching Laboratory

78

80

89

94

95

96

96

98

98

98

98

100

100

104

110

113

118

r20

12l

r25

L26

126

r27

r27

130

130

133

1tt

134

134

i34

tIl

7.3 Àreas fo¡ Future Progress

8 Conclusion

Bibliography

A The

A..1

Generalised Instrument Hardware Design

The 68000 Control Processor Module

4.1.1 Control Processor N{odule Specifications

A.1.2 CON-0000

.A..1.3 CON-0001

A.1.4 coN-0002

.A..1.5 CON-0003

Ä.1.6 CON-O004

A.1.7 CON-0005

A.1.8 CON-0006

A.1.9 CON-0008

A.1.10 coN-0009

A.1.11 CON-0010

A.r.r2 CON-0012

A.1.13 CON-0013

A.r.t4 coN-0014

The Tl\{S320C25 Digital Signal Processor Module

A.2.1 DSP Module SPecifications

A.2.2 DSP-0000

L.2.3 DSP-0001

A..2.4 DSP-0002

A,.2.5 DSP-0003

A.2.6 DSP-0004

A.2.7 DSP-0005

A.2.8 DSP-0006

A.2.9 DSP-0007

.A..2.10 DSP-0008

4.2

135

138

L40

L4L

r4t

143

r44

r45

150

t52

156

159

161

165

168

172

173

175

t77

178

t79

180

181

184

185

191

r94

196

199

202

lv

A.2.tt DSP-0009

^.2,12
DSP-0010

4.2.13 DSP-0011

A.2.t4 DSP-0012

4..3 A Prototype Analogue Interface Module

L.4 Guidelines for Designing New Modules

B Control Processor Onboard Software

8.1 Inte¡active Monitor Commands

8.1.1 MemorY DisPlaYing Commands

8.1.2 MemorY ModifYing Commands

8.1.3 DSP Module Control Commands

8.1.4 Commands for Data tansfer

8.1.5 SYstem Control Commands

8.2 Command Mode

8.2.1 Available Commands

C Creating a Virtual Instrurnent Using SPaM

C.1 Example TN{S320C25 Code

203

204

207

208

210

2t4

2L5

2r5

2t6

2t7

2r9

220

220

221

222

229

233

List of Figures

2.1

2.2

The Generalised Instrument System

SPaM Graphics Screen

5

11

I7

18

18

2l

22

ôo
/, \)

24

25

26

27

to

30

3.1 Typical PC-card DSP SYstern

3.2 DSP stand-alone sYstem

3.3 Analogue Interface block diagram '

3.4 Loss of A/D resolution in terms of ft'
3.5 Loss of A/D resolution in terms of ffi
3.6 FIR Filter and decimator

9.7 Commutated FIR filter and decimator

3.8 Loss of A/D resolution in terms of uf uç '

3.9 Major GI hardware modules

3.10 Control Processor lt{odule block diagram '

3.11 Digital Signal Processor module block diagram

3.12 DSP and Control plocessor interprocessor port

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

A sample Sigproc scriPt

Sigproc command self PromPting

Sample Sigproc code

SPaM block diagram

Sample yacc rule

SPaM execution model

CRT Window

Graph Window

Argand Window

34

34

35

D1JT

39

40

44

45

45

vt

4.10

4.11

4.r2

4.r3

4.r4

4.r5

Buttons & Numerics

Control Processor Software

DSP code execution sequence

Application generated graphics screen

Application scriPt examPle

Application scriPt flow chart

46

49

51

53

54

55

5.1 SPaM execution flow

5.2 Execution of commands from scripts

5.3 Nesting of scriPt files '

5.4 Chaining multiple input scripts

5.5 Mouse buttons

5.6 Console window on graphic screen

5.7 Creating a display window with the mouse

5.8 Moving/resizing graphics windows

5.9 SPaM button activation

5.10 Setting the value of a nume¡jc

5.11 Making measurements in CRTwindow '

5.12 Making measurements on argand window

5.13 Graph before scaling

5.14 Graph following scaling

5.15 Graph shorving waveform clipping

5.16 Annotated Poster disPIaY

6.1

6.2

6.3

6.4

6.5

SPaM software laYers

Host-GI Data Tlansfer

GI+Host Data Tlansfer

Control Processor IDLE State

SPaM GI control scriPt

59

60

61

bb

77

78

82

84

85

87

88

88

92

92

93

95

t26

r28

r29

130

t32

2rt
,4..1 Prototype AIM block diagram

C.1 A Digitiser / FFT Analyser Implemented with SPaM

vu

232

List of Tables

2.1 Generalised Instrument Specifications

3.1 Prototype AIM SPecifications

6

32

4.7

4.2

4.3

4T

43

49

Sample pseudoprogram .

SPaM numeric object attributes

Exarnple of type-dependent addition

5.1 SPaM graphical screen objects

5.2 SPaM predefined variables

5.3 Mouse Button Functions

5.4 Keypad key functions

5.5 Menu for the Screen BackdroP

5.6 CRT Window Menu OPtions

5.7 Graph window meuu oPtions

5.8 Poster mode menu

5.9 Various ways of printing graphics

5.10 SPaM file fo¡mat

5.11 SPaM tokens

5.12 SPaM special symbols (operators)

5.13 SPaM special symbols (s & logicals)

4.1 Drawing index for Control Processor Module

L.2 Control processor module specifications

.A.3 Setting jumpers for EPROI4 capacity

A.4 Setting jumpers for RAM capacity

62

77

76

77

79

89

90

94

96

97

100

t02

103

r42

143

145

145

vut

A'.5 EPROI{ & SRAN'I Address l\{aP

.A.6 Jumpers for wait state control ' ' ' '

A.7 system time intervals for various master clock oscillator frequencies

4.8 Control Processor MemorY MtP'

.A.9 Control Processor control register bit assignments '

.A.10 Control Processor board status register

4.11 Drawings of the DSP Module

,A'.12 TMS320C25 DSP Module Specifications

4.13 DSP wait state jumPer

4.14 DSP Module Backplane Memory Map

4.15 Boa¡d Control Area MemorY MaP :

4.16 IO space address correspondence

A..17 DSP RAM tYPe jumPer settings

A'.18 TMS320C25 BIO' signal soutces

,{.19 DSP-accessible control register bit assignmeuts

4.20 TMS320C25 onboard interrupt sources

A'.21 DSP Module Control Register

4.22 DSP Module Status Register

A'.23 Prototype AIM SPecifications

.A.24 Production IOM Registers

4.25 Production IOIú PGA Gain Settings

8.1 Command Packet Structure

8.2 Valid Command BYte values

8.3 Command l{ode, Reset l{odifier values

8.4 Command Mode, Hold l\{odifier Values

8.5 Command Mode, Download Modifiers

8.6 Command Mode, DolT'nload Command Field Assignments

8.7 Set-Baud-Rate Command Fieìd Allocations

t45

156

159

168

173

t75

178

779

i81

185

186

186

194

200

200

203

207

208

2rI

2r2

2r3

22r

222

ZLù

223

224

224

227

lx

Abstract

This thesis sets out and discusses the architeclure of a signal processing system known as The

Generalised Instrument (GI). Composed of both hardware and software, the GI system is a viable

solution to the need for ì"rátil" ml"suring instruments which are not bound to any specific task'

By providing an integrated platform of hardware and software which lays the foundation of the

m-u.Jhine's p".forrnunÃ and interaction with the user, applications which fall within the bounds set

by this performance can be developed as high-level software applications, without the deep system

knowledge required for traditional programming. By using one hardware system, and a library of

applicatún specific software, a widã uuii"ty of measuring instruments can be emulated'

x

Acknowledgements

The Generalised Instrument Project involved many people during its progress' The following techni-

cal stafi contributed not only lutou., but practical insights: Norman Blockley, Carmen Constantini'

Garry Cox, Keith Ford, Clive Fuller, Peter Hunter, Ian Linke, and Geoff Pook'

Gang Yun Yuan served as the first 'test-pilot' for the GI system, and has my appreciation for his

suggestions and criticisms.

My supervisor, Professor R.E. Bogner, has my gratitude for supporting the project through all of

its phases.

xl

Statement of OriginalitY

To the best of my knowledge, this thesis is an original work, and contains no material accepted for

any other degree. Except ih"." references are provided, no material is included herein rvhich has

been previously published.

I grant permission for this thesis to be made available for loan and duplication if accepted for the

degree of Master of Engineering Science.

George \¡okalek

xtr

Chapter 1

Introduction

As single-chip digital signal processors have become established, custom DSP hardware has become

.h"u.pJ, to ¡uit¿, u.rd u=uurùty of programmable DSP hardware has appeared in the marketplace'

software packages for signal pro.".ritr! have also become available at all levels, from the high-end

norkstatiãns to the low-ãnd personal computers found on most engineers' desks'

The systems of interest here are those in which software packages are designed to work in conjunction

with a hardware signal processing system. Many of the recent software packages are designed to

support the common DS'e periph-"rals available for personal computers, aiming to provide a high-

Ievel control interface to that hardware.

The Generalised Instrument consists of both a hardware DSP system and a software package to

support it on a host machine. There are important differences between the GI and other commercial

.yrt"*., not the least of u,hich is the open architecture of the GI' \4¡hereas commercial hardware

and software tend to come from different sources, the GI has been designed as an integrated systern

where the connection between hardware and software can be made invisible to the user'

A programmable hardware acquisition and processing system, controlled by porverful yet intuitive

software, allows new instruln"ntution functiãns to be created u'ith a minimum of engineering, and

with very low resulting reproduction cost'

The limitations of traditional, stand-alone instrumentation

o N{odern laboratory techniques require sophisticated instrumentation. Some examples are f¡e-

quency domain analysers,'storage oscilloscopes, transfer function analysers, and so on' The

cost of such equiPment is high.

Much of this cost is replicated in a laboratory, since most instruments have similar front-

end (analogue and A/D) circuitry, and display circuitry. The major differences exist in the

pro.àssing ãt tn" signals which occurs between acquisition and display'

There is also the physical problem of having many boxes, with each having its owu operat'ing

procedures.

o Laboratory measurements must often be Ìogged on a computer for storage or further anal¡'sis'

In many cases, a computer is required to support 'the instruments'

o Interfacing instruments to a computer often means writing support software to implement that

interface. This software, if internally u,ritten in the organizatiou, is usuaìly limited in features,

since it will have been written to fill a specific need. Should other features be required at a

future time, the software engineering is non-trivial'

By combining many test instruments into one 'box', the Generalised Instrument adds tlew fealures

*-hi.h *"r" either difficult to obtain, or simply ur:obtainable, in traditional stand-aìone instrutnen-

tation.

Advantages of programmable instrumentation systems such as the Generalised Instru-

ment

o reduced cost since only a single hardware platform is required to provide the signal acquisition

and processing system. The-processing is programmable in nature. The cost of the hardware

is reduced to that of one 'box'.
provided that the required signal acquisition performance falls u'ithin the range of the GI, the

same ha¡dware can be used fãr muny instrumentation applications. Therefore, manufacturing

is reduced to one set of system components, reducing cost'

o integration ofsoftware into a single suite of PC softu'are which acts as both the control softu'are

for ihe hardware 'box', and as a data analysis and display package'

The software provides not only the flexibility of a large nurnber of built-in signal processing

functions, which can be used in an algebraic language, but also a graphical shell which provides

a simple interface to control emulatãd instru nents. The front panel of an instrument can be

emulated on the PC screen.

o customisable behaviour, since the beìraviour is controlled by softrvare which can be easily

modified at relativelY low cost'

o low replication cost. Once an instrumentation application has been developed for the GI, tlie

cost of manufacture of that instrument is virtually negligible, since the application consists of

software. Therefore, to existing users of the GI, new applications can be supplied at low cost'

The cost of development of software has lou,er capital cost and risk than hardware deveìopment,

making development more attractive.

o The har,ilware of the GI can be used for multiple applications simultaneously. The softu'are

could simultaneously provide the facilities of multipìe test instruments.

o If the hardware of the GI does not ¡neet the performauce requirernents' a new l¡odule can be

designed to meet that performance, and be incorporated into the GI witìrout interfering with

the GIs performance.

For instance, many diflerent acquisition cards built for specific applications couìd coexist \ryithin

a single GI. éince ih" .u*" base core GI hardr¡'are can be used, as well as the same host software,

there is no replication, and costs are lower, for this type of development compared to building

a completely new system for every application'

o As well as being useful for measurement-only tasks, the GI's signal processor has the ability

to process sigrrJs in real time. By providing it with suitable signal output hardware, the GI

b".om", a dãvelopment system for DSP rvork, or indeed it could be embedded into a ìarger

(presumably analogue) system as a Programmable component'

One application rvhich comes to mind is that of control systems, where the GI's DSP could

digitaliy implement control strategies, or in t,elecommunications research (u'here lnodem algo-

rithms could be tested.)

Since the GI is a stand-alone unit, the host PC need not be connected at all tirnes. Once GI

is set-up, the PC could be removed. ultimately, the GI could be programrned to impìement

only the user,s program from power-on. In this way, the same hardware would serve fo¡ both

fixed- embedded applica,tions, and progralnmable oues'

2

The system described in this text is functional, and has been used successfully in undergraduate

laboratories for teaching.

It is important to note that the GI is a sgslern, and not simply a signal Processor with some at-

tached software. Importantly, the user can install the system and begin signal processing operations

immediately, since many of iire r"qui."d functioni are already built in. The host software (SPaM'

an acronym for Signal Þro"rrring ü Motarrs) features a built-in algebraic language which technical

users can use with less practice than traditional programming languages.

Since single-chip DSP devices have become readily available, the emphasis has been on using them

for embeãded applications where a complete hardware system is designed fo¡ each new application'

For research and teaching applications, such an approach is not acceptable since it implies high cost

and a delay in having functional hardware.

The alternative of purchasing PC peripheral boards oflers a better solution, but still has two disad-

vantages of high cást (DSP lroducts are still regarded as 'exotic', with exotic prices) and limited

flexibiiity. The user is ii-it"á to whatever ìrardware facilities are provided by the manufacturer, and

whatever software is available to control that hardware'

At the high-end of the DSP marketplace, there are products with great flexibility. For instance, based

systems a-re available which allow control processors, signal processors, and acquisition systems to be

mixed and matched in unlimited configurations. However, attendant capital cost of such hardware

is high.

The GI hardware falls into a category midway between the expensive but flexible VME based

systems, and the cheaper but more restricted PC based systems. Being a card-based system, the GI

ofiers the flexibility oi f,rtrr." expa,nsion of the hardware capabilities, and using the PC as the host

gives the benefit of low cost to the user.

chapter 2 of this work gives an overview of the requirements which shaped the design of the GI

syståm as a whole. ThJ following chapters 3 and 4 discuss actual implementation issues of the

hardware and software separately.

A comprehensive guide to the PC softrvare suite (called SPaM) can be found in chapter 5' Though

develofed as part of the GI system, SPaM is r self-contained numeric processing package which

can be used without the GI hardware.

The issue of integrating the hardrvare and softrvare into a manageable system is treated ii chapter

b.

The electrical drawings from rvhich the hardrvare was created are given in Appendix A. Appendix B

contains the detailed information about the onboard softrvare of the Generalised Instrument's control

processor, and Appendix C gives an example of a virtual instrument created with the Generalised

Instrument.

.)

Chapter 2

System Overview

A diagram of a typical system using the GI is shou'n in figure 2.1. Those parts of the system which

are dà-alt with in this dåcument arã the GI hardrvare system, and the softs'are which runs on the

host pC. The remainder of the system consists of standard commercially available computer and

peripheral equipment.

The specifications for the GI hardware and softwa¡e follow. Unfortunately, the budget of this project

did not allow grand specifications to be u,ritten at the outset, aud met in any way possible. The

requirement oit
""pin!

the cost of the final system low meant that goaìs had to be adjusted as the

a"rig., proceeded, tailãring it to what was affordable and available within reasonable time.

The question of availability is an important one. One of the principal goals of this project was to

design a system which would be manufacturable. In the
^lD-DlA

area especially, there are many

exotìc components available which suffer not only from the disadvantage of high price' but fronr

poor availatility (This is intolerable: if the delivery time is too long, a potential customer will reject

ihe affected product and go elsewhere). Such considera,tions are not technically interesting, but do

have a great bearing on t[e evolution of any system designed to be built in nurnbers greater than

one.

2.L Specifications

The requirements set at the inception of the GI project u'ere

I It is required to build a system which will acquire, process, and display signals in a manner

which can be made to emuìate common laboratory instruments, such as CROs, spectrum

analysers and other common instruments.

II It should be possible to create nerv applications rvithout extensive study of the system'

III The signal inputs of the device are to allow signals in tìre range 0-50OkH2, voltage levels in the

*10V range, and sampling rates of the order of lMHz'

IV The system will be based around a low cost personal cotnputer which will provide the keyboard

and display which the user will use to control the instrument, and view the resuìts.

V Though it is to be used in conjunction with a host computer clone, the hardlva¡e of the GI is

not to be dependent on the llardu'are of the host computer'

4

Host
Computer

'-tt-
att- at'

!'¡'-rr RS-232t
,
I
I

Itaa_aaa

Plotter

ADC/DAC DSP

Ia t,
t
,
,
,
I
I
I

I

I
t
I
I
¡
I
I
t
I
t
I
I
¡
I
I
I
t
¡
t
I
I
I
I
I
0

a
ù

a
a

I
I
¡
¡
I
I
I
ú
¡
I
I ¡to)

Printer

Generalised Instrume'

Control

Figure 2.1: The Generalised Instrument System

aaa

5

I I l
ll

AchievedRequirement

lOMIPS
using a dedicated signal processor (TMS320C25) capable of exe-

cuting 10 million-instructions per second. Refer to section 3.3.2.

Fast Numeric Processing

64k-words each.

The full complement of 64k-words of local program and data mem-

ory is implemented in the TMs320c25 module. Refer to section

3.3.2.

Program and Data MemorY

RS232.

The link has a throughput of 57600kbps, equivalent to about 2800

16-bit) per second. Refer to section 3.2 and 7 'I'2samples (

Host Interface

N4C68000.

one control processor per GI is responsible for managing commuui-

cation between the host and the GI, and for controlling the system

on behalf of the host. The control processor can manage up to 15

additional modules. Refer to section 3'3.1

Control Processor

a 3dB bandwidth of 350kHz, and a maximum sampling rate of

lMHz.
Refer to section 3.3.3 and 4.3.

range
Hz

tn
to M1p

A suite of software called sPaM has been written. SPaM controls

the GI hardware, and features a built-in programtning language'

Refer to section 2.2.1.

Host Softu'are

Determined by software.

All functions are softrvare controlled. Any application u'hich falìs

u,ithin the performance limits of the hardu'are can be implemented

as a software algorithm. Refer to section C'

Functionality

It{odular.
The various system modules are implemented on separate circuit

boards in a backplane based system, allorving systems to be cus-

tomised to particular needs.

Hardware Architecture

New functional modules can be added.

As a modular system, the GI allows new hardware rnodules to be

added to existing systerns, or multiple existing modules to be added

to one system. Refer to section 4.4.

software expandability is implicit, since new DsP algorithms can

be written, and new SPaM scripts created to provide the interface

between the user and the signal processor. An example of the

necessary programming is given in appendix C.

Expandability

Table 2.1: Generalised Instrurnent Specifications

6

VI The system is to have a high processing throughput, especially on numericalÌy intensive algo-

rithms, such as those found in digital signal processing'

Items IV and V above define the basic environment in which the device will be working, and also

the way in which the device will be built. Some further consideration is required here, for instance:

As the GI is to be used as a peripheral to a host computer, which host should be used? Clearly,

it should be a machine whi.h is readily available, inexpensive, and common' The machines

which meet these requirements are

o The IBI'I-PC and clones.

o The Apple I\{aclntosh.

o Workstations (eg Suns)'

o À{ainframes (eg VAX).

In numbers sold, the IBM-PC, its derivatives and clones, is the most comrnon computer in use

at the time of rvriting. The availability of most types of engineering software for this machine

makes it, in most cases, the machine of choice for engineers. For the software developer, the

PC marketplace offers low cost and high performance software development tools'

The Apple N{aclntosh series provides a platform vr'hich in many ways is superior for the intended

p,rrpor., since it supports a built-in graphical user inte¡face which is essential for the GI.

Ho*"u"r, it is less common in engineering establishments, and is more expensive, than the PC.

Workstations and Mainframes offer important features such as superior computiug power'

multi-user a¡d multi-tasking operating systems. Howevet, the variety of machines and soft-

ware in this area requires greater effort to ensute that the GI is compatible with all possible

configurations. In the area of operating systems and graphical user interfaces, there has been

little standardisation until recently. The widespread acceptance of standard operating sys-

tems (such as Unix) and graphical user interfaces (such as X-windows) will make software

development on these systems tnore attractive in the future'

There are many other personal computers which have not been mentioned here. \\¡hile some

are impressiln" ir pri." (bnt lo* in performance), and others are impressive in performance (but

not in price), ro.r1 offer the advantages of the mass-ma¡ket computers listed above. A widely

used standard computer architecture, (such as the IBI{-PC and its cìones) has the advantage

that through competition (betrveen various manufacturers and autho¡s of software), it forces

prices to dãcre*e, performance to increase, and software quality to improve as time passes'

In co¡sidering the economics of these various potential hosts for the GI, it is necessary to

include not only the initial cost of the hardrvare vvhich the end user must purchase, but also:

o The cost of authoring software for the platform. Such tools as compilers and debuggers

are required. The qua.lity of these tools is not automatically high. It has taken several

years (up to 5) for the current high quality tools to evolve for the IBM-PC'

o The cost of manpower to author and maintain softu'are. By using a well established in-

dustry standard architecture, information and expertise become more commonly available

and therefore less exPensive.

o The performance of the machine. If the host is lacking in cornputing throughput fo¡ the

desirãd operations, what are the options to increase the throughput?

In the case the machines listed above, most run in families which are fully compatible

with one another, but with different performance figures'

As an example, the IBI{-PC clones currently on the market span approximately 2-orders

of magnitude in computing povver, with a corresponding l-order of magnitude range in

price.

1

7

o What hardware the user already owns. lt4ost potential users of the GI would wish to

maintain compatibility with their current computing equipment'

New and alien computing hardware requires time to be allocated to training in its use,

and may result in in.r"*"d delays if problems occur and need to be fixed'

The IBI\4-PC was chosen as the host for the GI. The next choice to be made is which operating

system to support. The Pc na¡ket oflers a variety of operating systems' including MSDOS

(the most "o**or,),
os/2 (still under development), and unix (a highly frasmglle.d markeb)'

The reasons fo. .háo.ir,! tlìe PC, such as low cost and compatibility with available software

packages and hardware,-suggest that MSDOS be the operating system used'

The rate of evolution in the Pc market is very high. However, the magnitude of the existing

software market indicate that MSDOS based software will be supported and viable for many

years to come.

2. Given that the host will be a computer running the I4SDOS operating system, most of the

hardware requirements could be met by existing' commercially available, plug in PC ca¡ds'

It was decided at an early stage to avoid building an internally mounted PC peripheral, since

such a device would be ãompletely dependent on its host. Such dependence is not desirable

for several reasons:

(a) pCs are available rvhich have few or no slots for peripheral cards. While tbe GI was in

the conceptual stage' one such PC u'as a likely host computer'

(b) The inside of PC represents an electrically noisy environment'

(c) Applications are envisioned where the GI rvould be used for an extended time as an
' '

emtedded part of a system. In such cases the host PC rvould be little rnore than a case

and porver suPPlY.

(d) Many users rvill need to install more cards within their PC than there are slots available'

(e) The rate of evolution of PC technology is so rapid that the user will probably change

hosts a number of times during the lifãtime of the GI. Sirnilarly, the large numbe¡ of PC

variants available now and in the future means that hardrvare compatibility is ahvays in

questiou.

A recent example is the iltroduction of the EISA bus, in which manufacturing tolerallces

in Pc plug-in-cards deterrnines whether tìrey u'ill function correctly.

3. There willl¡eusers of the GI rvho wish to run the system witb a host other than an N'ISDOS PC'

The most likely hosts would be unix-based worksta,tions and PCs running OS12' The design

of the GI as a stand-alone system means that costly redesign is avoided' and tlie custottler

does not ìrave to purchase entirely uew hardware wlten she upgrades her host computer'

4. As a stand-alone box, the GI can be placed closer to the source of the signals it is to process'

without the associated host computer needing to be placed there also' The connecting cable

can then be run to the PC.

To meet specificatio¡s I and II, it is necessary to design the host softu'are in such a manner as to

allow users (r,,,ho are technicaìly competent, úut not necessarily expert in the details of ihe GI) to

construct new applications. To fulfill the dual (and seemingly contrary) requirements of flexibility

and simplicity, tLå host software lvill need to incorporate some sort of 'macto language' which allows

the user to string toget¡er the high-level, easily rirderstood, commands to obtain a desi¡ed result'

It is not sufficient to generate a library of, say, c-callable code which the user could use to produce

her own, staudalone, programs. The reasoDs for this are multipìe:

8

l. The user should not have to be proficient in any particular programming lalguage. Program-

ming languages generally r.quire a greater level of detailed understanding which is not directly

relevant to carrying out signal processing computations'

2. The user would be required to possess a particuìar type of (commercial) language compiler,

which implies added "*p".r.".
The great number of compilers available on the market mealìs

that either the SpaM lib.u.y would have to be compatible with all (possibly implying multiple

libraries), or the user would be forced to buy a particular one'

Considerations of these requirements has led to a stand-alone system which incorporates a TMS320C25

digital signal procer.or, * well as a 68000 processor to control-the system and communicate u'ith

tnã host." A sophisticaied software package has been developed as the interface between the user

and the signal processor. This package, called sPaM, features full programmability to allow the

generationlf new and varied user interfaces without extensive programming'

Item VI of the requirements states that some form of specialised numeric processing circuitry be

used. It is not acceptable to use most rnicroprocesso¡s such as the 68000 for this task, since lheir

throughput in numeric processing is so low that only lovv frequency operation would be possible'

Acceptable alternatives are the use of semi-custom hardware, for instance bit-slice processors' and the

-trr" of single chip digital signal processors, which are no\¡¡ available from a variety of manufactu¡ers'

The singlã-chip DSP rvas chosen for the following reasons:

l. Single-chip DSp devices are now available which rvill reach performance levels of the same

ordãr of magnitude bit-slice processors in the same silicon-technology'

single-cycle instruction execution, memory caching, and other techniques are now becoming

standard features in DSP devices'

2. To achieve similar programmability and versatility, a bit- slice system would consist of much

more circuitry than a single-chip DSP'

B. The widespread use of single-chip DSP devices is pushing their cost down dramatically' Bit-

slice technology is more "r,!"n.itl,
due to less widespread use and more complex desig¡s'

For several years, modern microprocessors aud digital signal processors ha't'e been converging tn

respect to performance and a¡chitecture. Microprocessor designers have been implementing single

cycìe instruction execution (the so called 'RISC'paradigm)' and separate instruction and data busses

(eg the AMD29000 series), while DSP designers have been providing richer instruction sets, larger

àdä."r, spaces, .nd .o oí'. The result will be that standard microprocessors will be suitable for

numerically intensive real-time tasks in the near futu¡e'

2.2 Overview

A block diagram of the GI system is shown in figure 3.9' The GI consists of hardware and software

components, which together with a host .ornput", create the instrument. The computer supported

so far is the ubiquito,rJtgN{ PC clone, since this is probably the most u'idely used class of computer

used in engineering and research.

Running on the PC is an environment called SPaM, which provides the user with the following

facilities.

o An interpreter for performing algorithmic calculations'

I

. A graphical shell for displaying results, and interacting with the instrumentation hardware.

o Storage and retrieval of data to and from fixed media (eg hard disk.)

o Generation of hardcopy of the results on a printer'

The hardware of the GI consists of sets of circuit boards, each of which is a self-contained functional

module. Specific details are given in section 3, and in appendix A' A typical configuration includes

a control f.o""rror, a signal processor, and an analogue sampling board, as shown in figure 3.9.

2.2.L Software Overview : SPaM

The suite of software which runs on the host is called SPaM, which is an acronym for Signal

Processing & Mat¡ices. The software is not unlike the package Matlab, in that it provides the user

with an aigebraic programming language which implicitly understands real and imaginary numbers,

vectors and matrices. These are the data types most commonly encouutered in DSP work.

SpaM is built around a central compiler for its embedded language. The compiler can accept

input either from the user via the host's keyboard, or from script files stored on disk. This allows

prepackaged applications to be stored on disk sirnply as scripts, allowing the system to perform

actions automatically rvithout the user's intervention-

The user may interact with the system through a text only interface, where algebraic expressions

are entered from the keyboard, processed by SPaM, and the resuìts displayed to the screen. These

expressions may include builtin functions, user defined functions, and various standard mathematical

operators. In this mode of operation, SPaM is able to carry out manipulation of data vectors and

matrices as directed by the user. The text-only display is sometimes preferable to a graphic display,

the main advantage being more rapid text printing.

An alte¡native way of using SPaM is via the graphical shell. When operating in this mode, SPaM
presents the user with a graphical screen on which the user may open r','indows, and create objects,

to display various pieces of information. Arrays of data may be displayed in rvindows, and 'buttons'
*uy b" created to call user defined programs vvhen the user clicks on them. The graphical shell is

designed to rvork with both a mouse and keyboard.

Using the flexibility of the embedded language, and the uncluttered presentation offered by the

g.rphi.ul shell, complex screen displays rnay be created to sirnulate familiar inst¡uments, a-s sltown

in figure 2.2.

As well as interacting with the user, SPaM handles inte¡actions with the GI hardware. The GI

hardware interfaces to the host via an RS232 interface. The protocol used in the communication is a

packet based one. Packets (of variable size) containing commands, or data, are transmitted between

the GI and the host. An error detection and correction protocol is implemented by associating a

CRC1 u,ith each packet. If a pa,cket is corrupted during transmission, the sender is inforrned and it
is resent.

Such a protocol raises the possibility of the GI and its host being remote from oue another, con-

nected through some sort of data link (for instance, via modem over the dial-up telephone network.)

The error delecting and correcting features of the protocol provides the necessary immunity to

transmission errots over such a link.
lCRC is an acron),m for Cyclic Redundancy Check, which is a validity value akin to, but more

checksum

10

robust, than a

ole l.lindos
ane lootcing at tl¡e savefor¡r

g=sin(x/i) + c
¡ireg eery the value of i bc
value of x is eqr¡al to the

spåce L9?9' fnee heaP 1913

and the s¡rectnun of tÌ¡e frrnction
os(3t.x/í) + nr'üoise
cI ickinsr on the graAsfets.
arÞeg i näex et eng ¡¡o i n t .

36

9ou

9ou
The
f r.ee
>r

CRT

coNS0LE 1.1¡NOOr.l
BUTTON

n-decI¡ontrai t

n_r ne
-8.øL

Ienrraqrl o9r

''
nc

n

d.ec

-6C)

@

@

Figure 2.2: SPaM graphics display screen' showing waveforms and

control buttons

11

2.2.2 Hardware Overview

The GI hardware is a 'black box' which attaches to the host computer via an RS232 connection'

The GI box contains hardwa¡e modules which perform specific duties within the system:

1. The control ptocessor module. This is responsible for overallsystem control, and communica-

tion with the host.

2. The signal processor module. This module contains a single chip digital signal processor, which

performs the mathematically intensive operations'

3. signal acquisition module. This is the A/D and D/A interface board' The current module

connects to the DsP board to provide the analogue front end for the signal processor' The

design of this module is criticaito the overall performance of the instrument, but unlike the

digital circuitry it is difficult to design with certainty'

A block diagram of the GI hardware is shown in figure 3'9'

providing that the signal parameters fall within the performance limits of the GI hardware, the op-

eration of the hardwui" irìrrn.parent to the user. In cases where extended performance is required,

rãäf,¡;ã irrã*.r" modules
"u,.r

b" nated to the GI, and appropriate software modifications made

to support them.

I2

Chapter 3

Hardware System Detail

This chapter looks in more detail at the architectural aspects of the hardware component of the GI'

3.1 Operations required

The basic operations and features required of the GI hardware are sumlnarised below

1. To provide an interface method to the host computer'

2. To provide a protocol and command set over that interface to allow the host to command the

GI to perform sPecific actions.

3. To provide a means of transferring data to and from the GI over the interface'

4. To provide a connection to analogue signals, both as inputs to the GI, and outputs from the

GI.

b. To build the GI around a fast DSP device which allows the rapid processing of signals. The

results of the processing are to be sent to the host for inspection by the user' or used to

generate an output from the GI in real time'

3.2 Major Design Decisions

In this section some of the major design decisions are discussed and clarified. In a large system

such as the GI, there are often alternative rvays of doing things. Making the cor¡ect choice is often

difÊcult, since bad choices are invisible until the system is either in manufactule or active use'

3.2.1 Selection of Basic Hardware Format

should the GI be built as a PC peripheral card, or a stand alone unit?

This questions was addressed in section 2.1, and the main points are reiterated here. It is desired

that tle GI be physically independent of its host so that it can be used with øzy host'

13

The only host computer currently supported is a IBM-PC compatible running the N{SDOS operating

system. The majority of such computers are equipped with multiple internal slots, which could be

used for a plug in card. IÍowever, there are classes of Pcs which have either limited or no slots'

At the time the GI *a" U"ing a"tígned, a likely host seemed to be the locally produced Mi*obyte
pC230, which is limited to one or two internal short cards, these being insufficient to hold all of the

GI circuitry.

A.nother class of potential host is the laptop or portable PC, w'hich is becoming nore common as

costs fall. Such PCs provide PC compàtiúitity in a portable briefcase sized unit, and would be

suitable portable hosts for a portable GI'

There are two common interfaces provided by virtually all PC compatible computers, even those

mentioned above. They are the Centronics compatible 8-bit parallel interface, and the RS232 serial

interface.

It was decided to use the RS232 interface to communicate with the GI after considering the most

common uses for these ports. on the majority of Pc computers machines, the parallel port is used

to drive a printer. sincå the majority of PCs feature only one parallel centronics port, this port is

unavailable in manY cases.

TIte RS232 interface is universally available in the commercial computer industry' By being separate

from the PC host, connecting to ii via a standard interface, the GI is better able to resist obsolescence'

\4¡hen the host is supersedeã by the next generation of PC, the uset can be assured that (for the

foreseeable future) rn RSZSZ connection wilt be available to facilitate connection to the GI'

The majority of computers have, or are capable of having, two RS232 ports' one of these is required

for the GL

The majority of RS232 ports on PC-compatibles use an Intel 8250 compatible UARI, rvhich is

capable of tr..r.-i.rior, .t 57600bps and higher. This speed correspouds to about 5'8k-bytes per

second.

In a typical application of the GI, spectral analysis is performed on a sigual using a 1024-point FFT

ulgoriiir*. The results of the calculation will be 512 16-bit integers representing the-magnitudes of

thã signal iu b12 frequency bins. Thus 1024 bytes must be uploaded to the host PC for display,

corresponding to a delay of 0.2 seconds'

In practice the delay between scleen refreshes will be longer, due to host-processor intensive op-

erations such as ,.r""r updating, and the transfer time will lose its dominance in determining the

response time of the sYstem.

Even so, the serial port communication does represent a bottleneck for the transfer of large amounts

of data. To overcome this, a parallel port wili be clesigned into future versions of the GI to speed

the transfer Plocess.

The universality of the RS232 interface means that computers running the Unix operating system

could become hosts for the GI. Such hosts rvould allow a major leap forrvard in the host softrvare,

due to the more advanced nature of their operating systems (eg multi-tasking), and graphical user

interfaces.

9.2.2 Selection of PCB Format

Should the GI be designed as a one-circuit-board or rnulti-board system?

This is an extremely important question, since it pla¡'s a large part in determining the economics

and manufacturability of the the hardware.

t4

The prototype of the GI was designed as one, large priuted-circuit board. The rationale rvas to

minimise the interconnections r"quired, and the cost of a cage to hold multiple cards'

A constraint imposed by the limited budget was that only 2 layer PCBs could be used (due to the

pr.ii¡itir"t
"or[

of *,rlii-lry". ones). Thã side-efrect of using 2 layer boards in processor ci¡cuits is

that the component density on the PcB becomes low, since much area is required for the routing

of data, address, and control busses. For a circuit with a large number of components, this results

in a large PCB.

Än obvious means of reducing board space is to use multiple boards, connected via a backplane bus'

This adds cost by increasing"the cost tf connections, and card cage, etc' However, since the busses

have been moved offboard, each circuit board can be more densely populated, even using 2-layer

PCB technology'

The added benefits of multiple circuit boards, as compared with a single board, include:

o Easier assembly.

o Easier testing, since there is less circuitry per board to test, and a test-jig can be const¡ucted

in which all boards which are present are known to work correctly, allowing one new board to

be plugged in and tested in an otherrvise fully verified system'

o Expandability. The user may design nerv cards to fit into an existing system, so that nerv

functions can be added to the system. For instance, since the digital signal processor is

isolated on its own board, other btards could be designed for other signal processors' and yet

would work within the same system. Alternatively, multiple DSP boards could be fitted in the

same system, allowing an lr{Ii{D (Multiple-Instruction, Multiple-Data) multiple-processor to

be built.

o Selective evolution of mod,ules. Modules can be individually redesigned without affecting the

rest of the system. This feature allows the GI to keep pace with technology by minimizing the

amount of redesign which must be done'

o standard enclosures may be used, if an industry standard card format is adopted (as has been

the case.)

o Higher component density on each circuit board means a lower overall volul e, resglting in

a more compact device. For 2-layer PcB technology, the multi-board system allows higher

component density than a single board because the wide system signal busses are moved onto

the úackplane. Areas occupieã by busses cannot generally be used for other circuitry, resulting

in low overall density.

3.2.3 Selection of Signal Processor

'Which Digitat Signal Plocessor should be used?

When choosing a DSP device for any particular application, the designer rnust weigh up a number

of factors.

1. Performance of the DSP device in the intended ¡ole

2. Cost of the device itself.
1 To illustrate the point, the 2-layer prototype boards which were

boæd would have cost $500, and 6-layer board $700 each'

15

produced cost $70 each. A corresponding 4-layer

3. Cost of placing the device in circuit, ie are any special mounting techniques or hardware

required.

4. Cost of software tools (compilers, assemblers, simulators, etc)'

5. Availabiìity of the devices'

During the early design stages of the GI, the TMS320C25 was one of the few readily available and

well supported signal processors available, and it was consequently chosen for the GI.

Since then, other signal ptocessors have become available which have comparabìe architecture, and

higher computational performance. Experience with the prototype GI, however, demonst¡ated that

wlien the host computer was involved in the data-flow process (as in transferring data to the host

and having that data displayed on the screen), the con'rputational performance of the DSP in the

GI was not critical, since the main bottlenecks were elsewhere in the system.

The unit cost of signal processors, like other semiconductors, decreases u'ith time as voìume pro-

duction and distribution take eflect. During the course of this project the TMS320C25 unit cost

has dropped from over $200 to about $70. A major contribution to cost is the package in rvhich

the device is sold. A pin grid array is generally the first package type released, but is expensive to

manufacture. Once demand for the device exists, and the silicon has been finalised, less expensive

plasticpackaging(suchasPICC)isreleased. Therecentreleaseofnewversionsof theTI\{S320C25,

ieaturing higher-cìock speeds and more internaì program and data memory rnean that the perfor-

mance of the GI witl be suitably increased. These new processor versions are pin compatible with

their ancestors, so PCB redesign is unnecessary.

While other manufactures had devices whose performance exceeded that of the Tf{S320C25 in many

areas, other considerations weighed against thern. The lack of available production silicon, u'as (and

continues to be) a major problem.

3.2.4 Justification for a Control Processor

Should a separate control processor be used, or should the Digital Signal Processor be

the sole processor in the system?

The purpose of the control processor is to be a fixed servant of the host computer, allowing the host

computer to exercise complete control over the signal processor(s), and any other system components,

even if those components go out of control.

For i¡stance, if the user's DSP code is somewhat 'experimental' and unstable, it would be very

difficult to regain control of the DSP without being able to perform basic tasks such as asserting the

RESET signal to the signal processor. A plug-in PC card has access to the necessary signals from

the host, but a stand-alone unit requires some reliable way of converting the com¡nand-stream from

the host into hardware actions.

Were the GI to be built as a PC plug-in card, there would be no need for a cont¡ol processor as such,

since the PC itself would fill that role, as shown in figure 3.1. The arguments against building the

GI as a peripheral card for one type of computer have already been presented, and so the problem

of reliable overall control of the GI system remains.

Without a control processor, basic tasks such as the transfer of data f¡om host to GI would have to

be performed by the DSP itself. \4¡hile it could perform such tasks with little difficulty, this rvould

require that the DSP code for such operations be kept in ROÀ{ in the GI. The code in this ROI\{

would not be trivially small, and would decrease the (already small) uìemory availabìe (64k) to the

signal processor for signal processing code. This could be cured by using various memory mapping

16

Analogue to DigitalDigital to Analogue

Digital Signal Processor

Control
Registers

DSP N4emory ArraY

IBM PC Expansion Bus

Figure 3.1: A typical PC-card DSP System' The PC host performs

all system management functions.

schemes, but one is still left with the possibility of the system entering a state from which it cannot

be remotely removed.

Communication with the host computer is a task accornplished under software control by a processor

(hypothetically, the signal processor itself), as in the system show essor must

ì"."ir," command u.rd]a.t. packets from the host, and transmit t' Actions

specified in the command packet must be carried out. All of t processing

time, which is then unavailable for the execution of signal processing algorithms'

Conceptually, it may be possible to integrate tightly the system managemellt and signal processing

software to achieve the required performance. However, this defeats a design goal of the GI u'hich

rvas to design a system whlre new applica,tions could be prototyped very quickly.

The presence of a control processor (figure 3.9) in the system gives a great deal of flexibility in tlie

control of the system. Th; DSP need not be affected at all by communication between host and

GI. Indeed, as is described in the later sections, the communications between the DSP and control

processor are such as to impose as little delay as possible on the DSP when transferring data to the

host.

A control processor is essential for a multi-DSP system, which can be produced with the cur¡ent GI'

Sig'al processors can then be individually accessed and controlled without any effect on the others'

3.2.5 Analogue Flont-end Performance

What should be the performance of the analogue front end?

prototypes of the GI revealed that the analogue front end of the DSP systems is really the most

imporiantpart of the system (on apar with the use¡ interface). The analoguefront end determines

*t,rt *ugnitudes and úand',n,iàths óf signalr can be acquired, and therefore almost entireìy defines

the performance of the system in these areas.

T7

Analogue to DigiLink

Digital to

Writable Program
RA.M

Fixed Program
ROM

\A¡ritable Data
RAM

DSP

To Host Signal In

Signal Out

Figure 3,2: A stand-alone system could be built around the sig-

nui p.o."rror alone, but there the requirement to perform signal

processing and system-administrative tasks would limit the capa-

bilities of such a system.

There are several important issues which must be addressed in the design of a analogue to digital

interface system. These are

Input

Figure 3.3: Analogue Interface block diagram

Input Protection

Programmable Gain

Programmable Offset

Anti-aliasing Filter

Voltage
Reference

amole
toÐ

and Hold
ConverterSample Clock

alDi

18

1 Acceptable input signal amplitudes'

The restrictions of analogue circuitry limit the internal signals of the GI to a range of *12V'

There will be further ."si.i.tion. imposed by specific parts of the system, such as the A/D'

Ä greater input range can be accommodated by using resistive attenuators. at the input. On a

CRO or similar instrument, such attenuators are controlled by a multi- position switch. Since

the GI is to operate as an autonomous device, the switching must be done with relays'

Solid state su,itches should not be used at this front, since they will either be susceptible to

overload, or will detrimentally affect the bandwidth of the system (due to internal on-resistance

(and capacitance).

There are several points flowing on from using a resistive divider at the input:

o The resistor chain must not significantly load down the circuit under test. A high input

impedance can be achieved by aìlowing the input attenuator to be switched out of circuit

completely when not needed.

o The resistor chain resistance must not be so high as to combine with parasitic capacitance

to fo¡m a low-Pass filter.

o The buffer amplifier following the divider must be of high input impedance, and low input

capacitance.

The poìes created in the transfer function of the input by resistance (from the attenuator)

and capacitance (parasitic) will cause lorv- pass behaviour. This effect can be alleviated

somewhat by using feed-forwa¡d capacitors'

Compensating values must be determined from circuits once built, since the parasitic

.rpu.itun." *ill U" largely distributed, requiring a test and set procedure during manu-

facture.

Input overload protection.

While it is not difficult to protect against slight overloads by clamping the input voltage to the

power rail using diodes, it is less easy to protect against orde¡-of- magnitude overloads (such

as connecting240Y to the inPut')

The aforementioned attenua,tors would provide such protection if used properly (eg start v"ith

the highest attenuation when measuring an unkuown voltage')

probably the most cost effective means of protection is to minimise possible damage rathe¡

try to preve¡t it altogether. This can be achieved by having attenuators, in u'hich case it is

orrly ."rirto.s which are destroyed by an overload, and by placing a buf{er amplifier between

the input and expensive converter ICs. In this way, cheaper coruponents are sacrificed before

the overload can reach the expensive components'

Prograrnmable gain control

In order to obtain the highest possible signal-to-noise ratio in the conversion process, it is

necessary that the signal occupy as mucìr of the A/D converter's input range as possible. To

effect this, programmable gain is required'

(a) For practical reasons, 1LSB of fhe A/D converter should not be less than hnV. Belorv

this level, induced noise will be expensive to elirninate'

(b) A programmable gain amplifier rvill amplify not only the signal voltage at its input, but
' '

also the input offset voltage. For this re ason an offset subtraction mechanism must be

provided.

(c) For a converter u,ith a full-scale input range of 3v (typical, eg 4D7870), a gain of 100

will cause a full-scale reading for a 30mV signal. Gains in the range 1 to 200 will provide

resolution comparable to stãndard oscilloscopes (eg lrnV/div). Input attenuato¡s rvill

provide the sub-unity gain needed for signals of amplitude larger than the input range of

the conve¡ter.

2

.)

19

4. Input offset adjustment
Rareìy does a signal have zero DC component. To allow the full use of an A/D conve¡ter's

input range, it is necessary to remove the DC component so that the AC component can be

acquired.
-fttir it done on an analog CRO by use of a capacitor coupled input, o¡ vertical trace

position controls.

A capacitively coupled input has the disadvantage that it adds a zeto to the input transfer

functìon, r".ulti.,gì.r high-pass behaviour. One of the great advantages of digilal signaì pro-

cessing over processing in the analogue domain is its suitability for very low frequency work.

Capacitive coupling at the input would destroy this ability'

Instead, the DC component can be removed by generating an offset voltage using aDlA'
converter, and subtracting that oflset from the input signal'

Such a scheme has the added advantage of being able to accurately zero the instrument for

any configuration. For instance, in the prototype it was found that programmable amplifiers

amplify their input offset voltages, as well as the input voltage. Unless this amplified offset is

removed, the useable range of the A/D converter is reduced'

5. Signal bandwidth, Sarnpling rate.

When designing A/D interfaces, it is not sufficient to simply ensure that the A/D samples at

the Nyquist frequency implied by the signal bandwidth'

There are two bandwidth limitations imposed by any acquisition system' The first and most

obvious is the maximum frequency of the input signal as dictated by the Nyquist sampling

theorem. This imposes the limit that the input signal may contain no frequencies higher than

one-half of the sampling frequency.

The second bandwidth limitation is that imposed by the analogue preprocessing circuitry u'hich

preceeds the A/D converter, and the analogue bandwidth ofthe converter's input stages2.

The input circuitry to the sampling system is typically a combination of passive and active

components: r"sisiors, inductors, capacitors, and op-amps. The passive properties may be

lumped in physical components, or distributed, as in the PCB tracks forming the connections'

The result of these components is multiple poles in the input transfer function, leading to

low-pass behaviour. Note tha,t this low-pass behaviour is distinct from the anti-aliasing filter.

Now to ensure that the analogue circuitry does not interfere with conversion, any cutofffrequen-

cies must lie far above the Nyquist frequency. The relationship of the input circuit bandwidth

to signal bandwidth rvill be explored in the following paragraphs. The intention is to determine

what effect a realistic input circuit will have on the measured signals.

Consider the case of an |4-bit A/D converter. Suppose that the converter is preceeded by a

N-th order lorv-pass system, rvhose transfer function is simplistically modeled as

H(i,)=*futr (3 1)

Let us further assume that the anti-aliasing filter has a very steep cutoff, so that the A/D
converter can convert signals all the way to its Nyquist limit, given ¡v ä.
Now, let us inject a sinusoid of amplitude 2¡l units into the system, which would, if unat-

tenuated, fully exercise the converter's dynarnic range. The presence of the analogue filter

will,however, produce attenuation so tha,t the amplitude the converter sees is 2-,lor some m

(where 052 <2nn).

2 _rm_M_/ t \""
2,, =z'-M = tçiEF) tz'zl

2Note, this is distinct from the Nyquist frequency, and is determined by the analogue prop

converter

20

erties of the A/D

since the original signal was of amplitude 2M, and the resulting measured signal has an

amplitude of 2 ,*" "un
consider the quantity (M -^) toùe. the number of bits of resolution

which has been lost by the system, ãue to ühe action of the analogue preprocessing' For

instance, if the input circuitry halves the signal amplitude at the working frequency, only one

half of the A/D dynamicranle will be exercised, and one bit of resolution will be lost' Let us

define

Mtosr = lttl -m
= f logr(1 +(h)')

The graph in figure 3.4 shows the nature of this function' The above expression is not yet

,,,"urrìrrjfrll becáus" it does not relate to the sampling rate of the system.

It is worth noting that figure 3.4 is somewhat deceptive. The loss of resolution is from the

most significant ùit of thã converter. Thus, a loss of l-bit of resolution means a halving of

input signal amplitude'

Lost bits as function of uf u¿ for real pole, order N

(3.3)

7

b

5

4

t)

2

1

0
0 0.2 0.4 0.6 0.8 1

u lrc
1..2 t.4 1.6 1.8 2

Figure 3.4: Loss of A/D resolution in terms of h, for the real-pole

system of equation 3.1.

We can incorporate the sampliDg rate by setting u - usf 2, where c'''5 is the angular sampling

frequency. In effect, this tells ,t, th" nuurber of bits lost at the Nyquist rate, which represents

the maximum possible signal frequency which tlie system is permitted to sample'

we now rearrange equation 3.3 to be dependent on a new variable, k - uç f u5, to give equation

3.4. The graph of the function is shou,n in figure 3.5. Tiiis graph shorvs, for a given ratio of

system cuioff frequency to sampling frequency, the number of bits lost by the system'

MNyeutsr = ltos, (r+1ff)-')
(3.4)

= Itos, (1 + (2k)-'?)

Equation 3.4 is valid for all values of fr > 0. For values of fr = uclus close to zero, the

,.!ume.,t of the logarithm rvill be large änd the resulting loss in bits rvill also be ìarge The

N=1
N=2
N=3
N=4
N=5
N=6

2t

reason for this is clear: if the analogue circuitry has a cutoff frequency much lower than the

sampling rate (so that w¿f us = 0*), then the attenuation at the Nyquist frequency u'ill be

high, and MNyeutsr will also be high'

conversely,foravalueof À= uc/us whichisverylarge,theargumentof thelogarithmwill

be marginally greater than one, ánd the number of lost bits will approach zero' Again, this

is reasonable, since analogue circuitry will not greatly affect the sampled signal if the 3dB

bandwidth is many times greater than the sampling rate'

It should be noted here that the number of bits lost, eg Mtosr ot lt'f ¡¡vqu7s? are subtracted

from the resolution available. For instance, if the system uses a 10-bit A/D converter, and is

preceeded by a 2nd order analogue circuit whose cutoff frequency is one half of the sampling

rate (k = 0.5 in equation 3.4), then MNyevtsr = 1. Therefore, at the Nyquist frequency, our

10-bit converter becomes a 9-bit converter'

Since a negative resolution is meaningless, the number of bits lost in practice cannot exceed

the number of bits which are physically available'

Lost bits at Nyquist frequency, as function of uç f ug

16

I4

T2

10

8

6

4

2

0
0.5 1 1.5

uc las
2 2.õ 3

Figure 3.5: Loss of A/D resolution as a function of 'Ê, for real-pole

system described in equation 3.1.

Clearly, the higher the cutoff frequency u¿, Lhe less will be the effect of the analogue system

at low frequencies below -F5.

