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Abstract

Public key cryptography algorithms offer the potential to be the most secure algorithms

for smart card. Cunentþ, several attempts have been made to find practical public key

systems U,2,3f based on the difficulty of factoring large integers, such as the Rivest-

Shamir-Adleman (RSA) cryptosystem, or based on the difficulty of solving discrete

logarithms over finite fields, such as the ElGamal cryptosystem.

Recently Odlyzko [4] has forecast that a 512 bit module will be vulnerable to

factorization in a couple of years and is therefore not suitable on a long-term basis for

security protection. It is likely that a 1024 bit RSA will become common in the near

future. Though it will probably remain secure for many years, it requires too much

memory for the smaller size chip required for the Multi-application Smart Card (MSC).

There has also been recent progress in computing discrete logarithms over finite fields,

but the requirement of the ElGamal cryptosystem in terms of memory capacity is the

s&me as the RSA cryptosystem, which can provide security for longer periods, but then

requires larger memory space.

For the development of the multi-applioation smart card in future, the memory capacity

of the chip is not big enough to store larger and more complex programs needed for the

multi-application operating system and the protocol codes of the cryptography algorithm

involving large integers. This is because the chip on the smart card is restricted in size.

However, the advantage of the Elliptic Curve Cryptosystem (ECCs) is that it provides

equivalent security to existing public key schemes but with much shorter key lengths. A

small memory requirement is a crucial factor in the design of Smart Cards [5] and will be

significant in the design of the multi-application smart card.

This thesis considers the efficiency of the Elliptic Curve Cryptography (ECC) in the

design of the MSC in future and describes the problems of the smaller memory



requirement in public key cryptosystems for the MSC. The ElGamal and Elliptic curve

algorithms will be compared, where the modeling of these Cryptosystems will clearly

show the source of the efficiency of the Elliptic Curve Cryptography Algorithm (ECCA)

as a basis for achieving the required processing efficiency for ñrture application.

This thesis also shows the lengthy time required for the operation of the Elliptic Curve

algorithms, which is the main cause of resistance to the ECCs, and which prevents it from

being put into practice. The thesis also compares the running time of the three kinds of

public key cryptosystem. Therefore, it also indicates the direction for research and further

development of the ECCs.
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Preface

Smart card developments all over the world can be correlated with a rapid increase in

both the scale and scope of smart card technologies. Although several multi-application

smart cards (MSC) are emerging in France, Germany, Japan and USA, they are likely

still in their infancy. The aim of this thesis is to explore the development and the

achievements of the MSC in the future, and discuss the many technological problems that

need to analyzed and solved. In particular the important issue of the limited memory

capacity in the chip is a key problem to be overcome for the successful use of MSC.

The MSC in future has few specifications with many services in one card and the highest

level of security which contain not only all of the controller security features, but a

coprocessor that processes asymmetrically on chip security algorithms. These functions

will be supported by a complex software system and will need a large memory storage

capability. In order to ensure the performance of these software ftr¡rctions, the Smart

Card Operating System will become more complex and larger, and the program code of

the Operating System will also need a large memory storage capacity.

However, the chip on the smart card is restricted in size and although the industry can

already produce 16 kbit ROM and 16 kbit EEPROM at present, and has already enhanced

data storage and programmed service in optional code. The memory capacity of the chip

is not big enough to store the larger and more complex programs for the multi-application

operating system and the protocol codes necessary for the ctyptography algorithm for

factoring large integers. With this limited memory space, cryptographic keys will be

stored in EEPROM, the ROM mask normally storing the operating system and higher

level instructions, which execute cryptographic algorithms. It is therefore necessary to

look for an effrcient cryptographic algorithm which satisfies both the security level based

on the factoring of large integers and the memory space of the restricted size chip in order

to successfully develop the MSC.
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An important fact is that the public key cryptosystems based on factoring algorithm or

classical discrete logarithm algonthms would provide the most security for MSC, but

their disadvantage is that the secure-term provided by the cryptosystems will be longer,

and then the memory space required will be larger. However, the advantage of the

Elliptic Curve Cryptosystem (ECCs) is that it potentially provides equivalent security to

these two existing public key schemes but with much shorter key lengths. Smaller

memory requirements for the ECCs will be necessary in order to achieve the maximum

potential of the MSC in future.

Another important fact is that a lengfhy running time will be required for the

computational operation of the ECCs. This disadvantage is created by the complex

architecture of computation of the ECCs and is a main barrier to prevent the ECCs

becoming a practical alternative. One of the results in this thesis is that it clearþ shows

the efficiency of the smaller memory requirement trade off against the more lengthy

running time.

Therefore, the investigation of the efficiency and running time of the ECCs in this thesis

will be significant in determining the direction of ECCs research. It is worth noting that

the choices and decisions made in relation to smart card technology development will

determine the futwe of MSC,

Smart card development also relates to many other social and technological areas, such as

communication systems, microelectronics, intemational standards, and privacy

protection. However, this thesis only considers the efflrciency and running time related to

the use of smart card, and is divided into four parts. Chapter I is a description of the

physical and logical architecture of future smart cards, which will afÊect the production

and development of MSC in the future, and which specifically reflects the smaller

memory capacity in the card. Chapter 2 discusses the three kinds of public key

cryptosystems, and shows the three different types of cryptography algorithm and

security functions. Chapter 3 infroduces the mathematical principles corresponding to

xlv



three cryptosystems, the RSA, ElGamal and Ellipic Curve systems. Here only a

minimum of knowledge of number theory is required to understand how the efficiency

and the running times for the three different public key cryptosystems are determined.

Chapter 4 compares the efficiency and running time for the three public key

cryptosystems. The results show the advanced efficiency combining a smaller memory

requirement with a high degree of security compared with other public key

cryptosystems, but with the disadvantage of longer running times than 450 ms limitation.

Finally the conclusion of this thesis outlines the direction of research involving the ECC,

and predicts the result of future development ofthe MSC.

Huang Meng Yuan

University of Adelaide

August 19, 1998
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Introduction

The higher degree securþ feature in the smart card will be a vital ingredient in creating

and developing a Multi-applications Smart Card (MSC). People have recognized that

information securþ will become a key issue for the smart card. Smart cards are already

in wide public use and will affect many areas of our lives. To ensure confidentiality,

privacy and security, cryptology is pervading our everyday life. It has a large influence on

security in various frelds of applications, not only in banking, but also in the areas of

health, Pay TV, personal computer, education, employment, communication, .'.etc.

There are a number of new securþ features in response to market demands. In most

cases the new features will be equally useful to general cards and on-line systems,

However, they are going to enhance smart card functions and capabilities. Some of the

new techniques that are being developed are as follows:

(1) Personalidentificationverification

Three of the coming changes are Signature verification by signature dynamics,

identification by retinal scanning and verification by hand geometry. These techniques

and others will be tested and tried. An advantage biometrics technique will eventually

emerge after several years of hial and use. The PIN number will be continuously used in

existing environments and will be useful for many years as a supplement to the emerging

technique.

(2) Encryption algorithm

As an introduction to securrty of the smart cards, it will frstly describe the status

development of the smart cards. Then the status of cryptology for smart card, mainly the

Public key Cryptography Algorithm (PuCA) will be discussed. The Privacy key

Cryptography Algorithm (PrCA) will be neglected for terseness in this report. Finally it

will briefly describe the status and applications of the Elliptic Curve Cryptography

Algorithm (ECCA).



Introduction

1.1 The status development of smart card

The smart card is a single chip microcomputer, which is a miniature computer system on

a single piece of silicon. There are different devices and procedures compared to a

personal computer. There are no keyboards, displays, disk drives, etc. outside the card.

There is the built-in capability to prevent, by various means, unauthorized access to the

CPU, the memories, the buses, and any data being stored or ptocessed within the card at

any time.

The smart card development all over the world can be correlated with a rapid increase in

both the scale and scope. Currently, a large number of smart cards are produced and

issued with a number of different applications in many countries, mostly applications

involving electronic money transfer and identification of individuals. Several new kinds

of services have been developed like Pay TV, Access k.y, financial services,

transportation, Medicare,...etc., and all of these new kinds of services will have very

different specifications, and require specific approaches to fuIfill the arising security

demands. This will provide the impetus for creation of the MSC.

However most smart card are still in their infant stage'with single application (means

specification), Many existing applications do not fit with their initial definition.

However, for many service providers and application designers, the smart card domain is

still not perfectly well identifred in technology and capabilities.

The developed cryptography on the smart card will be a key technology for secure

electronic commerce and electonic payment applications. The card offers the unique

advantage to keep cryptographic mechanisms securely in tamper-proof equipment. Smart

cards will be used for access control instead of passwords, for the generation of digital

signafures, for encryption or decryption, as an electronic purse and as a repository of any

confi dential information.

,,



Introduction

For the last four years, there has been an increasing demand for a public-key smart card

from national administrations and large companies such as telephone operators, bank,

and insurance corporations. The securþ degree of smart card has caught a high point. In

1993 [6] although the first MSC were emerging in Germany for PCs appeared on the

market, but the development of the MSC is quite slow. Two special conditions of the

MSC: the higher degree security and the smaller memory space will obstruct quick

development to MSC. Because the chip on the smart card is restricted in size, the

memory capacity of the chip is not big enough to store the larger and complex program

for the Multi-application Operating System and the protocol codes of the cryptography

algorithm with the factoring of large integers. The detail of constrictions of MSC will be

shown in chapter 1.

So looking for an effrcient cryptography algorithm which balances the security level

based on the factoring of large integers with the required memory space of the restricted

size chip is importance.

1.2 The status of cryptology for smart card

Public key cryptography is a powerful security tool in the field of information

technology. The DES private key cryptosystem conforms to the U.S. standard determined

by the National Bureau of Standards (now called NIST) in 1977 [5]. It uses the same key

to encrypt and to decrypt a piece of data, and creates an implementation need: how to

distribute and protect the key. As a possible solution to these problems, Diffre and

Hellmam introduced the concept of Public Key Cryptography, based on the difficulty of

solving a "trapdoor" problem in 1976 [7]. Several studies have been done to find a

practical Public Key Cryptosystem [8, 9]. In a public key cryptosystem, each individual

in the cryptosystem is assigned a unique pair of keys, one for encryption and the other for

decryption. This simplifies the key management requirement. The holders of public keys

can not "see" (or decrypt) previously encrypted data using other pairs of public keys. But



Introduction

this algorithm is slower than private key algorithm, and required key values are very

long. However, the feature of the one-\¡ray key is very athactive.

The Rivest-Shamir-Adleman (RSA) cryptosystem that was invented n 1977 [10] is the

current standard for Public key encryption today, and is applied widely. As RSA

compatible chip cards become available, the use of this standard will increase rapidly.

The security of RSA depends on the size of the modulus N. Odlyzko [4] has recently

forecast thata 512 bits module will be vulnerable to factorization in a couple of years and

is not suitable for the long-term protection of secrets. Perhaps 768 bits module will be

vulnerable to factorization by the year 2004. These estimates are based on projections of

computing power, algorithmic advances and continuing ability to organize disparate

resources over the Internet. Barring major advances in algorithms, 1024 bit RSA will

probably be secure for many years to come and seems likely to become commonly used

soon.

Since the frst useable public key cryptosystem RSA was introduced, a variant having a

coûrmon property based on the problem of factoring large integers was created and

developed rapidly. For getting a cryptography algorithm more closely to the feature of the

one-way function, another type of public key cryptography -- based on the discrete

analogue of the logarithm function -- gave rise to a second current of research in

computational number theory. It is called classical discrete logarithm defined over a finite

field. The security of this public key cryptosystem is based on the difficuþ of the

discrete logarithm problem.

Diffie-Hellman Key Exchange and ElGamal Cryptosystem are two cryptosystems, of

which the securities are based on the difficulty of the discrete logarithm problem. The

details will be described n chapter 2.

4
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1.3 The status of Elliptic Curve Cryptosystem for smart card

In 1985 [5] a variant of discrete log cryptography was proposed, based on the discrete

logarithm problem in the group of points of an elliptic curve deflrned over a fmite field.

The cryptosystems using discrete logarithms in this group of points have two potential

advantages over systems based on the multiplicative group of a finite field (also over

systems based on RSA):

(l).

(2).

There are a huge number of different elliptic curves available in the groups,

The absence of sub-exponential time algorithms that could find discrete logs in

the groups.

Moreover, the discrete logarithm problem in this group is believed to be very difficult, in

particular, harder than the discrete logarithm problem using finite fields of the same size

as the key. It was for these reasons that ellþic curves were first suggested in 1985 by N.

Koblitz[l1] and V. Miller [12] for implementing public key cryptosystems.

In developing ellþic curve cryptography, the most dramatic was the demonstration by

Menezes, Okamoto and Vanstone in 1990 that the discrete log problem on a

'supersingular' elliptic curve can be reduced to the discrete log problem in a finite field.

This result means that one should avoid the set of supersingular curves if one wants to

have a cryptosystem whose cracking problem is, to the best of our current knowledge, of

fully exponential complexity.

Elliptic curve cryptosystems potentially provide the equivalent securþ compared with

the existing public key schemes, but with shorter key lengths, which means smaller

memory space is required. The advantage of this feature can be a crucial factor in the

design of the MSC. It is also the reason, for MSC specially, why this report explores the

feasibility of implementing secure and efficient public key cryptosystems using elliptic

curves in a chip of restricted size.

5
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Elliptic curves over finite fields can be used to implement the Diffie-Hellman key

exchange scheme, and the ElGamal and NIST signature schemes. These systems

potentially provide equivalent security to the existing public key schemes, but with

shorter key lengths. So it is most suitable for the design of MSC, where both memory and

processing power are limited.

For applications that cannot operate efficientþ with a large key length N, cryptosystems

based on elliptic curves using discrete logarithm algorithm have been available for

several years. At present, no satisfactory method for determining the parameters for

cryptographic use has been developed. The Siemens Corporate Research and

Development Department [13], as part of a joint project with the University of Essen, has

developed a method for constructing elliptic curves with given parameters. The

advantage of cryptosystems constructed in this way is their compatibility with normal

congruent arithmetic. A large number of elliptic curves, including all required

parameters, can be explicitly determined with this method, These curves can be directly

used for new, efficient cryptosystems, with each curve defining its own cryptosystem.

For example, the coprocessor of the SLE44C200 produced by Siemens Co. can perform

these calculations. Key lengths from 128 or 256 bits are sufficient.

At present, expansion of the memory to be used for program and data is important.

However, it is expected that the development of silicon industry technology for the

expansion of memory capacþ will be quite slow in the near feature. A large number of

technological improvements are still conceivable in hardware (e.g. random number

generator for key creation, authentication) and software (e.g. new cryptology, such as

ellþic curves cryptosystem). So that the next smart card generation will be suitable for

memory intensive applications, such as in MSC.

This report will be presented in four chapters. Beginning with chapter 1, there is an

introduction to Development of the Multi-application Smart Card that is proposed for

next generation smart card. Chapter 2 provides an introduction of three public key

cryptosystems: RSA, ElGamal Scheme and Elliptic Curve Cryptosystem that will be

6



Introduction

needed for the investigation in the next two chapters. In chapter 3, the main task is a

description of the mathematical principles colresponding to three different kinds of

cryptography algorithm: RSA, ElGamal Scheme and The Ellipic Curve Cryptosystem.

Here the descrþion of mathematical principles in number theory required understanding

the different characteristics in the different cryptography algorithms. In chapter 4, the

comparison of the efficiency and running time between three cryptosystems will be

considered. It will be shown that the Elliptic Curve Cryptosystem has the desirable

features of security and smaller memory capacity required for the development of MSC.

On the other hand, there is a disadvantage of a lengthy running time in the

implementation of the algorithm, which is one of the important reasons that the Elliptic

Curve Cryptosystem has been proposed for several years, but has still stayed on paper at

present. With improvement in the cryptographic algorithms and increased computational

po\iler, it may be possible to improve the computation time of the algorithm to meet the

ISO standard, which would lead to the MSC becoming practical.

In conclusion, there aÍe some suggestions required for the development and

implementation of three technological tasks:

(l)
(2)

(3)

Development of the silicon technology to expand the memory capacity,

Improvement of designing hardware (e.g. OS, Data Base, instructions) and

software (e.g. algorithm, protocols) in the MSC,

Improvement of computing architecture and the rate of the ECC.

Implementation of all above technology tasks will have a great of effect on the creation

of the MSC. So that it is likely to have a rapid development both in quality and quantþ

on a mass scale worldwide in the next ten years, and will affect many areas of our lives.

The security, convenience and integrity of MSC technology will benefit applications as

varied as commercial, telecommunication, transportation, medical, identification,

education, employment, ... etc., and will change people's lives.

1



Development of the Multi-application Smart Card

1. Development of the Multi-applications Smart Card

From the aspect of applications, the smart card can be divided into trvo types: Single

application and Multiple application. A single-apptication smart card (SSC) is defined as

one, which has only one specification in which there are multiple services or functions,

such as a phone card issued by Telecom. A Multi-application Smart Card (MSC) is

defined as one, which will probably support different types of applications with different

specifications, such as financial services, identification, transportation, Medicare and

access key, ... etc..

Currently, the most cornmon fype of smart card with surface contacts to reach the market

place is the single-application smart card with few services or functions. This chapter,

describes the possible future development of MSC, restricted by kind of contact, and will

be in three sectors: the physical architecture of the MSC, the logical architecture of the

MSC and the Security of the MSC.

1.1 Physical Architecture of the MSC

1.1.1 l)imensions and Location

The dimensions and location of each of the contacts shall comply with Figure 2 of ISO

7816-2, with the contacts on the front of the card. The location of the contacts [14]

relative to embossing and/or magnetic stripe shall be as shown in Figure l-1.

E Mandatory Contacts
E Optional Contacts

8

Magnetic Stripe
of Card)

Embossing Area

Fig.l-1. Location of Contacts



Development of the Multi-application Smart Card

Smart cards rely on chip technology not only for information storage, but for information

processing as well. A microcircuit is embedded in the plastic base of an existing smart

card. The microcircuit consists of an electronic chip bonded to a circuit board and

connected to electrical contacts on the board. The production of smart card consists of

two steps [5], as shown in Fig. l-2.

@

e

Fig.l-2. Smart Card Production

Step l. Wire bonding (chip + circuit board),

Step 2. Potting (chip + circuit board + plastic card)

1.1.2 Standard of the Card

A Smart card must resist mechanical stresses like falls, torsion, and bending. Smart cards

must also be resistant to static electricity and to exposure to various types of radiation

such as x-rays, ultraviolet (UV) light, and electromagnetic fields. These physical

characteristics are very precisely specified in the existing standards.

9

I
t-I

-

Step I

Embossing

Fig. 1-3 Lower location on front
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In 1981 [6], the French standards institution (Association Franchise de Normalization

(Afnor)) proposed a location and an assignment of six operational contacts plus two

contacts reserved for fufure use. These are located on the front of the card, near the upper

left corner, as shown in Fig. l-3. This location corresponds to the minimum mechanical

constraints for the microcircuit when the card is under torsion and bending stress.

The international standard (ISO 781612)was published in 1988. The changeover to the

new standard will occur in the early 1990s. After that time a lower location has been

adopted [16], the standard refers to a corner, on any side ofthe card.

There are in fact two final lower locations: in rear as shown in Fig. l-l and on the front

as shown in Fig.l-3. Because of consideration of technology aspects, the most probable

ultimate location may be the lower one on the rear of the card.

1.1.3 Standard of the Chip

The intemational standard of the chip size would still be well within the 25 mm2 required

by ISO 7816.

In the 1980s [16], a breakthrough occurred with the development of CMOS technology

which consumes much less power, and which also provides this capability at an

acceptable cost. No doubt the next step in this development, high speed CMOS

technology, will be an important part of the integrated circuit and memory capacity

development, along with the development of semiconductor technology, because at

present the memory capacity of the chip has large spaces for expansion. The chips made

by a few large semiconductor companies will lead the market, as shown in Fig. 1-4.

10
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Motorola

Phillps

trGhlp
lMlcro
TACP

Slemens

0 30

Fig. 1-4 Microprocessor area (ttu"')

Technological advances will place microprocessors that are more powerful on smart

cards. These improvements will certainly lead to further decreases in computation times.

More importantly, memory capacities will increase further. For example, from Hitachi

[17], we can expect increases as shown in table 1-1, [18].

Table 1-1 Memory size of the chip

The interface to the outside would consist of eight contacts. The assignment of the

contacts shall be as defined in ISO 7816-2, as shown in table l-2.

Table l-2 Cont¿ct Assignment of the Smart Card

C¿ and Cs are not used and need not be physically present.

20l0

BEPROM

ROüu

(1) Defined by ISO as VPP, the ICC shall not require VPP.

LI
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Co is not used and need not be physically present; If present, it shall be

Electrically Isolated* from the integrated ci¡cuit itself and other contacts on the

MSC.

nl) Defined in ISO/IEC 7816 as programming voltage (VPP).

*2) Electrically Isolated means that the resistance measured between Co and

any other contact shall be > 1OMO with an applied voltage of 5V DC.

I.2 Logical Architecture of the MSC

1.2.1 The Basic Architecture of a MSC

Initially smart cards were produced and issued with a number of different applications in

many countries. Most of these smart cards with surface contacts were to reach the market

place with only a single application, so called Single-application Smart Card (SSC).

These cards are pre-paid, and are not debit or credit, But now most cards are becoming

multi-function and should soon be able to provide normal debit and credit facilities,

authentication and loyaþ recording functions as well.

In the near future, smart cards will become MSC rather than just multi-function. Different

services such as security, financial, medical information storage and transportation

require quite separate applications, and these applications will have very different

specifications. The different basic Architectures of a SSC and a MSC are shown in Fig.

l-5 and Fig. l-6.

Application

I
Processor

I I
voBuffers

Appli.l Appli. n

I t
Co-Processor

t t I
loDBase Op. Sys.

Fig. 1-5 Architecture of the SSC Fig. l-6 Architecture of the MSC

L2



Development of the Multi-application Smart Card

1.2.2 The Architecture of a MSC Memory

We will review here the logical structure of memory in the chip of the MSC. The memory

comprises three parts: RAM, ROM and EPROMÆEROM as shown in Fig. 1-7.

RAM

Secrete Data

Buffer

File Data

Pad Registers

ROM
(Operating system)

EPROM / EEPROM

Manufacfurer
Data

Confidential
Data

Application
Data

1)

Fig. l-7 Memory structure in a Card

The ROM memory containing the Smart Card Operating System (SCOS) and

several manufacturer codes cannot be accessed by issuers or by user.

2) The RAM memory is employed chiefly to store intermediate results of the

microprocessor. Also it is used to handle ready-to-use information required by the

microprocessor and it usually has several predefined zones: Scratch Pad

Registers, Built-in Data Encryption, Buffer Area and File DataZone,

Scratch Pad Registers have the same function as the usual microprocessor

registers, such as holding numerical results, addresses, and pointers' Its

length may be I byte or longer.

Built-in Data Encryption usually has a dedicated RAM zone where data

such as intermediate data, cryptographic parameters, and random numbers

are stored and handled.
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3)

Buffer Area may be used to store command parameters. Additionally, data

transmission and reception may use separate buffers, the transmission

buffer may include a counter, and the reception buffer may store

sequentially the last byte received through the I/O port.

File Data Zone stores the name and parameters of the working file when

using files in the MSC, The microprocessor uses this zone to keep the

address of the file within the user/application memory, as well as its size,

record number, record lengths, and most importantly, the addresses in the

secret zone where the protection rules of that specific file are stored. These

protection rules may in tum be temporarily stored in RAM.

The EPROMÆEPROM is nonvolatile memory (i.e., non-rewritable or

rewritable). The most important part of this memory is the Directory Structure

(DS). The DS is structured according to one of the following formats:

Memory is divided into several zones, whose size may be constant or

variable. Every zone may hold one or several data files' Zones are

separated according to their functionality, datatype and protection level.

ISO 7816/4 defined a hierarchical file structure, though zones are also

accepted for historical reasons (most current cards use zone structure) and

for technological reasons (many cards cannot be hierarchically structured).

Three file categories are considered: master files, dedicated files and

elementary flrles. Each card has a single master file; paths are defined to

access other files. More details will be discussed in next subchapter 1.2.3.

In either case, the card must be formatted to define suitable areas. Some recent

card models allow reformatting, other classic models are preformed by the

manufacfurer.
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1.2.3 The Architecture of a MSC Operating System

The Hierarchical Memory Structure is the most suitable structure for a MSC. ISO 7816/4

proposes a hierarchical file structure as shown in Fig. 1-8,

EF Br
Address

Fig. l-8 The allocation of application in MSC with hierarchical file structure

The mandatory root is called Master File (MF). The role of subdirectories is carried out

by optional Dedicated File (DF). Data arc stored mainly in Elementary Files (EF). EFs

may not be parents of DFs or other EFs. File control information is stored in the files or

in the file's parents. A 2-byte identifier references files. Linking the identifiers of their

parents, grandparents, and so forth, down to MF makes paths to specific files. Four EF

types are defined:

* Public EF: free access,

* Application control EF: read protected, stores control information of the

application,

* Intemal secret EF: extemal access is always avoided,

* Working EF: to store application data.

Strict access control mechanisms aside, the file hierarchical structure of a MSC described

in ISO 781614 is intended to solve most of the file managing pitfalls in the MSC (Fig. 1-

e).

