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Abstract

Public key cryptography algorithms offer the potential to be the most secure algorithms
for smart card. Currently, several attempts have been made to find practical public key
systems [1, 2, 3] based on the difficulty of factoring large integers, such as the Rivest-
Shamir-Adleman (RSA) cryptosystem, or based on the difficulty of solving discrete
logarithms over finite fields, such as the ElGamal cryptosystem.

Recently Odlyzko [4] has forecast that a 512 bit module will be vulnerable to
factorization in a couple of years and is therefore not suitable on a long-term basis for
security protection. It is likely that a 1024 bit RSA will become common in the near
future. Though it will probably remain secure for many years, it requires too much
memory for the smaller size chip required for the Multi-application Smart Card (MSC).
There has also been recent progress in computing discrete logarithms over finite fields,
but the requirement of the ElGamal cryptosystem in terms of memory capacity is the
same as the RSA cryptosystem, which can provide security for longer periods, but then

requires larger memory space.

For the development of the multi-application smart card in future, the memory capacity
of the chip is not big enough to store larger and more complex programs needed for the
multi-application operating system and the protocol codes of the cryptography algorithm
involving large integers. This is because the chip on the smart card is restricted in size.
However, the advantage of the Elliptic Curve Cryptosystem (ECCs) is that it provides
equivalent security to existing public key schemes but with much shorter key lengths. A
small memory requirement is a crucial factor in the design of Smart Cards [5] and will be

significant in the design of the multi-application smart card.

This thesis considers the efficiency of the Elliptic Curve Cryptography (ECC) in the
design of the MSC in future and describes the problems of the smaller memory



requirement in public key cryptosystems for the MSC. The ElGamal and Elliptic curve
algorithms will be compared, where the modeling of these Cryptosystems will clearly
show the source of the efficiency of the Elliptic Curve Cryptography Algorithm (ECCA)

as a basis for achieving the required processing efficiency for future application.

This thesis also shows the lengthy time required for the operation of the Elliptic Curve
algorithms, which is the main cause of resistance to the ECCs, and which prevents it from
being put into practice. The thesis also compares the running time of the three kinds of
public key cryptosystem. Therefore, it also indicates the direction for research and further
development of the ECCs.
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Preface

Smart card developments all over the world can be correlated with a rapid increase in
both the scale and scope of smart card technologies. Although several multi-application
smart cards (MSC) are emerging in France, Germany, Japan and USA, they are likely
still in their infancy. The aim of this thesis is to explore the development and the
achievements of the MSC in the future, and discuss the many technological problems that
need to analyzed and solved. In particular the important issue of the limited memory

capacity in the chip is a key problem to be overcome for the successful use of MSC.

The MSC in future has few specifications with many services in one card and the highest
level of security which contain not only all of the controller security features, but a
coprocessor that processes asymmetrically on chip security algorithms. These functions
will be supported by a complex software system and will need a large memory storage
capability. In order to ensure the performance of these software functions, the Smart
Card Operating System will become more complex and larger, and the program code of

the Operating System will also need a large memory storage capacity.

However, the chip on the smart card is restricted in size and although the industry can
already produce 16 kbit ROM and 16 kbit EEPROM at present, and has already enhanced
data storage and programmed service in optional code. The memory capacity of the chip
is not big enough to store the larger and more complex programs for the multi-application
operating system and the protocol codes necessary for the cryptography algorithm for
factoring large integers. With this limited memory space, cryptographic keys will be
stored in EEPROM, the ROM mask normally storing the operating system and higher
level instructions, which execute cryptographic algorithms. It is therefore necessary to
look for an efficient cryptographic algorithm which satisfies both the security level based
on the factoring of large integers and the memory space of the restricted size chip in order

to successfully develop the MSC.
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An important fact is that the public key cryptosystems based on factoring algorithm or
classical discrete logarithm algorithms would provide the most security for MSC, but
their disadvantage is that the secure-term provided by the cryptosystems will be longer,
and then the memory space required will be larger. However, the advantage of the
Elliptic Curve Cryptosystem (ECCs) is that it potentially provides equivalent security to
these two existing public key schemes but with much shorter key lengths. Smaller
memory requirements for the ECCs will be necessary in order to achieve the maximum

potential of the MSC in future.

Another important fact is that a lengthy running time will be required for the
computational operation of the ECCs. This disadvantage is created by the complex
architecture of computation of the ECCs and is a main barrier to prevent the ECCs
becoming a practical alternative. One of the results in this thesis is that it clearly shows
the efficiency of the smaller memory requirement trade off against the more lengthy

running time.

Therefore, the investigation of the efficiency and running time of the ECCs in this thesis
will be significant in determining the direction of ECCs research. It is worth noting that
the choices and decisions made in relation to smart card technology development will

determine the future of MSC.

Smart card development also relates to many other social and technological areas, such as
communication systems, microelectronics, international standards, and privacy
protection. However, this thesis only considers the efficiency and running time related to
the use of smart card, and is divided into four parts. Chapter 1 is a description of the
physical and logical architecture of future smart cards, which will affect the production
and development of MSC in the future, and which specifically reflects the smaller
memory capacity in the card. Chapter 2 discusses the three kinds of public key
cryptosystems, and shows the three different types of cryptography algorithm and

security functions. Chapter 3 introduces the mathematical principles corresponding to

xiv



three cryptosystems, the RSA, ElGamal and Elliptic Curve systems. Here only a
minimum of knowledge of number theory is required to understand how the efficiency
and the running times for the three different public key cryptosystems are determined.
Chapter 4 compares the efficiency and running time for the three public key
cryptosystems. The results show the advanced efficiency combining a smaller memory
requirement with a high degree of security compared with other public key
cryptosystems, but with the disadvantage of longer running times than 450 ms limitation.
Finally the conclusion of this thesis outlines the direction of research involving the ECC,
and predicts the result of future development of the MSC.

Huang Meng Yuan
University of Adelaide
August 19, 1998
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Introduction

Introduction

The higher degree security feature in the smart card will be a vital ingredient in creating
and developing a Multi-applications Smart Card (MSC). People have recognized that
information security will become a key issue for the smart card. Smart cards are already
in wide public use and will affect many areas of our lives. To ensure confidentiality,
privacy and security, cryptology is pervading our everyday life. It has a large influence on
security in various fields of applications, not only in banking, but also in the areas of

health, Pay TV, personal computer, education, employment, communication, ...etc.

There are a number of new security features in response to market demands. In most
cases the new features will be equally useful to general cards and on-line systems.
However, they are going to enhance smart card functions and capabilities. Some of the

new techniques that are being developed are as follows:

1) Personal identification verification

Three of the coming changes are Signature verification by signature dynamics,
identification by retinal scanning and verification by hand geometry. These techniques
and others will be tested and tried. An advantage biometrics technique will eventually
emerge after several years of trial and use. The PIN number will be continuously used in
existing environments and will be useful for many years as a supplement to the emerging

technique.

(2)  Encryption algorithm

As an introduction to security of the smart cards, it will firstly describe the status
development of the smart cards. Then the status of cryptology for smart card, mainly the
Public key Cryptography Algorithm (PuCA) will be discussed. The Privacy key
Cryptography Algorithm (PrCA) will be neglected for terseness in this report. Finally it
will briefly describe the status and applications of the Elliptic Curve Cryptography
Algorithm (ECCA).