The essence of this informa.tion is tha.t the analogue system must generally have a bandrvidth

far greater tìra.n the maximum sampling rate in order to maximise the effectiveness of the

converter. The situation is complicated furtler by the presence of the anti-aliasing filter

(discussed below), u'hich must have a cutofl frequency of Fsf 2'

While the analogue circuitry determines the system bandrvidth, it is the digital circuitry which

determines the maximum achievable sampling rate'

A choice must be made whether the sampìing is to be performed as an action of softrvare

(executed by the DSP), or is to be implemented as a hardware featu¡e. The former option has

ìhe aduantage of low áå.t, ..,d is limited by the speed of the DSP device. The latte¡ has the

advantage oi *u.h higher sarnpling rates, at the expense of circuit compìexity and cost'

The software sampling option is the one chosen for the initial analogue module for the GI'

With the TI{S320C25 clàcked at 401\{Hz (thereby achieving 1OMIPs), a maximum sampling

0

N=1
N=2
N=3
N=4
N=5
N=6

22

rate of approximately lMHz is achievable. At such a high speed, the DSP is doing nothing

but movin! data from AID to memory. At lower sampling rates, the intersample time may be

sufÊciently long to carry out processing'

6. Anti-aliasing filtering
For a system such as the GI, the anti-aliasing filtering provides particular challenges'

As outlined in the previous section, the sampling rate of the system may vary over stx or mole

orders of magnituáe. To devise an antialiasing filter capable of variation over the same range

would be very difÊcult, and not economical'

For low frequencies (eg 0-10OkHz), a viable soìution is provided by microprocessor programmable

switched capacitor Àtt".r. Such devices are available commercially, and allow programmed fil-

ter response over that range'

For higher frequencies, the only viable alternative is the use of switchable filter banks. Such

filter bãnks would be tuned for particular cutoff frequencies, and would be srvitched into the

signal path as appropriate. The ecouomics of such filters would limit the choice of cutoff

frequencies to a small number'

Following a difierent route, antialiasing filtering could be performed digitally by oversampling

the signal, using a digital filter process to band-limit it, and decimating the filter output to

the de]sireá Qo.wer) saLpling rate. The only antialiasing required in this case would be at the

high (oversa*pt.a) sampling rate. If the high speed sampling were always to be perforrned at

thã one, high rate, then only one analogue filter would be required'

The¡e are some difficulties rvith this technique. In order to preserve desirable linear phase

characteristics, the digital anti-aliasing filter of choice is an FIR filter. However, to achieve a

ra,pid cutoff, the filter needs many taps. using brute-force, the FIR will need to be processed

o.r"" p", i¡put sample. ie many taps at a high rate. Using current signal processing devices,

the primary sampling rate would be limited to tens of kilohertz. For this frequency range

solutions are availablã using switched capacitor techniques, so nothiug is gained'

Signal In

Fs

I{:1
Decimator

Signal Out
-P-s

M
FIR Filter

Figure 3.6: cascaded FIR Filter and decimator. This implemen-

tation is not efûcient, since for every one output satnple, M FIR
outputs are generated, and II - | outputs of the FIR fiìter are

discarded.

However, by applying a commutation operation to the combination filter and decimator, an

alternative representation of the system is produced'

By commutating the coefficient weighting operations of the traditional FIR structu¡e with the

dãcimation op.r.tion u,hich would follow it, we arrive at a modified FIR in which the decima-

tion operatioì p."."d". the coefÊcient weighting operations (see figure 3'7)' The important

result of this is that the FIR computations (multipìy-add) need only be performed at the

decimated (ie lower) output rate of the filter[7].

TT T

h2h1 h,

{ll\4+

23

Signal In
Fs

M:1 Decimators

FIR x* operators

Signal Out
-F<
M

Figure 3.7: The FIR filter and decimator in figure 3'6 has been

modified by commutating the decimation and multiply-add opera-

tions. This yields a much more efÊcient system in which the time
consuming operations (multiply-add) are performed at the output
rate, which is M times lower than the input rate.

For a decimation rate of M, li{ less computations are required for this new structure than for

the unmodified one. A further reduction in the number of multiplication operations can be

achieved by exploiting the symmetry of the FIR impulse resPonse.

The resulting reduction in computation allows much higher primary rates to be achieved. The

benefit of r ùigh"r primary sampling rate is that the prirrary anti-aliasing filter can be of loq'

order, since it has an extended frequency range (between the highest frequency of the signal

which one wishes to retain, and the primary sampling frequency')

Whatever the technique used to achieve anti-aliasing at the final sampling frequency, the

system will need one primary analogue antialiasing filter. The discussion of system bandu'idth

in the previous item zuggests that the slow roll off of the all-real-pole filter makes it unsuitable

for this role.

A better filter is the Butterrvorth[g] filter. An N-th order butterworth filter has tìre desirable

properties of maximal flatness in the passband, and relatively low variation in group delay in

ihe t¡ansition region. A near-constant group deìay (analogous to a linear phase characteristic)

ensures that the filter has an acceptable transient response. This is necessary to ensure that

accurate time donain representations of rvaveforms can be recorded by the GI.

The characteristics of the Butteru,orth filter are shou'n in figure 3.8. Even for a 6-th order

frlter, considerable aliasing u,ill occur unless the cutoff frequency is moved fo Fsl3 (for an

8- bii converter.) This wili allow the use of 66% of the converters bandwidth for valid signal

measurement, u,íth the remaining one-third being the transition region of lhe antialiasing filter.

7. Sarnpling precision

Being a sampled data system, this module u'ill have a finite sampling precision, usually either

12 bits or 8 bits. Co¡verters of 8-bit precision are available u'ith very high conversion rates (eg

200MSPS in the case of the 4D770). Such ¡ates are achieved by employing flash conversion

techniques, which use one voltage cornparator for each of the possible output codes of tìre

.onu".t.. (256 in the case of 8-bit), and a priority encoder to generate the resulting binary

code.

Flash 8-bit converters with conversion rates of 2Olr{SPS were used in the prototype analogue

interface ofthe GI, The high speed ofthe flash converters is achieved at the cost ofsilicon area

on the die: a single extra bit of precision requires trvice the components. An additional penalty

24

Lost bits for Nth order Butterworth, as function of uf uç
7

6

5

4

3

2

1

0
0 0.2 0.4 0.6 0.8 1

Ølrc
|.2 t.4 1.6 1.8 2

Figure 3.8: Loss of A/D resolution as afunction of ufu¿, for N-th
order Butterworth filter.

is the need for accuracy in the reference voltages supplied to the voltage comparators r¡'ithin

the flash converter, to ensure the linea.rity of the device. These two factors have prevented

flash techniques from being scaled to arbitrary precision'

While 201\{SPS flash converters are relatively common, higher precision flash converters are

not. Devices of 12-bit precision are now appearing on the market u'hich employ a two step

flash conversion procesr, where the first step provides the six most significant bits, and the

second step the least significant 6-bits.

As well as converters, associated circuitry such as voltage references and sample-hold amplifiers

are required. Fortunately, there now exist, integrated sampling converters which combined aìl

of these features.

At the time of design, fast (>1MHz rate) 12-bit converters are still prohibitively expensive for

use in the GI. However, lower sampling rate (100kHz) l2-bit devices are expected to be used

in future analogue interface designs.

3.3 Implementation

This section discusses the detailed implementation issues of the hardware' An architectural overview

of the whole system is shown in figure 3.3. The system is card-based, rvhich provides a considerable

degree of flexìbility in that new boards can be incorporated into the system u'ithout difficulty.

trlultiple boards of the same type (for instance multiple DSP boards) can coexist in the one system,

allou,ing the system to be easily configured for more specialised applications.

A block diagram of the major GI systern modules is shown in figure 3.3. The backplane bus does

not conforrn-to any industry standard, since considerable engineering effort (ie cost) and circuitry

is required to conform to present 16-bit bus standards. The bus is an asynchronous one, largely

based on the 68000's external timing. It is a single master bus, capable of addressing 16 megabytes

of address space. The data paths in the s¡'stem are 16-bit.

N=1
N=2
N=3
N=4
N=5
N=6

25

Control Processor
Module

Signal Processor

Module

Analogue Interface
Module

Future Modules

Link to host
computer

Signal Output

Signal Input

Figure 3.9: Major GI hardware modules

The control processor acts as the slave of the host computer, and controls the GI according to

commands transmitted from the host. In normal operation, the processes are invisible to the user,

who sirnply sees that the appropriate data has been displayed on the screen.

In some cases the user will need to see more deeply iuto the system, as in the Process of software

development for the signal processor. The control processor aids in software deveìopment by allowing

the usàr to inspect in detail the program and data memory areas of the TMS320C25' The signal

processor's support for multiprocessing (specifically, its ability to hand control of its busses over to

another p.oce.ror) allows the user to exa,mine program and data memory before, during, and after

DSP program execution.

A.s rvell as being useful for software debugging, this feature is useful for the following reasolìs.

1. The ability to load program code into the TÀ4S320C25's program memory without intervention

from the DSP allou's the whole 64k words of external progtam memory to be implelnented.

If the program memory could not be accessed from outside the DSP rnodule, the signal Proces-

sor would need to be supplied with bootstrap code in ROI\{. This bootstrap code would then

communicate with the control processor to move dovvnloaded Program code into the DSPs

plogram memory.

The presence of such bootstrap code rvould reduce the address space available for dou'nloaded

.od.. It would also mean that 3 distinct operating systems are involved in the GI (the host,

the control processor, and the DSP), adding undesirable complexity.

2. Since the input/output ports of the TI\4S320C25 share the same address and data busses as tlie

program/data memory, the control processor can directly access reaì world interfaces (A/D,
D/4, digital ports) rvithout the DSP'

This is feature is essential lvhen the user needs to verify the correct operation (or calibration)

of interface hardware u'ithout having to write DSP softrvare first.

26

Test during manufacture. A test-jig can be created with a control processor aud backplane

assembly. The control processor can be programmed to fully test all circuitry on the DSP

board, allowing any fault to be localised.

3.3.1 Control Processor

RS232 to

Local
Module
Bus

Figure 3.10: Control Processor tr{odule block diagram

As can be seen in figure 3.10, the control processor module is composed of the follorving rnajor

subsections.

o CPU, with associated ROM, and local RAM.
The CPU, a 68000 family processor, rl,as chosen because of its low cost, simple circuit imple-

mentation, and 16-bit bus structure (u'lrich makes it compatible with the 16-bit structure of

the digital signal processor.)

The card is equipped with 64kbyte ROIú which contains the operating system for the control

processor, allowing it to communicate lvith the host as soon as power is applied.

There is a local RAI,[area of 64kbytes. This RAM is for local use by the control processor,

and is used to store temporary variables, and data in transit betvi'een the host and the signal

processor. It is not intended as a sample storage area. Future expansion for the GI wiìl include

large memory a¡rays for storage of sample data.

o Serial port to host.
The serial port is RS232 compatible, allowing the GI to be connected directly to any host

equipped with such a port. This allows virtually all PC-clones to be used as host without any

modification.

Communication over the serial port occurs at a rate of up to 57600bps, giving a maximum

throughput of 5.76k bytes per second.

Communication ove¡ the serial link uses a packet-based protocol featuring error detection and

automatic retransmission. Such a scheme is needed to prevent corrupted transmissions from

causing incorrect system behaviour.

.1

SCSI Interface
(Implemented but presently unused)

Host Interface Ports

CPU Activity and InactivitY
Monitor

64k bytes
RO

perating System
l\4

64k bytes CPU scratch RAM

68000 cPU

Backplane Attention I\{anagement

Backplane Bus Interface

27

o Backplane interface.

The control processor acts as the master of the backplane bus. On that bus it can address a 16

megabyte uádr"r, space (minus the 512k reserved for its own peripherals and local memory),

which can be fully populated with peripherals.

All slave modules (eg the DSP module) feature configurable decoding, allowing multiple iden-

tical modules to exist within the 16 megabyte address space'

16M

Available lt{emory
Space

Control Processor lt{odule
512k

0

o CPU activity and inactivity monitor

The control processor has fixed ROM code for the reason that it should operate in a predictable

manner from powerup, and it should operaúe reliably under all conditions, so that the host

may maintain control of the GI at all times.

There are two circuit conditions which could cause the control processor to deviate from normal

operation.

1. Attempting to access a device in an unused area of the control processor memory lllap

will cause an indefinitely extended bus cycle' :

To detect this condition, a bus activity tirner has been implemented which causes the

extended cycle to be aborted after some tens of microseconds. The 68000 at this time be-

gins bus-error exception handling, which culminates in a return to the IDLE CO14I4AND

state, in which it awaits further host commauds'

2. Execution of a corrupted instruction by the 68000, or a softrT'are flaw, may cause the

68000 to enter an inactive state (eg after executing the STOP opcode, or experiencing a

double bus fault). In this case, the 68000 would normally need to be physically RÐSET.

An inactivity timer detects this condition by looking for an extended period during u'hich

the 68000 initiates no bus cycles. Should this happen, the timer automatically resets

the 68000. If the hardware is still functional, the control Processor rvill enter the IDLE

COI\{MAND state, and wait for host commands'

o parallel port to host, SCSI Port
These ports have been implernented to allow future evoìution of the GI. They are nol used in

the current system.

The parallel port, in conjunction rvith a plug-in-card for the PC host, would provide a much

faster communication Iink between the GI and the host (although the RS232 link will always

be available.)

28

The scsl port is intended to allow the GI to control an SCSI hard disk, with the goal of

.tã.ing .umpl", directìy to hard disk. This will allow sampling at medium rates for extended

;";;;i, 1'tre data will ihen uploaded to the host , in packets of manageable size, for processing

and display.

The SCSI interface provides a high bandwidth (up to 1.5 megabyte/second) interface which

is available on many PCs and *oikstations, and therefore is a possibìe successor to the GI's

RS232 link. Unfortunately, most PCs equipped with SCSI can only use the bus for mass

storage devices, and not for intelligent peripherals in general'

3.3.2 Digital Signal Processor

To AI

Figure 3.11: Digital Signal Processor module block diagram

A block diagram of the DSP moCule is shoÏr,n in figure 3.11. The main features of that module are

o The Digital Signal Processor, a TMS320C25

The version used in the design is capable of execution at 10N4IPS (1 I{IP = 1 Million Instruc-

tions per Second), though new versions of that device ale now available with greater and lesser

performance.

o Program RAM
The TMS320C25 is capable of directly addressing 64k words of program memory' and 64k

words have been implemented on the board. Note thal the TMS320C25 supports only 16-bit

words, whereas the 68000 supports 8, 16, and 32-bit u'ords'

o Data RAM
The DSP can address 64k wo¡ds of data menory, and the fulì 64k has been implemented on

the board.

The TIr{S320C25 processor is structured around 'Harvard Architecture', which is an over-used

term used to state that it has separate internal data and program busses. Unlike a standard

64k words
DATA RAM

64k u'ords
PROGRAM

RAM

Interface to

Anaìogue Module

Local signal processor bus

DSP Status
DSP Control
Registers

TMS320C25
Digital Signal

Processor

Output
FIFO

Input
FIFO

Module decoding, Identity ROI\{, bus buffers

Backplane Bus

29

microprocessor, in which data coexists in one degenerate RAM area with program instructions,

the TMS320C25 separates them into distinct partitions'

Whiìe this architecture has benefits within the silicon of the TMS320C25 itself (for instance,

instruction fetches can occur simultaneously with data moves), it is of no benefit outside of

the device, since program RAM and data RAM must share a common data and address bus'

o Bus interface
The address, data, and control busses of the TMS320C25 may be disabled, allowing another

processor to take over its operation. This feature has been exploited to allow the control

pro."rro. (via the backplane bus) to take complete control of the DSPs busses'

While this involves considerable circuitry, this facility is necessary fo¡ several reasons, as de-

scribed in section 3.3.

o Interprocessor Cornmunication

While the bus interface allows the control processor to invade the address spaces of the

TMS320C25 at any time, it may not be desirable to do this (except possibly when debug-

ging DSp code) while the DSP is executing its programs. If the DSP is executing real-time

ãod-", .rr.h intrusions will interfere with correct operation, for instance by delaying sampling

instants.

To allorv interprocessor cornmunication without the problems of bus contention' a bidirectional

port mechanism has been provided which allows data to be transferred between the control

pro...ro. and the DSP without the DSP delegating control of its busses.

Data frorn
backplane bus

Data to
backplane bus

1 word deep FIFO

-tsrn I

1024 word deep FIFO
Bin I
-tsin 2
tsrn J
.Urn 4

Brn b

\Jtn LU24

Data to DSP
6 16

Data from
DSP

16 16

Figure 3.12: DSP and Control processor interprocessor port

The interprocessor port is bidirectional, but not symmetrical, as explained below

- Control Processor to DSP

The port from the backplane bus (ie from the control processor) to the DSP is one word

deep. That meaÌts that the control processor may r','rite one 16-bit word into that port,

and must wait for the DSP to ¡ead that word out befo¡e the next word can be w¡itten to

the port.

- DSP to Control Processor
The port from the TMS320C25 to lhe backplane bus is a 1024 word deep FIFO' This

-"rn. that (assuming the FIFO is iDitialìy empty) the DSP can write 1024 wo¡ds to it
without waiting for the control processor to ¡ead any out'

30

In practice, the DSP will be executing signal processing code, possibly in real-time. l'he

corrtrol processor will be communicating with the host, and may have a poor response

time for servicing the DSP.

Therefore it is important to move any communication bottlenecks away from the DSP, so

that it does not waste time waiting for communication channels to clear before resuming

computation.
The FIFO devices used in the DSP module are industry standard parts, allowing 4k

and 8k words of FIFO to be implemented by choosing suitable (pin compatible) devices,

though at increased cost.

Both the DSP and the control processor may access the ports asynchronously, Hardware flags

may be tested to determine whether the ports are full, or available for data transfer. If a port

is full, the processor must wait until it is cleared (by the processor on the other side of the

port reading data out of it) before more data can be transfer¡ed.

The FIFO system has not been built syrnrnetrically. The intended uses of the GI at the cu¡rent

time will see the GI returning digital data to the host. The larger FIFO was placed into that

data path to allow the signal plocessor to resume computation with minimum delay'

o Attention Request Mechanism

Since the system is designed to support multipÌe boards (which may or may not be DSP boards)

on the baclplane bus, a mechanism has been provided to allorv boards to request service from

the control processor without the need for the controì processor to continually poll the boards.

The attention mechanism consists of 8 attention request signals. Different client boa¡ds can

signal their request for servicing on different signals. These signals generate vectored interrupts

to the control processor' allorving rapid response.

3.3.3 Analogue front end

The analogue front end described herein is a prototype unit which has been used for testing, and

also for teáching in the laboratories. \\/hile it is functional, it provides only a bare minimum of

facilities, and should only be used as a simple example by those building more complete anaìogue

interfaces.

A block diagram of the module is shorvn in figure 3.3 while the important features a¡e shown in

table 3.1.

Antialiasing filters were omitted in the initial design. The difficulty associated with rraking vari-

able bandwidth filters has already been discussed, and the use of external filters was considered

reasonable.

Flash A/D converters have the desirable property of fast conversion, in this case 50ns- This is less

than the instruction execution time of the DSP, allowing triggering to be immediately foììowed by

reading of the resulting value. Two input channels are provided, and are triggered simultaneousìy

to begin conversion.

Two channels of D/A are provided, which are also updated simultaneously. Both input and output

channels have variable gain and offset, u,hich are set using trim resistors. Control of these circuit

parameters must be *.=d" digitully programmabÌe in future versions of the module, since thermal

ãrift and component variatious cause the loss of accuracy in the A/D and D/A process'

The GI, designed as it is for rneasurernent purposes, must be constructed to yield a precise reìa-

tionship between the numbers being viewed in the machine (ie the samples), and the voltages u'hicìr

they represent.

31

Input Channels 2 x 8-bit

Input conversion time 50ns

Input sampling Simultaneous

Input Gain Digitally programmable

gøin - ÍI,2,4,8, 16] x [1,2,4,8, 16]

Only one value is chosen out of each set in []

Anti-aliasing filter None

Input Bandwidth approx 350kHz

Output Channels 2x 8-bit.

Output updating Simultaneous

Table 3.1: Prototype AIM Specifications

Modules such as the prototype AIM (Analogue Interface Module), which rely on calibration by a

,rr". (uiu trimpots) ui" p.ottl to drift and incorrect c on, future versions

of thÈ arrulogue i.rte.face module will be based on pr and tight-tolerance

components, which will provide the necessary precision n'

I\{ore information about the this AIM is found in appendix A'

32

Chapter 4

Software Architecture

As the major point of interaction with the Generalised Instrument, the software plays a crucial role

in determinin! ttre usefullness of the system. As well as providing a control environment for the GI

hardware, thÃoftwa¡e must provide a means of displaying the data generated by the GI on the PC

screen, and enable the user to interact with that data in useful way'

Since the goal of the Generalised Instrument was to design a system which could emula"te different

instrumenls, the host software must aìso be flexible enough to allow such emulation. This may mean

presenting a different screen display, causing different DSP algorithms to be used, and performing

different data manipulations within the host itself'

4.L Requirements

Listed below is a basic set of features which the host softu'are must exhibit'

1. provide comrnunication to the GI hardware, and control over its various modules' This in-

volves:

o Transfer of data to and from the digital signal processor within the GI.

o Transfer of program to the DSP.

o Provide control over the execution status of the DSP'

o Debugging facilities for DSP code.

2. Management of arrays of data, as may be uploaded from the GI'

B. A graphical user interface u,hich allows the user with minimal training to interact rvith the GI.

This interface must support both display and interaction'

4. Ä means of storing data on the PC's disk for future analysis'

b. A means of creating a preprogrammed application environment, which the user can invoke

easily. Such enviror-*"rì. *orrld typically emulate different test instruments, such as a CRO

or spectrum analYser.

6. Management of a library of DSP code modules which will be used in conjunction with the

preprogrammed applications to process data in a required manner.

7. Generation of hardcopy of data displays.

33

4.2 Major Design Decisions

In this section major design decisions which afiected the construction of the software are discussed'

The engineering of the Gl"project was split approximately in equal amounts between the hardware

and the software.

It is often difficult to appreciate the complexity of a software system, since it is largely invisible'

Unlike hardware, *h".e ãn
"xp"ri"rrced

engineer can gauge the performance of a.system just by

inspecting the printed circuit úourd, the depth of a software system is hidden until one begins to

use it.

To compile or interpret? -
That is the question!

Two main were explored. Their main difference was in the way

that the ,,) was processed' Early work with an interactive signal

processing te an effective tool, especially for teaching. sigproc is a

command ge which has a repertoire of signal processing commands.

The commands are effectively invoked as soon as the user types the command's name' The command

is usually followed by urgrrmãnts, which are processed differeDtly by each command's code' Therefore'

the same argument .orrid -"un different things to different command handlers.

chirp signall 0 200

window;haruning signall signal2
fft signal2 signal3
plot signal3

generate a chirp 0-200H2, p)ace values in array 'signil7'

"pply "
window function to 'signalT', p)ace ¡esuÌt in 'signal2'

'signalî'now holds fft of 'signil2'
graph the vaÌues of'signal?'

Figure 4.1: A sample Sigproc script. The fi¡st word on each line is

thã command name, the words folìowing it are arguments (usually

eithe¡ numbers or array names.)

A merit of such a cornmand line interpreter exists in the ability, of program code for each comnland,

to check the user's input at each stage. The user may be prompted for further information (or

corrected information) if required:

chirp(inconpletecommandtine)
hlhat is the name of the destinati'on array? signall
llhat is the starting frequencY? 0

l,ùhat is the ending frequencY? 200

Figure 4.2: Sigproc commands may prompt for missing argumeuts'

This reduces the mind-load on the user, since each command

presents a standard form for the entry of vital information'

Tliis is a useful way to build an interactive system, since it is highly tolerant of errors in the user's

commands. If the user supplies incorrect or ambiguous information, the code can take co¡rective

action, or simply assume deiault values for parameters which the user omitted.

There are three main reasons u,hy Sigproc was deemed unsuitable as a model for the host software'

1 Sigproc lacked the ability to underst'and expressions

34

Rather than allowing a form such as a = b x c, Sigproc required a specific multiplication
command which was invoked as '¡nult a b c'. The latter is less naturaì for mathematically

inclined users. While some form of expression handling could have been built into Sigproc, it
would not have been a pleasant marriage, since its use would have been restricted by Sigproc's

general sYntax.

2. Sigproc lacks control structures, such as IF-THEN, \ryHILE, and others which programmets

arã-familiar with. While Sigproc is useful for interactive processing, where a user is present

to type in commands, it is not able to execute algorithms which are not hard-coded into the

Sigfroc package. Sigproc did not provide any of the execution flow-control structures needed

to write effective algorithms.

The most important result of the inabitity to control program flow is that the Sigproc language

is unsuitable for writing signal processing algorithms. If the user must implement an operation

which is not in Sigproc's ãiction.ry, the only way of performing the operation is to either a)

write a new command into Sigproc to perform the desired operation, or b) write an exterual

program to implement the user's algorithm.

In both cases, the user must be a proficient programmer (or have access to such), and be

familiar with Sigproc's internal construction. Neithe¡ is a suitable solution.

Sigproc's lack of support for control structures follows from the way in which Sigproc executes

Iisis of commands. Sigproc may be given a list of commands to execute from a file, but in
reaÌity this is no different from the user typing them at the keyboard. Each command is

interpreted, executed, and discarded before the next is processed. Because each command is

discarded after execution, all sense of algorithm structure is lost. No branches can be taken'

since the code which wouìd be branched to has either not yet been processed, or has been

discarded.

It would not be impossible to add primitive control statements to interpreters such as Sigproc,

but lhe result would be a language which would more closely resemble an assembly language

than a high-level language (see figure 4.1.)

B. As an interpreter, Sigproc parses its input as text. Were it to be given some form of looping

ability (us *us done in an experimental version of Sigproc), at each pass through the loop it
would be parsing the same textual program code. Norv, since Sigproc cannot modify the text
program which it executes, it would be parsing identical code on each pass through the loop.

The command statements would be identical, as would the text names of the argur¡rents to

those commands. The va,lues of the arguments tnay be different on each pass through the loop,

but the textual name of the argument is not.

start:
upload foo
fft;po1ar foo foomag fooPhase
display foomag
goto start

% rabel
'/, get a packet of samPles from GI

'/, ttt, it to get the magni.tude

'/, display the result

Figure 4.3: Sample Sigproc code

For instance, consider the script in figure 4.3. The data values contained within the array

called 'foo' may change each time the loop is executed, but the code being executed within
the loop is always the same. Therefore, interpreting the text of the program on each pass of
the loop is u'asteful of time. The first pass through the interpreter caused all of the necessary

actions to be performed.

35

There exists a way to extract the user's intended algorithm from the text of ìrer program: it
is the process of program compilation. This is the technique used by sPaM, and is described

in detail the section 4'3.

What style the User Interface?

Several choices were available for the user interface

1. Command line driven (example: Sigproc)'

Here the user would type commands, which would be executed and the results displayed'

The commands would either be taken directly from the keyboard or from prepared script files.

2. Text menu driven.

In this scenario, the user would be presented with text menus. She would choose an option

from a menu, resulting either in an action being taken by the system, or another menu being

presented.

3. Graphical.

A full graphical interface with interactive screen displays is ideal for the GI. It will allow tlie
pC to simulate on screen the controls and display one would expect to see on the front panel

of a physical test instrument.

By providing an air of familiarity, the display will allow the user to begin work immediately,

without needing to study a user manual.

Like the GI as a whole, the host software must be sufücientl¡, flexible to allow it to be moulded

for new applications without extensive low level programrning. For this reason a combination of

command line and graphical display was chosen'

A command line interface was considered essential as it provides the most expressive way for the

user to state her requireme¡ts. When processed by a well-designed Parser, the command lirre is

capable of processing full arithmetic expressions, and allorvs advanced loop constructs to be used to

build new algorithrns.

SpaM,s command line interaction can be carried out on the graphical display screen. The commands

and their responses are displayed in a windorv reserved for that purpose (catled the 'console window'),

and share the screen with oiher dispìay rviudow. This eliminates the need to constantly switch

between text and graphics displays (as in Sigproc), which can be distracting'

4.3 Host Software

The software package which runs on the host PC is called SPaM This section will deal with the

architectural aspects of SPaM. A detailed refereuce for the SPaM language can be found in chapter

5.

A block diagram of the SPaM package is shou'n in figure 4'4'

The essential parts of SPaM are described below.

36

User Input

Figure 4.4: SPaM block diagram. The logicaì link between the

lexical analyser and the grapliic interface represents the mixing of

user-generated events from the keyboard and mouse'

4.3.1 The Lexical AnalYser

The lexical analyser is a piece of code which examines ühe source input to SPaM (which may be

text commands iyped ¡y i¡" user at the keyboard, or fetched from a file on disk), and breaks them

up into ,tokens,. Th" tok".r. are then passed to the Parser (see next item).

A token is an atom of language. It consists of one or more character symbols. These symbols may

be alphabetic letters, .r.,m"riã digits, or other keyboard symbols. The boundaries of a token are

definåd by either the occurren." áf " whitespace character (space, tab, or nervline) or a character

not consistent with the current token's type.

For instance, if the lexical analyser encounters a uumeric character' then that characte¡ forms the

begi'ning of a numeric token. Further characters will be read (and a number will be constructed)

unlil , .rãn-nu*"ri. character is encountered. \\¡Ì en encountered, this boundary defines the end of

the current token and the beginning of the next (but whitespace is skipped.)

Consider the following line of text.

l'TEILE (i<100)
i=1+1;
END

The tokens in this short program are shou'n below, each token surrounded by [J

tl'IHrLEl t(l til t<l tlool t)l [i] [=] til [+] t1l [;] [END]

In the example above, the analyser can identify all of the tokens except for the occurrences of the

letter i rvhich are not part of ile token ttHrLE. When coufronted by such an unknown token, the

Lexical Analyser

Parser &
Program Generator

Graphic
Object
Lists

Variable
&

Array
Storage
Lists

User
Program
Array

Program
Bxecution Unit

SPaM Code Libraries

PrinterDisk FilesGraphic Interface

37

lexical analyser must come to a decision as to how to classify the token, so that tlle parser may

decide whether the user is making sense or not. The following rules are used by the lexical analyser

to make its decision.

1. If the token begins with a numeric digit, assume it is a number (a constant)'
-
Keep reading

characters until the first non-numeric character is encountered, and form a number from those

digits. Return that number to the parser'

2. If the unknown token appears on a line all by itself, it may be the name of a command file1

which the user wishes tå ìun. Look for a command file of that name in the search path'

If such a file exists, open it for reading and make it the standard input (so that the file will be

read as command inPut.)

If no such file exists' fall through to rule 3'

3. Search the list of user defined functions. If the token is the same as the name of a function,

return a corresponding symbol to the parser'

4. Search the list of existing variables. If the unknown word is the same as the name of one of

those variables, notify the parser of that fact

b. If the unknown word corresponds to none of the above, assume that it is the name of a variable

which does not exist (simpiy because this is the first time it has been encountered), and mark

it as having an undefined tYPe.

From this point on, an occurrence of the same token will be caught by rule 4.

Variables need not have a known type at cornpile time, as long as their type is clear at ru¡l

time. A variable's type is fixed when a value is assigned to the variable'

The lexical analyser is calìed fror¡ the parser (described belorv)

input stream into tokeus, each token is returned to the parser'
As tlie lexical analyser splits the

4.3.2 The Parser

The parser is tha,t part of SPaM which inspects the tokens being produced by the user, and decides

horv they must be processed.

When the user types a stream of character into the SPaM command line, it tvill either tnake seuse

or it will not. In software jargon, it is said to either parse correctly, or not.

The parser decides whether something rnakes sense by comparing it to a set of rules whicìr define

the SpaM language. In fact, the parser was c¡eated from these very rules by the automatic Parser

generator .ull"ã birolt, which is a public domain derivative of the Unix yacc[S] Program'

For each rule in the SPaM grammar, there is a corresponding program action to be performed u'hen

an occurrence of that rule is encountered in the user's program text'

An example of a rule is shown in figure 4.5. This ¡ule describes how a valid expression is constructed'

Accordin! to this rule, an expression may consist of either a number or variable (both of u'hich yield a

value without having to be broken dou,n further), or some arithmetic colnbination of other (simpìer)

expressions.

In the case of SPaM, each an occurrence of a rule causes SPaM to add tìre appropriat,e code to its

pseudoprogram for execution after the entire input has been parsed.

1A com¡nand flle is simply a t,ext frle containing a SPaM program'
int,eractively, or read from a disk frle.

38

Programs may be entered into SPaM

Än example of the code generated by SPaM for a numeric expression in shown in table 4'1

exPress]'on number
variable
expres s ion
exPress].on
exPress ion
express ion

(action:
(action:
(action:
(action:
(action:
(action:

yield a value)
yield a value)
add)
subtract)
nultiply)
divide)

'*' exPression
'-'expression
'*'exPression,/, expression

Figure 4.5: Sample yacc rule. The SPaM parset is built by yacc

from a complete, formal, specification of the language, similar the

the above. The vertical bar I means 'or'' The parentheses enclose

the actions to be performed when an occurrence of that rule is
found.

The parser can understand self-referencing rules, which makes it a powerful tool for breaking down

comilicated expressions. In the rule of figure 4.5, expressions consist either of literals (ie constants,
.r^riubl"r, or symbols like 'a'), or combinations of smaller expressions' Thus complex program

structures are broken down into manageable pieces.

In the rule offigure 4.5, the mrnber and variable case correspond to actual tokens identified by the

lexical analyser. If the tokens arriving from the lexical analyser do not correspond to any known

rules, the parser will signal the user that a syntax er¡or has occurred.

As ¡ules are successfully matched to the arriving tokens, conesponding program code is u'ritten

to an array maintained by SPaM. This array holds pointers to functions which lviil carry out the

actions specified by the rule (and its matching tokens supplied by the user.)

This array of pointers becornes the 'program' rvhich is executed after the cornpilation process has

been successfully completed.

4.3.3 The Progralrl Execution Unit

Äfter the parsing step, during which the 'compila,tion'actually occurs, the array of function pointers

rvhich now represents the user's program must be'executed.' It is during this execution phase that

the results which the user seeks are generated'

Execution of the 'program'is accomplished by steppiug through the array of function pointers u'hich

was generated during the parsing phase, and calling each one of those functions in turn.

The execution phase of SPaM ernulates a virtual processor. The functiolrs vvhich are caìled from tlie

'program'array represent the object-code instructions of this virtual processor' The 'object code'

reprèsentation of the user's code is generated during the parsing phase.

The nature of the virtual processor is important since it determines how complex arithmetic expres-

sions will be processed. The SPaM virtual processor uses a stack-based architecture[6], which is

very convenient for arithmetic computation (see table 4'1')

The virtual processor stack is used to hold pointers to numeric objects, and argutnents and return-
.l,alues for functions calls. The program for a stack-based processor resembles progratnming languages

such as FORTH. The stack is also called the 'evaluation stack', due to its role in evaluating exPres-

sions. A stack based processor does not ìrave general purpose registers; tìie stack is used instead.

39

Function ABC
Ctn

Pointer to ABC$

Ärguments for ABCQ

Pointer to DEF0

Function DEF
\A¡ritten in C

Arguments for DEFQ

Pointer to GHI0
ln

SPaM Program Àrray

SPaM executes the
compiled program bY
successively calling
the functions in the

Iist created by the
parser

toward the bottom.

40

For example, consider the following text line as the input to the parser

¡=((y+3)*z)

After passing through the parser, the program array will have the contents shown in table 4'1

Table 4.1: An example of the program which the parser creates

This one 'rvould implement the expressiorì ø = ((v + 3) x z¡'

Program Index Operation/Operand Comment

1 PUSH CONSTANT The item from the following array element

is pushed onto the evaluation stack.

2 .) This is an argument to the preceeding in-

struction, and is skipPed.

PUSH VARIABLE The following variable is pushed onto the

evaluation stack.

4 This is an argument to the preceeding in-

struction, and is skipped.

5 ADD Pop two arguments from the evaluation

stack, add them in a manner appropriate

to their type, and push the result back

onto the evaluation stack.

6 PUSH VARIABLE The following variable is pushed onto the

evaluation stack.

7 z This is an argument to the preceeding in-

struction, and is skiPPed.

8 MULTIPLY Pop two arguments from the evaluation

stack, multiply them in a mauner appro-

priate to their types, and push the result

back onto the evaluation stack.

o PUSH VARIABLE The following variable is pushed onto the

evaluation stack.

10 x This is an argument to the preceeding in-

struction, and is skipped.

11 ASSIGN Pop a variable frorn the evaluation stack,

and then pop a value from the stack. As-

sign the value to the variabìe.

12 PRINT Pop one value from the evaluation stack,

and print it to the screen.

13 STOP Halt program execution

4I

The 'program index' value in column 1 of table 4.1 is the eflective 'address' of each program in-

struction. It states where an instruction may be found in the array, and is therefore analogous to

the address in a microprocessor system. The Program .A,rray in figure 4.6 can be considered to have

add¡ess 0 corresponding to the top of the array'

To understand the pseudoprogram in table 4.1, one must remember that SPaM implements a slack

à¿sed virtual processor to execute the pseudo programs. AII fundamental operations of that processor

(ie its assembiy language, as exemplified by PUSI VARIABLE, ADD , MULTIPLY in table 4.1) are stack

operations.

This means that all pseudo-instructions expect to find the correct number of arguments on the

stack when they are called, and all results are placed on the stack. The evaluation stack provides a

supremely simple mechanism for connecting multiple instructions in sequence'

The example of table 4.1 has been somewhat simplified by omitting the actual way in which objects

such as the constant '3' and the variable 'x' are treated. SPaM is an object-oriented system u'hich

manages objects in a linked list. All atoms of the language, be they constants (such as the '3'),

variab-les (such as x,Y,z), or other, are lepresented by objects. An object can be considered as a
,box, contàining some value. The numeric value, and the type of numeric value, can change during

the calculation. Section 4.3.9 further discusses SPaM's internal object types.

Operators, such as the ADD and MULTIPLY operators seen in table 4.1, Process objects. \4/hen called,

these operators pop their requisite number of objects from the evaluation stack, and based on the

lype of the arguments, pe.form the required action. The addition operator, ADD, pops trvo objects

frãm the stack, adds their values, and places the result back on the stack.

Due to the variety of data types found within SPaM, it is possibly to specify arguments of in-

appropriate type, in which case a runtime error rvill be signalled, and the user's program will be

halted.

4.8.4 The Math Function, and Primitive Math Operation Libraries

The math function library implements transcendental and other high level functions, while the

primitive math library contains elementary operations such as *, -, *, / and logical-test operations.

The main difference between the two is that the primitive library performs its operations in the

representation of the arguments, rvhile the math function library performs much of its calculations

in floating point representation.

SPaM uses object oriented prograrn techniques to process its multiple object types. Object oriented

programming aOOP) is a paradigm for software systems in which similar operators (for iustance,

ihe-standarJ*', /,I,- operators) are required to operate on many different classes of objects. The

code which implements the operalion must be capable of recognising arguments of different type,

and adjusting its behaviour accordingly.

SPaM implements many nutneric attributes, as sltown in section 4.2. Numeric va¡iables of any type

may be mixed freely. \\¡here possible, SPaM carries out operations in the same representatjon as

the arguments, and produces a result of in the same representation. For instance, multiplying an

integer by an integer ¡'ields an integer.

If the operands are of diflerent type, SPaM will choose the type most appropriate to represent the

result. For instance, multipìying an complex integer by a real floating-point number yields a colnplex

floating point number.

42

The advantages of operators which operate on diflerent types differently are:

1. The user has control over which representation is used, allowing integer based algorithms (such

as those found on integrated DSP devices) to be simulated'

2. Computation can be sped up. On PCs without floating point accelerators, floating point

calculation is cumbersome. Integer operations provide a way of speeding up such computation'

The numeric representations availabìe within SPaM are summarised in table 4.2. There are several

groups of attributes, with the attributes within each group being mutually exclusive.

All numeric objects have one attribute which determines the numeric representation used within the

object (integer, floating, etc), another attribute determines whether the numeric quantity is real or

compleì, anã yet another dótermines whether the object is a scalar or matrix quantity'

,A,ttribute I{eaning

INTEGER The number is represented as a 16-bit 2's complement integer

LONG The number is represented as a 32-bit 2's complement integer

FLOÄTING The number is represented as a double precision floating-point

number.

REAL The numeric object represents a real quantily

COMPLEX The numeric object represents a complex quantity

SCATAR The numeric object is scalar

MATRIX The numeric object is a matrix

VLM The numeric object is a \/ery Large Matrix (refer to 5'5

STRING .Ihe numeric object is a text string. This attribute alone defines

strings, the above attributes are meaningless in the presence of this

one.

Table 4.2: sPaM numeric object attributes. one attribute from

each group (groups are separaled by a thick line) applies to any

numeric object.

4.3.5 The Graphics LibrarY

The graphics library contains code to manage the SPaM graphic environment, including all of the

graphical display items outlined below.

o CRT Windows.

CRTwindows are designed for displaying waveforrns without any additional information (sucìr

as axis numbering or titling.)

The waveform to be displayed is stored in a matrix variable. The dimensions of the dala

matrix determine how it will be displayed:

43

I. Malrir is 1 x N
In this case, the the X axis represents the index value of the array. The first array

element (eg foo(l)) is displayed on the leftmost side of the window, and the last element

(eg foo(Ñ)i is displayed on the right-hand edge of the window'

The array is first scanned to determine the maximum and minimum value, to allow

the display to be autoscaled (autoscaling can be turned off if desi¡ed') Then the array

"le-eni,
are plotted, with each array element determining the vertical ordinate of the

waveform at that index Point.

2. Mølrix is lttl x N,N +
^[If the matrix is rectangular, and the smaller dimension is greater than 1, then sPaM

assumes that the matrix represents a set of vectors to be plotted in the same rvindow.

SpaM assumes that the smalìer d,irnension is the number of vectors, and that the larger

dimension is tlie length of each of those vectors'

Thus,a3x4matrixwouldbeplottedasasetof3distinctvectotsof4elementseach.
Äutoscaling in this case is performed based ou the value of the first vector in the matrix'

3. Malrix is N x N
If the matrixis square, then each row is assumed to be a data vector.

Figure 4.7: A' typical CRTWindow

o Graph Windows'

The grapli window is similar to the CRTrvindow, the difference being that a grap-ä rvindorv is

divided into 2 parts. O¡e part is used for u,aveform display, and behaves in exactly the same

manner as the CRT window.

The remaining area of the graph window is dedicated to the display of axis labels and numbe¡-

ing. By default, the X-axis is numbered according to the index position of the elemelrt being

examined. The user may specify X-axis start and end values, which SPaM uses to calculate

the value for any intermediate index position in the array'

The y-axis is numbered simply according to the values in the array elements' The user rnay

perform any desired algebra on these values before dispìaying them to get the required 'units'

of display.

. Argand'Windows'
The CRT and grapå 'r,r,indorvs exist specifically to display one dimensional dafa, eg a signal

the amplitude of rvhich vanies over time, sampìed at some rate'

The argand.windolr,exists to display two dimensional data. The data is displayed on a complex

plane, ánd so the data must be cornplex. The real part is dispÌayed as an X-coordinate, while

the imaginary part is displayed as the Y-coordìnate.

g

,l'fl ri¡ ,I lI Å ¡lìltilil,iln¡{ri¡¡ri

44

log

-68

¿B

Figure 4.8: A typical graPå window

Figure 4.9: A typical argand window

z

\

45

4.9.6 The Input Event Filter

SpaM accepts user input from the keyboard, and the ¡nouse. To make the mouse and keyboard

interchangeable, all input events (an input event is any operation which the user uray do u'ith the

keyboard or mouse, .u"h .. pressing a key or a button) pass through a software 'filter' where they

are converted into a single stream which SPaM can process. This allows the keyboard to take the

place of the mouse, and vice versa, without additional code being required'

The argand window allows polar diagrams to be displayed by SPaM (though the polar coor-

dinates must be converted to rectangular coordinates')

o Buttons.
A, button is a rectangular window on the screen designed to be 'pressed' by the user, in the

same way as a physiál push-button switch would be pressed. The user 'presses' a buúúon by

clicking the left-mouse-button (LN{B) over it'

When a buttonis activated by clicking on it with the LMB, SPaM looks for a handler rvith the

same name as the button. Ã handler is analogous to a user- defined function, or subroutine'

Figure 4.10: A typical button and nume¡jc.

SpaM will execute the code inlhe handter corresponding to the buúúon. This allos's the user

to create screen objects which can directly cause the execution of specific code nroduìes.

o Nurnerics.
A nume¡jc is a window dedicated to the task of displaying the value of a scalar va¡iable.

whereas the cRT, graph, and argand windows display vector or mat¡ix data, the numeric

displays scalar data.

Single input stream
to SPaM

The input events generated by the user include

l'

¡ natI.

,J-JrJ-JrJ.

n
àec8.5

I{eyboard

Input Filter

I4louse

. NormaÌ keyboard character inPut

46

o Keyboard ABORT signal (ESC' CTRL-BRK, CTRL-C)

o l\llouse LEFT button, clicking on buÚúon windows'

o I\{ouse À{IDDLE button, used to make measurements on waveforms in CR? windorvs'

o l\{ouse RIGHT button, used to pop up menus'

By combining input events into a single stream, the mouse and keyboard can be made equivaìent

4.9.7 The GI Hardware Control Library

A library of commands exists for communicating vvith the Generalised Instrument hardu'are. The

library contains functions to perform the following:

o Download and upload data to and from the GI hardware'

o Dorvnload DSP program code from host to GI.

o Control the execution state of the signal processor in the GI

o Communicate with the GI onboard monitor softrvare'

4.3.8 Online HelP

SpaM has an onìine help facility which may be called at any time from rvithin SPaM.

The text database is external to SPaM, allowing it to grow without being limited by system memory

4.3.9 SPaM as an Object-Oriented Environment

The diversity of data types which are encountered in signal processing is considerable, rvith the main

structures bling scalars, vectors, and matrices. Additional variation exists in the choices of real or

complex data, and the form of the numeric representation (see 4'2)'

A simplistic programming rnethodology rvould dictate that those types of data most likely to be

encountered be adopted and the ¡est discarded, despite their usefullness.

SpaM implements most operations directly on the various colnbinations of argument types. \\/ithiu
SpaM, thlre are libra¡ies of code which operate, at the user level, not on numbers or vectors, but on

objects. An object is an abstract entity which rnay take the form of a constant' variable, or graphical

entity (such as a CRT window.)

\\/hen the lexical analyser scans the user's program, it creates new objects to represent tokens rvhich

it does not understand. In all cases (barring spelling mistakes), these objects vvill refer to some user

defined entity, for instance a variable or a function. Pointers to these objects are ernbedded in tìie
program generated bY the Parser.

The parser does not, horvever, type-check the use of objects. This is setrsible, since in most cases

the objects will be undefined until assigned a value in some part of the user's p¡oglam. The benefit

resulting from not type checking at the parse stage is tha,t objects can change type on-the-fly during

the execution of aprogram. For example, lnatrices can change dimension during program execution,

as shown belorv:

47

x=1;
print x
x=eye(3);
print x
x=[O,X;x,0];

% x is now a scala¡ of value 1

% x is nolr a 3x3 identitY matrix

% build a ne'n ¡ratrix which looks like

newx=

In the above example, the variable x changes type from scalar to 3 x 3 matrix to 6 x 4 matrix.

Variables may change type at any time rvithout problem if the operations carried out on those

variables are compatible with all of the forms which the variable takes.

Though type checking is not done at compile (parse) time, it is certainly performed at run time. Alì

library code within SÞaM checks the types of the arguments on which it is about to operate. Based

on thlse types, the code chooses the most appropriate action. This action may include aborting

program execution if the arguments are quite incompatible'

Consider the addition '{' operation as an example of how SPaM treats its arguments.

4.4 Control Processor Software

The control processor (a 68000 family device) exists within the GI hardware to control the operation

of the GI hrrd*u.. system, and to facilitate communication between it and the host computer.

The softl,r,are executed by the 68000 is fixed in EPROM. This ensures that on power-uP, the GI

po\ïers up in a known state, allowing the host to communicate with it immediateìy. The control

pro."rror- is tlie only module of the GI system rvhich has a progran fixed in hardware (though it
may be updated by changing EPROI\4s.)

The coutrol faciìities provided by the 68000 include

1. Direct control of the TN{S320C25 RESUT and E-OLD signals'

2. N{onitoring of TMS320C25 program execution to determine when DSP algorithms have corn-

pleted execution.

3. Bidirectional transfer of data words from host to TI\{S320C25 data memory.

4. Bidirectional transfer of program words from host to TMS320C25 plogram nremory'

5. Di¡ect read and write operations to TÀ4S320C25 I/O ports'

Communication between the host and the control processor is (at tirne of writing) via an RS232

ìink. Communication over the RS232 link is accompìished using a custom protocol. The protocol

is packet based, and has error-detection and correction provisions. A typical cotnmand sequeuce is

shou'n in figure 6.2.

,T

f,
'/,

,/,

v,
,/,

f,

[0010]
[0001]

[0100]

[1000]
[0100]
[0010]

48

a z=r+y
scalar scalar scalar z - r+y

scalar uìatrix matrix zij = Yij + r'

matrix scalar matrix zij = tij + Y

matrix matrix If ¿ and y are of the same dimension, then

matrix zij = r;j + Aii
othe¡wise an error is signalled and program execution is stopped'

¡eal real realz=æ*y

real complex complex (tn * itt) = (Yn + x) + iVt

complex real compìex (rn-l jr¡) = (cn * y) * ix¡

complex complex complex (tn * itt) = (tn * gn) * i(rt + Ut)

integer integer z is integer

integer float z is floating point

float integer z is floating point

float float z is floating point

Ta,ble 4.3: Example of type-dependent addition

Backolane
Contiol Bus

Backplane
Data Bus

Backolane
Addri:ss Bus

Figure 4.11: The GI Control Processor Software

The link may also be used to dou,nloa,d nerv controì processor softrvare using tr{otorola S-record

format. This facility is for deveìoprnent aud is not used within tlie GI system under nortlal circum-

stances.

Co¡rmand
Interpreter

Host Link
Software

Data Packet
Trans/receive

S-Record
Downloa,d

ROI\4
Code

Library

Downloadable
Code

Library

49

As shown in figure 4.11, the control processor receiv the host via the RS232

link, and contiols the úackplane bus according to I commands wilì order

the control processor to change the state of TMS]2 to transfer data to and

from the TÀ{S320C25 address spaces.

4.5 DSP Software

At the core of the Generalised Instrument lies the signal processor) At the tirne of u'riting a

TMS320C25 device. The great computational rate achieved by this device (and compa¡able de-

vices from other manufacturers), combined with its self-contained nature aud low cost has made the

GI realisable with reasonably little circuitry.

The GI implementation of the Tlr{S320C25 provides the signal processor with full address spaces of

alterable RAM. Therefore, no executable DSP code exists in the GI when the machine is powered

up. All DSP code is downloaded from the host computer'

This scheme provides maximum flexibility since

o It is envisioned that many different DSP code modules will be written in the future, making a

host-based library necessary to ensure that the latest version of DSP code is available.

o The user can modify existing DSP code to suit her own needs. Source code to DSP code

modules will normally be available, allorting customisation'

o Code which may be too large to fit into the address space of the TMS320 C25 can be split into

multiple modules which can be do'r'r'nloaded and executed in turn.

o Efficient DSP software deveÌopment requires the fastest turn-around time on the edit-compiìe-

test sequence, which the downloading of code permits.

Despite these advantages, there are situations (such as embedded DSP) u'here DSP algorithms must

be available without Ùeing supplied by the host cornputer. Though the GI does not support the

inclusion of non- volatile.lo..g" in tbe DSP program address space) the DSP code may be stored in

the control processor (68000) EPROI\4s, and the control processor may be programned to,trausfer

the DSp code to the TI{S320 C25 at powerup. This is an example of a simple behaviour modification

which would allow the GI to be used in a different rvay, and may be implemented at some future

time.

50

l

Download TMS32 Code
TMS32O

Deassert TMS320 HOLD'/RESET'

andS320S
performs

maln
processrng ls p

sam

TMS320 signals comPletion

Assert TMS320 HOLD'/RESET'
Tlansfer results to host'

I

Figure 4.12: DSP code execution sequence

There are several broad categories of DSP code which have been written for the GI

1. Sample Acquisition.
With the prototype analogue interface module, all signal sampling is performed under software

control by the TMS320Ci5 itself, at a rate determined by the DSP's onboard timer.

Sampling code must read sample values from A/D convetters, and store them as arrays of

values in TMS320C25 data merrory.