EF 422

Transfer File
EF Azr

Public File

DF AçI
Public File

EF Azr
Appl. Control

DF 422

Transfer File

EF 82
Identification

DFAI
Application I

EF Ar
Issuer key

DF Az
Application 2

DFA
File Control

Manufacturer
EF DFB

User Data

Master File
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Master File

E

ü
E

E

Fig. 1-9 The security architecture in O.S. of MSC

Each application can be logically placed in a different branch of the directory tree,

owning a dedicated file that watches data flow to and from its branch. The master file at

the root may look after general matters of the card, including data flow to and from the

outside world.

In a MSC, the card issuer, the service managers, and the service providers are clearly

identified and associated with levels of files. The card issuer controls the MF and the

creation of DFs, each service manager controls the creation and the development of EFs

in its own dedicated (sub) files, each user either controls access rights. Therefore the

MSC can support several independent "application" files. A new DF can be created at

any time under control of the MF. The MF and each DF contain a bunch of ID keys:

management keys (for managing access rights and updating keys) and control keys (for

deciphering control words). The first management key in a DF is mandatory written

under control of a management key of the MF. The entitlements, along with various

names and addresses, are stored in EF. Moreover, in the MF, EFs may hold parameters

for a general-purpose device. Such parameters are security information, software to be

downloaded, or connection information to access a remote management center.

The security policy of the MF and DF is based on a set of independent diversified

cryptographic keys: one issuer key, few secondary keys used for authenticating the

service provider and for securing operations, and more secondary keys for signature and

T6



Development of the Multi-application Smart Card

authentication of the card. The MF, as well as each DF, also contains a set of other EFs

storing various data. In each file, there are a few erase keys for the erasure of the

EEPROM and a few dedicated keys for digital signatures.

A hierarchical structure of the files in the MSC operating system has been briefly

described in this subchapter. The remains are the inter-structure of each file and the

transmission protocols of these files in this chapter, and will be described in next

subchapter.

1.2.4 The Architecture of a MSC File

In a card [19], every hle is made of an 8 b¡e header and an arbitrary number of identical

records, as shown in Fig. l-10.

HeaderData RecordsHeader

l byte I byte I byte I byte 2 bytes 2 bytes

Fig. 1-10 Architecture of a file

The header includes six parts:

Byte_l:

Byte 2:

Byte_3:

Byte_4:

Byte_5 & 6:

file name,

number of records contained in the file,

record length; the file size excluding the header may be calculated as the

byteJ times the byte_3,

fìle type,

access rules,
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Byte_7 & 8: secret codes; the nibbles of b¡es 7 and 8 contain the numbers of the secret

codes employed in the access rules of bytes 5 and 6 respectively'

Table l-3 Basic response coding of character TDl

Two types of transmission protocols [4] are defined: character protocol (T:0) and block

protocol (T:l).The MSC shall support either protocol T:0 or T:1. Terminals shall

support both protocol T:0 and T:1. The protocol to be used for subsequent

communication between the card and terminal shall be T:0 or T=1 indicated in TDl(l),

as shown in table 1-3.

Character Frame Data is passed over the I/O line in a character frame. Prior to

transmission of a character, the I/O line shall be in state H. The structure of a character

frame shows in Fig. l-l l.

8 data bits
H +

L
.-> + l0 + 0.2 etu ->

Character duration

Fig. 1-11, Architecture of a Character Frame

A character consists of 10 consecutive bits as following:

{' I start bit in state L,

* 8 bits which comprise the data byte,

(1) TDI Interface Character, conv€y information that shall be used during exchanges between the

terminal and the card to the answer tc reset. It indicates whether any further interface bytes are to be

transmitted.
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* 1 even parlty checking bit.

The receiving end detects the start bit by periodically sampling the I/O line. The 8 bits of

data and the parþ bit itself are included in this check but not the start bit.

x Block Frame

The protocol consists of blocks transmitted between the terminal and the card to convey

command and response Transaction Protocol Data Unit (TPDU) and transmission control

information. The data link layer block frame structure is shown in table 1-4.

Table l-4. Architecture of a block Frame

The block consists of three parts

1) Mandatory prologue field, which consists of three mandatory bytes:

a. Node address to identifr source and intended destination of the block and

to provide VPP state control,

b. Protocol control byte to control data transmissiono

c. Length of the optional information field.

Optional information field, which is conditional. When present in an I_block, it

conveys application data. When present in a S_block, it conveys control

information. R block shall not contain an information file.

3) Mandatory epilogue field, which contains the EDC of the transmitted block. A

block is invalid when a parity effor and/or an EDC efror occurs. This

specification only supports the LRC as EDC. The LRC is one byte in length and is

2)

Iængth
&EN)

Protocol
Control
æcB)

Node Address
Detection
rNAD)

Error
æDC)

Control
Information

(rNF)
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calculated as the exclusive-OR of all the bytes starting with the NAD and

including the last byte of an information file, if present.

The interested reader can refer to [4] for more details.

1.2.5 Coding of Transmission

In ISO standard 781613, only the physical procedure of 'answer to reset' (ATR) has so far

been defined for the "synchronous transmission" mode to which smart cards are assigned.

This states that after a reset signal, the chip must ouþú 32 bits of information

synchronously with the clock pulse. The bit duration used on the IiO line is defined as an

elementary time unit (etu) [a]. A linear relationship exists between the etu on the I/O

line and CLOCK frequency (f), which shall be in the range I MHz to 5 MHz. Current etu

: FlDf seconds

Hr Hz

bs bz brbnbbrbsb¿bs b? be bs b¿ b¡ bz br
IC Type Application/Card IC

Manufactwer Manufacturer

Fig. 1-12. 16-bit scheme QSO 7316) and 32-bit scheme (DIN NI-17.4) for ATR in Transmission

Note: For the basic ATR, only a F : 372 andD : 1 are supported. Thus the current etu

is the same as the initial etu given by 372ff seconds. If the card has an internal

clock, the initial etu is 119,600 second [9]. If not, the initial etu is 3721f second,

where f is provided by the interface device on the clock. During the ATR, the

maximum interval between the leading edges of the start bits of two consecutive

characters shall be 9,600 initial etus. The current etu is meant unless otherwise

l6-bit scheme

Extended scheme

br bt be b.s b¿ b¡ h br b" br bo b. bo br br br

Protocol Type
Hr

DIRData Reference
H4
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specified. As smart cards become more widespread, 16 bits code is coming up

against its limits, shown in Fig. 1-12. They can be distinguished by the first two

bits, known as the structure identifier [20].

The 16 bit of the ISO 7816 scheme contains the chip type in the first byte and the chip

manufacturer and application in the second. The 32 bit of the ISO scheme is divided into

the four b¡es from H1 to Ha:

. Hr --- specifying the protocol type:

ba - bs Protocol tupe s,

b¿ - b¡ Reserved for future use (RFU),

bz - br Structure Identifier: 00 : defined by ISO,

10: Structure 1,

0l : Structure 2,

11 = Strucfure 3.

a H2 --- speciffing the protocol parameters:

Ba: RFU,
Bz: 0 : Read to end, 1 : Read with defined length,
Br - b¿: Number of data units,
Bs - br: Length of data units in bits.

I{3 --- speciffing the category indicator:

Bs - bz: Category indicator according to ISO 7816'4.

FI4 --- specifuing the DIR data reference:

Bs : l: DIR data reference specified, bz - br : reference of DIR data,

Bs = 0: DIR data reference not specified,bz- br:outside the scope of ISO 7816-

4.

A scheme to be adopted by the ISO will then contain the combination 00. Four bits are

available for the protocol type. The associated parameters are held in the second byte

with the number and length of the data units. The next two bytes are assigned under ISO

78l6l4,to the category indicator and data reference to the presence of further data.

a

a
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Currently, the 16_bit scheme has been successfully retained for the smart card (e.g.

Siemens chip SLE 440414406). The extended 32 bit scheme is to be introduced for all

other types of chips after a transitional period.

1.3 Security of the MSC

In the course of a transaction involving a smart card, the card delivers information (stored

data, computation results) and modiflres its contents (data storage, event memorization):

the built-in electronic circuits both process data and store information in intemal memory.

These semiconductor technology trends definitely enhance both the physical and logical

security of MSC:

Better integration enhances physical security by making it more difficult to

physically probe and recover information from the chips dedicated to MSC.

Additions in processing power (CPU, RAM) and in operating systems (ROM)

enhance logical security by allowing the implementation of more complex

cryptographic algorithms and protocols in MSC.

A number of assault scenarios are conceivable, for which there is a range of

countermeasures based on semiconductor technology. Attacking on the securþ of a

MSC can be divided into three categories:

l) Data spying,

2) Data alteration,

3) Forging.

However, there are a range of countermeasures against the manipulation and forging of a

smart card to ensure effective protection as the following two sectors:

l) Physical securþ,

2) Logical security.

{.
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The physical security means the hardware security such as security of chip and terminal.

Here the descripion of the physical security is restricted to the chip and card. The logical

securþ means the software and system securþ such as security of operating system and

message transmission among card, terminal and systems. The descriptions are restricted

to the operating system and the applications of security system. They will be described

individually in the following.

1.3.1 Physical Security of the MSC

Smart cards are very difficult to reproduce without the right facilities and expertise.

Manufacture of the chips requires very complex and expensive equipment. Even if stolen

chips are used, both their bonding to the substrates and their encapsulation into the card

require specialized equipment. The chips for smart cards are not publicly available and

would not be easy to obtain.

As we know the MSC has both the memory and the microprocessor on the same chip.

Where they are separate devices it could be possible to X-ray the card and ascertain the

position of the communication lines between the two parts. By careful probing through

the outer layers of the card, it could be possible to read out the information flowing

between the microprocessor and memory. However, it is nearly impossible to extract this

information from the smart card which has the microprocessor and memory combined on

the same chip.

Another form of security [6], we should consider in chip production, is the security of

chip testing:

1) Each chip supports about twenty additional test contacts, and tests are conducted

under control of the outside world,
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2) Each chip supports one or two test contacts, and an internal selÊtesting program

written in a small extra ROM conducts tests.

Fig. 1-13 The model of Self-program micro-computer

Before cutting wafers on production lines, a 512-byte internal routine is activated

through two speciflrc test contacts, shown in Fig. 1-13 near RST under the CPU. The

EEPROM of each validated component receives various information: locks, codes,

erasure indicators, chip serial number, while nothing is written in rejected components.

Breaking fuse links buried in the silicon then systematically destroys the two test

contacts. This operation, which eliminates non-user modes on valid chips, also positively

disables invalid chips where nothing has been written.

As a matter of fact, the self-testing routine may write these erasure indicators to be tested

by the card before executing any command in user mode during any transaction. If such

an erasure indicator is erased, either by accident or by violation, then the chip is defïnitely

disabled. Such EEPROM cells are constructed so as to be the most sensitive ones to

erasing radiation. This is an example of the current reliability philosophy of using weak-

link/strong-link designs to enhance reliability, since the weak-link is designed to disable

the device before the operational strong-links can be subverted. Valid chips are then

inserted into cards during the process of card manufacture. A manufacturing code or key

is used for protecting chips from the time of chip manufacturing to card issuing.

RSTCLK

I

I

I

I

I

I

EPROM / EEPROM

PURAM ROMc

GNDVPPr/o
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Throughout the operation, several testers in the chip determine readiness: voltages, clock

frequency, light, temperatures are all measured. These indications may also be used by

the operating system to increase security. The mapping of memory addresses should be

controlled by the internal program itselt and not be accessible to outside control.

Whatever the physical security systems, system designers must carefully consider the

potential consequences of chip violations. Secret keys must be as diversified as possible,

tied to user identification number and chip serial number. A successful violation then

compromises only one user and does not endanger the whole system, thus reducing the

risk of widespread fraud. These aspects of logical security are strongly related to

cryptology.

1.3.2 Logical Security of the MSC

The logical securþ of the MSC is based on its operating system. The smart card

operating system deals with different commands and with the general security of the

whole system. The most important part of a smart card system is software. A poor

software design can induce weak security, inefficient functions, effoneous data,

deadlocks, and many other potential problems. On the other hand, a good software design

provides the user with qualified operations and additional functions. The efficiency of an

operating system is not only related to ROM size, but also to the virtuosþ of the

software designer who finally specifies the technical configuration of the card. In this

subchapter, the logical security of the MSC will be described individually in two

sections: the security of operating system and the security of the MSC system.

1.3.2.I The security of Operating System

The logical security is fundamental in the logical architecture of the operating system.

The descrþions of the security of operating system consist of two parts: logical security

and functional security.
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For logical security, the independence between data files associated with flexible file

management is the basis of any high security MSC operating system. This evolution

clarifies the security architecture that is presently mature enough to be standardized. The

security cannot be granted on an existing data file orgmization as in the existing

operating system: DOS and I-INIX. The difference takes place mainly in the security

management that has to be taken into account in the model from the beginning of the

design.

Because a file is fathered by another file, the essential creation process has to be

protected. In other words, the right to create or to access a file has to be transmitted by

heredþ to enforce the independence between applications. This does not compel a son to

have the same rights as its father, because it has the freedom to choose its way except for

the creation procedure. The transmission of hereditary rights is managed by specific

attributes that are transmitted to the son by ttre father.

The commands affect the objects and the entities specified by the securþ architecture.

The set of commands should be defined afterward to permit compatibility and

interchange between cards supporting different applications. The MSC may introduce the

notions of Master File (MF), Dedicated File (DF) and Elementary File (EF) with the

following set of definitions:

--- Master file: The DF at the highest level of the card is unique and mandatory file

containing all the other files.

--- Dedicated file: Containing control information and other files, and giving access to

EFs and DFs.

---Elementary file: Containing a set of records, and having a security policy under which

an EF is never used as entries point to another file.

This structure can be interpreted in terms of security, and is standardizing the security

architecture in the Operating System of a MSC, as shown in Fig. 1-9.
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For functional security, the operating system has the security fl¡nctions with multiple

specifications accessed by secret keys for different companies, organuations and

government departments. Every specification is separate from each other, so that one

company or organization can only access its own specification by cardholder's secret

keys. It also has several levels ofsecurþ that can be controlled by secret keys in every

specification for multiple functions. The company or organization can only get a part of

services within their own firnctions, but for some services on higher level security within

the same specification, it will need cardholder's secret keys. All of these personal secret

keys will be produced through the personalization and electronic signature by the

manufacturer and card's issuer. Of course, the operating system must be designed with

these features, and must present much stronger securþ abilþ.

1,3.2.2 The Security of MSC System

A security system consists of the access control related to the hardware and software

procedures and the application of intelligent cryptographic methods to the message

communications between card, terminal and background systems. Different applications

call for different levels of securþ. Therefore, chip manufacturers must provide a

differentiated range of components to match the various securþ levels. The system

security would be classified into five levels based on the different applications of

hardware and software as shown in Fig. 1-14, and is described as follows.

Hardware Secuity:
CPU, RAM, ROM
and EEPROM
Technology

Fig. l-14 Security Level for Smart Card Environment
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l) The contents of EEPROM cells cannot be read by optical means. Any attempt to

break into the cell by analyzng its contents will lead to immediate destruction of

the data. A change can occur only in one direction from the charged state

(valuable) to the uncharged state (value-less). If an intruder tries to determine the

charged state by etching away the layers of the semiconductor chip, the contents

of the EEPROM cell are destroyed by themselves as the gate is approached.

Intrusion in a zero voltage state is impossible. The EEPROM also offers a facility

for setting irreversible bye by byte or block by block flags to support the securþ

features.

'When the personal security code is used as a password, a comparison is made

between the value entered by the user and the code stored on the chip. However,

this is not done in the system, because the personal securþ code would have to

be transferred from the chip to the terminal and thus exposed to probing, but by

the chip's comparator logic. So the personal security code stays in a secure

environment.

3) At the high security stage, symmetrical authentication by a hardware algorithm rs

inexpensive and can be implemented very effectively with an intelligent memory

chip without a processor. In a challenge-and-response process between the

terminal and the card, a hardware function on the chip responds to a query by the

terminal. A secret key that is stored securely in the chip controls the hardware

function. The parallel operation running in the terminal's security module allows

comparison of both results for authentication between card and terminal.

4) The next higher securþ level is that of the Operating System. Its security

performancc is based on the following characteristics:

Programmability of complex internal sequences and intelligent analysis of

information and signals,

Availability of application specific features,

Self-checking capability without the need for additional signals from outside,
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5)

Software implementation of symmetrical on-chip security algorithms

The highest level of sectrity is obtained with crypt-confrollers. These contain not

only all the controller security features of the previous level, but also an arithmetic

hardware unit, with which the highest security level can be implemented by means

of various asymmetrically on-chip securþ algorithms. The principal

characteristic of these algorithms is separation of the encryption and decryption

processes. So anyone gaining control of a procedure would be unable to master

the complementary process as well.

Summary

As described above, the development of the MSC seems to be very viable. Along with

further enhancement of the security requirements on the market, the complex and perfect

software of the operating system has to be created. It is demonstrated that a cryptography

algorithm will determine the high degree security of the MSC system. All of these require

more memory space that is restricted with the maximum 25mÑ required by ISO 7816.

Curently the semiconductor manufacturer uses CMOS 0.3pm--l.0pm technology to

increase the memory space of the RAM, ROM and EEPROM corresponding with 256-

byte, l6-kbyte and 16-kbyte. But the memory space in the chip is still not enough for the

huge and complex software, and for the high degtee securþ based on the factoring of

large integers provided by the various public key cryptography algorithm, although

semiconductor technology has had enormous development.

Therefore, investigating and developing an effrcient cryptography algorithm will not only

be suitable for the smaller memory space of the chip, but will reach the same high degree

security as other public key cryptography algorithm based on the problem of factoring

large integers. These will be proposed and be described in more detail in the next

chapters.
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2. Public Key Cryptosystem for the Multi-application Smart Card

Abstract: Since l976,when Diffie and HellmanlTl introduced the concept of public key

cryptography, there have been twenfy years of evolution in the procedure, and many

different types of cryptography algorithms with vatious functions and characters have

been proposed. The most widely used algorithms are the Rivest-Shamir-Adleman (RSA)

public key cryptosystem which is based on the problem of factoring large integers, and

the ElGamal cryptosystem based on the difficuþ of computing discrete logarithm. Their

problems are used to implement a fully functional public key cryptosystem, including

digital signatures.

Elliptic Curve Cryptosystem (ECCs) is an another type of public key cryptosystem, the

difference is that the ellþic curve analogue of this cryptosystem has more difÏiculty

undertaking computations of group operation on an elliptic curve over finite fields than

the computations of ElGamal algorithm over finite fields [11].

In fact, the evolutionary procedure of the public key cryptosystem is similar according to

the model of Trapdoor one-way function that will be introduced in Appendix A'

Therefore, at present the Elliptic Curve algorithm has the most efficient feature of one

way function compared to any other algorithm.

In this chapter, the descrþion of the public key cryptosystem applied to multi-application

smart card consists of three subchapters which are the RSA cryptosystem, ElGamal

cryptosystem and Elliptic Curve Cryptosystem, and will be introduced as following.

2.1 TheRivest_Shamir-Adleman(RSA)Cryptosystem

The RSA cryptosystem is the most widely used public key cryptosystem at present. The

RSA cryptosystem not only provides the solution to problems in the Private Key
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Cryptosystem, but also can be used to obtain Digital Signature, and hence achieves higher

degree security as well. The descripion below will include RSA cryptography algorithm

and RSA digital signature.

2.1.1 RSA Cryptography Algorithm

The RSA algorithm is a public key algorithm that provides a block cipher. The RSA

algorithm is based on the fact that it is computationally simple to find large prime

numbers, but believed to be computationally infeasible to factor the product of two such

numbers [21]. The RSA cryptography algorithm is shown in Fig 2-1.

User A User B

Mrl
Public key

n.e

Fig. 2-1 The RSA Cryptography Algorithm

User A randomly selects two very large prime numbers p and q, then calculates the

product N

N: pq (2.1-t)

and Euler's totient function (see Appendix A):

0N): þ-lXq-t) (2.r-2)

User A then randomly selects another number e from the interval 1< e <ON) such that

(e, Q$)): I (2.1-3)

Decipher: M:Cd (modN)
Verifuing: M : M

Cinherte.xf C

Encipher:
C : Ivf (mod N)

Select primes: p and q,

Calculate: N: pq,

0(N): (plXq-l)
Select e: (e, S(n)): 1

Calculate d: ed mod 0(N): I
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which can be verified by using the Euclidean algorithm. The numbers N and e are the

public keys which are openly transmitted to another user upon request.

If user B wishes to communicate with User A, then user B represents the message as a

sequence of blocks, each of which has a value in (0, N-1). A plaintext block M is

transformed into a ciphertext block C by using the public key and calculating the RSA

one-way frinction

C : M" mod N (2.1-4)

This computation can be done rapidly by the discrete exponentiation method illustrated in

example (2) of [21]. Since e < N and M < N, all quantities n (2.1-4) are representable by

b bits if N is slightly less than 2b, and discrete exponentiation requires at most 2b

multiplications. The restriction M < N ensures that (2.1-4) is a one-to-one transformation

with an identical domain and range. User A calculates the number d such that

de: I mod $(N). (2.1-s)

The integers d, p and q are secret keys. Euler's theorem and (2.1-3) ensure that d exists,

and d can be computed by using the Euclidean algorithm. Equation (2.1-5) means that

de:k$(N)+l (2.r-6)

where k is an integer. When ciphertext C is received from user B, user A deciphers C by

computing

M' : Cd (mod N) (2.1-7)

Substituting (2.1-4) into (2.1-7) and using (2.1-6), we obtain

M,: (M")d (modN)

- M'd (mod N)

: MÖNkM (modN) (2.1-8)

If (M, N) : l, then Euler's theorem yields M' : M. Thus, the deciphering successfully

recovers the message. If M:0, then M' : M trivially.
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If M > 0 and (M, l.Ð + 1, then either p or q divides M. It is not possible for both p and q

to divide M because M < N : pq. Suppose that p divides M, then M : ip for some

positive integer i and (M, Ð : l. Since p and q are primes, Euler's theorem (see

Appendix A) yields

Mk0Ol: ¡4Ö(eXn-r)k: I mod q (Z.l-9)

This result implies that

1 : ¡4t00r) _¡O (2.1-10)

when j is an integer. Multiplying both sides of this equation by M and using M = ip and

N: pq, we obtain

¡4: ¡4k0N)M - ljN (2.1-ll)

Substituting(2.1-11) into (2.1-S) yields M' : M. Therefore Q.l-7) restores the message

for all M in (0, N-1).

Since only d and N are required to decipher C, these two numbers constitute the trapdoor

of the one-way exponentiation function. Since N is part of the public key, the number d

can be considered the private key. However, d is generated from e and $(N), hence, from

e, p and q. e is apartof the public key. An example of the RSA algorithm is as follows:

Example 2.1 (Example 3 in [21]), Suppose that p:l1 and q:13. Then N : pq : 143 and

0N) : (11-1X13-l) : 120. Let e:I1, which is a legitimate choice because

(e,QN)): (11,120): 1. According to (2.1-5), d is the solution to the

equation d x 11 (mod 120): l. From (A.l-2) and 0(120): (3 - 1X40 - l):
78, thus, the equation is obtained d : 1177 (mod 120¡ : 11.

The public key is (N, e) : (743, 11), the private key is d : 11. The primes

are {p, q} : {11,13}. Suppose the message block is M: 10, the transmitted

ciphertext is,

C : l0rr (mod 143):43,

and the deciphering is M': 43rr (mod 143):10 : M.
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To prevent a factoring of N by an exhaustive search and to render existing factorization

algorithms computational infeasible, the primes p and q should have approximately larger

than 100 decimal digits. The primes in this size also ensure that the probability that (M,

N) +1 is on the order of tO-r00 ¡221. The enciphering exponent e should be chosen so that

2'> N, which makes it impossible for M to be recovered from C simply by calculating

C1/" because a modulo-N reduction occurs during the enciphering except when M : 0 or

1. The securþ of the RSA algorithm depends not only on the intractability of factoring

N, but also on the unproved assumption. So that any way of inverting the RSA one-way

function is approximately as difficult as factoring N.

Finding the value $(N) directly would breaks the RSA cipher by allowing the

computation of d in equation (2.1-5) without knowing p and q. If the 0N) is known, then

the equations (2.1-l) and (2.1-2) can be solved simultaneously for p and q. Therefore, the

calculation of 0N) provides a method of factoring N, and consequently is at least as

difficult as factoring N.

Finding the integer d directly would break the RSA cipher by computation of M' in

equation (2.1-7) without knowing 0N) or factoring N. But if the integer d is known, then

the equation (2.1-6) indicates that de - 1 is a multiple of 0N). Therefore, the calculation

of d is also at least as difficult as factoring N.

To use the RSA system, a user must first choose the primes p and q that should differ in

length by a few digits, (p-1, q-l) should be small, but both p-l and q-l should contain

large prime factors. To ensure that p - t has a large prime factor, a large prime p1 can be

first randomly selected and then the prime p : ipr + I is generated for as many even

values of the integer i as is required. The RSA algorithm can also be used to obtain

digital signatures, which is described below.
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2.1.2 The RSA Signature Scheme

The function of digital signatures is the authentication and validation of electronic

messages exchanged over the channels of a communication network. This kind of

authentication is seriously deficient because both the sender and receiver must know a

secret key. The sender uses the key to generate an authenticator, and the receiver uses it to

check the authenticator. 'With this key, the receiver can also generate authenticators and

can therefore forge messages appearing to come from the sender. In other words,

authentication can protect both sender and receiver against third party enemies. If Alice

sends a message to Bob, for example, Bob might fraudulently claim to have received a

different message. Supposing Bob takes some action in response to a genuine received

message, Alice can still claims that Bob in fact forged the message. Alice's a solution to

the dispute problem arising from the dishonesty of sender or receiver, Diffie and Hellman

[7] proposed the use of a digital signature based on certain public key cryptosystems. The

signature procedure for the RSA cryptosystem is shown asFig.2-2.