Introduction

1.1 The status development of smart card

The smart card is a single chip microcomputer, which is a miniature computer system on
a single piece of silicon. There are different devices and procedures compared to a
personal computer. There are no keyboards, displays, disk drives, etc. outside the card.
There is the built-in capability to prevent, by various means, unauthorized access to the
CPU, the memories, the buses, and any data being stored or processed within the card at

any time.

The smart card development all over the world can be correlated with a rapid increase in
both the scale and scope. Currently, a large number of smart cards are produced and
issued with a number of different applications in many countries, mostly applications
involving electronic money transfer and identification of individuals. Several new kinds
of services have been developed like Pay TV, Access key, financial services,
transportation, Medicare,...etc., and all of these new kinds of services will have very
different specifications, and require specific approaches to fulfill the arising security

demands. This will provide the impetus for creation of the MSC.

However most smart card are still in their infant stage’ with single application (means
specification), Many existing applications do mnot fit with their initial definition.
However, for many service providers and application designers, the smart card domain is

still not perfectly well identified in technology and capabilities.

The developed cryptography on the smart card will be a key technology for secure
electronic commerce and electronic payment applications. The card offers the unique
advantage to keep cryptographic mechanisms securely in tamper-proof equipment. Smart
cards will be used for access control instead of passwords, for the generation of digital
signatures, for encryption or decryption, as an electronic purse and as a repository of any

confidential information.
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For the last four years, there has been an increasing demand for a public-key smart card
from national administrations and large companies such as telephone operators, bank,
and insurance corporations. The security degree of smart card has caught a high point. In
1993 [6] although the first MSC were emerging in Germany for PCs appeared on the
market, but the development of the MSC is quite slow. Two special conditions of the
MSC: the higher degree security and the smaller memory space will obstruct quick
development to MSC. Because the chip on the smart card is restricted in size, the
memory capacity of the chip is not big enough to store the larger and complex program
for the Multi-application Operating System and the protocol codes of the cryptography
algorithm with the factoring of large integers. The detail of constrictions of MSC will be

shown in chapter 1.

So looking for an efficient cryptography algorithm which balances the security level
based on the factoring of large integers with the required memory space of the restricted

size chip is importance.

1.2  The status of cryptology for smart card

Public key cryptography is a powerful security tool in the field of information
technology. The DES private key cryptosystem conforms to the U.S. standard determined
by the National Bureau of Standards (now called NIST) in 1977 [5]. It uses the same key
to encrypt and to decrypt a piece of data, and creates an implementation need: how to
distribute and protect the key. As a possible solution to these problems, Diffie and
Hellmam introduced the concept of Public Key Cryptography, based on the difficulty of
solving a “trapdoor” problem in 1976 [7]. Several studies have been done to find a
practical Public Key Cryptosystem [8, 9]. In a public key cryptosystem, each individual
in the cryptosystem is assigned a unique pair of keys, one for encryption and the other for
decryption. This simplifies the key management requirement. The holders of public keys

can not "see" (or decrypt) previously encrypted data using other pairs of public keys. But
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this algorithm is slower than private key algorithm, and required key values are very

long. However, the feature of the one-way key is very attractive.

The Rivest-Shamir-Adleman (RSA) cryptosystem that was invented in 1977 [10] is the
current standard for Public key encryption today, and is applied widely. As RSA
compatible chip cards become available, the use of this standard will increase rapidly.
The security of RSA depends on the size of the modulus N. Odlyzko [4] has recently
forecast that a 512 bits module will be vulnerable to factorization in a couple of years and
is not suitable for the long-term protection of secrets. Perhaps 768 bits module will be
vulnerable to factorization by the year 2004. These estimates are based on projections of
computing power, algorithmic advances and continuing ability to organize disparate
resources over the Internet. Barring major advances in algorithms, 1024 bit RSA will
probably be secure for many years to come and seems likely to become commonly used

s00n.

Since the first useable public key cryptosystem RSA was introduced, a variant having a
common property based on the problem of factoring large integers was created and
developed rapidly. For getting a cryptography algorithm more closely to the feature of the
one-way function, another type of public key cryptography -- based on the discrete
analogue of the logarithm function -- gave rise to a second current of research in
computational number theory. It is called classical discrete logarithm defined over a finite
field. The security of this public key cryptosystem is based on the difficulty of the
discrete logarithm problem.

Diffie-Hellman Key Exchange and ElGamal Cryptosystem are two cryptosystems, of
which the securities are based on the difficulty of the discrete logarithm problem. The
details will be described in chapter 2.
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1.3  The status of Elliptic Curve Cryptosystem for smart card

In 1985 [5] a variant of discrete log cryptography was proposed, based on the discrete
logarithm problem in the group of points of an elliptic curve defined over a finite field.
The cryptosystems using discrete logarithms in this group of points have two potential
advantages over systems based on the multiplicative group of a finite field (also over

systems based on RSA):

(1).  There are a huge number of different elliptic curves available in the groups,
(2). The absence of sub-exponential time algorithms that could find discrete logs in

the groups.

Moreover, the discrete logarithm problem in this group is believed to be very difficult, in
particular, harder than the discrete logarithm problem using finite fields of the same size
as the key. It was for these reasons that elliptic curves were first suggested in 1985 by N.

Koblitz[11] and V. Miller [12] for implementing public key cryptosystems.

In developing elliptic curve cryptography, the most dramatic was the demonstration by
Menezes, Okamoto and Vanstone in 1990 that the discrete log problem on a
'supersingular’ elliptic curve can be reduced to the discrete log problem in a finite field.
This result means that one should avoid the set of supersingular curves if one wants to
have a cryptosystem whose cracking problem is, to the best of our current knowledge, of

fully exponential complexity.

Elliptic curve cryptosystems potentially provide the equivalent security compared with
the existing public key schemes, but with shorter key lengths, which means smaller
memory space is required. The advantage of this feature can be a crucial factor in the
design of the MSC. It is also the reason, for MSC specially, why this report explores the
feasibility of implementing secure and efficient public key cryptosystems using elliptic

curves in a chip of restricted size.
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Elliptic curves over finite fields can be used to implement the Diffie-Hellman key
exchange scheme, and the ElGamal and NIST signature schemes. These systems
potentially provide equivalent security to the existing public key schemes, but with
shorter key lengths. So it is most suitable for the design of MSC, where both memory and

processing power are limited.

For applications that cannot operate efficiently with a large key length N, cryptosystems
based on elliptic curves using discrete logarithm algorithm have been available for
several years. At present, no satisfactory method for determining the parameters for
cryptographic use has been developed. The Siemens Corporate Research and
Development Department [13], as part of a joint project with the University of Essen, has
developed a method for constructing elliptic curves with given parameters. The
advantage of cryptosystems constructed in this way is their compatibility with normal
congruent arithmetic. A large number of elliptic curves, including all required
parameters, can be explicitly determined with this method. These curves can be directly
used for new, efficient cryptosystems, with each curve defining its own cryptosystem.
For example, the coprocessor of the SLE44C200 produced by Siemens Co. can perform
these calculations. Key lengths from 128 or 256 bits are sufficient.

At present, expansion of the memory to be used for program and data is important.
However, it is expected that the development of silicon industry technology for the
expansion of memory capacity will be quite slow in the near feature. A large number of
technological improvements are still conceivable in hardware (e.g. random number
generator for key creation, authentication) and software (e.g. new cryptology, such as
elliptic curves cryptosystem). So that the next smart card generation will be suitable for

memory intensive applications, such as in MSC.