2. Preprocessing
This includes windowing functions, and the subtra,ction of DC levels from signals.

3. Processing

Examples of processing implemented so far include Fast- Fourier Transfortn, correlation, and

transfer function analYsis [4].

4. Postprocessing
Postprocessing is performed to reduce the rvorkload of the host.

An example is the FFT algorithm, which produces its results as rectangular complex numbers

(though i6ir ir a result of the implementation). To display a meaningfuìl frequency spectrum

to the user, there are two choices available:

O'e is to upload the real and irnaginary data to the host, where the magnitude and pìrase are

calculated. For an N- point FFT, this requires the t¡ansfer of 2(Nl2) = N words to the l]ost

(since half of the spectrum is redundant for a real signal')

The second alternative is to cause the signal processor, (which is a faster mathematical pro-

cessor than the host, after all) to calculate the magnitude. This would require only N/2 rvords

to be transferred to the host, thus saving time in both computation and trausfer.

Clearly the second choice is preferable. This is an example of postprocessing the data rvitliin

the GI to reduce workload on the host, thus irnproving the response time of the instrutnent as

a whole.)

51

Foll P code, the system llust alert the host computer that the ¡esults of

the I¡ the present implementation this signalìing is done througlr tlre

inte The host then initiates a command to upload that data into an array

variable.

4.6 Application Level Software

¡l.om the beginning, the aim of the Generalised Instrument project has been to produce a sys-

lern which could emulate other test instruments, or serve as a testbed to create completely new

instruments,

The preceeding discussion has addressed the hardware and softvvare issues of building such a system,

but it has not-brought the ideas together. This section examines how the system can be customised

and controlled by the user's program script to achieve tlie desired function.

In orde¡ for the GI to function successfully as a test instrument, several things must be accomplished'

1. The hardware of the GI must be rnade compatible with the signals to be examined. \\/e will

assume that the GI is limited to signals rvhich are compatible with its input range.

2. Appropriate DSP code must be written to perform the necessary sampling and processing of

the signal data.

3. A SPaM script must be written rT'hich does the following:

o Sets up the graphics screen with all necessary lt'aveform dispìay windows, buttons, and

numerics to provide control of the virtual instrument'

o Sends the necessary DSP code to the GI, and causes its execution.

o Downloads any necessary paratneters to the GI (eg sampling rate, gains, etc)'

o Causes the DSP to execute the code, and waits for the DSP to signal completion of

execution.

o uploads the processed data from the GI, and displays it to the user'

we will now examine the SPaM script in figure 4.14 in more detail.

c Lines 7-6

This is a comment field. The 'To' character marks the beginning of a comment. All characters

between the 'To' and the end of the text line are ignored'

The comments at the beginning of a file are of special significance. If the user were to type:

help spectrum

then SPaM would look for a disk file called SPECTRUM.I{. If such a file exists, then the comment

field at its beginning is printed. This provides a neans of putting accessible docurnentation

into script files.

o Line 7

This line sets the PC screen to display graphics.

c Lines 9-15

The variables which are used in the script are initialised here. Initialising theln ensures that

there will be some default waveforms displayed when the script is run.

52

nsole ÙJinåou
vavefotrr,r and tÌ¡e sPectnun of tlre

(x/i) + cos(3*s</i)
of i Þc c I i cki ngr on tl¡e gedge ts '

I to t}re er'reg index at an!, Point'
hea¡r 186688

func t i onYou

9ou
The
free
>r

et.e I ooki ngr at tÌ¡e
9=sln

Ëa!, verg tÌ¡e välue
ualue of x is equa

spece L999' fnee

c

iìagn
I¡oI.tnai t

-ø.øL

I

IP}¡aSen¡ragl og
I nc;

åec

-5

Figure 4.13: Application generated graphics screen

53

1

2

3
4
5

6
7
I
9

10
11

L2
13
t4
15
16
77
18
19
20
2L
22
23
24
25
26
27
2A

29
30
31
32
33
34
35
50
37

39
40
4l
42
43
44
45
46
47
48
49
50
51
çt

54
55
56
57
58
<o

60
61
62

t

't

t,
,T

This scriPt d€monstratos thb6 use of CRT and Graph rindors'
as cell ès Buttona for control', and fumerics for tho display
of scalar quantities'

George Vokalek, 1990

graphic
T
x=O:127 i

i=l . O;

y=sin(x/i) + cos(3*x/i) ;

z=ftr(y);
ma6n = zlt ,L:64);
maglog = 2o*1og(naEF),/fog(fo) ;

phasen = z[:,65:128];

auto crt y 200 100
auto traph magn 3OO 100

set label "magn" "Freq" "AnPlitude"
set xaxis "magn" 0 1OO

auto graph maglog 3OO 10O

set labeI "ma81o8" "Freqr' ¡'DB.

set xaxis "naglog" 0 100

auto crt Phasen 200 100

auto nunìeric i 40 40

auto button "inc" 50 50
auto button
auto button "Portrait" lOO 50

handler portrait
post er ("magn")
end

T
handler inc

i=i+1 ;

y=sin(x/i) + cos(3+x/i) ;

z=fft(y);
ma6n = z [: ,1 :64] ;

phasen = z [: ,65:128] ;

maglog = 2O*1o8(mag¡r)/tog(10) ;

update
end

handler dec
ì=i-l .

if(i==0.0)
i=1 . O;

Print "cant decrement i belon
end

y=sin(x/i) + cos(3*x/i) ;

z=ftr(y);
ma6n = zl: ,L:64);
phasen = z[:,65:128];
maglog = 2O+1o8(magF)/1og(10) ;

uPdat e
end

/. sot graphic disPlaY mode

7. set some initial va¡iable values
,1,

7. generate a signal saveform
7. calculate the FFT of the signal
% extract tho magnitude of the FFT

7. calculate the LOGO of magnitude
7. extrà.ct tho phase of the FFT

7. n¡ake a displaY rindor for Y

'l one for nagn

% set the axis numbering
7. display maSlog

% set axis nunbering
T nake rindor for phasen

7. display the value of i

7. make a screen BUTTOf, called IIC
7. another called DEC

'/. and another called P0RTRAIT

7. do this code chen PORTRAIT

7. button is dePressed.

7. do this code chen IXC button
7. is depressed.
7. Force recalculation of all
7. data in accordance cith the
7. nec value of i.

7. do this code chen DEC button
7. is depressed.
7. Do not let i be decremented to
7. a value less than 1.

T Force recalculation of all data
'/. using the nec value of i.

10

print "You are Lookin6 at the caveform and the sPectrum of the function"
print" Y=sin(x/i)+cos(3+x/i)"
print "You nay vary the valu€ of i by clicking on the Sadgets "'print "The value of x is equal to th€ array index at any Point'"

Figure 4.14: AppÌication script exampìe' The line nunlbers are not
part of the script: they are present only for ease of reading in this

listing.

54

Install Button
Handlers

Declare Screen

Objects

Execute from
File

tspectrum,m'

Wait for next

user command

User clicks

Wait for next

event user generated event

Button'DEC

Figure 4.15: Application script flow chart

o Lines 17-29

These lines contain the declarations for the graphic display objects which are to be present on

the screen. The objects which a¡e used in this script include:

1. CRT Window
CR? Windows display waveforms without axis labelling'

2. Graph'Window
Gruph \&indows display waveforms with axis labelling'

3. Buttons
Buttons are similar to real pushbutton switches. When the user clicks on one with the

mouse, a corresponding .handJer (defined in the user's script) is executed.

4. Numerics
A numeric is a window which displays a scalar numeric value, unlike graph and CRT

windows which display matrix values.

For further information about these objects, refer to section 4'3'5'

c Lines 37-33

A handler is a subroutine. 4/hen the user clicks a button on the graphics screen, SPaM

checkswhether ahandlerof thesamenamehasbeendefinedbytheuser. If so,thathandìer

is executed immediately as a subroutine.

These three lines define a handler called portrait. When the buúúon called portrait is clicked

by the user, this handler is executed. Its effect is to expand the grapà window called nagn to

full screen.

o Lines 35-43

The handler called inc increments the value of variable i, a simple integer value, and recal-

culates the main waveform arrays. The wavefor¡n used in this exampìe is generated according

to the formula:

User
generated

Execute
declared as

handler called
,INC'Button 'INC'

User clicks
Execute
declared as

handler called
,DEC'

55

.t 3x
9=sln-*cos-

so that increasing the value of i increases the wavelength of the observed waveform

o Lines 45-57

This åandler, called dec, is similar to inc, described above, except that it deoelnents the

value of variable i. Lines 43-46 contain a conditional statement to ensure that the value of i
does not fall below 1.

o Lines 59-62

The prinú statement prints the following text in the console window, as can be seen in figure

4.13

Examples of controlling the GI hardware from a script file cau be found in section 6.3.

A simplified flowchart of the script can be seen in figure 4.15. The script sets up the display scleetl

with tie programmed objects, installs the handlers for the screen buttons, and then waits for the

user's next command. The user may continue to type commands in the same way as before the script

'was executed. If the user clicks a screen button, the handler for that button will be executed, and

control will be returned to the user. Since the script contains no loops, SPaM will always return to

wait for the next user command after any part of the script is executed.

56

Chapter 5

SPaM Reference Information

SpaM is the latest in a set of signal processing packages u'hich have evolved over recent years in

the Department of Electrical & Electronic Engineering at the University of Adelaide.

Some of these packages were stand-alone software systems, for experimenting with signal processing,

rvhile others wlre designed also to control programmable signal processing hardware'

The S paM software system has followed in the footsteps of a package called Sigproc[5], an adaptationl

of which was used to control the Generalised Instrument. The Generalised Instrutnent is a pro-

grammable signal processing 'box' which together with SPaM, emulates test instruments.

SPaM is a self-contained package for generating, processing' and displaying data. It has been

created for use in signal processing work, but its use is in no way restricted to that field alone.

SpaM features a built in algebraic language, which should be familiar to users of the popular

I{atlab package. The programming language, discussed in section 5.2, allows the user to irnplement

algorithms not hard-coded into SPaM.

As well as providing a responsive command line environrnent, SPaM provides a full-screen graphical

user interface, with rvhicú th" ur". can interact using keyboard and mouse. This screen may be used

to display and manipulate waveforms in a more intuitive manner, and is ideally suited for use lvith

p.ogru.r,'rrruble hardware such as the Generalised Instrument. The graphical environmeDt is dìscussed

in section 5.3.

5.1 SPaM : Philosophy of Design

In this section some of the important design decisions behind SPaM will be discussed. Great changes

have occurred in the style of iþ" lSp softr¡,are which the author has experienced, almost all of whicli

has been at the top level, the so called'user interface''

The algorithms of DSP itseìf remain similar or identical a,cross implementations, but the rvay the

user interacts with those algoritìrms is of profound significance in determining whether a package

rvill be pleasant to use, or a burden. The ideal package would be so intuitive tliat the user can

concentra,te on signal processing and not the vagaries of a computer program.

a seb of Fortran signal Processing
Lane in the C language. The ìatter

I sig:proc was originated by Prof.R.E.Bogner at the Univers.ity of Adelaide as

p.og.Ã.. The same name was given to a single DSP program written by Richæd
** ttr" basis for prototype software in the GI project, before SPaM was writLen

57

5.1.1 The User Interface

The ,user interface' is that part of the software with which the user must inte¡act directly' It may

simply be a command line, or a graphics screen with icons symbolising functions'

While the next section espouses the virtues of the graphical, intuitive, user interface, it is worth

remembering that sPaM'actually has both a graphical and command-line user interface' The

former is most suitable for novice users and fixed applications, but the latter is essential fo¡ wizards

who wish to access fully the signal processing algorithms lurking within the machine'

\Mhat came before, and what was wrong with it'

Earlie¡ signal processing packages with which the author has had experience liad all consisted of a

.orrr*und interpreter .tli" int".f.ce. Such programs accept a textual command, and respond to it

immediately. The command may instruct the program to generate a sinusoid, transform a signal'

or any one of many possible activities. Command words are followed on the command line by

arguments, for example the frequency of the sine wave to be generated'

,A.fter the program has finished its task, it asks the user for the next command' and so on' Such

systems ale imperatioe, and break signal processing tasks dor,'n into a sequence of 'orders''

In many cases, especially for teaching purposes, such an interface is quite reasonable, since the

number of commands required is often small, errors are reported and acted on immediately, and the

individual commands can question the user further if they require more information than was given

on the command ìine.

The main disadvantage of command line interfaces is that the user is required to read documentatioD,

and create a logical ."qr"rr." of actions to get the desired result. Instead of saying 'I lvant to see

the spectrum oith" .ignul on channel 2', the user has to think 'acquire from channel 2'- 'spectrum

analyse result' - 'displarv spectrurn' etc.

Another disadvantage of imperative interfaces is that they have no slruclure. A sequence of com-

mands in an imperative interface is executed starting at the top, and ending at the bottont (assurnirtg

no ertors o..nr.¡ There is no way to modify the flow of execution of the 'program'.

Such ,imperative' interfaces have been dominant in the computer industry until recently. ìVitness

the MS-DOS user interface prevalent on most PCs, and the interfaces of their predecessors. Only

since the mid 1gg0's have user interfaces steered toward a more symbolic and intuitive approach.

Instrumental in popularising such interfaces was the Apple Maclntosh. Since then, similar interfaces

have appeared on personal
-computers

and workstations. As the display and processing capabilities

of computers improve' such interfaces will become dominant'

SpaM adopts the ,WIMP'2 environment of these modern GUIs (Graphical User Interfaces)' though

it copies náne in detail. One of the pìeasant features of the GUIs available today is that though

they may be numerous, and each having specific features, they all obey enough comnron rules of

behaviour to enable a novice user to learn the interface quickly (usually by experimenting.)

Old-style signal processing packages like Sigproc were akin to Ir{S-DOS. Unless the user reads a

manual, she simply do", nãf know.r,r,hat commands are available. A \\/II'IP interface alleviates tìris

by allowing the aulhor of software to place icons (gadgets, menus, etc) on the screen rT'hich represent

a core of possible activities, allowing the user to start irnmediately.

If the programmer is sufficie¡tly careful , all the user's required activities may be directly represented

2\ ¡indows, Icons, Mouse, Pull-dotvn menus - a modem paradigm of user interface des.i5n.

58

by objects on the screen. In this way the computer becomes a machine with a finite repertoire of

actions. It may u" .uprut" of other *tion., but they are irrelevant to the user, and may be hidden

from her sight.

Potential user,s are often discouraged when presented with a manual for a system (be it software

or hardware), where there is far more detail than is required to solve the problem at hand (the

author certa'inly is.) A WIMP style interface largely removes the mental anguish associated with

the realisation that there is mucú studying to be done before even the simplest problems can be

solved.

The SPaM lJser Interface

As mentioned in the previous section, the SPaM user interface consists of a command-line interface

and a GUL

The command-line interface is loosely modelled on Matlab' a cotnmercial numerical mathematics

package. Matlab is widely used, sincã it is very convenient rical algorithms

without detailed p.ogrurrr-ing. Many DSP algorithms exi age (or may be

quickly implementedi and -ãny of iis features have been M to allow the

"x""rrtior,
áf thor" p.ógtt-. (with minor changes, if any')

SpaM's Graphical User Interface (GUI) is loosely consistent with commercial GUIs' It is designed to

be used in conjunction with r *ooi" (túough all mouse actions can be emulated from the keyboard')

The Comrnand Line Interface

The Command Line Interface (CLI) simply presents a pronrpt to the user, and waits for the user

to type in a line of text. The lìne of text is analysed (called 'parsing'), and if it is a syntactically

"o..".t (ie the right types of words appear in the correct places) then the appropriate actions are

carried out.

Program executes
until it exits
normaì.Iy, or the
user aborts.

Execution finishes

Figure 5.1: SPaM execution flow

It is worth emphasising at this stage tha.t there are two phases in the response of SPaM to commands'

The first phusl is the Jompilatioriphase, where the user's input is analysed for correctness according

or

Compilation

Execution

59

to rules of grammar defined for SPaM, while the second is the execution phase, where the actions

specified by the user are actually executed'

In this regard, SpaM differs from command interpreters such as Sigproc, which begin execution

of commands before all of the user's input had been analysed. This allowed the program code

for individual commands to carry out analysis of their own atguments. In some cases this was an

advantage, since optional qualifiers could be defined, and missing arguments prompted for' If SPaM

finds an-error in its input, ìt .ignuls the user to correct the error and aborts the compilation process'

The user must correct the error before resubmitting her program source to SPaM'

The disadvantage of an interpreter such as Sigproc is the difÊculty (for the programmer) in efficiently

processing .o-pl"* elements such as numeric expressions and loops. A large amount of text scanning

i, ,"qrrir"á to interpret such structures, and this processing must be repeated each time the structure

is encountered as the program runs. SPaM performs its interpreting (generally called parsing) only

once. During the paìsing step, it constructs a more concise and efficient representation of the

algorithm to ie p"rlor*"ã. Thi. ne\ü representation is then 'run' to generate the desired results.

The commands can be either accepted from the keyboard, or they can be stored in files. The

commands in a file may be executeã by sirnply typing the name of the file' The file must have an

extension of , . n, , so that to execute the commancls in file 'f oo . m, , you would type 'f oo ' . The file
,foo.n, is simply a text file of commands, ananged just as if they we¡e to be typed directly into

SPaM.

Continue with parsing.

Figure 5.2: Execution of cotntnands from scripts

Files of commands may be nested to a depth of fiue. That is, one file can cause commands from

another file to be compiled as part of its own compilation'

Once a program is executing, the CLI u,ill not respond until that Program has completed execution'
you will know when this happens because a new prompt will be printed to lhe screen.

To abort the execution of a program, the user may Press CTRL-C (the CTRL and C keys simulta-

neously.), the ESC key, or the CTRL-BRK key.

For more detailed information about the commands which can be used from the CLI, see section

5.6.

User types foo<CR>

If not found, scan
specified disk paths

for file called
F00.l{

If found, get future
input from that file.

SPaM checks its
internal lists of

Variables
Functions
Handlers
Keywords

If found, continue

60

User
foo

File fooS

loo4

File foo4File foo2

foo3

foo

fool

File fool

1oo2

User initiates activity by typing name

offirst script (foo).

Scipts may call each other up to a depth
of 5.

Figure 5.3: Nesting of script files

The Graphical User Interface

To allow simulated instruments to be created on the PC screen, and to allow the display of infor-

mation in flexible manner, SPaM has a versatile Graphical User Interface (GUI).

The GUI allows the user to manipulate objects, and cause actions, iu a very intuitive way. The GUI

is designed to be used with a ¡louse, so that many actions simply become a matter of 'point-and-

shoot'.

The reduction in workload for a casual user will be enormous, since applications may be prepared

which have all options easily visible on screen, and require little or no documentation to be read.

In its elemental state, the GUI provides the following functions:

o A mouse pointer or cutsor.

The pointer may be moved by moving the mouse actoss the desktop. It is important to

remember that the mouse behaves differentìy u'hen positioned over different cìasses of object.

These objects are summarised in table 5.1.

o Pop-up menus.

If the mouse is positioned over the background (brickwork pattern), and the right-mouse-

button (RMB) is depressed and held, then a pop-up menu will appear'

This particular menu is the top-level lnenu. It allows you to create new objects, and also to

select actions which aflect the whole screen.

Once you have created some objects, different menus u'ill appear depending over which object

you have the pointer positioned, and those menus rvill affect only the object over rvhich the

mouse pointer is positioned.

\/arious classes of objects may then be added to display screen to perform specific operations, as

listed in table 5.1. Once created, screen objects may be rnanipulated by the user in various ways) as

described in section 5.3.5.

5.2 SPaM Programming Language

The SPaM programming language is a simple language, designed rnainly for the rapid u'riting of

mathematical expressions and procedures. It is based loosely on lt{atlab, but also closely resembìes

BASIC.

61

buttons Buttons are displayed on the screen as a box which has the appear-

ance of an electrical pushbutton switch. when the user positions

the mouse pointer over the button and clicks the left-mouse-button'

spaM will search its internal lists for a user-defined handler (see

section 5.2.6 and execute the code defined in that handler'

In this way, simple click actions of the mouse can cause prepro-

grammed events to occur within SPaM and the GI'

numerrcs A. numeric is a window on the scteen whose purpose is to display

the value of a scalar variable.

CRT A, CRT is a window whose purpose is to display the value of a

vector or matrix variable as a two dimensional graph'

L CRT is analogous to a graph window, except that a grap'h win-

dow displays axis titles and numbering, u'hereas a CRT window

does not.

The xaxis of a CRT window represents the index value into the ar-

ray, while the vertical axis represents the value of the array element

at that particular index value.

If the variable being displayed in a CRT or graph rvindow is a

matrix, it is displayed as a collection of vectors of data, with each

vector being a separate trace in the window. The longer dimension

of the rnatrix is assumed to define the length of the vectors, with

the shorter di¡nension defining the nur¡ber of vectors'

graph A graph window, like a CRTwindow, can be opened to display the

value of a vector o¡ matrix as a two dimensionaì graph' A graph

has other properties, such as axis labels, and axis numbering'

argand \\¡hereas the cRT and graph rvindows display the values of real

vectors and matrices, the argand diagram is designed to display

the values of comPlex vectors.

The argand windo'rv occupies a region of the complex plane (hence

it is called an Argand diagram). Each complex number in the

vector being displayed is plotted as a point on the complex plane'

Points from consecutive array elements a¡e connected by lines'

Table 5.1: SPaM graphical screen objects

SPaM's essential features include

o No variable declarations'

Normal3 variables need not be declared. They are simply used as required. Variables can be

of one of several diflerent types, as detailed in the following pages.

The type of a variable is checked each time an operation is to be performed on it, and if a

method for handling that type exists, then the operation proceeds normally'

3some special variables, such as VLMs, do need to be declared

62

See section 5.2.3.

o Multiple numeric types.

Three base numeric types are supported: 16-bit integers, 32-bit integers, and double-precision

floating point numb"... rit" integer types are present to allow easy interfacing of SPaM to

integer signal processors, without the need for explicit conversions to take place.

See section 5.2.3

o Real and Cornplex numbers.

Complex numbers are fully supported by SPaM (except in most transcendental functions)'

By dãfault, the variable , j, has the value of 1/--1, so that a complex number 3+ i4 is formed

bytyping3 + j*4.

See section 5.2.3.

o Scalar and Matrix quantities.

SpaM allows scalar and matrix quantities to be easily defrned and used. Vector quantities

are simply a trivial case of a matrix (having one row and many columtls, or vice versa.)

Most mathematical operations operate directly on mat¡ix data as easily as scalar data.

Assignment of individual elements of a matrix are allowed, as are assignrnents of regions within

u -ut.i*. Portions of a matrix, as defined by ranges of rows and columns' may be extracted'

Matrices can be as large as memory wiìl allow, and larger matrices still (called Vltr4s) may

reside on disk.

See sections 5.2.3,5.5

o Execution flow control.

Statements may simply be executed one after the other, or loops constructed. SPaM supports

the following loop constructs: GOTo, LIHILE..., FoR..., IF...THEI{'..ELSE....

See section 5.2.4.

. Conditional tests.

Operators such as (,) , (= ,)= ,==, ! = are available for testing of numeric quantities. These tests

can be used iu conjunction with the tlHILE. . . and IF. . . staien-ients to cout¡ol the execution

of the user's program.

Refer to section 5.2.4

o User defined functions.

The user may define her own functions. The functions may have any number of arguments,

and return any number of results'

The variables used u,ithin a user-defined function are all local. That is, they a¡e not visible

to other parts of the program, and assignments to these interual variables u'ill not affect tire

values of similarly named variables in otlier parts of the program.

The only way to get values into a user-defined function is to pass them as arguments. The

only way to get values out of a function is to return them as results.

See section 5.2.5.

o User defined handlers.

A'handler, is akin to a user-defined function except that it takes no arguments (ever)' and

returns no results. Handlers are designed to allow the user to implement often used code only

once, and from then on to call that code with a single word (the handler's name.)

Also unlike a user-defined function, a handler has no local variables. It has full access to all

of the variables of the block in which it was compiìed'

63

If the declaration of the handler was part of the mainbody of the program, then the variables

which the handler access will be the (globally accessible) variables of the main prograrn'

If, however, the handler was decìared within a user-defined function, the variables whicli it is

uúl" to access will be those local variables of the user-defined function.

See section 5.2.6.

o Built-in functions.

SpaM includes a set of built-in functions for numeric computation, graphic display control,

and communication with the Generalised Instrument hardware

See sections 5.6.4, 5.6.3, 5.6.2'

o Loading and Saving Variables.

Variables may be loaded from, and saved to, disk. They are stored in a readable ASCII format,

rvhich allows the user to prepare files of data outside SPaM, and allou's other prograrns to

interface to SPaM via disk files.

See section 5.4

o Externally defined text editor.

SpaM allows you to call an external text editor from within it, so that you can edit program

scripts without leaving sPaM (thus preserving your environment and variables.)

The name of the editor is fixed by an environment variable, and any small text edito¡ can be

used. The author recommends the shareware editor QEDIT'

See section 5.2.2.

o Shelling to DOS.

SpaM allows the user to drop i¡to DOS to carry out any operations lvhich are conpatìble

with the reduced memory .uuitrbl" in such a situation. On completing her operations, the

user can return to Spalri by typing ,exit,. The SPaM environment and variables will be

restored to its Previous state.

See section 5.2.7

o Communication to Generalised Instrument hardware'

SpaM includes multiple functions to allow the transfer of data to and from the GI box, and

other functions control the state ofthe signal processor in the GI'

A te¡minal mode is also impìemented to allow direct communication to the GIs onboard

monitor, for debugging of signal processing code'

5.2.L General Rules

The follor¡,ing are general rules rvhich rnust be obse¡ved when using SPaM

o SPaM is case sensitive. Äll keyrvords must be in lower case'

o Variable names must begin with an alphabetic cìlaracters (a-2, A-Z), but rnay also contain

numeric digits in the ¡emaining body of the variable name'

o Variable nalrìes rnay not be the same as any of SPaM's reserved .rvords, rvhich are Ìisted in

section 5.6.1.

o User defined function and handler names may not be the saEle as any of SPaM's reserved

words. The set of reserved words are listed in section 5'6'1'

64

o Expressions separated by a space may be concatenated. For instance, the character sequence " 1

-1', (where a space exists belween the minus sign and the preceeding digit) will be interpreted

as tùe expression 1- 1 which evaluates to zero. To ensure correct separation, use a collllna.

This is especialìy important in matrix and vector assignments'

o Variable assignments such as 'r = 3'will cause the value of ¿ to be echoed to the screen unless

the assignmÃt i, foUo*ed by a semicolon, eg't - 3;', in which case nothing is printed to the

screen.

5.2.2 SPaM Entering Program Text : Script Files

The user interacts with SPaM by typing in program statements.. SPaM compiles one statement at

a time, and executes it. A statement can consist of an expression, in which case SPaM will return

a numeric result once the code which represents the expression is executed, or a command u'liich

causes SPaM to change some aspect of the system.

It would be tedious in practice if the user had to type in commands from the keyboard, and thus

SPaM has the ability to execute commandsfrom disk based files, called' scriptfiles. A script file is

simply a text file written by the user using a text editor or word processor, which contains program

text in the same form as the user would type to the keyboard. Unlike keyboard input, SPaM

compiles the entire text of a script frle before it begins executing the code.

The user can create a script from within SPaM by calling an external editor. SPaM allows this by

simply typing

edit

at which point SPaM shells to the user defined external text editor. The default editor is the share-

ware QEDIT.EXE program, but the default can be changed by modifying the SPAHEDIT environment

variable (see the local installation guide.)

After invoking the editor, the user creates the script file, ensuring that it has a'.m'extension. Tlie

file can be saved to any of the directories which SPaM searches for scripts. SPaM first searches

tÌre current directory, then those directories specified in the SPAMPÀTE environment variable (see the

local installation guide.)

To invoke the script file, the user must simply type its nalne. For instance, if the fi,le which was

created was called'foo.m', then it can be invoked by typing

foo

SPaM will then compile the all of program statements from that file, execute them, and then ¡eturn

control to the keyboard (unless the script contained the chain command, see section 5.6.6.)

5.2.3 SPaM Variables and Nurnbers

A variable is a box in which a value is stored. It is like tlte memory in a pocket calculator. SPaM

understands two fundamental types of variables : numbers and strings.

String variables hold a sequence of characters, usually jusb text, which the user may want to print

at certain times, use as a label for a graph, and so on.

Numeric variables are not so simple. They may have several attributes associated with thern, as

detailed in the following pages.

65

Read source input
Compile
Execute

Read source input
Compile
Execute

Read source input
Compile
Execute

Programl

Programl contains the statement
chain "program2.m"

Program2

Program2 contains the statement
chain "program3.mt'

Program3

Program3 cotrtains no
chain statement, so

control returns to user (keyboard)

Figure 5.4: Chaining multiple input scripts

Variables are referred toby name. Usually, if SPaM encounters alvord which is not in its vocabulary,

it assumes that the word is the name of a variable, and inserts that name into its list of knor¡'n

variables.

Examples:

speed = 200.0
nalne = "Lamborghini"

The frrst assignrnent would create a nelv variable called speed rvhich would take the floating point

value 100.0, ånd the second assignment would create a string variable called 'name' r"'hose value

would be the stri¡g 'Lamborghini.' The nalle of a variable must begin with au alpliabetic characte¡

(a-2, A- Z), but may include numbers and the underscore '-'. A uariable may nol be giuen a natne

which is Lhe same os ¿ SPaM keyword (see seclion 5.6.1 for a list of keywords). Nole lhis facl,

sizce SPaM will d.etecl this as a sgnlax error, and Lhe cause mag nol be obuious'

If a variable already exists when an assigument takes place, the contents of that variable are first

deleted. If any extra storage rvas associatãd rvith the variable (for instance a matrix), it is reclaimed

by SPaM for future use.

Note that in the above cases SPaM echoes the results of the assignrnent. In response to the first

case, SPaM would have printed the following:

sPeed =
200.0

To suppress the printing of the result of an assignment statement, the statemeut should be follolved

by a semicolon ';'. For examPle:

speed = 200.0;

would not echo the result.

66

To see a list of presently defined variables, type who followed by <CR>'

Numeric Representation

A number in SPaM can be represented in one of the following forms.

1. 16-bit integer.

Numbers of this type faithfully represent any integer in the range (-32768. ..32767).

examPle: counter = 100 i

A numeric literal (eg the '100' in the above example) is stored as a 16-bit integer if and only

i/it is in the above range ønil it does not contain a decimalpoint.

2. 32-bit integer.

Numbers of this t¡,pe faithfully represent any integer in the range (-2tt...2tt - 1).

example: coulter = 100000;

A numeric literal (eg the '100000' above) is stored as a 32-bit integer if ønd only if ít lies

within the above .urrg", but outside the range for a 16-bit integer and does not contain a

decimal point.

3. Double precision floating point.

Any number which contains a decimal point is converted into a floating point number and

stored in this format.

examples:

a = !.23i
b = 1.0e10;

ReaI and Complex

Numbers can be either real or cornplex. For scalar values, a real value is essentially the same as a

complex value with a vanishingly small imaginary part. For matrix values, however, a real value

only requires half of the storage space of a complex value of the same nunleric representation.

Generally, numbers are interpreted as being real by SPaM. Expressions may return a complex result

if they involve a complex variable, or the square root of a negative number. For instance' 'x=3+ j +4 '

i, an L*prersion containing only real literals, but a complex variable (j) which causes the expression

to evaluate to a complex result.

By default, SPaM assigns the variable 'j' with the value of J:7 on startup. There is nothing,

hã*"u"r, to prevent the user from assigning a difierent value to j, or assigning the value of uEl ¡o

a different variable.

Examples of assigning a complex number:

x=3+j *4 ;

y = sqrt(-1);

Scalar and Matrix

I{atrices can be created in a number of lvays

67

1. Returned by functions which create matrlces.

For instance, the function eye(n) returns an identity matrixof size n xn.

2. By using a tange constructor.

A range is a vector of numbers built as an arithmetic sequence from user specified start and

end values, and optionally a step value. For example,

x=0:10i Y=0:0'1:10;
The first case creates a 1 x 11 matrix . The values of the elements of that matrix are [0.0
t.o 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.01.

The second case creates amatrixof size 1x 101. The first element contains the value 0'0, the

second 0.1, the third 0.2, and so on, until the 10lth element which contains the value 10.0.

Thus if only the start and end points of the range are specified, the default increment of 1.0 is

used. A user specified increment may be used, in accordance with the syntax:

range = start-value : increment : end-value

The eìements of a matrix generated using a range constructor are always real floating-point

types.

3. By explicit matrix specification

An entire matrix may be explicitly specified by using square brackets'[]'to enclose the

contents. \4/ithin the square brackets, elements separated by a space or commawill be assumed

to exist on the same row. When a semicolon ';' is encountered, the current row is termiuated,

and the next one begun'

The size of the mat¡ix is defined by the number of rows encountered, and the ìongest row

encountered (which determines the nurnber of columns)'

Example:

x = [1; 2 3i 4 5 6; 7 8 9 10J;

will create the matrix

NOTE: To aaoid confusion, lhe comm.a ',' ralh.er than the space ' ' should be useil as lhe

elemenl separalor, for the following reason. Consider the matrix specification -

x = [1 -Z -3 4);

in response to which' SPaM rvill create the following matrix:

x= [_44]
because SpaM reads, L -2 -3, as 1 - 2- 3 which equals -4. The syntax u'hich should be

used for the declaration is-

x = [1,-2,-3,4);

4. By referring to a specific matrix eletnent.

The assignment 'x(4,5)=1.2;, will create a matrix x rvhich has 4 rows and 5 colul¡ns. The

element at (4,5) is assigned the value 1.2.

Now, there are some points to remember about such assignments'

10 0 0l
2 s 0 0l

I45 6 0l
7 I e 10I

68

(a) If the variable x did not exist, it is created from scratch. The numeric representation of

the elements of matrix x will be set entirely by the right hand side of the equality. In this

case, the value is 1.2, which is a real floating point value'

Consequently, matrix x is created as a matrix of real floating point values.

(b) If the variable x did exist, but was not a matrix, then the same rules apply as if x had

not existed.

(c) If the variable x did exist, and it was a matrix, then the rigìrt hand side of the equality

is converted to the same type as the elemental type of the existing matrix x.
'WA.RNING: If the matrix x is a matrix of integers, then the value (1.2) in the above

example would be truncated (to 1) before insertion into the matrix.

Now, it is possible that one or both of the indices of assignment (4 and 5 in the above

example) are outside of the range allowed by the curtent size of matrix x. In this case,

matrix x will be enlarged enough so that the assignment can take place.

Since the enlargement of matrix x may make available more new elements than the as-

signment will affect, all of the new elements are set to zero first.

The values inside a matrix can be extracted as single elements, or as submatrices of the parent

matrix. For instance,

y=¡¡(3,4); A = rsq

z=x(2:3,1:3) , t =lîi: r2g
03¡

r22
tB2

The first case sirnply extracts the element in row 3, column 4 of matrix x and assigns its value to

the variable y. The second case extracts a submatrix from matrix x, consisting of rou's 2 and 3,

columns 1, 2, and 3, and assigns that subrnatrix to the variable z'

A special type of range, called a marimum eúenl range allows either all rows ol columns to be

specified. For instance,

a=x(1,:);
b=x(: ,1);
c=x(:,:);

Consider the following matrix as an example' :

1

5t= g

13

2

6

r0
t4

ó

7

11

15

4

8

T2

16

After execution of the preceeding commands, the arrays ø, ò, and c would have the following values

o-[1 2 3 4],b-
2

6

10

I4

.)

I

11

15

4

8

I2
16

The first case creates a row vector 'a' to lvhich it assigns the value of the first row of matrix x. The

lone ':' means 'all columns' in tltis case.

The second case creates a column vector 'b' to which it assigns the value of the first column of

matrix x. In this case the ':' means 'all rows'.

69

In the third case, the two ':' symbols mean 'all rows and columns" so that the resulting matrix c is

identical to matrix x.

So far, we have discussed only methods of extracting numbers from a matrix' \^¡hat about methods

of putiing numbers inio a matrix? An example above showed how to set individual mat¡ix elements,

but SPaM allows the user to do more than that. sPaM u'ill allow matrices to be copied izlo

matrices. Consider the following exampìe'

t2
b0
910
13 14

3

I

11

15

4

8

t2
16

v-
100

i03
106

101

104

107

r02
105

108

D

7

100

103

106

40
80

101 r02
104 105

107 108

The matrix y has been pasted into the matrix c starting at row 3, column 3' Because matrix y was

Iarger than ihe remaini.,g.pu." ava,ilable within matrix ø (to the right of elemeut (3,3), and down

froá element (3,3)), the matrix ¡ had to be extended by 1 row and 1 colurntr'

A VLM is a special case of a matrix. Normal matrices are stored in main memory' and processed

without difficuity. A VLM is a ma.trix whose da,ta is not entirely storecl in main nemory' but is kept

on disk (usually hard disk).

Since the memory resources of a PC are finite, the VL\{ method allows matrices to be buiìt rvhich

by far exceed the memory available. Some mathematical operators can operate on VLMs directly'

but most will nota. The way around this is to copy data into and out of the VLI4 as necessary'

Most DSP functions operate ån packets of data from a larger set, and such operations can be readily

implemented using the matrix addressing methods described above' VLMs are discussed further in

section 5.5.

x(3,3)=y;

The result will be-

Variable Assignments and Undefined Variables

As shown in the above examples, variables are simply given values by using statements such as -

var = exPresslon;

Now the assignment will only proceed if lhe value of expression can be evaluated. Tlie value of

expression may not always be defined. One reason for this is that it may contain references to

{currently, VLMs are onìy allowed to contain I type of data, which is floating point

t2
56
910
13 14

00

T

change in futr:¡e

70

real numbers. Th.is maY

other variables whose values have not yet been defined. SPaM does not assulne any default value

(such as zero) for an undefined variable'

Attempting to access the value of an undefined variable will cause SPaM to abort the execution of

a command (or program) and signal an etror'

If the expression can be evaluated, then the variable var is checked to see whether it currently has

a value. If so, any extra storage associated with that value (such as the storage associated with a

matrix of eleáents) is returned to the system. The value of expression is finally assigned to var'

Multiple Assignments

A mechanism for assigning multiple variables with values in the same statement exists within SPaM'

It is provided mainlyio *t., fo. functious which return multiple values. One example of a built-in

function that returns tr,,,o values is the size0 function, which returns the row and coìumn dimensions

of a matrix. An example of the rnultiple assignment of this functions results is shown belorv'

{row, column} = size(mymatrix) ;

The variables to be assigned (rorv,colurnn) are enclosed by braces {}. A"V number of variables can

be assigned in this way. See section 5.2.5 fo¡ examples on how user declared functions may return

multiple values.

Predefined Variables

Several variables are defined automatically by SPaM' This is done simply for the convenience of

the user. The variables are listed in table 5'2'

These variables are not protected in any way, so the user is free to reassign them. Horvever, after

the execution of a clu"istatement, the variables u'ill all return to the values shou'n in table 5'2'

5.2.4 SPaM Control Statements

I/ariuble Name Defaull Value

pr 3.14159265359

e 2.718281828

J tt=

Table 5.2: SPaM predefined variables

Rather than simply executing statements in the same order, SPaM has control statements which

allow the order of execution ãf t progrurr', to be changed dynamically, based on decisions made by

the program.

The following control statements are implemented in SPaM'

7T

o ifexpression statements.. ' else statements" ' end
if expression statements... end

Following the if must be an expression. That expression is evaluated, and if the result is

,ron-r"rolthen the statements bãtween the expression and the else keyword will be executed.

If the result of the control expression is zero, tben the statements between the else and the

end will be executed'

The control expression may be any expression which returns a scalar value. Matrix values (ie

a value which is a matrix itself) aie ntt acceptable as the result of the control expressions

The following examples indicate some typical expressions'

if(a==b) print "a=b" end

if (a11 ([1 ; 2;31 ==(12;a;61 /2))
print "elements of second are twice that of first"
end

if(a-b>O) print "a)b" end

The conditional tests which sPaM allows are listed in table 5.13.

o for v=m statements... end

The for statement allows the execution of the enclosed staternents a precise nurnber of times,

each time with a different value of the control variable v'

Each time the loop starts, v is assigned the value of the neøf column of matrix rn. The first

time through the l,oop, v will take the value of the first column of matrix m, the second time

through it will have the value of the second column of matrix rn, and so on'

If you simply want to use the loop as you would in BASIC, say, where v takes on scala¡

consecutive values, you would maken a 1xN matrix, as shown in the followingexample:

for i= [1 : 1o]
print i
end

The expression ,[1:10J, generates the matrix [f .O Z.O 3'0 4.0 5.0 6.0 7.0 8.0 9.0

1O.Ol , and each of the (scalar) elements wiìl be assigned to i in turn. ':

If the matrix in the controì expression is not a vector, for example

Ir 2

'=ln b ål

for i=x
print i
end

will produce the following results

I-

l2)
5To make a test on a matrix expression, you can use the allO function to convert a matrix

1

4
t
t

l
l

1

result which the if statement can digest.

72

result into a scalar

tsl
1=

As can be seen, the variable i is successively assign the value of each column from the matrix

which is the the result of the control expression'

o while expression statements... end

The while loop will execute its enclosed statements only if the result of expression is not

zero. It wilì keep executing the statements until the result of expression is zero. For example:

i -4 .l- I r

¡¡hile (i<10)
print i
i-i+1;
end

The conditional tests which SPaM allorvs are listed in table 5.13

5.2.5 l]ser Defined F\rnctions

As well as providing a library of predefined (built-in) fuuctions, SPaM allows the user to define he¡

own. The following examples shows how to define a function'

function y=myfunc(x)
y = x*x + x + 1;
end

The first line contains the interface information for the function. Following the function keyword

(which begins the definition) is the form which the function will take in practice'

The text 'y=¡nyfu¡c(x), states that the function is to be called myfunc, it will have one argument

which q,ill be referred to as x u'ithin the function boCy, and it u'ill return one argument.cailed y

within tlie body of the function.

Now note that the names of the arguments (in this case x) and the names of the return variabÌes (in

this case y) are onìy for use within the body of the function. \4/hen the function is actually called

from outsiáe, the names of argurnents and return values on the outside can be quite different. At the

time the function is called, the arguments from outside are copied to the argument variables used

inside the function (this prevents the outside arguments from being corrupted by processes rvithin

the function). At the ená of the function, the return variables used within the function are copied

to the outside return variables.

Functions need not be restricted to one argument or return value. In fact, they can return as many

values as the user wishes, and take as many arguments as the user wishes. Consider the following

example.

function half , quarter, eighth=fractions (x,y,z)
sun = X+y+Z;
half = su¡n/2;
quarter = }.alf./2;
eighth = quarter/2i
end

[3]
i6l

73

In the above example, the function fractions takes three arguments, and retu¡ns three values. To

call such a function, you would use the multiple assignment syntax (see section 5.2.3) as shown

below.

{h,q,e} = fractions(1,2,3)

Whichwouldresultinhbeinggivena'i'alueof 3,qof 1.5,andeof 0.75. Themuìtipletargetsof the

assignment must be surrounded by braces {}.

A point worth mentioning about the declaration of fractionsO is that the variable sum which is

,r."d *ithi., the function is a localvariable, and exists only within the function. It is not visible from

outside of the function, and will not affect the value of au outside va¡iable with the same name.

Finally, the ¡eturn values half , quarter, eighth are t¡eated simply as no¡mal variables within

fractionsO. They can be assigned to multipletimes (it is only the last assignment before the end

of the function which determines the returned value) and used within expressions.

5.2.6 lJser Defined Handlers

Unlike functions, which take arguments, return values, and have local variables, handlers take no

arguments, return no values, and have no local variables'

Handlers operate on global variables only. They should be thought of as subroutines, not as functions'

An example is shown below.

ha¡dler increment
i=i+1;
j=j+1;
k=k+1;
end

The user can invoke the handler simply by typing its name. \4¡hen invoked from rvithin a prograln

script, the handler will be executed, and then the main program vvill resune irumediately after the

call to the handler. For instance,

i=1;
j=2;
k=3;
increment
print i
print j
print k

will result in the display

2

3

l-

J=

lç=
4

74

User-defined handlers serve the dual purposes of providing a shorthand way of invoking operations

on global variables, and of providing a means to perform operations from the GUI (see section 5'3'5')

6.2.7 Shelling to MS-DOS

The user can execute MS-DOS commands without leaving SPaM by invoking a DOS shell. By

typing

dos

the user calls the DOS command interpreter CoMMAIID. cOM, making it appear as though she has quit

sPaM altogether. sPaM is, however, still resident in memory, but is 'asleep'. If the screen was

in graphic dìsptay mode before the dos command was executed, it is first switched to text display

mode.

'dost 'exit'

y,theremaynotbesufficientprogrammemorylefttoexecute
should run without problem. The situation also depends on

ariables (esp. arrays) before the user sheìled to DOS'

After completing her DOS operations the use can return to sPaM by typing

exit

to the DOS command line. If SPaM was origiually in graphic mode, the graphics screen will be

reopened and redrawn. The text rvhich was in the text window before the dos command was invoked

is not refreshed, however.

There is no need to shell to DOS to run a text editor, since this can be done with SPaM's edit

command (5.2.2.)

5.3 The Graphical lJser Interface

SpaM's Graphical User Interface (GUI) is a graphical environment which acts as a buffer betrveen

the user and SpaM's internal p.o.àr."r. In
"ssence

it consists of a graphical display with u'hich the

user interacts through the keyboard and the mouse'

Certain classes of objects can be created (as described briefly in section 5.1.1) and manipulated

using the GUI. These operations are intuitive and do not require the user to memorise any SPaM

.ommandr. Creation of screen objects is described in section 5'3.4.

Once created, the user can interact with screen objects in various ways. BuÚtons calì be clicked with

the left mouse button to cause certain preprogrammed events to occut, Nume¡jcs can be used to

spam
resumes at
point where

it was
halted.

spam

75

explicitly set the vaìues of variables, and CRTs/grapås can be used with to make measure¡nents on

*au"forrrrs represented by arrays of data. These interactions are detailed in section 5'3.5.

As well as creating such objects interactively, the objects can be created by a script executed from

disk (see section 5.2.2 *he." the execution of scripts is described), which is detailed in section 5'3'6'

5.3.1 Mouse & KeYboard

The use of the mouse (or its emulation via the keyboard) is fundamental to the operation of the

GUI, The mouse is assimed to be a 3 button rnouse, with the three buttons fulfilling the functions

shown in table 5.3.

The mouse is of prime importance in its interactions with screen objects, such as butúons, CR?s

and grap.hs. These interactions differ for each object, and are described fully in section 5.3.5.

Tabìe 5.3: I{ouse Button Functions

5.3.2 The Console Window

\\¡hen the SPaM display is set for text mode, the user may iuteractively type statemetrts and

expressions, which SPaM then evaluates. \\¡hen in graphic display mode, this facility is stiìl available

tlrrouglr the conso/e window, which emulates the display seen in the text screen llode.

If no SpaM program is runli¡g, tbe console window rvill provide interaction of tlie same type as

the text-only display.

\\/hen a SPaM program is being run, lnessages printed by that program (caused by either the

print stateme¡t, or Éy .,ariable assignrnents u'hich a¡e not followed by ';') will appear in tìle conso.le

Left Button (LMB) Clicking on buttons to active handlers (5.2.6), or when in poster

mode the positioning of annotation

Middle Button (MÀ'fB) If the MIilB is depressed and heÌd when the mouse pointer is over

the waveform display in a CRT, gtaph, ot argand window, a cursor

will appear in that window.

If the mouse is then moved left to right (while the lt{tr4B is held

depressed) the cursor will move back and forth along the waveform.

The current index value, and the value of the waveform at that

index position, is displayed in the top right corner of the window.

Using this technique, measurements can be made on the waveform'

Right Button (Rlt{B) The Rtr{B is used exclusively to pop up menus by depressing the

RMB and holding it do*'n until a menu choice has been made'

Once a menu is opened, the user chooses one of the options con-

taiued in that menu by moving the lnouse so that the desired option

is highlighted (inverted)'

At that point, the RI\{B is released and SPaM performs the re-

quested action.

76

INS Toggle state of Left Mouse Button

HOME Toggle state of Middle Mouse Button

PGUP Toggle state of Right Mouse Button

END Simulate click of left mouse button

CURSOR-KEYS Move mouse Pointer

CTRL-CURSOR-KEYS Move mouse pointer quicklY

CTRI-HOME Move to next screen button

CTRL-END Move to previous screen button

CTRL-PGUP Move to next screen window

CTRL-PGDN N{ove to previous screen window

Table 5.4: I(eyPad keY functions

LIUB À'II'IB RI'IB

I\4ouse

Figure 5.5: lt{ouse buttons
Llr4B = Left i\4ouse Button
I{lr{B = IVIiddìe Mouse Button
RMB = Right Mouse Button

77

nsole lfindoY
f¡èe sPace ?fâ,B,få, free }reaP LL77ø4
)Pi
Pl=

3.1111592?
spece 2øøø, f¡'ee }leaP LL??øA

2.1LA?ELA
sPece zÐøgt' free l¡eaP LL??94

free
)e
e=

fnee
>r

window, as will any error messages encountered during program execution.

The consoJe window may be resized and moved to other parts of the screen (The default location is

the top third of the screen.)

Figure 5.6: Console window on graPhic screen

The console window allows direct intelaction with SPaM's pro-

gramming language while in graphic display mode'

5.3.3 The BackdroP'Window

The backdrop is that part of the screen which is not covered by some user created object, and is

tiled wiih a brickwo¡k pattern. The only important operation which the user can perform with a

mouse over the backdrop window is to use the RN{B to call up the menu shown in table 5.5.

5.3.4 Creating Screen Objects With Menus

As described in section 5.3.3, the user may create all of the available screen objects u'ith a mouse,

by selecting the appropriate creation option from the menu which opens over the backd¡op sceen

pattern.

All of the creation operations are sirnilar, and the user is prompted through them with text messages,

so there should be little confusion.

For instance, to create a CRT window, the user selects the Make CRT option as shown in table

5.5. After doing this, the user q'ill see a message si¡nilar to the follorving:

Move mouse to upper left corner of CRT.

Click LEFT ¡nouse button once.
Move mouse to loçer right corner of CRT

Click LEFT ¡nouse button once.
Click any other button to abort.

These instructio¡s are self-explanatory. The user is sirriply being asked to point to the diagonally

opposite corners of the rectar¡gle u,hich wiìl define the bounds of the new CRT window. Once the

btr.,du.y of the window is defined, the user is present,ed rvith ainput rvindorv in which the following

question is asked:

78

Print Screen Dump the whole scteen to the printer

Refresh Screen Cause the whole screen to be redrawn

Make Button Prompt the user through the process of making a button on the

screen.

Make Nurneric Prompt the user through the process of making a numeúc on the

screen.

Make CRT Prompt the user through the process of making a CRT window on

the screen.

Make Graph Prompt the user through the process of making a graph window

on the screen.

Make Argand Prompt the user through the process of making a argand window

on the screen

Dump Screen SetuP Choosing this option causes SPaM to write a text file called

SCRLOG. !l in the current directory.

This file contains the SPaM script commands to recreate the

screen exactly as it appeared at the time the file was created'

This feature is useful when the user manually designs a screen

layout, and wants to incorporate that layout into her ou'n script

file. TIie setup can first be dumped to the file SCRLOG.M, and then

incorporated into the user's program script using a lext editor'

Table 5.5: I\{enu for the Screen Backdrop

79

llhat is the name of the variable to display in the CRT -

The user simply types the name of the variable which she wishes to be displayed in that s'indow'

for instance 'x,, and presses the return key. The CRT window will then be created on the screen'

If the variable which the user has specified for that window is already defined, a graph should apPear

in that window, If the va¡iable is undefined, the symbols '???' will be drawn at the center of the

window to indicate that the variable is undefined'

The creation process for all other screen objects is similar to the one described above, and certainly

no more difficult.

Once screen has been set out according to the user's wishes, she can keep a permanent record of the

layout by selecting the Durnp screen setup option described in table 5.5.