(. User A .; User B

C

Decipher

M: Cdu mod n

Signature
S : I\¡fh mod n
S': S'b mod n

Encipher
C: IWU mod n

Verifier
S: S'Õ mod n
M: S"o mod n

M

S

Fig. 2-2 The Principle of RSA Cryptog¡aphy and Signature Scheme

To begin the signature process, A user chooses primes p and q, and computes N : pq,

ON): (p-1Xq-1), and chooses e to be an integer in [1, Ö(N)] with gcd(e, 0N)): 1, and

chooses d to be an integer in [, $(N)] wrth ed : 1 mod $(N). The N and e are public, and

d, p and q are secret.

35



The App lications of Public Key Cryptosystem

* Signature Generation:

If A user wants to send a signed message M to B user, A user first computes a

"signafure" S for the message M using secret key du:

S: Md" (modN)

Then A user encrypts S using B user's eu that is the public key,

S, : Su, (mod N)

and sends the S'to B user.

** Signatureverification:

B user first decrypts the S'with d¡ to obtain S.

g : 5rd, (mod N)

B user knows who is the presumed sender of the signature. This can be given if necessary

in plain text attached to S. B user then encrypts the S with A user's public key eu, and

verifies M.

M: ,Se' (modN).

A user cannot later deny having sent B user this message, since no one else could have

created S: Md'. Also B user can neither modifu M to a different version M', nor forge

A user's signature for any other message.

Summary: The RSA cryptosystem has not resisted all attacks. Some of the protocols for

using RSA have been broken [23, 24]. Developing another type of public key

cryptosystem with more security features is signihcant. Although the ElGamal algorithm

based on the diffrcuþ of discrete logarithm problems over finite fields has the ability to

overcome some attack to the RSA system, but would not provide a higher degree of

security than RSA system. ElGamal scheme gives an explicit methodology for using

discrete logarithm problem to implement a fully functional public key cryptosystem,

including digital signatures, and will be introduced in the next subchapter.
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2.2 The ElGamal Cryptosystem

Abstract: In 1985, T. ElGamal [25] proposed the following public key scheme based on

discrete exponentiation that has the properties of one-way function similar to RSA

system. The one-way function is the discrete exponential function l2ll, as equation (2.2-

1). Y : c{,* (mod p). (2.2-l)

where p is a large prime, x is an integer with 1< x < p-1, and o is an integer with l<cr< p

and ør, d', ..., oe-l, in some order, congruent modulo p to l, 2, ..., P'l'Such ø is called a

"primitive root modulo p". Every prime p has a primitive root modulo p 1221. For

example, if p:7 , cr,:3 is a primitive root modulo 7:

C¡cr : 3l mod 7 : 3, dz:32 modT :2,

Ct¡ = 33 mOdT :6, U+:34 mOdT :4,

c[s:3s mod 7 = 5, c[o:36 mod 7: 1.

The inverse of the discrete exponential function is the discrete logarithm and is denoted

by

X:logoY, l<Y<p-l (2.2-2)

If p is a large prime and p-l has a large prime factor q then evaluating the discrete

logarithm requires far more computation than the approximately 2log2p multiplications

required for discrete exponentiation.

2.2,1 The ElGamal Cryptography Algorithm

This algorithm uses avery large prime p, a large prime factor q of p-l and an element cr

of the finite field Fp: {0, ..., p-1} whose order (see Appendix A-2) is q. These system

parameters p, q and o are known to all users. The plaintext message units are given

numerical equivalent m in Fo. Each user A randomly chooses an integer xa, say in the

range Q(¡u(q-l, and each user B randomly chooses an integer x5, in the same range
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0<x¡<q-1. Both xu and x¡ are secret keys. A user computes Yu : U*' (mod p), and sends

Y" to B user. Similarly, B user computes Yu : dxo (mod p) and sends Y6 to A, and both

Yu and Y5 are public keys. Hence both A user and B user are able to compute K"u [25].

Kab : y!'(modq)

' (mod p)

: 
øxoxo (mod p).

Notice that an intruder who solves the discrete logarithm problem h Fo breaks the

cryptosystem by finding the secret key xu from the public k"y A*". In theory, there could

be a way to use knowledge of A*" and qxo to find Ox"tu, and hence break the cipher,

without solving the discrete logarithm problem. Holever, it is conjectured that there is

no way to go from qx" *rd d*o to qxåco without essentially solving the discrete

logarithm problem.

In any of the public key cryptosystem based on discrete logarithms, p must be chosen

such that p-l has at least one large prime factor. If p-l has only small prime factors, then

computing discrete logarithms is relatively easy [26].

Suppose that A user wants to send a message m to B user, where 0 ( m < p-l.

l) A user chooses a random number x" and computes the public key Y;- gx' mod p,

2) A user looks up B user's public key Y6: qr' mod p, and computes

Kua=Yf" mod P, (2.2-3)

where Yb: Ax' mod p which is sent by B user.

3) A user computes C : mIÇ¡ mod p, (2.2-4)

and sends to B user the pair of group elements (Yu, mKu6).

4) B user computes Y!' ^duses 
this to recover m.
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It can easily be seen that the ElGamal cryptosystem is the application of Diffie-Hellman

key exchange. So each case security is equivalent and is the based on the difficulty of the

discrete logarithm problem.

Note: 1) The size of the message encrypted is double the size of the plaintext.

2) The multiplication operationn(2.2-4) can be replaced by any other invertible

operation such as addition mod n. The decryption splits into two steps:

Step 1. B recovers the Kuu by computatioû, Kab :Y:' (mod p) - O)c"xr mod p,

the x5 is known to B only.

Step 2. B recovers the message m by computation, m:C/I(u6 mod p

Breaking the system is very difficult [27]. Firstly, if m can be computed from (Yu, mKu6)

and Yi, then Ku6 can also be computed from (Yu, mKus) and Yi, but (Yu, rnKus) and Yi

appear like random numbers since xi and m are unknown. Secondly, even if m is known,

computing x¡ from (Y¿, rnKu6) and Yi is equivalent to computing discrete logarithms.

Because the xi appears in the exponent in Yi and Y".

2.2.2 The ElGamal Signature Scheme

ElGamal [25] also designed a signature scheme which makes use of the finite group GFo,

p is a large prime, with 2st2 <p <2'o'0, and p - I has a large prime factor q. It is known

that GFo is cyclic and is generated by cr,. Suppose the signature scheme is defined for m e

Fp : {0,...,p-l }, where m is typically the hashed valuel of a message to be signed.

Signature Generation, A user does the following:

l) A user chooses a random integer k e f'p, such that gcd(k, P-l) : l.

2) A computes the group element rt : crk (mod p).

3) AcomputesseFofrom

I Ahashfunctionis acomputationally efficient frmction mapping binary strings of arbitrary length to

binary strings of some fixed length, called hqsh-values.

:1.
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sk: (m * r1x¿) (mod p-1) (2.2-5)

Here if s : 0, then A user chooses the random number k again. Of course such a

probabilþ is small. The signature for m is the pair (r1, s).

'h¡l' SignafureVerification,

Given m and the signature (r1, s), the verification is as follows:

l) B computes r1s : ok (mod p), cx- (mod p), and ff,' :(O* ry' (mod p),

2) B iterates the equation

\" = a^ YI' , (mod P) (2.2'6)

3) B verifies that they are the same from (2.2-5),

crk' lmod p) : (cr'X Ox'rr) (mod p),

To forge A user's signature for a message m, a forger would have to solve the equation

for rr and s.

ak' lmod p) : (a') (o-"1' (mod p), (2.2-7)

Fixing 11 first and then attempting to solve for s is a discrete logarithm problem in GFe.

Fixing s first and then attempting to solve for 11 gives a mixed exponential congruence in

11, for which no efficient algorithm is known. Hence the security of the ElGamal

signature scheme is based on the diffrcuþ of the discrete logarithm problem in GFe.

In practice, the message to be signed is a long sequence of entries from m. It is inefficient

to sign each element of the sequence. So instead a hash function is first applied to the

message to reduce a much smaller message digest, and it is this message digest which is

then signed. The hash Function is public knowledge. To prevent forgery and

impersonation, it must be infeasible to find two distinct inputs that hash to the same

ouþut value, and it must be infeasible to find an input that hashes to a given value.
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Summary: Although the ElGamal scheme based on the difficuþ of discrete logarithm

algorithm over a finite field has the same high security features as RSA algorithm, the

complex computation of this method is still based on the large prime p. It means that the

ElGamal scheme also requires the same large memory space as the RSA required, if the

ElGamal scheme would drive to the same high degree security as the RSA scheme.

In the application to MSC with small memory capacþ, the chip on the smart card is

restricted in size. Therefore the ElGamal scheme meets the same problem as RSA met, in

which the memory capacity of the chip is not enough to store the large and complex

program and the protocol codes of the cryptography algorithm with the factoring of large

integers.

Elliptic Curve cryptosystems potentially provide equivalent security to the existing public

key schemes, but with shorter key lengths which means smaller memory requirement, and

will be introduced in the next chapter.

2.3 Elliptic Curve Cryptosystem

Abstract: Ellþic Curve Cryptosystems (ECCs), first suggested by Victor Miller [12]

and Neal Koblitz [11], were a natural choice because they are immune to the index

calculus attack (refer to $3.2.2). This means that smaller numbers can be used to achieve

the same degree of security for the ElGamal algorithm as the 572-bit version described

above.

The elliptic curve method has stronger one-way function, because the elliptic curve

method uses a different discrete logarithm algorithm with group operation over the group

of points on an elliptic curve compared to the discrete logarithm with integers mod N

over finite fields, and the group operation is arithmetically more complicated [28].
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The points on an ellþic curve E over a finite field form an Abelian group, hence the

group E can be used to implement an analog of the Diffie-Hellman key exchange scheme,

ElGamal scheme and the other public key cryptosystems. In this chapter, the Elliptic

Curve analogue of the ElGamal cryptosystem is only described to compare with the

multiplication of integers mod p as described in chapter 2.2.

The description of Elliptic Curve Algorithm requires the introduction of elaborate and

complex mathematics. In order to keep the descriptions concise these mathematical issues

are explained in more detail in chapter 3. The remainder of this chapter is organized as

two sectors: Elliptic Curve Cryptography Algorithm and Elliptic Curve Signature

Scheme, which are described as follows.

2.3.1 Etliptic Curve Cryptography AlgorÍthm

The Elliptic Curve Cryptography Algorithm (ECCA) means the elliptic curve analog of

the ElGamal algorithm based on an elliptic curve E, and a point P(x, y) to generate the

whole addition group of E. The base field, curve equation, and starting point are all

public parameters [28].

Let E be the non-supersingular curve (this term will be described in chapter 3):

Yz+azr:x3+ u*+u Q3'l)
defïned over Fp, where p is a large prime, and let P be a publicly known point on the

elliptic curve E, preferably a generator of E. The elements of Fo are assumed to be

represented by a normal basis (see Appendices B). User A randomly chooses an integer

'a' and makes a public key aP. The integer a is user A's secret key. Suppose the messages

M: (-t, rÍr2, ..., mn-1) are ordered pairs of elements in Fo.

To transmit the message (mr, m2) to A, sender B selects a random integer k which is B's

secret key, and computes the points kP and akP : (x', y'). Assuming that x'*0 and y'*0
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(the event x' : 0 or yr : 0 occurs with negligible probability for random k), then B sends

the point (kP, MakP) to A, and MakP is the ordered pair of field elements (mrx', mzy').

To read the message, A calculates the point akP by A's secret key 'a' to obtain (x', y'),

from which A can recover m1 and mz by nvo divisions.

In the ECCs, four field elements are transmitted in order to convey a message consisting

of two field elements. It is called "message expansion" by a factor of 2. The Message

Expansion can be reduced to 312 by only sending xr and a single bit of y1lx1 (if x1;t0),

instead of sending the point P:(xt, y1). The following method can then be used to recover

It'

Firstly, if xr:0, then y1:a6tt2.If X1*0, then the change of variables (x, y) + (x, xz)

transforms the equation of the curve (2.3-l)to * + z:xl az-r asx-2. Compute f = x1 +¿2

+ a6xl2. To solve the quadratic equation z2 + z: f, let

z: (zn,2t,....,2^-t) Q.3'2)

and f : (fo, fr,..., fn-r) Q.3-3)

be the vector representations of z and f respectively over Fo. Then

* + z: (z^-tIzn,z0*21,..,,2n-z+zn-t). Q.3'4)

Each choic e zû:0 ot zs:l uniquely determines a solution z' to 22 + z: f, by comparing the

components of equation (2.3-3) and (2.3-4). The correct solution z' is selected by

comparison with the corresponding bit of y1lx1 that was transmitted. Finally, y1 is

recovered âs yl : xrz'. The drawback of the method is that if an intruder happens to know

m1 (or m2), he can then easily obtain m2 (or m1). This attack can be prevented by only

sending (kP, m1x'), or by embedding rn1 on the curve [29].

If the user wishes to embed messages on the elliptic curve, the following deterministic

scheme may be used. Suppose that messages are (n-l) bit strings M = (mr, Írr2, ..., hn-2),

where M is an element of Fp, and mn-1:0. To embed M on the curve, M3 is fnst computed
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and then the Trace of M3 (see Appendix H) is evaluated. If Tr(M'):O, th"tt set x¡4 : M,

otherwise set x¡a: M*1. In either case, Tr(x#) : 0. As in the preceding paragraph, one

can easily frnd yr,,a such that Pv = (xv, yvr) is a point on E, Sender B can now send the pair

of points (kP, akP + Pvr) to A. V/ith this scheme the message expansion is by a factor of

4. The message expansion can be reduced to 2 by sending only the x-coordinate and a

single bit of the y-coordinate of each point.

Note that after user A recovers xM, A can decide whether the message sent is xpr or xr',1*r,

by checking whether the last bit of x¡,¡ is 0 or I respectively.

If every user uses the same elliptic curve and base point P, then the public key, namely

the point aP, is n+l bits in length. Otherwise the public key consists of a6 (u can be fixed

to be 0), the points P and aP, for a total size of 3n + 2 bits.

2,3.2 Elliptic Curve Signature Scheme

The Elliptic Curve Signature Scheme (ECSS) means that the ElGamal type signature is

constructed on an elliptic curve, which can be implemented in smaller sizes than finite

fields, since the most serious attacks defined on finite fields cannot be applied to elliptic

curves [30]. Therefore such characteristics might be suitably used on signature schemes.

Suppose that an elliptic curve E is over finite the field Fo (p+2" is a large prime), and, a

base point P e E(Fo) with a large prime order q. The user A has a secret key xo and

publishes the corresponding public key Yu: xJ (mod p).

Signature Generation:

A user does the following:

l) A user chooses a random number k e Fq, and computes R: kP mod p on E,

2) A sets r1 : x(R) mod q and computes s € Fo from equation (2.2-5),

o
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sk: (m -| r1x¿) (mod q) (23-aa)

where x(R) denotes the x-coordinate of R. Here if either x(R) : 0 or s : 0, then A

chooses the random number k again. The signature for m is the pair (r1, s) e Fo x Fo.

aa Signature Verification,

Given m and the signature (r1, s), the verification is as follows,

1) B computes Rs: skP (mod p),

and rlY": r1x"P (mod p),

(2.3-s)

(2.3-6)

B iterates the following equation by (2.3-5) and(2.3-6),

Ps: (mP + rrYa) (mod p), (2.3-7)

3) B verifies that it is the same fuom(2.3-4a),

skP = (mP + rrxJ) (mod p), (2.3-8)

to forge A user's signature for a message m, a forger would have to solve the equation

(2.3-8) for rr and s.

Summary: From the description of the Elliptic Curve Cryptosystem (ECCs) above, we

have seen that the elliptic curve analogue of the ElGamal scheme has a different method

of encryption to the ElGamal cryptosystem based on discrete exponentiation in a finite

field. The former has the public key Y: xP with smaller bits size, while the latter has the

public key Y:cr* with the same size as the field, namely at least 512 bits in length. Neal

Koblitz [11] said that using the analogous procedure (i.e., doublings and additions),

people can compute a multiple xP of a given point P in the same order of time as it takes

to exponentiate cr*. Although there is no strict proof in mathematics proposed currently,

it is believed to be the case that the computation of the group operation based on a group

of points on an elliptic curve is more complex than the computation based on discrete

exponentiation in a finite field [31]. That is the reason why the Elliptic Curve

Cryptography (ECC) is likely to provides equivalent securþ but with shorter key length.

2)
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The advantages of the ECC providing equivalent securtty with shorter key length will be

a crucial factor in designing the MSC. The investigation of the effrciency and practicality

of the ECC will be also significant in developing the MSC, and will be introduced in the

next two chapters.

Here, the ECCA describes a very efficient implementation of the group operation in the

Galois field GF(2ltt¡. It is easily to see that a properþ chosen elliptic curve over Gf'(2rs5)

means using smaller numberso but offers the same degree of security as working modulo

a5l2 bitprime p in the RSA or the ElGamal cryptosystem.
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3. The Principal of Mathematics in the Public Key Cryptosystem

Abstract: All of the properties and efficiencies in a cryptosystem source from the

methods of computation and the architecture of algorithms in cryptography. Both of these

refer to the mathematical principals of the cryptography algorithm. It is necessary to know

the mathematics of principals for exploring the efficiencies of the public key cryptography

algorithm. In this paper, the description will be limited to the public key cryptography

algorithms corresponding to the three cryptosystems discussed in the previous chapter. It

begins with the factoring algorithm usêd for RSA cryptosystem, then the discrete

logarithm algorithm used for ElGamal cryptosystem will be described, and hnally the

elliptic curve algorithm used for the Elliptic Curve cryptosystem (ECCs) will be

introduced.

3.1 The Principle of the Factoring Algorithm

This section presents some basic facts concerning primality and factoring, especially from

the point of view of RSA. The RSA cryptosystem \¡/as invented n 1977 by Rivest-

Shamir-Adleman [10], and was the first realization of Diffre-Hellman's abstract model for

public key cryptography that we introduced in Section 2.1. The security of the RSA

cryptosystem is based on the assumption that is much easier for someone to find two

extremely large prime numbers p and q than it is to recover them, if only their product n is

known. In generating the RSA algorithm, it is necessary to generate large random primes.

In practice large random numbers will be generated, and then be tested for primality. A

primality test is a criterion for a number n not to be a prime. If n'þasses" a primalþ test,

then it may be a prime. On the other hand, if n fails any primalþ test, then it is definitely

not a prime. Therefore, it leaves a difficult problem: find the prime factors of n.

It is necessary to say that the primalþ testing of algorithms must run in polynomial time

in order for the receiver to furd primes p and q effectively. In this section the probabilistic

poþomial time algorithm such as the Miller-Rabin algorithm will be presented initially,
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then a method of factoúzation such as the Quadratic Sieve algorithm will be introduced.

3.f.1 Primality Test

A few definitions from number theory have to be introduced, and these are useful in the

primality test to be introduced later.

X'ermat's Theorem: Let p be a prime and suppose the greatest common division gcd (a,

p): l, then 
"o-r 

- | (mod p).

According to Fermat's theorem, if n is prime, then for any b such

that gcd.(b, û) = l,
bn-r= I (mod n). (3.1-1)

If n is not prime, it is still possible (but not very likely) that

equation (3.1-l) holds for a number of choices of b.

Pseudoprime:If n is an odd composite number and b is an integer such that gcd(n, b) : 1

and bn'r : I (mod n) holds, then n is called apseudoprimeto the base b.

Example: The number n : 91 is a pseudoprime to the base b : 3, because 3e0 : 1

(mod 91). However, 9l is not apseudoprimeto the base 2, because 2e0:

64 (mod 9l). If it is had not already known that 91 is composite, the fact

that2e0 * 1 (mod 91) would shown that it is.

The Legendre symbols: Let a is an integer and p > 2 apúme. The Legendre symbol (alp)

is defined to equal0, I or -1, as follows:

ifpla;
if a is a quadratic residue mod p;

if a is a non-residue mod p.{i l,

Thus, the Legendre symbol is simply a way of identiffing whether or not an integer is a

quadratic residue modulo p.
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luì : a@-tv2 (mod p).
lp)

Proof. If a is divisible by p, then both sides are : 0 (mod p). Suppose p ¡ a. By Fermat's

Theorem, in Fo the square s¡ ,(v't)rz is l, so a(p-r)t2 itself is +1. Let g be a generator

of X'o* (the multiplication group of Fo), and let a: d. The a is a residue if and only

ifj is even. ¡1¿ u(p-r)/z : E!(e-Dt2 is 1 if and only ifj(p- I)12 is divisible by p-f i'e'' if
and only if j is even. Thus, both sides of the congruence in the proposition are +l

in Fp, and each side is +1 if and only ifj is even.

The Jacobi symbol, general to composite number, is as Legendre symbol.

The Jacobi symbols: Let a is an integer, and let n be any positive odd number. Let n :
plo' ...p.o'be the prime factorization of n. Then the Jacobi symbol

(a/n) is defined as the product of the Legendre symbols for the

prime factors of n:

e): (L)o' ...(3)"' .n h P,
A word of warning is in order here. If (aln) : 1 for n composite, it is not necessarily true

thal a is a square modulo n. For example, (2115): (213)(215) : Gl)Cl) : I (mod l5). Now

the Proposition to the Jacobi symbol [32] is generalized.

proposirion: For any positive odd n, the congmence (3) :Ft)n':\tis holding.

(The reader interested in the proof can refer to Appendix A-3)

Euler Pseudoprimes: Odd composite numbers n satisffing (3.1-2), for some b with (b, n)

: 1, is called an Euler Pseudoprimes to the base b. Because (3.1'2)

implies (3.1-l), an Euler pseudoprime to the base b is also a

pseudoprime to the base b. The converse is not true, i.e. 9l is a

pseudoprime but not an Euler pseudoprime to the base 3. Because

(3.1-l) is satisfied but 3as : 27 (mod 91), implying that (3.1-2) is

not satisfied. The number 91 is an Euler pseudoprime to base 10,
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since lOas : 103 : -1 (mod 91). From the above two results, we can

obtain an efficient probabilistic test for whether or not a large odd

integer n is a prime, which starting with the following definition.

Lemma 3.1 (Lemma 4.4 in Í721): If n is an odd composite number, then at most half of

the integers b with I < b < n and (b, n) : 1 satisff (3.1'2).

Proof: Firstly suppose that a b' does not satisff (3.1-2) (for b : b'). If assume the square

p2 of a prime p divides n, then it results b' : 1 + n/p. Thus, (b'lÐ : l, but the left

side of equation (3.1-2) is not congruent to I (mod n), since p does not divide (n-

t)tz.

Secondly, assume that n is a product of distinct primes and p is one of them.

Choosing any quadratic non-residue (refer to Appendix I) s modulo p and let b'

with I < b' <n, satisfy the congruence

b':s (modp),

b':1(mod(dp)).

This b' can found by the Chinese Remainder Theorem (see Appendix C). So (b'ln)

= -1 but

6:(n-r/2: I (mod n/p),

Bring about b'(n-rY2 * -1 (mod n).

To set up a b' which does not satisff the equation (3.1-2), let b'with I < i < t be all

of the integers satisffing (3.1-2) (as well as the condition I < b' <t where (b', n) :

1). Where t is threshold with n'< t ( û", s and e is signature key and encryption

key respectively [72]. The numbers

u¡:b'bl (modn) l<i<t'
are all distinct and satisff 1 < u, < n and (uu n): 1. If ur satisfies (3.1-2), then

(b'(n-'v2xbi("-trtz) : (b'lÐ(b,/Ð (mod m).

Since bi satisfies (3.1-2), it can be deduced further that
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b)'"-t)2: (b'lÐ (mod n)

This is a contradiction with the facts that b' does not satis$r (3.1-2). Hence, none

of the numbers ui satisfies (3.1-2). There are as many of them as there are numbers

bí.

The Miller-Rabin primality test

The Miller-Rabin test is based on the notion of a "strong pseudoprime", which will be

introduced below. But some number theoretic facts will be given without prooß. If the

reader is interested more information, please refer to [32].

Suppose that n is a pseudoprime to the base b, i.e., bn-t = I (mod n). The idea of the strong

pseudoprime criterion is to extract successive square roots of the congruence (3.1-1) and

check whether the first number + I on the right side of the congruencies thus obtained is

actually equal to -1. For example if b is raised to the (n-l)/2)th, (n-l)/2)1h,..., ((n-

l)12")thpowers (where (n-l)12'is odd), then the first residue class is either I or -lif n is

prime, because *l are the only square roots of I modulo n. If n fails this test, the first

number different from 1 equals -1, but n is composite, then n is referred to as a strong

pseudoprime to the base b. In practice, one can set n-l : 2't with t odd, then computing bt

(mod n), if that is not equal to -1, squaring to get b2'(mod n), then squaring agatn to get

62't çmod n), etc., until one get the residue l. Before getting I the n has be known as

composite, or the -1 must be got.

Definition: Assume n is an odd composite number, and write n-1 :2T with t odd. Choose

a number b with I < b < n and (b, n) = 1' If n and b satisff the condition

either

b': 1 (mod n) or b2'' : -l (mod n) (3.1-3)

for some r with 0 < r < s, then n is called a strong pseudoprime to the base b.
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Lemma 3.2 (Lemma 4.5 in l72l): If n is an odd composite integer, then n is a strong

pseudoprime to the base b for at most 25o/o of all b's satisffing I < b < n.