This report will be presented in four chapters. Beginning with chapter 1, there is an
introduction to Development of the Multi-application Smart Card that is proposed for
next generation smart card. Chapter 2 provides an introduction of three public key

cryptosystems: RSA, ElGamal Scheme and Elliptic Curve Cryptosystem that will be
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needed for the investigation in the next two chapters. In chapter 3, the main task is a
description of the mathematical principles corresponding to three different kinds of
cryptography algorithm: RSA, ElGamal Scheme and The Elliptic Curve Cryptosystem.
Here the description of mathematical principles in number theory required understanding
the different characteristics in the different cryptography algorithms. In chapter 4, the
comparison of the efficiency and running time between three cryptosystems will be
considered. It will be shown that the Elliptic Curve Cryptosystem has the desirable
features of security and smaller memory capacity required for the development of MSC.
On the other hand, there is a disadvantage of a lengthy running time in the
implementation of the algorithm, which is one of the important reasons that the Elliptic
Curve Cryptosystem has been proposed for several years, but has still stayed on paper at
present. With improvement in the cryptographic algorithms and increased computational
power, it may be possible to improve the computation time of the algorithm to meet the

ISO standard, which would lead to the MSC becoming practical.

In conclusion, there are some suggestions required for the development and

implementation of three technological tasks:

(1)  Development of the silicon technology to expand the memory capacity,

(2) Improvement of designing hardware (e.g. OS, Data Base, instructions) and
software (e.g. algorithm, protocols) in the MSC,

(3)  Improvement of computing architecture and the rate of the ECC.

Implementation of all above technology tasks will have a great of effect on the creation
of the MSC. So that it is likely to have a rapid development both in quality and quantity
on a mass scale worldwide in the next ten years, and will affect many areas of our lives.
The security, convenience and integrity of MSC technology will benefit applications as
varied as commercial, telecommunication, transportation, medical, identification,

education, employment, ... etc., and will change people's lives.



Development of the Multi-application Smart Card

1. Development of the Multi-applications Smart Card

From the aspect of applications, the smart card can be divided into two types: Single
application and Multiple application. A single-application smart card (SSC) is defined as
one, which has only one specification in which there are multiple services or functions,
such as a phone card issued by Telecom. A Multi-application Smart Card (MSC) is
defined as one, which will probably support different types of applications with different
specifications, such as financial services, identification, transportation, Medicare and

access key, ... etc..

Currently, the most common type of smart card with surface contacts to reach the market
place is the single-application smart card with few services or functions. This chapter,
describes the possible future development of MSC, restricted by kind of contact, and will
be in three sectors: the physical architecture of the MSC, the logical architecture of the
MSC and the Security of the MSC.

1.1 Physical Architecture of the MSC
1.1.1 Dimensions and Location
The dimensions and location of each of the contacts shall comply with Figure 2 of ISO

7816-2, with the contacts on the front of the card. The location of the contacts [14]

relative to embossing and/or magnetic stripe shall be as shown in Figure 1-1.

Magnetic Stripe P w
(Back of Card)

Embossing Area

oooo

v
[ oooo

B8 Mandatory Contacts
B Optional Contacts

Fig.1-1. Location of Contacts
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Smart cards rely on chip technology not only for information storage, but for information
processing as well. A microcircuit is embedded in the plastic base of an existing smart
card. The microcircuit consists of an electronic chip bonded to a circuit board and
connected to electrical contacts on the board. The production of smart card consists of

two steps [15], as shown in Fig. 1-2.

l_l l—l I I I
[] =

ml
i
-

o I
)

Fig.1-2. Smart Card Production

Step 1. Wire bonding (chip + circuit board),
Step 2. Potting (chip + circuit board + plastic card).

1.1.2 Standard of the Card

A Smart card must resist mechanical stresses like falls, torsion, and bending. Smart cards
must also be resistant to static electricity and to exposure to various types of radiation
such as x-rays, ultraviolet (UV) light, and electromagnetic fields. These physical

characteristics are very precisely specified in the existing standards.
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Fig. 1-3 Lower location on front
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In 1981 [16], the French standards institution (Association Franchise de Normalization
(Afnor)) proposed a location and an assignment of six operational contacts plus two
contacts reserved for future use. These are located on the front of the card, near the upper
left corner, as shown in Fig. 1-3. This location corresponds to the minimum mechanical

constraints for the microcircuit when the card is under torsion and bending stress.

The international standard (ISO 7816/2) was published in 1988. The changeover to the
new standard will occur in the early 1990s. After that time a lower location has been

adopted [16], the standard refers to a corner, on any side of the card.

There are in fact two final lower locations: in rear as shown in Fig. 1-1 and on the front
as shown in Fig.1-3. Because of consideration of technology aspects, the most probable

ultimate location may be the lower one on the rear of the card.

1.1.3 Standard of the Chip

The international standard of the chip size would still be well within the 25 mm?® required

by ISO 7816.

In the 1980s [16], a breakthrough occurred with the development of CMOS technology
which consumes much less power, and which also provides this capability at an
acceptable cost. No doubt the next step in this development, high speed CMOS
technology, will be an important part of the integrated circuit and memory capacity
development, along with the development of semiconductor technology, because at
present the memory capacity of the chip has large spaces for expansion. The chips made

by a few large semiconductor companies will lead the market, as shown in Fig. 1-4.
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Fig. 1-4 Microprocessor area (mm?)

Technological advances will place microprocessors that are more powerful on smart
cards. These improvements will certainly lead to further decreases in computation times.
More importantly, memory capacities will increase further. For example, from Hitachi

[17], we can expect increases as shown in table 1-1, [18].

RAM
ROM
EEPROM

Table 1-1 Memory size of the chip

The interface to the outside would consist of eight contacts. The assignment of the

contacts shall be as defined in ISO 7816-2, as shown in table 1-2.

Table 1-2 Contact Assignment of the Smart Card

----- C, and Cg are not used and need not be physically present.

® Defined by ISO as VPP, the ICC shall not require VPP.

11
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----- Cs is not used and need not be physically present; If present, it shall be
Electrically Isolated* from the integrated circuit itself and other contacts on the
MSC.
*1)  Defined in ISO/IEC 7816 as programming voltage (VPP).
*2)  Electrically Isolated means that the resistance measured between Cs and

any other contact shall be > 10MQ with an applied voltage of 5V DC.

1.2  Logical Architecture of the MSC

1.2.1 The Basic Architecture of a MSC

Initially smart cards were produced and issued with a number of different applications in
many countries. Most of these smart cards with surface contacts were to reach the market
place with only a single application, so called Single-application Smart Card (SSC).
These cards are pre-paid, and are not debit or credit, But now most cards are becoming
multi-function and should soon be able to provide normal debit and credit facilities,

authentication and loyalty recording functions as well.

In the near future, smart cards will become MSC rather than just multi-function. Different
services such as security, financial, medical information storage and transportation
require quite separate applications, and these applications will have very different
specifications. The different basic Architectures of a SSC and a MSC are shown in Fig.
1-5 and Fig. 1-6.

Application Appli. 1 Appli. n
Proc:sor ‘Co-Processor 0
Buff:rs IZ) DBtlse Op. :ys. IZ)
Fig. 1-5 Architecture of the SSC Fig. 1-6 Architecture of the MSC
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1.2.2 The Architecture of a MSC Memory

We will review here the logical structure of memory in the chip of the MSC. The memory
comprises three parts: RAM, ROM and EPROM/EEROM as shown in Fig. 1-7.