5.3.5 Interactions with Screen Objects

Interactions with screen objects occurs in two distinct ways. Firstìy, there is direct interaction, such

as clicking on a buúúon. Secondly, there is the less direct interaction of using menus'

I\{enu operations fall into two main categories: those that are generic to all screen objects, and those

that arå object specific. The generic operations are detailed in the follorT'ing paragraphs, while the

object specific menu operations are detailed in the follolr'ing sections.

o Move/Resize
This option allows screen objects to be repositioned or resized. Basically, the user is asked to

define a new bounding box for the object, in a process similar to the one used to create the

object (if it was created interactively, of course')

Àfter the user has defined the new boundiug box, the object will be erased aud redrau'n in the

position.

o Delete
The selected object will be erased from the screen, and deleted from SPaM's internal list of

objects. If the otject is linked to a variable, for exampl e a CRT is linked to the variable which

it àisplays, the variable will not be deleted when the object is deleted.

Interactions with Buttons

The most important button interaction rvith a button is the clicking of the Left lt{ouse Button (LI{B)
over the screen button. A click is defined as the pressing of the Li\{B and releasing it immediately.

When the user clicks on a button, SPaM searches through its internal lists for a use¡-defined handler

which has the same name as the button. If such a handler is found, its code is executed immediately.

If no corresponding handler is found, then an er¡or nessage is printed. See section 5.2.6 for detaiìs

on defining handlers.

There are no menu options specific to butúons.

Interactions with Numerics

The only interaction possible with a numeric is tbe explicit setting of the value of the variable rvhich

it displays. This actiãn is generated by the one nu¡ne¡ic-specific tlenu option, called Set Value.

80

Console LlindoY
fnee space 2g9,Í,' f¡ee ÌreaP LL??ø4
)pi
Pi=

3. L4L592?
space ?ElBø' free l¡eaP LL7?94

2.?LAz,ALA
space 2øøø' fl'ee l¡eaP LL??ø4

f r.ee
)e
e'=

free
>r

Pnint Sc¡een
RefresÌ¡ Scr.een

I'lake Button
I'lake Nuraeri c

G¡apÌ¡
l.lake Ê¡grand

I)unÞ Scneen SetuP

Console t'lindos
2øøø, fr.ee ÌreaP 11151U

to ull¡¡er left cornen of
¡iouse button once.
to loYer risrlrt corner of
rlor.lse button alrain.

CRT.

cRÎ.

otl¡en button to abont.

fl.ee sl'ece
)l'love lltot¡se
Click LEFT
llove ¡rouse
Click LEFT
Cl ick ang

(a

81

b

Console LJindos
fÞee spece 2ØtrØ' fnee l¡eaP 111512
)l¡love ¡iouse to uPPen lef t corner of
Click LEFT ¡rouse button once.
l,love r,rouse to lower rigllrt cornen of
Cl i ck LEFT ¡rouse but ton asfai n .
Gliclc engl ot}rer button to aÈort.

CRT.

CRT.

Infonr'ration Fe st
Nãr.re of tl¡e Uaríable to displag in CRT)xl

Console LlinåoY
fnee space 2ØBØ, fnee l¡eaP 111512
)l'love riouse to uPPen lef t cor.ner of
ClicI< LEFT ¡.rouse button once.
lloue r,¡ouse to losen r.ight co¡nern of
Glick LEFT ¡ìouse Lrrtton asrain.
Click anr¡ other button to abort.

CRT.

cnr.

x

(.)

(d)

Figure 5.7: Creating a display window with the mouse

(a) Select Option from menu
(b) Outline boundary for desired window
(c) Enter name of variable to display in this window
(d) Resulting window.

82

Gonsole l¡lindov

LEFT

2øøtà, free hea'P 111512
to ulrllen left corne¡

tlouse button once.
of CRT.

of CRT.rlouse to lowen night t¡orner.
LEFT ¡.rouse button agrain.
ang otl¡e¡ button to aÈol.t.

Gl i alc
lloee
Click
Glick

free gI¡ace
)l,love ¡iouse

x
Saue Data
Loaá Data
Pos teri se

Pnint
Bef¡esh

Cop!,

Pas te
Delete

ßesize

(u)

Console I'lindoY
Click
I'loue
Click
Click
llove
Glick
l{oue
Click

LEFT
Ëouse

LEFT
an9

rrouSe
LEF.T

;ro u5 e

¡{ouse button once.
to lor¡e¡ nigl¡t corner. of CRT.
Ëouse Þutton aslain.

otÌ¡er. button to abo¡t.
to ul¡Iler left conner of CRÎ.
riouse button once.
to louer. r"isr}'t ëorner. of CRT.
Ëouse but ton agrai n '

otl¡en button to abont.Click

LEFT

an9

x

83

(b)

Console l¡lindos

)l.loue l.tou,s;e to ul¡Iren lef t co¡nen of
Click LEFT ¡,rouse button .,nce.
I'love r,rouse to loven r.ight cor.nen of
Glick LEFT ¡rouse button again.
Cl i ck ang o tl¡en but ton to abo¡t .

x

CRT.

CRT.

(.)

Figure 5.8: Moving/resizing graphics windou's
(a) Selecting the menu option with the right-mouse-button
(b) Drawing the new window boundary
(c) The result.

84

Console lfindoe
Glick LEFT nouse Èutton once.
llove Ëo¡¡se to loyen nigfht .torrlen of button'
Glick LEFT ¡.rouse button agrain.
Cl i ck ang o t}¡en but ton to abol't '
i lras been i ncr.e¡ren ted

i ncner,ren ted
i ncrer¡en ted
i ncnerren ted.
i ncr.elren ted

i l¡as
i }¡as
i has
i l¡a,s

been
Þeen
been
been

cLI CX_ltE

@

(u)

handler increment
i=i+l; % se¡nicolon so ne!¡ value is not Printed each time
print "i has been incremented"
end

(b)

Figure 5.9: SPaM button activation
(a) Button being clicked, Results are printed in the console win-

dow. Buttons are clicked with the left-rrouse-button.
(b) Handler rvhich is executed when button is clicked. The value

printed by the handler called 'increment'can be seen in the console

window.

85

After choosing this menu option, a requestor window will open and the user will be requested to

type in the nrimeric value tà be assigned to the variable. When the user hits RETURI¡, the variable

will be assigned that value'

Note that the value typed in by the user will be coerced to the same number-representation present in

the variable before the operation was selected. Äs an example, if the numerjc-window was displaying

a variable whose type was 16-bit integer, and the user types in the new value of 1.23, the value will

be coerced to a 16-bit integer, and will end as a simply 1'

Interactions with CRITs

The effect of using Middle Mouse Button on CRT

This section applies equally lo graph and argand rvindows. If the user positions the mouse pointer

over the waveform displayed in the window, and depresses (and holds) the MMB, a vertical cursol

(or a crosshair for ar[ands) will appear. Moving the mouse left and right while holding the l\4MB

down will move the cursor along the waveform'

As the cursor is moved, the current index va,lue of the cursor, and the value of the waveform at that

index position, is displayed in the top right corner of the window'

Releasing the MMB freezes the cursor at its last position, and the last uumeric values remain in the

top right corner of the disPlaY.

A new cursor may be generated by repeating the operation any number of times, but only the

numeric values of the current (or last used) cursor will remain in the top right corner of the window.

Menu options for CRiI windows

The menu options applicable to cRT windo\,r's are detailed in table 5.6.

Interaction with Graphs

A gaph window consists of two parts. The area rvhere the waveform is drawn behaves exactly like

a cRT, and the operations described in section 5.3.5 are applicable.

The area where the axis labels and numbering are displayed is the place where grap-b-specific oper-

ations are performed. In this area, the rnenu operations shown in table 5.7 are applicable.

Interaction with Argands

Interaction with an argand window is very much likethat with aCRT window, except that instead

of a vertical line cursor, a cross-hair cursor appears when the MI\{B is pressed and held over the

window. The crosshair travels over the complex plane, following the data, as the mouse is moved left

and right. The complex value at the current crosshair position is dispÌayed in the top right corner

of the argand window. Refer to figure 5.12.

Tlre menu operations of the CRTand grap.h windows also appìy to the argand window'

86

I

6

Delete
Res i zell¡love

ueeC Exact

(.)

(b)

(.)

Figure 5.10: Setting the value of a numeric
(a) choosing the menu option
(b) entering the new value for the numeric variable

(c) the resulting numeric window

I

6

Infor'¡ration Request
Exact ualue =)541

87

(31,s.?9L4>
I

/\
It / \/ \/ \/ \/ \/

V V

Figure 5.11: I\{aking measurements in CRTwindow
The crosshair indicates the measurement point on the waveform,

while the top right hand corner of the window displays the (c, y)

values.

Figure 5.12: Making measurements on atgand window

(68,49.61,45.84)z

88

Save Data The user will be prompted to type in a file name' SPaM will then

write the contents of the variable displayed in the CR? window

into the specified disk file.

Load Data The user will be prompted for a file name. SPaM u'ill attempt

to read the contents of the file into the variable displayed in the

current CRT window. The window will then be refreshed to display

the data.

Posterise The current CRT window is expanded to full-screen size, and

SPaM switches into poster-mode' A new set of menus applies

here, as detailed in section 5.3.7.

Print The image within boundaries of this CRT window is dumped to

the printer.

Refresh The contents of this CR? are redrawn

copy Before this option is invoked, the user must have generated two 2

different cursors, as detailed in the preceeding paragraphs.

When this menu option is selected, the user is prompted for a
variable name. The variable need not already exist' When the

name of the variable has been given, the range of the array (which

is displayed in the current CRT) bounded by the 2 cursors is copied

to the variable whose name the user has given.

In effect, the piece of waveform between the last 2 cursors in that

CRT window is copied to a new variable.

Paste Prior to selecting this option, the user must have defined 1 curso¡

on the current CRT window.

When this option is selected, the user will be prompted for the

name of a variable. That variable must already have been defined.

Once the user has supplied the name, SPaM will insert the element'

values from the specified variable into the variable in the CRT

window at the last cursor position'

After the insertion, the window will be refreshed.

Table 5.6: CRT Window lt{enu Options

5.3.6 Programmed Generation of Screen Objects

It rvould be tedious indeed if the user had to manually create all of the necessary display objects

each titne SPaM was run. Fortunately, there is a way to automate the process.

Screen objects can be created by commands typed on SPaM's command line, and therefore from

¡,ithin SPaM program scripts. Objects can be fulìy specified by the user, or simply the size of tbe

object specified and SPaM allowed to place it in a free part of the screen.

A mid-point between these tlvo approacbes allows the user to interactively create objects on the

scteen with the mouse, and then dump the setup in text form to a file. The file may be edited to

89

X Axis Label When this option is selected, the user is prompted for a text string. This

text string is then displayed in the grapå window as the x-axis label.

X Axis Min Val By default, the x-axis in a graph window is numbered with the array index

numbers. For example, if the array of data it displays has 1024 elements,

the x- axis is numbered L. .1024.

If the X-Axis minimum value, and the maximum value (see below) are both

defined, then they will be used to generate an alternate numbering scheme

for the x-axis of the waveform display, according to the following formula.

Iabel(i) = Xmin + -L(X^o" - X^¡n)
xmox

where i^o" is the maximum iudex value of the array (ie the array has index

values !..i^or).
To reverse this numbering, and revert to index numbering, the X Axis

Index menu option (below) should be selected.

X -A,xis Max Val Together with the X-Axis minimum value (above), setting this value allows

the numbering of the x-axis to be customised.

Y Axis Label See X Axis label.

Y ,A.xis Min Val By default, the y-axis of a graph window is auto-ranging. That is, the array

of data is scanned for maximum and minimum values, and the display is

scaled to those proportions.

If the user wishes to have a constant scaling on the y-axis, she must set

the y- axis minimum and maximum values, using this menu option and

the one below. The rninimum value will be the one at the bottom of the

grap,h window, and the maximum value will be one at the top of the grap'h

window.

If the rvaveform to be displayed extends outside of the range lirnits imposed

by the user, the display will be clipped'

Y Axis Max Val SeeY Axis Min Val.

X Axis Index If the user has set custom x-axis numbering using the X Axis Min Val

and x Axis Max val menu options, the user can revert back to index-only

numbering of the x-axis by selecting this menu option.

Y Axis Auto If the user has used the meny options Y Axis Min val and Y Axis Max
VaI to set the range of display on the y- axis, the display can be made to

return to vertical autoranging by selecting this meny option.

Table 5.7: Graph window menu options

make minor changes, and executed directly as a script to recreate the same display at some futu¡e

time. The method for dumping the screen state to a file is described in table 5.5.

The graphics screen is a bit mapped display of some vertical and horizontal resolution. Objects are

90

generated at specific positions on this bit-mapped display, and have specific sizes. SPaM allows

ihe exact sizes and pósitions of objects to be specified, giving full control over the way the screen

is drawn. It also allows the user to specify only the sizes of objects, trusting SPaM to place them

automatically. The latter method represents less work to the user, but can have unpredictable

results. It is most useful for quickly placing objects on the screen for test putposes.

Automatic Placement of Objects

objects are automatically placed using commands of the following syntax

xsize = 100i
ysize = 50;
s-var = 10;
v-var = 0:100;

auto button "¡tame" xsize Ysize
auto numeric s-var xsize Ysize
auto crt v-var xsize Ysize
auto graph v-var xsize Ysize

In each case, only a variable must be specified (or a string constant in the case of a button creation),

and the x and y size of the object in screen pixels.

SpaM maintains a tiling list of objects which are declared in this way, and will place subsequent

objects in a screen tile which is not occupied. If it cannot find sufficient unallocated screen space

for the object, it will return with an error message.

Controlled Placement of Screen Objects

To retain full cont¡ol over the placernent of objects on the graphics screen, the following functions

must be used.

Iu-x = 10; % lett upper x
1u_y = 10; % Left Upper y
rb_x = 10; % Right Bottom x
rb-y = 10; % Right Botton Y

button{"name", 1u-x, 1u-y, rb-x, rb-y)
numeric{va¡, 1u-x ,Iu-y , rb-x , rb-Y)
crt{var, 1u-x, lu-y, rb-x, rb-Y)
graph{var,lu-x , lu-Y , rb-x , rb-Y)

Objects placed in this way are not tracked by SPaM in the same way as the automatically pìaced

objlcts. A screen using both automatically and manually placed objects will be prone to corruption,

so the user should use one or other method.

By interactively creating objects (using mouse Er menus), the user can create a screen which can be

preserved by dumping the screen setup (see table 5.5. The dump file has a format much like tlie
above example, and may be i¡corporated directly into a script to generate the required screen.

91

Changing Attributes of Screen Objects

Some scree' objects have attributes which can be set separately from from the initial creation

operations of the preceeding section. For example, the grapù window has optional parameters such

as axis labels and axis minima and maxima.

These pararneters may be set separately, using the meny operatious listed in table 5.7, or using the

following commands.

auto graph x 400 100

set labeIs rrxrr rrX Axis" "Y Axist'
set xaxis "x" 0.0 1.0
set yaxis rrx" -10.0 10.0

% first create a graPh window

'/, set the axis labeIs
% x axis is no¡r labeled 0.0 ' ' ' 1 .0

7. y range is now -10.0 . ' . 10.0

Figure 5.13: Grapli before x and y scaling

Figure 5.14: Graph following x anð, y scaling

Note that in the above exanrple, the third parameter following the set...statement is the nal-ne ol

the variable whose display window is being modified, sunounded with double quotes " ".

x
J

ot

x

-s. I

Figure 5.15: Graph showiug waveform clipping.
Clipping occurs if the vertical limits over too narÌow a range are

imposed.

The x-axis of a displayed waveforrn corresponds to the index of the array element at that point. The

default numberingof the x-axis is according to the array index at each point. The'set xaxis ...'
statement simply causes SPaM to change the numbering on the x-axis, without any effect on the

waveform display itself.

The statement ,set yaxis . . .' actually sets the display range for the y-axis in that windorv. Ouly

those parts of the waveform u'hich lie in that range will be displayed on the screen' the remainder

u,ill be clipped at the top and bottom of the display wiudorv, as shorvn in figure 5.15.

To reverse the above operations, and return the attributes of the display u'indow to their default

values, the following statements can be used.

clear labels "x"
clear xaxis "x"
clear yaxis "y"

Updating Screen Objects

Screen objects rvhich represent SPaM variables, such as numerics, CRTs, and grap-hs, ate not

automatically redrawn when the values of those variables are cllanged.

The user must force a redrarv operation. This is achieved using the update statement, u'hich

causes SPaM to check its internal lists for variables which have changed value since the screen was

last redrawn. Screen objects rvliich display these variables are redrawn. Since this can be a time

consuming operation, it is left for the user to specify when the screen should be refreshed.

The user can force a selective object refresh by selecting the Refresh option from the object's rnenu

(see table 5.6). A full sc¡een refresh can be produced by selecting the Refresh Screen option from

the backdrop window menu (see table 5.5.)

93

5.3.7 Poster Mode

The poster-mode of display is designed for producing hard-copy prints for documentation purposes.

Onlyone CRT, graph,o, àrgund cán be displayed on the screen in poster-mode' and it occupies the

rvhole screen area.

In poster mode, the menu shown in table 5.8 is called up by the RMB.

Table 5.8: Poster mode rnenu

The user may annotate the waveforrn displayed in poster mode rvith comments and numeric values.

Numeric annotation is accomplished by moving a cursor (using middle mouse button, ¡efer to section

94

LOAD DATA sPaM prompts for a file name, and loads data from the specified file int,o

the variable which is currently displayed in the poste¡ window. The windorv

will be updated to show the new value.

SAVE DATA SPaM prompts for a file name, and will save the contents of the variable

currently being displayed in the poster vgindow to the specified file

EXIT POSTER Returns to normal screen display mode

ANNOTATE (border) Annotation is a means of labeling points of interest on the waveform being

displayed.

To annotate the waveform, the user flrst uses the MMB to position a culsor

at the point of interest, and then selects this menu option'

At this time, the mouse pointer u'ill disappear, and will be replaced by a

rectangle which represents the size of the annotating text.

The user moves the rnouse to position the text in a desired part of the

screen (where it will not obstruct or be obstructed), and plesses the LI4B

to lay the text down.

This particular option draws a black border arouud the annotating text to

highlight it. The text that is printed is in the form:

(r,y)
where ¿ is the ¿-value of the cursor, and y is the waveform valtte at that

point.

Note that annotations aDd comments will disappear if a REFRESH is

caused by the user.

ANNOTATE Identical to the ANNOTATE (border) menu option except that no higli-

lighting bo¡der is drawn around the annotating text.

Note that annotations and comments rvill disappear if a RÐFRESH is

caused by the user.

COMMENT This option is used to pìace text strings on the screen display, such as a

title for the waveform Plot.
Note that annotations and comments rvill disappear if a REFRESH is

caused by the user.

PRINT Dump the current screen to Printer

5.3.5) to the desired part of the waveform, and then choosing the Annotate option from the poster

menu. The user then positions the displayed rectangle (which represents the size of the text to be

placed) in the desired position on the scteen.

Figure 5.16: Annotated poster display

5.3.8 Printing the Screen Contents to a Printer

The GUI screen can be printed either in whole or in part. By selecting the PRINT SCREEN
menu option over the background tile pattern, or by pressing SHIFT-PRTSCRN on the keyboard,

the whole screen u'ill be printed.

Similarly, when in poster-mode, the PRINT menu option ¡vill cause the whole screen to be printed.

To print only the contents of a CRT, graph or argand window, position the mouse cursor over the

wi¡dow and select the PRINT menu option. Only the contents of that windorv will then be printed.

To be able to print, the program PRTSCRIù. EXE nust be run before SPaM is run from DOS. Currently,
printing can only be done on EPSON compatible impact printers. Table 5.9 summarizes the means

by rvhich hardcopy can be genera,ted.

x <32 , ø. S4158)
g.a

-e. a

Save Data
Loaå Data

Exi t Poster
Co¡r¡ren t

Load. Co¡iËen ts
Save Co¡r¡rents
Edi t Con;ren ts

(63, S. 0'-68139)

<3L, ø. B4l58A?)

Anno tàte
Px.int

Refneslr

<4L, -8. ALAZ??> (53, -9. A3226?>

l.lavef on¡r vi th CI ir¡pinsl

95

Action How lo Resyll

SHIFT-PRTSCRN Keyboard Pressing the two keys SHIFT and PRTSCRN simultane-

ously will cause the current screen üo be dumped to the

printer proaided thøl lhe PRTSCRN .EXE progrant uas run

òelore SPaM.

Print Screen Menu The whole screen is dumped to printer, prouided lhal lhe

PRTSCRI{ .EXE program luøs run before SPa}Vd.

Print I{enu The object over which the mouse pointer was positioned

before the menu was opened is dumped to the printer,

prouided lhal the PRTSCRN .EXE progran-L uøs run before

SPaM.

Table 5.9: Various ways of printing graphics

5,4 Loading and Saving Variables

Variables can be loaded from disk, and saved to disk. This enables data values to be preserved on

disk, and recalled into SPaM at some later stage.

The values of variables can be saved using the writeO function, and reloaded using the reado
function. The following example shows how'

x=lt 2

456
78el

2

wri.te(xr"x.dat");

x=read("x.dat");

% se¡nicolon since ¡lriteO returns 1 if ok.
'/, fll-e "x.dat" created in current directory
% the matrix value of x is no$ erased, replaced with 1

% contents of file "x.dat" in current directory are
7. reloaded into variable x '

The files created by ¡¡riteO are created in the current directory, and those read by readO are

assumed to lie in the current directory.

The loading and saving of variables may also be accomplished by menu operations if the screen is set

for graphic display, and the variable is bound to a display window (either CRT, graph, ot argand).

The relevant menu operations are shou'n in tables 5.6 and 5.8.

5.4.L SPaM disk file format

SPaM saves and reads ASCII data files, in u'hich the data is represented textually. This allor¡'s

data files to be created from scratch by the user or other programs, at the expense of file size and

processing speed.

The file format used is documented in tabÌe 5.10.

96

Line No Alternatives Effect

1 matrix

s calar

The data in this file represents the elements of a tnatrix

The datum in this file represents a scalar value.

2 real

complex

The data/datum in this file is to be read as real numbers.

The data/datum in this file is to be read as complex numbers

ð integer

long

float

The data/datum in this file is to be stored in memory as 16-bit

integer values.

The data/datum in this file is to be stored in memory as 32-bit

integer values.

The data/datum in this file is to be stored in memory as double-

precision floating point numbers.

4 Rows Columns

real-part

real-part imag-part

If the entity is a matrix (as specified in line 1 of the file, this line

holds the number of rows, followed by the number of columns.

If the entity is a real scalar, this line holds tlie real part of the the

number, and represents the last valid line of the file.

If the entity is a complex scalar, this line holds the real part and

the imaginary part, separated by a space, and represents the last

valid line of the file.

5

N+4

reil-part

reil-part imag-part

If the entity is a real rnatrix, the remaining N lines of the file each

contain 1 element of that matrix.
Tlre rnatrix r¿ is filled starting u'ith element mrt, which is read

from line 5, proceeding across the rolv to element m16.rvhere C is

the number of columns, then wrapping around to the start of the

next row.

The total number of eìements in the file must be N = Rows x

Columns. If there are not sufficient elements in the file to meet

this c¡iterion, SPaM u'ill abort the read process with an error.

If there are more elements than necessary, SPaM r"'ill ignore tìre

remainder.

If the entity is a complex matrix, the real and imaginary parts of

each element must be placed on the same text line in the file.

The filìing of the mat¡ix proceeds as indicated for the ¡eal tnatrix

above.

Table 5.10: SPaM file format

97

5.5 Very Large Matrices

It is inevitable that some users of SPaM will wish to process arrays or matrices of data which are

larger than permitted by the available memory of their computer. To provide a partial solution,

a mechanism was created whereby the data objects are stored on disk (which usually has a larger

capacity than main memory), and referenced elements extracted from the disk files as needed. Such

objects are called Very Large Matrices (VLM).

Of course, the penalty is a long access time for elements, but reasonable performance can be achieved

by loading a set of values (rather than individual values) into memory where they can be processed

quickly.

At the time of writing of this document, the only numeric type which can be stored in a VLM is

a real floating point number. This u'ill changed at some future time to include all numeric types

supported by SPaM.

5.5.1 Creating a VLM

Unlike normal, memory resident variables which are simply created whenever used, VLN{s must be

explicitly declared before use. This allolvs SPaM to create a disk file of the appropriate size (first

checking to make sure that there is sufficient disk space), and to fill that file with zeros. VLlt{ is

created with a command such as the following following:

create vlm x 100 200

A VLM variable called 'x' is created, of size 100 rows by 200 columns. The only restrictions on the

size of VL[{s is that the product of the number of rows and the number of columns must be less

than 231, and the VLM must fit rvithin the available disk space.

A double precision floating point number occupies 8 bytes of storage, so that a VLM requires 8 bytes

of disk space per element of the matrix. Thus for the above example, where the matrix has 20000

elements, the disk space required would be 160000 bytes.

5.5.2 Using a VLM

Using a VLM is little different from using a memory resident matrix. The main difference is that
withl memory resident matrix, any assignment to a matrix elemeut outside of the current mat¡ix

dimensions will cause the matrix to be suitably enlarged'

A VLÀ,I cannot be enlarged in this way. It size specified in the declaration (see section 5.5.1) is

represents the boundary for that variable for all trme.

In all other ways, a VLM variable behaves like a normal memory resident matrix. Tlie properties of

matrices are detailed in section 5.2.3.

5.5.3 Caching a VLM

Since VLtr,I variables are stored on disk, references to their int,ernal elements are slowed dorvn by the

disk access time. Often, the operations performed on VLIr'Is are ones which scan the elements of the

VLÀ{ in a linear fashion, so that if a rvhole row (or colurnn) were read in at one time, the average

access time would be decreased.

98

SpaM provides a caching mechanism rvhich allows SPaM to read in more than just the one element

being sáught in a reference to the \¡Llr{. The user defines how many elements are to be read in at

a time. tVhen the user (or her program) script refers to an element of a VLM, the cache is first

examined to determine whether the element has rlready been read from disk. If it has, it is simply

returned directly from the cache. SPaM therefore provides not only caching' but look-ahead fetching

of matrix elements.

If the required element does not exist in the cache, it is read from the disk file which represents the

\/LM. e[tne same time, the cache is filled with the elements in the file which follow the specified

element.

The user specified cache is split into 2 halves of identical size, to form two distinct caches. These are

used acco¡ding to a simple LRU (Least Recently Used) rule, so that the cache which is filled with

new data is not the one which was last read from. The cache is not associated with any one VLM
in particular.

This principle is important when a mathematical operation is being carried out on two distinct

VLI\{s. Since the cache u'ill try to service both, then thrashing would result if only one cache buffer

existed. By having two buffers with an LRU algorithm, each VLM will effectively have its olvn

buffer. Similarly, operations which refer to eìements in two distinct areas of a VLM will benefit from

this dual buffer scheme.

Since most mathematicalfunctions in SPaM operate on one or two operands, the dual buffer scheme

provides the major increase in performance for VLI\{ operations. Adding more buffers would increase

performance further, at the expense of memory consumption and complexity, but with decreasing

improvement. Most operations carried out in SPaM will be of the form:

x=func(y(i,j));
z-x+y i

7. çhere y is a VLM.

Z where z,x,! are VLM

and these operations typically have only one or trvo VLÀ{s on the right hand side of the assignment.

To cache a VLM the user must first create a cache variable. A cache variable must be a floating

point matrix. The data area of the matrix is used as the cache buffer. Since the user can create the

cache variable to be of a given size, she can determine the cache buffer size. An example of how to

create a cache variable follows:

cache-v (40) =0. 0;

Assuming that the variable cache-v had previously been undefined, this operation would oeate a

1 x 40 maìrix, which would be used by SPaM as two 20 element caches. Note that there is no sirnple

fo¡mula for determining the optimal cache size. It depends on the operations being performed, the

access speed of the computer's disk, and the size of the VLM matrices.

To cause SPaM to use the cache variable, the following instruction must be executed.

cache(x);

SPaM will now use the variable x as the cache for all subsequent VLI\4 operations. The user should

forget that x exists, since no useful data can be read out of it by the user, and setting the value of

x will corrupt the cache contents.

To remove caching, the follou'ing statement is used'

cache off

oo

5.6 SPaM Language Reference

In the SPaM ìanguage there are a several types of tokens. A token is simpìy a collection of contiguous

characters. Tokens are separated by spaces, tab characters, or newline characters, and therefore a

token may not include any of those characterso.

Tokens fall into broad classes, each of which has certain rules associated with it' The rules a¡e shown

in the following table.

keyword A keyword is part of the SPaM language. An example of a keyn'ord

is while, which is used as a loop constructor.

SPaM's repertoire of keywords is shown in the following tables.

function (built-in) SPaM has a collection of built-in functions. The names of these

functions are reserved words, which means that they may not be

used in any context but as function calls.

The user may not use variables with names identical to the names

of built-in functions, but she may define her own functions with

the same name as a built-in function. In this case, her function

will replace the built-in one.

variable name If a token begins with a alphabetic character, and does not cor¡e-

spond to a keyword, or a function or handler, SPaM will assume

it is a variable.

If the token is found to be an existing variable, that variable u'ill

be referenced. Otherwise, a new variable is created, and declared

as empty until a value is assigned to it.
A variable nar¡e must begin u'ith an alphabetic character, but may

contain numeric digits and the underscore symbol '-'.

numeric constant Any token beginning with a digit is assumed to be a numeric con-

stant. Numeric constants are converted into one of three repre-

sentations : 16- bit integer, 32-bit integer, and double precisìon

floating point. The applicable rules are listed in section 5.2.3.

, The semicolon is used to prevent the printing of the results of an

expression evaluation.

Table 5.11: SPaM tokens

5.6.1 SPaM Reserved'Words and Syrnbols

The following table lists SPaM's reserved words. They are explained in detail in the follou'ing
sections.

o Mathe¡natical functions
6except when the loken is surroundedby double quotation marks "", indicating that it is a string constant

100

í,)' j;

sin, cos, abs, tan' log, ceil, sinh, coslì, asin, acos, atan, tanh, floor, exp, leal, imag,mag,ph
rand, root, sqrt, unwrap, det, fft, eye, size, zero, all, range, mean, integrate, deriv, stddev,

compare, inv, solve, mod , atantwo, chirp, int, long, float, max min, lu

o Graphics Screen ManiPulation
yaxis, xaxis, window, screen, hide, mouse, update, move, crt, button, slider, argand, numeric'

graphic, graph, mmb, lmb, rmb' reqtext, poster, movemenu, auto

o Generalised Instrument Control

cts, cfs, cits, cifs, upload, term, mon, send, run, download, upload, sdownload, pdownload,

supload, getports, sendports, getPort, getcd, freqgen, sendport, set, dsp, port, restart, baud

o Miscellaneous functions
chain, input, banner, prstack, time, cache, cachestat, read, write, beep, , rvhile, if, else, end,

abort, exit, for, function, procedure, goto, label, print, info, whof, who, whoc, whoi, clear,

dir, handler, dos, edit, wait, new, show, help, cls, trace, notrace, memfree' vlm, bind, create,

declare, external,

Neither variables, functions, nor handlers may have names which are identical to reserved rvords.

Any attempt to use reserved words as narnes will be flagged as a syntax error by SPaM.

Since SPaM is case sensitive, reserved words may be used as names if the case of at ìeast one

character in the rvord is changed.

101

* Multiplication operator

example c=a*b;

+ Addition operator

example c=a+b;

Subtraction operator

example c=a-b;

Division operator

example c=a/bi

Double quote, surrounds string literal
example s="hello" ;

Assignment operator

example x=1

Echo suppression operator
example x=1; will not echo the value of x after the assignment

Exponentiation operator
example x=248;

@ Unstructured multiplication operator

For scalars this operator is identical to the'*'opetator. However, for matrices,

z=x@y; yields z;¡ = rij x A;j

Pre-inversion operator

example z=x\y
is equivalent to z = ylæ ifx is a scalar, and z = t-r x y if x is a mat¡ix.

, Conjuga,te - transpose operator

example x=y' ;

will assign to x the transposed and conjugated value of y

Tlanspose operator

example x=y t ;

will assign to x the transpose of the vaìue of y. Note that no complex conjugation

is performed for this operator.

Table 5.12: SPaM special symbols (operators)

r02

Greater than
example if (x>1)

Less than
example if (x<1)

)= Greater than or equal to

example 11 (x>=1) . . .

(= Less than or equal to
example if (x<=1)

Equal to
example if (x==1)

l= Not equal to
example 11 (x ! =1)

&& Logical AND
example it (x>r)&&(y>0)

Logical OR
example 11 (¡==1)ll(x==2)

I Logical NOT
example if ! (x==!)

Table 5.13: SPaM special symbols (conditionals & logicals)

103

5.6.2 Mathematical tr\¡nctions

abs

abs(x) - return the absolute value of x

If x is real, x is returned.
If x is complex, the magnitude of x is returned

x may be scalar or matrix, but not VLM'

acos

acos(x) - return the arc cosine of x

x and y must be real, and must both be either scalar or matrix. If matrices, x and y must be of

identical size.

all

all(x) - returns 1 if all elements of matrix x are not zero 0 if any elements of matrix x are zero.

This function allows matrices to be used in conditional tests by turning a comparison of every matrix
elernent into a single logical result. For instance, if x and y are matrices of the same dimension, then

if(all(x==y)) print riratrices are the sameënd

asin

asiu(x) - return the arc sine ofx

x a¡d y must be real, and rnust both be either scalar or matrix. If matrices, x and y must be of

identical size.

atan

atan(x) - returns the arctangent of x

The argument x may be scalar o¡ matrix. If a ma,trix, the result is a matrix whose elements are the

arctangents of the elements of x. At present x must be real'

atantwo

atantwo(x,y) - returns the arctangent of x/y

The arguments x and y may be scalar or matrix. If a matrix, the result is a matrix whose elements

are the arctangents of the elements of x/y. At present x/y must be real.

104

ceil

ceil(x) - returns the smallest integer larger than x.

x must be real, but may be either scalar or matrix.

compare

compare(x,y) - compares two mat¡ices x,y.

The elements of x,y must be greater than or equal to zero, and real. X and Y must also have the

same dimension.

The value returned is the probability that x and y are samples of the same body of data. The closer

to 1.0 the result is, the higher the probability.

cos

cos(x) - returns the cosine of the argument x.

The value returned is floating point. If x is a matrix, the result will be a matrix whose elements are

the cosines of the elements of x. At present x must be real.

det

det(x) - returns the determinant of matrix x

The matrix x must be real. The determinant is calculated using the cofactor method.

deriv

deriv(x) - estimate the first derivative of data')

y=deriv(x); the result is an array of data in which y(i) = x(i+l)-x(i) and y(N) - y(N-l) since

x(N+1) is undefined.

exp

exp(x) - returns the exponential of x

The argument x may be scalar or matrix. If a matrix, the result is a matrix whose elements are the

exponentials of the elements of x. At present x must be real.

eye

eye(n) - returns an identity mat¡ix of size nxn

The identity matrix will be of type integer.

105

ffr

ft(x) - returns the FFT of vector x

Note that x must be a I x n or n x l vector, where n=2k for someinteger È. FFT of matrixis not

presently supported, X may be either real or complex.

float

float(x) - returns the floating point value of x

The value of x is returned, represented as floating point. If x is a matrix, a matrix is returned

floor

floor(x) - returns the largest integer smaller than x.

x must be real, but may be scalar or matrix'

unag

imag(x) - returns the imaginary part of complex number x.

The imaginary part will be returned in the same format as x, ie floating-point, integer, or long

integer.

If x is real, then the an error will be signalled. ImagQ operates on scalars and rnatrices.

int

int(x) - returns the integer value of x

The value returned consists of the truncated integer value of x. If x is a matrix, a matrix is returned'

The result consists of 16bit integers.

integral

integral(x) - estimate the integral of an array of data.

This function returns the arithmetic sum of all elements in x. X must be real and a matrix, but not

a VLM.

rnv

inv(x) - return the inverse of a matrix

The inverse is calculated by LU decomposition and back substitution. The determinant of the matrix
is checked, and if less than 1e-14, the matrix is assumed to be singular, and an error will be signalled.

106

Iog

log(x) - returns the natural logarithm of x

The argument x may be scalar or matrix. If a matrix, the result is a matrix whose elements are the

logarithms of the elements of x. At present x must be real'

A.lthough not defined, a logarithm of 0 is signalled as a warning at present, and is assigned a value

of 0. In the future this may be flagged as an error.

long

Iong(x) - returns the long integer value of x

The value returned consists of the truncated integer value of x, represented as a 32bit integer. If x
is a matrix, a matrix is returned.

lu

lu(x) - return the LU decomposition of matrix x.

rnag

mag(x) - returns the magnitude of complex number x'

If x is reaì, then the value returned is identical to x. If x is complex, then each value in the result is

the magnitude of the corresponding complex number in x, calculated as:

mag(k) = sqrt(Xr(k)+xr(k) + xi(k)*Xi(k))

rvhere Xr(k) and xi(k) a¡e the real and imaginary parts of x, respectively.

lllax

max(x,y) - returns the larger of two arguments.

The arguments must be real and scalar. The larger of the two is returned

tltean

mean(x) - return the mean of the values in matrix x

x must be real.

rlrrn

min(x,y) - returns the smaller of two arguments'

The arguments must be real and scalar. The smaller of the two is returned

r07

If
If
If

mod

mod(x,y) - return the remainder of x/y

x and y must be real, and must both be either scalar or matrix. If matrices, x and y must be of

identical size.

phase

phase(x) - returns the phase values of complex number x'

If x is real, an error is signalled. If x is complex, the result consists of phase values calculated as

pha(k) = atan(Xi(k)/xr(k))

where Xr(k) and Xi(k) are the real and imaginary parts of x, respectively.

rand

rand(x) - returns x random floating point numbers.

= 1, then the result is a scalar.

> t, u vector of size (1,x) is returned, the elements of which are different random numbers.

(1, an error is signalled.

range

range(x) - prints the range of the argument x

The minimurn and maximum real and imaginary values of x are displayed, but not returned

should be thought of as a procedure and not a function, though this may change'
Range0

real

real(x) - return the real part of cotnplex nurnber x.

The real part will be returned in the same format as x, ie floating point, integer, or long integer. If
x is real, ìhen the value returned is identical to x. Real$ operates on scalars and matrices.

root

root(x) - returns the complex roots of polynomial.

The polynomialis represented by vector x which is a (1,M) vector, which represents the coefficients

of a polynomial of degree M-1.

The x(1,1) element represents the zero-power coeflcient, while the x(1,M) element represents the

[{-1 power coefficient.

x
x
x

108

The vector x may be real or complex, but the result will always be complex

sttr

sin(x) - returns the sine of the argument x.

The value returned is floating point. If x is a matrix, the result will be a matrix whose elements are

the sines of the elements of x. At present x must be real.

size

size(x) - returns the row and column dimensions of the matrix x

This function is normally used in a double assignment such as row,col=size(x) If only the row value

is required, an assignment such as ro\{ - size(x) can be used'

solve

solve(A,B) - solve a system of simultaneous equations.

Given a system of simultaneous equations represented as AX = B where A is an nxn matrix, and B

is an nxl vector, the solveo function will return the solution vector X.

If A is not square, an error will be flagged.

sqrt

sqrt(x) - returns the square root of x

The argument x must be scalar, but can be either complex or real. Negative real x results in a

complex result.

stddev

stddev(x) - returns the standard deviation of the elements in matrix x

x must be ¡eal.

tan

tan(x) - returns the tangent of the argument x.

The value returned is floating point. If x is a matrix, the result will be a matrix whose elements are

the tangents of the elements of x. At present x must be real.

109

zero(x,y) - returns a zero matrix with x rows' y cols

The matrix will be of tYPe integer.

5.6.3 Generalised Instrument Control F\¡nctions

download

download(variable,start) - download array to Ha¡PS'

The 'variable'must be an array or scalar of 16-8IT INTEGER type (either real or complex). An

error will be signalled if any other type is specified'

The ,start, parameler is the address in TN{S320C25 data memory to which the array u'ill be down-

loaded.

example:

x= [10 20 30 40] ;

download(x,0);

See also
upload

getport

getport(n) - returns the value on TMS320C25 input port n'

The value returned is a 16-bit integer, representing the value seen on the input port n of the DSP

device. The allowed range for n is 0¡=n¡=15'

See also
getports, sendport, sendPorts

getports

getports(mask) - return the values on TMS320C25 input ports

,mask,is a 16-bit integer number. A.'1'bit in one of its bit positions (say N,0i=N¡=15) will cause

the value to be read lom input port N of the TMS320C25. A '0' bit in a position prevents the

reading of the cor¡esponding input port.

getportsg always returns an 1x16 matrix. The first element corresponds to input port 0 of the DSP'

rvhile the last element corresponds to input port 15 of the DSP'

110

Values in the array at positions corresponding to '0' bits in the value of 'mask' have a default value

of zero.

Example

regs = 8€tPorts(15); % read input Ports o,t'2'3 onJ-y

See also
getport, sendport, sendPorts "

monitor

monitor - talk directly to HarPS onboard debug monitor'

This command turns the pC into a terminal, and connects it to the HarPS onboard debug monitor

This is a debugging facility which should not normally be needed.

See also
terminal

restart

restart - restart the DSP in the HarPS system

A reset pULSE of short (microsecond) duration is sent to the DSP in the HarPS hardware system,

causing it to restart execution of its current program. The 'restart' command tvaits for the DSP to

,"qu".i attention before returning control to the user spam script.

See also
send, run

run "filename" - execute DSP code in disk file

Issuing this command is equivalent to issuing:

send "filena¡îe"
restart

See also
send, restart

send

send "filename" - send a file of TI{S320C25 code to HarPS'

The file called 'filename' is assumed to be an unformatted binary file of code for the DSP, rvhich is

loaded into the DSP program memory starting at address 0 (the code must therefore include the

reset vector).

111

The processor is NOT released from its indefinite RESET state (and therefore cannot execute the

code) until the 'restart' command is issued'

Example:

send "c : \dsp\samPler' bin"

See also

restart

sendport

sendport(n,data) - causes a value to be written to a TMS320C25 output port'

The output port number n (where 0¡=n¡=15) of the DSP will have the value of 'data' written to it
The value must be an integer, so 'data'is first couverted to a 16-bit integer.

See also
getport, getports, sendports

sendports

sendports(mask, data) - set TI{S320C25 output ports'

This function causes the values in the matrix'data'to be written to those TMS320C25 output ports

which correspond to a 1 bit in the value of 'mask''

,data' must be a matrix of 16 elemeuts (the shape is not important), and it must be real. It is first

converted to 16-bit integer type. The 16-bit integer values are then vvritten to the ports.

,mask, is converted to a 16-bit integer, u,hich has bits numbered 15 to 0 (from left to right). If a

bit N (0¡=N¡=1b) is set to 1, then element number N is taken from the matrix'data'and stored to

TN{S320C25 output Port N.

If the value of bit N is zero, no write operation to output port N occurs'

For example,

foo(16)=O; L cause foo to be 1x16 vector
foo(9)=1234' % the value to ¡¡rite to Port 8

sendports(256,foo) '/, zsa = binary 0000000100000000

'/. so only Port 8 is written to.

See also
getport, getports, sendport

terminal

Terminal - enter direct ter¡ninal mode to the serial port

This turns the PC into a terminal to the serial port.

IT2

upload

upload(start,end) - return data from DSP data memory'

The 'upload' function returns as its result an array of number uploaded from the HarPS DSP data

*"*ory. The range begins at TMS320C25 data memory address contained in the variable 'start',

and ends at the address given by 'end''

The total number of words uploaded is therefore (end-start*1)'

example:

x = upload(0, 1023) ;

See also
download

5.6.4 Graphics Management Functions

argand

argand - create a window to display complex array data'

The complex data contained in the array is displayed on an Argand diagram, with the real axis

horizontal, and the imaginary axis vertical.

See also:
set, ctt, graph.

auto

auto - automatically place objects on the screelì.

Auto rnust be used rvith other keywords, as shou'n in the example below

auto
auto
auto
auto
auto
auto

numeric k 50 50

slider volt 50 50

button "START" 100 100

graph nyarray 200 100

crt myarray 200 100

argarrd mycomplex 2OO 200

Instead of having to specify exact screen coordinates for objects, the 'auto' keyword lets you specify

only the desired size åf the object, and it tries to pla,ce that object in a spot on the screen that is

f¡ee.

See also:

crt, button, graph, argand, slider, numeric.

113

button

A button is a rectangle on the screen which simulates a pushbutton switch. When the LÐFT MOUSE

BUTTON is pr"sseã and released within the rectangle, spam t¡ies to execute IIANDLER (a user

defined pro."åur") to do perform some action corresponding to the button (see 'handler'.)

There are two ways to create buttons. The first is to call a function:

% ¡nale a button caIled START with top left corner (10,100)

% a¡rd botton right corner (110,200).
button("STÀRT" , 10, 1OO , 1 10,200)

The second is to use the 'auto' keyword to automatically place the button on the screen

% we wa¡t a button 1OO pixels by 100 pixels, Put it ariywhere

7. on the screen ¡rhere there is room.
auto button "start" 100 100

See also:

auto, handler, buttons, mouse, Imb

crt

crt - create an array display window

See 'graph'

dump

Graphic scteen dump - printiug the graphics screen'

Printing of the graphic screen can be done in several ways'

1. type the command 'Print screen'

2. press the keys CTRL-PRTSCR on the IBlr{ keyboard. Note that the PRTSCRN.EXE file

must have been executed before spam rilas run'

3. Use the mouse and menus to selectively print objects. If you hold dovvn the RIGHT MOUSE

BUTTON to bring up a menu, you will see an option in the menu calìed 'PRINT'.

IUENU 'print' over backgound pattern prints whole screen

I{ENU 'print' over object prints only that object'

In all cases, an EPSON compatible printer is assumed

graph

graph - create a graphing windorv to display array data'

rl4

There are two ways to display array data. One is in a window called a CRT, which displays no

,r.r*b".ing or labeiing on iir .*"r, tire olher called GRAPH, which displays both' The numbering

and labeling is done using the 'set' command'

Both CRT and GRAPH can only display arrays of REAL data. To dispìay arrays of complex data,

use the ARGAND window.

To create a GRAPH window, use either of the following'

% create a graph ¡¡indow to display values of array 'x''
% fop lelt ha¡d. corner at (10,100), bottom right at
% (rr0,200).
graph(x, 10, 1OO, 110, 200)

% create a graph window 100x100 pixels, put it anywhere

% on the screen where there is room'
auto graph x 100 100

See aìso:
auto, crt, set

graphic

graphic - move from text display mode to graphics display mode'

either:

graphic<return>

enters graphics mode and cteates a console window about 600x200 pixels in size

graphic N1 l{2(return>

enters graphics mode and creates a console ¡l'indow NlxN2 pixels in size.

Currently supported graphics devices include ÐGA, VGA, HERCULES'

See AIso,
text

Irnb

Imb(x) - set the state of the LEFT MOUSE BUTTON'

This launches an event into the input strearn of SPaÀ{ rvhich ìooks like the user doing something

with the LEFT I{OUSE BUTTON.

% simulate the user pressing the left mouse button
r¡nb(1);
% si¡nulate the user releasing the left mouse button
r¡nb(0);

115

since the LEFT MOUSE BUTTON is used to press BUTTONs, its effect will depend on the current

location of the mouse cursor

See also:
button, rmb, handler

move

move - move an object

MOVE is used in conjunction with other keywords to move screen objects from their current screen

location to a new one'

% the following com¡na¡d moves the ¡nouse cursor to screen

% coordinates (200,200)
move nouse 200 200

% the following command ¡noves the mouse cursor to the center

% of the button called 'START'
move mouse button "START"

numerlc

A NUI{ERIC is a rectangle on the screen which displays the value of a scalar variable (as opposed

to a GRAPH or CRT which displays tìre value of an array')

To create a NUIr{ERIC, two methods can be used:

% ttre first is to specify exactly the position of the numeric on the

7. screen. In this case, we ¡¡ant the value of variable trate'to
/, be displayed in a rectangle ¡¡ith top left ha¡d corner at (10,100)

% a¡d bottom right hand at (110,200).
numeric (rate, 10, 1OO, 1 10,200)

% or we ca¡I sirnply specify the size oJ the rectangle, and let sPaM

% place it in a free part of the screen'
auto nuneric rate 100 100

See also:
auto

rnrb

rmb(x) - set the state of the RIGHT MOUSE BUTTON'

This launches an event into the input stream of SPatr{ which looks like the user doing something

with the RIGHT MOUSE BUTTON.

% si¡nulate the user pressing the right mouse button

116

rmb(1);
7. simulate the user releasing the right mouse button
rmb(0);

Since the RIGHT MOUSE BUTTON controls pulì-down menus, its effect will depend on the position

of the mouse cursor at the time.

See also:
menu, lmb

slider

slider - create a sliding bar button.

This command produces a control simulating a linear control such as a potentiometer. lt is not

concretely defined at Present.

update

update - update all objects on the graphics screen.

This command causes all CRTs, NUN{ERICs, GRAPHs, and ARGANDs to be redrawn, so that any

changes which may have occurred in the variables that they represent are reflected on the screen.

xaxrs

xaxis - refer to x axis of a GRAPH or CRT or ARGAND

The 'xaxis' keyword is used in conjunction u'ith either the 'set' or 'cleat' contmand to carry out

opera,tions on graphic objects.

\4/hen used with'set', it allowsminimumand maximumva,lues to be specified for GRAPH windorvs,

and with the 'clear' commarrd to clear those values

The X axis of a GRApH window is by default numbered rvith the index values of the array rvhich

it is displaying. If the 'set' command is used to set minimum and maximum values, then the ìeft

hand end of the graph (index - 1) will take the minimum value, and the right hand end (index =
size of array) will take on the maximurn value. Index positions in betrveen the two exttemes ate

appropriately scaled.

See also
set, clear, yaxis, label

117

yaxis

yÐds - refer to the y axis of a GRAPH or CRT or A'RGAND'

In conjunction with the 'set' or 'clear' command, this keyword causes either setting of the mini-

-um/maximrrm y axis display values , or the clearing of those values, respectively.

Unlike the setting of X axis min/max values, the Y axis min/max values have a profound effect

on the way that the data is dispiayed. The bottom of the display window, corresponding to the

minimumy value, takes on the value specified, as does the top of the display window, corresponding

to the maximum Y value.

The waveform of the array is then drawn to scale on the new range of the y axis' If the rvaveform

fits within the range specified, it will be seen in its entirety' If the waveform wanders outside of tlie

specified range, it will be clipped.

If no min/max y values have been specified, or if they have been cleared using the 'clear yaxis"'

command, the waveform will be automatically scaled to fit exactly into the display window'

See also
set, clear, xaxis

Ð.o.Ð Program Florv Control

abort

abort - abort execution of the current program and resume soulce input'

There may be occasions when you wish an event (such as the user hitting a BUTTON) to stop

the execution of a program .c.ipt. The 'abort' command does this, and source entry resumes' By

default, source is read from the keyboard'

If a call to the ,chain0, function was made beforeìland, then source input will resume from the file

specified by that call.

See also
chain

for

for - loop construct.

The use of the FOR loop is demonstrated in the folìov''ing example

118

The control expression (in the above example it is '0:100'must evaluate to a vector (ie lxn matrix).

On consecutive passes, the loop variable (in the above example it is 'i') will take the value of

successive elements of the vector, starting with the first, and ending witli the last'

for i=0: 100

Print i
end

goto

goto-gotoalabel.

The goto statement allows program execution to jump from one part of a program to another. The

destiiation of the GOTO is defined by a LABEL statement. If no LABÐL statement of the specified

name has been encountered, an error will be signalled'

example

labe1 start <-----

goto end

goto start

i.i"t
""u

See also
label

I

I

ll
-t---

I

if
if - start a conditional statement

els e

The syntax for the IF construct is shown by the following example

if(1>2)
print "There is something wrong in our universe ! "
end

If the conditional test is true, all statements after the conditional will be executed until a 'end'

keyword is encountered. The IF-ELSE construct is shown below'

if(1>2)
print "There is something wront in our universel"

print "lÍornality has been resuned'''
end

119

while

while - loop construct'

The use of the wHILE loop is demonstrated in the following example:

i =l '

while (i<10)
print i
i=i+1;
end

If the condition is true, all statements following the conditional expression and the 'end' keyword

are executed. Execution is continued until the condition fails.

Note that if the condition is never met (even the first time), then the inner statements may never

be executed.

5.6.6 Disk Access Functions

chain

chain("filename") - get input from file after curreut program finishes.

When the current program finishes, instead of waiting for the user to type in a command, SPaM

will get its input ttã* tt" specified file. The current input file is closed, so that there is no limit on

how many times one file can chain to a new input file'

The commands in the new file are compiled/executed only after the current program has finished,

they are NOT included into the current program.

dir

dir - display names of available .m files

The names of SPaM script files (.m files) in the current directory, and those di¡ectories defrned by

the environment variable SPAMPATH, rvill be displayed'

The name of the path where the sqipt is located u'ill also be displayed.