(Proof can be found in [32]).

In the Miller-Rabin primalþ test, assume n-l : 2t with odd t, and choose a random

integerbwith0<b<n.Todeterminewhetheralargepositiveoddintegernisprimeor

composite, first compute b' (modn). If the result is *1, thennpasses the test (3.1-3) for

the particular b; repeat the procedure for another b. Otherwise square b' (mod n), then

square that modulo n, and so on, until we get -1. If the -1 is obtained, then n passes the

test. However if the -1 is never obtained, i.e., the b2'.' 
: I (mod n) while b2' * -l (mod

n), then n fails the test and n is composite. If n passes the test (3.1-3) for all random

choices of b (suppose we try k different bases b), then by Lemma 3.2 the n has at most a I

out of 4k chance of being composite. Because if n is composite, then at most V¿ of the

bases with 0 < b < n satisfr (3.1-3).

In practice one does not have to check through a large number of bases b in order to be

almost sure that n is a prime. If it is a strong pseudoprime to each of these bases, i.e., the

four bases 2,3, 5,7, only one composite numbet n < 2.5 . 10t0, namely n = 3215031751,

is a strong pseudoprime to each of these four bases.

3.1,2 The Quadratic Sieve algorithm

The quadratic sieve algorithm for factoringlarge integers, developed by Pomerance in the

early 1980's [32], was more successful than any other method for factoring integers n of

general type which have no prime factor of order of magnitude significantly less than Jl .

An important difference between algorithms for primality testing and ones for

factorization is that primalþ testing algorithms can tell if a given integer is composite or

prime. Factoring algorithms, however, give the actual factors when the integer is

composite.
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There are a huge number of papers on factoring algorithms. Three algorithms that are

most effective on very large numberN as follows:

(l) The Quadratic Sieve algorithm,

(2) The Elliptic Curve algorithm,

(3) The Continued Fraction algorithm.

All of these methods can factor N with the running time:

L(N): exp{(l + o(l) lnnlnlnn I (3.1-3A)

Although no one seems to have any idea how to obtain even heuristic lower bounds for

factoring, most of the papers believe the conjecture that L(N) is in fact the true complexþ

of factoring. Here it is not necessary to introduce all of the three algorithms, since all of

them having similar features. Firstly the quadratic sieve algorithm only will be introduced,

then an example given to illustrate the method.

The Quadratic Sieve algorithm:

The Quadratic sieve algorithm is a variant of the Factor Base approach (see Appendix A-

2). As the factor base F someone takes the set of all primes p < B (where B is some bound

to be chosen in some optimal way) such that n is a quadratic residue mod p, i.e., (n/p) = I

for p odd, and p : 2 is always included in F. The set of integers S in which one look for

F-numbers (recall that a F-number is an integer divisible only by primes in F) will be the

same set that someone used rn Fermatfactorizationl, namely:

s : {t2 -"ltJil + I <t< ¡fi1 +n1

For some suitably chosen bound A.

The main idea of the method is that, instead of taking each s e S one by one and dividing

it by the prime p € F to see if it is an F-number. One takes each p € F one by one and

examines divisibility by p (and powers of p) simultaneously for all of the s e S. The word

I It is a way to factor a composite number n that is efficient if n is a product of two integers which are close

to one another. This method, called "Fermat foctorization", is based on the fact that n is then equal to a
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"sieve" refers to this idea, which one can use to make a list of all primes p < A. For

example, to list the primes < 1000 one takes the list of all integers < 1000. Then for each p

:2,3,5,'7,ll, 13, 17,19,23,29,31, one discards all multiples of p greater than p 
-one

"lets them fall through a sieve which has holes spaced a distance p apart" - after which

the numbers that remain are the primes, The basic steps are summarized as follows (the

interested reader can refer to 132,33, 78] for details), then give an example.

Step 1. Suppose n is an odd composite integer, A and B are bounds, both of order of

magnitude roughly are

exp((logn loglogn)t/2).

Generally, A should be larger than B, but not larger than a small power of B, e.g.,

B < A < 82. This function exp((logn loglogn¡l/2¡ has an order of magnitude

intermediate between polynomial in logn and polynomial in n. If n æ 106, then

L(n) lv 400.

Step 2. Fort: tJil+ t,¡JiJ¡2, ...,lJil + A, make a column listingthe integers t2-

n. For each odd prime p I B, fnst check that (r/p): 1; if not, then throw that p out

of the factor base. Assuming that p is an odd prime such that n is a quadratic

residue mod p, solve the equation ( = n (mod pP) for I : 1,2,..., (the details of

this method refer to Exercise 20 of ll.2 in [32]). One takes the increasing values of

p until to find that there is no solution t which is congruent modulo pP to utty

integer in the range ÍJil+t < t < lJ;l+A. Let B be the largest integer such that

there is some t in this range for which ( : n (mod pP). Let tr and tz be two

solutions of ( : n (mod pÞ) with tz: -tt (mod pP), tr and tz ãre not necessarily in

the range from I Ji] + I to [fi ] + e.

Step 3. Still with the same value of p, run down the list of ( -n from step 2. In a column

under p, one puts a I next to all values of ( - n for which t differs from t1 by a

multiple of p, and changes the 1 to aZ nextto all values of t2 - n for which t differs

difference of two squares, one of which is very small
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from tr by a multiple of p2, and changes the 2 to a 3 next to all values of t2 - n for

which t differs from tr by a multiple of p3, and so on until pÊ. Then do the same

with tr replaced by t2. The largest integer that appears in this column will be p.

Step 4. As someone goes through the procedure in step 3, each time one puts down a I or

changes a I to a2,a2to a3, etc., divides the corresponding ( -nbyp and keeps

a record of what's left. In the column P:2, if n + 1 (mod 8), then simply put a I

next to the t2 - n for t odd and divide the corresponding ( - nby 2. Ifn : I (mod

8), then solve the equation ( : n (mod 2Þ) and proceed exactly as in the case of

odd p (except that there will be 4 different solutions t1, t2, t3, t¿, modulo ZÊ if B >

3).

Step 5. When you finish with all primes < B, throw out all of the f - n except for those

which have become I after division by all the powers of p < B. One will has a

table of the form in Example 9 of SV.3 :rr,1321, in which the column labeled bi will

have thevalues of t, I Jil+ I <t < fJil+4, forwhich f -nis aF-number, and

the other columns will correspond to all values of p < B for which n is a quadratic

residue.

The interested reader can refer to SV.3 lri'l3zl for more details.

Example 3.1 (Example in [32]): Let us try to factor n:1042387, taking the bound P : 50

(the set of all primes p < P) and bound A:500 (a list of all primes p < A) with P < A <

P2. Here tJil:1020. The factorbase consists of the 8 primes {2,3,11,17,19,23,43,

and 47\ for which 1042387 is a quadratic residue. Since n É I (mod 8), the column

corresponding to p : 2altemates between I and 0, with a I beside all odd t, l02l < t <

1520.

Now it is starting to describe in detail how to form the column under p : 3. One wants a

solution

tr:tr,o*t r,r.3 *h,2.32 +...+t,,p-r.3Þ-1tot12: 1042387 (mod 3p),
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where 1rj € {0, 1,2} (for other solutiont2, one can taket2:3Þ - t1). It is clear one can

take tr,o : 1. (For each of the 8 primes the first step: solvin E t? = 1043287 (mod p), it can

be done quickly by trial and error).

Next, it works on modulo 9: (l+ 3tr,r)2 : 1043287: 7 (mod 9),

6tr,r=6 (mod9),

2ttJ:2 (mod 3),

thus tt,r : lo

And modulo 27: (1 + 3 + 9 t1p)2 : 1043287 :25 (mod27),

16 + 18 h,z:25 (mod27),

2h,z: I (mod 3),

so h,z=2.

Then modulo 81: (1 + 3 + 18 + 27 \3)2 : 1043287: 79 (mod 81),

which leads to the tr,r:0.

Continuing until 37, one fmd the solutions: t1 : Ql02l1)3 (mod 37),

t2: (20t20t2)3 (mod 37).

However there is no t between 1021 and 1520, which equals to tr or t2 (mod 37). Thus, one

has p : 6, and one takes t1 = (210211)3 : 589 : 1318 (mod 36) and tz.: 36-tr = 140 :
1112 (mod 3s) (note that there is no number in the range from 1021 to 1520 which is : tz

(mod 36)).

Now one can construct "sieve" for the prime 3. Starting from 1318, it takes jumps of 3

down until 1021 is reached and up until 1519 is reached. Each time it can put a I in the

column. It can divide the corresponding ( - n by 3, and can record the result of the

division (Actually, for t odd, the number divided by 3 is half of t2 - n, since 2 has already

divided ( - n when the column of alternating 0's and I's under 2 is formed.). Then one

can do the same with jumps of 9, each time changing the I to 2 in the column under 3,

dividing the quotient of t2 - n by another 3, and recording the result. One goes through the

analogous procedure with jumps o127,81,243, and 729 (there is no jump possible for

729, one nearly does not change the 5 to 6 next to 1318 and divide the quotient of 13182
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(1043287) by another 3). Finally, one goes through the same steps with tz: 1112 instead

oftl : 1318, this time stopping with jumps of 243.

After passing through this procedwe for the remaining 6 primes in factoring base, there is

a 500 x 8 array of exponents, each rew coresponding to a value of t between 1021 and

1520. Now one throw out all rows for which ( - nhas not been reduced to 1 by repeated

division by powers of p as the table (3-1) formed. Le., the rows for which t2 - n is a B-

number is onlytaken. The following table 3-l is left for the n: 1043287 (the blank spaces

denote zero exponents):

Table 3-1 the array of exponents

Now it can look for relations modulo 2 between the rows of this matrix. Moving down

from the first row, one looks for a subset of the rows, which sums to an even number in

each column. The first such subset found here is the first three rows, the sum of which is

twice the row l3 2 I - - -. Therefore, one can obtain the congruence:

(1021 . 1027. 1030)2 : (2 . 33 . lL2 . 17)2 (mod 1043257).

But this ís not so lucþ: the two numbers being equal in the above congruence are both:

111078 (mod 1043257} So it is necessary to continue down the matrix. Finally, one

notices that the last row, corresponding to the last value of t, is dependent on the earlier

rows. More precisely, it is equal modulo 2tothe fifth row. It gives that

191l1l32 4723 l+t
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thus

the factor is that

(1112 . 1520)2: (33 . 17 '23 ' 47 )' (mod 1043287),

6478532 : 4961792 (mod 1043287),

gcd(647853 - 496179, 1043287): 1487 .

3.2 The Principal of the Discrete Logarithm Algorithm

The RSA cryptography based on the factoring algorithm that is infeasible to factor the

product of two large primes has been introduced above. The ElGamal cryptography based

on the discrete logarithm algorithm has similar powerful "one way" function with the

RSA has it. When calculating with the real numbers, exponentiation (calculating b* to a

prescribed value) is not significantly easier than the inverse operation (calculating log6x to

a prescribed value). When the work is done in a finite field Fo (with the group operation of

multiplication). One can compute b* for large x rather rapidly (in polynomial time in log

x), because of the repeated-squaring method. But if an element which is of the form b*

(suppose that the "base" b is fixed) is given, how can x = loguY be quickly computed? This

is called the .,discrete logarithm problem". Thus, finding discrete logarithm is in fact much

more difficult than raising to a power in a large finite field.

Coppersmith's algorithm to fine discrete logarithms, namely the Index Calculus

algorithm, works in two steps. The first step (a preprocessing step) is obtaining a system

of linear equations that are satisfied by the discrete logarithms of certain group elements

belonging to a set called a factor base and solving the set of equations to determine the

discrete logarithm of the elements of the factor base. The second step is computing any

desired logarithm from the pre-computed library of logarithms for the factor base. Finally

an example is given to illustrate the algorithm.
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3.2.1. Algorithms for Í'inding Discrete Logarithms in Finite f ields

This method for computing logarithms in a cyclic group by factoring the order of the

group is called Pohlig-Hellman method [26]. It supposes that all of the prime factors of q-

I is small. In this case it is said that q-l is "smooth". There is a fast algorithm for finding

the discrete logarithm of an element y e Fq to the base b under this assumption. For

simplicþ, it can also be supposed that b is a generator of Fo.

First, for each prime p dividing q-1, one can compute the p-th roots of unity ro¡ :61(l-l)/o

fo. j:0, l, ..., p-l by the repeated squaring method to raise b to a large power. V/ith the

table of {ro;} determined it is ready to compute the discrete logarithm of any y € Fq (note:

if b is fixed, this first computation needs only be done once, after which the same table is

used for any y). The goal is to find x (0 < x < q - 1), such that b* : y. If q - I : flrP " is

the prime factorisation of q - 1, then it suffrces to find x (mod p") for each p dividing q -
1. This x is uniquely determined by using the algorithm in the proof of the Chinese

Remainder Theorem. Now it can start to fix a prime p dividing q - 1, and to show how to

determine x (mod p").

Suppose that x : X0 -l- xrp * ... * x.,-rp"-l (mod p") with 0 < xi < p. To find xe, one

computes ,(l- l/r, and gets a p-th root of l, since yo- t - l. Since y : b*, it follows that

,(e 
- l)/n : b*(q- l)/p - 6x0(q- 

l)/P : fp,*'.

Thus, compare t(o 
- r)/n with the {to; }o <¡ < p and to set x¡ eeual to the value ofj for which

,(t- 
1)/e : ,"0..

Next to furd xr, one replaces y by ]1 : y/bx0. Then y1 has discrete logarithm:

X - xo : Xlp + '.. + xo.-rpo-l (mod p").

Since y1 is a p-th power, it has y,(e- t)h : 1 and
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v
(q-t)/p _

('2
So one compares/'rn-t''o- *rrn{ro;} and set x1 equal to the value ofj for whichy(o-\tp -

ro¡. Continue in the same way to find all x¡, Xl, ..., xa-r. Set

y i = y I þx"n 
x,P+"'+ 1ç -rp¡-' 1*h"ra i : I, 2,. . ., c[- l),

which has discrete logarithm congruent mod pcr to x¡pi + ... + Xo-rPo'I. Since yi is a pi-th

power, thus

,,(c-llni: 1

and ,.(o-l)/li+t - b(x,*)ç,*,p+"')(q-t)/p - 6x'@-Ð/o - ryr.

So one can set xi eeual to the value of j for which y,(e-t)bi*t = rp¡, and can get x mod p"

After doing this for each plq-l, One can find x by using the Chinese Remainder Theorem.

This algorithm is efficient, when all of the primes dividing q-l are small. But clearly the

computation of the table of {ro¡} and the comparison of the y,(e't)hi*r with this table will

take a long time if q-l is divisible by a large prime.

Example 3.2 (Example 4 in l32l pagel03): To find the discrete logarithm of 28 to the

base 2 in X'¡z (2 is a generator of F37) using the Silver-Pohlig-Hellman

algorithm.

Solution: First, write 37-7:22 .32. Calculating 218 : | (mod 37), so t2,0: l, r2,1 : -l (for

p:2,always {rz¡}: {tl}).Then236t3:26,22'36t3: l0 (mod37), so {r3;}: {1,

26, l}j. Let 2" : 28 (mod 37). Firstly one takes p : 2 and fmds x (mod 4),

which can write as xe * 2x1. One calculates 2836t2: 1 (mod 37), hence gets xs :

0. Then one computes2836/a : -l (mod 37), hence Xr : l.Next one takes p:3
and finds x (mod 9), which one write as x¡ * 3xr (for each p, the xi are defined

differently). To find X¡, one calculates 2836/3 =26 (mod 37), so Xs: 1. Then

6G- 
xo)@-r) r p' - br*r* 

*ro+"')(q -r) t p 
- 6x,Q-t) 

t t : 
lr' p,x,
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one computes(2812)36/e - 144 = l0 (mod37), thus, xr:2, sox:7+2'3:7
(mod 9). The remainder is to find the unique x (mod 36) such that x = 2 (mod

4) and x : 7 (mod 9). It is x:34. Thus, 234 :28 (mod 37).

3.2.2. The Index-calculus algorithm

Index-calculus algorithm [35] has three basic stages. In the first stage, a set of linear

equations giving relations for the elements of the factor base B is generated. In the second

stage, the set of linear equations is solved, to determine the discrete logarithms of the

elements of factor base B. Both stages comprise a precomputation phase. In the third

stage, the calculation of individual logarithms is done using the previously computed

values of the discrete logarithms for the factor base, from which x : logub can be

recovered.

FÍrst stage: The Index Calculus algorithm works well in finite fields GF(q). The reason

is that the factoring is easy for the integers, if all of the prime factors of an

integer I are less than a given bound u, and one can completely factor I

with at most u + log I divisions.

Let q1, ..., g* to be the first m primitive element of GF(q), and let GF be generated by g,

of order n. One randomly chooses an integer 0 = [1, n] and computes the least positive

integer e with e : gF (mod q). Then one can try to factor e as a product of the first m

primes, using division by these primes. If e factors by this method, a relation of the form

(3.2-r)

is obtained. It is clearly shown that if the bigger m is, the chance that e will factor as a

product of the first m primes is greater. But as the m increases, the work to factor residues

and to solve the equations in the second stage increases. Now one introduces an argument

to balance these constraints in order to optimize the running time of the algorithm as

follows:

E'i'= sP
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Suppose p is chosen from a uniform distribution, then the probability that e will factor as a

product of the first m primes is f(q,qr)/q, where f(*, y) is defined to be the number of

positive integers < x that have no prime factors exceeding y. The asymptotic behavior of

the function f has been extensively studied, and in particular it is known that [36]

f(x, y) = x exp((-l + o(l)) v log v),

where v : log x/log y, for v+ cc and y 2 log2x, If q,n e, L(q)" is chosen, where c is a

constant and

L(q) : exp(.¡ogq loglog4 ),

then the probability that e has all prime factors among the first m primes is l(q;-t(2cl+o1t¡.

Therefore one can expected to generate the equation (3.2-l) after trying l(q;1/(zc)+o1t¡

values of B, and to generate 2m such equations of (3.2-1) should take about

2mLlq¡t r (zc)+o( l) - L(Ðc+ l/(2c)+o( I )

values of p. If one uses trial division to do the factoring, then for each B it will take at

most m + log q divisions to decide whether an equation (3.2-l) is given. Therefore one has

a total running time for the generation of relations in the first stage of L(q)2'*1/(2c)+o(1).

Once 2m equations are generated (or any number slightly larger than m), it is reasonable

to expect that the corresponding set of 2m equations in m unknowns should have full rank,

thus the logeq.¡ (which denotes the discrete log of q e GF(q)) is solved (here the full rank

means full column rank modulo p for every prime p dividing q-1).

Second Stage:The problem of solving a system of linear congruencies does not present

any great difficuþ, but there are a few points that deserve comment. For

example, consider the problem of solving the equations:

3x1]- 2x2 = 0 (mod 30),

5x1 - 3x2 : 2 (mod 30). (3 '2-2)

Note that none of the coefficients are invertible modulo 34, and it is impossible to add a

multiple of one row to another in such a way as to introduce a zero entry (to use the
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Gaussian elimination). However, there is a unique solution x1 : 16 (mod 30), x2 : 6 (mod

30).

Here it starts to describe a method for solving a system of equations of linear

congruencies. Suppose one want to solve Bx: F (mod q-1), where B is I x m with rank (B

mod p) : m for every prime p dividing q-1, there are a few steps as follows. First factor q-

1 as a product of prime powers. Then the equations modulo p (for every prime p dividing

q-l) are solved by Gaussian elimination, then the solution modulo p is lifted to a solution

modulo the power of p dividing q-l by Hensel's method. Finally using the Chinese

Remainder Theorem combines all the solutions for a solution modulo q-1. However, the

factoúzation of q-l is generally not needed to solve the equations and should probably be

avoided. One choice is to perform as if Zl(q-l)Z is a freld and attempt to perform

Gaussian elimination in the usual manner. However, this can break down if there is a

column in which no entry is invertible modulo q-l (as in equation (3.2-2)). The Euclidean

algorithm or Hensel's method can recover from this by using the Chinese Remainder

Theorem, but the details are somewhat tedious so another strategy is used.

In standard Gaussian elimination, the jth column of the matrix would be searched to find

an entry that is invertible modulo q-1. The rows are exchanged to bring it into the jj

location, and a multiple of the jth row be added to the rows below it to introduce zero

entries. An alternative procedure is searching the jth column to find an entry that is

nonzero and exchanging rows to bring it into the jjth location. Then to introduce a zero

into the ijth location, one uses the extended Euclidean algorithm (t371 54.5.2) to find

integers g, e, and k for which

g: gcd(a¡, ctü) : ea¡ + kcx,¡.

Then the row i is replaced by (cr¡/g).(row j)-(a¡lg).(row i), and the row j of the matrix B is

replaced by e'(row i) + k.(row j). These operations on the system preserve the solution set

and have the effect of replacing the ijth and jjth entries by 0 and g respectively.

If this method would be used, the solution of the system of equations will need O(m3)

operations modulo q-1, and O(-1 applications of the Euclidean algorithm. Therefore the

63



The Principal of Mathematics in the Public Key Cryptosystem

total expected time for stages one and two to find log*p¡ is

L7q,Qc+ 
r r {zc¡+o( I ) ¡ L1O;:'+n 

t' (3.2-3)

operations on integers of size q. Due to the fact each such operation can be done in I-6¡"ttl

bit operations, the same number of bit operations can will be used. If the c=112, the

running time for the first two stages is L(p;z+o(t) bit operations.

Stage three: This stage starts to compute individual Discrete Logarithms. In order to

compute logrcr,, suppose one choices a random integer r, to compute e: og'

(mod q), and to see if e factors as a product of the first m primes. If e :

fIi='qi' is obtained' then this implies

logua : fÍ ,lo1rQ ,- r (mod (q-r)).
j=l

This stage can be analyzedusing the same way as before, giving an expected running time

of L1q;(c+trzc)+o(1), or L1q)3/2*o{t) 1if c:U2¡.

There are variations of the Index Calculus method due to Coppersmith, Odlyzko, and

Schroeppel [35], which are conjectured to be faster. They describe three such algorithms

that are called the linear sieve, the Residue List sieve, and the Gaussian Integer method. In

each of these methods there is a heuristic analysis that suggests a running time of L(q¡t+dt)

for the first two stages, followed by a running time of L(Ðl/2*o(1) to compute individual

logarithms in the third stage. Here details for the Gaussian Integer method will not be

described. The interested reader can refer to [35].

Example (Example 5.4 in [4]): Here is a small, very artifïcial, example to illustrate the

two steps in the algorithm.

Suppose q : 10007 and a : 5 is the primitive element used as the base of logarithms

module q. Suppose B = {2,3,5,7} is taken as the factor base. Due to logs5 : 1, therefore

there are three logs of factor base elements to be determined. Suppose the "lucky"

exponents that might be chosen are 4063,5136 and 9865. If x : 4063, then the
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computation is that

54063 (mod 10007) : 42: 2 x 3 x 7'

This leads to the congruence

logs2+ logs3 + log57:4063 (mod 10006).

Similarly, since 5sr36 lmod 10007) : 54 = 2 x 33,

5e865 (mod 10007) : 189 :33 x 7,

two more congruencies can be obtained as follows,

log52 + 3logs3 :5136 (mod 10006),

3log53 + log57 :9865 (mod 10006).

Now there are three unknowns in three congruencies, and there are three unique solutions

(mod 10006), namely \og52:6578,1ogs3 :6190 and log57: 1301. Now suppose that one

wishes to find 1o959451. Let's choose the "random" exponent t:7736, and compute

9451x 57736 (mod 10007):8400.

Since 8400: 2a x 3r x 52 x 7l factors over B, therefore

1og59451 :4Log52+ 1og53 +zlogss + logs7 -r (mod 10006)

: 4 x 6578+ 6190 + 2 x l+ l30l -7736(mod 10006)

:6057.

To verifu, it can be checked by computittg 5uott : 9451 (mod 10007). The heuristic

analyses of various versions of the algorithm have been done. Under reasonable

assumptions, the asymptotic running time of the precomputation phase is

/-\
Oþ(t.'<tl)Jt" 

u^^r), (3.2-4)

and the time to find an individual discrete log is 
,

Oþ(''t*'<'lUt' ø t' r" ø,¡ (3.2-s)
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3.3 The Principal of the Elliptic Curve Algorithm

In recent years the elliptic curves in number theory, more precisely the theory of ellipic

curves defined over finite fields, has found application in cryptography. The basic reason

is that the elliptic curve over finite fields provides an example of Abelian group, which

has advanced functions because of their special structure. For the Factoring and Logarithm

algorithms used with the multiplicative groups of fields, elliptic curve provides a natural

analog of these algorithms, but has the advantage that one has more flexibility in choosing

an elliptic curve than a finite field.

Here the description includes only the minimal amount of background necessary to

understand the applications to cryptography. It starts by presenting the basic definitions

and facts about the Geometry of Elliptic Curve including the Group Law on the Ellipic

Curve. Then the Arithmetic operations of Elliptic Curve in freld Fo will be introduced.

Finally it gives an example and concretizes descriptions at the Practice of the Elliptic

Curve Cryptography Algorithm as follows.

3.3.1 The Geometry of Elliptic Curves

Elliptic Curve Cryptography Algorithm (ECCA) is a principal object of study in this

report. The Group law underlies the general principle in the ECCA. It is necessary to have

a thorough understanding of the geometry before making progress on introducing the

properties and algorithm of Group Law over arithmetically interesting helds, such as finite

flrelds.