RAM EPROM / EEPROM
Secrete Data Manufacturer
Data
Buffer
File Data Confidential
Data
Pad Registers
ROM App}l)lcatlon
] ata
(Operating system)

Fig. 1-7 Memory structure in a Card

1) The ROM memory containing the Smart Card Operating System (SCOS) and

several manufacturer codes cannot be accessed by issuers or by user.

2) The RAM memory is employed chiefly to store intermediate results of the
microprocessor. Also it is used to handle ready-to-use information required by the
microprocessor and it usually has several predefined zones: Scratch Pad

Registers, Built-in Data Encryption, Buffer Area and File Data Zone,

-n- Scratch Pad Registers have the same function as the usual microprocessor
registers, such as holding numerical results, addresses, and pointers. Its

length may be 1 byte or longer.

- Built-in Data Encryption usually has a dedicated RAM zone where data
such as intermediate data, cryptographic parameters, and random numbers

are stored and handled.
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Buffer Area may be used to store command parameters. Additionally, data
transmission and reception may use separate buffers, the transmission
buffer may include a counter, and the reception buffer may store

sequentially the last byte received through the I/O port.

File Data Zone stores the name and parameters of the working file when
using files in the MSC. The microprocessor uses this zone to keep the
address of the file within the user/application memory, as well as its size,
record number, record lengths, and most importantly, the addresses in the
secret zone where the protection rules of that specific file are stored. These

protection rules may in turn be temporarily stored in RAM.

3) The EPROM/EEPROM is nonvolatile memory (i.e., non-rewritable or

rewritable). The most important part of this memory is the Directory Structure

(DS). The DS is structured according to one of the following formats:

Memory is divided into several zones, whose size may be constant or
variable. Every zone may hold one or several data files. Zones are
separated according to their functionality, data type and protection level.

ISO 7816/4 defined a hierarchical file structure, though zones are also
accepted for historical reasons (most current cards use zone structure) and
for technological reasons (many cards cannot be hierarchically structured).
Three file categories are considered: master files, dedicated files and
elementary files. Each card has a single master file; paths are defined to

access other files. More details will be discussed in next subchapter 1.2.3.

In either case, the card must be formatted to define suitable areas. Some recent

card models allow reformatting, other classic models are preformed by the

manufacturer.
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1.2.3 The Architecture of a MSC Operating System

The Hierarchical Memory Structure is the most suitable structure for a MSC. ISO 7816/4

proposes a hierarchical file structure as shown in Fig. 1-8.

+ Master File +
EF + DF B
DF A
Manufacturer ¢ ¢ File Control j ‘User Data
EF A, DF A, DF A, EF B,
Issuer key Application 1 ‘ Application 2 ‘ Address
* EF B,
J EF Ay, DF A, DF Ay, . .
Appl. Control | |Public File Transfer File Identificaton
v v
EF A, EF Ay,
Public File Transfer File

Fig. 1-8 The allocation of application in MSC with hierarchical file structure

The mandatory root is called Master File (MF). The role of subdirectories is carried out
by optional Dedicated File (DF). Data are stored mainly in Elementary Files (EF). EFs
may not be parents of DFs or other EFs. File control information is stored in the files or
in the file's parents. A 2-byte identifier references files. Linking the identifiers of their
parents, grandparents, and so forth, down to MF makes paths to specific files. Four EF
types are defined:

* Public EF: free access,

* Application control EF:  read protected, stores control information of the

application,
* Internal secret EF: external access is always avoided,
* Working EF: to store application data.

Strict access control mechanisms aside, the file hierarchical structure of a MSC described
in ISO 7816/4 is intended to solve most of the file managing pitfalls in the MSC (Fig. 1-
9).
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Fig. 1-9 The security architecture in O.S. of MSC

Each application can be logically placed in a different branch of the directory tree,
owning a dedicated file that watches data flow to and from its branch. The master file at
the root may look after general matters of the card, including data flow to and from the

outside world.

In a MSC, the card issuer, the service managers, and the service providers are clearly
identified and associated with levels of files. The card issuer controls the MF and the
creation of DFs, each service manager controls the creation and the development of EFs
in its own dedicated (sub) files, each user either controls access rights. Therefore the
MSC can support several independent "application" files. A new DF can be created at
any time under control of the MF. The MF and each DF contain a bunch of ID keys:
management Keys (for managing access rights and updating keys) and control keys (for
deciphering control words). The first management key in a DF is mandatory written
under control of a management key of the MF. The entitlements, along with various
names and addresses, are stored in EF. Moreover, in the MF, EFs may hold parameters
for a general-purpose device. Such parameters are security information, software to be

downloaded, or connection information to access a remote management center.

The security policy of the MF and DF is based on a set of independent diversified
cryptographic keys: one issuer key, few secondary keys used for authenticating the

service provider and for securing operations, and more secondary keys for signature and
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authentication of the card. The MF, as well as each DF, also contains a set of other EFs
storing various data. In each file, there are a few erase keys for the erasure of the

EEPROM and a few dedicated keys for digital signatures.

A hierarchical structure of the files in the MSC operating system has been briefly
described in this subchapter. The remains are the inter-structure of each file and the
transmission protocols of these files in this chapter, and will be described in next

subchapter.

1.2.4 The Architecture of a MSC File

In a card [19], every file is made of an 8 byte header and an arbitrary number of identical

records, as shown in Fig. 1-10.

Header Data Records Header g

1 byte 1 byte 1 byte 1 byte 2 bytes 2 bytes

Fig. 1-10 Architecture of a file

The header includes six parts:

Byte 1: file name,
Byte 2: number of records contained in the file,
Byte 3: record length; the file size excluding the header may be calculated as the

byte 2 times the byte 3,
Byte 4: file type,
Byte 5 & 6: access rules,
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Byte 7 & 8: secret codes; the nibbles of bytes 7 and 8 contain the numbers of the secret

codes employed in the access rules of bytes 5 and 6 respectively.

Table 1-3 Basic response coding of character TD1

Two types of transmission protocols [14] are defined: character protocol (T=0) and block
protocol (T=1). The MSC shall support either protocol T=0 or T=1. Terminals shall
support both protocol T=0 and T=1. The protocol to be used for subsequent
communication between the card and terminal shall be T=0 or T=1 indicated in TD1),

as shown in table 1-3.

Character Frame Data is passed over the I/O line in a character frame. Prior to
transmission of a character, the I/O line shall be in state H. The structure of a character

frame shows in Fig. 1-11.

S Parity tart
l / 8 data bits “\: ‘
T I

L <4 10+02etu —»

Character duration

Fig. 1-11, Architecture of a Character Frame

A character consists of 10 consecutive bits as following:
* 1 start bit in state L,
* 8 bits which comprise the data byte,

® TD1 . Interface Character, convey information that shall be used during exchanges between the
terminal and the card to the answer to reset. It indicates whether any further interface bytes are to be
transmitted.
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* 1 even parity checking bit.

The receiving end detects the start bit by periodically sampling the I/O line. The 8 bits of
data and the parity bit itself are included in this check but not the start bit.

* Block Frame

The protocol consists of blocks transmitted between the terminal and the card to convey
command and response Transaction Protocol Data Unit (TPDU) and transmission control

information. The data link layer block frame structure is shown in table 1-4.