To find out what a script does, simply type

heìp name

where the name is the name of the script \\/ITHOUT the '.m' extension. If the script contains any

help information in its first few lines, that information rviìl be printed.

See also
scripts

read

r20

read(fname) - returns the value of the data in the data file whose name is in the variable fname'

fname can either be astring variable, or a string literal (surrounded by double quotes)'

The disk file itself is a text file of a specific format, see the documentation fo¡ further details. eg

x = read(t'x.dat");

write

write(fname,x) - writes a variable to a disk file'

The variable x is written to the disk file whose name is in fname. eg

Erite (x, "x, dat")

6.6.7 Miscellaneous F\¡nctions

clear

clear - clear a value in an object which has been SET, or clear the value of one variabìe, or clear the

value of aìl variables

The 'clear' keyword must be used in conjunction with otber keywords, as shown below

% remove axis Iabe1s on graph called 'y'
clear label "Y"
'/, c\ear minimum a¡d maxinu¡n x axis values in graph ca1led 'y'
clear xaxis "y"
% clear minimum a¡d maximum y axis values in graph caIled ty'
clear yaxis "Y"

Typing clear on its own will cause all of SPaM's internal lists to be purged. All variables' uset

defined functions and handlers, and all graphics objects will be forgotten.

Typing clear follorved by the name of a variable will cause that variable to be forgotten, and any

*"-oty that was associated with it to be ¡eturned to the free memory pool.

See also
label, xaxis, yaxis, set

cls

cìs - clear console window.

If in text display mode, the text screen is cleared'

If in graphics mode, the console window is cleared

12r

dos

DOS - shell out to MSDOS

The user is placed into a DOS COMMAND.coM shell, where he may use DOS commands as normal,

though with much reduced memory available'

To return to SPaI{, the user must type 'exit''

If the user was in GRÄPHIC rnode, the screen will be reslored to its state before the 'dos' command

was issued.

See also
edit

edit

edit - invoke an external text editor.

A DOS shell is created and a text editor is run, allowing the use¡ to edit SPaM command scripts

without having to exit SPaM.

Once the editting is finished, the user should save the text file and quit the editor. This will cause

SpaM to resume in the state which existed before the 'edit' command was given.

The text editor to be used is specified by the DOS environment variable 'SPAMEDIT', set in DOS

as follows:

set SpAHEDII=ç ¡\dos\q. exe

This witl cause an editor called 'q' to be run each time the 'edit' command is given

See also
dos

input

input(prompt) - prompts for and returns a floating point value'

The argument prompt is either a literal string (surrounded in double quotes) , or a va¡iabÌe to whicli

a literal string has been assigned. The prompt rvill be displayed, the prograrn will wait for the user

to type . nrr*b"., and the value of that number will be returned. eg

x = input("Input the value for * - ");

notrace

notrace - prevent the compiler froln echoing input

This command reverses the effect of the'trace'command, so that source code input is not echoed

to the screen.

See also
trace

r22

print

print - prints the value of a sYmbol

PRINT prints the vaìue of a variable, constant, or expression' For instance:

> print "This is a string"
This j.s a string
> print x
x=

42.0
> print t+2+3+4

10

Note that in all cases the same result could be obtained by just typing the expression to be printed.

Unless the expression (or assignment) is followed by a semicolon ';', its value will be printed by

default.

Information about graphics screen printing can be found under the title'dump.'

See also
dump

tir¡re

time(x) - returns either:

if x=0 , time in seconds since SPaM started,

if x=1 , time in seconds since timeO last called

trace

Trace - echo source input to the compiler

This command causes tlie compiler to echo all input until a 'notrace' command is given'

Echoing of input allows the user to easily see where syntax errors are occurring in the source code.

See also
notrace

vlnr

vlm - stands for Very Large Matrix'

Normal rnatrices are memory resident - that means they are stored in the PCs memory between

uses. The memory of the PC imposes limits on the size of a, matrix. To overcome this limit, Vllr{s
rvere created.

A VtI,l never exists in memory, but is instead stored in a file on the hard disk. When elements are

to be accessed, they are read/written from/to that file. This means access is slower for a mernory

123

resident matrix.

The best way to use VLMs is to read parts of them into memory resident matrices, which the user

can then pro"".r. Many math functions are not able to directly access vLMs directly, so the user

will have to process them in pieces in any case'

VLMs must be explicitly created using the 'create vlm'command'

.A, VLM may be any size allowed by the computers disk capacity, the only restraint being that (rows

* columns)-¡2st -I. The elements in aVLM are REAL FLOATING numbers, though nroretypes

may be iáplemented in the future. Each element occupies 8 bytes, so an N element VLM u'ill

."q.riru at least 8N bytes of disk space. In practice, it will require more due to operating system

overhead.

SpaM checks the default drive to make sure that there is enough space for the VLM to be üeated,

and if there is not an error will result.

See also
create

wait

wait(x) - wait for x seconds before continuing.

The number x may be floating point to pause the program for a fraction of a second, but the

resolution of the interval timing is only IlG8.2) second'

124

5.7 Online HelP

SpaM has an built-in help system which the user may invoke to obtain information about SPaM

language and operation. An index of help topics is displayed by simply typing:

help

This will display a screen similar to the folìowing:

The fotlowing topics exist in rny help index
abort abs
asin ata¡
ceil chain
cos create
dir dos

environment exP

floor for
Soto graPh
inag inPut
keys l¡nb
¡nag natrix
nin ¡nod

nurneric oPerators
rand ralrge
r¡nb root

sendports set
soLve sPaln

terminal time
vlm wait

yaxis zeÍo
Type BELP "subject" ¡rhere

acos
atantEo

clea¡
crt

download
eye

functions
graphic

int
log
max

monitor
paths
read
run
sin

sqrt
trace
¡¡hile

aIl
auto

c1s
det

dutnP

ttt-
getport

harps
integral

long
mea¡l
¡nove

phase
real
s end
síze

stddev
update
¡¡rit e

argand
button

comPare
deriv
edit

float
getports

if
inv

1u
menu

notrace
print

restart
sendport

s 1 ider
ta¡

upload
xaxís

'subject' is fro¡n the above list

The user can obtain more specific information about any of the topics named in the index' Fo¡

instance, if help about mathematical operators is required, the user types:

help "operators"

t25

Chapter 6

Integration Issues

This chapter deals with system integration issues which were encountered during implementation

of the Ci. 1'n" GI consists of many different parts, some hardware and some software, u'hich we¡e

integrated to form the u'hole.

The interaction between the GI hardware and SPaM is carried out on several levels, as shown iu

figure 6.1. The Application layer (user program) is the highest level of software within SPaM. The

,rJ". progru¡¡ calls various functions which interface to the protocoì layer, which in turn transmits

and receives characters to and from the GI hardware'

RS232

Figure 6.1: SPaM software ìaYers

6.1 Aspects of the RS232 link between host and GI

The RS232 link connecting the GI hardware and the host computer poses several problems on its

own. As a long distance li;k, it is susceptible to outside interfereuce. The high data rates involved

also mean that internal PC activity can sornetimes interfere with communication. For this reason,

effective management of transmission errors is essential, as discussed in the following section.

User Program

SPaM Function L

Protocol Layer

Processor
& ControlCharacter I/O

Control Processor

r26

The synchronisation of host and GI is another c¡ucial point. Communication occuts according to a

state-iransition diagram such as that shown in figures 6.2 and 6.3. Any deviation from the predefined

paths wouìd cause a loss of control. These issues are discussed in section 6.1.2

6.1.1 Link Error Managetnent

The link between the host and GI is an RS232 interface for reasons stated in section 3.2, and this

brought its own problems.

In order to increase the responsiveness of the system (by decreasing its response time), the highest

possible serial bit rate is used. The bit-per-second rate of the GI hardware is 57600, u'hich still

ullo*, amaximumthroughput of 5.76kbytes per second (8 bits per byte, plus start bit and stop bit,

yield 10 bits per byte).

Though communication on most PCs with standard serial ports is reliable at this speed, transmission

errors can and do occur. The main reason is interference by higher-priority interrupt devices in the
pC. Even the smallest probability of a link t¡ausmission error occurring means that the software at

both ends must be programmed to detect and correct errors. The error detection and correction

mechanism exists within the protocol layer of figure 6.1.

The rvay this was done was to implement a packet based protocol in which packets of bytes of known

size are transmitted between host and GI. These packets have an embedded cyclic redundancy code

which allows the receiver to determine, with a high degree of certainty, whether the packet has been

corrupted during transmission.

Two types of packets are cur¡ently intplenrented: Command packets and data packets. Command

packets originate only from the host computer, and contain commands for the control processor, as

well as an/numeric arguments required by those commands. Data packets can originate in either

the host or control processor rnodule.

On receipt of a packet, the receiving device rnust issue a response which tells the sender u'hethe¡ the

packet was correctly received or not. If the packet arrived intact, the sender may proceed to send

ihe ,rext logical packet. If the packet arrived corrupted, the sender will retransmit it. A limit is

placed on tùe number of times packets may be resent during a transmission. If this limit is exceeded,

the link is considered faulty and the user notified.

6.L.2 Host to GI Synchronisation

In order for communication to begin, the host and control processor nust be synchronised - that

is, they must be in the same state (idle state.)

The host can monitor the state of GI by sending NULL characters to the GI, and waiting for a '-'
character in response to each one. If the response character is received, then the GI is in the idle

state and may be sent a conrmand packet to perform a given action'

If no response character is received, the host may force the GI to pay attention by sending a b¡eak

character (actually a non-character, consisting of an extended tirne of transmit data signal inversion.)

Figure 6.4 shows in highly simplified form the activity of the control processor (CP) in and around

its iate state. In this state, the CP waits for the host to send a 'magic number' which signifies the

start of a command block. Just as the '-' character is used to inforrn the host that the CP is alert,

the magic number is used to synchronise to the start of a colnmand block.

After receiving the magic nurnber, the CP assunes that the follou'ing group of cha¡acters represents

127

Host Sends Command Packet
CRC Inval.id

GI Checks for Valid CRC

CRC Valid
Host Sends First Data Packet

CRC Invalid

GI Checks Packet CRC

CRC VaLid
Sends Second Data P

GI Action

f,{cñl

lñÂKl

fAc Kl

Host Action

Tlansmission of Intermediate Packets

ñ;Kl

Figure 6.2: The state-diagram for Host to GI
data transfer.
Note:
CRC = Cyclic RedundancY Check
ACK = Acknowledge
NAK = Negative Acknowledge

Host Sends Last Data Packet
CRC Invaìid

GI Checks Packet CRC

GI Waits for Command Packet

r28

Host Sends Command Packet
CRC In

GI Checks for Valid CRC

CRC Valid

GI Sends First Packet

CRC Invalid
Host Checks CRC

EõKl

GI Sends Second Packet

CRC Invalid
Host Checks CRC

GI Action

EõA

Host Action

lM-Kl
CRC Valid

CRC Valid

Tlansmissio¡r of Intermediate Packets

CRC Valid

Figure 6.3: The state-diagram for GI to Host

data transfer.
Note:
CRC = Cyclic RedundancY Clieck
ACI{ = Acknowledge
NAI(= Negative Acknowìedge

GI Sends Last Packet

CRC Invalid
Host Checks CRC

liõKì

GI Waits for Command Packet

t29

IDLE STATE

Figure 6.4: Control Processor IDLE State

a command block. After receiving the block, the CP checks the embedded cyclic redundancy code

(CRC) to confirm the validity oi th" packet. If the block is valid, the CP acknowledges it, and

pro."ád. to carry out the actions specified within the command packet.

Should the command packet prove to be invalid, the CP sends a NAK character to the host, and

returns to the idle staie. Under most circumstances, the host wiÌl attempt to resend the command

packet (the exception being when the maximum number of retries is exceeded.)

6.2 Control Processor to Signal Processor Synchronisation

In practice, the user (or her program) sends a file of DSP code to the GI, and causes the code to be

executed by the TÀ{S320C25. 6 o.á"t for the follou'ing operations to be correctly sequenced, the

host must be informed when the signal processor has completed execution of the code.

This synchronisation is achieved using the interprocessor port, which connects the Tlt{S320C25 and

the 6g000 control processor. The DSP code, as a final action, asserts an attention-request signal

which is detected by the control processor. The host is then informed that caìculation is complete,

so that it can issue comtnauds to retrieve the results'

The commands provided rvithin SPaM for control of the GI handle this sequence of operations in a

manner which is invisible to the user. The only requirement is that users who rvrite thei¡ TI\{S320

code nrust follow convention and end their program with instructions 'rvhich assert the attention

request signal. An example of such code ca¡r be found in the sample Tl\{S320 program in section C'

6.3 Integrating Software and Hardware

This section discusses the steps which must be performed by a GI appìication script to emulate a

test instrument. A script is a disk based text file containing SPaM commands (see section 4.6.)

Wait for
It{agic Number

Invalid
Packet

Receive

Process
Command

(cf fis 6.2)

Valid tocxl

(N AK)

130

The following actions must be performed by the user's script:

1. Set up graphics screen.

The graphics screen must be set to display the required wavefornts, provide the necessary

contrãl buúúons, and display any necessary numeric values'

An example of such a screen is given in figure 4.13, and the accompanying script in figure 4'14'

See lines 2-5 in figure 6.5.

2. Send the necessary DSP code to the GI.

The code module for the TMS320 is loaded from disk, and sent lo the TMS320 program

memory. This operation is carried out using SPaM's send command.

Unless multiple separate code modules must be run within the single application, the code

module needs to be sent only once, at the start of the script'

See line 6 in figure 6'5.

3. Download any operational parameters to the DSP'

An interactive instrument allows the user to set various parameters, such as sampling rate,

offset voltages etc. These can be dor¡,nloaded into TMS320 program or data space as required

1ttr" tlrnseãO code must be written to read these parameters and use them.)

See lines 18-22 in figure 6.5.

4. Start DSP program execution.

At this point, the Tlr{S.320 can be taken out of the RESET state, so that execution of the DSP

code begins. This is accomplished using sPaM's restart command.

See line 24 in figure 6.5.

5. Wait for signal processor to finish'

This is done using the mechanism described in section 6.2. In practice, the user does not need

to take a¡y specific action here, since spam's restart command does not ¡eturn controì to the

user's script until the DSP has finished execution'

See line 24 in figure 6.5'

6. Uploading of the computation results to the host.

SpaM's upload function fetches words from a specified area in TX4S320C25 data memory,

and storesìhem in a SPaM array variable, which may then be displayed.

See line 26-27 in figure 6.5'

7. Repeat.

For as long as required, repeat the operations from step 3'

As demonstrated in figure 6.5, commands which control the GI hardware are implemented either as

direct keywords (eg sãna), or as functions rvhich return a value (in the case of uploadO' the value

returned is an array of numbers.)

131

00 tine-interval - 10000; % sarnpling interval
01 oId-tine = 0;
02 auto graph x 400 1oo % create auto graph sindoc for array 'x'
03 auto nu¡eric tirne-interval 50 50 7 create a numeric display cindoc

04 auto button lstart" 100 SO 7. nake a pushbutton calÌed'start'
05 auto button "stopr' 100 SO 7. nake a pushbutton called 'stop'
06 send "dspcro.bin,' % docnload TMS320 code to GI

o7

08 handl-er stop 7. executed Ehen 'stoP' button clicked
09 stop = 1' 7. set this variable to stoP looP'
10 end 7. end of ha¡dler'
11

12 ha¡dler start '/, this code is executed when the 'start'
13 'I bìrtton is clicked bY the user
t4 stoP = O' 7. while stoP==O' rePeat the action'
15

16 nhile(stop==Q) 7. çhile the user has not clicked 'stoP'
77

1g if(tine_interval!=ol_d_tine) % then the user has entered a new

19 ./. tine interval value
20 pdonnload(tine_interval,2}) '/, download sample interval value to
2t old-tine=tine-intervali '/, DSP progran nenory'
22 end 7. end of if statenent
23

24 restart 7. nake the DSP execute its code,

25 7 a¡d wait for it to finish'
26 x=upload(4096,4096+1023) 7. upload 1024 words into array x'
27 update 7. update the graphic rindoc
28 % Ehich disPlaYs x.
29 end 7. end of rhile looP'
30 end .l end of ha¡rdl-er'

Figure 6.5: SPaM GI control scriPt
The line numbers are not part of the SPaM script

1Cq
LJL

Chapter 7

System Evaluation

This section compares the predicted performance of the system and its various parts to that measured

on manufactured units.

7.L DSP ThroughPut

The TMS320C25 signal processor has achieved ìts rated performance in the DSP module. TIie only

possible bapier to such performance is the access time of the externaì memory, wìrich may slow

accesses and thereby reduce throughput.

The DSP module has been run with both 0 and 1 wait-state in the DSP hardware. To achieve full

speed, fast memories of <50ns access time are required. Until recently, such memories (in suitable

ånfiguratio¡s) were expensive, and so the DSP module was designed to allow standard (inexpensive)

commercial 100ns parts to be used il'itli 1 wait-state accesses'

Fortunately, there has been a drastic decìine iu the price of fast SRAM, pushed largely b¡' its
*,idespread use in consumer computer technology (eg cache RAI\{s), so that a 1O-MIPS DSP moduìe

can now be constructed for little more than one utilising slower SR,AI\{s.

With 0 wait-state external accesses, the TÀ{S320C25 has a maximum throughput of i0lt4IPS (mil-

liols of instructions per second). The actual throughput for particular algorithrns is much more

complex and will not be discussed here, since it depends on the actual program and data flow. From

the hardware perspective, the DSP module is achieving its nominal design throughput'

Cost of the DSP hardvya¡e can be cut without sacrificing a great deal of performance' especialìy when

the signal processing algorithms to be used consist of small softrvare loops. The Tlt4S320C25 has

internál -"rrro.y *hich rnuy be configured as program memory. Small progralns may be loaded from

external memory into this internal menory, and executed at full speed, even though the exterDal

memory may require 1 wait state accesses.

The throughput of signal processing software cannot be simply defined or measured in a general

fashion. One software task which can be benchmarked is that of signal sampling. The DSP module

u,ith the prototype AIlt{ can achieve sampliug rates of 1.2N4SPS (performed by software). A minor

redesign of the AIIU would double this to 2.4tr{SPS.

133

7.1.L A/D SYstem Performance

While onìy a prototype, the Analogue Interface N{odule (AIÀ{) clearly showed the path which must

be followed for future designs. As an emulator of test instruments, the GI must be able to set all of

the essential characteristics of its circuitry under software control. These characteristics include:

1. Input stage gain.

2. Voltage offset at the A/D signal input.

3. Anti-aliasing filtering

4. Output range.

5. Output offset.

The prototype AIM does have programmable gain amplifiers, allowing one from a set of gains between

1 and 2b6. However, the amplifiers also amplify a selection of DC offsets within the AIM module,

causing a loss in effective resolution of the A/D. For this reason, as vvell as the obvious one of DC

signal cancellation, programmable offset removal must be provided'

7.L.2 Link Throughput

The link transfer burslrate of 57.6kbps was approached closely by the effectiae rate' In testsl , the

link protocol did not measurably degrade tlie serial link throughput.

During data t¡ansmission, the protocol overhead consists of 3 bytes per transmitted packet: two bytes

of cyclic redundancy code, and one handshake byte. The cont¡ol packet preceding each trausfer of

data represents an additional 15 byte overhead. Assuming that the link is used to send 1024 16-bit

words of data in packets of 256 u,ords each (these are typical values used in the system), theu the

link efficiency will approach98.7To. The protocol therefore has negligible effect on link performance

wlien the link is error free.

The serial link does represent the major bottleneck in the systern, ltowever, when real-time perfor-

mance is required. The sample-transfer-display cycle for ¡eal-time instrument simulation can benefit

from improvements in each of those separate tasks.

The serial link may disappear in the future in favour of a high-speed parallel link, u'hich would give

up to 20 times the throughput.

7 .2 Experience \ /ith the GI in a Teaching Laboratory

Six Generalised Instruments were built and used by students in the undergraduate laboratories at

the University of Adelaide. The units lvorked rvell, but deficiencies were observed. These fell into

the following categories:

o Slow response.

The PC-host computers used rvere XT-clones with processor speeds of 10lt4Hz, and u'ithout a

nume¡ic coprocessor. The refreshing of the display screen with new rvavefo¡m data was slow.

thost is a 80386/33MHz based mach.ine

734

. aliasing in the A/D Process.

The prototype analogue interface modules were built without antialiasing filters. It was there-

fore necessary for thã user to choose sampling rates which would not produce aliasing. Such

a situation is not acceptable in the general sense, but it did prove to be educational for the

students.

o Input voltage range.

The limited input voltage range of the prototype analogue interface modules (+10y) required

users to avoid clipping. The input circuitry of the GI features programmable gain but not

(at this time) programmable attenuation. Programmable attenuation will be added to future

models.

A disturbing observation was that students were less likely to question the results of a measurement

presented to them by a computer, compared with other test instruments. One possible ¡eason for

ihi. i, that normal test instruments have front panel controls wliich may be changed (twiddled) to

provide the desired display. During this 'twiddling' the user is able to judge the consistency of what

she is seeing, and to judge whether or not the display is valid'

The time lags in the GI measurement process cause the user to be less inclined to change settings,

since the process may take some seconds and wiìl not necessarily produce a desirable result.

This psychological factor in the use of the GI will be tackled by inproving the response time of the

whole system, and increasing the amount of control available to the user.

7.3 Areas for Future Progress

The development and use of the GI has revealed areas u'here improvements may be made

o the host to GI cornrnunication link.

The RS232 link which links the GI with the host computer has too low a throughput to permit

rapid updating of displayed waveforms.

A faster inte¡face will be implemented using the paralleì port on the control processor module.

This will allow transfer rates at least an order of magnitudefaster than those currently attained.

The disadvantage will be that a parallel interface card will need to be designed for the host

computer.

o the host to GI communication protocol.

The communication protocol between the host and GI allows the host to fully control the

behaviour of the signal processor, and other circuitry within tlie GI. This was desirabÌe during

the development of the GI, but is now a limiting factor'

All events in the GI must currently be initiated by the host cornputer. For instance' to retrieve

the results of a computation by the DSP, the host commands the GI to notify the host u'hen

the computation is complete, and another command to upload the data. Until the data arrives,

the host is idle.

A more efficient method would be fo¡ the signal processor to control tìre dynamics of tlie
communication, by simply sending the data to the host rvhen complete. The signal Processor

could then commence another calculation without being explicitly order to do so by the host.

The host would not need lo be idle during this time; it would be processiug comlnands frotn

the user or updating the disPlaY.

135

Such a protocol would be very difle¡ent to the current impìementation, though it rnay uot

appear [o b".o. In the.rr.r.nt system, the host acts as the master processor, while the signal

pìå."rro, is the slave. In the proposed protocol, the host and signal processor would be peers

ãn a network. This network could link ¡nore than one signal processor. Communication wibhin

the network would take place using message routed between processors.

The GI control processor would act as a central exchange where messages arrive and are routed

on toward their destinations. Possible destinations for a message would be signal processors

on a common backplane, or the host computer (via the RS232 link, or a faster link).

The uploadO function, which is currently used to retrieve data from the signal processor'

would be made obsolete. Packets of data would arrive invisibly and be assigned to specified

variables (whose names would be contained in the packets) in the host's memory.

o the host's graphical interface.

The present graphical interface lacks the ability to manage overlapping windorvs. Consequeutìy,

only the u."ã oi the display screen is available for graphic rendering. By writing new display

softu,are which is capable of managing overlapping windows, the total display area can be made

greater than the area of the screen, since windows could be stacked and overlapped, placing

those of immediate interest at the top of the pile.

The majority of functions of the present interface are not immediately visible on the display

screen eg menus which requile a mouse button to be depressed before appearing'

This creates an uncluttered screen, but has the disadvantage making plain all of the possible

functions. An instrument such as an oscilloscope has all of its functions clearly visible on the

front panel. This often produces a cluttered control panel, but the presence of all controls

p.ouiá", cues to the operator as she adjusts the instrument fo achieve the desired display.

By increasing the overall display area (u'ith overlapping graphic windows), more controls can

be placed onscreen.

o the GI's analogue interface.

The prototype Analogue Interface I\{odules suffered from:

1. the lack of antialiasing filters.

Strategies for implementation of antialiasing filters were discussed in section 3.2.5.

2. the la,ck of programmable signal attenuation.

The current AIlt{ has programmable gains of unity and greater. In mauy cases the user

will wish to sample signals approaching or exceeding the specified a10/ input range.

3. the lack of autocalibration for input signals.

The prototype AIlr{ suffered from drift of DC levels within its analogue circuitry. Provi-

sion was made to trim both the gain and oflsets at the converter. Unfortunately' the offset

voltage at the A/D is not constant, since it undergoes amplification in the programr.r.rable

gain amplifiers along with the sigual.

A future AIN{ would incorporate auto-calibra,tion circuitry with tlie ability to perform

the following:

- switch the input to an AC refe¡ence voltage of known amplitude.

- either trim the input stage gain, or store the digitised amplitude. The latter method

will allow subsequent sample values to be scaled back to a volt'age, thus correcting

for linear effects within the circuit.

- su,itch the i¡put to the analogue ground, and adjust the offset voltage until a reading

of zero is obtained from the A/D converter. In this way aÌl voltage offsets up to the

ADC inPut can be cancelled.

136

. the creation of a TMS320 code generator for the sPaM compiler.

At present, the TMs320 code and sPaM script are written separately' The sPaM script is

compiled and executed by the host. The scri ¡t controls the execution of the (separate) signal

processor code.

An alternative to this scheme is to compile the SPaM script directly into TMS320 code'

Instead of executing SPaM code itself, the host would simply act as a terminal and resource

server for the TMS320'

such a compiler would eliminate the need to separately code TMS320 programs in assem-

bly languagå, and would allow direct programming of the TMS320 in a high level language

(sPaM).
As it is currently implemented, SPaM includes a number of code libraries rvhich would need to

be rewritten for the TMS320 (eg the Math Function and Primitive Math Operation libraries')

The size of the resulting codà ìould very likely exceed the 64k-word address space of the

TMSB2gC25. A SpaM
"compiler

would be more suitable for the TMS320C30, which has the

advantage of a greater address space and hardware support for floating point calculations'

137

Chapter 8

Conclusron

The GI has been used successfully in the laboratory as both a resea¡ch and teaching tool. Tlie

integration of multiple software and hardvvare modules into one system has been achieved, and the

seams are invisible in the resulting system.

This work has addressed the issues relevant to programmable instrumentation systems, which are

now appearing in the marketplace. The Generalised Instrument software and digital hardware has

been verified and used successfully'

The issue of the analogue front-end has been discussed, illustrating the many obstacles that must be

overcome in tliat parttf the system. At the time of writing, the AID-DlA module in existeuce was

an 8-bit system lacking many of the fea,tures discussed in section 3.2.5. Considerable future vvork

will be devoted to this area of tlte system. Techniques such as multirate digital signal processing

may need to be used if the system is to achieve a wide dynamic range of frequency. By transferring

the (anti-aliasing) operations into the digital domain, the cost of exotic analogue systems is spared

(tor ìhis reason mullirate techniques are u'ideìy used in commercial digital audio equipment)

A great advance in was made in the construction of the SPaM Program for control of the GI'
pri,ion, software, based o¡ command driven softwa¡e packages such as Sigproc, were limited in

their capabili.uies. Tlie SPaM software, with its embedded aìgebraic language cotnpiìer, promises

rapid developnent of new applications by botli the author and new users.

Unlike common comrnercial software, u,hich is designed to implement specific signal processing op-

erations, with or without DSP hardu'are, SPaM provides a general control and display environment

within which customised signal processing applications can be created. Since the signal processing

carried out by the hardware is external to SPaM, the user can alter the performance of the system

by changing the signal processor code which is executed'

TIie SPaM program provides flexibility on several levels, including the DSP code itself, the SPaM

script which detãrmines the behaviour of the host, and SPaM's interactive support which allows the

user to perform new operations on the data u'hich may not have been allorved for u'hen the prograln

script was'r'r'rittett.

One area vvhich was touched on during this project was that of automated softr','are generation tools.

Such tools allow software to be generated a,utornatically frorn a specification of the functioning of

that softwar e (as yacc generates . p...., from a language specification file). Such tools a¡e currently

available for filter genãration (FIR/IIR), but new tools will be created which allow all pliases of

the DSp process to be specified and the corresponding code generated. Such tools rvill be valuable,

since a gieat deal of time is spent writing and testing low-level signal processing software, usually

in assenrbly Ianguage.

138

Though based on the TMs320c25, there is no reason why the GI cannot use newer signal processor

devices as they emerge. The partiiioning of the system means that typically only the DSP module

and the DSp code libraries ."ill n""d modification. The recent emergence of low cost floating point

signal processors (eg TMS320C30) will significantly b¡oaden the usefullness of the GI not only as a

.ilnul pro.essing system, but as a numeric processing system in general'

The modularity of the GI hardware lends itself to the implementation of multiple processor signal

processing systems. such systems would fall into one of th¡ee broad categories:

o Systems in rvhich multiple signal processors are responsible for processing distinct sets of

inputs and outputs, with eithei low bandwidth or no communication between processors' An

example of this is reaì-time filtering of muìtiple signaìs, and spectral analysis of multiple,

separate signals.

The characteristic of such a system is the absence of communication between signal processors

on separate modules within the GI.

SpaM directly supports such a system, which is functionally identical to a single DSP systern

repeated N times.

o Fixed topology multi-processors. In these systems the rnultiple signal processors are intercon-

nected in a fixed, predetermined topology which has been chosen to suit the application. For

higher performance, the interconnections should be made with hardware. Softvvare connection

is possible and is discussed in the next item'

SpaM is compatible with such systems, as the system is functionaìly similar to that discussed

in item 1, except that sample data flolvs will in many cases lead to otìrer signal processors

rather than analogue signals (via A/D, DlÐ'

o Systems in which a set of inputs feeds into a digital signal processing s¡'stem consisting of

N processors. The processors will be arranged in some sort of topology (either physically or

logically) to provide greater throughput than could be achieved using a single processor. This

topology may be a pipeline, or processors working on a partitioned data set.

The GI lends itself directly to logically connected signal processots' as data can be moved in

preprogrammed ways ^.ro6
the backplane between DSP rnodules. Pliysical topologies rnay be

created, but are expensive and give little or no flexibility'

Managing a multiprocessor DSP system with programmable topology requires sophisticated

contro"l, slomething which neither SPaM nor the GI control processor provide at present' An

example of the wuy in which such a system may be built is to use the control processor as a

routing switch for data flowing f¡om one DSP module to another'

Some recent developments in parallel softrvare engineering, such as the Linda language promise

parallel processing software rvhich is easy to understand and combine rvith current program-

ming languag"r, fár example the C language. Replacing rigid processor sclieduling at compile-

time by dynamic scheduling at run-time (as perforrned by systems such as Linda) is desirable,

since the result is more efficient use of a multiprocessor systetn under varying ìoads.

To practice the science of digital signal processing it is uecessary to have a hardq'are and softu'a¡e

,yrt"* which is suitable for use in research (and developnrent), and rvhich can then be used in

implementation with as few changes as possible'

The Generalised Instrument is such a system. By being separate f¡om its llost, it can be used rvith any

host (providing that the softlvare is availabìe). The inclusion of a built-in language in SPaM allows

tne ràpia protãtyping and develop¡nent of virtual instrun'lents without extensive programming'

139

Bibtiography

[1] Texas Instruments , TMS920C25 Users Guide, December 1987'

[2] Texas Instruments, lr4ay 8 1987. TMs320c1x/TM5320C2s Assembly Language Tools user's

Guide

[3] Texas Instruments, May 14 Ig87 TI[s320c25 c compiler Reference Guide

[4] G.1z. yuan. Transfer Fun.clion Analysis IIsing Correlalion Technique,Dept. Electronic & Elec-

trical Engineering, University of Adelaide, 1989

[b] R. Lane, G. Vokalek, Sigproc Manual, Dept. Electrical & Electronic Engineering, University of

Adelaide, 1989.

[6] Brian W. Kernighan, Rob Pike, ?Àe Unix Prograrnming Enuironmenl, Prentice Hall 1984.

[T] Ronald E. Crochiere, Lawrence R. Rabiner Afultirale Digital Signøl Processing, Prentice Hall

1983

[8] Stephen C. Johnson, Yacc: Yei Anolher Com.piler-Compiler,document in electronic form, origin

unknown.

[g] Arthur B. Williams, Fred J. Taylor Eleclronic Filter Design Handboolc, 2nd Ðdition, I{cGraw

Hill.

[10] Motorola Inc., MC68681 Dual Asynchronous Receiaer/Transmil'7er, Sept. 1985

140

Appendix A

The Generalised Instrument
Hard\Mare Design

This document describes, in detail, the hardware design of the Generalised Instrument, a pro-

grammable sig¡al processing systerrr developed for research and teaching in the Department of

Electronic & Electrical Engineering, University of Adelaide'

At the timeof u,riting, the GI control processor, and signal processor had been finalised and verified'

A prototype acquisition board was working, which is described herein'

The organisation of the first three sections is as a set of drawings. All of the drawings in a given

section together form the design for one circuit board module'

Section A.1 describes the 68000 control processor board which controìs the GI system as a rvhole,

by forming an intelligent link betu'een the host computer and the GI backplane.

Section 4.2 describes the TMS320C25-based Digital Signal Processor module'

section 4.3 describes the design of a prototype analogue-interface module. This rnoduìe is rrot a

final production design, and has certain deficiencies discussed in that section.

Section 4.4 discusses design considerations for those readers planning on building custom modules

for the GI.

4.1- The 68000 Control Processor Module

This section contains the drawings u,hich comprise the design of the control processor module of the

GI. The control processor is essentialìy a self-contained 68000 board, with the following features:

1. Dual RS232 ports.

2. Dual unidirectional 8-bit parallel ports (l-input, 1- out'put)

3. SCSI port.

4. 64lr28kB EPROM

5. 64kB RAI,I.

t47

6. Bus timeout & inactivity monitors

7. Backplane interface'

The drawings which are included in this section are summarised in table A'1

Table 4.1: Dral'r'ing iudex for Control Processor I{odule

Drawing Conlenls

coN-0000 68000 cPU
CPU Clock

Power on reset

CPU single step circuit

coN-0001 EPROM
RAM
EPROI\{/RAI\{ decoding

coN-0002 DUA.RT

RS232 tansceivers

coN-0003 Parallel port transceivers

Handshaking PAL

coN-0004 \\¡ait state generator PAL

coN-0005 Bus timeout detector

Inactivity monitor

coN-0006 Interrupt generator

coN-0007 Empty

coN-0008 Backplane bus interface

coN-0009 Control processor onboard decoding

It{emory lt{ap

coN-0010 Backplane bus attention request circuil

coN-0011 Empty

coN-0012 Board control register

coN-0013 Board status register

coN-0014 SCSI Interface

t42

,A'.1.1 Control Processor Module Specifications

Table Ä.2: Control processor module specifications

Processor 68000

Processor clock rate any of 8, 10, 12, 16MHz. Set by replacing crystal oscillator

Onboard EPROM 64k-bytes or 128k-bYtes

Onboard RAM 64k-bytes

Onboard Interfaces 2 Pt5232 interfaces

2 unidirectional 8-bit parallel

1 SCSI

1 backplane interface

Other Bus activity time¡ to detect ilfÃCK timeout

Bus inactivity timer to detect 68000 loss of control

Card Format 220mrnx100mm Eurocard format

Backplane Connector DIN41612 (proprietary bus)

r43

A.L.2 CON-0000

CPU AND CLOCK

N oles:

1. cPU clock rates up to 16MIIz have been successfully used, though the speed of EPRoN{s and

SRAI{s used on the board will mean that wait-states may need to be inserted (see CON-0004)'

Backplanemodulesmustgeneratetheirownwaitstatesifneeded.

2. The clock is provided by a TTL oscillator module which supplies 2xclock, and may be easily

changed by using a different oscillator'

A single step circuit can be selected by jumper (68KJMP1) to hold ofl DTICK to the 68000

until ìhe usãr depresses a pushbutton connected to the pins called EXTSTEP'

This has the efiect of extending the bus access indefinitely (until the sr¡'itch is pressed), so that

control, address, and data lines can be examined with a logic probe/analyser'

3

ê
@

la¡

2?0k

3¡,ll¡?

1N

LJ0 I uf'

?{303

t

CP

IR

QO

QI
Q2

Q3

t44

4.1.3 coN-0001

EPROM and SRAM

N oles:

1. 2 EpROMs are catered for. The may be 256kbit or 512kbit devices, with a jumper (CJUMPl)

determining type. The EPROMs must be identicaì, and both must be present simultaneously

(the 68000 is a 16-bit Processor).

CJUMP1 omitted 256kbit EPROMs

CJUI{P1 inserted 512kbit EPROMs

Table 4.3: Setting jumpers for EPROM capacity

2. 2 SRAMs are catered for. They may be 64kbit or 256kbit devices, with the jumper CJUMP2

determining which.

CJUMP2 omitted 64kbir SRA.Ms

CJUMP2 inserted 256kbit SRAMs

Table A'.4: Setting jumpers for RAM capacity

B. Wait states may be generated separately for EPROI\4s and SRAMs, as indicated in drau'ing

CON-0004 on page 156.

EPROM 256kbit devices

512kbit devices

$000000-$00FFFF

$000000-$01FFFF

SRAN,I 64kbit devices

256kbit devices

$040000-$043FFF

$040000-$04FFFF

Table 4.5: EPROM & SRAI4 Address MaP

r45

Name

Partno
Date
Revision
Designer
Device
Forrnat

ramdecl;
20001;
2s/s/8s;
01;
GV;
p16L8;
j;

/* SHEET C0N-0001 */
/* epron a¡d sram decoder PaL */

Pin 1 = CJIJllPl i /* í1 CJIJMP1=1 t}.e¡. 27256, else 27512 +/
Pin 2 = CJlJlfP2; /* iÎ CJUI{P2=1 then BkxS SRAH, else 32kx8 sran */
Pin 3 = CÀ13;
Pin 4 = CA15;

Pin 5 = CA16;
Pin 6 = CA17;
Pin 7 = CÂ18;
Pin I = !0FFBOARD;

Pin 9 = ICAS;

Pin 11 = CAt4;

Pin 19 = EPPI; /* pin 1 of EPROI{ ,*/

Pin 18 = !EPCEO;

Pin 17 = lEPCEl;
Pin 16 = ISRCEO;

Pin 15 = !SRCE1;

Pin 14 = IEPROH;

Pin 13 = !SRAü;

Pin 12 = SRAI{P26; /* pin 26 of SRÂt{ socket */

$DEFINE ONBOARD !OFFBOARD

EPP1=CÂ16*CJlJl'fPl;

SRAHP26 = CA14 # CJlJlfP2;

EPCEo = ONB0ARD & cAS & lCA18 & lCA17 & lCA16 & cJlJl{Pl *
ONBOARD & CAS & !C418 & ICALT K ICJUMPI;

EPCE1 = ONBOÀRD & CAS & !C418 & ICALT A, CA16 & CJUüPl #

0NBOARD & CAS & lCA18 & CA17 & lCJlJllPl;

SRCEo = oNBoARD & CAS & CA18 & !CÀ17 & lcÂ16 & lCA15 & lCAt4 & CJUHP2 #

ONBOÂRD & CAS & CA18 & tclt7 k' !c416 & lCJullP2;

sRCEl = 0NBoARD & CAS & CA18 & !C417 & lCÀ16 & !C415 & CÂ14 & CJIIMP2 S

ONBOARD & CAS & C^418 & lcA17 & CA16 & !CJuHP2;

EPRoM = ONB0ARD & cAS &

ONBOARD & CAS &

ONBOARD & CAS &
ONBOARD & CAS &

tcÂ18 & t.cLt7 &, lcA16 & CJulfPl *
f cAl8 & lcLt7 &, !CJul'fPl #

tcÂ18 & lCÂ17 & CÂ16 & CJLJI'IPI *
tcA18&C417 &!CJUÌIP1;

oNBoARD & CÀS & CÀ18 &

ONBOARD & CAS & CA18 &

0NBoARD & CAS & CÀ18 &

ONBOARD & CAS & CA18 &

tcALT &, !C416 &

lCAtT 8L lCÂ16 &
!cA17 & !C416 &

!cA17 & CA16 &,

!cÀ1s & !c414 & CJulfP2 *
!cJutfP2 #

!c415 & CA14 & CJIJI'ÍP2 *
!cJr.Jr'fP2;

SRÂl'l =

146

Name

Partno
Date
Revision
Designer
Device
Fornat

ramdec2;
20001;
25/s/8s;
01;
GV;
p16L8;
j;

,z* SHEET c0N-0001 */
/* GENERATES }ÍISC I¡R' AND RD' STROBES. */

Pin 1 = CRIJ;

Pin 2 = ICUDS;

Pin 3 = ICLDS;

Pin 19 =
Pin 18 =
Pin 17 =
Pin 12 =

! CHIOE;

!CHIT¡E;

I CLOOE;

!CLOIJE;

CHIOE=CUDS&CRtl;

cL00E = CLDS & CRIJ;

CHIIIE=CUDS& ICRIJ;

CLOIJE=CLDS& ICRIJ;

CJUFI

cJuu¿

vcc

!JUIP I

tl

crtS

c^tt

ctl!

cts

Etla

RAMDECl

PILI OL8

t, rPi0pl

l¡ lPc¿o

t1 TPCI I

ll

It r¡lp?!

,0

RAYDEC2

PTLI6LS

¡, cür 0l

cüt ll

l7

ta

tl

CLOT[

ct Ds

ct-l

YCC

ô

la

ta

il

t0 tNDrcc 2C

CJUU2 2
00

01

t0
tl
l2
t3
tt
t5
l6
t?
l8
l0

l0l
t02
t03
l0t
¡05
I 06

vcc cND tcc cND

t0 00

tt
l2 t0l
t3 102
I I I 03

I 5 I 0{

I 6 I 05

I 7 I 06

t8
tg 0?

t47

Al4

^r2
A?

A6

A5

À{

^2
Äl

AO

DO

DI

D2

GND

vcc

rE/À r 4

vcc/Ar3

^8
A9

YE/Al t

08

Àt0

CE

O D?

06

D5

D4

D3

EPROML

cD4

cD3

epl

BPROMH

EPROMPI I

cAlS

cÁB

cA7

cÄ6

cA5

ca4

cA 3

c^2

cA I to

cD0

cDt lz

cD2

vcc

z7 cÀ l5

z6 cAl4

?5 cA9

cA l0

cA I ?

CLOOB

cA I I

z0 EPCEO

cD7

It cD6

EPBOMPI I

CA I3

cA8

cÀ7

cA6

cÁ5

cA4

cÀ3

cL2

cÂl t0

cD8

cD0

c0r0 ,3

CND t1

zÀ vcc

21 cAlS

cA l4

cA9

2t cAl0

z3 cA l2

22 cHl 0E

It

,a

tt

21 cÁil

ZO EPCEO

cDrS

t¡ CDI4

t7 cDl3

ta cDl2

,å cDilGND I1

Ät4

^t2
A?

A6

A5

À4

AI

AO

DO

DI

D2

CND

vcc

l{E/À l 4

vcc/À l 3

A8

Â9

lTE/Â r r

OE

Al0

:É
O

=
É

CE

D7

D6

D5

D4

D3

148

Al1

^t2
A?

À6

A5

Ä4

A3

A1

À0

DO

DI

D?

CND

vcc

tB/At4

vcc/A r 3

A8

A9

,tE/At1

OE

At0

=o

=
ø

CE

07

D6

05

D4

D3

SRAML

sra

cAlS

cA l3

cÀ?

cA6

SRAMH

cÄr5

cA l3

cA8

CA?

cÂ6

cA5

cA4

cA3

cA2

cAl

cD0

cDl

cD2

vcc

zl

23

cL0ìr8

26 SRAMP¿6

cA9

¿t cA l0

?3 cA1¿

z¿ cL00E

cAll

zo sRcE0

CD?

cD6

17 CDó

lt cD1

¡i cD3

z6 vcc

21 cHl rE

36 SRÀUP26

cÂ I

z1 cÄ10

23 cAt2cA5

cA4

cA3

c^2

cAl

cD8

cD0

cDr0

z2 cltl 0E

lt

t

D

l0

tt

,3

GND
'¡

¿t cAr I

¿o sRcEo

cDlS

'E
cDr 4

cDl3

,0

,z

t3

CND I¡

t1

ta cDl2

tt cDl I

At4

Àt¿

A7

Â6

15

A4

A3

^2
ÂI

À(,

DO

DI

D2

GND

vcc

rTE/A r4

vcc/Ar3

A6

A9

rB/Â l l

OE

Al0

CE

O
É

=
Ê

D7

D6

D5

D4

D3

149

L.t.4 coN-0002

Serial Ports

Noles:

1. The¡e are 2 serial ports provided by the dual UART'

2. The port transceivers are MAX232 type devices, which internally generate the *10V RS232

rails.

3. Connection to the serial ports is via pin strips to which ribbon cable and header can be

connected.

4. The serial port may generate up an interrupt on several conditions (see [10])' including

o Transmit register empty (2 channels).

o Receive register empty (2 channels)'

o B¡eak signal detect (2 channels).

To aid in finding the cause of interrupts, the TXBINT, TXAINT, RXBINT, and RXAINT

signals may be read directly through the board status register (coN-0013)'

150

tcc

ser

RXt

ûND

cts I

c¡P

fIt

!

It

DS23?
cùD

CNô¡ DS23?

YCC

c^P

lt?

L,
opl

vcc
Cl+ ll+

c2+ v-

GND

a

tt¡l it

ucc
cl r Y+

cl-
c2+ v-

la

ll

¡0

DI

D2

DI

Dó

Dt€
@ó¡!r €

¡J2 a

=¡!!
¡t¡

a
;ñi
äî
i¡a
i;ät

¡tlctr
It

OPù

I tt
t|1
Itl

ttô

TID¡

'
¡D¡

¡¡D¡

CNf)

tfs I

cls I

ßTS2

cTs?rx2

cID

toPl I toPt r

151

A'.1.5 coN-0003

Parallel Port

The parallel port system consists of two separate parallel port' One is an 8-bit output port u'ith

handrhaking, the oiher is an 8-bit input port wit} handshaking'

The parallel port(s) were added to facilitate a fast parallel interface to the host computer, to take

the place of the RS232 link at some time in the future'

N oles:

1. The state of the transmit and receive port may be separately determined by reading bits in

the status register (see CON-0013).

2. The board control register (CON-0014) may be programmed to allow either tlie receive port

or the transmit port (or Uoiti¡ to generate a hardware interrupt (PARINT).

For the transmit port, the interrupt is asserted when the host acknowledges the last transtlris-

sion, thus freeing the port for the next one'

The receive port can generate an inte[upt when a byte is received from the host.

B. Terminator sites are provided around the pinstrip connector, allowing terminator resistor packs

to be used for impedance matching of long cables'

r52

Nane
Partno
Date
Revision
Designer
Device
Fornat

Pin 1

Pin 2

Pin 3

Pin 4
Pin 5

Pin 6

PARPORT;

20001;
2s/s/8s;
01;
GV;
p1618;
j;

,r* SHEET C0N-0003 */
/* This PAL inplenents the handshaking for the parallel port */

! LPÂBRD;

! LPÀRIJR;

! RLACK;
! RLDATÂ;

PARIREN;
PARITJEN;

PinS=TIHEOUT;/*lromCoN-OOOs,thissignalindicatesDTACK'tineouts*/
Pin 9 = !STATUSR; /+ lrom decoder, C0N-0009 */
Pin 11 = STATUS; /+ fron status register, C0N-0013 */

Pin 19

Pin 18

Pin 17

Pin 16

Pin 15

Pin 14

Pin 13

Pin 12

! LRDATA;

LTIFULL;

! RLACKB;

! LRACK;

! PÂRINT;
LRFULL;
! CBERR;

CD15;

LRFULL = RLDATA; /* Local read port is full when the inconing
RLDATA strobe is asserted'r/

LRDATA = LIIFULL; /* signal to tell re¡ûote end that data is waiting
for it, just a buffered version of LIJFULL *'/

LRÀCK = LPARRD; /* ackknocledge to other end consists of this end

reading the inconing data Port' */

RLACKB = RLACK; /* a buffered version of RLACX */

PÂRINT = LRFULL & PÁRIREN * /* Ee get an interrupt when our read port is fulI *,/

RLACKB & PARII{EN t /* or other end has just ÂCKed our last xnission +/

PARINT & ! (LPARIdR * LPARRD) i /'* nake this interrupt hang around until
sonething happens */

LIJFULL = LPÂRIJR S
(LIIFULL &

cD15 = STATUS;

cD15.0E = STATUSR;

CBERR = 'b)1;
CBERR.0E = TII'íE0UT;

/* local write port ís fuII fron the tine we */
IRLÂCKB); /+ prite a value to it, to the tine its acknowledged *'/

,/* this provides the tristate buffer for the
board status register */

153

!

!

.:

:
=

it-
t:
t-

¡l
¡t

¡
P

I

E
¿6PI N

PA RC ON

0¡D

P¡fDO ?ADI

tcc

¡¡ 6¡D

t54

T P¡ N8D

tPrnrl z

ll¡cf, I

a

9

00

o'l

VCC GND

t0
It
l2
t3
lt
tá
t6
l7
t8
l9

¡01

t02
I 03

t0¡
t05
t06

PINPIL

sEE C0ll-000ó

IPARRD

P^!1618

Pln0ul

t¿ cDrÁ

t 0 cllD

20 YCC

t0 ctD

¡^fD0

PTfDI

6 PÁTD2

P¡ ID3

tz PA'D(

lâ P¡ fD5

tô P¡fD6

l¡ P¡ID?

l? P¡NDI

la P^n¡2

l6

la

tl
t2 PARI'û

It } T RI¡?

PÁtr nt¡ !
rEI

t^1us t,

9CC 20

cxD

lt

!9

I ¡ LRD^î¡

I
'

LIFUTI

It
ló

t¡
t a LAT1LL

l!

? fTñI TI

7 1jlc¿l6

vcc20

txD

cDl

CDò

cD8

QO

QI

Q2

q3

Q¡
q5

Q6

Q?

VDD

vss

D()

DI

D2

D3

D,I

D5

D6

D?

OE

CP

l¡

ta

¡8

cìD

I

a

a

t
I

9

[N vcc

D¡R CND

80

BI

B2

83

8t
B5

86

B?

^0tl
A2

^3AI

A5

A6

^':l

155

4.1.6 CON-0004

Wait State Generation

N oles:

1. DTfrcK must be generated for EPROM and SRAM in a manner u'hich allows jumpers to

determine the number of wait states added'

2. Onboard devices other than EPROM and RAM are to be run with zero wait states.

3. Oflboard devices may generate their own wait states. No DTICK is generated by the coutroì

module for devices out.id" of its immediate address space ($000000- $TFFFFF).

Should the 68000 attempt to access an address for which no DlfÃCK is generated at all, the

bus activity timer will detect this condition and generate a bus-error exception (see CON-0005.)