In the first section, it starts with the Group Law on elliptic curves, given by explicit

polynomial equations, called Weierstrass equations (see Appendix D). Using these

explicit equations, it is shown that the set of points of an elliptic curve forms an Abelian

group, and the group law is given by rational functions. Then the description of Group

Law on singular and non-singular curve shows that the Group Law satisfies the
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associative law by using the intersection theory. Finally, an example is given to illustrate

the Group Law on an elliptic curve.

3.3.1.1 The Group Law on Eltiptic Curves

In this section let Kbe a field, which will be either be the field of real, rational or complex

numbers, or the finite field Fo, with q: p- elements, p is a prime. Let E be an elliptic

curve given by a Weierstrass equation (see appendix D):

Y2 z+ a ryy z+ asY z2 :x3 + azx2 z+ a +xz2 + a dz3

where E e É field consists of the points P: (*, y, 0) satisfying the equation together with

the point O : [0, 1, 0] at infinity. Let L = É flteld is a line. Then since the equation has

degree three, L intersects E at exactly 3 points, said P, Q, and R.

Note: If L is tangent to E, then there are only two intersections, and P, Q, and R may not

be distinct.

o
o

P*O

P+O:P

Fig, 3-1. The Group Law on a Elliptic Curve Fig. 3-2. The Verification of the Zero Element

GroupLaw: LetP, Q e E, L is the line connectingP and Q (if P: Q, L is thetangent

line to E), and R is the third point of intersection of L with E. LelL' is the

line connecting R and O. Then P + Q is the point such that L' intersects E

atR, O, andP + Q, thusP + Q : O x (P " Q).

a
-¿
( P*Q

I

i
J

I
t....,--
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The Group law [38] is illustrated in figure 3-1, and O acts as the zero element, as shown

in flrgure 3-2. (The interested reader can refer to [3S] for the detail proof of the Group

Law).

If the Group Law was associative, then the group would existed [39]. The proof of the

Associative Law is following:

Proof: Let P, Q, R be three points on the elliptic curve, To get P + Q, it can form P x Q

and take the third intersection of the line connecting it to O. To add P + Q to R

point, it can draw the line from R through P + Q, and that meets the curve at @ +

e) x R. To get (P + Q) + R, one has tojoin (P + Q) x Rto O and takes the third

intersection. Now the picture is to show that

(P+Q)+R:P+(Q+R),

it will be enough to show that

(P+Q)xR:Px(Q+R)

as in figure 3-3.

o
R a P"Q

(P+Q)xR
x(QFR)

Fig. 3-3 The Verification of the Associative Law

To form P " (Q + R), first one has to find Q x R which joins to O, and takes the third

intersectionwhichisQ+R,thenonemustjoinQ+RtoP,whichgivesthepointPx(Q+

R). That should be the same as G + Q) x R. Now each of the points O, P, Q, R, P + Q, Q

+ R, e x R lies on one of the dotted lines and one of the solid lines. It is clear to see that

thedottedlinethroughP+QandRpointsandthesolidlinethroughPandQ+Rpoints

are the same. So the equation P 
" 

(Q + R) : (P + Q) x R has been proved [39].
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The Group Law has the following properties:

1) If a line L intersects E atthepoints P, Q, andR, thenP + Q * R: O.

2) P+O:P V PeE.

3) P+Q:Q+P V P,QeE.

4) Let P e E, if there is an opposition point (called -P) of E, such that P + (-P) : O.

5) LetP, Q, andR e E,then(P+Q) +R=P+ (Q+R).

The above properties of the Group Law show that all points on E from an Abelian group

with zero element O (called identity element). The proof of the remaining properties is

omitted, the interested reader can refer to [39].

3.3.1.2 The Group Law on Singular and Non-singular Curve

A Weierstrass equation is a homogeneous equation of degree 3 of the form

x2z + at)NJ{Z + a3YZ2: X3 + ux2z + a4xz2 + asz3 ,

where a,1, ã2, ã3, ã4, aó € K. The V/eierstrass equation is called to be non-singular if for all

projective points p: (X:Y:Z¡ e f21f) satisf,ing

F(x, Y, z):*z+ ar]{l{z+ a3YZ2 - x3 - a2*z - a+xz2 - a6z3 =Q

at least one of the three partial derivatives âFlôX, ôFßY, ôFbZ is non-zero at point P. If
all three partial derivatives vanish at some point P, then P is called a singular point, and

the equation is said to be singular.

If the E is non-singular curves over F2', then the admissible change of variables

transforms E to a curve given by a set of the form

(3.3-1){y'+*y:*3+ azx2-a6l%el2^,a2 e (0, l)}
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If E is a singular curve over F2., then the admissible change of variables transforms E to a

curve given by equations of the form

(1) y'+y:*3,
(2) Y2 * Y: x3 + x, (3'3-la)

(3) y'+y:x3+x*1,
where m is odd, or given by a set of the form

(l)
(2)

(3)

Y2+PY:x3+v,
y2+ y:x3+¡¿x,

y2+ y:x3*Ê,
(3.3-lb)

where m is even [5].

Let E be a singular elliptic curve defined over a field K, such that E is a singular

Weierstrass equation of the form

(x,y) :y2 +a1x]*ury-*' -u*-tux- aó=0. (3.3'2)

Then E has precisely one singular point, and suppose that this point is P :(x¡, yo) e E(K).

If the variables are changed, such that x + x' + x¡ and y + y' * y6, then the singular point

can be assumed to be P: (0,0).Since f(P): 0, +f e)= 0 and !¡fr>=0, it leadsÒx dy

to as= ã4: à3:0, and so the Weierstrass equation for E simplifies to

5? + alxy - azv? - x3 : 0, à1, à2 €, K. (3.3-3)

If y2 + ârxy - ã2x2 = (y - oxXy - 0x), where cr, B are in K or in Kr (K1 is the quadratic

extensionofK),thenPiscalledanodeifcr,+B,oracuspifo:P.LetE¡'(K)denotethe

set of solutions (x, y) e K x K to equation (3.3-3), excluding the point P, and including O

at infinþ, thus 8,,(K) is called the non-singular part of E(K). A Group law on En.(K) is

defmed by the chord-tangent law, as described in the last section for E(K). The next

result states that E,.(K) is a group, and determines the structure of this group. K* and K-

denote the addition group of K and Multiplicative group of non-zero elements of K

respectively (tsl $4.2. 1).
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Theorem 3.1 (Theorem 7.2 in [a0]: Let E is a singular elliptic curve defined over the

fìnite field K with singular point P.

(i) IfPisanode, ando, Þ e K,thenthemap O:E".(K) +K*definedby

$:Or>l
0:(x,y)p $-Bx)/(y-ox)

is a group isomorphism.

(i1) If P is anode, and cr,9 ø K, ct,, B € Kr, then letL be the subgroup of K1*

consisting of the elements of norm l. The map (Þ : Enr(K) + L defined by

O:Or+ I

(Þ : (x, y) Ð (y - px)/(y - ox)

is a group isomorphism.

(iiÐ If P is a cusp, then the map q : En,(K) -+ f* defined by

<p:Or+0

q : (x, y) r+ >r/(y - ax)

is a group isomorphism.

Using the result above, the following results can be derived:

Corollary 3.2 (Theorem 4.2 in t5D Let E is a singular ellþic curve defured over the finite

field Fo with singular point P.

(1) If P is a node, then the logarithm problem in En.(tr'q) is reducible in polynomial

time to the logarithm problem in Fn or Fn2, depending on whether cr e X'o or c{, €

X'0, respectively.

(iÐ If P is a cusp, then the logarithm problem in En.(Fo) is reducible in polynomial

time to the logarithm problem h Fo*.
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If q: p-, where p (which is a small prime) is the characteristic of Fo, then

ßo* 
= F*o¡...* F*0.

It is shown that the logarithm problem h Fo* can be effrciently solved in poþomial time

by the extended Euclidean algorithm. Thus if a basis of Fo over X'o is given, then one can

also compute logarithms in Fo* in polynomial time.

3.3.1.3 The Algorithm of Group Law on Etliptic Curve

Let elliptic curve E over Z, is the set of solutions (x, y) e 4 x Z,rto the equation

y2:x3tax+b (modp), (3.3-4)

where p > 3 is prime, anda,b .7+ are constants such that4f + 27bz + 0 (mod p),

together with a special point O called the point at infinity.

(1)

(2)

If xl : xz,yr: -yz, then Pr * Pz: O,

If xr * x2, then P1 * P2 : P3 is given by

x¡:k2-Xl-X2,
y::k(xr-x:)-yr, (3.3-5)

v -!'
Xz- Xt

ifP+Q
wirh k:

^251çr*a (3.3-6)

2!, ' ifP:Q

Then y: kx + c is the line through Pr and P2, or tangent to E if Pr : Pz

Note that inverses are very easy to compute. The inverse of (x, y) is (x, -y), for all (x, y) e

E.
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Example (Example 5.7 in tal]): Let E be the elliptic curve y2 = x3 * x r 6 over Z¡. The

first task is to determine the points on E. This can be done by looking at each

possible x e Z¡, computing and trying to solve the equation:

y2:x3*x*6(mod1l). (3.3-7)

For a given x, it can be tested to see whether r: x3 -| x * 6 (mod 11) is a quadratic

residue by applying Euler's criterion. There is an explicit formula to compute square roots

of quadratic residues (mod p) for primes p : 3 (mod 4). Applying this formula, the square

roots of a quadratic residue r can be obtained as follows:

+r(11+rY4 (mod 11): tr3 (mod ll)

There are 13 points on E. Since any group of prime order being cyclic, it follows that E is

isomorphic to Zp, and any point other than the point at infinity is a generator of E.

Suppose the generator is P : (2,7); then the'þowers" of P can be computed by writing as

multiples of P, since the group operation is addition.

To compute 2P : (2,7) + (2,7), first one can use (3.3-6) to compute

k: (3 x 22 + t)(2 x 7)-t (mod I l)
:8 (modll)

Then one can use (3.3-4) and (3.3-5) to calculate

X::82 -2-2 (mod 11):5
yt : 8(2- 5) - 7 (mod ll) : 2,

so 2P : (5,2).

Using the same method as above, the remaining multiples can be computed. The results

are shown in Table 3-2. Note that the 13P : O that is called the point at infmity.

Therefore, P : (2,7) is a primitive element.
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Table 3-2. The Points on the Elliptic Curve ovat Zn

3,3.2 The Arithmetic Operations of an Elliptic Curve over X'ield Fq (q = 2-)

For one pu{pose, the most interested elliptic curve is over finite fields of characteristic

two. Here discuss the most efficient techniques for performing the arithmetic operations in

such fields. The field X'2m can be viewed as a vector space of dimension m over Fz. In

other words, there exists a set of m elements Þ0, 9r, . .., Êr-r in F2* such that each B e X'2'n

can be written uniquely in the form

m-l

P = I uiÊ¡, where u¡ e {0, 1}.
t=0

Then B can be represented as the 0 or 1 vector (uo, ur, ..., um-r).There are many different

bases of F2- over X'2. A normal basis of F2m ovêr tr'z is a basis of the form

( z j' t'-'l
\a ,d ,d- ,"',Ø' 

J,

where ø e F2m; it is well known 142]that such a basis always exists. The p can be written

V p e X'2n', whereu¡ e {0, l}.

Since squaring is a linear operator in X'2., hence

þ' =lr,o''.':lu,-ro2'= (u'-" uo' "' ' 
um-2)'

i=0 ,=0

with indices reduced modulo m.

Therefore a normal basis representation of X'2r is advantageous due to squaring a field

element can be accomplished by a simple rotation of the vector representation, which is

as

þ: ì, w,a,2
i=0
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easily completed with one clock cycle for squaring an element, Multiplication in a normal

basis representation is more complicated. Let

U : (uo, ut, ..., tlm.l)

V : (vo, vt, .. ., vm-t)

are arbitrary elements in F2'n, let

W : UV = (wo, \Ày'l, ..., wm-l),

then

(3.3-8)

Suppose that

1,'i'' {0, l},

* : lroa2r =äu,r,a2' a2''
k=0 ¡=0 "r=0

comparing coefficient s of O2o in (3.3-8), then generates the formulae

a2' u2' =T,Lf'o'r
È=0

(3.3-e)

m-1 n-l
wt:LZu,v,

,=0 "l=0

^ 
(k)

Aii 0<k<m-1 (3.3-10)

If the power gro\¡rs up to 2-h th on both sides of equation (3.3-9), then it can find that

a2,o d''-' =î2',0-'o.j-ra2 =f 1,{kt o2r-' , (3.3'11)
k=o k=0

Equating the coefficients of U2' ^(3.3-11), 
it can show that )f) = 7',0-'0,,-r, V 0 < (i, j,

h) < m - 1. Then equation (3.3-10) can be rewritten as

m-1m-l*n:II u,t¡1
(0)

i-k, j -k fiu,.rr,.or|]'
t=0 l=0,=0 "l=0

Therefore if a logic circuit with inputs U and V is built to compute the product digit w6,

then the same circuit with inputs U2-k and V2-k will ouþut the product digit wr. Here the

U2-k and V2-k are simply cyclic shifts of the vector representations of U and V. In the same

way W can be computed in m clock cycles [a3]. The complexity of such a circuit is

determined by WN which is the number of non-zero terms À¡(0), because this amount
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measrres the number of interconnections between the registers containing U, V and rW.

Since W¡¡ I m2, a lower bound on W¡ is that V/N 2 2m - L If WN :2m - l, then the

normal basis is called optimal [44].

From the point of view of minimizing the number of multiplications, the most efficient

technique to compute an inverse of an element in X'2m was introduced in reference [45] as

follows:

If B e Fz',9+0,then (3.3-12)

If m is odd, then since 2'-r - 1 - ç2(n-r)rz - l)12(^-rlrz + l), The term in (3.3-12) can been

written as

p'= pt . =(pr*-t-t)

t2+I

B,
,-r_l

p2(m-I) l2-t

2'-'-,Therefore it requires only one multiplication to evaluate P once the value of

p'"''''-'has been computed.

If m is even, then the term in (3.3-12) can be written as

p'^'-t = p"''"-" ''-l)(2@-t)''*1)*1

it requires two multiplication to evaluate P'*'t once p' has been computed. The

procedure is then repeated recursively. By induction this method requires

f(m) = log2(m-l) + g(m-l) -1

field multiplication, where g(m-l) denotes the number of l's in the binary representation

of m-1.

(n l')/2 ,
-l

't6



The Principal of Mathematics in the Public Key Cryptosystem

3.3.3 The Practice of Etliptic Curve algorithm in Cryptosystems

In this subchapter, the principle and complexity of arithmetic for the elliptic curve

cryptosystem will be clearly shown by introducing a practice of implementation of Elliptic

Curve cryptosystem explored by A. J. Menezes [5]. For simplicity, the proofs and

inferences will be abbreviated.

This subchapter consists of three sections. In the fnst two sections, a description of the

selection of an elliptic curve and field X' and counting the points on Elliptic Curves, the

non-singular curyes and singular curves over field Fzm will be considered. Finally, the

Completion of the ECCA will be discussed in the third section.

3.3.3.1 Selection of an Elliptic Curve and tr'ield Fo

For simplicity, the elliptic curve can be recalled from (3.3-4) as follows:

f :*t *ax*b (modp).

IfPeE,thentheinversepointis-PeE.IfQt*2,y2)eE,andQ+-P,thenP+Q:\*,yr),

where X: : k2 - x1 - xz,ys: k(xl - x:) - yr, and

!,- !,
Xz- Xt

ifP+Q
k-

23¡ +a ifP:Q
2!,

For the discussion above, it was shown that the addition operations of two distinct points

on an elliptic curye will require three multiplications and one inversion of field elements

in the underlying field F2-, and doubling a point will require one inversion and four

multiplications in x'2m. Here the additions and subtractions are not considered, because

these operations are not expensive. For minimizng the number of field operations, the

selection of a curve and field F2m has to be a consideration to satisfu certain conditions
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($6.2 in [5]) as follows:

(1) The arithmetic operation in field n2. has to be easier to complete than those in

finite fields of characteristic > 3.

(2) Using a normal basis representation for the elements of F2., so that doubling a

point becomes a simple cyclic shift operation of the vector representation, and

therefore the squaring operation is reduced to a simple operation.

(3) It is easier to recover the y-coordinate of a point given its x-coordinate with a

single bit of extra information. It is helpful in reducing message expansion in the

ElGamal cryptosystem, as shown in chapter 2.2.

3.3.3.1.1 Selection of an Non-singular Elliptic Curve and Field Fn

First, consider the non-singular curves over F2m, recalling the equation (3,3-4),

y2 :x3 * ax * b (mod p),

where a e F'n\{O} (q: 2-), b e Fo. If the method for reducing the elliptic curve logarithm

problem to the discrete logarithm problem in a fïnite field is not feasible, then the best

algorithm known for the logarithm problem in non-singular elliptic eurves is the Baby-

step Giant-step algorithm. A non-singular curve, which is suitable for cryptographic

applications, is the one whose order (see Appendix A-2) is divisible by a large prime

factor of at least 40 decimal digits. Therefore the underlying field should be the size at

least 2130 (130 binary digits), and should have an optimal normal basis in order to perform

efficiently the arithmetic in the field.

One method for the curve selection is to choose a curve E defined over X'q, where q is

small enough so that #E (where #E denotes the number of points on E) can be computed

directly, then the group E(Fq') can be used for suitable n. The #E(Fq") can easily be

computed from #E(F) by the Weil Theorem (see Appendix E). It is shown that if n is

divisible by h, then #E(Fq.) is divisible by #E(Fnr'). Therefore the n selected should be

prime, or else a product of a small factor and a large prime.
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Example (Example 6.2 in t5]) If one want to select a non-singular curve over X'215s, one

can select a curve over F2s. There are twelve possibilities for #E(F2s). Of these,

there are five values for which #E(F2rss) is divisible be a large prime. The size

of the largest prime divisor of #E(X'2rss) for these five values is as shown on

table 3-2. The curves with #E(F2rss) : 36 or 42 would be best suited for

security purposes in cryptography.

Table 3-2. Five values of the number of points on non-singular curves E over Fzs.

Another method of selecting a random curve E was adapted by Neal Koblitz to curves

over fields of characteristic 2 [77]. Using heuristic arguments, Koblitz [77] showed that if
E over Fo is a randomly selected non-singular curve, then the probability that N : #E(Fo)

is divisible by a prime factor > NA/ (V should be an small factor integer) is m-tlog2(V/2).

So that the probability that the order of a randomly chosen non-singular curye over F21s5 is

divisible by a 40 digits prime is approximately

l, ( 
"rss 

I
*log,[ú..)¡v0136

Therefore, it is clearly shown that one can expect to try about seven curves before a

suitable one is found successfully.

The computation of kP and kaP takes 29 additions of points, I field inversion, 155

doublings and 2 field multiplications. Computing Mri and Mri, where kaP : (i,i),

takes a further 2 multiplications. Therefore, two field elements can be encrypted taking

2950 field multiplications. Since #E(F2rss) is about a 47 digit prime, the square root

attacks can be precluded (refer to [7a]). Assuming that a clock rate is 5 MHz, and an

inversion takes f(l55): 10 multiplication, the encryption rate is

42 4l
38 36
36 46
28 36
22 37
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155 x 2 x 5'ooo'ooo 
¡v 3.4 Kbits/sec.

1000 x 2950x155

3.3.3.1.2 Selection of an Singular Curve and Field Fn

Now consider the singular curves over F2m, where m is odd. A fourth condition which

should be satisfied in the selection of a singular curve, in addition to except the tluee

conditions described in the last subchapter, is

(4) For singular curves over F2m, the inverse operation in doubling a point can be

eliminated by choosinBãt: l, further reducing the operation count.

Recall from subchapter 3.3.1.2, here only consider the curye (3.3-1a), a representative

curve is

Y2+Y=x3+x+l'

IfPl*,,yr) € E,theninversepointis-P1*,,-yr¡ e E. If Qt*z,yz)e E,andQ+-P,thenP+Q:

\*r,y:¡, where

X3:
(++)(r,*x,)* !,*1, P*e
lXr+ Xz )

P+Q

P:Q

Yt:
4 4

Ï*t, Xr+ !, +1, P:Q

In the subchapter 3.3.2.1, it is shown that doubling a point on the curve (3) is "free", if a

normal basis representation is chosen for the elements of F2., while adding two distinct

points needs two multiplication and one inversion. The multiple kP of the point P is

computed by the repeated square and multiply method. If g(k) : t * 1, then the

exponentiation takes 2t multiplication and t inversions.
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Resorting to projective coordinates can eliminate the inverse operation needed adding two

points. For example, if P : (xr, yr, l), Q : (xz, yz, zz), and R : (x:, Yt, zz), the addition

formula P + Q = R requires 9 multiplication of field elements. So that if the multiple kP

(where P is the affure point (x1, yr, 1)) is computed by repeatedly using the square and

multiply method, the result kP = (xr, y3, u) can be converted back into affine coordinates

by multiplying each coordinate by rr-t.If g(k): t + 1, then the total operation count to

compute kP is 9t + 2 field multiplications and one inversion.

The estimation of the throughput rate of encryption using the elliptic curve analogue of

the ElGamal cryptosystem is described as follows.

Suppose that a multiplication in y, takes m clock cycles, while an inversion takes (m) :

logz(m-l) + g(m-l) - I multiplication's. For simplicity, the cost of field additions and

squaring are ignored. The points on the curve E will be represented using projective

coordinates. To increase the speed of the cryptosystem and to place an upper boundary on

the time for encryption, the Hammìng weightr of k would be limited to 30.

The computation of kP and kaP takes 58 additions of points, 2 field inversions, and 4 field

multiplications. Computing M1x and, M2y, where kaP : 1i,y¡, takes another 2

multiplications. Therefore two field elements can be encrypted taking 528 + 2(m) freld

multiplications. For example: suppose that the curve (3.3-1a) is over F2m. Since #E(ß2ns)

is a72 digit prime, the square root attacks can be precluded (refer to pa]). Assuming that

a clock rate is 5 MHz, and an inversion takes (239) : 12 multiplication, the encryption

rate is then

239x2x5'ooo'ooo 
æ 1g Kbits/sec

1000x (528 + 2xl2)x239
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3.3.3.2 Counting the Points on Elliptic Curves

In this subchapter two for counting the points on elliptic curve are introduced. First

Schoof s algorithm shows how to count the points on the non-singular culve, and later

Waterhouse's algorithm counts the points on the singular curve. The description of the

two algorithms follows.

3,3.3.2.1 Counting the Points on Non-singular Curves

Schoofls algorithm to compute the number of points on a non-singular elliptic curve is

completed in three steps [5]. The first step consists of computing a number L for which

the equation of the form

flt' 4JA , (3.3-13)

',-*L,o

holds and of making a list of the division polynomials f" (see Appendix A-2) for n : l, 2,

...,L, where / is prime. The second step consists of the computation of t (mod /) in

equation(3.3-16)foreveryprime l.<Lnotequal 2orp. Thethirdstepisthecomputation

of t from the values of t (mod l) obtained using the Chinese Remainder Theorem and the

estimate ltl <Z,,lq . l^outline of Schoofls algorithm for computing the number of points

on non-singular elliptic curve E over Fo (q:2') will now be given.

Recall the equation (3.3-a) for E, which is given as follows:

t?:f*ax*b (modp), (3.3-14)

with a, b e F'n and 4a3 + 27b2 + 0. Let F denotes the algebraic closure of Fn. Then E(F)

denote the set of points on E over F, consisting of all the solutions (x, y) of (3.3-14). Let

Õ be the Frobenius endomorphrsø (see Appendix A-2) on E(F) defined by

(Þ: (x, y) - ("0, yo).

t The Hamming weight of an integer is the number of ones in its binary representation.
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Let Rpo denotes the ring of endomorphisms of E over F. In Rpo, the Frobenius

endomorphism satisfies a unique relation

(Þ2+q=16' (3'3-15)

Let #E( Fn) denotes the number of points on E over X'o in the form

#E(Fq):q*1-t, (3.3-16)

where t is called the trace of the Frobenius endomorphism. It satisfies an inequalþ of the

form:

Itl<2,!q. (3.3-17)

To start, choose a number L satisffing (3.3-13), where the product ranges over all primes

I (3 < .¿ <L).Since there is a bound on the size of t by (3.3-17), one can compute t (mod

Q for each odd prime (. < L, such that I : 3, 5, 7, ..., L, and one can determine t by

applying the Chinese Remainder Theorem. The next step is to describe how to compute t

(mod /) lor L, aprime not equal to 2 or q.

Let P(x, y) e Epl,let / is an odd prime then E[/] = Zn Ø Zu, which can be viewed as a

vector space over X'r; the vector space has dimension 2. Let k : q (mod l), 0 <k < (. - l.

One can search for an integer t, where 0 < t ( (. - l, to satisff

o2P + kP: roP (3.3-1s)

From (3.3-15) one deduces that (t - r)(ÞP: O. Therefore, since OP is apoint of order /
(see Appendix A-2), t : r (mod z). The problem with completing this idea is that the

coordinates of P, which are in F,may not lie in any small extension of Fo. Thus, the t can

not be found in general. The solution is by observing thatx is a root of the division

polynomial (see Appendix A-2) fr(x) e Fo. The next Theorem 3.4 can be used to obtain an

expression for kP and t(ÞP, where the coordinates of the expressions are rational functions

83



The Principal of Mathematics in the Public Key Cryptosystem

Theorem 3.4 ( n e E with nP nP(t, y)can

r- +(x2+y¡+

in x, y, then one can use the addition rules to sum Õ2P and kP.

(where f" : f"(x )).