Node Address | Protocol Control
Detection Control Information Error
| (NAD) (PCB) (INF) (EDC)

Table 1-4. Architecture of a block Frame
The block consists of three parts:
1) Mandatory prologue field, which consists of three mandatory bytes:

a. Node address to identify source and intended destination of the block and

to provide VPP state control,

b. Protocol control byte to control data transmission,
C. Length of the optional information field.
2) Optional information field, which is conditional. When present in an I_block, it

conveys application data. When present in a S_block, it conveys control

information. R_block shall not contain an information file.
3) Mandatory epilogue field, which contains the EDC of the transmitted block. A

block is invalid when a parity error and/or an EDC error occurs. This

specification only supports the LRC as EDC. The LRC is one byte in length and is
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calculated as the exclusive-OR of all the bytes starting with the NAD and
including the last byte of an information file, if present.

The interested reader can refer to [14] for more details.
1.2.5 Coding of Transmission

In ISO standard 7816/3, only the physical procedure of 'answer to reset' (ATR) has so far
been defined for the "synchronous transmission” mode to which smart cards are assigned.
This states that after a reset signal, the chip must output 32 bits of information
synchronously with the clock pulse. The bit duration used on the I/O line is defined as an
elementary time unit (etu) [14]. A linear relationship exists between the etu on the 1/0
line and CLOCK frequency (f), which shall be in the range 1 MHz to 5 MHz. Current etu
= F/Df seconds

-bi H,; H,
oy

[ bg by bs bs by bs by by | bg by bs bs by | by by by |
IC Type Application/Card IC
Manufacturer  Manufacturer

Extended scheme

Protocol Type DIR Data Reference
H; H,
bg by b bs ba by by by by by bs bs by b by by

Fig. 1-12. 16-bit scheme (ISO 7816) and 32-bit scheme (DIN NI-17.4) for ATR in Transmission

Note: For the basic ATR, only a F =372 and D = 1 are supported. Thus the current etu
is the same as the initial etu given by 372/f seconds. If the card has an internal
clock, the initial etu is 1/9,600 second [19]. If not, the initial etu is 372/f second,
where f is provided by the interface device on the clock. During the ATR, the
maximum interval between the leading edges of the start bits of two consecutive

characters shall be 9,600 initial etus. The current etu is meant unless otherwise

20



Development of the Multi-application Smart Card

specified. As smart cards become more widespread, 16 bits code is coming up
against its limits, shown in Fig. 1-12. They can be distinguished by the first two
bits, known as the structure identifier [20].

The 16_bit of the ISO 7816 scheme contains the chip type in the first byte and the chip
manufacturer and application in the second. The 32_bit of the ISO scheme is divided into
the four bytes from H; to Hy:
° H; --- specifying the protocol type:
bg ~ bs Protocol tupe s,
bs ~ b3 Reserved for future use (RFU),
by ~ by Structure Identifier: 00 = defined by ISO,
10 = Structure 1,
01 = Structure 2,

11 = Structure 3.
o H, --- specifying the protocol parameters:
Bs: RFU,
By 0 = Read to end, 1 = Read with defined length,
Bg ~ bs: Number of data units,
Bs; ~bs: Length of data units in bits.
o Hj --- specifying the category indicator:
Bs ~b7: Category indicator according to ISO 7816-4.

o H, --- specifying the DIR data reference:
Bg = 1: DIR data reference specified, b; ~ b; = reference of DIR data,
Bg = 0: DIR data reference not specified, b, ~ by=outside the scope of ISO 7816-
4.

A scheme to be adopted by the ISO will then contain the combination 00. Four bits are
available for the protocol type. The associated parameters are held in the second byte
with the number and length of the data units. The next two bytes are assigned under ISO

7816/4, to the category indicator and data reference to the presence of further data.
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Currently, the 16 bit scheme has been successfully retained for the smart card (e.g.
Siemens chip SLE 4404/4406). The extended 32_bit scheme is to be introduced for all

other types of chips after a transitional period.

1.3  Security of the MSC

In the course of a transaction involving a smart card, the card delivers information (stored
data, computation results) and modifies its contents (data storage, event memorization):
the built-in electronic circuits both process data and store information in internal memory.
These semiconductor technology trends definitely enhance both the physical and logical
security of MSC:

* Better integration enhances physical security by making it more difficult to

physically probe and recover information from the chips dedicated to MSC.

* Additions in processing power (CPU, RAM) and in operating systems (ROM)
enhance logical security by allowing the implementation of more complex

cryptographic algorithms and protocols in MSC.

A number of assault scenarios are conceivable, for which there is a range of
countermeasures based on semiconductor technology. Attacking on the security of a

MSC can be divided into three categories:

1) Data spying,
2) Data alteration,
3) Forging.

However, there are a range of countermeasures against the manipulation and forging of a
smart card to ensure effective protection as the following two sectors:

1) Physical security,

2) Logical security.
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The physical security means the hardware security such as security of chip and terminal.
Here the description of the physical security is restricted to the chip and card. The logical
security means the software and system security such as security of operating system and
message transmission among card, terminal and systems. The descriptions are restricted
to the operating system and the applications of security system. They will be described

individually in the following.

1.3.1 Physical Security of the MSC

Smart cards are very difficult to reproduce without the right facilities and expertise.
Manufacture of the chips requires very complex and expensive equipment. Even if stolen
chips are used, both their bonding to the substrates and their encapsulation into the card
require specialized equipment. The chips for smart cards are not publicly available and

would not be easy to obtain.

As we know the MSC has both the memory and the microprocessor on the same chip.
Where they are separate devices it could be possible to X-ray the card and ascertain the
position of the communication lines between the two parts. By careful probing through
the outer layers of the card, it could be possible to read out the information flowing
between the microprocessor and memory. However, it is nearly impossible to extract this
information from the smart card which has the microprocessor and memory combined on

the same chip.

Another form of security [16], we should consider in chip production, is the security of

chip testing:

1) Each chip supports about twenty additional test contacts, and tests are conducted

under control of the outside world,
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2) Each chip supports one or two test contacts, and an internal self-testing program

written in a small extra ROM conducts tests.

& 5 Y

S

‘—J | EPROM / EEPROM

CPU - ROM

F. \
\ ] |

K @
A

Fig. 1-13 The model of Self-program micro-computer

Before cutting wafers on production lines, a 512-byte internal routine is activated
through two specific test contacts, shown in Fig. 1-13 near RST under the CPU. The
EEPROM of each validated component receives various information: locks, codes,
erasure indicators, chip serial number, while nothing is written in rejected components.
Breaking fuse links buried in the silicon then systematically destroys the two test
contacts. This operation, which eliminates non-user modes on valid chips, also positively

disables invalid chips where nothing has been written.

As a matter of fact, the self-testing routine may write these erasure indicators to be tested
by the card before executing any command in user mode during any transaction. If such
an erasure indicator is erased, either by accident or by violation, then the chip is definitely
disabled. Such EEPROM cells are constructed so as to be the most sensitive ones to
erasing radiation. This is an example of the current reliability philosophy of using weak-
link/strong-link designs to enhance reliability, since the weak-link is designed to disable
the device before the operational strong-links can be subverted. Valid chips are then
inserted into cards during the process of card manufacture. A manufacturing code or key

is used for protecting chips from the time of chip manufacturing to card issuing.

24



Development of the Multi-application Smart Card

Throughout the operation, several testers in the chip determine readiness: voltages, clock
frequency, light, temperatures are all measured. These indications may also be used by
the operating system to increase security. The mapping of memory addresses should be
controlled by the internal program itself, and not be accessible to outside control.
Whatever the physical security systems, system designers must carefully consider the
potential consequences of chip violations. Secret keys must be as diversified as possible,
tied to user identification number and chip serial number. A successful violation then
compromises only one user and does not endanger the whole system, thus reducing the

risk of widespread fraud. These aspects of logical security are strongly related to

cryptology.