Jumper
SPEEDO

Jumper
SPEEDl

inserted inserted 0 0

omitted inserted 1 0

inserted omitted 2 0

omitted omitted J 1

Table ,{.6: Jumpers for wait state control

156

,/* SHEET C0N-0004 */
,/* DTACK generator for 68000 */

/* SPEEDO and SPEED1 have the folloning neanings
SPEED1,SPEEDO = 0,0 clock rate = 8l{Hz

SPEED1,SPEEDO = 0,1 cl'ock rate = 10MHz

SPEED1,SPEEDO = 1,0 clock rate = l2llEz
SPEED1,SPEED0 = 1,1 clock rate = 16HHz

Name

Partno
Date
Revision
Designer
Device
Fornat

dtack;
20001;
2s/s/89;
01;
GV;

916v8;
j;

ICASl; ,/*
t.CAS2i /*
!CAS3; ,/+
ICAS4¡ /*

pin 1 = 681(CLN; /* ref.
pin 2 = |EPB0M; /+ rei
Pin 3 = ISRÂM; /+ rel
Pin 4 = SPEEDO;

Pin 5 = SPEEDI;
Pin 6 = IDEVDTK;

Pin 7 = IOFFBOARD;

Pin I = !CAS;

Pin 9 = IBDTACK;

/* Pin 11 = GND, !0E of

Pin 19 =
Pin 18 =
Pin 13 =
Pin 12 =

IDTACKE; /* lrom eProns *./
IDTÂCI(S; /* ltom SRAI{ */
IDTACKB; /* fron backPlane *,/

IDTÂCKD; /* lrom devices */

C0N-0000 */
c0N-0001 */
c0N-0001 */

registered outPuts */

ICAS delayed bY 1 clock */
lCÂS detayed bY 2 cl-ock */
lCÂS delayed bY 3 cl-ock +/
I CAS delayed bY 4 clock */

Pin 17 =
Pin 16 =
Pin 15 =
Pin 14 =

cÀS1.D = CAS;

CAS2.D = CÀS1 & CAS; /* nake sure !CAS2 rises soon after !CÂS *'z

CAS3.D=CAS2&CAS;
CAS4.D=CAS3&CAS;

DTACKE.0E = EPROü;

DTACKE = EPROM & ISPEED0 & ISPEED1 *
EPROI{ & SPEEDO & ISPEED1 & CAS2 #

EPROM & ISPEEDO & SPEED1 & CAS3 *
EPRO}I & SPEEDO & SPEED1 & CÀS4 ;

DTACKS.0E = SRAII;

DTACKS = SRAII & SPEEDO & SPEED1 & CAS2 #

SRAM & ISPEEDO #

SRA}T & ISPEED1 ;

DTACKB.0E = OFFB0ARD;

DTÄCKB = OFFBOARD & ISPEEDO & ISPEED1 & BDTACK *
OFFBOARD & SPEEDO & ISPEED1 & BDTACK & CAS2 *
OFFBOARD & ISPEEDO & SPEED1 & BDTACK & CAS3 #

157

OFFBOARD & SPEEDO & SPEED1 & BDTACK & CAS4;

DTACKD.0E = DEVDTK;

DTACKD = 'b)1i

tcc

tt1

2¡¡l?
rcc

68[CLß

SPTEDO

DEV D' ß

c¡s

BDl¡CN

tltD

v cc

'D

t 0 oNI)

cDt¡cÍ

c¡st

clsS

S PEED O

SP[ED I

! 0E lor ¡Gr¡sl.rcd o!lPül¡

ctS' d!lôt!d bt I cloct

CÁS' d!) Àt.d bt ¿ cl ocl¡

C^S' d€lâtÊd bt 3 cloc¡!

CIS' d.¡ Ât!d bt I cl ocls

il

PÂtI 6B{

tt
t?

tlSPf,EDI ä

tå

l¡
r3

lz

l0
fl
l2
l3
I{
I5
t6
l?
I8
l9

t0l
t02
I03
I04
t0á
t0ô

vcc cND

00

0?

158

^.L.7
coN-0005

Bus Activity Monitor, Inactivity Monitor, Time Interrupt

This circuit consists of three parts'

1. Bus activity monitor.

This circuit measures the length of 68000 bus cycles. Should a bus cycle last longer than 64

maste¡ clock cycles, this circuit will assert the BÐRE signal to initiate exception processing.

Such a timeout will occur if the 68000 attempts to read non-decoded memory locations.

2. Bus inactivity monitor.

This circuit measures the time between successive bus cycles as initiated by the 68000. If this

time exceeds 2048 master clock cycìes, this circuit will generate a EESET signal to the

68000, causing it to reboot.

It is assumed that such an extended period of non- processing can be caused only by systern

faults which cause the 68000 to halt program execution'

3. Time Interrupt.

This circuit generates real-tirne interrupts to the 68000 at a rate of one every 65536 master

clock cycles. At a master clock frequency of 32MHz (CPU clock - 161\{Hz), this correspouds

to an interrupt rate of 488H2.

The 68000 must acknowledge each time infenupt before the next one can occur' Horvevet,

timing accuracy is not compromised by the time taken to respond to the time interrupt'.

À{aster Oscillator 72lt[Hz 16MHz 20MHz 2 }r[Hz 32tr.4Wz

CPU clock 6l\4Hz SMHz 10tr{Hz I2lt[Hz 161\{Hz

Activity timeout 5.3¡rs 4t-ts 3.2p.s 2.7 ps 2Æ

Inactivity timeout 17l¡.rs I28p.s I02.4ps 85.3¡rs 64ps

Time Interrupt period 5461 .3¡rs 4096ps 3277 ¡ts 273Ips 2048ps

Table 4.7: System time intervals for various master clock oscillator

frequencies.

159

CP

MR

q0

Qr

Q¿

Q3

7{ 393

68KCNÎ3
74393

6B¡(CìT?

74303

¡s^E3¡it

3¡I r0¡-000¡
18tl !10!aL Drllctl

À98¡tt¡ 0¡ l^l

7,1393

68t(Clt13

cLa/61t

cc

tt s^cf

cLt/n ll
l9

a

¡
t¿

tt Eoul

1¡t B St GiÀ! Dlllcl6 llEoul
DU¡ 10 !^Cf 0¡ DlAcr

3Xl C0¡-000i

tl
t9

t
¡

tl

?1393

60NCN1l

tt
ta

1t rEt ñ1

t3 ?4LS7,lA

CP

UR

QO

Qr
q2
q3

CP

MR

Q0

Qr
q2
q3

CP

MR

q0
ql
q2
q3

s
e
,

CP

MR
FLI PI

õ

P

D PR
e

68KCNT?

160

Two pALs implement the interrupt system. The PAL catled 68KINT is responsible for generating

tlre prioritised interrupt signals IPm .. . W, . The PAL called VECTOR generates 8-bit

interrupt vector numbers.

The interrupts from the cont¡ol processor onboard devices are autovecto¡ed according to priority'

The large r¡-rmber of offboard interrupts (attention requests) possible, demands a more efficient

treatment to prevent the waste of cPU time in polling boards' The VBCTOR PAL alìows each of

the attention request signals ot have its own interrupt vector, by generating the appropriate vector

during the interrupt actnowledge phase of the 68000 exception processing cycle.

Ä..1.8 coN-0006

Interrupt Generator

The interrupt generator generates the prioritised interrupt signals for the 68000 from both onboard

interrupt ."quÃt signals, and the backplane attention request signals.

The sources of interruPts are:

1. Serial Port receive register full, and transmit register empty'

2. SCSI interface data transfer.

3. Time interruPt.

4.Paral]elportreceiveregisterfull,andtransmitregisterempty.

5. Backplane attention request.

161

,z* SHEET C0N-0006 */
,/* Interrupt encoder for 68000 control Processor on Siglab */

Name

Partno
Dat e
Revision
Designer
Device
Fornat

68kint;
20001;
2s/9/89)
01;
GV;
p20L10;

J;

! CIPLO;
! CIPLl ;

! CIPL2;
! VECIACK;
I CVPA;

rbrl;
,br1;
rbrl;

Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin

1 = IATNO;

2 = IATNI;
3 = !ATN2;
4 = !ATN3;
5 = !ATN4;
6 = IATNS;
7 = ! ÀTN6;

I = !ATN7;
9 = !CAS;

10 = CFC0;

11 = CFCI;
13 = CFC2¡

15 = SCSIRQ;

16 = !SERINT;
17 = IPARINT;
18 = ITIMEINT;
19 = ATTENTI0N;

Pin 23
Pi¡ 22

Pin 14

Pin 21

Pin 20

FIELD INTLEVEL = ICIPL2..cIPLo];

CIPLO.0E =
CIPL1.0E =
CIPL2.0E =

$DEFINE ACHTUNG ATNO * ATN1 * ATN2 * ATN3 * ATN4 # ATNS # ATN6 * ATNT

ATTENTION = ACHTUNG;

INTLEVEL = ['b'0, 'b,0, 'b'1] & TIHEINT #

,'b'1,,b'o] & PABTNT *
, tb'1, t5r1] & SERTNT #

,'b,0, 15'gl & scsIRQ *
,,b,0,,5,11 & ATTENTI0N;

VECIACK = CFCO & CFcl &' CFC2 & CÂS;

b,0
b'0
br1
b,1

t
t
t
t

CVPÂ = CFCO & CFC1 & CFC2 & CAS;

r62

Name

Partno
Date
Revision
Designer
Device
Fornat

VECTOR;

20001;
2s/s/8si
01;
GV;
p22vLOi
j;

,/,r SHEET C0il-0006 */
/+ Interrupt vector generator */

Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin

1 = IATNO;

2 = |ATNI;
3 = !ATI{2;
4 = !ATN3;
5 = !ATN4;
6 = IATNS;

7 = lÀTN6;
8 = !ATN7;
9 = CA1;

t0 = CA2;
11 = CA3;

13 = IVECIACK;

Pln 23 = CD0;

Pí¡. 22 = CD1;

Pin 21 = CD2i
Pin 20 = CD3;

Pin 19 = CD4;

Pin 18 = CDS;

Pin 17 = CD6;

Pin 16 = CD7;

Pin 15 = IDTACKI; /* the interrupt dtack */
/* Pin 14 = IENDEC ì */ lt enable decode of EPROI{S +,/

FIELD INTLEyg¡=[CÂ3. . CAl] ;
$DEFINE ATNINÎ 'H'A /* I'b.' 1,'b'0,,b'1]
$DEFINE SCSINT,H,S /* = 4 * 2 */
$DEFINE SERINT'H,6 /* = 3 * 2 */
$DEFINE pARINT,H'4 /+ = 2 * 2 */
$DEFINE TIMEINT'H,2 /* = 1 * 2 */

FIELD DATA = [CD6' 'CD3];

= 5 + 2 , need this since ce are using ca3-1 not ca2-Q */

FIELD ATNLEVEL =
$DEFINE ATNLEVO

$DEFIIÛE ATNLEVl

$DEFINE ATI{LEV2

$DEFINE ATIÙLEV3

$DEFINE ATNLEV4

$DEFINE ATNLEVS

$DEFINE ATIJLEVG

$DEFINE ÂTNLEVT

[cD2. . cDo] ;

['H ,o]
['H'1]
ItH'2]
['H'3]
['H '4]
['H '5]
['H '6]
['H '7]

ÂTNLEVEL.0E = VECI¡,CK;

DATA.OE = VECIACK;

CD7 = VECIÀCK;

163

CD6 = INTLEVEL:ATNINT;
ATNLEVEL = ATNLEVT &

ÀTNLEVo &

ATNLEVS &

ATNLEV4 &

ATNLEV3 &

ATNLEV2 &

ÀTNLEV1 &

ATNLEVO &

ATNLEVO &

INTLEVEL:ATNINT & ATNT *
INTLEVEL:ÀTNINT & IATNT &

INTLEVEL:^ÀTNINT & !ATN7 &

INTLEVEL:ATNINT & !ATN7 &

INTLEVEL:ATNINT & !ÂTN7 &

INTLEVEL:ATNINT & IATNT &

INTLEVEL:ATNINT & !ATN7 &

INTLEVEL:ATNINT & !ATN7 &

I (INTLEVEL:ATNINT) ;

68XI NT

CND

CI PIO

ctPrl
v¡ct l

crPl

Ä1[N',il 0]l

Prnl Nt

scsl ¡Q c¡t
cL2

c¡3

PAL2OLlO

ATNs *
!ATNs & ATN4 *
|ATNs & !ATN4 & ATN3 *
IATNs & IATN4 & IATN3 & ATN2 #

!ATNs & IATN4 & IATN3 & IATN2 & ATN1 S

IATNS & !ATN4 & !ATN3 & !ATN2 & IATNI S

VECTOR

cD0

cDl

cD2

cD3

cDt

cD5

cD6

221'1 10

ATN6 *
!ATN6 &

!ATN6 &

!ATN6 &

IATN6 &

IATN6 &

!ATN6 &

I CC rcc

Àlì¡0

¡Tlìl

^1)r3

Â1N5

N?

c¡

cf c0

cfc I

cF c2

¡'t)r I

? Ìr3

lCN

vcc cND

t0
lt
t2
I3
l4
t5
I6
l't
t8
I9
I l0
ltt

00

l0t
I02
I 03
I 04

I 05

I06
t 0?

108
09

Ìì2

vcc cND

IO
I1
It

l3
l4
l5
t6
t7
I8
t9
I10
ì lt

00
I0l
t02
103
I04
105
106
I07
r 08

09

r64

A'.1.9 coN-0008

Backplane bus interface

Noles:

1. All memory locations at addresses higher than $O7FFFF are assuined to lie offboard, and the

bus transceivers are enabled.

2. The backplane signals may be grouped into 4 main categories according to function

(a) Address lines A1-423.

Giving a total address space of l6Mbytes (minus the 512kbytes whicll reside on the control

processor board itself).

(b) Data lines DO-D15.

The data bus is 16-bit wide. Operations on 8-bit bytes are supported, by virtue of the

presence of the 68000 UDS and f,DS signals'

(c) Control signals.

o Strobes: ÃS, UDS, mS, R/ 'W, B-ÃS

o System control: EIÃÓE , yfOPDEe , ERESryT

o Attention Request: ÃTM .. ' ÃTÑ7

(d) Porver supplies.

Logic supplies are available as standard (0,5V).

Two pins have been reserved for positive and negative analogue rails. The voltage to be

distributed on these rails has yet to be defined, and could be as high as t20 volts (to

allow regulators on plug-in modules to generate +15V'

165

BUSI F 1 bus BUSI F4

?aLsz{5

BUSI F5

?,tLs2¡ó

BUSl F6

BDO

rD8

EUSt ¡¡!t rm

l9vcc

l¡

It

CND

tô

IE

l0

Btt

8^9

B^ l ?

cD0

cD8

l9

t,

?tLs¿¡6

BUS 1F2

?lLs2t5

BUS¡ F3

?¡LE2lå

t9

t8

l0

l8
)7 IUDS

ÞL ¡3

Bl5

Bn -t

7¿LS2t5

t1
tß
15.
1¡

DI R

BI
B2

B3

8{
Bá

B6

B?

ll

^2Å3
ta
l5
AO

A7

8t
82

83
B{
86
B8

0?

DIR C

AI
A2

A3
Ä1

Á5
Á0
A7

DI R C

B)
B2

83

!1
B5

86
B?

¡tI
A2
l3
I4

^5Á0
A1

lt I
ri B

t2 B

0

Dt ß

BI
B2
83

8a
B5

80
B1

D8

Á1

A2

r3
l1
¡5
A6

A1
l8

EI
E2

B3

B,I

85
80
E?

DI R

Ál
I2

Â1

Á5

^eA7

8l
B2

B3

B{
83

8ß
8?

tl
A2
Á3

^{¡5
A8
A1
Á8

166

bco BUSCON

MALE EUROCONNECTOR

\8r22

ÁfN0 \l1N I

tlN2 \r 1N3

-12\il2V

Â

\BRESEt

\B UDs

BDTÁCI(

z0

rcc
t0

AI

BD5

BD!

DDO

I

CND

B

r¿cc

B^2

Ät N5

BDO

BD?

D9

Bt¡

BD2

Bb{

B¡6

8D0

BÁ8

8D8

Bn-[

tlll1

BIDS

BÄS

SlOPDEC

rtN?

Bll

DDI I

Br3

8Dr3

B0r 5

B¡5

B¡ I2

BA?

Bll0

D¡I{

Bts

Bt 1ô

BDlO

Bt I i

BÀI8

BÁ20

BD I2

BDI{

B¡13

Bt I å

Brt?

Br l9

B¡2I

Bt23

c m¡o B cltD

t67

4.1.10 CON-0009

Board decoding & memory rnaP.

Ofthe 16MB accessible to the 68000 control processor, the bottom 512k8 (address $000000-$07FFFF)

are decoded onboard the control processor module itself. The remainder of the address space is avail-

able to slave modules. To function correctly, modules must obey the rules outlined in section A'4'

Address Device

$000000. . .$O3FFFF EPROM

$040000. . .$O7FFFF RAM

$060000 DUART select

$064000 Parallel port read

Parallel port write

$068000 Status register read

Control register write

$06c000 SCSI (NCR5380) device select

$070000 SCSI pseudo DMA select

Table ,4..8: Control Processor Memory Map

168

,r* SHEET C0N-0009 *,/

/+ This PAL detects onboard/offboard accesses' */

Nane
Partno
Date
Revision
Designer
Device
Format

Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin

Pin 19

Pin 18

Pin 17

Pin 16

Pin 15

Pin 14

Pin 13
Pin 12

1. = CA23;

2 = CA22i
3 = CA21;

4 = CA20;
5 = cA19;
6 = | STOPDEC;

7 = CRIJ;

8 = !CAS;

9 = PRESET;

11 = ASÂBSENT;

ONBOARD;

20001;
25/s/89;
01;
GV;
p1618;

J;

INVCAS;

BUFFDIR;
! VECIÀCK;

! OFFBOARD;

! CRESET;

I CHALT;

! BRESET;

! INVCRII;

/,* active high poner on reset signal fron C0N-0000 i',/

,/* this signal indicates lack of AS' fron C0N-0005 *,/

/+ inverted ICAS signal *,/
/+ bus buffer direction signal fron C0N-0008 */
/* indicates interrupt vector request by 68k *,/

/* active chen address is offboard *,/

/* processor reset */
/* processor halt *,/
/* backplaae reset */
/* inverted RiJ strobe */

FrELD HrADR = lC^23..cA191;

oFFBOÀRD = t(HIADR:OOO0OO) * SToPDEC # VECIACK; /* prevent all board decoding nhen
STOPDEC or VECIACX are asserted */

IBUFFDIR = IVECIACK & OFFBOARD & CRtl #
IVECIACK & STOPDEC & CRIJ;

,/* backplaae bufJers point innard chen ¡re are */
/* reading fron backplane. */

INvcR¡l = CRH;

INVCAS = CAS;

CRESET = PRESET # ASÀBSENT;

CHALT = PRESET # ÂSABSENT;

BBESET = 'b'1;
BRESET.0E = CRESET; /* nake backplane reset foLlow 68000 reset */

169

/* SHEET C0N-0009 *,/

/* 68000 control board decoder PAL */

Na¡e
Partno
Date
Revision
Designer
Device
Fornat

Pin 1

Pin 2

Pin 3

Pin 4
Pin 5

Pin 6

Pin 7

Pin I
Pin 9

decode;
20001;
25/s /89:'
01;
GV;
p16L8;

J;

CA18;

CÂ17;
CA16;

CA15;

CA14;

! CAS;

CRIJ;

! OFFBOARD;

! SERDTK;

Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin

19=
18=
77=
16=
15=
t4=
13=
12=

I SERSEL;
! PARR;

!PARII ;
! STATUSR;

!CONTROLIJ;

IDEVDTKi /+ to nain DTACK PAL , C0N-0004 */
ISCSDÂCK; /* used for pseudo DMA tra¡sfers */
! SCSISEL;

$DEFINE (]NBOARD !OFFBOARD

FIELD DEVAD¡ = [cÄ18..CÀ14];

SERSEL = DEVI,DR:60000 & CAS & ONB0ARD;

PARR = DEVADR:64000 & CRIJ & CAS & ONB0ARD ;

PÂRtl = DEVADR:64000 & lCRt¿ & CAS & ONBOÂRD ;

STATUSR = DEVADR:68000 & CRtl & CAS & ONBOARD ;

CONTROLU = DEVÂDR:68000 & lCBu & CAS & 0NBOARD ;

SCSISEL = DEVI,DR:6C000 & CAS & ONB0ARD ;

SCSDACX = DEVADR:70000 & CAS & ONBOARD ;

DEVDTK = (DEVADR:64000 #

DEVÀDR:68000 #
DEVADR:6C000 *
DEVADR:70000 #
(DEVADR:60000 & SERDTX)) & cAS & 0NBOARD ;

170

x 9

00

o7

l0
ll
t2
t3
ll
t6
t6
l'Ì
t8
t9

t0l
102

I 03

t0¡
105

t06

VCC GND

DEC

c¡i t
c¡l?
c¡16

lö

c¡ l4

cÀs

cn-t

tl

lcc 2E

DECOI}E

PALI6LO

, O SEISEL

'
I LPTRID

t t rPrnfR

tllJsR

I ð C0ì¡1011

, I DEVDIX

1l SCSDÂ

| ? scsl sf,l

!O CND

c¡?l
ct22

c¡2 r

ct20

cll I

cÌ -t

Et¡
rsr¡sEìÎ I I

vcc 20

O'ÌBOBD

PAL I 6t8

c¡s

I ô BUTTDI N

l? ÌEcl I
t a otFBonD

!ô

| ¡ cBlrt

t ¿ cR-Ì

'O
GND

t roE coX-00Û0

, roD Coì-000á

a

00

0?

t0
lr
l2
t3
l¡
tã
t6
t?
t8
ts

vcc cND

t0l
I 02

I 03

t0r
t05
I 06

17l

,A..1.11 CON-0010

Bus Attention Signals.

The bus attention signals are 8 active-low signals which pass directly to the PALs of the interrupt
encoder of CON-0006. The signals must be pulled high by resistors, but need no other conditioning.

The signals are asserted by a slave module (such as the DSP module) to request servicing by the

control processor. The method by which the attention signals are asserted and cleared is documented

in section 4.2.9.

¡

172

A.1.12 coN-0012

Board Control Register.

The board control register is an 8-bit register whose bits directly control signals in the circuit of the

control processor.

A control bit is rvritten to by writing a 0 or I into data bit 15 of the word at the address shou'n in

table 4.9.

Address Function

$68000 Not Used

$68002 Not Used

$68004 Not Used

$68006 Not Used

$68008 Not Used

$6800A. Time Interrupt Acknowìedge (TIMETCK)

$6800c Parallel Read Interrupt enable (PARIREN)

$6800Ð Parallel Write Interrupt enable (PARI\ryEN)

Table 4.9: Control Processor control register bit assignments

During execution of its coldstart (RESET) routine, the 68000 must set tìre TIMEÃCK bit to 1.

On reJeipt of a timer interrupt, it must pulse the bit to 0 (asserted), returning it to the deasse¡ted

(1) state immediately. This pulse ackuowledges the timer interrupt, and allows the next one to be

lene.uted at the appropriate time. \{¡ithout an acknowledge pulse, tlo future timer interrupts u'ill

occur.

The acknowledge pulse may be generated at any time after the interrupt. If no tirner inte¡rupts are

to be missed, the delay must be less than one timer period (65536 master oscillator cycles, o¡ 32768

processor clock cycles).

The PARIREN and PARI\\¡EN signals, when set to 1, enable the respective interrupts from the

parallel port.

173

cÀl

cÀ2

CRESET t!

C0NT0Lf l.

cDrS

VCC lr

c0N

C ONT

7¡!S259

. c0NT0

r coNll

CONT2

? c0N13

c0Nlr

rD TlIl0Ácx

I¡ PÁRIREN

IZ PÅRI TEN

r ctlD

QO

QI

q2

qJ

Q{

Q5

Q6

Q?

vcc cND

CL

IN

AO

Át

A2

174

A'.1.13 coN-0013

Board Status Register.

The status register allows the 68000 to sample system signals directly. To read tlie status of any

signal allocatá to a status register address (see tabÌe 4.9), the 68000 must read a 16-bit rvord from

th-e corresponding address. The state of tbe signal is then reflected as bit 15 of that vvord.

Address Function

$68000 SCSIDEA . If this signal is asserted (ie low) then the SCSI

controller is requesting data transfer, which is accomplished by

pseudo DI\{A on the control processor board.

s68002 LRFUIL. If this signal is asserted, the parallel port read register

is full and rvaiting to be read.

$68004 LWFULI. If this signal is asserted, the parallel port write register

is full, and another byte may not be written to it until the signal

is deasserted.

$68006 RTAINT . If this signal is asserted, the DUART is asserting its

channel A receiver interruPt.

$68008 ffiEINT . If this signal is asserted, the DUART is asserting its

channel B receiver interrupt.

$6800A' ffiÃINlf . If this signal is asserted, the DUART is asserting its

channel A transmit interrupt.

$6800c mÏm . If this signal is asserted, the DUART is asserting its

channel B transmit iuterruPt.

$68008 SmY . If this signal is asserted, the SCSI controller is indr-

cating it is ready for DI\{A transfers.

Table 4.10: Control Processor board status register

175

t0

tl

t3

l{
l5

l6

t'l

VCC GND

z

I

À0

AI

A2

E

IIUSl TRI SlATE THI S

0N10 cDlS USING
SlITUSR' AS Ä STROBE

SCSI DI{A REQUIST

PARÂLLIL PORl READ TULL

PARALLEL PORT fRIIE FULL

SIRIIL CH Á RX

SERIAL CH B RX

SERIÁL CH Á 1X

SERIÂL CH B 1X

SCSI RTÂDI FOR DMÁ

ca I lt

c^2

cA3

STATUSR 7

STATUS

vCC r!

STA

STÂTUS

?¡LSt5t

SCSDRQ

LRFULL

2 LÍ¡ULL

RXAINT

I! RXBI NT

r. TXÂlNT

I! TXBI NT

t2 SCSRDY

! CND

176

A.1.14 CON-0014

SCSI Interface.

The SCSI interface is built around a NCR5380 (or equivalent) SCSI interface controller. No DI{A is

used in the interface, so all data transfers are performed using pseudo-DMA. The NCR5380 registers

are directly memory mapped. The user should consult the NCR5380 data sheet for programming

information.

TIle SCSI connection is provided via a 50-pin strip. Terminator resistors are provided on the control

processor board.

2 sDEo

scs

vcc

TND

rcc

5380

SDEP

CD?

cD!

cDt

'D¡

cD2

CD

cA3x
! c¡2

cl I

cn -l

c¡ -r

ciIstf
YCC

scsDÁcx

SCSD¡Q

SCSr ¡Q

scsR0l
DI ODE I

áOPI NcìD

3

5

7

ç

t1
13
t5
't7
19
21

23
zt
27
29

21

30

36

I
S DEO ¡

S D¡5 a

t

t

I

t

srtt
a

I

st

12
1

18

CID

s¡st

SDBO

sslL

s¡ cl
s Esl

sDl2

sDt¡

I DB¡

f[¡tcc

s83l

s¡ct

5IS G

5 rl¡
sc¿/D

ss

t 1 sDst

31
33
35
37
30
It
,t3
15
17
,t9

W
W
m
Ñ
M

N

W

M

m

DA Cl

T1

IDP

D?

D!

D5

D'

D]

D2

DI

DO

sIt
N
ü
ffi

N

| lo

VD

N

RIe

t0¡

t0l
cs

YCC

cN0
DNQ

tnQ

[[À 0t

l2o

177

^.2
The TMS32 OC25 Digital signal Processor Module

The digital signal processor moduìe is based around the TI\{S320C25 digital signal processor, u'hich

i, r ¡j (1gMIp) p.o."..o, designed specifically for numericalìy intensive calculations'

The important features of this module are:

o Tlr{S320C25 running at 401\{Hz'

o Up to 64k-words Program RAI\4'

o Up to 64k-words data RAI\4.

o 1024x16 FIFO from DSP to backplane.

o 16-bit FIFO from backplane to DSP.

o Backplane interface allows direct access to DSP proglam' data, and IO spaces'

o Separate IO bus connector.

Drawing Contents

DSP-0000 TI4S320C25 signal Processor

Clock

DSP-0001 \4¡ait state generation fo¡ the DSP

DSP-0002 DSP rnodule onboard decoding

DSP-0004 AII{ interface

DSP-0005 Prograrn and Data RAI\4

DSP-0006 Interprocessor lt¡Iailbox

DSP-0007 DSP-accessible control register

DSP-0008 DSP-accessible status register

DSP-0009 DSP Interrupts

DSP-0010 Backplane Attention Request Signals

DSP-0011 It{odule Control Register

DSP-0012 l\{oduìe Status Register

Table 4.11: Dralvings of the DSP l\{odule

The DSp module appears as a collection of memory rnapped peripherals to the 68000 control plo-

cessor, as discussed in section 4.2.5.

178

L.2.1 DSP Module SPecifications

Processor TMS320C25 (PGA or PLCC)

Processor clock rate 40MHz

Card can be configured to run with 0/1 wait state.

With 0 wait states, this gives 10I{IPS peak performance' \4/ith 1

wa,it state, performance lies between 5-1OI{IPS, though 10N{IPS is

still achievable using TM5320C25 internal program memory' Wait

states are chosen according to memory speed.

Program RAÀ{ 64k-rl'ords

Data RÄÀ{ 64k-words

Analogue Interface 40-pin connector to offboard analogue interface module

Data transfer The DSP module is fully accessible from the backplane bus' All

circuitry (outside of the TMS320C25) can be accessed by the back-

plane rnaster

FIFO 1024-rvord FIFO from DSP to backplane

l-word register from backplane to DSP.

Control Aspects Backplane master has full control over EE-SE-T and

signals to the DSP.

EOTD

Backplane Connector DIN41612 (proprietarY bus)

Table A'.12: TI\4S320C25 DSP I\{odule Specifications

179

A.2.2 DSP-0000

TMS320C25 and Clock.

Noles:

1. The clock to the DSP is supplied by a 40I{Hz crystal oscillator module'

2. The TMS320C25 may be either PGA or PLCC package. They are physically pin compatible

(when the PLCC is in a socket).

B. The STR}| signal must have a pull-up resistor to prevent spurious activity when the

TÀ{S320C25's busses are tri-stated.

001
YCC

YCC

Ì

tl

fD0

1D

T02

ID¡

tDa

1D5

'D¡
TO?

lDB

lPS

DSPCIT

CLEOUl2

¡alDS

YCC

c[ft

cLft

vcc

DI ODE

tD9

TD O

702

TD

t0 a

ID !

lD5

1À9

l^ 0

1À ?

1¡0

lA?

tÁl

lAa

T^5

1^0

1^l

tA

YCC

L¡D
¡

¡r
Tl 3

ÍÁ 5

T¡ 't5x

GND

JUUI-I

cc

c¡D

1tìÌt
YCC

t00[

ROY

L[0 I 00R

DI ODE root

LID
x¡

L[0

t0t D
Dl ODB roor

DI ODB roor

N

ffi

i¡îî

-rô
I X10 C\¡

I
^Ct o

IP-IC c\¡

¡wF t/)
¡Dr >
aRl

XT

ru

N

m

8t0

DOLD

TOL DI

sYxc

lt
t2

ct[0ul r

aLt0ul?

DO

DI

DZ

D1

D'

DS

DI

D?

D8

D9

Dr0

0il

Dl2

Dtl

Dta

Dt5

l0

Àl

lz

tl

l5

À!

tl

Á9

tr0

ail

Al2

Àtl

¡la

Àt5

n-l
sl R8

D¡

cLxn

rs¡
0x

crxx

rst

YCCA I 0

vccBt0

tccü2

vccL!

YSSBI

vsstt I

vsst2

180

A'.2.3 DSP-0001

TMS320C25 Wait State Generation

N oles:

1. The TI\,IS320C25, when clocked at 40MHz, executes a maximum of 1 bus cycle per l00ns

CLKOUT period'

Of this 100ns, about 60ns is available (strobes active) for memory access' The cheapest memoly

devices are of the order of 80ns-100ns, and may or may not function correctìy under such

circumstances.

Therefore, it is necessary to either use fast, but expensive, memories, or slower memories with

I wait state.

Both methods are supported in this module. The latter results in a decreased throughput

(5À{IPs instead of tOii,tIes), when executing programs in external program memory, though

ihi. .un be alleviated by transferring the plograms into internal DSP memory and executing

them there at the full 10À{IP rate (provided the programs are small enough to fit into the

internal memory.)

2. Devices such as input/output port latches, ADC, DAC, etc typically require no wait states'

3. No wait states need to be generated when the DSP is tri-stated (ie when the backplane busses

have been piped through to the DSP busses')

4. This module can operate at full speed with zero wait states, or half speed with one Ïr'ait state.

The mode of operation is set using the jumper PSTATES'

Jumper PSTATES Result

omitted 0 wait state

inserted 1 wait state

Table 4.13: DSP wait state jumPer

The wait states are generated rvith the aid of tlte Ijße signal of the TI\{S320C25, as

documented in [1].

5. The pAL called DSPWAIT i¡ this drawing generates the chip- select strobes for the program

and data memory.

181

/* DBÄl¡ING DSP-0001 */

/* This pal- provides strobe decoding fron the ackeplane bus onto the
THS32OC25 busses, and generates the RDY signal chich deternines the
Iength of bus cycles' and provides decode strobes for RAH' */

1 = IDECODE; /+ co¡nbined with lAS already in the decode process */

N¡ne
Partno
Date
Revision
Des igner
Device
Fornat

Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin

dspnait;
20001;
2s/9/8si
01;
GV;

p20110;
j;

2 = BA18;
3 = BA17;
4 = IHOLDA;

5 = TA15;
6 = TA13;
7 = !MSC;

8 = PRAMTYPE;

9 = DRAIITYPE;

10 = PSTÂTES;

11 = DSTATES;

13 = ISTATES;

/* 1 neans
/+ 1 nea¡s
/* 1 nea¡s
/+ 1 neans
/* 1 nea¡rs

!HSC) '|/
!l'tsc) +/
!l'TSc) */

32k device, 0 neans 8k device */
32k device, 0 rneans 8k devj.ce */
full speed, 0 nea¡rs 1 wait state (using
full speed, 0 nea¡s 1 wait state (using
fuIl speed, 0 nea¡s 1 nait state (using

Pin 23

Pin 22
Pin 21

Pin 20
Pin 19

Pin 18

Pin 17

Pin 16

Pin 15

Pin 14

IPRAIÍOCE; /* locer Prograr rnenory device select +/
IPRÂM1cE; /* upper Progra-n nenory device select */
!DRAHOCE; /* loçer data nenory device select */
IDRAI{ICE; /* upper data nenory device sel-ect 'r/
! TSTRB ;

! TPS;
! TDS;
!TIS;
ONBDRDY;

IDSPSEL; /* asserted chen a request for DSP space is nade */

TPS.0E = H0LDA;

TPS = DECODE & BA18 & BA17;

TDS.0E = H0LDA;

TDS = DECoDE & BÀ18 & !8417;

TIS.0E = HOLDA;

TIS = DEC0DE & !8418 k BA77;

TSTRB.0E = HOLDA;

TSTRB = DECoDE & (BÂ17 # BÂ1S); /* don't assert l'hen accessing control a, ea */

DSPSEL = DECODE k (8A17 * B¡,18);

PRAI1OCE = TPS & TSTRB & !T415 & PRAMTYPE *
TPS & TSTRB & ITA13 & IPBAI{TYPE;

PRAI'íICE = TPS & TSTRB & TA15 & PRAIiTYPE Û

TPS & TSTRB & TA13 & IPRAHTYPE;

DRAMOCE = TDS & TSTRB & !TÀ15 & DRAMTYPE #

182

TDS & TSTRB & ITA13 & IDRÀI{TYPE;

DRAM1CE = lDS & TSTRB & TA15 & DRÀMTYPE *
TDS E TSTRB & TA13 & IDRÀ}ITYPE;

/+
ONBDRDY = TPS & PSTATES *

TPS & IPSTATES & IMSC #

TDS & DSTÀTES *
TDS & IDSTATES & II.ÍSC f

TIS & ISTATES *
TIS& IISTÂTES& !}îSC;

*/

/* The folloning is a nodified one nhich allons inplenentation in a 20LLo */

ONBDRDY = 'b'0;
oNBDRDY.0E = IHOLDA & IPSTATES & l{SC;

tcc CND

DECODE P Rr ¡¡0 CE

BIIS Pn¡¡¡l

Btl? DRAIOCE

DRAI'I CE

tl15 lSlRB

ttlS lPS

t¡s c lDs

PßIIIYPE

DR¡I¡IIP' ONBDRDY

PSrtlIS DSPSEL

TIIES

r s1r1[s

2?V10

l

VCC GND

t0 00

I I 101

t2 I02
I 3 I 03

| 4 I 04

I5 I 05

I ô I 06

t7 I0?
I B I 08

I 9 09

I10
I1l

183

^.2.4
DSP-0002

TMS320C25 Onboard Decoding.

This drawing contains only references for the onboard device decoder, as that decoder has been

implemented itr pAl,r rvhich are documented elsewhere. This provides read and write strobes for IO

devices within the module.

Noles:

1. The strobes for program and data rnemory are generated by the DSPWAIT PAL in drawing

DSP-0001.

2. IO Devices which must be selected by the DSP are:

o DSP-accessible status register (see DSP-0008).

o DSP-accessible control register (see DSP-0007).

o DSP-to-Backplane FIFO (see DSP-0006).

o AIM Interface (see DSP-0004).

3. The decoding is performed by the PAL in drawing DSP-000i and DSP-0002.

4. The IO space of the TMS320C25 has a capacity of 16 read- devices and 16 write-devices. Of

these, the first 2 read and first 2 write devices are decoded on the DSP board itself. The

remaining 1,4 of each are decoded to the AIM interface, which is assumed to be connected to

the AIlr{ interface connector (see DSP-0004)

5. AII IO devices must conform to zero wait-state access by tlie TMS320C25.

184

L.2.5 DSP-0003

TMS320C25 to Backplane Bus Interface.

To the backplane, the DSP Module appears as a 512kbyte area of memory. This 512k is divided

into 4 distinct regions or equal size.

Offset from Base Function

$000000 Board Control Ärea

This area contains read-write registers dedicated to board coutrol

The following registers are accessible in this space.

The nature of the registers is stated in table .A.15.

$020000 DSP IO Space

Only the first 16 16-bit words of this space have any meaning' They

correspond to the 16 IO words of the TI\{S320C25.

Reading or writing to this memory space will have the effect or

reading or writing straight through to the corresponding TI4S320

IO port. This correspondence is stated explicitly in table A'16'

As discussed in the text of this section, access to this space causes

a E-Õ-D / E-Õ.tDÃ sequence to allow the backplane master pos-

session of the DSP's busses, after which the read/write operation

is performed.

Note that access to this memory space must be 16-bit only' Byte

operations are not suPPorted.

$040000 DSP Data Space

The entire span of 128k bytes of this region is mapped into the 64k

words of DSP memory.

The text of this sectiou provides information about how the EõtD

/ IIOIDT protocol is used to access this section'

Note that access to this memory space must be 16-bit only' Byte

operations are not suPPorted.

$060000 DSP Program Space

The entire span of 128k bytes of this region is mapped into the 64k

vvords of DSP program memory.

The text of fhis section provides information about liow the EõID

/ trOIDT protocol is used to access this section.

Note that access to this memory space must be 16-bit only' Byte

operations are not suPPorted.

Table A'.14: DSP lr{odule Backplane l{emory À4ap

The offset address is relative to the base address of the DSP mod-

ule, which is set using jumpers to a 512kbyte bouudary in the

l6Mbyte address space of tlle control processor.

The Th,1S320C25 provides a mecì.¡anism u,hich allou,s another processor to gain full cont¡ol of tìre

185

Address Offset R/w Function

$000000 R Identity PAL

$004000 R Module Status Register (see drawing DSP-0012

$008000 w I\4odule Control Register (see drawing DSP-0011)

$00c000 R DSP-to-Backplane FIFO (see drawing DSP-0006)

$010000 w Backplane-to-DSP FIFO (see drawing DSP-0006)

$014000 w Attention Acknowledge (see drawing DSP-0010)

Table 4.15: Board Control Area Memory l\{ap

The Address offset is relative to the DSP module base address

Offset relative

to IO base

Corresponding TÀ4S320

IO Address

$000000 $0

$000002 $1

$000004 $2

$000006 $3

$000008 $4

$000004 $5

$00000c $6

$000008 $7

$0000 I 0 s8

$000012 $9

$000014 $A

$0000 1 6 $B

$0000 18 $C

s000014 $D

$00001c $E

$00001E $F

Table 4.16: IO space add¡ess correspondence

186

DSp's external busses. This mechanism is used to allorv the backpìane bus master (at present the

68000 control processor) to access all DSP memory and IO devices directly'

This is useful for many reasons, the most important being for testing and the loading of DSP

executable code into ptogram memory.

Noles:

1. To gain possession of the DSP busses, the backplane bus master must assert the EOTD

sig.rãl to-the DSP and wait for that request to be acknou'ledged by the DSP asserting the

E-Of,DT signal.

Once HOf,DÃ is asserted, the DSP has relinquished control of its busses, and bus t¡ansceivers

may be enabled to allow the backplane bus signals into the DSP modules core.

2. In the present DSP module, there are two methods for asserting the H-OLD signal. If the

backplane master attempts to access the DSP progtam, data, or IO spaces directly, the E-OID

/ E'ODA protocol will be used for that one bus cycle. Once the bus cycle has terminated,

ln" fÕ|D- signal to the DSP is deasserted to allow the DSP to resume program execution.

The second method requires the backplane master to set a bit (set it to 0) in the Boa¡d Control

Register (see DSP-001i) which asserts the FOLD signal to the DSP for as long as that bit

is slet (tob¡. fVn"" tliis mechanismis used, there is no contention for the DSP's busses, since

the backplane maste¡ always in control of them'

3. Full 16-bit address, 16-bit data, and control signals are buffered from the backplane into the

DSP ci¡cuit. Thus the backplane master can access all circuitry externaì to TI{S320C25'

allowing full testing of the DSP board's subsystems.

r87

/* SHEET DSP-0003 */
,/* Identity PAL */

Name

Partno
Date
Revision
Designer
Device
Fornat

Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin

IDENT;
20001;
2s/9/89t
01;
GV;

916v8;
j;

1 - BA3;
2 = BA2;
3 = BA1;
4 = IIDENT;
5 = !DEC0DE;
6 = IDSPSEL;

7 = IPERMRES;

I = IBRESET;

9 = IHOLDA;

11 = BBIJ;

Pin 15 = IBUFIEN;
Pin 14 = !BUF2EN;

Pin 13 = ITBESET;
Pin 12 = TRIJ;

FIELD DÂTA = IBUFD3..BUFDO];

DATA = 'b'0101 & !BA3 e, lBA2 & !BA1 *
'b'1010 & !BA3 k lBA2 & BA1;

DATA.0E = IDENT;

BUF1EN = DECODE;

BUF2EN=DSPSEL&H0LDA;

TRESET = BRESET S

PER}IBES;

TRll = BRtl;
TRll. 0E = H0LDA;

I

i

I

188

,/* SHEET DSP-0003 *,/

/* fnterface fron bus to dsp +/

Name

Partno
Date
Revision
Designer
Device
Fornat

Pin 1

Pin 2

Pin 3

Pin 4

Pin 5

Pin 6

Pin 7

Pin I
Pin 9

DSPBUSiF;
20001;
25/s/8s:
01;
GV;

916v8;
j;

BA16;
BA15;
BA14;
RDY;

! DSPSEL;

! DECODE;

I PER}ÍHOLD;

! HOLDA;

BRII;

Pin 19

Pin 18

Pin 17

Pin 16

Pin 15

Pin 14

Pin 13

Pin 12

! BFIFOR;
!BFIFOII ;

! BSR;
! BCR;

! HOLD;

! BDTACK ;
! BATNACX;

I IDENT;

IDENT = DEC0DE & IDSPSEL & 18A16 & lBA15 & !8414 & BRll;

BSR = DECODE & IDSPSEL & !8416 & !8415 & BA74 & BRIJ;

BCR =DECODE& IDSPSEL& 18A16& BA15& !8414& lBRll;

BFIFOR=DECODE& IDSPSEL& lBA16& BA15 & BA74 &BRIJ;

BFIFOII=DECODE& IDSPSEL& 8A16& !8415& lBA14& IBRIJ;

BÂTNACK = DEC0DE & IDSPSEL & 8A16 & !8415 & BA14 & IBRIJ;

HOLD = DSPSEL #

PERI'ÍHOLD;

BDTACK = DSPSEL & H0LDA & RDY *
DECODE & IDSPSEL;

BDTACK = DSpSEL & HoLDA * /* this is a hack to nake BDTACK çork on HoLDA asserted +/

DECODE & !DSPSEL;

BDTACK.0E = DECODE;

189

Et vcc

Dt a cÌD

EX VCC

DI I CND

¡0
EI

az

B3

B¡

E5

86

¡?

¡

l0
¡t
LZ

¡l

Â5

¡6
t7

t0
¡t
E¿

EJ

l¡
¡5
Bô

B?

l0
¡t

tc ¡utr¡x

¡¡-r

¡

lr

¡a

ta

It

tl
la

!

!

ra¡claö

DE0tat

¡0t¡¡

¡0tDl

l0tDa

¡0t¡t I

¡útD I ¡

¡ttDt

¡0 B0

¡ r 81

t2 B?

¡3 Bl
¡a E4

¡5 E5

t8 16

t7 81

Eì TCC

Dt ¡ ctD

Et lcc
DI N GID

l0 B0

¡l El

^z
82

Á! BJ

¡a !a
ló B5

¡ ô Eô

t7 B?

¡ut¡tr

¡¡0tt I

t¡Bc¿¡l

D¡0ttô

11ÂCZa6

?¡¡c¿¡t

¡,

It
ta

ta

¡¡lt

I

a

¡0¡!
¡Drt

¡¡l t

t¡
l¡

t¡

D!t¡0il t

P¡L¡ III

I Ditt

P¡I¡úLI

?¡actll

I ¡ ¡ll tol

ta

tl

tt ¡ Dlil

t¡-t

a

I

¡D¡

¡D!It
¡DC

¡Dl

la

¡Dtta

!

¡

?aEc!{ 3 ?a¡cla t

lccl!¡0

,

¡l

la

ta

¡D¡J2

It

I

ta

vcc ctD

l0 00

lr
iz t 0r

t¡ l0?
la t03
l5 l0a
t 6 ¡ 05

l? t0ó
IO

:! o?

!cc ctD

l0 00

¡t
tz tot
I3 IOz
Ia l0¡
ls 101

l6 t05
I? I06
t8
: ! 0?

^0¡l
Áz

¡3

¡5
¡0
t1

a0

¡l
82

EI
l4
B5

Eó

B7

Eì VCC

DI R GìD

t0
BI

B2

8a

B5

86

D?

f,t rcc
DI I GXD

l0
¡t
t2
¡l

15

¡ú
A7

,
I

I

ta

il

c rcc
PrQ CXD

P0 00

P¡ QI

PZ Q2

P3 Q3

P4 Q'

P5 Q5

P6 Qô

P7 Q?

190

4.2.6 DSP-0004

AIM Interface.

The TN{S320C25 features a separate connector to which Analogue Interface lt{odules (AIl\{) may be

connected.

The DSp Module has no analogue interface circuitry on it at all, it must all be provided on a separate

module. The ,A.IM must be connected via a separate connector to the DSP module due to the high

data bandwidth which will usually be required of the system'

The backplane bus is provided only as a control bus, and while it is feasible for the control processor

to provide the data path between separate DSP and ÀIl\4 boards, the system rvould fail to perform

at
-trigh

rates, and would involve excessively complex software to coordinate the transfer. For this

,"*on, the AIM has a separate, direct, hardware connection of the DSP module.

Noles:

1. The TI,IS320C25 can address 16 read-write IO devices. The DSP moduìe reserves the first 2

for onboard use, but the remaining 14 may be decoded on the AIM'

2. All data, address, and control lines passing between the DSP module and the AIlt{ are buffered.

3. The TMS320C25 serial-codec support signals are also passed thought the AI\{ connector.

Jumper AIMJ1 allows the AIÀ4 o receive either the buflered SmB signalfrom the TN4S320C25,

or the CLKOUT1 signal (101\{Hz clock).

191

ÂI MBON

TR_W

t9

ÂI MDO

AIMDI

AI MD3

3

5

6

7

ÀI MD2

ÂI MD4

AI MD5

ÄI MD6

ÄI MD?

GND l9

GND

20 vcc

IO OND

20 vcc

I O CND

A I },IBUF 2

7 4HCZ 45

AI UBUF4

? 4HCZ45

z0 vcc

I O GND

tt

1D0 ÀI MD8

ÀI MD9

ÄIMDI I

3

ó

AIMDIO 1

AI MDIz 6

Àt MDl3 1

CND
'9

CND I

ÀI MFSX 6

l7 TDI

t0 TD2

t5 TD3

l1 TD4

l3 TD5

tl TD?

¡8 108

l7 TD9

l6 TDIO

lã 10¡l

t1 TDI2

l3 TDI3

ÎD r 4TDô ÀI MDI,I

AIMDIS TDIS

Ät u1Ä0 2

ÂIMTÁI 3

ÂI MTA2 A

AI MTÀ3 5

Àt uR-r 6

AIMTIS 7

7 4HC245

AI IÚBUF 3

7 4HC?45

I O CND

t8 Àl ¡lcLtix

17 Àl[cL¡iR

t6 0x

t1 PSX

¡ 3 AI }IFSR

?0 vcc

tz Âl MBI 0

tl

Ió ÂI MDR

¡0 TÀO CLKX

l7 1Àl CLKR

t0 TA2 ÁI MDX

l5 1À3 DR

9

5

t1 TR_T

AI MSÎRB 8

ÀIMXF I

t3 Tl s FSR

t2 lSlRB Àr MEB| 0 I
tt XF I

I
EN VCC

DI R GND

AO

A1

Lt

A3

A4

A5

A6

À7

BO

B1

D'

B3

B4

B5

B6

B?

EN VCC

DI R GND

AO

Å1

^2

A4

A5

A6

Ä?

BO

B1

B2

B3

B4

B5

B6

B?

EN VCC

DIR GND

Ä0

A1

A2

A4

A5

A6

A7

BO

B1

B2

B3

B4

B5

B6

DI

EN VCC

DI R CND

AO

A1

L2

A3

A4

A5

A6

BO

Bi
B2

B3

B4

B5

B6

B?

r92

1

o

Ê

7

I
11

13

15

T7

19

2l
oa

25

27

29

31

33

35

37

39

,

4

6

o

10

t?,

l4

l6

18

20

oa

24

26

26

30

20

34

36

38

40

CND

AI MDO 3

AI MDZ 6

ÀI MD4

AI MD6 9

TI NTO It

Âl MDB rg

Äl MD10 ró

ÄlMD12 tz

ÀlMD14 re

TI NTZ zt

Àt MR-lf zs

AI MTI S ?6

Âl MXF 27

Âl MCLKX ?s

Äl MDX s1

AI MFSX sg

Al MTA0 só

ÂI MTA2 37

GND 39

AI MCON

r AI MDl

o Àl MD3

s AI MDS

10 AI MD7

12 TI NT1

r{ Àl MDg

16 Äl MD11

r8 AlMDl3

zo ÀlMDl5

z2 GND

21 CLK/STRB

?6 AI MBI 0

z6 RDY

so Âl MCLKR

oz Al MDR

3{ AIMFSR

s6 AI MTA 1

s8 Âl MTA3

40 CND

AI MSTRB

z CND

7

AI MJ 1

CLKOUT 1

193

^.2.7
DSP-0005

Prograrn and Data RAM

Noles:

1. Both 8kx8 and 32kx8 SRAI\,Í devices are supported. The former result in afuII memory of

16k- words in each memory area, and the latter in 64k-words in each area.

The only restriction is that all SRAM devices on the DSP module must be of the same type.

The nature of the SRAÀ{ used is determined by jumper DRAMTYPE'

Jumper DRAMTYPE SRAM supported

omitted 32kx 8

inserted 8kx8

Table 4.17: DSP RAN4 type jumper settings

2. Devices with access times of below 50ns should be used if zero wait-state operation is required

Devices of access time 150ns or less are suitable for 1 wait-state operation'

t94

;i-
oF
ÊB

=D¡
È

ã-.¡o
sÉ
Dr-

È

PRAI¡I L

PRA¡d?L

DRA)¡' L

DRA¡¿?L

PBAI¡1H

PRA)¡?H

DRAUJ H

DRAT?H

I

¡;
=oD'

5ú
É

õi

¡i-
oF
És

-B
É

¿i-
ÈÉ
Dr=

É

ãi-ofrÉü
-M

d

d

.xo¡"

=D'
É

d

¿ix
oFÉu
-D'

É

195

4.2.8 DSP-0006

Interprocessor Mailbox.

The interprocessor mailbox provides a means by which the TMS320C25 and the system control pro-

cessor can communicate witúout the control processor actively taking control of the signal processor's

busses.

Tlie mailbox actually consists of two distinct ports, each unidirectional. A single-word-deep port

communicates words from the control processor to the signal processor, while a l024-word-deep

FIFO communicates words from the DSP to the control processor'

The asymmetry in the depth of the ports exists for reasons of economics and available PCB real-

estate. The DSp-to-backplane direction rvas given the deeper FIFO since the response time of tìre

control processor to an attenlion request may be long (if it is se¡vicing an attention request frotn

another DSP, for instance), and this must the least delay in DSP operations.