To test the point P(x, y) lrr'Bpl satisfies (3.3-15), and to determine the correct sign, one

can equate the x-coordinates and y-coordinates of (Þ2P + kP and t(ÞP, respectively, and

eliminate the denominators and the variable y to result the equations h1(x) : 0 and hz(x) :
0 respectively. Thus one can compute Hr(x) = gcd(h1(x), fi(x) and H2(x) : gcd(h2(x),

fi(x)) respectively. If Hr(x) * I or FIz(x) * l, then the P satisfies (3.3-15). If H1(x) = l, then

the P in E[/] does not satisff o2P + kP: tr(ÞP. If Hz(x): l, then P satisfies o2P + kP: -

t@P. For a detailed description refer to [46].

In the algorithm for pre-computing the polynomials fn, it takes O(log5 q) bits to store these

polynomials. The amount of memory used in the rest of the algorithm is dominated by

O(logs q). The computations of L and the Chinese Remainder Theorem are easily seen to

be dominated by O(loge q) elementary operations.

The running time of O(log8 q) elementary operations in the second step is obtained as

follows: For each (.,the search for t satisfuing (3.3-15) is dominated by the computations

of the residues of *8' and yq modulo fr(x), where O2P : (X8 , yq ). Due to compute

the degree of fr(x) is O(log2 q) operations, these residues can be computed in O(log5 q)

field operations, or O(1og7 Ð bit operations. If fast multiplication techniques are employed
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for multiplication in K and in F'q, then the total running time reduces to O(log5*" Ð bit

operations, for any e > 0.

3.3.3.2.2 Counting the Points on Singular Curves

To determine the number of points on a singular elliptic curve E over F2m, the group type

of the curves has to be determined by the Lemma 3.5 described as follows:

Lemma 3.5 [47]: Let #E(F'o) = q + 1 - t,

(l) lf f : e,2g,or 3q, then E(Fn) is cyclic.

(2) If e : 4q, then E(Fn) = Z¡¡*r@Z¡¡*, depending on whether

Ft2Jq respectively.

(3) If t:0 and q+3 (mod4), thenE(Fo) is cyclic. If t:0 and q:3 (mod 4), then

E(Fs) is cyclic, or E(Fn) = Zs*r.¡,r@ Zr.

where f, denotes the cyclic group on n elements.

When m is odd: Recall the equation (3.3-1a); each of the 3 isomorphism classes of

singular curves over F2. has a representative with coefficients in Fz.

One can easily determine thç order of curves over F2' by the Weil

Iheorem. The results are listed in Table 3-3.

q+ 1x.,!þ
q+ t LJzq .

q+1

Order of Curve

Table 3-3, The Curves and Orders in 3 classes ofsupersingular curves over X'2m (m is odd)
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When m is even: Recall (3.3-1b); let #E(r2.) : q + I - ti for the three type of equations

The three term values of ti arexllÇ, 0, and LJU tespectively can be

obtained by the Theorem 3.6 as following.

Table 3-4. The Curves and Orders in 3 classes of supersingular ctrrves over F2m (m is even)

Theorem 3.6 [aS]: Let p be a prime and q: pm. Let t be an integer with I tl <Zr[. fn"n

if t2 <4q, and pl t.

if t:0 and m is odd.

if ( =2q,p=2, m is odd.

if f :3q, p:3, m is odd.

if ( : 4q, andm is even.

if(=qandmiseven.
ift=0andmiseven.
otherwise.

H(t' - +q),

H(-4p),
7,

l,

tl t2{p + 6 + 4(3 t p) + 3@ I p)},
t+(3tp),
l+(41 p),

0,

No(t):

where No(t) denotes the number of isomorphism classes of elliptic curves over Fq, H(Â)

denotes the Kronecker class number of A (see Proposition 7 lunî751), and "À" denotes a

negative integer congruent to 0 or 1 (mod 4).

It is known that given an arbitrary singular elliptic curye E over x'2m, the number of points

#E(F2.) can be computed by first determining to which isomorphism class E belongs.

Solving the appropriate root given by Theorem 2.2 in [5] can complete this. There are

several effrcient polynomial time algorithms for finding the roots of a polynomial over

F2m in [a9]. The interested reader can see [50] for more details.

q+ t t^lþ
q+ l,
q+ I +,!q ,

Orders of Curves

86



The Principal of Mathematics in the Public Key Cryptosystem

3.3.3.3 The Completion of Elliptic Curve Cryptography Algorithm

The completion of Elliptic Curve cryptography algorithm is to describe the establishment

of the cryptosystem. In chapter 2.3 the Elliptic Curve analog of ElGamal cryptosystem is

well known example to the completion of Ellipic Curve cryptography algorithm. Here

starts with a briefly to describe a implementation of a non-supersingular curve over fields

of characteristic 2. In order to expound the programs of the completion of Elliptic curye

cryptography algorithm, two examples of ElGamal cryptosystem and Menezes-Vanstone

cryptosystem will be presented later.

3.3.3.3.1 Implementation of the ECCs

This subchapter describes how to implement the ECCs on non-supersingular curves over

fields of characteristic 2. In comparison to supersingular curves the addition is slightly

harder to compute, because doubling of a point is more complicated to calculate. The

complexity of the basic arithmetic operations in finite fields differs considerably. The

additions are negligible in comparison to multiplications. The inversions are the most time

consuming operation, therefore the curve is represented in projective coordinates and the

inversions can be eliminated. Only at the end of each calculation two inversions are

needed to get a 'unique' representation [5I,291.

Suppose the non-supersingular curve over the field Fo (where T 2^) is y2 + xy : x3 + af
+ b, with a point P : (", y). From a base point P: (x, y), it can calculate mP with a double

point and add point algorithm. Starting with the highest bit of m, it needs only doublings

of a point and additions of two different points of the form (x, y) + (xl, y¡). Assuming one

point is given in affine coordinates, then P : (*,, yz), Q : (xz,y2), and-P : (xt, x1 + y1). If

Q + -P, then the addition formulas is P + Q: (x¡, y¡).

Note that two multiplications and an inversion are needed to add two distinct points, and a

point can be doubled in 3 multiplications and an inversion. It also notes that inversions

can be avoided by changing to projective coordinates at the expens of doing more
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multiplications [52].

3.3.3.3.2 A Practical Example in ECCs

In completion of ECCs, there is a practical difficuþ that is message expansion, since

every ciphertext consists of four field elements. In ElGamal cryptosystem, four field

elements are transmitted in order to convey a message consisting of two field elements,

which is called message expansion by a factor of two, with the system implement in

GF(p") with n > 1. Here is an example of ElGamal cryptosystem using Elliptic Curve

algorithm.

Example 3.6 (Example 5.8 in [a1]): Suppose that y2: x3 + x t 6, d: (2,7) and Bob's

secret exponent is a: 7, so that þ = 7u: (7,2) (recall table 3-2). The

encryption is

e¡(x, k) : (k(2,7),x*k(7,2)),

where x e E and 0 <k< 12, and the decryption is

dr(yr, yz):yz-7yt.

Suppose that Alice wishes to encrypt the message x : (10, 9), which is a point on E. If
Alice chooses the random value k: 3, then she will compute

yr : 3cr :3(2,7) : (8, 3),

and Yz: (10,9)+3(7,2)
: (10, 9) + (3, 5)

: (10,2).

so y: ((8, 3), (10, 2). If Bob receives the ciphertext y, he decrypts it

x: (10, 2) -7(8,3)
: (10, 2) - (3,5)

: (10, 2) + (3,6)

: (10, 9).
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Therefore the decryption generates the conect plaintext

Menezes and Vanstone [41] have found one more efficient variation in which the elliptic

curve is used for "masking", and plaintexts and ciphertexts are allowed to be arbitrary

ordered pairs of non-zero field elements (i.e., they are not required to be points on E). This

will generate a message expansion factor of two, which is the same as in the ElGamal

cryptosystem. An example of the Menezes-Vanstone cryptosystem is introduced as

following.

Example 3.7 (Example 5.9 in [al]): as in example 3.6, suppose that a : (2,7) and Bob's

secret exponent is a : 7, so that þ : 7a : (7, 2) (recall table 3-2). Suppose Alice want to

encrypt the plaintext

x: (xr, x2) = (9, l).

Note that x is not a point on E, and Alice chooses the random value k: 6. She computes

yo : ka : 6(2,7): (7,9),

kB : 6(7, 2) : (8, 3): (c1, c2),

then she computes

]r : crxl (modP) = 8xr (modP) : 8 x 9 (mod 1l) : 6,

yz: czx2 (mod P) :3xz (mod P) : 3 x I (mod 11) = 3.

The ciphertext she sends to Bob is

Y 
: (yo, Yt, Yz): ((7,9), 6' 3).

When Bob receives the ciphertext y, he computes

ayo:7(7,9) : (8, 3) : (c1, c2),

Then computes

x : (yr c1-1(mod p),yzc2-t(mod p))

: (6 x 8-1(mod 1l),3 x 3-1(mod l1))

: (9, 1).

Therefore, the decryption generates the correct plaintext.
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Summary:

The desuiptions above give a brief introduction to three kinds of mathematical principles

related to three different cryptosystems: the RSA, ElGamal and Elliptic Curve system

respectively. It has show that the security of RSA depends on the difficuþ of factoring

large integers, the ElGamal system depends on the difficulty of soving the classical

discrete logarithm problem and the Elliptic Curve system depends on the difficuþ of

discrete elliptic logarithm problem. Also it has been clearly shown how these public key

cryptosystems have diffçrent degrees of security, length of keys, secure terms (periods)

and running times. Therefore, the mathematical theory already discussed gives a basis for

the computation and comparison of running time and efhciency that will be introduced in

the next chapter.
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4, The Efficiency of Etliptic Curve Cryptosystem

The purpose of this chapter is to discuss the efficiency and practicality of the Ellþic

Curve Cryptosystem (ECCs). The efficiency of ECCs means the system has the same

level of security performance as the classical Discrete Logarithm cryptosystem, but

requires much smaller key length. However, the creation of efficiency in the ECCs is

based on the complexþ of computation that requires more time in processing the ECC

operations, and that leads to less practicality. Therefore the efficiency discussed here

contains two aspects, one is the high efficiency in ECCs, and another is the effrciency

trade off for the time of computation.

4.1 The.{.dvance Efficiency in Elliptic Curve Cryptosystems

The dramatic effrciency in ECCs will be determined by the structure of computation of the

group operation in ECCs, which leads to a shonger One Way function and longer security

term with shorter key length. This subchapter starts with security in public key

cryptosystems, which describes security in cryptosystems by two characteristics of

security feature: One Way function and Security Term in RSA, ElGamal and Elliptic

Curve cryptosystems. Then the efficiency advantage will be shown by the comparison of

efficiencies of the cryptosystems between the three cryptosystems.

4,1.1 Security in Public Key Cryptosystem

Currently there does not exist a standard method of measuring the security (including

securþ level and securþ term) in a cryptosystem. The One-way function and Key length

are usually considered as two characteristic terms to measure the security of a

cryptosystem. Although no proof is known for the existence of a One-way function, it is

widely believed that One-way function do exist. The following are candidates for One-

way functions since they are easy to compute, but their inversion requires the solution of
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the factoring problem, the ElGamal Discrete Logarithm problem or Elliptic Logarithm

problem, respectively.

This section begins with a discussion of the security in the RSA system, including the

analysis of attacking the system and the securþ bound on the size of the primes. Then a

discussion follows about security in the ElGamal system. Finally there is a discussion of

the securþ in the Elliptic Curve system.

4.1.1.1. The Security in the RSA System

Here is a discussion of various security issues related to RSA encryption, as well as

various attacks. Appropriate measures to counteract these threats are presented.

(1) Relation to factoring

Recall in chapter 2,thetask faced by a passivel adversary is that of recovering plaintext m

from the corresponding ciphertext c, given the public key (n, e) of the intended receiver

Alice. This is called the RSA problem. One possible approach that an adversary could

employ to solving the RSA problem is to first factor n, and then computes $(n) and d as

Alice did in chapter 2.1. Once d is obtained, the adversary can decrypt any ciphertext

intended for Alice.

On the other hand, if an adversary could somehow compute d, then it could subsequently

factor n efficiently as next. First note that since ed: I (mod þ), there is an integer k such

that ed - I - k$. Hence, by the fact of ued-r - 1 (mod n) for all a e h.Leted - I : 2"t,

where t is an odd integer. Then it can be shown that O2"'" + +1 (mod n) for at least half of

all a e Z,; if ais such an integer then gcd(42" 't -l,n) is a non- trivial factor of n. Thus the

I A passive adversary is an adversary who is capable only ofreading information from an unsecured

channel.
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adversary simply needs to repeatedly select random a e Zn and compute gcd(

the expected number of a before a non-trivial factor of n is obtained is 2 [53].

a2"" '1, n);

The problem of computing the RSA decryption exponent d from the public key (n, e), and

the problem of factoring n, is computationally equivalent. V/hen generating RSA keys, it

is imperative that the primes p and q should be selected so that factoring n : pq is

computationally infeasible. The major restriction on p and q in order to avoid the elliptic

curve factoring algorithm is that p and q should be about the same bit length, and

sufficiently large. For example, if a 1024bitmodulus n is to be used, then each of p and q

should be about 512 bits in lengfh. A 512-bit modulus n provides only marginal securþ

from concerted attack. In order to avoid the quadratic sieve and number field sieve

factoring algorithms, a modulus n of at least 768 bits is recommended. For long term

security, 1024-bit or larger module should be used.

(2) Small decryption exponent d

As was the case with the encryption exponent e, it may seem desirable to select a small

decryption exponent d in order to improve the efficiency of decryption. However, if
gcd(p-l, q-l) is small, as is typically the case, and if d has up to approximately one-

quarter as many bits as the modulus n, then there is an efficient algorithm [53] for

computing d from the public information (n, e). This algorithm cannot be extended to the

case where d is approximately the same size as n. Therefore, to avoid this attack, the

decryption exponent d should be roughly the same size as n.

(3) Multiplicative properties

Let mr and mz be two plaintext messages, and let cr and cz be their respective RSA

encryption. Observe that

(mrmz)": mlem2e : crc2 (mod n).
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In other words, the ciphertext corresponding to the plaintext fir: m1m2 (mod n) is c : c1c2

(mod n); this is sometimes referred to as the homomorphic property of RSA. This

observation leads to the followingadaptive chosen-ciphertext attack on RSA encryption.

Suppose that an active adversary wishes to decrypt a particular ciphertext c : m" (mod n)

intended for Alice. Suppose also that Alice will decrypt arbitrary ciphertext for the

adversary, other than c itself. The analyst can conceal c by selecting a random integer x e

Zo and computing d= cx" (mod n). Upon presentation of ã, Alice will compute for the

analyst *:G)d (mod n). Since

ø:(c)d: .o(*")u: mx (mod n),

the analyst can then compute m: ñ x-l (mod n).

This adaptive chosen-ciphertext attack can be circumvented in practice by imposing some

structural constraints on plaintext messages. If a ciphertext c is decrypted to a message not

possessing this structure, then the decryptor refects c as being fraudulent. Now if a

plaintext message m has this (carefully chosen) structure, then with high probability mx

(mod n) will not have this structure for x e Zn. Therefore the adaptive chosen-ciphertext

attack will fail because Alice will not decrypt c for the adversary [53].

(4) Cycling attacks

Let c -- m" (mod n) be a ciphertext. Let k be a positive integer such that C"r 
: 

"(mod 
n);

since encryption is apermutation onthe message space {0, 1,..., î-l} such an integerk

must exist. For the same reason it must be the case that C"o' 
: m (mod n). This

observation leads to the followtng cyclíng attack on RSA encryption. An adversary

2

computes c'(mod n), Ce (mod n), Ce (mod n),... until c is obtained for the fust time. If
l¡ -1

Ce (mod fl) : c, then the previous number in the cycle, namely çe (mod n), is equal to
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the plaintext m. A generalized cycling attack is to find the smallest positive integer u such

that f: gcd(Ce" -c, n) > 1. If

C€ 
: c (mod p) and ge * c (mod q), (4.1-1)

then f : p. Similarly, if

Ce + c(mod P) &nd ,e": c (mod q), (4.I-2)

then f : q. In either case, n has been factored, and the adversary can recover d and then m.

On the other hand, if both

c"' : c(mod p) and ce': c (mod q), (4.1-3)

then f :n and C" =c (modn). In fact, u mustbethe smallestpositive integerkforwhich

C" : "(mod 
n). In this case, the basic cycling attackhas succeed and so m : ,e"-' çmod

n) can be computed efficiently. Since equation (4.1-3) is expected to occur much less

frequently than (4.1-l) or (a.l-2),the generalized cyclíng attack usually terminates before

the cycling attack. For this reason, the generalized cycling attack can be viewed as being

essentially an algorithm for factoring n. Since factoring n is assumed to be intractable,

these cycling attacks do not pose a threat to the security of RSA encryption.

4.1.1.2. The Security in the ElGamal System

The securþ in the ElGamal cryptosystem is based on the diffrculty of the classical

discrete logarithm problem in a finite group, which is the multiplicative group of GF(p).

Here the discussion of security in the ElGamal cryptosystem includes two parts: security

in encryption and signature.

(1) Security of ElGamal encryption

The security of many cryptographic techniques depends on the intractabilþ of the

discrete logarithm problem. These include the Diffre-Hellman and ElGamal systems. The

problem of breaking the ElGamal scheme (i.e., recovering m given p, d, d2, y, and ô) is
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equivalent to solving the Diffie-Hellman problem. In fact the ElGamal scheme can be

viewed as simply comprising a Diffie-Hellman key exchange to determine a session key

cruk, and then encrypting the message by multiplication with that session key. For this

reason, the security of the ElGamal scheme is to be based on the discrete logarithm

problem inZp, although such equivalence has not been proven.

It is important that different random integers k be used to encrypt different messages.

Suppose the same k is used to encrypt two messagos rn1 and mz and the resulting

ciphertext pairs are (yr, ôr) ffid (,{2, ô2). Then ôl/ õz : m1hrt2, and mz could be easily

computed if m1 were known.

(2) The parameter sizes

A 512-bit modulus p in ElGamal scheme provides only marginal security from concerted

attack. In order to avoid the Index-calculus rn Zo algorithms, a modulus n of at least 768

bits is recommended. For long term security, 1024-bit or larger modulus should be used.

For common system-wide parameters even larger key sizes may be warranted. This is

because the dominant stage in the Index calculus algorithm for discrete logarithms n 7a is

the pre-computation of a database of factor base logarithms, following which individual

logarithms can be computed relatively quickly. Therefore computing the dat¿base of

logarithms for one particular modulus p will compromise the secrecy of all private keys

derived using p.

(3) Security of ElGamal signatures

The prime p should be suffrciently large to prevent the Index calculus attack. The integer

p - I should be divisible by a prime number q sufficiently large to prevent a Pohlig-

Hellman discrete logarithm attack ([53] page 107). Suppose the generator a satisfies the

following conditions:

(a) cr divides (p - l),
(b) Computing logarithms in the subgroup S of order o in Zo can be

effrciently done (for example, if a Pohlig-Hellman attack can be mounted

in S).
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Then it is possible for a signature (without knowledge of Alice's private Key) which will

be accepted by the verification algorithm (algorithm 11.64 in [53]). To see this, suppose

that p - 1 : crq. To sign a message m the adversary does the following:

(Ð Computing t: (p -3)12 and setting r: q,

(ii) Determining z such that c¿q' : yq (mod p) where y is Alice's public key. This is

possible since o¿q and yq are elements of S and crq is a generator of S.

(iii) Computing s: t . {h(m) - qz} (mod þ - l)), where h(m) is Hash tunction (see

Appendix J).

(iv) The pair (r, s) is a signature on m that will be accepted by the verification

algorithm.

This attack works because the verification equation r'y': ot't') lmod p) is satisfied. To see

this, first observe that

crq: -l (mod p),

so that cr: -e_l (mod p),

and that o(n 
- 1)/2 : -1 (mod p).

The latter congruence follows from the fact that cr is a generator of 2,, and q : -cr-l (mod

p). From these, one deduces that d : n0 - D/2q'1 : -q-r : g (mod p). Now rY : ln1tt{m)-

tzlrt - oh(m) o*ztr that the conditions specified in (iii) above are trivially satisfied. The

Pohlig-Hellman attack can be avoided if cr is selected as a generator for a subgroup of 7+

of prime order rather than a generator for Z, itself.

4.1.1.3 The Security in the Ettiptic Curve System

The security of elliptic curve cryptosystem is based on the difficuþ of the Discrete

Elliptic logarithm problem, in other words based on the difficuþ of computing reversibly

the structure of elliptic curve group which is an Abelian group. To get a better perspective

on the discussion of security here, it is assumed that the curves are over the field of p ,"' .
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(1) Security of the ECCs over finite fields

The discrete logarithm problem of elliptic curves refers to the ellþic logarithm problem

as following. Let E(F) be an elliptic curve over Fn and P a point in E(Fo). For any point R

€ (P) (which is the subgroup generated by P), determine an efficient method to furd the

integer k, 0 < k < #P - 1, where #P is the order of P (see Appendix A-2) such that kP: R.

The most powerful general algorithm known at present is the baby-step giant-step

algorithm of Shanks. This method requires O(JF) in both time and space. Using a

method due to Pollard [54] one can reduce the storage requirement. Pollard's method

requires about rF iterations on the ellþic curve where everyone iteration requires 3

elliptic curve additions. Since each addition on the curve requires 13 freld multiplications

and each field multiplication tn F 2,* 
takes 155 clock cycles, it follows that to determine

one elliptic logarithm requires on average about 6045"[F (where 6045:3 x 13 x 155)

clock cycles. If the order of the curve E contains a prime factor with at least 36 decimal

digits, then the number of clock cycles to fund a logarithm on the curve is about 6 x 1021.

Since the current computer runs at 300 MHz (3 x 108 cycles per second), and if one uses

103 devices in parallel, the time to find one logarithm is 2 x 1010 seconds or at least 200

years. Provided that the square root attacks are the best attacks on the elliptic logarithm

problem, it is shown that an elliptic curve over p,. with m : 130 provides very secure

systems. It is important to observe that the square root attacks require O(JF) iterations

for each logarithm to be found.

The most successful attack on the elliptic logarithm problem is a method due to Menezes,

Okamotom, ffid Vanstone [30]. In order to describe this method, first requires some

terminology.

Let E be an elliptic curve over Fq, which is the algebraic closure of Fn. E(Fq) is the set of

all points in E with coordinates from Fq. E(Fq) has finitely many points, whereas E has

infinitely many. Defure E[n] : {P e E : nP: O}. E[n] is called the set of n-torsion points

of E. Now for each n, gcd(n, Ð : 1, there exists a positive integer k such that E[n] g
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Y(F 
Zr) 

and an isomorphism from E[n] to a subgroup of p rr can be computed using the

Weil pairing (see Appendix E). Miller [55] has shown that there exists a random

polynomial time algorithm for computing the Weil pairing. These results form the basis

for the Menezes Okamoto Vanstone (MOV) attack (see Appendix G).

The MOV attack in the case of supersingular curves becomes a subexponential attack.

This happens because it can be shown that all supersingular curves have very small values

of k associated with them ([52] page 810). However, non-supersingular curves have large

values of k associated with them. If k > log'q, then the index calculus methods in

F rrbecome 
fully exponential and the MOV altack is worse than the square root attacks.

It notes that anecessary condition for E[n] :E(F 
Zr) 

is that ttl qu - t.

As an example of the above discussion, suppose one has a non-supersingular curve E(Fq)

where q:2rs5 .It is known [38] that E(Fq) z 2111 x Znwherc nzl nr. Suppose also that p is a

prime dividing nr and that p has about 40 decimal digits (It is possible to find curves over

Fo whose order is divisible by a prime factor with up to 46 decimal digits). Now if the

smallest value of k for which E[nr] c P(F 
Zr ) 

is at least 10, then the MOV attack requires

an Index calculus attack in F freld with more than 1500 bits. For this elliptic curve, the

most efficient way to compute elliptic logarithms is by one of the Square root attacks, and

these are infeasible for numbers of this size as pointed out above.

(2) The determination of the number of points,

Determining the number of points on an ellþic curve is important for two reasons. First is

that the order must have a prime divisor large enough to give adequate security against

one of the Square root attacks. Second is to permit signatures that are as small as possible.

The supersingular cases can be determined theoretically as [56]. Computing the number of

points is a more difficult problem. Here it will examine the case q,:2rss in more detail.

The first case is the class of supersingular curves over t 2,". 
Since m : 155 is odd, there

are only 3 curves to examine (refer to chapter 3.3). For the curve y2 + y: x3, the k value is
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2, so regardless of the size of the prime factor, dividing 2ts5 + 1 and Index calculus attack

in F 2," will compromise the system. The largest prime factor dividing 21ss + I has 17

digits. For the other two supersingular curves ovêr Fq, the reduction algorithm requires

computing logarithms in F 2u,0, 
which is out of range for existent discrete logarithm

methods. For the curve with order 2rs5 + | - 2", the largest prime divisor has 20 digits;

and forthe one with order 2tss + I +278, there is aprime factor with26 digits. Both of

these curves do not provide enough high security from the Square root attack. If the

supersingular curves are over Fo where q: 2310 (i.e., a quadratic extension of p r,,), the

situation is much better. For the curves with order q + I +,,1q, the largest prime divisor

has 65 decimal digits. For the curves with order q + 1 - Jq , the largest prime divisor has

54 decimal digits. There are 4 supersingular curves of this type and each of these under

the reduction attack requires the computation of discrete logarithms fut F 2.". These

curves provide very high security.