1.3.2 Logical Security of the MSC

The logical security of the MSC is based on its operating system. The smart card
operating system deals with different commands and with the general security of the
whole system. The most important part of a smart card system is software. A poor
software design can induce weak security, inefficient functions, erroneous data,
deadlocks, and many other potential problems. On the other hand, a good software design
provides the user with qualified operations and additional functions. The efficiency of an
operating system is not only related to ROM size, but also to the virtuosity of the
software designer who finally specifies the technical configuration of the card. In this
subchapter, the logical security of the MSC will be described individually in two

sections: the security of operating system and the security of the MSC system.

1.3.2.1 The security of Operating System

The logical security is fundamental in the logical architecture of the operating system.

The descriptions of the security of operating system consist of two parts: logical security

and functional security.
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For logical security, the independence between data files associated with flexible file
management is the basis of any high security MSC operating system. This evolution
clarifies the security architecture that is presently mature enough to be standardized. The
security cannot be granted on an existing data file organization as in the existing
operating system: DOS and UNIX. The difference takes place mainly in the security
management that has to be taken into account in the model from the beginning of the

design.

Because a file is fathered by another file, the essential creation process has to be
protected. In other words, the right to create or to access a file has to be transmitted by
heredity to enforce the independence between applications. This does not compel a son to
have the same rights as its father, because it has the freedom to choose its way except for
the creation procedure. The transmission of hereditary rights is managed by specific

attributes that are transmitted to the son by the father.

The commands affect the objects and the entities specified by the security architecture.
The set of commands should be defined afterward to permit compatibility and
interchange between cards supporting different applications. The MSC may introduce the
notions of Master File (MF), Dedicated File (DF) and Elementary File (EF) with the

following set of definitions:

--- Master file:  The DF at the highest level of the card is unique and mandatory file
containing all the other files.

--- Dedicated file: Containing control information and other files, and giving access to
EFs and DFs.

---Elementary file: Containing a set of records, and having a security policy under which

an EF is never used as entries point to another file.

This structure can be interpreted in terms of security, and is standardizing the security

architecture in the Operating System of a MSC, as shown in Fig. 1-9.
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For functional security, the operating system has the security functions with multiple
specifications accessed by secret keys for different companies, organizations and
government departments. Every specification is separate from each other, so that one
company or organization can only access its own specification by cardholder's secret
keys. It also has several levels of security that can be controlled by secret keys in every
specification for multiple functions. The company or organization can only get a part of
services within their own functions, but for some services on higher level security within
the same specification, it will need cardholder's secret keys. All of these personal secret
keys will be produced through the personalization and electronic signature by the
manufacturer and card's issuer. Of course, the operating system must be designed with

these features, and must present much stronger security ability.

1.3.2.2 The Security of MSC System

A security system consists of the access control related to the hardware and software
procedures and the application of intelligent cryptographic methods to the message
communications between card, terminal and background systems. Different applications
call for different levels of security. Therefore, chip manufacturers must provide a
differentiated range of components to match the various security levels. The system
security would be classified into five levels based on the different applications of

hardware and software as shown in Fig. 1-14, and is described as follows.

Hardware Security:
CPU, RAM, ROM
and EEPROM

Technology

Personal Code
Authentication Control
Operating System
Cryplographic Confrol ~

Fig. 1-14 Security Level for Smart Card Environment

27



Development of the Multi-application Smart Card

1)

2)

3)

The contents of EEPROM cells cannot be read by optical means. Any attempt to
break into the cell by analyzing its contents will lead to immediate destruction of
the data. A change can occur only in one direction from the charged state
(valuable) to the uncharged state (value-less). If an intruder tries to determine the
charged state by etching away the layers of the semiconductor chip, the contents
of the EEPROM cell are destroyed by themselves as the gate is approached.
Intrusion in a zero voltage state is impossible. The EEPROM also offers a facility
for setting irreversible byte by byte or block by block flags to support the security

features.

When the personal security code is used as a password, a comparison is made
between the value entered by the user and the code stored on the chip. However,
this is not done in the system, because the personal security code would have to
be transferred from the chip to the terminal and thus exposed to probing, but by
the chip's comparator logic. So the personal security code stays in a secure

environment.

At the high security stage, symmetrical authentication by a hardware algorithm is
inexpensive and can be implemented very effectively with an intelligent memory
chip without a processor. In a challenge-and-response process between the
terminal and the card, a hardware function on the chip responds to a query by the
terminal. A secret key that is stored securely in the chip controls the hardware
function. The parallel operation running in the terminal's security module allows

comparison of both results for authentication between card and terminal.

The next higher security level is that of the Operating System. Its security
performance is based on the following characteristics:

Programmability of complex internal sequences and intelligent analysis of
information and signals,

Availability of application specific features,

Self-checking capability without the need for additional signals from outside,
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----- Software implementation of symmetrical on-chip security algorithms.

5) The highest level of security is obtained with crypt-controllers. These contain not
only all the controller security features of the previous level, but also an arithmetic
hardware unit, with which the highest security level can be implemented by means
of various asymmetrically on-chip security algorithms. The principal
characteristic of these algorithms is separation of the encryption and decryption
processes. So anyone gaining control of a procedure would be unable to master

the complementary process as well.

Summary

As described above, the development of the MSC seems to be very viable. Along with
further enhancement of the security requirements on the market, the complex and perfect
software of the operating system has to be created. It is demonstrated that a cryptography
algorithm will determine the high degree security of the MSC system. All of these require
more memory space that is restricted with the maximum 25mm? required by ISO 7816.
Currently the semiconductor manufacturer uses CMOS 0.3pum--1.0pm technology to
increase the memory space of the RAM, ROM and EEPROM corresponding with 256-
byte, 16-kbyte and 16-kbyte. But the memory space in the chip is still not enough for the
huge and complex software, and for the high degree security based on the factoring of
large integers provided by the various public key cryptography algorithm, although

semiconductor technology has had enormous development.

Therefore, investigating and developing an efficient cryptography algorithm will not only
be suitable for the smaller memory space of the chip, but will reach the same high degree
security as other public key cryptography algorithm based on the problem of factoring
large integers. These will be proposed and be described in more detail in the next

chapters.
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2. Public Key Cryptosystem for the Multi-application Smart Card

Abstract: Since 1976, when Diffie and Hellman [7] introduced the concept of public key
cryptography, there have been twenty years of evolution in the procedure, and many
different types of cryptography algorithms with various functions and characters have
been proposed. The most widely used algorithms are the Rivest_Shamir_Adleman (RSA)
public key cryptosystem which is based on the problem of factoring large integers, and
the ElGamal cryptosystem based on the difficulty of computing discrete logarithm. Their
problems are used to implement a fully functional public key cryptosystem, including
digital signatures.

Elliptic Curve Cryptosystem (ECCs) is an another type of public key cryptosystem, the
difference is that the elliptic curve analogue of this cryptosystem has more difficulty
undertaking computations of group operation on an elliptic curve over finite fields than

the computations of ElGamal algorithm over finite fields [11].

In fact, the evolutionary procedure of the public key cryptosystem is similar according to
the model of Trapdoor one-way function that will be introduced in Appendix A.
Therefore, at present the Elliptic Curve algorithm has the most efficient feature of one

way function compared to any other algorithm.

In this chapter, the description of the public key cryptosystem applied to multi-application
smart card consists of three subchapters which are the RSA cryptosystem, ElGamal
cryptosystem and Elliptic Curve Cryptosystem, and will be introduced as following.