The backplane-to-DSP direction is somewhat less critical, since the response time of the DSP to

servicing maiìbox interrupts will be fast, so that a deep hardware FIFO is less necessary'

196

,/* SHEET DSP-0006 */
,/+ l{ailbox between the bus a¡d the DSP *,/

Name

Partno
Date
Bevision
Des igner
Device
Fornat

Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin

Pin 19

Pin 18

Pin 17
Pin 16

Pin 15

Pi.n 14
Pin 13

Pin 72

1 = TRIJ;

2 = TA3;
3 = TA2;
4 = TA1;
5 = TÀ0;
6 = !TIS;
7 = PRINTEN;
8 = PIJINTEN;

9 = !EF;
11 = !BFIF0IJ;

nailbox;
2000 1 ;

25/9/89¡
01;
GV;

p1618;
j;

!TFIFOII ;

! TFIFOR;
FULL;
FULLFLÂG;

! INTO;
! INTl ;

!ÀI}IBEN;
! TCR;

,/* DSP nrite strobe for DSP-)BUS fifo */
/* DSP read strobe for BUS->DSP fifo *,/

/* internediate variable */
,z* high when word in BUS->DSP fiio +/
/* 1'Ì1532OC25 interruPt */
/* TYIS32OC25 interruPt *,/

/* AIH data buffer enable '*/
,u* DSP Frite strobe for control register *,/

TFIF0II = TIS & lTA3 & tTA2 8t !TA1 & !TÀ0 & lTRll;
TFIFOR=TIS& lTA3& tTJ.2& !TA1 & lT.â,0&TRIJ;

TCR = TIS & !TÂ3 k t.TA2 & !TÀ1 & TA0 & ITRIJ;

AIÌ'IBEN = TIS & (TA3 S TA2 # TA1); /* enable buffers for all except the
botton 2 io locations */

FULL = BFIF0IJ #
FULL & !TFIFOR;

FULLFLAG = FULL & IBFIF0IJ;

INT1.0E = FULLFLÀG & PRINTEN;

INTI = FULLFLAG & PRINTEN;

INTO.0E=EF&PIJINTEN;
INTO =EF&PIIINTEN;

r97

DO QO

DI QI

!¿ Q¿

D! QI

Da q{

16Noó o
DTNCI

ts!t-ct
DSôQ!

f¡

tf
jf

IO

s
rvn
il

¡¡

'Dô
1!a

t¡Ì

FIFOT

BÌI ?OL

t!tD0

¡Û'D¡ t!¡
DI

¡!t¡2
¡U'D! tDil
ID' D' lDr?

t!r¡ [
¡ÙtDl

¡!tDl

ril t0¡ t0t

It t¡¡t¡t

FIFOH

BPt t08

?aEc3?1

t 00l

r 00¡

l!t!l

¡07 D9

¡0tDl 0

tùt!r r

¡!tD l ¿

¡[lDli
¡u7!rr

¡!tDr6

¡7t t0l
EID

Ttctcc

Iil t0¡ I

tDt

tDt

tl

t¡-l
trs
tl?
tÀl

?il tt¡¡
tr¡ it¡i

,0

I ciD

¡ùt¡l
¡ùrD2

¡0t!l
tl BU'D{

¡0r¡ 6

¡U'DI

tl D D'DT

¡t lt¡ rot

tt iil l0¡

I t loll

tt turrtl¡0

ta

ll

It

tt 0¡D

Iil tD¡ I

lDl

ta

¡t

rca

ûx¡

¡OID¡

I ùl¡t

txtD I 0

EUt¡il

¡ t0tDt?

¡ÙtDtl

tl lut¡ I ¡

LED5

DI ODE

LED6

DIOD[

t0

e

!a

1D[

ID

¡

?¡EC3?¡

I¡¡ !EOT

I

tc¡I

P¡¡,I6L'

!0

QI

el

¡!
QI

Q6

ta

Q'

t¡
¡

n
ll
iõ

DO

DI

a2

D!

D6

D!

DI

DI

i

n
rrÆr

ii

N
o
N
Þ
?ê

õl vr¡
Cp lSS

DO

DI

DZ

D3

D{

D5

D6

D?

QO

QI

q3

Q1

Q5

Q6

Q?

It
OE

CP

YDD

vss

DO QO

Dr qr

DZ q2

D3 Q3

D¡ q¡

D5 Q5

D6 Q6

D? QI

00

0?

vcc GllD

l0
ll
t2

l4
l5
l6
l?
t8
)ß

t0l
102

¡ 03

t01

t0ó
I 06

198

^.2.9
DSP-0007

D S P-accessible Control Register'

The DSp-accessible control register allows the TÀ{S320C25 to control the states of various signaìs

within its surrounding circuitry. Tlie 8 control signals are documented in table ,{.19. The functions

of the signals fall into the following main categories:

o Attention Level Control and Assertion

The backplane bus supports an 8-ìevel attention request mechanism which modules may use

to request service by the control processor.

A client module asserts an Attention Request signal by performing the following actions:

1. Set the Attention Request Select Bits 0-2 (ARSB0-2) to form the binary representatiotr

of the nurnber of the ÃTNn backplane signal to be asserted'

For instance, to assert the backplane signal ÃTÑ6 , the user must set ARSB0=O,

ARSBl=1, ARSB2=2.

2. Set the ATNREQ bit of the control register to 1. This bit must only be set motneutarily,

so it is cìeared in the next operation.

3. Set the ATNREQ bit of the control register to 0'

At this time, the ÃTN; signal on the backplane rvill be asserted.

There is no way for the TI{S320 to directly monitor the state of the attention request (to

see whether it has been cleared by the control processor.) However, the user may provide a

signal to the Tlr{S320 by writing a value to the backplane-to-DSP FIFO, o¡ the Tl\{S320 cau

monitor the Empty Flag (Etr) of the DSP-to-backplane FIFO to determine u'hen the control

processor has read out all of the waiting data'

o Enabling of Interprocessor N4ailbox interrupts.

The ¡{ailbox described in drawing DSP-0006 can generate interrupts for trvo distinct classes

of event:

1. The DSP-to-backplane FIFO is empty.

This irnplies that the next set of data can be written to the FIFO.

2. The backplane-to-DsP FIFO is full.

This means that there is a rvord waiting to be read from that port. Since this FIFO is

only 1 rvord deep, the DsP should ¡ead the value out of the port prornptly.

Each of these interrupts is enabled separately by bits in the DSP-accessible control register.

o Selection of BTO signal source.

The BTõ signal input of the TN{S320C25 provides a convenient, software testable input.

It is only one bit wide though, so a multiplexor has been used to allow it to sample one of 4

signals, as described in table A'.18.

This multiplexor, together u,ith the BfO input of the Tl\{S320C25, fo¡m the DSP-accessible

status register discussed in drarving DSP-0008.

199

BIOSELl BIOSELO BTõ Source

0 0 ElÕ signal from AIM connector

0 1 ET' (Empty Flag) from DSP-úo-backplane FIFO

1 0 FT' (Full Flag) from DSP-to-backplane FIFO

1 1 FULLFLAG from backplane-to-DSP FIFO

Table .A'.18: TMS320C25 BIO' signal sources

Table A'.19: DSP-accessible control register bit assignments

Value written to register Effect

$0000 CIea¡ Attention Level bit 0 (ARSB0)

$8000 Set Attention Level bit 0 (ARSBO)

$0001 Clear Attention Level bit I (ARSBl)

$8001 Set Attention Level bit I (ARSBI)

$0002 Clear Attention Level bit 2 (ARSB2)

$8002 Set Attention Level bit 2 (ARSB2)

$0003 Attention Request remains unchanged (ATNRÐQ)

$8003 Force Attention Request assertion (ATNREQ)

$0004 Disable backplane-to-DSP FIFO interrupt

$8004 Enable backplane-to-DSP FIFO interrupt

$0005 Disable DSP-to-backplane FIFO interrupt

$8005 Enable DSP-to-backplane FIFO interrupt

$0006 Clear BTO source select bit 0 (BIOSEL0)

$8006 Set BTO- source select bit 0 (BIOSBLO)

$0007 Clear ETõ source select bit 1 (BIOSELI)

$8007 Set BTõ .ource select bit 1 (BIOSELI)

200

TDO

TDl

TD2

TRESET r¡

VCC to

TCR r.

TD15 rg

CONTROL

711S259

¡ÄTNLEV0

sATNLEvl

oATNLEV2

r ATNEN

¡PRl NTEN

,0Yl NTEN

r Bl 0SEL0

rdl 0SELI

s CND

Q0

Qr

Q2

Q3

Q4

Q5

Q6

Q7

VCC GND

D

AO

A1

^2

CL

E

20r

A.2.10 DSP-0008

D SP-accessible Status Register.

The DSp-accessible status register allows the Tlr{S320 to monitor the state of three signals u'ithin

the module, and one signal frãm the attached AIÀ{. Only one of these 4 signaìs may sampled al one

time, as they are fed through a multiplexor to the TMS320's BIO signal input'

The multiplexor is controlled from two bits in the DSP-accessible control register' as described in

drawing ¡Sp-OOOA. To use the status register, the TMS320 must first set these tu'o bits to select

the desi-ired signal to be multiplexed onto the Bfõ line'

The DSp software may then use the BI0Z instruction to test the state of that signal.

STATUS

Bl 0SEL0 r l ¡ Âl MBBI 0

Bl oSELI ,o EF

FF

I FULLFLAG

lå

ta

tl
1¿

CND

CND

Bl0

CND

vcc

71LSlól

t0

¡t
t2

IJ

l4

t5

l6

t?

VCC GND

AO

AI

E

202

L.2.tL DSP-0009

DSP Module InterruPts.

The DSp module uses interrupts to alert the TMS320C25 of certain circuit conditions, these being

1. The arrival of a wo¡d at the backplane-to-DSP FIFO'

2. The DSP-to-backplane FIFO being emptied by the control processor

Each of these interrupts are enabled by a bit in the DSP-accessible control register described in

draw'ing DSP-0007.

The interrupt signals for these two conditions will be active for as long as the circuit condition

exists (ie *tiil" tù" word is rvaiting to be read from the backplane-to-DSP FIFO, or while the DSP-

to-bacÈplane FIFO is empty), so that the Tlr{S320C25 should ¡eenable interrupts only after it has

cleared the circuit condition rvhich caused the interrupt'

Interrupts may also be generated by the Analogue Interface Module.

TabÌe ,{.20: TÀ'IS320C25 onboard interrupt sources

The Interrupt Enable signals nentioned in table Ä.20 originate from the DSP-accessible control

register (see DSp-0002) . Íhe signals which cause the interrupts a,re associated with the iuterprocessor

mailbox (see DSP-0006).

The interrupt signals TIñf-0' , TlNlm , TfNfTZ may all be generated by the AII\{. Iu this

case the user should program the DSP-accessible control register to disable the onboard interrupts.

The signals which cáuse the onboard interrupts can still be monitored by the Tf'{S320 via the

DSP-accessible status register (see DSP-0008).

TN{S320 InterruPt Causing Signal Enabling Signal Comment

TIÑM EF P\\IINTEN DSP-to-backplane FIFO emPtY

TIÑM FULLFLA.G PRINTEN backplane-to-DSP FIFO full

203

A.2.r2 DSP-0010

DSP Module Attention Requests.

The DSP module may request attention from the control processor board in the system by asserting

any one of I attention request signals on the backplane bus (ÃTNõ', . . . 7rr.M).

The method used to assert the desired attention request signal is described in CON-0007.

The control processor clears the attention request (eflectively acknowledging it) by writing to the

memory address reserved for this in the DSP module control area (see table A'15.)

204

/* SHEET DSP-OO1O */
,/* lrlisc, functions including tristating of status ÌlUX and attention assert

control fliP-f1oP. *,/

Pin 1 = ATNEN;

Pin 2 = IBÂTNACK;

Pin 3 = STÂTUS;

Pin 4 = !BSR;

Pin 5 = TA13;
Pin 6 = PRAMTYPE; /* L -> 32K RÀl{, 0 -> 8K RAM */
pin 7 = RAI{TYPE; ,/* ÂS ABoVE */
Pin 8 = ONBDRDY;

Nane
Partno
Date
Revision
Designer
Device
Fornat

Pin 19

Pin 18

Pin 17

Pin 16
Pin 15

Pin 14

Pin 13
Pin 12

atnasert;
20001;
25/s/8st
01;
GV;
p1618;
j;

BUFD15;

I ATNÂSRT;

PRAI{P26;

DR¡.MP26;
RDY;

TRII;
! TSTRB;
NEIJTRTI;

ATNASRT = ÂTNEN #
ATNASRT & !BATNACX;

BUFD1S = STATUS;

BUFD15.0E = BSR;

PRAI{P26 = lRÂ}ITYPE *
RAMTYPE & TA13;

DRAMP26 = IRAIITYPE *
RAMTYPE & TA13;

RDY.0E = IONBDRDY;

RDY = 'bt0;

NEIITRII = ITSTRB # TRll ; /* only get write pulse nhen ÎSTRB active */

205

rv¡

AlNLEVO

ATNLEV I

ATNLEV2

AlNÀSRT

ATNASERT

?4LS156

t! vcc

r GND

? À1N4

6 A1N6

5 ÀTNO

. ATII?

T ATNO

!o ÂTNl

rr À1N2

I¿ ATNS

ÂTNEN

BATNÂCK Z

ATNPÂL

PAtI6LB

t9 BUFol5

I 0 À1NAS81

ló RDY

t1

t3

STAÎUS 3

BSR

TÁI3

PRÀI{TYP8 6

ORÄMTYPE 7

ONBDRDY O

5

il

vcc 20 I 0 cllD

z

ll

tÉ

Er qÀr

E2 qÂ2

E3 QBI

E4 qB2

QÂO

QA3

Q80

QB3

À0

Àl

vcc

GND

IO

I1
T2

I3
l4
I5
l6
l7
t8
t9

I01
I 02

I 03

I04
I 05

I 06

VCC GND

00

07

206

A.2.13 DSP-0011

DSP Module Control Register.

The Module Control Register (I{CR) is a single bit wide register to which only the backplane bus

master has access. The¡ã are i indi'niduully addressable bits in the register, which directly control

the state of two signals within the DSP module.

The states of the two bit wide words are set by writing a 16-bit word to the addresses shown in table

A.19. Bit 1b of that word contains the value that will be rvritten to the register.

Tabìe 4.21: DSP Module Control Register
The Address offset is relative to the DSP Ivlodule base address'

BCR

BAI ¡ PERURES

BA2 ¡ PIRMHLD

BA3

BRISET lå

0

1

I

t0

ll

t2

BCR rt

BUFDl5 l¡

VCC ro ¡ GND

7{LS?å9

Address Ofset Signal Function

s008000 PE'RNIEES Directly controls the state of the TMS320C25's RESET signal

$008002 PE-RNItrIÐ Directly affects the state of the TMS320C25's E-Om- signal'

If PE'RMtrfD is asserted (ie ìow), the Eõ.LD signal to the

TMS320 is asserted.

Q0

Q1

Q2

Q3

q1

Q5

Q6

Q?

VCC GND

CL

EN

D

AO

A1

AZ

207

A.2.L4 DSP-0012

DSP Module Status Register.

By reading from this register, the backplane master can determine the state of the DSP board at

any time, u'ithout interfering with DSP plogram execution at all'

The module status register consists of 8 single bit registers which a¡e read from the addresses shown

in table .4..22.

Table A..22: DSP tr4odule Status Register
The Address is relative to the DSP module base address

The control processor reads a 16-bit rvord frorn the address shou'n in table A.22, and the value of

bit 15 of that rvord is the value of the couesponding signal.

Address Signal Comment

$004000 EF Empty Flag from the DSP-to- backplane I'IFO

$004002 FT' Full Flag from the DSP-to- backplane FIFO

$004004 H-F' Half Full flag from the DSP-to- backplane FIFO

$004006 FULLFLAG Indicates full state of backplane-to-DSP FIFO

$004008 Not Used.

$00400,A. DRAh,ITYPE Indicates type of SRAM chips installed in DSP board (see DSP-

0005).

$00400c ÃTñ-ÃSm If asserted, this signal indicates that this DSP module is requesting

attention (see DSP-0010).

$004008 Not Used

208

r'¿ |

BÁ3

GND

STATUS å

vcc ,6

BA]
'I

BA2 lo

BSR

71LStõl

EF

FF

HF

t FULLFLAG

'5
PRAYTYPD

t1 DRA}11YPE

I3 ATNASRl

! GND

IO

ll

l4

t5

t6

l7

VCC GND

L

z

AO

A'

A2

E

209

.A..3 A Prototype Analogue Interface Module

The drawings in figure 4.1 are not detailed, since this module is undergoing redesign at the time of

rvriting. Detailed drawings are available from the technical staff in the department.

G AIN

Vin

1

DIGITALLY
P R OG R AMMAB LE
AMPLIFIEBS

P R OTE CTI ON
DI ODE S

DATA
BUS

CONVE RT

READ
---E-

OFFS ET

(u)

The desig¿ is for a prototype analogue interface lnodule. The module provides only very basic

facilities, and during testing and use clearly demonstrated the need for complete digital conirol of

more circuit parameters, including anti-aliassing filtering and programmable offset removal. No such

features are present on this prototype.

\\¡hiìe quite suitable for applications such as the student laboratories, the prototype AIlt4 has certain

flaws which must be removed in a future device. These incìude:

o The lack of anti-aliassing filtering. \Vhile it is difficult (if not impossible) to provide analogue

anti-aliassing filtering lvhich can used over the entire range of possible sampling rates, it must

be provided in some n'ìanner. Digitally programtnable su'itched-capacitor filters offer sol¡e

promise in this area.

o The lack of programmable voltage oflset control. If tìie signal being digitised has a snall

AC part superimposed on a large DC cornponent, the systen has uo rvay to relllove the DC

component.

To keep rvithin the ADC i¡put range, a low value of gain rnust be used, resulting in excessive

quantising noise for the AC signal.

Offsets should be removed by subtraction of a DC reference signaì . Tlie subtraction should

be done as close to the ADC signal input pin as possible, to allorv any acculrlulating volt'age

LATCH

ADC

210

DATA
BUS

WRITEI

WRITEz

UPDATE

G AIN

OFFS ET

OFFS ET

G AIN

Vout(1)

Voul(u)

(b)

Figure ,{.1: Prototype AIlt4 bìock diagram
(a) Input circuitry (one channel shown)
(b) Output circuitry (both channels)

Table 4..23: Prototype AII\{ Specifications

I DACLATCH

I DACLATCH

Input ChanneÌs 2 x 8-bit

Input conversion time 50ns

Input sampling Simultaneous

Input Gain Digitally programmable

gain = 1I,2,4,8, 16] x [1, 2, 4, 8, 16]

Only one value is chosen out of the set in []

Input Bandrvidth approx 350kHz

Anti-aliassing filter None

Output Channels 2 x 8-bit

Output updating Simultaneous

2TI

Port Number Fun on

Read 10

-S
t ar t Convers i on S i gn al

to both ADCs

Read 11 Read contents of ADC 2 t input channel 2

Read 12 Read contents of ADC 1 input channeì 1

Write 10 Gain fo¡ ADC 1

Write 11

-Loacl

both DACs
Write 12 Next value for DAC 1

'output channel 1

Write 13 Next value for DAC 2 t
'output channel 2

\\/rite 14 Gain for ADC 2

Table 4.24: Production IOI\{ Registers

offsets in the analogue circuitry to be removed at the last stage. This is especially important

for the programnable gain arnplifiers (PGA), which amplify not only the signal by DC offsets

within the circuit.

o Too much caliì¡ration required. The prototype AiN{ requires caìibration of output voltage

tanges and offsets, and of input offsets. Such calibrations are titne consutning and prone

to áror. A production AIlr4 should include fixed, high-precision references in fixed circuit

configurations which will not require calibration by a technician.

The DSP IO port addresses for the various components of the AII{ are as follorvs. Note that these

addresses are for the prototype GI boards (the single board version), and may be diflerent for the

production boards, depending on how the production boards are interfaced to the AII4.

The Analogue to Digital Converters (ADCs) are 8-bit flash converters, and a¡e linked to tìie data

bus as follows:

Bit 15 Bit 14 Bit 13 Bit 12 Bir 11 Bir 10 Bit I Bir 8 Bit 7 Bft0
ADC
Bir 7

ADC
Bit 6

ADC
Bit 5

ADC
Bit 4

ADC
Bir 3

ADC
Bit 2

ADC
Bir 1

ADC
Bir 0

Not
Used

Not
Used

The ADCs share a common strobe signal u'hich starts the conversion process, so that simultaneous

samples of both channels may be made.

The programmable gain amplifiers (PGA) are mapped into their registers as follorvs'

Bir 15 Bit 8 Bir 7 Bir 6 Bir 5 Bit 4 tsil3 B\t 2 Bir 1 Bir 0

Not
Used

Not
Used

Not
Used

ILE PGA 1

Bit 2

PGA 1

Bir 1

PGA 1

Bit o

PGA O

Bir 2

PGA O

Bir I
PGA O

Bir 0

There are two PGAs in direct cascade for each of the ADCs, PGA 0 is lhe first in the pair, PGA 1

is the second, feeding into the ADC. Each of the PGAs has the following gains for each 3 digit code

in the above register.

The ILE signal (above) is connected to a pin of the DAC0830 converters with a similar name. This

pin is not used on the D4C0830, but is used on 12-bit converters (which are pin compatible rvit'lr

the DAC0830) to select betu,een lorv-byte and high-byte programming. In the cu¡reut IOtr{ the ILB
bit must be set to 1 for correct operation'

212

Bit 2 Bit I Bit 0 Resulling Gain

0 0 0 1

0 0 1 2

0 1 0 4

0 1 i 8

1 ßX ßX 16

Table 4.25: 4D526 Gain SettingsX = Don't Care

The digital to analogue converters are 8-bit devices, and are connected to bits 0-7 of the data buss.

This means that only numbers between 0-255 should be written to those ports'

Since there are two PGAs in cascade, any product of tlle above gains is possible, resulting in a coarse

range of I-256. A trimmablegain op-arnp precedes the PGAs, allowing a symmetricalgain range of

0.0625 (1/16) to 16 to be implernented.

Typically, only the ìow gains of the PGAs should be used, since the amplifiers amplify not only

sig'alr, but DC offset vòltages rvithin the analogue circuitry, leading to a reduction of effective

dynarnic rauge of the converters.

To read the ADCs, code such as the following may be used:

*
* EXAUPLE CODE FOR READING THE ADC ON PRODUCTION IO}I

*
ADC-st art
ADC2-data
ADC 1 -dat a

't
tenp
val-0
val 1

*
READ-ADC:

N oles

10 ; read this Location to start conversion
11 ; read value of charurel 2

12 ; read value of cha¡r¡re1 1

drlnroy data location
data location to store ADC 0 value
data Location to store ADC 1 vafue

ternp,ADC-start ; trigger ADCs

valO,ADCO-data ; get ADC 0 value
val1,ADCl-data ; get ÂDC 1 value

IN
IN
IN

*
*

o The lorver 8 bits of the 16-bit locations occupied by the ADCs are floating and should be

masked in software (by anding with $FF00, say) before the values are used'

o The ADCs are flash converters, and have valid data available about 50ns after triggering. Tlius

there is no need to u'ait for a conversion complete signal'

o There is at present no hardware to generate a sanrpling clock. This must be generated by

softrvare timing at present. The internal timer of the TÌ\{S320C25 may be used to generat,e

sampling intervals.

213

A.4 Guidelines for Designing New Modules

The designer of a new module for the Generalised Instrument must provide a number of basrc servlces

on that module. These services are required if the module is to communicat,e in any rvay u'ith the

GI's backpìane bus.

1. Address decoding. (N{andatory only for modules which interact with the bus.)

Notionally, the backplane address space of 16MB is divided in 32 512k8 blocks. Boards are

assumed to occupy a minimum of 512k8 of address space. Since it is unlikely that the fuìl

complement of 32 boards will ever be present, there is sufficient memory space available for

such a seemingly wasteful scheme.

The reason behind this scheme is that boards should begin on a 512k8 boundary, so that the

control processor can scan the 32 memory 'slots' and attempt to identify the boards present.

This autoconfiguration feature is not presently implemented (though the necessary. hardrvare

is present on the TN{S320C25 module), but may be in the future. Each board rvould have a¡r

IDENTITY PAL which can be read by the control processor, allowing identification of boa¡ds

present.

The address decoding for the board the¡efore relies on A.23-419 of the backplane. Äddresses

in the range $000000-$07FFFF may not be decoded, since they are decoded within the cont¡ol

processor module.

On cu¡rent modules, the decoded address is set with jurnpers. The DSP module is an example,

as shown in drawing DSP-0003.

2. Asse¡tion of Dmffi . (À4andatorY)

The backplane has a DaTa ACKnowledge signal calìed Dlmffi which rnusl be asserted

by the ,rrtdrl" when a valid module address has been decoded, and the bus cycle may be

terminated.

Failure to assert the DTICK signal will lead to a bus timeout after tens of rnicroseconds,

causing the control processor to begin exception processing. The circuitry which detects this

condition is documented in drawing CON-0005'

3. Assertiou of Attention Request. (Optional)

The backplane bus provides an 8-level attention request mechanism. This is akin to an S-level

interrupt system. Priority coding and vectoring is performed within the control processor

module.

4. Access tir¡e of devices on the bus.

In order to run u,ithout wait-states, devices must conform to certain tirning requirements. A

general rule of thumb is that the total backplane strobe active duration is 2 control processor

clock cycles.

For instance, if the control processor board (assuming 68000 based) is running at 10MHz CPU

clock rate, the maximum duration of active ÃS on the backplane u'ill be 200ns.

The designer mustfurther subtract the delay incur¡ed by her board decoder circuit, and buffers,

to determi¡e whether the board will be able to operate without wait- states.

214

Append a

1X B

Control Processor Onboard
Software

The Control processor operates in tu,o distinct modes: the command, mode and the inleracl.iue mode.

The interactive mode is designed to allow direct interaction with the user via a suitable terminal

(provided by SpaM). The inieractive mode is simila¡ in operation to the debug monitors found on

Àany microprocessor systems. The interactive mode of the CP expects ASCII input and output

over the RS232 connection to the host.

The command mode uses a binary-only communication protocol, and is designed for efficient and

reliable communication between the CP and a host (the PC) cornputer. Unlike the interactive ntode,

the command mode uses full-binary representation of numbers'

On powering up the system, the default mode of operation of ihe control processor (CP) is the

command mode. To enter the interactive mode, the user should run SPaM on the host, and use

the mon command (see 5.6.) The commands available in the interactive r¡ode are explained in detail

in the sections which follow. There are sonre points of interest about the power on sequence 'n'hich

u'ill be noted here.

E!.1- Interactive Monitor Commands

The monitor commands consist of a command word with optional arguments. Argutnents are eitber

necessary or optional. If a necessary argument is omitted frorn the command line, its value is set to

zero when the command is executed. The following symbols are used to define argumeuts.

< > surround a necessarY argument'

example: baud <baud-rate>
states that the command baud be given an argumetlt'

[] su¡round an oPtional argument.

example: port [va1ueJ
states tha,t the command po¡t has an optional argutnent. The cotlmand rvill perform diJTerent

actions depending on rvhetìrer an argument is given or not'

I means 'or'. It is used to separate several alternative values'

2r5

example: hold <0 I 1>

states that the hold command has one necessary argument which must be eithe¡ the number

0or1.

8.1.1 Memory Displaying Comrnands

db <start-address) [end-address]
dw <start-address) [end-address]
tpdw (start-address> [end-address]
tddw (start-address> [end-address]
tidw <io-address)
xb <address>
xw <address>

db displays bytes in 68000 address space, beginning from the highest 16 byte address boundary less

than or equal to (start-add¡ess>, and continues to display memory bytes until it reaches the

lowest l6byte boundary greater than or equal to [end- address]. If [end-address] is ornitted' 16

bytes will be displayed.

example:

conma¡d > db 100 120

00000100: - 00 00 00 00

00000110: - 00 00 00 00
00000120: - 00 00 00 00

connand)

con¡na¡d)
Tlls320c25
00000000:
00000008:
00000010:
00000018:

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

00 00

00 00
00 00

00 00

00 00
00 00

dw displays memory words in 68000 address space. Rules are the same as for db. Note that since

tlris command operates on 68000 address space, the addresses supplied as arguments arc byle

addressesl

example:

connand > dc 100 120

OOO001OO: - 0000 0000 0000 0000 0000 0000 0000 0000

00000110: - 0000 0000 0000 0000 0000 0000 0000 0000

00000120: - OO00 0000 0000 0000 0000 0000 0000 0000

conna¡d)

tpdw displays words in DSP program address space. Valid addresses are in the range $0000 to

$FFFF. Note that since we are referring to DSP space (which is comprised only of words),

these addresses are t¿ord addresses'

example:

tpdr 0 20

Progrn me¡nory sords - (ESC) to
- cE06 c800 cA00 6060 8060 FE80

- 6060 8060 FE80 0018 cA02 6060

- 0018 cA03 6060 E060 FE80 0018

- D101 FFFF CD01 F580 0014 cE26

quit, any key to pause
0018 cAo1
8060 FE80

FF80 0002
5465 7374

lcompare this with tpdw and relat,ed commands where they are uord add¡esses

2r6

OOOOOO2O: - 696E 6720 3638 6820 5247 4D2o 6E6F 7728

connand)

tddw displays words in DSP data address space. Valid addresses are $0000 to $FFFF.

tidw displays the contents of a location in DSP IO space. Valid addresses here are S0000-$000F

Onþ one value is displayed, that of the specified address 2'

example:

connand>tidn010
cD10
conna¡d)

xb displays the contents of one byte in the 68000 address space. The byte value is displayed to the

hãst, the cursor is then backspaced over tlìe value on screen, and an updated value is rvritten

over it. This refreshing process continues until a key is hit, at which time control is returned

to the monitor Program'

xw displays the contents of a worilin 68000 address space in a similar Inanner to xb' which displays

Uytes. Re-ember that since this command operates on the 68000 address space, the address

argument is a byle address.

8.L.2 Memory ModifYing Comrnands

rnb <start-address)
mw (start-address)
tpmw (start-address)
tdmw <start-address)
timw <io.address) (value)

rnb rnodifies bytes in 68000 address space, starting at (start-address). Tìre b¡'¡s contents of each

consecutive address are displayed, and the user can do one of three things:-

1. Type in a new hex byte value for that location'

2. Hit Return to leave current address value unmodified, and proceed to next byte address.

B. Type q.r to return to monitor without affecting current address contents.

example:

mw modifies words in 68000 address space, according to the same rules as db modifies bytes'

example:

connand) n¡ 3000

Enter (CR) to skip to next Ford, or nec value, or q to quit
00003000: - 202D abdd
00003002: ' 4F2D 7234

00003004: - 2D20 aL2b
000030062 - 207C q
con¡na¡d)

2 this prevents corruption of neighbouring IO registers

277

tprnw modifies words in DSP program address space. Valid values for <start-address> are $0000

to $FFFF. The procedure is then the same as for mb. Note that it is rvise to HOLD the

TMS320C25 whiie such editting is in progress to avoid losing control of the DSP module.

example:

conma¡d > tpnv 100

TMS32OC25 progra.n nernory space edit - enter value, or q, or <CR)'

00000100: - 5555 aaaa
00000101: - 5555 dddd
00000102: - 5555 q
conmand)

tdrnw modifies words in DSP data address space. Valid values for (start-address> are as for

tpmw.
See tprnw for an examPle.

timw u,rites the value given to a single location in DSP IO space. The IO space may access different

devices at the same IO address, depending on v/hethet a read or a write is performed, so that

it may not be possible to read the written value back into the DSP.

See tpmw for an examPle.

Noles

o Although specific inst¡uctions are provided for manipulating words in DSP address space, the

standard dw,rnw commands can be used if the relationship between 68000 address space and

DSP address space is kept in mind.

If, for example, one wishes to examine location $0020 in DSP data address space' then the

following arithmetic must be performed to anive at the correct address in 68000 address space,

which is used as the argument to dw or rrrw'

$0020 is a word address oflset, so multiply by 2 to get the byte a,ddress s0040.

Obtain the byte address in 68000 address space where the DSP data metnory is mapped. From

Table 4.14 we see that this is $040000 plus the base address of the DSP module. Assume the

base address is $800000, then the address in 68000 space of the DSP data tnemory is $840000.

Add the offset to the base address to get the desired address in 68000 space, ie $840040'

If we now give a comtnand such as

dw 840040+-

then it is equivalent to giving one such as

tdd¡¡ 40+-

since both refer to the same physical memory location'

o \\/hen examining words in DSP address space, using auy of the above commands, decide

whether it is necessary to halt the DSP before doing so. The memory displaying comtnands,

and the lnemory modifying commands arbitrate dynamically for possession of the DSP busses

while going about their business.

For example, the tpdw displays 8 words per line on the host screen. This means tlrat during

the time it took to display that line, it made eight accesses to DSP mernory space. The DSP

vvas t¡i-stated (effectiveìy halted) during those accesses.

Since the amount of time taken to display the line of information is rnuch longer than that
needed to perform 8 memory accesses, the DSP was able to continue execution for most of the

218

time during which the tpdw command was being executed. It is conceivable that the algorithm

begin execJted by the DSP causes modification of the memory words which are being examined

Uylhe control processor, causing those words to lose their relationship between successive read

operations.

It may therefore be wise to use the following instruction sequence to read information from

DSP address space: reset 1.-
tddw 0040*-
reset 0æ

8.1.3 DSP Module Control Commands

reset [0-1]
hold <0-1>
port [value]

reset controls the state of the RESET' signal to the DSP tr{odule. The action performed on tlie

RESET' signal is determined by the argument to this command'

reset 0 causes the RÐSET'signal to the DSP to be deasserted (ie RESET'=1).

reset 1 causes the RESET'signal to be asserted (ie RESET'=0)'

reset with no arguments causes the RESET' signal to be asserted for several microseconds,

then deasserted. This is useful for restarting the DSP, and is equivalent to issuing reset
1 and reset 0 commands in quick succession.

hold is one of two signals which determines the state of the HOLD' signaÌ to the TN{S320C253'

The HOLD' signal, when asserted, causes the TI{S320C25 to give up control of its external

busses when execution of the current DSP instruction is complete. This HOLD' signal is also

used for bus arbitration rvhen the 68000 control processor invades DSP address space (as in

response to tpdw, tddw . . . comrnands)'

TIre HOLD'signal provides auseful means of h.alting the TMS320C25, so tliat locations in its

address spaces may be exanined without risk of them changing (due to TMS320C25 program

execution) during the examination'

port is the monitor command used for exarnining/modifying the contents of the interprocessor port

(also called the interprocessor mailbox, see drawing DSP-0006). Values are u'¡itten/read fronr

the 68000 side of the bidirectional port only at preseut.

port.- is the syntax used for examining the state of the port and its contents.

port hhhh+- is the syntax for setting the port coutents to hhhh, a hex number. Note that

only the four least significant hex digits of hhhh u'ill be used, since the port is 16 bits
q'ide.

The state of the port u'ill be returned first, and even if the previous vaìue has not been

read out by tbe DSP, the new one rl'ill be written in.

3The other is the decoded 68000 add¡ess strobe u,hich indicates the 68000 is accessing a location in

space, for which .it must arbitrate using HOLD'/HOLDA'

219

DSP add¡ess

8.1.4 Commands for Data Tlansfer

baud <baud-rate)
s

ct

lowtpd
hightpd
lorvtdd
hightdd

baud. sets the baud rate of the serial link between host and CP. \¡alid values for <baud-rate) are

75, I 1 0, 1 34, 1 50,300,600, 1200,2000,2400,4800, 1 800,9600, 1 9200.

s allows the downloading of data into 68000 scratch memory. Note that the s-reco¡d file is assumed

to contain ögles which are stored to tlie 68000 scratch memory as consecutive byles. This

comma,nd u'ill typically be used to dovvnload experimental code for the 68000 to execute, since

most cross-assemblers for this processor output Motorola s-record files.

sg similar to s, but when downloading has finished, execution begins at the address specified in tlie

59 record of the downloaded file.

lowtpd downloads bytesinto bits 0-7 of DSP program memory words using Intel Hex format. The

addresses contained in the Intel Hex format file are assumed to be word addresses in DSP

program memory. Bits 8-15 of the words are nol affected'

Since the DSP memory is organised as 16-bit words (the bytes of which can not be address

separately as in 68000), and Intel Hex format supports only bytes, then the original file of

*årds (on the host computer) must be split into tvvo files of bytes, one containing bits 0-7 (ie

lhe low-ord.er bytes of each word, and one containing bits 8-15 (the high-order bytes). The two

files must then be dorvnloaded separately using commands such as lowtpd, hightpd.

hightpd downloads ågles into bits 8-15 of DSP program memory words, using Intel Hex folmat.

The addresses contained i¡r the Intel Hex format are assumed lo be word addresses in DSP

program memory. Bits 0-7 of the referenced words ate nol affected'

This conmand is completnentary to lowtpd.

lowtdd downloads ögles ilto bi+"s 0-7 of words in DSP data memo¡y using Intel Hex format. Bits

8-15 are not affected. This colnrnand is complementary to hightdd.

hightdd downloads òyles into bits 8-15 of u'ords in DSP data memory, using Intel Hex format. Bits

0-7 are not affected. This cornmand is cornplemeutary to lowtdd'

8.1.5 Systern Control Commands

verbose <0-1>
warm
cold
command

verbose determines whether text messa,ges are dispÌayed to the host. Such messages slou' down

communication, and are useful mainly only debugging of monitor code. An argument of 1

lo this command enables the printing of response messages) while an argument of 0 disables

them.

220

.war,. forces a warm restart of the CP. A warm restart is distinguished from a coldstart by the lack

of memory testing (to prevent previously downloaded code from being corrupted)'

cold forces a CP system coldstart. Note that RAM areas will be tested, corrupting ¿ll RAtr4

contents.

command forces the CP control processor to leave the interactive monitor, and begin executing

the binary communications softwa¡e for automated cotnmunication with the host. Tllis is

described in section B.2.

8.2 Command Mocle

The command mode exists to allow more rapid and reliable communication betlveen the host com-

puter and the Control Processor (CP). AII communication is done in packets, rvhich come in seve¡aì

sizes, depending on what is being transmitled.

Command mode may be entered in one of two rvays. When power is applied to the system, the CP

will default to command mode. Should the user enter the interactive rnode of the CP when using

the host SPaM software, the CP will reenter ühe comurand mode when the user terminates the

interactive sessiou.

The first step in using the command mode to talk to the CP is to wait for the synchronizing character

from the CP. The character is a '-' (ASCII value 451e). The host should continue to send a carriage-

return (ASCII 131e) until it receives the synch character'

çhiIe received-character ()
send-character (chr (13))

¡rait (3 character tÍ¡res)

,-r do

Note that a 'character time' is the length of tirne needed to transrnit a 10bit character at the baud

rate used. In the case of (default) 9600 baud communication, a character time is approximateÌy 1

millisecond. Once it has received the synch character, the host can transmit a command packet to

the CP. A command packet has the structure shown iu Table B'1'

Bale OffseI Value Commenl

$00-$0 1 $578D Command Packet Identifier

$02 Command Byte determines operation to perform

$03 Modifier Byte ìeter¡¡ines method of operation

$04-$05 Field 1 nature dependent on operation

$06-$07 Field 2 nature dependent on operation

s08-$09 Field 3 nature dependent on operation

$0A-$08 Field 4 nature dependent on operation

$0c-$0D CRC used for error checking

Table B.1: Command Packet Structure
CRC = Cyclic RedundancY Check

\4/ithin the command packet, the command byte determines which type of operation is to occur

eg. reset the DSP. Following the command byte is the modifier byte, which determines horv the

operation is to be performed eg. assert RESET to DSP indefinitely'

22r

The four word fields (8 bytes) which follow contain inforrnation which is interpreted diflerently b¡'

the various commands. The final value is a CRC (Cyclic Redundancy Check) word which is used

to confirm the validity of the command packet. If the CRC sent is the same as the CRC calculated

by the CP, then the command packet is assumed to be valid, an ACK character (ASCII 61s) is sent

to the host, and the command is executed. If the CRC indicates that an error has occur¡ed during

the transmission of the packet, then a NAI((ASCII 21r0) is sent to the host, and the CP will wait

for the packet to be resent. Nole that the g57BD Commancl Packel Identifer is nol included in lhe

CRC cølculation.

8.2.1 Available Commands

The currently implemented commands are given in Table 8.2 along rvith their corresponding byte

values.

BuIe Value Corresponding Command
$00 NULL Command
$01 Reset Command
$02 Hold Command
$03 Downìoad Command
$04 Upload Command
$05 Get IO Ports Command
$06 Put IO Ports Command
$07 Exit Command Mode

$08 Change packet Size Cornmand
$09 Change baud rate Command

$0A Wait for Interprocessor Port Command
$08 Clear Interprocessot Port Command

$0c Change Timer-based Baud rate Command

$0D \{¡rite to Interprocessor Port Command

Table 8.2: Valid Command Byte values

Some of the commands require on or more arguments to be passed. These arguments are passed in

the modifier byte, and the four words which follow the modifier byte in the command packet. The

arguments required for each command a¡e listed in the follorving section.

NULL Command

The NULL command does absolutely nothing. \4lhen a command packet containing tlie NULL

commandis received by the Control Processor (CP), it causes the CP to wait for another cornmand

packet. This feature is implemented to catch command packets which have not been initialised
prop"rly (assuming a $00 byte is nrore likely to occur in uninitialised memory than a real command

value).

Reset Command

The Reset command performs the same set of fuuctions as the l{onitor reset command described

in section 8.1.3. That is, it determines the state of the RE-SET signal to the DSP ¡loduìe.

222

The modifier bytes for this command dicta,te whether the RESBT' signal is asserted, deasserted or

toggled (to simulate pressing and releasing an imaginary reset switch on the DSP module)' and are

listed in Table B.3.

Modifier Byte Value Result of Resel operølion

$00 No Change

$01 to ts

$02 to isd
$03 to SP is

Table 8.3: Reset Command l{odifier values

Fields 1...4 of the command packet are ignored by this commaùd

Hold Comrnand

The Hold command determines the state of the HOLD'signal (a bus arbitration signal) to tlie DSP

module, and as such it performs a similar role to that of the interactive hold command detailed in

section 8.1.3.

The modifier values for this command determine whether the HOLD' signal rvill be asserted, or

deasse¡ted according to the assignments shown in Table B'4'

IIodifier Byle Value Result of Hold Commanil

$00 No Change

$01 HOLD'to DSP asserted

$02 HOLD'to DSP deasserted

Table 8.4: Hold Cornmand l\'fodifier \¡alues

Fields 1...4 of the command packet are ignored by this command

Download Comrnand

This command is the one to use rvhen transferring hex (u'hether it be program or data information)

from the host lo the Cp. This command can access any address space rvithin the CP, and transfer

any uumber of words in one operatiotl.

The tra¡smission is performed using packets, by default 128 words (256 bytes) in size, though this

may be changed (see section 8.2.1). bach packet is follorved by a 16-bit CRC which the CP examines4

to determine if each dorvnloaded packet is valid.

As the packet is received, each word is stored to a consecutive address in memory, beginning at an

address specified in the comrnand packet rvhich initiated the dorvnload operation. After each vaìid

packet is received, the base storage address is incremented by the cu¡reut size of transmission packets.

The order of data within ea,ch packet is such that the data to be stored to tlie lower addresses is

sent first, and that to be stored to the higher addresses is sent last. All storage operations are word

4The cP does this by calculatingits ou,n cRC based on the data in the packet,

sent by the host

223

and compar.ing this to the one

store operations performed by the 68000, and it is assumed that the high byte of each word arrives

first over the serial link, and the low byte of each word then follows.

After receipt of a valid packet, the CP sends the host an ACK character to initiate the sending of

the next packet. See figure 6.2 ror a flow diagram of the download process.

Should the received CRC not agree with the calculated one, then the packet has somehorv been

corrupted during transmission and must be resent. The CP sends the host a NAK character to

achieve this. The CP will continue to retry indefinitely: it is up to the host to count the number of

retries and abandon t¡ansmission when this number exceeds some limit.

As stated before, the command modifier byte determines which address space is to receive the

downloaded data, as given in Table 8.5'

Modifier Byle Value Addr:ess Spøce used in Download

$00 None, operation aborted

$01 DSP Program Address Space

$02 DSP Data Address Space

$03 DSP IO Address Space b

$04 Control Processor Address Space

$05 LMA Address Space

Table 8.5: Download Command l\{odifier Values

Fields 1. . . 4 in the command packet arc all used by the download command, for the purposes shorvn

in Table 8.6.

Field 1 Bits 31-16 of rvord count
Field 2 Bits 15-0 of word count
Field 3 Bits 31-16 of address offset

Field 4 Bits 15-0 of address offset

Table 8.6: Download Command Field Assignments

Fields I and 2 together form the 32bit number which determines how many 16-bit words will be

dowlloaded from the host to the CP. Fields 3 and 4 together fortn a 32bit address o.¡fsel rvliich is

added to a base address determined by the command modifier. The base addresses in 68000 address

space are listed in Table 4.14.

Upload Command

The upload command works similarly to the downìoad command, only the directions of data transfers

are from CP to host. The CP sends packets of data to the host, each foìlowed by a 16-bit CRC

value. The host must decide whether the pa,ckets are valid. If the packet is valid, the host shouìd

send an ACK character, otherwise a NAI(should be sent.

If the CP receives any character otlrer than NAI{ or ACI(, it u'ill abo¡t the upÌoad and rvait for a

new command block. This makes recovering from an out- of-control upload easier.

Note that there is very little delay between characters in the upload (you should assume it to be no

more than 1 character time).

224

The modifier byte values are those given in Table 8.5, and the lìeld usage within the commandblock

is that given in Table B'6.

The sequence of events which occurs lvhen an Upload command is issued is shown in figure 6.3.

Get IO Ports Command

This command allows the host to read values from selected IO ports in the DSP module (ie locations

in DSP IO space). Since these locations usually directly represent real-world devices, such as data-

converters or latches, then reading or writing them is a non-trivial matter since it could result in

system failure.

To prevent 'dangerous' Iocations from being accessed, the GetIO command allou's the host to lnask

out those registers which it wants to read. The mask is a 16-bit word sent in the command packet.

Each bit of the mask word cogesponds directly to 1 of the 16 available Input ports in DSP IO space.

Bit 15 corresponds to Input Port 15, Bit 0 corresponds to Input Port 0, and the intermediate olles

have the same one-to-one relationship.

The mask word is contained in Field 1 of the command packet. The remaining fields of the command

packet are not used. The modifier byte of command packet is ignored by this command.

If a particular bit of the mask word is a'1', then its corresponding Input port is read and the value

is sent to the host. If the bit is a '0', then the Input port is nol read and a zero ($0000) word is sent

to the host in its place.

After receipt of the command packet, the Control Processor (CP) examines the mask word' and

proceeds to send to the host a packet of 16 words, followed by a CRC vaìue. The 16 rvords correspond

io the Input port values (wherever the mask bit was 1), or to zero words (where the mask bit rtas 0).

The order of transmission is high byte of Input port 15's word value first, follorved by the low byte

of Input port L5's word value, and so on until the last byte which is Input port 0's low byte. The

CRCvalue then follows the 16 rvords (32 bytes) of this packet. If the host responds with an ACI{

character, the CP assumes the GetIO operation was compìeted successfully, and waits for another

command packet. If a NAK is received by the cP, the entire Io block is resent 6.

Put IO Ports Cornmand

This command does the reverse of GetIO, in that it waits for data to arrive from the host which it
then sends to the Output ports (specified again by the mask word) in DSP IO space. After receiving

the command packet holding this command, the Control Processor (CP) examines the mask u'ord

within the command packet. It then rvaits for a packet of 16 words (the IO packet) to be sent by

the host, followed by a CRC value.

The mask word is coltained in Field I of the command packet. The remaining fields of the command

packet are not used. The modifier byte of the command packet is ignored by this cornmand.

As the wo¡ds of the IO packet arrive, the CP checks the corresponding bit of the mask rvord to see

if the newly arrived word should be stored to an Output port. If the corresponding bit, of the mask

is a 1, then the word is stored to the corresponding Output port7. Note the words arrive at the CP

in the order of Output port 15's value first (high byte then low byte), and Output port 0's value

I a,st.

6Note that at present, the IO ports are not buflered n'hich could result in different vaìues being present on those

ports u,hen a re-transrnit operation begins following a NAI(
TNote that since this operation is curlently not buffered, words æe written to Output ports before the validity of

the IO packet is checked using the CRC

225

Exit Command Mode

For debugging purposes, this command has been included to allow the host to enter an interactive

session with the Monitor on the Control Processor (CP). To re-enter command mode, the following

should be entered into the monitor:

verbose 0r-
com¡na¡d+-

Change Packet-Size Command

The Upload and Download commandsuse data packets with a default size of 128 words (256 bytes).

The user can change this value by using the Change Pa,cket-Size command. The size of the packet

can be anyrvhere between i...65536 words. The size of the packet to use is determined by several

criteria:

o Larger packets result in higher throughput on links where transmission is ìargely ettor ftee,

but lower throughput on links which have a high error rate.

o Small packets should be used when small amounts of data are being moved' In all cases, a

whoìe number of packets is sent, so using 1000 rvord packets to send 10 words is a u'aste of

time (and increases the opportunity for errors to occur).

o Larger packets should be used to reduce handshaking overhead on links rT'hich introduce a

transmission delay (modems for instance).

The modifier byte is ignored by this command. Field 1 in the command packet is the word value

representing the packet size to use in future transfers 8. A word value of $0000 represents 65536

word packets, S0001 represents 1 rvord packets,.. ., and $FFFF represents 65535 word packets.

Change Baud-Rate Command

In ce¡tain circumstances it will be necessary to rnake the Command Packet (CP) work at a different

baud rate to 9600 baud used by default. If the host PC is not capable of reliable 9600 baud

communication (or is capable of higher speed communication), then it should send a command

packet to the CP to change the baud rate'

The modifier byte is ignored for this comr¡and. Field I and 2 combine to determine the baud rate

in the way shown in Figure 8.7.

Fields 3 and 4 are not used. The baud rate used by the CP will be changed immediately after the

ACK for the cornmand packet is sent. The host should change baud rate afte¡ it receives the ACi{

character.

Change Timer-based Baud Rate Cornmand

The previous comma,nd described how to change tlie serial-link baud rate by specifying the desired

baud rate directly. This only allows baud rates up to 19200 baud to be selected.

sNote that the GetIO and PutIO commands alu'ays send 16word IO packets, only the Upload and Dou'nload

commands have variable-length packets

226

Baud Rale Field I Value Field 2 Vølue

75 $0000 $0075

110 $0000 $01 10

134 $0000 $0134

150 $0000 $0150

300 $0000 $0300

600 $0000 $0600

1200 $0000 $1200

2000 $0000 $2000

2400 $0000 $2400

4800 s0000 $4800

1800 $0000 $1800

9600 $0000 $9600

19200 $0001 $9200

Table 8.7: Set-Baud-Rate Command Field Allocations

To achieve higher baud ra,tes, it is necessary to bypass the inte¡nal baud rate generator of the

MC68681 andìse the internal timer to generate the data clock. To facilitate this, a command was

created which allows the serial link to be svvitched to timer-based data clocking, and the u'ord value

in Field l of the commandpacket is used as the 16-bit timer constant [10]'

The lower the value placed in the timer register, the higher the resulting data clock frequency. The

minimum value is 216, which gives a 57600bps serial link speed. Higher speeds are achievabìe, but

require some hardware. Specifically, an output pin of the 68681 must be programmed to be driven

by the timer output, and this must be fed to an input pin (iuput and output pins belong to the

parallel port on ihe device) of the 68681. The serial port can then be programmed to accept its

clock from the input port.

Such a roundabout method is necessary to bypass the divide-by-16 counter which norrnally exists

between the data-clock source and the serial port. Using this method, we can go to the maximum

data rate of 115200bps, which is the rnaxirnumsupported by the standard IBM PC serial port'

Fields 2-4arc not used in this command. The Chaage Baud Rate and Change Timer-based Baud

Rate commands may be used interchangeably.

Clear Interprocessor Port Comnrand

This command forces the 68000 to read from the 16-bit interprocessor port, thus clearing tlie flag

associated with that port. The value read is discarded. This cornmand has no arguments.

'Wait for Interprocessor Port Cornmand

After receiving this command, the 68000 u'ill wait for 16-bit data rvords to arrive at the interprocessor

(68000-DSÞ) port. It will ¡ea,d the word from the port, and send it t,o the host via the serial link'

The number of words to be sent back to the host is passed as a 32-bit value in Fields 1-2 (higli rvord

i¡ Field 1,low in Field 2). Once the conect number of rvords has arrived and been sent on, the 68000

sends the CRC value for all of the returned rvords, The 68000 does nof rvait for an acknowledge

from the host before returning to the command loop, it does so immediately.