Second case is the class of non-supersingular curves over Fo where q,= 2rss. The number

of this curves is2(2rs5 - l). This large choice of curves makes itpossible to find large

numbers of curves over this field for which the order of a curve is divisible by a large

prime factor. In general, determining the order of an arbitrary non-supersingular curve

over X'n is not trivial and requires some variant of Schoofs algorithm [57]. There is a

relatively simple method for computing a fairly large number of non-supersingular curves

over F'n and giving a high level of security. The method will use the Weil Conjecture for

lifting curves [52].

Therefore, in order to avoid an easy solution to the disctete logarithm problem using the

techniques that apply to any finite Abelian group, which takes approximately./1

operations (where p is the largest prime dividing the order of the group). It is important to

choose E and q, so that tt : I E I ir di.'irible by a large prime ([l l] page 206).
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4,1.2 The Comparison of Efficiency of the Cryptosystem

Here comparison of the efficiency of the cryptosystems is mainly concerned with two

points: the security term and key length. From the description in chapter 3, it is shown

that the security of cryptosystem will be determined by the difficulty of reversible

computation of Abilene group. In fact, the different architecture of computations is

existed in different group of finite field. For example, let GF be a finite group, and let a

and b be elements of GF. Then the discrete logarithm problem for GF is to determine a

value x (when it exists) such that a* = b. The value for x is called a logarithm of b to the

base a, and is denoted by logob. It is clear that the difficulty of determining this quantity

depends on the representation of GF. For example, if the abstract cyclic group of order m

is represented in the form of the integers module m, then the discrete logarithm problem

reduces to the extended Euclidean algorithm. However, if m + 1 is prime, and the group

is represented in the form of the multiplicative group of the finite field F'+r, the problem

is much more difficult to calculate for that representation of group (refer to [52]). If the

group is represented as an elliptic curve group over a finite field, then the problem is

again much more difficult.

In other words, it is convenient for the users of a public key cryptosystems that the key

size be as small as possible. However, most of the known public key cryptosystems are

insecure if the key size is smallerthan 135 bits. In the RSA system [10] the public key

consists of the integers e and modulus N. Since factoring 135 bits integers can readily be

done on a microcomputer, the RSA system is insecure for keys of that size. So that

although e can be small, N should be at least 512 bits in length. In the ElGamal system

[25], the same holds true for the system whose securþ is based on discrete exponentiation

in a finite field. The private key k can be restricted but the public key ak (where a is a

generator of the freld) is the size of the field that should be at least 2s12.

An advanced candidate is the Elliptic Curve cryptosystem. The size of the group used in

the ECC needs only 155 bits, but it offers the same of degree security as the RSA or

ElGamal cryptosystem working with 512 bits. The remainder of this chapter will be
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organized in two sections: a comparison between the RSA and the ElGamal cryptosystem,

and a comparison between the ElGamal and the elliptic curve cryptosystem.

4.1.2.1Comparison between the RSA and the ElGamal cryptosystem

From the discussion of chapter 3, the modulu N is a composite integer in the RSA system.

The security of the RSA cryptosystem depends on the diffrcuþ of factoring the published

modulus N. If the number N can be factored, then the secret key (d, N) can be computed

and all of Alice's private mail or digital signatures can be read. Therefore, if the RSA

system is to be secure, it is certainly necessary that N : pq must be large enough that

factoring it will be computationally infeasible. Recently Odlyzko [4] has forecast that a

sl2-bitmodule will be vulnerable to factorization in a couple of years, and is therefore not

suitable as a long-term basis for security protection. It is likely that a 1024 bit RSA be

become coÍtmon in the near future. Though it will probably remain secure for many years

[18], it requires too much menory for the multi-application smart card.

It is also been shown that the security of the ElGamal cryptosystem is based on the

diffrcuþ of the discrete logarithm problem in Zrv. If the discrete logarithm problem in ZN

can be solved in polynomial time, then N can be factored in expected polynomial time

([53] page 114). In other words, the discrete logarithm problem in ZN is no harder than the

problems of factoring N and computing discrete logarithms n 7', for each prime factor p

of N. When utilizing finite fields GF(p), whether p is prime or p : 2k, it is necessary to

ensure that p - thas alarge prime factor, otherwise it is easy to find discretç logarithms in

GF(p). This restriction is also similar to the need to choose the secret primes in the RSA

system carefully [58, 59]. That is the reason that the key length in the ElGamal

cryptosystem should be the same as the RSA cryptosystem. Currently p should be at least

512 bit modules which is secure from factoruation for a only a few years, and which is

only suitable for the short-term protection of secrets. If p were to increase to 1024-bit

prime, it will provide over 100 years long-term protection of secrets [60].
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So it can be said that the complexþ for finding out the discrete logarithms n a freld 7a

for a prime p is the same as the complexity for factoring an integer N with the same size,

where N is the product of two approximately equal primes [35, 61]. That is the reason of

requiring the same key length for the same length of security terms.

An important difference between the RSA and ElGamal cryptosystems is the computing

architecture of cryptosystem. The RSA is a factoring algorithm, which is a "uniformly

secure" system, in the sense that there can be no large sets of "weak messages": if a crypt-

analyst can decrypt a fraction of messages encrypted with the RSA cryptosystem, then he

could effectively decrypt all messages. Putting it another way, if the RSA cryptosystem

offers security for the encrypted messages, then it offers uniformly high security for all

messages. This follows from the multiplicative nature of the RSA scheme [62]. The

ElGamal system relies on the discrete logarithm algorithm, which is much more difficult

to use to decrypt a fraction of the messages, if the crypt-analyst does not know the key. In

this sense that the ElGamal cryptosystem is based on a more powerful One way function

than the RSA cryptosystem.

4.1.2.2 Comparison between the ElGamal and the Elliptic Curve cryptosystem

The security of the Elliptic Curve cryptosystem is based on the difficulty of the discrete

Elliptic logarithm problem, which is analogous to the discrete logarithm problem on an

elliptic curve over a finite field GF(Ð. The computation in the groups used in the ECCs

and ElGamal system is the main difference between the two systems.

Recall from chapter 3.3, the points of the elliptic curve E over a furite fïeld K = GF(Ð,

where e : p', form an Abelian group. In some ways this group is similar to the

multiplicative group K* of the field K. For example, Hasse proved that the order of the

group lg"l ir equalto q* 1-aE*, where I u",.I <zJq, and so ithasthe same asymptotic

size as lE*-l: q -1. Actually, one can obtain K* from the above construction of an

additional law on Eç if one lets Eç "degenerate" by letting the cubic on the right in (3.3-4)
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obtain a double root. Then if the two slopes at the singular point of Eç are in K, it proves

that the set of nonsingular points of Er (i.e., those whose x-coordinate is not the double

root) form a group isomorphic to K*. But unlike K*, which is a cyclic group, the Abelian

group Ex for K : GF(q) can either be cyclic or else a product of two cyclic gtoups. In

practice, for a "random" elliptic curve, usually either this group is cyclic or else it can be

written as a product with one of the cyclic factors much smaller than the other. For this

reason, it seems that the elliptic curve cryptosystem based on the discrete ellþic

logarithm are secure over much smaller fields than ElGamal cryptosystem based on the

multiplicative group of the field. Also there is much more choice available when working

with elliptic curves: for fixed q one has only one group Fq, but one can obtain many

groups of curves E by varying the coefficients of the defining equation of the elliptic

curve (shown on Table 4-l).

The Addition Formula for E: f : f + æ< * b,

l)
2)

a
-)
4

b
5

-t

x
1,318
4,321

v
47,849
284,038

l0) -19 -51 2,955,980 5,082,205,677

Table 4-1. Isomorphism Classes of Curves over Fo (q:2o)

The total number of elliptic curves E: y2 : *3 + a* + b over/r,,, is calculated by the

equation of the form:

(2"'\= , ,þ"'l *.),0,.
[z ) A"'-2)x2t 

L

Note that here the coefficients of y2 and x3 are simplified to be l. If the coefftcient of y2 or

x3 is selected from the field F Zu,, 
then the total number of curve E is that

(2"'\=, (2'"1 
*10u,

[t ) lZ"'-3)ßt 
L
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Therefore, the size of the group used in the ECC is much smaller than that used in the

ElGamal algorithm. The q needs only 155 bits for short-term protection or 201 bits for

long-term protection. At these levels it offers the same degree of security as the ElGamal

cryptosystem working with respectively 512 bits and 1024 bits prime, since the Elliptic

Curve algorithm uses a different group operation in an Abelian group than multiplication

of integers mod q.

Another target to be discussed is the ratio R of the term of securþ increased to the bit of

key size increased, shown as Fig.4-1.

Terrn of
Security
(Years)

100

I

1

Elliptic
ElGamal

Yn:100(years)
À1.tr6¡6=5 12 bits

Àlttrsc: 46 bits

5 I

0 155 201 512 1024 N (Uits)

Fig. 4-1. Comparison of the Efficiency between Two Types of Cryptosystem'

A key advantage is that, if the security term increases quickly, the size of the numbers

needed to achieve a particular level of security increases much more slowly for the

Elliptic Curve system when compared to the ElGamal system. This increase in effrciency

is shown as Fig. 4-1. Let R:Y/AI{, where Y and N denote the securþ terms in years and

the number of bits individually. As previously described, where the size of field is over

GF(q), where Q:2n :220', the securþ term is longer than 100 years[60]. It is reasonable

to take Y=100 years approximately as the difference between the term based on 155 bits

and the term based on 201 bits, and similarly for ElGamal bit size. The Fig. 4-1 shows

that the Rzrc: Y/Al,{crc: 100/(1024-512) : 0.195 years/bit in the ElGamal algorithm, but

R¿c: Y/Al,{oc: 100/(201-155) : 2.174 years/bit in the Elliptic Curve algorithm. It is
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clearly shown that the efficiency of .R¿c is as many as eleven times larger than.R¿¡c. The

significant is that the potential problems to require long term security that restricted in the

small memory capacity were being resulted. For example, to design a smart card system.

4.2 The Efniciency Trade Off Against the Time of Computation

From the discussion above, it is obvious that the securþ of the RSA system is dependent

on the size of modulus N, which has to be a large prime of more than 512 bits for security

purpose. The security of the ElGamal system depends on the same size of modulus N as

the RSA system, although the discrete logarithm problem of the ElGamal system is

different from the factoring integer problem of RSA system. The large size of modulus N

has the benefits of long-term security, but it needs not only more memory for storage, but

also more time for calculation.

In the case of the Elliptic Curve cryptosystem, it needs much smaller size bits over GF,

but offers the same degree of security as the RSA and ElGamal cryptosystem working

with large bits integer N. Therefore, it can efficiently save much memory space, but

unfortunately it needs a longer time for computation, since the arithmetic of the group

operations is quite complex. This is the main barrier to the practical implementation of the

elliptic curve algorithm.

In a discussion of the computing time in cryptosystems, some basic knowledge of the

measurement of time in cryptography will be abridged to simpli$'the topic of computing

time (the interested reader should refer to Í321).It starts with the computation of time in

public key cryptosystem and the comparison of time in cryptosystem as follows.

4.2.1 The Computation of Running Time in Cryptosystem

The computation of time in cryptosystem is a very complex topic, since it is related to the

degree of security of each cryptosystem. The purpose here is not specifically that topic,
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thus the introduction of computation of time will be simplified, so that it is simply shows

that the running time in Elliptic Curve cryptosystem is harder to satisff the standard

adopted by the ICC.

4,2.1,1 The computation of running time in RSA system'

In the RSA cryptosystem, as N is very large, one has to use multiprecision arithmetic to

perform computations in Zn, and the time required will depend on the number of bits in

the binary representation ofN.

Suppose N has k bits in binary representation, i.e., k: LlogNJ+ t. It is not difficult to see

that an addition of two k-bit integers can be done in time O(k), and a multiplication can be

done in time O(k2). Also a reduction modulo N of an integer having at most 2k bits can be

performed in time O(k1.

Now suppose that p, g e 7^.pq,(mod N) can be computed by first calculating the produce

pq (which is 2k-bit integer), and then reducing it modulo N. These two steps can be

performed in time OGl.This method is called modular multiplicationf4ll.

The computation of a function of the form x' (mod N) is called modular exponentíation.

Thus, both of the encryption and the decryption operations in RSA are modular

exponentiations. Computation of xo (mod N) can be done using c - I modular

multiplications. But this is very ineffrcient if c is large (c might be as big as 0N) - 1,

which is exponentially large compared to k).

The square-and-multipþ method [63] reduces the number of modular multiplications that

require computing x" (mod N) to at most 2l (where I is the maximum length of number of

the bits in the binary representation of c). Since I < k, it follows that x" (mod N) can be

computed in time O(k'). Therefore, both encryption and decryption in RSA can be done in
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polynomial time (as a function of k, which is the number of bits in one plaintext or

ciphertext character).

There are many factoring algorithms at present. The three which are the most effective on

large numbers, are the quadratic sieve, the ellþic curve algorithm and the number field

sieve. First it is necessary to introduce a notation of "bound" B in Pollard's p - I

algorithm, before briefly introducing the computations of time required'

The Pollard's p - 1 algorithm has two parameters: the (odd) integer N to be factored, and

a "bound" B. Suppose p is a prime divisor of N, and q < B for every prime power ql O -
1). Then it must be the case that (p - l)lB! [al]. Let

a:2Bt (mod N),

so that a:2Bt (mod p).

since plN, then 2P-r - I (mod p).

Since(p-1)lB!,thena:l(modp).Ithasthatpl(u-r)andplN,sothatpld:gcd(a-l,

N).

In the p - I algorithm, there are B - 1 modular exponentiations, each requiring at most

2log2B modular multiplications using square-and-multiply. The gcd computation can be

done in time O((log N)3) using the Euclidean algorithm. Hence, the complexity of the

algorithm is O(Blog B(log N)t + (log N)3). If B is O((log N;i¡ for some fixed integer i,

then the algorithm is indeed a polynomial time algorithm. However, for such a choice of

B, the probabilify of success will be very small. On the other hand, if the size of B is

increased to Nl/2, then the algorithm will be successful, but it will be no faster than trial

division.

The elliptic curve factoring algorithm (note that it is not the elliptic curve logarithm

algorithm discussed above) by Lenstra in [64], is in fact a generulization of the p - I

method. The elliptic curve method depends on the more likely situation that an integer

"close to" p has only "small" prime factors. The p - 1 method depends on a relation that
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holds in the group 7a,the elliptic curve method involves gfoups defured on elliptic curves

modulo p.

Assuming the distribution of integers is not divisible by any prime > B in a small interval

around p. Lenstra proves that the following probabilistic time estimate for the number of

bit operations required produce a nontrivial divisor ofN:

O(exp((1+e) 2log ploglog p )),

where p is the smallest prime factor of N and e approaches zero for large p. Since p

<.ff , it follows from the above is of the form:

O(exp((l + e¡fogllrogrogN ¡¡.

The Quadratic sieve method, developed by Pomerance [65], luses afactor base, which is a

set p of small primes. First it is necessary to obtain several integers x such that all the

prime factors of x2 (mod N) occur in the factor base p. The idea is to take the product of

several of these x's in such a way that every prime in the factor base is an even number of

times. This then gives a congruence of the desired typ" *t : y2 (mod N), which will lead

to a factorization ofN.

Suppose Þ: {pt,..., ps} is the factor base. Let C be slightly larger than B (i,e., C: B +

10). Suppose one has obtained C congruences:

x',= p?"" pT"x"'xpf,"(modN), (1<j <c)

For each j, consider the vector aj : (orj (mod 2), ..., crBj (mod 2)) e ZzB.If a subset of the

a¡'s that sum modulo 2 to the vector (0, ..., 0), can be found, then the product of the

corresponding s¡'s will use each factor in p an even number of times.

Pomerance [65] has proved that the expected running time of the quadratic sieve factoring

method is asymptotically

O(exp((l + e) NloglogN )),

109



The Efficiency of the Elliptic Curve Cryptosystem

for any e > 0. There is a fairly large space requirement, also of the form

exp(C logNloglogN ).

The number field sieve method is a more recent factoring algorithm. It also factors N by

constructing a congruence x2 : y2 (mod N), but it does so by computation in rings of

algebraic integers. It has a running time that is asymptotically

O(exp(2+eXlog N) 1/3(loglog N)"')).

In practice, it appears to be the fastest method for factoring numbers that are at or beyond

the current (1994) upper limits of what can be factored, i.e., more than 150 digits. The

running time of them is converged in Table 4-1.

Table 4-1. The running time of three cryptography algorithms

The e denotes a number that approaches 0 as N + æ, and p denotes the smallest prime

factor of N. In the worst case, p o JÑ and the asymptotic running times of the quadratic

sieve and elliptic curve algorithms are the same. But in such a situation, the quadratic

sieve generally is more advanced than the elliptic curve. The elliptic curye method is more

useful if the prime factors ofN are of different size [41].

The number field sieve is the most recent of the three algorithms. It seems to have great

potential since its asymptotic running time is faster than either quadratic sieve or the

elliptic curve. Although still in developmental stages, people have speculated that the

number field sieve method might prove to be faster for numbers having more than 130-

150 decimal digits [32].

O ( exp(2+eXln N) "' (lnln N)'")).
lnplnlnp )).O(exp((l+e)

lnNlnlnN ).O(exp((l + e)
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Currently the industry of smart card crypt-processor has developed rapidly (refer to

chapter l). A comparison of the computing time of various chips produced by three main

companies is shown nTabke 4-2.

Table 4-2. Comparison of the Computing Time of SmartCard Chips

Note that C means Signature time with Chinese Remainder Theorem'

4.2.1.2 The computation of running time in ElGamal system

The Index calculus method for computing the discrete logarithm is considered to be one of

the best factoring algorithms. Recalling chapter 3.2,this algorithm consists of three stages.

The frst two stages belong to pre-computation, and the third stage finds an individual

discrete logarithm. There is a difference in the architecture of the ElGamal system

compared to the RSA system. Consequently, there is also a difference between the method

of computation in both cryptosystems. The computing time of the ElGamal system will

consists of two parts, the running time of pre-computation and the time to furd an

individual discrete logarithm. The ElGamal system presents an asymptotic running time of

o(exp((1+o(1)) pln'k¡^ p )),

for the pre-computation phase, and the much shorter running time of

o(exp((1/2+o(l)) ln plnln p)),

for finding an individual logarithm once the pre-computation is done. The running time of

the pre-computation is roughly the same as that of the fastest known algorithms for

factoring integers of size about p. The details are referred to in [35]'

5600125(C)500Motorola 5 MI{zlsoo(c) 1,2 um
Siemins 60(c)220 1.0 u.m5 MHz450(c)

385Thomson 1so(c) 1.2 pm5 MHz
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In practice, it is quite different from the situation of the finite field GF(2) (or more

generally, fields GF(p") where p is held to be fixed and n + æ) where the first author [2]

has shown that discrete logarithms can be computed in time

o(exp(cnr/31ln n¡2l3¡;

for some c > 0 depending on p. The Index calculus method can be modified to work in

these fields. The pre-computation time is calculated to be

O(exp((1.405 + o(l)) n1/311n n)''t)),

and the time to fmd an individual discrete logarithm is

O(exp((1.098 + o(l)) n1/311n tt)"')

Therefore, for large values of n (say n > 800), the discrete logarithm problem in GF(2') is

thought to be intractable provided2" has at least one large prime factor (in order to resist a

Pohlig-Hellman attack).

The fastest known general algorithm for computing discrete logarithms modulo p is based

on the Number-Field sieve and has asymptotic running time [35]

O(exp((c(ln p)t/' (lnkr p)"'))

for some small constant c. At present the fastest implementations of discrete logarithm

algorithms have larger asymptotic running time

o(exp((c(ln p¡1/21lnln p) 
t"))

Computing discrete logarithms modulo a prime p seems at present to be infeasible for

primes of more than 120 digits [66].
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4.2.1.3 The computation time in the Ettiptic Curve system,

As described in chapter  .l,the creation of efhciency in the ECC is based on the principle

and complex computation on the Abelian group with the algebraic operation '+' of the

Elliptic Curve algorithm. Thus, it leads to great complexþ of computation and more time

required for the pre-computation stage of the ECC. , Further details may be found in [28].

The brief description of the Elliptic Curve algorithm is listed below,

--- The working on the Elliptic Curve:

a. Adding and Doubling Points,

b. Choosing the curve,

c. Computing a Multiple of a Point.

--- The more complex computation of field operations:

a. Representation of the Field Elements,

b. Addition and Multiplication of the Field Elements,

c. Modular Reduction,

d. Computing Reciprocals.

These complex operations cause the time required in processing the ECC to become

gradually longer. At present there is no algorithm faster than the Baby-step Giant-step

algorithm (see Appendix F) for an ECC. The whole algorithm takes

olqt/a(log q)'lLt'')

bits operations, and requires

Olqt/a1log ùltt'')

bitsofstorage[5].Recallthat#E(X'o):q+1-t,thecalculationoftmodulo/using

Schoofs algorithm for small primes L ís very simple. However, since deg(Ç(x)): (12 -
l)12, the calculation quickly becomes infeasible as the value of (. increases. J.Buchmann

and V. Muller [5] combined Schoofs algorithm with Shanks' Baby-step Giant-step
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method to count the points on a single randomly chosen elliptic curve over F'(2'). The

algorithm was implemented in the C language on a SUN-2 SPARC-station with 64

Mbytes of memory [67], as shown in table 4-3.

Table 4-3 Times for computing the points on Elliptic Curve over F(2')

From a practical point of view, curves over fields of characteristic 2 are more attractive,

since the arithmetic in GF(2') is easier to implement in hardware than the arithmetic in

GF(p) þ is odd). Schoof s algorithm for counting the points on an arbitrary curve over

GF(2') has improved the actual running time [63]. For the sake of comparison, the table

here gives some total time (seconds) of computation using the field GF(2-) and GFþ),

where p is the least prime greater than 2^, as shown in Table 4-4. It considers the 50

random curves of the equation y2 : x3 * x * b for I < b < 50 for each of these primes, and

has been done on a DecAlpha 3000/500 machine.

Table 4-4. Comparison of Running Time for Finite Field GF(2-) and GF(Ð

The timing of the ECC system that calculated from making a few measurements on the

SPARC (25 MHz) is shown in Table 4-5 1281. Assuming the clock rate in the chip is 5

MHz.

Table 4-5. Times for ECC operations
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It is pronounced that the computing time for encryption and decryption on a randomly

chosen Elliptic Curve will be longer than 450 ms of a standard operation at 5 MHz [5].

This is the main reason that the ECC system, with only 155-bit size of the group field, is

unavailable in practice. However it is said that the efficiency of the ECC occurs at the

expense of the time of computation.

4.2.2 The Comparison of Running Time in the Cryptosystems

In the comparison between the RSA and ElGamal system, recalled from chapter 4,1, it is

shown that the complexity of finding discrete logarithms in a prime field GF(q) for a

general prime q is essentially the same as the complexity of factoring an integer N of

about the same size (where N is the product of two approximately equal primes). In other

words, both the RSA and ElGamal cryptosystem have similar running times for

computations, which also has been proved by the equations of computing time in the last

subchapter.

Table 4-6. Comparison of Running Time between finite field GF(q) and GF(2')

In comparison between the factoring algorithm shown in Table 4-l and the discrete

logarithm algorithm shown in Table 4'6, both of the running times are nearly the same.

Since the time of finding discrete logarithm is much less than the pre-computing time,

which is reasonable to be abridged, as shown in Fig. 4-2 (using Index calculate algorithm

in GF(Ð, where q: 10s).

Index

Index

Discrete Logarithm

115



The Efficiency of the Elliptic Curve Cryptosystem

250
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Fig.4-2 Comparison of the Time of Two computing stages

In the comparison between the ElGamal and the Elliptic Curve system, it is well known

that the "Baby-step giant-step" algorithm requires time to be fully exponential in the

lengfh of the largest prime factor of the order of the group. This situation is in contrast

with that of the classical discrete logarithm problem in the multiplicative group of a finite

field. There the "Index calculus" algorithm making the time to solve the discrete

logarithm in GF(Ð is bounded by the equation of O(exp((c1tn 41/31tnln Ð"')) for a fairly

small constant c. Therefore, from a practical point of view, there are both positive and

negative features using ECCs.

On the positive side, the ECCs potentially provides equivalent security to the existing

public key schemes, but with shorter key lengths giving smaller bandwidth and memory

requirements. This will be a crucial factor in the design of Smart Cards. On the negative

side, the computation time of the ECCs is much more than that of the ElGamal system

over a fïnite field. Therefore, the computation times on the ECCs are much longer than on

the ElGamal cryptosystem. The running times of modulus and exponent operation

between the three kinds of cryptosystems are listed inTable 4-7.

Pre-comprting

Elliptio Cr¡rve
Disqrete Loqârithm
RSA (standard)
RSA ICRT)

Table 4-7.The Running Time of Modulus and Exponent Operation
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Note that: (1) It is implementation on the SLE44C200 chip card processor at

5 MHz (for selected operation).

(2) CRT means running with Chinese Remainder Theorem.