2.1  The Rivest_Shamir_Adleman (RSA) Cryptosystem

The RSA cryptosystem is the most widely used public key cryptosystem at present. The
RSA cryptosystem not only provides the solution to problems in the Private Key
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Cryptosystem, but also can be used to obtain Digital Signature, and hence achieves higher
degree security as well. The description below will include RSA cryptography algorithm
and RSA digital signature.

2.1.1 RSA Cryptography Algorithm

The RSA algorithm is a public key algorithm that provides a block cipher. The RSA
algorithm is based on the fact that it is computationally simple to find large prime
numbers, but believed to be computationally infeasible to factor the product of two such

numbers [21]. The RSA cryptography algorithm is shown in Fig 2-1.

User A User B

| Select primes: p and q, . M

|
|Calculate: ~ N=pq, Public ke |
| o) = (p-1a) ek

| Select e: (e, d(n)) =1 v—_n;ey Encipher: |
{Calculate d: edmod ¢(N)=1 ‘ C =M° (mod N)

ll____ == |

= e | e .
| Decipher: M' = C® (mod N) * Cinhertext C
| Verifying M =M <

M

Fig. 2-1 The RSA Cryptography Algorithm

User A randomly selects two very large prime numbers p and q, then calculates the

product N

N=pq (2.1-1)
and Euler's totient function (see Appendix A):

o(N) = (p-1)(g-1) (2.1-2)
User A then randomly selects another number e from the interval 1< e <¢(N) such that

(e, d(N)) =1 (2.1-3)
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which can be verified by using the Euclidean algorithm. The numbers N and € are the

public keys which are openly transmitted to another user upon request.

If user B wishes to communicate with User A, then user B represents the message as a
sequence of blocks, each of which has a value in (0, N-1). A plaintext block M is
transformed into a ciphertext block C by using the public key and calculating the RSA
one-way function

C=M°mod N 2.1-4)
This computation can be done rapidly by the discrete exponentiation method illustrated in
example (2) of [21]. Since e <N and M <N, all quantities in (2.1-4) are representable by
b bits if N is slightly less than 2b, and discrete exponentiation requires at most 2b
multiplications. The restriction M < N ensures that (2.1-4) is a one-to-one transformation
with an identical domain and range. User A calculates the number d such that

de = 1 mod $(N). (2.1-5)

The integers d, p and q are secret keys. Euler's theorem and (2.1-3) ensure that d exists,
and d can be computed by using the Euclidean algorithm. Equation (2.1-5) means that

de=k¢(N) +1 (2.1-6)
where k is an integer. When ciphertext C is received from user B, user A deciphers C by
computing

M' = C? (mod N) (2.1-7)

Substituting (2.1-4) into (2.1-7) and using (2.1-6), we obtain
M = (M°)® (mod N)
=M% (mod N)
= M*™*M (mod N) (2.1-8)

If (M, N) = 1, then Euler's theorem yields M' = M. Thus, the deciphering successfully
recovers the message. If M = 0, then M' = M trivially.
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If M > 0 and (M, N) # 1, then either p or q divides M. It is not possible for both p and q
to divide M because M < N = pq. Suppose that p divides M, then M = ip for some
positive integer i and (M, q) = 1. Since p and q are primes, Euler's theorem (see
Appendix A) yields
MK = MEOEDK = | od (2.1-9)

This result implies that

1=M*®™_jq (2.1-10)
when j is an integer. Multiplying both sides of this equation by M and using M = ip and
N = pq, we obtain

M = MMM - §jN (2.1-11)

Substituting (2.1-11) into (2.1-8) yields M' = M. Therefore (2.1-7) restores the message
for all M in (0, N-1).

Since only d and N are required to decipher C, these two numbers constitute the trapdoor
of the one-way exponentiation function. Since N is part of the public key, the number d
can be considered the private key. However, d is generated from e and ¢(N), hence, from

e, p and q. e is a part of the public key. An example of the RSA algorithm is as follows:

Example 2.1 (Example 3 in [21]), Suppose that p=11 and q=13. Then N = pq = 143 and
d(N) = (11-1)(13-1) = 120. Let e=11, which is a legitimate choice because
(e,6(N)) = (11,120) = 1. According to (2.1-5), d is the solution to the
equation d x 11 (mod 120) = 1. From (A.1-2) and ¢$(120)=(3 - 1)(40- 1) =
78, thus, the equation is obtained d = 1177 (mod 120) =11.

The public key is (N, €) = (143, 11), the private key is d = 11. The primes
are {p, q} = {11,13}. Suppose the message block is M = 10, the transmitted
ciphertext is,
C =10" (mod 143) = 43,
and the deciphering is M’= 43" (mod 143) =10 =M.
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To prevent a factoring of N by an exhaustive search and to render existing factorization
algorithms computational infeasible, the primes p and q should have approximately larger
than 100 decimal digits. The primes in this size also ensure that the probability that (M,
N) #1 is on the order of 10™'% [22]. The enciphering exponent e should be chosen so that
2° > N, which makes it impossible for M to be recovered from C simply by calculating
C'® because a modulo-N reduction occurs during the enciphering except when M = 0 or
1. The security of the RSA algorithm depends not only on the intractability of factoring
N, but also on the unproved assumption. So that any way of inverting the RSA one-way

function is approximately as difficult as factoring N.

Finding the value ¢(N) directly would breaks the RSA cipher by allowing the
computation of d in equation (2.1-5) without knowing p and q. If the ¢(N) is known, then
the equations (2.1-1) and (2.1-2) can be solved simultaneously for p and q. Therefore, the
calculation of ¢(N) provides a method of factoring N, and consequently is at least as

difficult as factoring N.

Finding the integer d directly would break the RSA cipher by computation of M' in
equation (2.1-7) without knowing $(N) or factoring N. But if the integer d is known, then
the equation (2.1-6) indicates that de - 1 is a multiple of ¢(N). Therefore, the calculation

of d is also at least as difficult as factoring N.

To use the RSA system, a user must first choose the primes p and q that should differ in
length by a few digits, (p-1, g-1) should be small, but both p-1 and g-1 should contain
large prime factors. To ensure that p - 1 has a large prime factor, a large prime p; can be
first randomly selected and then the prime p = ip; + 1 is generated for as many even
values of the integer i as is required. The RSA algorithm can also be used to obtain

digital signatures, which is described below.
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2.1.2 The RSA Signature Scheme

The function of digital signatures is the authentication and validation of electronic
messages exchanged over the channels of a communication network. This kind of
authentication is seriously deficient because both the sender and receiver must know a
secret key. The sender uses the key to generate an authenticator, and the receiver uses it to
check the authenticator. With this key, the receiver can also generate authenticators and
can therefore forge messages appearing to come from the sender. In other words,
authentication can protect both sender and receiver against third party enemies. If Alice
sends a message to Bob, for example, Bob might fraudulently claim to have received a
different message. Supposing Bob takes some action in response to a genuine received
message, Alice can still claims that Bob in fact forged the message. Alice’s a solution to
the dispute problem arising from the dishonesty of sender or receiver, Diffie and Hellman
[7] proposed the use of a digital signature based on certain public key cryptosystems. The
signature procedure for the RSA cryptosystem is shown as Fig. 2-2.