227

Thus, if the returned rvords contained a transmission error (as indicated by disagreeing CRCs), the

error can be either ignored, or the whole operation must be resunred. There is ao retransntission on

NAK for this command.

Note also that there is no fixed time limit on when words arrive at the interprocessor port, this is

up to the DSP code author.

Requesting a read of 1 word from the interprocessor port is a useful way of detecting cornpletion of

DSÞ algorithm. The DSP code can be written so that the last instruction causes the DSP to rvrite

a word to the interprocessor port. The 68000 detects this, and sends the rvord on to the host. The

arrival of the word indicates to the host that processing has terminated, so that processed data can

be uploaded.

Before issuing this command, a command should be sent to the CP to clear the interprocessor port.

'Write to Interprocessor Port Command

The 16-bit word in Field 1 of the command packet is written to the interprocessor (68000.--_DSP)

port. At present, no check is made to determine whether the port is empty, tlius existing data may

be overwritten.

228

Appendix C

Creating a Virtual Instrument
Using SPaM

\{¡hen writing applications which involve the DSP moduìe, it is necessary to follow some conventions

if they are to function correctly u'ith SPaM. These conventions are listed below:

1. The TMS320C25 code must be in pure binary format. This is accomplished by using the

INTL2BIN.EXE program supplied with SPaM to generate the binary file from the Intel format

HYPR0G . L0 and Ì{YPROG. HI files.

The chain of files created by certain utilities is shorvn belorv'

MYPROG.A.SM User's source file
.l} Assembler (DSPA.EXE)

MYPROG.OBJ Object file

U Loader (DSPROM.EXE -i MYPROG)
MYPROG'LO Intel Hex Format fiìes
MYPROG.HI"'^' '"Í- *-

Intel to Binary converter (INTL2BIN'EXE)
N'IYPROG.BIN Suitable for use with SPaM

2. \4¡hen SPaM's send statement is used, the I{YPROG.BIN file is loaded from disk, and down-

loaded to the program ûIemory of the DSP module.

Whe¡ the restart statement is used, SPaM turns off the RESET signal in the DSP

module, and the signal processor begins execution of its code'

The restart statement does not immediateìy return cont¡ol to the user (or the script). It
waits for the signal processor to indicate that processing has frnished. This allows the }rost and

the DSP module to synchronise, so that the¡e is no doubt about valid data being available fo¡

uploading to the host when the restart statemeut has returned.

To indicate the completion of code execution, the signal processor must enable its attention

request signal. This is described in detail in section 4.2.9, and iu the follorving code exampìe.

3. If the user is writing real time code which will commence processing as sooll as it is dorvnloaded

to the DSP module, a¡d will continue processing indefinitely, she shouìd ensure that the code

asserts its a,ttention signal immediately, before ent'ering its main processing loop.

In this way, the restart statement i¡r SPaM can still be used to begin execution. Note

that there is no restriction on the activity of tbe signal processor afte¡ it requests attention.

The control processor (at present) rnerely uses that request to sytlchrotlise the host to tìre
completion of DSP code.

Ito

At present, the data transfer functions in SPaM such as do¡¡nloadO and uploadO first Pìace

the signal processor in a HoLD state which causes it to cease execution. The data is then

transfãrred. Äfter the transfer, the signal processor is not allowed to resume execution.

A more transparent method of access will be incorporated into the onboard GI softrvare in

the near future. At present, the only method by which data can be transferred from DSP

memory during real-time DSP processing is to use the interprocessor port, which is not directly

accessible through SPaM commands, yet.

The following SPaM script implements a combined signal digitiser and frequency analyser, rvhose

screen display is shown in figure C.1.

7. This script irnplenents a lJaveforn Digitiser and spectrun Analyser
,T

7. First, do sone initialising of variables'

FFT= [1 , 1] ;

Signal= [1 ,1J ;

z=int(zero(t,2048));
s¡np-rate=100000;
samp-divisor= 100 ;

old-sanp-rate=100 ;

half -s a.npl ing-rate=50 0 00 ;

go = 0;
gos=1;
gof=1;
Gain=1;

% Noc enter graphic display node cith a snall console nindoc

T
graphic 600 50
,T

.l The folloring handler is not attached to a button, but is instead

7. used as a 'subroutinet by other ha¡dlers'
,I

handler looper
if (sarnp-rate ! =old-sanP-rate)

sanp-divisor=int (10000000. 0/sarnp-rate) ;

samp-rate= 1 0000000 . 0/sanp-divisor ;

pdonnload(int (sanp-divisor-1), 26) ;

old-sanP-rate=samP-rate ;

half-sanpl'int-rate=samP -tate/2 ' 0 i

uPdate
end

if (gos==1)
pdownload(int (-32768)

'
30) ;

restart
Signal=uPload (4096, 4096+1023) ;

end
if (gof== 1)

pdownl oad (int (3276 8+ 1 6 384+8792+4096+2048)' 30) ;

restart
FFT=uPtoad (4096, 4096+51 1) ;

end
update
end

,/,

'tr The ha¡d.ter 'AUTo' is executed when the ÂUTo button is clicked'

4

230

7. and continues to execute until the SToP button is clicked'
,T

handler AUTO

go=1;
print "Press SToP button to halt. "
while(go==1) looper end
end

,T

% The STOP button eorks by sinply setting the variable 'go' to a

7. value chich pill cause the nain loop in the handler'AUTO'to
.l fail, thus ending the looP'
T

ha¡rd1er ST0P

go=0;
print "StoPPed." ,

end

% rnis handler deternines chether FFl cill be uploaded and displayed'
7. or not.
,T

handler TOGGLE-FFT

gof=1-gof;
end

,I

% this handler deternines trhether the signal çaveforn will be uploaded

7. and displayed, or not.
T,

handler TOGGLE-CRO

gos=1-gos;
end

% ttris handler causes a screen dump.
,T

ha¡rdIer PRINT
print screen
end

,/,

% Noc set up the screen objects.
'/.

graph (FFT,5 ,55 ,500 , 190)
set xaxis "FFT'| 0 half-sanpling-rate
set Ìabel "FFTrr "Freq' trAnPI!rr

graph (Signal,5 , 195 ,500 ,330)
set label "Signa1" "Sample nunber" "Anpl."
button("4UT0", 570, 55, 630, 100)

button("sToP" ,570, 105,630, 150)
button("PRINT" ,505 , 55 ,560, 150)

button("ToGGLE-CRo", 505, 155, 630, 200)
button ("TOGGLE-FFT" ,505,205 ,630 ,250)
nuneric (Gain,505 ,255,630 '

290)
numeric (samp-rate, 505, 295, 630, 330)

7. Noc set up the serial- Port to the GI, and dornload the DSP code
,T

set dsp baud 57600
send "dsp\conbo.bin"
T

7. Now do nothing until the user clicks a button

231

Console trlindoY
)Pness STOP button to l¡alt

f.FT
ÂuTo

STOP

NT

Uni ts

DISPLAY_CRO

si al
DISPLÊY-¡FT

Gai n

sariP-xrete

Uolts

-2

Figure C.1: Ä Digitiser / FFT Analyser Implemented with SPaM

232

C.1 Example TMS32OC25 Code

The following TMS320C25 program was designed to be used with the SPaM script shown above,

to emulate an instrument which samples a signal, and displays the signal and its FFT.

. Sampling routines

o Processing routines, such as window scaling, FFT, magnitude calculation

SPaM first downloads this program to the signal processor program memory, and then performs

the following actions.

1. Based on the user's wishes (perhaps according to r'*'hich onscreen buttons she clicks), SPaM
downloads a single 16-bit word to the address in program memory correspouding to the address

of the word oPcoDE in the listing below.

Each bit of the word OPCODE causes a corresponding operating to be performed when the DSP

code is executed. For instance, if bit 15 of the OPCODE word is 1, then the sampling routine

will be executed first. If bit 15 is 0, then the sampling routine will not be executed. Similar
tests are carried out on bit 14 through to bit 0.

2. After setting the oPCoDE wo¡d to the value which u'ill cause the desired operations to be

performed, SPaM should then execute the restart comntand to cause the DSP program to

execute.

Once the program has terminatecl, the next SPaM statement rvill be executed. This will
usually be a call to the uploadO function which will upìoad the processed data from the GI
to the host.

* This is a conbination sa:npling a¡rd processing Progran for the GI.
+ 0perations include those shocn in the diagram belon.
*
* lJritten by G.Voka1ek, çith code contributions fron G.Y.Yua¡.
*
reset-vector 3

b start ; this is the reset vector
.long 0,0,0,0,0,0,0,0,0,0,0 ; unused vectors

t iner-vector:
b tinerhandler ; this is the vector for timer interrupt

:}

* The folloring are THS320C25 internal registers.
*
TIM ,set 2 ; tirner register
PRD .set 3 ; period register for THS320C25 internal tiner
I'IASK .set 4 ; interruPt nask
+

tenp . set 60H

va10 . set 61H

vall . set 62H

half . set 63H

nask . set 64H

trigger . set 65H

't
* The folloring is the onty patch site for this noduÌe.

div .cord 0100 ; PATCH default rate is 70'7/1OO = 100kHz.

oÐÐ

trig
gainl
gain2
opcode
+

* OPCODE is a 16-bit cord
* 0000 0000 0000 0000

ilil ilil llll
ilil lllr illl
ilil illl llll
il il llll llll
I t\\ \\\\ \\\\- t{ot used.
l\------------- Perforn Conplex to ReaI Conversion

I I I \------ Perforn l¡tagnitude calculation on conplex array

I I \------------:--- Perforn FFT calculation
l\--------- Perforn iJindoc Operation

l\--------- Perforn Real to Conplex Conversion

\---------- Take 1024 signal samples'
+ opCoDE is scan¡ed fron MSB to LSB, a¡d the bits containing 1 cause execution
,| of the corresponding code in that order.
*
{, Here cones the code proper.
*
start:

rsx¡n
ldpk o ; page 0 contains on chip registers
larp 0

1alk opcode ; get list of operations to do noc

tblr tenP
Iac tenP
a¡dk SOOOH ; is bit 15 set? if so, sanple'
bnz sanPÌe-start

sarp-ret:
opcode ; get list of operations to do noc
tenp
tenp
4000H ; is bit 15 set? if so, perforn sindos function
rtoc-start

opcode ; get list of operations to do noc

tenp
ternp
2O0OH ; is bit 15 set? if so, perforn real-)cornplex shuffle
windoc-start

opcode ; get list of operations to do non

tenp
tenp
1OOOH ; is bit 15 set? if so, perforn conplex fft
fft-start

cord
cord
¡ord
sord

0

0

0

0

; trigger value
; channel 1 gain
; channel 2 gain
; this value deternines chich oPerations are perforned

get list of operations to do nor

¡t

*
'l
+

:}

'ß
¡l

*
:l

*
+

la1k
tblr
1ac
andk
bnz

rtoc_ret:
Ialk
tblr
lac
andk
bnz

windoc-ret:
lalk
tblr
lac
a¡dk
b¡z

fft-ret:
la1k
tblr
lac
a¡dk
bnz

rûag-ret:
Ialk
tblr

opcode
tenp
tenp
800H
nag-start

opcode
tenp

is bit 15 set? if so, perforn rnagnitude calcul'ation.

; get list of oPerations to do now

234

Iac tenP
and,k 4ooH ; is bit 15 set? if so, perforn conplex to real shuffle
bnz ctor-start

ctor_ret:
lalk 8003H
sacl tenP
out tenp,1
lack 3

sacl tenP
out tenp,l ; cause attention request.

,t

stop:
b stop ; ce have finíshed, so hang around'

*
+*r¡¡**¡Ì*¡l**:l+*tl'È¡i*:¡**tl*+:Ì*tl¡|'t+,ttß¡l¡l¡t**tl¡i¡i:t**+¡l!t*tl¡l¡l¡l*tl*+'*'l*t:itt**¡**'t
,r SÂMPLER - take N samples of 2 cha¡nels'
*
* INPUT L - 7024 sa-nples stored at 1000H

* INPUT 2 - t024 sanples stored at 1400H

'i
N

CHlSTART
CH2START

+

ADC-start
ADC 1-data
LDC2-data
CHlDATA

CH2DÀTA

DACUPDATE

+

+ Now the gain control registers.
*

; nunber of sanples

crite
crite
çrite

write
crite

get address of tinerhandler

; get address of vector
; write address of ha¡dler to vector

; load accunulator cith address of 'rate' variable
; load the actual value of rate into PERI0D register

; nask tiner interruPts

; subtract fron sample to get 2's conplenent value

; $et trigger value
; read j.ts value into trigger data menory

address of gainl word

equ
equ
equ

LO24

1000H
1400H

set 7

set 5

set 6

equ
equ
equ

05
04
06

CHlGÀIIÍ
CH2GAIN
rl

sample-start:
larp 0

ldpk 0

rl

equ 07

equ 03

tinerhandler
tenp
tiner-vector+ 1

tenp

div
PRD

arO,8
arO,MASX

arO, TfffH
arO,half
arO,0FF00H
arO , rnask
trig
trigger

gainl
tenp

Ialk
sacl
lalk
tblc

't

'i
l-a1k
tblr
lark
sar

lrlk
sar
lrlk
sar
lalk
tblr

laIk
tblr

¡l

235

*

Iac
ork
sacl
out
lalk
tblr
lac
ork
sacl
out

1r1k
lrIk
Irlk

tenp
4OH ; nake sure ILE is set for DAC0830

teEp
tenp, CHIGAIl{
gain2
tenp
tenp
40H ; nake sure ILE is set for DÂC0830

tenp
tenp, CH2GAIN

arO,N-1
arl,CHISTART ; charrnel 1 table start
ar2,CH2START ; cha¡¡el 2 table start

+

triglp
in
in
in
zals

tenp,ADC-start
tenp,ADC-start
t enp , ÂDC l-dat a

trigger
tenp
triglp
tenp, ADC-start
tenp, ADC 1-data
trigger
tenp
triglp

; trigger the converters
; trigger the converters

bssu

; trigger the converters

+

trigd
latk div ; load accunulator cith address of 'rate' variable
tblr TIll ; load the actual value of rate into TIlilER register
in tenp,ÂDC-start ; cause the first conversion
eint ; enable interruPts

loop: b loop
'*
¡ß¡t* r**¡f !i*rt*'l*¡¡**¡t{.¡}*t*+:}r}****¡t*r}ti '}*:}*r}¡}:}* ¡}:ttir}*¡l* +¡t* tl¡t*tt*tl+¡}:}'t*tf *+**!i* **t}*¡l*+!i !i

* This is the tiner interrupt handler chich perforns the sanpling.
¡*¡*:t:È**+***!*****!t*:i**:**rt***'t,**rt**t *,**¡l¡l**rÈ:l**:t¡*'*¡t+***'i+l'*:*****'t¡*****,**¡|!**¡*****

+

tinerha¡dler:
in tenp,ADC-start ; trigger the converters
in *+,ADC1_data,arO

t|

ba¡z no,*-,4r1 ; decrenent ARO.

yes:
dint

bgz
in
1n
zaLs
subs
bgz

+

lrlk
lrIk
ssxn
tdpk
).arp

nanglelp:
lac
and
subs
sacl
bar'z

¡i

0

L

arO,N-1
arl,CHISTART ; channel 1 table start

'i
¡nask
half
*+, ARO

roanglelp, *- , ar1

236

b samP-ret
¡t

nol
eint ; enable for next interruPt
ret ; return fron interruPt server

:t

+¡¡!t't't*¡l'}:}'}¡l:}'f**'f:t*+¡l*¡ttt*'l!t't't+'t*,1*+:l*'}'t'}***¡}¡}'l'l't'}+++*+*+'}'}!*|t**'t'}*'l'}T
* llIND0IJ - perforns þanning nindoc operation over data, (ch1 only).
,l Based on code by G.Y.Yuar.
*
ONE EQU 1H

XI EQU 2H

YI EQU 3H

XL EQU 4H

YL EQU 5H

XT EQU 6H

YT EQU 7H

I EQU 8H

L EQU 9H

ITE EQU OÂH

LTE EQU OBH

srN EQU oCH

CON EQU ODH

IA EQU OEH

IE EQU OFH

HOLDN EQU 1OH

QUARTN EQU 11H

Nl EQU T2H

N2 EQU 13H

J EQU 14H

TÂBLE EQU 15H

HALF EQU 16H

zERo EQU 17H

TE}IPEO EQU 18H

TEÌÍPE1 EQU 19H

TE}IPE2 EQU 1AH

TEMP EQU 1BH

*
+** *:* * ** *'*¡t:t*tÈ,t*:È++*,i *tf tl ¡**:i¡ttf :i**+¡*¡t'**tl:*¡t:f **+'* ** *** **'È{':}********¡t:** +*

**
* This part of the Program is using KAISER-BESSEL windon *

* function to snooth the sPectrun. Uses tabte lookup of windoc !t

* function with table size N. 't
**
* *'t+**+++*!t,i!t¡t ******+*:t* +*++:f *!È!i 'l'* 'l*+** **:t*** t*** * +:l * **:*++******'ß**+

'l
PRODUCT: ; ilindoc applied subroutine

LAC

ADDK

SACL

TBLB

LT
LARP

HPY

PAC

SACH

LT

}IPY

PAC

TEI{PE1

1

TEHPEl
TEI.IPE2

TEMPE2

1

*

TEMPE2

rt+

+

; nul by real Part

; store weighted inag Part

; nu1 by inag Part

237

SACH

BAIIZ

RET

+

¡l:f:Ìa*'f'l:¡*¡|'Èrl*:|*'¡*¡*tlt:Ì¡ttl+**:r*tl:l¡t+++:i*'l:t+**+!t+'l!ttt¡ttl'ltt*¡t'l'tl¡l:¡¡|*tß*:ttl!|¡i++

* KAISER cindog fu¡ction table *
,f:3**+**'l+rtrlt****!È¡i'l:1,+t¡'¡¡lt|*,|:t:lti¡l****:¡**rttt't:l¡3:3*:l:tti*'*:ltl*ti't¡lt*!È'l'l+tl't

*+r0raro
PR0DUCT, *-

; store ueighted inag Part

*
¡*

TIJIDD DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DÀTA

DATA

DATA

DÀTA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DÂTA

DATÂ

DÁ,TA

DÂTA

DATA

DATA

DATA

DATA

DATÂ

DÀTA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DÂTA

DATA

DATA

DATA

DATA

DATA

0,
270,
365,
475,
601 ,

745,
908,

1091,
7295,
752t,
1769,
2042,
2340,
2663,
3072,
3388,
3791,
4222,
4680,
5t67,
5681,
6223,
6792,
7388,
8010,
8658,
9330,

10026,
10743,
77482,
L2240,
13015,
13806,
146 10 ,

L5426,
76252,
t7084,
77921,
18760,
19599,
20434,
2!264,
22085,
22894,
23689,
24467,
25225,
2596I,
2667 t,
27353,

199,
287,
378,
489,
618,
764,
930,

1115,
L322,
1550,
1802,
2078,
2379,
2705,
3057,
3437,
3843,
4278,
4740,
5229,
5747,
6292,
6865,
7 464,
8090,
8741,
9416,

10114 ,

10835,
11576,
12335,
131 13 ,
13905,
L47 7I ,

15529,
16355,
17188,
18026,
18865,
79704,
20538,
27367,
22L87,
22994,
23787 ,

24563,
25318,
26051,
26758,
27436,

209,
292,
391 ,

505,
635,
794,
952,

1140,
1349,
1581,
1835,
2!í4,
2478,
2748,
3103,
3486,
3896,
4334,
4799,
810 2

5814,
6363,
6938,
754t,
8170,
8824,
9502,

10203,
10926,
1 1670 ,

t2432,
132LT,
14005,
14813,
15632,
16459,
t7293,
18131,
18970,
19808,
20642,
27470,
22288,
23094,
23885,
24659,
2547t,
26L47,
26844,
27579,

278,
304,
404,
520,
653,
804,
974,

1165,
7377 ,

1611,
1869,
2I5L,
2458,
2791,
3150,
3536,
3949,
4390,
4859,
5356,
5881,
6433,
7072,
7618,
8250,
8907,
9588,

10292,
1 1018 ,

177 64 ,
t2528,
133 10 ,
14106,
14915,
15735,
16563,
17398 ,

18236,
19075,
199 13 ,
207 46 ,
21573,
22390,
23794,
23983,
24754,
25504,
26230,
26930,
27601,

228,
316,
418,
536,
67L,
824,
997,

1190,
1405,
7642,
1903,
2188,
2498,
2834,
3197,
3586,
4003,
4448,
4920,
5420,
5948,
6504,
7087,
7696,
8331,
8991,
9675,

10382,
11110,
1 1858,
72625,
1 3408 ,
14206,
15017,
15838,
16667,
77502,
18341,
19180,
20077 ,

20850,
2767 6 ,

22497,
t?ra¿

24080,
24849,
25596,
26319,
27076,
27 683 ,

238,
327 ,

43L,
552,
689,
84s,

1020,
t276,
1433,
1673,
1937,
2225,
2539,
2878,
3244,
3637,
4057 ,

4505,
4981,
5485,
6016 ,

6575,
7161 ,

7774,
8472,
9075,
97 62,

t0472,
1 1203,
1 1953,
t2722,
1 3507 ,

t4307 ,

15119,
15941,
t677 7,
77607,
18446,
19285,
20122,
20954,
27778,
22592,
23393,
24L78,
24943,
25688,
26408,
27 tot,
27764,

249,
340,
446,
568,
707 ,

865,
t043,
1242,
t462,
1705,
7972,
2263,
2580,
2922,
3291,
3688,
4L12,
4563,
s042,
5550,
6085,
6647 ,

7236,
7852,
8494,
9160,
9850,

10562,
Lt295,
t2048,
72879,
13606,
74408,
7s227,
76044,
16875,
t77 t2,
18550,
19389,
20226,
2to57 ,

21880,
22693,
23492,
24274,
25038,
25779,
26496,
27 785 ,

27845,

259
352
460
584
726
887

1067
L26A
149 1

7737
2007
2307
262t
2967
3339
3739
4 166
4627
5104
5615
6154
67 19

7372
793 1

8576
9245
9937

10652
1 1388
t2t44
t29t7
13706
14509
t5324
16 148
1 6980
178 16

18655
79494
20330
21761
21983
22794
23591
2437 t
25732
25870
26584
27269
27925

238

DATA 28005, 28084, 28162, 28240, 28318, 28395' 28472' 28548

DATÀ 28623, 28698, 28772, 28846, 28919, 28992' 29064' 29135

DATA 29206, 29276, 29346, 29415, 29484, 29552, 29619, 29686

D^TA 29752, 298L7, 29882, 29946, 30009, 30072, 30135' 30196

DATA 30257, 30317, 90377, 30436, 30494, 30552, 30609' 30665

DATÀ 30721, 30776, 30830, 30884, 30937, 30989' 31040, 31091

DATA 31141, 31190, 31239, 3!287, 31334, 31381' 3L426, 3747r
DATA 31516, 31559, 31602, 31644, 31686, 3t726, 31766' 31805

DATA 31844, 31881, 31918, 31954, 31990' 32024, 32058' 32091

DATA 32123, 32155, 32186, 32216, 32245, 32273, 3230L, 32328

DATA 32354, g2g7g, 92404, 32427, 32450, 32472, 32494, 32574

DATA 32534, 32553, 92577, 32589, 32605, 32627, 32636, 32650

DATA 32663, 32676, 32688, 32698, 32709, 327t8, 32726, 32734

DÀTA 32741 , 92747, 32752, 32757, 3276L, 32763, 32765, 32767

DATA 32767 , 32765, 92769, 3276L, 32757, 32752, 32747, 32741

DATA 32794, 32726, 927t8, 32709, 32698, 32688, 32676' 32663

DATA 32650, 32636, 3262r, 32605, 32589, 32577, 32553, 32534

DATA 32514, 32494, 32472, 32450, 32427, 32404, 32379, 32354

DATA 32328, 32301, 32273, 32245, 32216, 32186' 32t55, 32123

DÀTA 32091, 32058, 32024, 31990, 31954, 31918, 31881, 31844

DATA 31805, 31766, 3L726, 31686, 31644, 31602' 31559' 31516

DATA 31471 , 37426, 31381, 31334, 3t287, 31239' 31190' 31141

DATA 31091, 31040, 30989, 30937, 30884, 30830' 30776, 3O72t

DATA 30665, 30609, 30552, 30494, 30436, 30377' 30317' 30257

DATA 30196, 30135, 30072, 3OOO9, 29946, 29882, 29817, 29752

DATA 29686, 29619 , 29552, 29484, 29475, 29346, 29276' 29206

DATA 29135, 29064, 28992, 28919, 28846, 28772, 28698, 28623

DATA 28548, 28472, 28395, 28318, 28240, 28762, 28084, 28005

DA"ÎA 27925, 27845, 27764, 27683, 27601, 27579, 27436, 27353

DAl^ 27269, 27785, 27707, 270t6, 26930, 26844, 26758, 26677

DATA 26584, 26496, 26408, 26319, 26230, 26t4t, 26051' 25961

DATA 25870, 25779, 25688, 25596, 25504, 25411, 25318, 25225

DÀTA 25132, 25038, 24943, 24849, 24754, 24659, 24563, 24467

DATA 2497t, 24274, 24178, 24080, 23983, 23885' 23787, 23689

DATA 23591 , 23492, 23393, 23294, 23794, 23094' 22994, 22894

DATA 22794, 22699, 22592, 2249L, 22390, 22288, 22787, 22085

DATA 21983, 21880, 2t778, 27676, 21573, 27470, 27367, 27264

DATÂ, 21161 , 27057, 20954, 20850, 20746, 20642, 20538, 20434

DATA 20330, 20226, 20722, 20017, 19913' 19808' 19704' 19599

DATA 19494, 19389, 19285, 19180, 19075, 18970, 18865' 18760

DATA 18655, 18550, 18446, 18341, 18236, 18131' 18026, 77921

DATA 17816 , !77t2, 17607, 17502, 17398 , 17293, 17188, 17084

DATA 16980, 16875, L677I, 16667, 16563, 16459, 16355, 76252

DATÂ 16148, 16044, 15941, 15838, 15735, 15632' 15529, 15426

DÂTA 15324, t5227, 15119, 15017, 14915, 14813, 147Ll, 746t0

DATA 14509, 14408, 74307,74206,14106, 14005, 13905' 13806

DATA 13706, 13606, 13507, 13408, 13310, t32L!, 13113, 13015

DATA 12917, 12819, 72722, L2625, L2528, !2432, t2335, 72240

DATA 12744, 72048, 11953, 11858, 17764, 11670' 71576, t7482
DATA 11388 , tl2g5, !1203, 11110, 11018, 10926, 10835, rO743

DATA 10652, 10562, 70472, 10382, 70292' 10203' 10114' 10026

DATA 9937 , 9850 , 9762, 9675, 9588 ' 9502, 9416 ' 9330

DATA 9245, 9160, 9075, 8991, 8907, 8824, 8747, 8658

DATA 8576, 8494, 8472, 8331, 8250, 8170 ' 8090 ' 8010

DATA 7931, 7852, 7774, 7696, 7618, 7541, 7464, 7388

DATA 79t2, 7236, 7161, 7087, 7072, 6938, 6865' 6792

DATA 6719, 6647, 6575, 6504, 6433, 6363, 6292, 6223

DATÂ 6154, 6085, 6016, 5948, 5881, 5814, 5747 , 5681

DATA 56 1 5 , 5 550 , 5485 , 5420 , 53 56 , 5293 , 5229 , 5 1 67

239

DATA

DÂTA

DATA

DÀTA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATÂ

DÂTA

DÂTA

DATA

DATA

DATA

5104,
462L,
4166,
3739,
3339,
2967,
262t,
23Ot,
2007,
L737,
1491,
t268,
1067,
887,
726,
584,
460,
352,
259,

5042,
4563,
47t2,
3688,
329L,
2922,
2580,
2263,
7972,
1705,
7462,
L242,
1043,
865,
707,
568,
446,
340,
249,

4981,
4505,
4057,
3637,
3244,
2878,
2539,
2225,
1937,
1673,
1433,
L276,
t020,
845,
689,
552,
431,
327 ,
238,

4920,
4448,
4003,
3586,
3197,
2834,
2498,
2188.
1903,
L642,
1405,
1 190,
997,
824,
671 ,
536,
418,
316 ,
228,

4859,
4390,
3949,
3536,
3150,
279t,
2458,
2L5t,
1869,
1611 ,
1.377 ,
1165,
974,
804,
653,
520,
404,
304,
2!8,

4799,
4334,
3896,
3486,
3103,
2748,
2418,
2Lt4,
1835,
1581,
1349,
1140,
952,
784,
635,
505,
391 ,
292,
209,

4740,
4278,
3843,
3437,
3057,
2705,
2379,
2078,
1802,
1550,
t322,
1115,
930,
764,
618,
489,
378,
287,
199,

4680
4222
379 1

3388
3012
2663
2340
2042
1769
752L
L295
1091

908
745
601
475
365
270

0

*
:i---------- ------------*

*
DATADR .tl0RD 1000H ; address of data to çindoc
:*

¡rindoc-start:
LDPX 4
ssxn

+

LARP O

LRLK ARO,N ; debug was N

SBRK 1

LALK TIJIDD

SUBK 1

SACL TEMPE1

*
LALK DATADB

TBLR TET{PEO

LAR AR1 , TEIIPEO

*
CALL PRODUCT

B cindoc-ret
¡t

*
* ***+ *++*rÈ'È'***:i* r*'* *'t+****'i:tr*:t++'t**++*+* * 'f * *** +¡t** *'3¡¡* +:f ';* *+* *:lrß

* rtoc - interleave consecutive real numbers çith zero to
* ¡rake then cornplex,
*
rtoc_start:

rsxn
0
0

tenp
N,1
7

CH lSTART

tenp
arO, ternp

ldpk
Lac
sacl
lalk
subk
addk
sacl
lar

; N*2

; Acc is noc offset of last inag Part
; Acc is no¡ address of last inag part of dest

240

rtocl-p
larP 0

zac
sacl *-,arl ; store inag Part = 0

lac *-,arO ; load real part fron source
sacl *- rar2 ; store real Part in dest
sar arO,tenP
banz rtoclP,*-

*
b rtoc-ret

*
*
¡t***+'*+'t**,i:*{.+*:1.*+'}*+**'}¡È+¡i**!t:}*¡trt++**:t*:¡*!3'}+:}*¡}'l¡È+!i*++:}+**:}*'}***:}:i:l***'t¡l
* FFT - perform 1024 point conplex fft. Based on Progran by G.Y.Yuan.

*
I'f EQU 10 ;ll=2**ll
*
,t 'i* ** *'t:f +'l'i't*¡*+¡l*'t {r*:} t¡*,}*'ß**'l't:}+:ß*!t:t**!** *¡}'}!* ¡f :}*'t't*+* tt**+'t+:t***¡}*'t***

**
* This Progran is Jor inplenenting a singLe butterfly RÂDIX-2 *
* Coo1ey-Tuley N-point FFT. All data is in external data menory *
* and uses Q15 data fornat. AIl DIT butterfLies are inplenented 'f
* with dynarnic scaling to avoid aritÌ¡netic overflows. Uses table *

'¡ lookuP of coefficients cith table size N * (3/4) for sines a¡td *

* cosines
**
¡|* +**:t¡t*¡f **¡t***,f *+*¡***tltü**!tt¡*:l+¡t**:l:*!t*** ¡t**'l* ¡*+t|** +**¡t+****+***r**¡Ì **
+

fft-start:
ssxllt
LDPK 4
LÀLK DATADR ; get address of DATADR variable
TBLR TEI'ÍPEO

CALL SUBFFÎ

'*
B fft-ret

*
SUBFFT ; FFT subroutine for two cha¡nels

lalk
subk
addk
sacl
Ia¡
lrlk

N

1

CHlSTART

tenp
arl , tenp
ar2,N

ARo ,ll- 1

1

N2,15

; Acc nor address of last real part of source

; Initialize IE = 1

; Table has address of cosine table

; Hol'dn = N

; Quartn = N/4

; ARO contains K counter
+

LACK

SACL

SACL

LALK
SACL

LALK

SACL

SACL

LAC

SACH

I
ONE

IE
SINE
TÀBLE

N

HOLDN

N2

H0LDN, 14

QUÀRTN

KLOOP

LARK

LARP

LAC

241

JLOOP

't
ILOOP

*

SACH

SACH

z^c
SACL

SACL

LAB
I{AR

LAC

ADD

TBLR

ADD

TBLR

LAC

ADD

sÂcL
LAC

SACL

IA
J

ÂRl,1{2
It-

TABLE

IA
SITI

QUARTII
c0N

IA
IE
IA
J'1
I

I
N2,t
L

N1,1

I
TEI{PEO

ITE
L
TEI{PEO

LTE

N2

;Nl-N2
i N2 = N2/2

ÀRl contains J value
Start at l{2-1
Table is full size

; Get t¡¡iddle factors

iIÂ=IA+IE

;I=J

; L=I+N2

; Data stored fron)0400

scaling by 7/2

scaling by 7/2

scaling by 7/2

scaling by t/2

*

LAC

ÀDD

SACL

LAC

ADD

SACL

LAC

ADD

SACL

LABP

LAR

LAC

SACH

LAC

SACH

LAB

LAC

SACH

LAC

SACH

6

6, ITE
*+, 15

XI
+r15
YI
6, LTE
*+, 15

XL
*, 15

YL
*
:È'l¡t,'i:tt|¡|ri,ù'3+**:È*r|tt****titl:t't't*tl+:t+*+*,ß+*'l*'*+:l:t+**'t:l*:l:t'ttù:t'l*+**'l¡t*****
* Conpute butterfly *
rirf ¡i+ri*¡l.rt:lr¡:l¡lrt¡l¡t'ß*¡l'i't*¡lrlr;*rl**¡*rt**t|*r;***t|*+¡l*ti!t****!t*tttltf ti***t|¡ttÌ!t{¡*'l**:f

!t

LAC XI
SUB XL

SACL XT ;XT=XI-XL
ADD XL,1
SACL XI]XI=XI+XL
LAC YI
ST'B YL

SACL YT iYT=YI-YL
ADD YL,1
SACL YI ;YI=YI+YL
LT CON

MPY YT

PAC

LT SIII

242

I{PY XT

SPAC

SACH YL,1 ; YL = CoS*YT - SIN*XT

HPY YT

PAC

LT CON

}IPY XT

ÂPAC

SACH XL,l I XL = C0S*XT + SIN*YT
+

¡l*¡i¡t*r¡r|¡i'l!t:i*¡|rt*¡3+¡Ìtl¡f+:t¡t¡ttÌtt*¡|'*!Ètt't!t:l¡tt|+,t:ß*:tt|*'**:i:t+***+:t***+'ß*!t***:Ê¡**+*

* Output results of butterfly *
*¡******r*,Èr¡rÈ:l***¡**rÈtl*:t'l*t3'lt|¡È*'t'l!t**:3****:3**tt'l*tl***t|+tt¡t¡lt|'|**tl*¡3¡l¡l*'Ì*¡l:*t|

't
LARP 6

LAR ar6
'
ITE

LAC XI
SACL *+
LAC YI
SACL ¡r

LAR 6,LTE
LAC XL

SACL :*+

LAC YL

SACL *
*
+tt'*!ß'|+:*:t:|¡t'*';:i***+¡*:l:È*+*'t:*:t***+*****¡t:¡***!t't¡t***'¡*+:t*+:¡*:*+****:t:t**¡***'*
* Add increnent for next loop *
¡t!t,t**,|*¡;+*¡|*¡ü+******+****¡*¡*¡lrf ,l¡*+:ß*,|'ü*+!3,t*t|**!******:ß'*¡t******tÈ+:|****

,l

LÀC I
ADD N1,1 ;I=I+N1
SACL I
SUB HOLDN,I ; lJhileIcN
BLZ ILOOP

:t

LAC J

ADD ONE ;J=J+1
SACL J

LARP 1

BANZ JL00P ; AB1 <> 0 then pass to JL00P

*
LAC rE,1
SACL IE ; IE' = 2*IE
LÂRP O

BANZ KL00P ; ÂR0 <> 0 then pass to KL00P

+

* ** * +*:3*:t*:t** *!*!t** rt *'** +:f ** ****¡È**+t|,1:t:i* **'l*{t¡} *!t*:ltl*+¡*** ** t}:}¡t++**tl*¡l*

,r Digit reverse courter for radix-2 FFT conputation *
*:t***rt***:¡*rÈ'l:t+:i:lt|¡|***tl+tÈ¡f:l*+,1*+'t**+¡t!i:l¡Èt|+¡t*!t*:t'l+¡|+:Ì'l¡l*tÈ**'l*'l:ttl+'t'*'*'l
+

DRC2 Z^C
SACL L

SACL I
LARP O

LAR AR0,H0LDN ; For I = 0 to N-2

üAB 'l-
ÌlAR +-

DRL0OP SUB L ; If I < L, then sraP

243

BGEZ NOSIJAP

¡|

!t!t*¡l*¡|*¡t*rlrl**¡itÈ*'l¡X:tr;**+lt¡¡l'l!it|tttl*tl¡t¡¡¡t¡Ì:t¡t+*¡t¡;*:i*rt*'Ì'3rt*:|**'*t**tl**¡ß*

* Scap ITE a¡d LTE values *
+,i*+:t,i*,t1ltrtrl+rt¡t¡t,i¡trt¡t¡l¡i¡lt*+'ltt¡l++:|¡|+'t¡l*rt,l+¡l+*+:|¡la¡i++!ttlt|¡t+¡i!l*¡i**t3'*¡l:|ti**¡l
*

LAC I
ADD TEI{PEO

SACL ITE ; Get ITE data address
LAC L
ADD TEMPEO

SÂCL LTE ; Get LTE data address
+

LARP 6

LAR 6, ITE
LAC 'Ê+ ; Get I value address
SACL XI ; Get real and inaginary Parts
LAC !È

SACL YI
LAR 6, LlE
LAC ++ ; Get L value address
SACL XL ; Get real and inaginary Parts
LAC *
SACL YL

¡l

LAR 6, LTE

LAC XI
sAcL *+
LÁ,C YI
sÂcl *
LAR 6, ITE
LÄC XL

SACL 't+
LAC YL

SACL *
LARP O

*
NOSIJAP

INLOOP

OUTL

LÀC

SACL

LAC

SUB

BLZ
SACL

LAC

SACH

B

ADD

SACL

LAC

ÀDD

SACL

BAIIZ
RET

HOLDN

J

L
J

OUTL

L

J,15
J

INLOOP

; J=N

;IfL)=Jthen

;L=L-J

iJ=J/2

J,1
L

I
;L=L+J

ONE

I
1

DRLOOP

; Increnent f
; ARO <> 0 then Pass to DRLOOP

¡i

** * '|rt* *,t¡i**** ¡*!ß***'i '|*!*** **rl +!**'*:t **!t¡t:t**+!*'**:i * ***:t * +** 't'**+:* *'* ** * ** ***

* Coefficient table(size of table is 3N/4) ¡i

't¡** 'f *:ltt¡l'l:l¡|tl¡|* ++*:i'l** ¡|*'*:t* *+,1**¡l !t* '|+ *'l* !r '*¡r*¡i * *¡l'lr¡ 'i**!* +**+'*** ** **+* *!i

*
*

244

SINE DATA

DATA

DATA

DATÀ

DATA

DATÂ

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DÂTA

DATA

DATA

DATA

DATA

DATA

DATA

DATÂ

DATA

DATA

DATA

DATA

DATA

DATA

DÀTA

DATA

DATÀ

DATÂ

DATA

DATA

DATA

DATA

DATA

COSINE DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DÂTA

DATA

DÂTA

DATA

DÂTA

0,
7206,
24t0,
36L2,
4808,
5998,
7179,
8351,
95t2,

10659,
1 1793 ,

t29LO,
14010,
15090,
16151,
17189,
!8204,
19 195 ,

20159,
21096,
22005,
22884,
23737,
24547 ,

25329,
26077,
26790,
27 466 ,

28705,
28706,
29268,
29797,
30273,
307 14,
31113,
3 1470,
3 1785 ,

32057 ,

32285,
32469,
32609,
32705,
32757,
32767 ,

32745,
32678,
32567,
32472,
32213,
31971,
31685,
31356,
30985,
3057 1 ,

30 1 17,
2962t,
29085,
285 10,
27896,

207,
!407 ,

2671,
3811 ,

5007,
6195,
7375,
8545,
9704,

10849,
1 1980 ,

1 3094 ,
14191,
15269,
16325,
17360,
18371,
19357,
203t7,
2L250,
221s4,
23027 ,

23870,
24680,
25456,
26198,
26905,
27575,
28208,
28803,
29358,
29874,
30349,
30783,
31 176,
3 1526 ,

31833,
32098,
32378,
32495,
32628,
327L7,
3276t,
32766,
32737,
32663,
32545,
tõaoa

32t7 6 ,
31926,
3 1633 ,

37297 ,

30919,
30498,
30037,
29534,
28992,
284t7,
27790,

402,
1608,
28L7,
4011,
5205,
6393,
7571,
8739,
9896,

1 1039 ,
12t67,
73279,
t4372,
75446,
16499,
17530,
18537,
19519,
20475,
27403,
22307,
23770,
24007,
24877,
25582,
26379,
27Otg,
27683,
28310,
28898,
29447 ,

29956,
30424,
30852,
3L237 ,

31580,
31880,
32137,
323s1,
3252t,
32646,
32728,
32765,
327 65 ,

32728,
32646,
32527,
32357,
32737 ,

31880,
31580,
31237 ,

30852,
30424,
29956,
29447 ,

28898,
28310,
27683,

603,
1809,
3012,
42t0,
5404,
6590,
7767,
8933,

10087,
LT228,
12353,
73462,
14553,
15623,
16673,
!77 00 ,
18703,
19680,
20631,
21554,
22448,
23317,
24143,
24942,
25708,
26438,
27 133,
27790,
28411,
28992,
29534,
30037,
30498,
30919,
3t297 ,

31633,
31926,
32176,
32382,
32545,
32663,
32737 ,

32766
3276t,
32717,
32628,
32495,
32318,
32098,
31833,
3t526,
31 176,
30783,
30349,
2987 4,
29358,
28803,
28204,
27575,

804,
2009,
32!2,
44L0,
5602,
6786,
7962,
9126,

L0278,
tl4L7 ,

12539,
13645,
74732,
15800,
16846,
17869,
18868,
19841,
20787 ,

27705,
22594,
234s2,
24279,
25072,
25832,
26556,
27245,
27896,
28510,
29085,
29621,
30117,
30571,
30985,
31356,
31685,
3797 L,
32273,
32472,
32s67 ,

32678,
32745,

32757 ,

32705,
32609,
32469,
32285,
32057,
31785,
3!47 0 ,
31113 ,

307 L4,
30273,
29797,
29268,
28706,
28105,
27 466 ,

1 005
2210
3472
4609
5800
6983
8 157

93 19

10469
1 1605
72725
1 3828
I49t2
1 5976
170 18

18037
1 9032
20000
20942
2 1856
22739
23592
24473
2520t
25955
2667 4

27356
2800 1

28609
29777
29706
30195
30643
31050
37474
31736
320L4
32250
3244L
32589
32692
32752

32752
32692
32589
3244t
32250
32014
317 36

3r474
3 1050
30643
3019 5

29706
29777
28609
2800 1

27356

245

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATÀ

DATA

DATA

DATA

DÀTA

DÂTA

DATÂ

DATA

DATA

DATA

DATA

DÀTA

DATÀ

DATA

DÀTA

DATÂ

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DÀTA

DATA

DATA

DATA

DATA

DATA

DATA

DÀTA

DATA

DATÂ

DATA

DATA

DATA

DÀTA

DATA

DATA

DATA

DAlA
DATA

DATA

DATA

DATA

27245,
26556,
25832,
25072,
24279,
23452,
22594,
2t705,
20787 ,

19841,
18868,
17869,
16846,
15800,
74732,
13645,
12539,
LL4L7,
70278,
9L26,
7962,
6786,
5602,
44t0,
32!2,
2009,
804,

-402,
-1608,
-28LL,
-4011,
-5205,
-6393,
-757 7,
-8739,
-9896,

-11039,
-72!67,
-t3279,
-L4372,
-1s446,
-16499,
-17530,
- 18537 ,

-19519,
-20475,
-2L403,
-2230L,
-23170,
-24007 ,

-2487t,
-25582,
-263 19 ,

-27079,
-27683,
-28310,
-28898,
-29447,
-29956,

27 133,
26438,
25708,
24942,
24743,
233tt,
22448,
27554,
2063 1 ,

19680,
18703,
L7700,
16673,
15623,
14553,
13462,
12353,
Lt228,
10087,
8933,
7767,
6590,
5404,
4270,
3012,
1809,
603,

-603,
-1809,
-3012,
-42t0,
-5404,
-6590,
-7767,
-8933,

-10087,
-tL228,
-12353,
-73462,
- 14553 ,
- 15623 ,
-16673,
-!7700,
- 18703 ,

-19680,
-20637,
-2t554,
-22448,
-23311,
-24743,
-24942,
-25708,
-26438,
-27 L33,
-27790,
-2847t,
-28992,
-29534,
-30037,

27019,
26319,
25582,
24817,
24007 ,

23770,
2230t,
2t403,
20475,
19519,
18537,
17530,
16499,
1 5446 ,

t4372,
73279,
72767,
1 1039 ,

9896,
8739,
7571,
6393,
5205,
4011,
28LI,
1608,
402,

-804,
-2009,
-3272,
-4410,
-5602,
-6786,
-7962,
-9126,

-70278,
-L7477 ,

-12539,
-13645,
-74732,
-15800,
-16846,
-17869,
-18868,
-19841,
-20787,
-21705,
-22594,
-23452,
-24279,
-2so72,
-25832,
-26556,
-27245,
-27896,
-28510,
-29085,
-29627,
-30117,

26905,
26198,
25456,
24680,
23870,
23027,
22t54,
2!250,
20377 ,

19357,
18371,
17360,
t6325,
15269,
t4L91,
13094,
11980,
10849,
9704,
8545,
7375,
6195,
5oo7,
3811,
267t,
L407 ,

207,
- 1005 ,
-22L0,
-34t2,
-4609,
-5800,
-6983,
-8157,
-93 19,

-10469
-1 1605,
-12725,
-73828,
-749L2,
-15976,
-17018,
-18037,
-19032,
-20000,
-20942,
-21856,
-22739,
-23592,
-24413,
-25201,
-25955,
-26674,
-27356,
-28001,
-28609,
-29t77,
-29706,
-30195,

26790,
26077,
25329,
24547,
2373t,
22884,
22005,
21096,
20159,
19195,
L8204,
17189,
16151,
1 5090 ,
14010,
129L0,
1 1793,
10659,
9512,
8351,
7t79,
5998,
4808,
3612,
2410,
1206,

-0,
-1206,
-24L0,
-3612,
-4808,
-5998,
-7 !79,
-835 1 ,

-9512,
-10659,
-71793,
-t2970,
-14010,
-15090,
-16151,
-77 t89 ,

-18204,
-19195,
-20159,
-21096,
-2200s,
-22884,
-23737,
-24547 ,

-25329,
-26077 ,

-26790,
-27 466 ,

-28105,
-28706,
-29268,
-29797,
-30273,

26674
25955
25207
244L3
23592
22739
21856
20942
20000
19032
18037
17018
1s976
L4972
13828
t2725
1 1605
10469

93 19

I 157

6983
5800
4609
3412
2270
1005
-20L

-1407
-2677
-3811
-5007
-6195
-7375
-8545
-9704

- 10849

-1 1980

- 13094

- 1419 1

-15269
- 16325

-17360
-7837 7

-19357
-20377
-27250
-22154
-23027
-23870
-24680
-25456
-26 198

-26905
-27575
-28208
-28803
-29358
-29874
-30349

246

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATÅ

DATA

-30424,
-30852,
-3t237 ,

-31580,
-31880,
-32L37 ,

-32351,
-32527,
-32646,
-32728,
-32765,

-30498,
-30919,
-31297,
-31633,
-31926,
-32776,
-32382,
-3254s,
-32663,
-32737,
-32766

-30643,
-31050,
-31414,
-31736,
-320t4,
-32250,
-32441,
-32589,
-32692,
-32752,

-307 14 ,

-31113,
-3 1470 ,

-31785,
-32057,
-32285,
-32469,
-32609,
-32705.
-32757,

nag_start:
larP
Irlk
Idpk
Iack
sacl

:ß

lrlk ar3,N ; count the operations ne do

*
¡r assume ARO points to real/inag
*

SSXID

¡i

1p3:
larp 0

zac
It*
nPy *+
1t ¡t

rPYa ¡t

aPac
sach *- ; save in low-high fornat
sach n-vhi
sacl * ; low Part cones first
sacl n-vlo

-3057 I ,

-30985,
-31356,
-31685,
-31971,
-32273,
-324t2,
-32567,
-32678,
-32745,

-30783
-31 176

-3 1526

-3 1833

-32098
-323 18

-32495
-32628
-327 77

-3276t

¡f

** * *:t**,*'t*'l*'È'*,1****,È,ß'¡:i***t***+**'È!t¡¡* ¡l¡t+**t|t**+ **** ++:*+**'*'l!t't*** **'*!3!È*

¡ na8 - calculate nagnitudes of conplex nr.rmbers, using a nodified
* Jorn of Newton's nethod to calculate the square root.
*
n-tenp . set 0H

n-sqrtenP .set lH
n-shifts .set 2H

rn-one . set 3H

¡o-vlo . set 4h
n-vhi . set 5h
¡È

* nagnitude root code
,i

¡;

*
zero

1

arl,

1P4

bz

larp
lark

norn
bbz

0

arO , CH lSTART
4
1

n_one

1P4

0

247

¡i

sfr
sfr
addh nr-one ; nake sure esti¡ate nill be at least 1

sach n-sqrtenP ; first estinate is V,/4

¡t

* aro stil-I points to same place, but nenory noc holds number-hi, number-fo
*

lrlk ar2,20 ; iteration counter
¡l

Lp2:.
Iarp f i use ar1 as a counter
lark ar1,0 i zero it
zalh n-sqrtenP ; get x

lp1:
nar *+
sfI
bnc lP1

:}

sar
lack
sub
sacÌ

Iarp
zals
addh

It
DPY

sPac
neg

rPt
sfr

sub
neg

sacl
larp
ba¡rz

ar1,n-tenp
16
m tenD
n-shifts

0
:t+

*-

; save counter

; noc re have nunber of shifts to do

*

rt

:}

*

*

*

; get loB Part
; get high Part

n-sqrtenp
n_sqrtenp

; forn v-x*x
; forn x*x-v

n-shifts

n-sqrtenp ; forn (x*x-v)/2P - x

;forrnx-(x*x-v)/2p

n-sqrtenp ;

2

!p2,*-

; do one nore shift tha¡ indicated by 'shifts'

larp 0

sacl *+ ; store it in place
Iack 0

sacl ,t+ ; zero high part
,i

zcont I

larp 3

ba¡rz J'P3, *-
¡t

¡r nog ¡nove aLl the real parts together (renove interspaced conplex parts)

*
larp 0

IrIk arO,1000H
lrIk ar1,1000H
IrIk ar2,N

novelp:

248

larp
lac
eacl
nar
banz

0
*+, ar1
*+, arO
*+ rat2
roovelp, *-

¡l

b Dag-ret
't
zero i

IarP 0

lack 0

sacl *+
sacl *+
b zcont

't
* ¡ßri *,t rÈ,1¡t:È:l*:È¡l rl +* *rt !t +¡l **¡l *'l + *:È !i¡l tÊ ¡l+*tt* '¡¡l

rl ¡irt ** * t*:t *+:l t¡tlilI !È+ ++tf ** ** tt tÈ tl ¡t ¡l**'i

* ctor - tlrroc aray irnag Parts to leave reals
*
cr-tenp equ 60H

*
ctor-start:

IdPk 0

lrfk arO'CH1STABT

Irlk ar1
'
CH1STÂRT

Irlk ar2,N
crlp:

larP 0

lac *+
nar *+,arl ; skiP over inag Part
sacl *+ rar2
ba¡z crIP,*-

¡l

b ctor-ret
¡È

:l:| +:È* ¡l rt!t* ¡l* '|* 't:|**** +'* *r¡* +:t 't:trt rÈ't *rtrt r|'t * r|:l !È:l:ß* 'l *+r* ** * ¡*¡t t** ** * *'¡:l:r !r *t* t*
'* '*

*+

249