Time
(ms)
1000 Elliptic

Curve

660

500
450

220

0 13s 201 512 1024 N(bits)

RSA (cRÐ

RSA
Limit¿tion
of Timo

ElGamal

Fig. 4-3. Comparison of the Running Times between Three systems

In Fig.4-3, it is clearly shown that the running times for both the RSA system based on a

factoring large integer and ElGamal system based on a classical discrete logarithm

efficiently follow the 450ms running times of limitation made by ISO 7816 and satisfu its

requirement in practice. However, it needs more memory to store the longer length of key

for cryptography. The running times of the ECCs are much longer than the RSA and

ElGamal systems, since its computing architecture is much more complex. This is the

main reason that the ECC, with only 155-bit size of the group field, has been unavailable

in practice, even though it has equivalent security to the other two public key schemes

with the same length of the key. However it is said that the efficiency of the ECC occurs

at the expense of the time of computation.
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Summary

This chapter has discussed efficiency and running times. From the computation and

comparison of efficiency for the tl¡¡ee kinds of public key cryptosystem, the advanced

efficiency of the ECCs has clearly shown that the ECCs is a desirable cryptography

algorithm. It potentially provides equivalent securþ compared with the existing public

key schemes, but with shorter key lengths allowing smaller bandwidth and memory

requirements and with the potential to be a crucial factor in the design of Multi-

application smart cards. From the computation and comparison of running times, the

disadvantages of a lengthy computation time in the ECCs has shown that the efficiency

trades off with the running times, which is the main reason preventing use of the ECCs in

practice.
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5. Conclusion

The purpose of this research is to explore an efficient cryptographic algorithm to achieve

a high degree of securþ for multi-application smart card (MSC) in the future. The aim

of the MSC is ultimately to arrive at the day where people will only need to carry one

smart card in their wallet. The security, convenience and integrþ of a single smart card

will have beneficial applications as varied as daily services. These advance performances

will need a large number of memory spaces. But the chip on the smart card is restricted

in size by the ISO 7816 standard, with the result that the memory capacity of the chip is

not big enough to store the larger and complex programs for the operating system and to

store protocol codes of the cryptography algorithms for factoring large integers. Within

this limited memory space, cryptographic keys will be stored in EEPROM, the ROM

mask normally store the operating system and higher level instructions which execute

cryptographic algorithms. So investigation for an effïcient cryptography algorithm which

satisfies both the security levels based on factoring large integers and the memory space

of the restricted size chip is of importance.

1. Outline of the thesis

The basic design and development of smart card technology for future use has been done.

It is shown that the MSC is much more complex than SSC in both physical and logical

constructions. More importantly, it is necessþ to build an operating system and database

inside the chip to achieve securþ. For these requirements, the MSC will need a large

amount of memory, but the chip has only a small memory space since it is reshicted in

size by the ISO 7816 standard. This is the main barrier in thç development of the MSC.

Further more it is not certain how far the silicon industry technology will go towards that

goal of having big enough memory size. The significant of this investigation is that the

decision about the direction of smart card technology development will determine the

achievement of MSC in future, or the changes introduced today will determine

tomorrow's result.
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The public key cryptosystem is the best secure system at present. Three kinds of public

key cryptosystem have been discussed. It has be shown that the elliptic curve algorithm

based on discrete elliptic logarithm has a different method than the ElGamal

cryptosystem based on classical discrete logarithm in a finite field. Foremost it has the

addition group operation, while later it has the multiple group operation. This is the main

reason why the ECC potentially provides equivalent securþ to the existing public key

schemes, but with shorter key lengths requiring smaller bandwidth and memory and

which are a crucial factor in the design of the MSC.

For more understanding of the creation of the efficiency of elliptic curve cryptosystem,

the minimum knowledge of the principle of mathematics related to three kinds of

cryptosystems is introduced in this thesis, showing the different architecture of

computation and comparing the efficiency and running time between three public key

cryptosystem. In addition, it will give a source of basic notation showing that the

efficiency of the ECC is created by the Abelian group operation, which is especially

important for the MSC where the chip is restricted in size. The ECCA is a unique public

key cryptography algorithm based on the mathematical principles of the Abelian goup

operation, and offers an effrcient solution to achieve a high degree of securþ by using

smaller numbers of key. Unfortunately, the lengthy running time is created by the

complexþ of the computing method of the ECC, which is the principal deterrent to

developing the MSC.

The comparison of the effrciency and running time clearly shows that the advanced

efficiency of ECCs is as many as eleven times larger than RSA and ElGamal systems.

The disadvantage of the lengthy running time operated by ECCs is gradually longer than

RSA and ElGamal systems, and exceeds the 450 ms standardized by ISO 7816.

Therefore it gives a significant result that the advanced effrciency of the ECCs is hading

off the redundant running time, which is the main reason that the ECC is presently

unavailable for practice application.
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2. The Ettiptic Curve Cryptosystem Ín Future

In encryption and decryption of the MSC, performing the computations with limited

memory in a reasonable time is a difficult task. A reasonable thread in the ellipic curve

algorithm shown above is to increase the memory space on the chip and to reduce the

lengthy running time.

The responsibility for the former belongs to the silicon industry technology, which

expects that the memory size will increase to more than 120 Kbytes (refer to chapter l) in

a chip sized 25mm2 using 0.3 pm CMOS technology t17l in future. Reduction in running

time requires increased speed in integer arithmetic by developing and improving the data

structures and algorithm design. In particular, the arithmetic in characteristic 2 (1t:2^ +

r) is the most efficient means to speed up the implementation of the ECCs.

Currently, the memory size in the chip is smaller than 30 Kbytes. It makes the research of

data structures and algorithm design less athactive for the ECC, since these methods

require more memory space. However, with the growth of memory capacity, the data

structures and algorithm design of the ECC will be developed and improved enormously

since the ECC requires smaller key tength, and the additional memory space required for

the improvement of data structures and algorithm design is also not large. Therefore, it

will be possible to reduce lengthy running time to an effective time of 450ms that is

suitable to ISO 7816 standard.

The ECC is a unique efficient algorithm for the achievement of MSC, but the key length

of ECC stays at only 135 bits - 155 bits, since its running time is restricted by the

complexþ of the computing operation. These bits are only suitable for short-term

security. Further study to expand to field F(2'ot) (201 bits) would provide a significant

solution to the problem of the smaller memory space and the longer-term securþ. Under

these conditions, the MSC with a high degree of security will indeed be practical.
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Appendix A. Number Theorem

A-1 One-way X'unction

A one-way function is a function that is easy to compute, but diffrcult to invert by any

known method as shown in Fig. A-1. A Polynomial function with many terms is one

example. Other examples abound, but there is no rigorous proof that any function is tnrly

one ïvay in the sense that a simple inversion technique is impossible'

If extra information permits one to easily invert a one-v/ay function, the extra information

is called "trapdoor", then this function is called a trapdoor one-way function. In public

key cryptography, the private key provides the extra information or "trapdoor", whereas

the public key specifies the one-way function.

Encryption

Decryption

Fig. A-1. The Framework of One 'ïVay Function

A-2 Number Theory

Division Algorithm. If a is an integer and b is a positive integer, then there are unique

integers k and I such that a = kb + I with 0 < k < b.

Euclidean Algorithm. Let 16 and rr be non-negative integers with 11 # 0. If the division

aþorithm is applied successively to obtain r¡: k¡+rr¡+r * q+z with

Result

Public Key
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0 < r¡+z < r.¡+r for j : 0, 1,..., n - 2 andif rn-1= krrn, then (rs,r1) : rn,

the last non-zero remainder.

Proof: Successive applications of the division algorithm yield:

fs:k1f1*12, 0(rz(rt

\=þt2*4, 0(r3<12

f¡-2 =k¿-1f¡-I -l- ro, 0 ( rn( rn-l

rn-1 : knrn.

Eventually, a remainder of zero is obtained because the 11 > Í2)"') rn ) 0, which ensures

that the sequence of remainders has fewer than rr terms. Lemma I implies that (16, 11) :

(tttz) Ê ... : (rn-r, rn) : (ro, 0) : rn. Thus, (16, 11) : rn.

The Euler totient function:

Ø(N) is the number of positive integers less than N that are relatively prime to N. For

prime p,Ø(p) =p - 1.

a

o Eulerts Theorem:

If N is a positive integer and a is an integer with (a, N) : 1, then

aØ(N)- 1(modN)

or, equivalently uøG't) lmod N) = I

So Euler's theorem can be used to find inverses modulo N:

ax (mod N) : 1

ax:1(modN)

where (a, N) : l. If 1 ( x < N, the solution can be expressed as

or (A.2-1)

(A.2-2)x : aØN -t (mod N)
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o Theorem A-2.1 (Theorem 7 nlzIl):

If p and q are primes and N : pq, then ØCN) : (p-lXq-l).

Definition A-2.22 The Order

--- Order of a fietd (in t73l page 32): A fmite field is a field which has a furite

number of elements, this number being called the order of the

field.

--- Order of a point (in t5] page 26): Let E is a torsion gtouP, i.e., for each point P

e E there is a positive integer k such that kP : O. The smallest

such integer is called the order of point P. An n-tOrsion point is a

point P e (Fq) satisfying nP: O.

--- Order of a curve (Lemma 2.9 in [5]): Let #E(Fq) denotes the number of points

on ellþic curve E defined over X'0. By Hassets Theorem: Let

#E(Fq): q + 1 -t, thenltl<Zrlq .

There exists an elliptic curve E over Fn such that E(Fo) has

order q + 1 - t if and only if one of the following conditions

holds:

(I) t* 0 (modp) and f < +q,.

(II)m is odd and one of the following holds:

(l) t:0,
(2) (:2qandp:2,

(3) ( :3qand p: 3.

(III) m is even and one of the following holds:

(l) (:4q,,

(2) t2 : g,andp * 1 (mod 3),

(3) t:0andp+1(mod4).
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¡ Definition A-2.3: Factor Base

A Factor Base (FB) is a set B : {pr, þ2,..., pr,} of distinct primes, except that p1 may be

the integer -1. We say that the square of an integer b is a B-number (for a given n) if the

least absolute residue b2 (mod n) can be written as a product of numbers from B.

Example: For n :4633 and B : {-1, 2,3},the squares of the three integets 6'1,68 and 69

are B-numbers, because 672 : -144 (mod 4633),68': -9 (mod 4633), and 692: 128

(mod 4633).

Let F2h denote the vector space over the field of ¡wo elements, which consists of h-tuples

of zeros and ones. Given n and a factor base B containing h numbers, we show how to

correspond a vector e e X'zh to every B-number. Namely, we write b2 (mod n) in the form

I1',=, pi' and set the j+h component ej equal to cr¡ (mod 2), i.e., sj : 0 if ct¡ is even, and

e¡: I if a¡ is odd.

o Definition A-2.4: Division Polynomials

Let q: 2^, and let E be a non-supersingular elliptic curye over Fq, and has the form

f * *y: x3 + a2x2 * a6, (A2.4-1)

where a2 e {0,y}, ï e Fo being a fixed element of trace l, and ar e Fq*. The division

polynomials f"(x) e Fo[x] associated with the non-supsingular curve E given by the

equation (A2.a-\ p7):

fo:0
.c 

-lll-r

fz:x
f:=xa+x3+a6
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f¿=x6 +as*2

f2n+7: t'nt'n*z * f.-tfn+t, î>2
Xtn: fr,-lfnfn*z * fn-2fof n¡1, n > 3.

The poþomials fn are monic in x, and if n is odd then the degree of fn is (* - Dlz.

Definition A-2.5: Endomorphism

Let EndçE denotes the ring of endomorphisms of E that are defined over Fo. For any

integer m, the multiplication-by-m map P Ð mP is an endomorphism of E, and hence Z

e EndrE. The map (Þ e End<E sending (*, y) to (xq, yq) and fixing O is called the

Frobeníus endomorphism ofB.In EndrE, Õ satisfies the relation

o2_to*q:0
for a unique t e Z, called the trace of the Frobenius endomorphism. ln fact, t: q * I -

#E(Fq). Recall that if / is an odd prime then E[/] = Zt @ Zr. Consequently, E[/] can be

viewed as a vector space over Fr; the vector space has dimension2. The map (Þ restricted

toElllis a linear transformation on E[/] with characteristic equation O2 - tO * q:0.

proposition A-3: For any positive odd n, the congru*." 
[;) 

:(_'tlf"'-')"i, holdins.

Proof: Let (n) denote the function on the rigt side of the equalþ, as in the proof of

Proposition II.2.4 in t321. It is easy to see that f(n1n2) : f(n1)f(n2) for any two odd

numbers n1 and n2 (Just consider the different possibilities for nr ând nz modulo

8). This means that the right side of the equalþ in the proposition equals.

fbrY' fb,

But this is (2/n), by definition.

This proof is not tight, some parts of the argument are omitted. The interested reader can

refer to reference l32l page 44 fot more details
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Appendix B. Optimal Normal Bases

A normal basis for F(2tot) over Fz is a basis of the form

N= { p, p', p'',..,, p''* }.

The basis is optimal if its multiplication table is as "simple" as possible; see [69] for more

details and for an easy way to construct such a basis. Given any ü e p 
r,o', 

then one can

express 
" 

:Illic 
, B' ,where c¡ G F2, and write o : (c0, cl, o2,..., cto+). In software, cr

is represented by a bit vector of length 105, i.e. on a 32-bit machine, cr is stored in an

array of unsigned integers of length 4,thelast23 bits of which are unused.

Addition of elements is achieved by simply XOR the vector representations. Since

.,':Tc,þ'' :f",-,þ''
l=0 l=0

(with indices reduced modulo 105), squaring a is accomplished by a cyclic shift of its

vector representation.

The most efficient way to compute the inverse of cr is that first convert to a poþomial

basis representation of f ,*, using a precomputed change of basis matrix, to compute

the inverse using an efficient implementation of the extended Euclidean algorithm as

described in t70]. Then it can transform the result back to the normal basis

representation.
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Appendix C. Chinese Remainder Theorem

The Chinese Remainder Theorem is useful for purposes such as simpliffing modular

arithmetic. Suppose ûll, ..., mr are pairwise relatively prime (that is gcd(m¡, mi) : I if i +

j). Suppose ã1, ..., a, are integers, and consider the following system of congruencies:

X: âl (mod m1)

x: ã2 (mod m2)

X: âr (mod m).

The Chinese Remainder Theorem asserts that this system has a unique solution modulo

M = ml x m2x...X tltr.

This result will be proved in [41], and also describe an effrcient algorithm for solving

systems of congruencies of this type.

It is convenient to study the function \: Zu + Zmt x . .. x Zm,, which be defined as

follows:

E(*): (x mod trl, ..., x mod m).

Example: Suppose t : 2,frr : 5 and m2 : 3, éo M : 15. Then the function Ç has the

following values:

E(o): (0, 0) €(1): (1, l) 1Q): (2,2)

E(3): (3, o) E(4): (4,r) É(s): (0,2)

E(6) : (1 , o) eQ) : (2, r) €(8) : (3, 2)

€(9): (4, 0) €(10): (0, l) e(11) = (r,2)

Ê(12):(2,0) e(13):(3, l) E(14):(4,2).
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Appendix I). Weierstrass Equations

Let Fq denote the finite field containing q elements, where q is a prime power' I-et K is a

field, let K denote its algebraic closure. The projective plane P2(K) over K is the set of

equivalence classes of the relation "-" actiîgon K'\{(0,0,0)}, where (xt, yt, zt) - (xz,Yz,

z2) if andonly if there exists u e K* such that Xl = uX2' lt = u!z' zt = t'JZz' A'Weierstrass

Equationis a homogeneous equation of degree 3 of the form

Y2z + atxYZ + a3YZ2: X3 + u*z + aaxz2 + asz3,

where ã1, Ã2, à,, à4, a6 e K , The Weierstrass Equation is called to be smooth or non-

singular if for all projective points P : (*, Y, z) e P'(K ) satisffing

F(X, Y, Z):Y2Z+ aIXYZ+ a3YZ2 - X3 - u*Z- a4xz2 - a6Z3 :0,

at least one of the three partial derivatives ôFlôX, AFþY, AFrcZ is non-zero at P point' If

all three partial derivatives vanish at some point P, then P is called a singular point, and

lhe Weierstrass Equation is said to be singular.

For convenience, the Weierstrass Equation is usually be written for an elliptic curve using

affine coordinate s onZplane (by mapping plane), such as let x = XIZ andY =YlZ instead

into equation (D - 1). Therefore, the form is that

E: y2 1'aúy + ã3y:f + u* t a4x* a6,

always remembering that there is the extra point O : [0, 1, 0] out at infinity. If ã1, à2, a3'

a4, a6 e K, then E is said to be defined over K.
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Appendix B. \Meil Pairing & Weil Theorem

E-1. Weil Pairing,

Let K = Fo and let K denote its algebraic closure. Let E be an elliptic curve defined over

K. If L is any field containing K, then E(L) denotes the set of points on the curve whose

coordinates are both in L, and including the point at infinþ. We will write E for E(.iK ).

A divisor D is a formal sum ofpoints in E, D : In."nr(P), where n, e Z,and np : 0 for

all but finitely many P e E. The degree of D is the integer Inp. The divisors of degree 0

form an additive group, denoted D0. The support of D is the set {P e E I n, + 0}.

If E is defrned by the equation r(x, y) = 0, I e K[x, y], then the function field K(E) of E

over K is the field of fractions of the domain K[x, y]/I,, where I. denotes the ideal

generated by r. Similarly, K (E) is the field of fractions of K [x, y]/I'.

Let f e 1( (E)*.ForeachP e E, define vp(Ð to be n > 0 or-n < 0 if f has azero or apole

of order n at P, respectively. One can associate the divisor Ivp(Ð(P) to t and denote it by

(Ð, and can verity that (f) e D0. A divisor p = Inp(P) is said to be principal if D: (f) for

some f e K (E)*. One can also veriff that D is principal, if and only if Inp: 0 and InpP

:o.

Let Dr denotes the set of all principal divisors; D¡ forms a subgroup of D0. If Dr, D2 e D0,

one can write Dr - Dz ifDt, Dz e Dl. For each D e D0 there exists a unique point P e E

such that D - (P) - (O). If D: Xn(P) is a divisor and f eK (E)* such that D and (Ð

have disjoint supports, then one defines f(D): llp.nf(P)d.
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Now let m be an integer co-prime to q and let P, Q e E[m]. LetA, B e D0 such that A -
(P)-(O) andB - (a)-(O), andAandB have disjoint supports. Letf¡, fs eK(E) be

such that (fA) : mA and (fB) : mB. Then the Weil pairing e*(P, Q) is defined to be

e'(P, Q): fA(ByfB(A).

F"-2. \ileil Theorem

The Weil theorem says in a much more general context (algebraic varieties of any

dimension) thatthe zetafunctionhas avery special form. Inthe case of an elliptic curve

E/F'n Weil proved it as following.

Weil Theorem (Conjectures) for an elliptic curve:

The Zeta function is a rational firnction of T having the form

z(T;Eß): (l + aT: qT2) I (l -T)(1 - qT),

where only the integer 'a' depends on the particular elliptic curve E. The value 'a' is

related to N : Nr as follows:

N:q+l_a.

In addition, the discriminate of the quadratic poþomial in the numerator is negative

Q.e., * . 4q, which is Hasse's Theorem), and so the quadratic has two complex

conjugate roots o, B both of absolute value r[ 1-ot" precisely, lla" and 1/B are the

roots, and cr, B are the "reciprocal roots").
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Äppendix F. Baby-step giant-step Algorithm

Assume that a subset X cZp-r is known such that the required solution of gx : y (mod p)

satisfies s e X. Choose'small' sets A, B c. Tatsuch that X g A + B where the sum of

the set is defined byA + B : {a + b (modp-1) : a e A, b e B}. Rewrite g* : y (modp) as

gu*' - y (mod p) or as gu: yg-b (mod p). Crete the lists {g" (mod P)}".¡ and {ygb (mod

p))r.s, sort (or hash) them, and find a common member, gu: yg-o (mod p). The

corresponding 'a' and 'b' define the required solution, x: a * b (mod p-l).

The method has time complexity O(s log(s)) (or O(s) if hashing is used) and space

complexþ o(s) where s = max{lel , lel }. Clearly, t >f{ for any choice of A and B

thatsatisfiesXcA+8.

This example describe Pollard,s À-method for catching kangaroos [71], in which X is

some segfnent within 4-r, or an arithmetic sequence nZat. Let n: llog pT denotes the

number of bits in p, t is some number between 0 and n, [n] denotes the set {0, 1, ..., ll -
I ), and ll x ll denotes the Hamming weight of a number x, that is the number of I 's in the

binaryrepresentationofX.Also,X=: {x e7+t ' ll"ll 
:t} denotesthesetof logarithms

with Hamming weight exactly t, and X.t : {x e 7at' ll"ll Ve !< t} denotes the set of

logarithms with Hamming weight at most t.

' Step 1. ForX=X=witht <n/2chooseA=B-X:yz.

' Step 2 For X31 with t < nlz guesses the Hamming weight of x and solves as

above. Alternatively, choose A: B :X<vz.
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' Step 3 For X = X= with t > n/2 a cosmetic change in the method is convenient:

choose A : Xx=(n+Ð p andB : Xr(n-Ð ¡2, tttotê that X c A\8, and solve gu-b :
y,that is g": ygb (mod p).

' Step 4 When some subset I E [n] is known to project every x e X in the same

way. Namely, there are some fixed values e € {0, I } for i e I, such that

every ":Il=iX ,2' . Xsatisfies Xi: ci for all i e I. For this case, one can

pick Ia E [n] and Is c [n] of (roughþ) the same size, which are disjoint

and satisfu Itlls : [n] \ L Then one can choose A : Xl-ì{x:Vie IA, xi :

0) and B : {x:Vie I! In, xi:0}.

o Step 5. If X has restricted Hamming weight and in addition is restricted by some

subset I c [n] with fixed value c¡ for i e I as above, the decomposition is

easily obtained by 'merging' the two corresponding decompositions

above.

Note that the complexity of Step 4 is exactly the square-root of the size of the structured

set, X. The complexity of small Haming weight DL is worse than this, suy lXl Þ for some

þ> 112.
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Appendix G. Menezes-Okamoto-Vanstone attack

Let E be an elliptic curve over Fq, which is the algebraic closure of Fn. E(Fq) is the set of

all points in E with coordinates from Fn. E(Fq) has finitely many points, whereas E has

infinitely many. Define E[n] : {P e E : nP: O}. E[n] is called the set of n-torsion points

of E. Now for each n, gcd(n, Ð : 1, there exists a positive integer k such that E[n] C

E(t qr) and an isomorphism from E[n] to a subgroup of F nr "^ be computed using

the Weil pairing. A random poþomial time algorithm for computing the lVeil pairing

has been proved by Miller in [55]. These results form the basis for the Menezes-

Okamoto-Vanstone (MOV) attack.

Let E(Fo) be an elliptic curve over Fo and let P be a point of order n (i.e., #(P) : n). To

apply the MOV method if gcd(n, Ð : 1, determine the smallest value of k such that E[n]

l:E(Fqr). Now if R is a point of E(Fn) whose logarithm with respect to P is to be

found, one proceeds as follows. Check that R € (P) so that there will exist some integer s

such that R: sP. Determine an element Q e E[n] such that the Weil pairing of P and Q in

F nr1"n 
ates the cyclic subgroup isomorphic to E[n]. Finally, determine the logarithm

in F gr of the Weil pairing of Q and R. This logarithm is s. Note that this logarithm can

be found by using the index calculus methods for p.rr. Thus, even though the index

calculus methods do not apply directly to E(Fo), one can map a subgroup of this group

into an algebraic structure where the method does apply.
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Appendix H. Trace Function

Let Trace function denotes the linear function Tr : Fz. -- Fz defined by

Tr:cr a d +ø2'*ø2"*..-*a2'-'.

If m is even, then let Te denotes the Trace function Te : F2m - X'+ dehned by

Te : cr ú a + ø2' * a2' *...* ø2'-" .

The elements of Fa are denoted by 0, 1, c1, â.nd cz. Thus the identities are

c12lcy*1:0,
cz2 1-cz+1:0,

c1Q2: I,

ct * cz: l.

Note that Te(c1o) = clTe(o), and Te(c2cr) : c2Te(cr).

The quadratic equation * + axt b: 0 (a, b e F2m,a* 0),

has a solution in X'2. if and only if tr(a 2b) : 0. If x1 is one solution, then the another

solution is x1 * a.

Using the general results in [ecc 98] concerning the number of roots of an affrne

polynomial over a finite field, one obtains the following results on the number of

solutions in Fz- of the quartic equation

y4+ax*b:0 (a,beF2m,a#0). (H-

1)

(l) If m is odd, then (H-l) has either no solution or exactly two solutions.

(2) If m is even and a is not a cube, then (H-1) has exactly one solution.

(3) If m is even and a is a cube, then (H-1) has four solutions if Te(b/*t3) = 0, and no

sokution if Te(blaa/3) + 0.
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Appendix I. Quadratic Residue

Suppose that p is an odd prime, i.e., p > 2.It is interested in knowing which of the

nonzero elements {1,2,..., p-l} of Fo are squares. If some a e Fot is a square, say b2:

a, then a has precisely two square roots tb (since the equation* - a: 0 has at most two

solutions in a field). Thus, the squares h Fo* can all be found by computitg b' (mod p)

for b = 1,2,3, ..., çt-l)12 (since the remaining integers up to p - I are all: -b for one of

these b), and precisely half of the elements h Fon are squares. For example, the squares

in Frr arc 12 : 1,22 : 4,32 : g, 42 : 5, 52: 3. The squares in Fo are called quadratic

residues modulo p. The remaining nonzero elements are called nonresidues. For p : 1l

the nonresidues are 2, 6, 7, 8, I 0.There are $ll)12 residues and (çt-l)12 nonresidues.

If g is a generator of Fp, then any element can be written in the fo.- d. Thus, the square

of any element is of the form glwith j even. Conversely, any element of the form gl with j

even is the square of some element, namely +gl/2.
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