User A * User B
C
Decipher | A_____L_ Encipher A& M
M=C%modn |~ C=M%modn ¥
Signature i — Verifier
S=M®modn | [t ED S=8"modn

| |24

S'=S$%mod n M=S“modn

Fig. 2-2 The Principle of RSA Cryptography and Signature Scheme

To begin the signature process, A user chooses primes p and q, and computes N = pq,
O(N) = (p-1)(g-1), and chooses e to be an integer in [1, $(N)] with ged(e, ¢(N)) = 1, and
chooses d to be an integer in [1, $(N)] with ed = 1 mod ¢(N). The N and e are public, and

d, p and q are secret.
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* Signature Generation:
If A user wants to send a signed message M to B user, A user first computes a
"signature" S for the message M using secret key da:
S= Af9% (modN)
Then A user encrypts S using B user's e, that is the public key,
S'= §¢ (mod N)

and sends the S' to B user.

e Signature verification:

B user first decrypts the S' with dy to obtain S.
S= §'% (mod N)

B user knows who is the presumed sender of the signature. This can be given if necessary
in plain text attached to S. B user then encrypts the S with A user's public key e,, and

verifies M.

M= §% (mod N).

A user cannot later deny having sent B user this message, since no one else could have

created S= A[f d._Also B user can neither modify M to a different version M', nor forge

A user's signature for any other message.

Summary: The RSA cryptosystem has not resisted all attacks. Some of the protocols for
using RSA have been broken [23, 24]. Developing another type of public key
cryptosystem with more security features is significant. Although the ElGamal algorithm
based on the difficulty of discrete logarithm problems over finite fields has the ability to
overcome some attack to the RSA system, but would not provide a higher degree of
security than RSA system. ElGamal scheme gives an explicit methodology for using
discrete logarithm problem to implement a fully functional public key cryptosystem,

including digital signatures, and will be introduced in the next subchapter.
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2.2  The ElGamal Cryptosystem

Abstract: In 1985, T. ElGamal [25] proposed the following public key scheme based on
discrete exponentiation that has the properties of one-way function similar to RSA
system. The one-way function is the discrete exponential function [21], as equation (2.2-

D). Y = o (mod p). (2.2-1)

where p is a large prime, x is an integer with 1< x < p-1, and a is an integer with 1<o< p
and o', o, ..., o, in some order, congruent modulo p to 1, 2, ..., p-1. Such o is called a
"primitive root modulo p". Every prime p has a primitive root modulo p [22]. For

example, if p=7, 0=3 is a primitive root modulo 7:

a; =3'mod7=3, oz =3%mod 7 =2,
o3 =3’ mod 7=6, oy =3*mod 7 =4,
as=3"mod7=35, os=3°mod7=1.

The inverse of the discrete exponential function is the discrete logarithm and is denoted
by
X=log,Y, 1=£Y<p-l (2.2-2)

If p is a large prime and p-1 has a large prime factor q then evaluating the discrete
logarithm requires far more computation than the approximately 2log,p multiplications

required for discrete exponentiation.

2.2.1 The ElGamal Cryptography Algorithm

This algorithm uses a very large prime p, a large prime factor q of p-1 and an element o
of the finite field F, = {0, ..., p-1} whose order (see Appendix A-2) is q. These system
parameters p, q and o are known to all users. The plaintext message units are given
numerical equivalent m in F,. Each user A randomly chooses an integer X,, say in the

range 0<x,<g-1, and each user B randomly chooses an integer X, in the same range
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0<xp<q-1. Both x, and x;, are secret keys. A user computes Y, = ax,, (mod p), and sends

Y. to B user. Similarly, B user computes Yy, = ** (mod p) and sends Yy to A, and both

Y. and Y}, are public keys. Hence both A user and B user are able to compute Ky, [25].

Kap = Yffb (mod p)

= Y7 (mod p)
= " (mod p).
Notice that an intruder who solves the discrete logarithm problem in F, breaks the

cryptosystem by finding the secret key x, from the public key ax,, . In theory, there could

be a way to use knowledge of y** and * to find ****, and hence break the cipher,
without solving the discrete logarithm problem. However, it is conjectured that there is
no way to go from * and g* to o** without essentially solving the discrete

logarithm problem.

In any of the public key cryptosystem based on discrete logarithms, p must be chosen
such that p-1 has at least one large prime factor. If p-1 has only small prime factors, then

computing discrete logarithms is relatively easy [26].

Suppose that A user wants to send a message m to B user, where 0 <m < p-1.

1) A user chooses a random number x, and computes the public key Y.=y** mod p,
2) A user looks up B user's public key Y= ax,, mod p, and computes
Kap=Y7* mod p, (2.2-3)

where Y, = ™ mod p which is sent by B user.

3) A user computes C =mK,, mod p, (2.2-4)
and sends to B user the pair of group elements (Y, mKap).

4) B user computes }** and uses this to recover m.
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It can easily be seen that the ElGamal cryptosystem is the application of Diffie-Hellman
key exchange. So each case security is equivalent and is the based on the difficulty of the

discrete logarithm problem.

Note: 1) The size of the message encrypted is double the size of the plaintext.
2) The multiplication operation in (2.2-4) can be replaced by any other invertible

operation such as addition mod n. The decryption splits into two steps:

Step 1. B recovers the Koy by computation, Kgp =Y (mod p) = *** mod p,

the xy, is known to B only.

Step 2. B recovers the message m by computation, m=C/Kg, mod p.

Breaking the system is very difficult [27]. Firstly, if m can be computed from (Y, mKp)
and Y;, then Kz can also be computed from (Y., mKyy) and Yi, but (Ya, mKgp) and Y;
appear like random numbers since x; and m are unknown. Secondly, even if m is known,
computing x; from (Y, mKg) and Y; is equivalent to computing discrete logarithms.

Because the x; appears in the exponent in Y; and Y.

2.2.2 The ElGamal Signature Scheme

ElGamal [25] also designed a signature scheme which makes use of the finite group GF,,
p is a large prime, with 2°'* < p < 21924 "and p — 1 has a large prime factor q. It is known
that GF, is cyclic and is generated by o.. Suppose the signature scheme is defined for m

F, = {0,...,p-1}, where m is typically the hashed value' of a message to be signed.

* Signature Generation, A user does the following:
1) A user chooses a random integer k € F, such that ged(k, p-1) = 1.
2) A computes the group element r; = oX (mod p).

3) A computes s € Fp from

1 A hash function is a computationally efficient function mapping binary strings of arbitrary length to
binary strings of some fixed length, called hash-values. 39
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sk = (m + r;x,) (mod p-1) (2.2-5)
Here if s = 0, then A user chooses the random number k again. Of course such a

probability is small. The signature for m is the pair (11, ).

e Signature Verification,

Given m and the signature (r1, s), the verification is as follows:
1) B computes r,° = o (mod p), o™ (mod p), and Y: ) =(ax ar (mod p),
2) B iterates the equation
r'=a”y", (modp) (2.2-6)
3) B verifies that they are the same from (2.2-5),
o (mod p) = (&) ™) (mod p),

To forge A user's signature for a message m, a forger would have to solve the equation

for r; and s.

o (mod p) = (a™) (ax ar (mod p), (2.2-7)

Fixing r; first and then attempting to solve for s is a discrete logarithm problem in GF,.
Fixing s first and then attempting to solve for r; gives a mixed exponential congruence in
r;, for which no efficient algorithm is known. Hence the security of the ElGamal

signature scheme is based on the difficulty of the discrete logarithm problem in GF,.

In practice, the message to be signed is a long sequence of entries from m. It is inefficient
to sign each element of the sequence. So instead a hash function is first applied to the
message to reduce a much smaller message digest, and it is this message digest which is
then signed. The hash Function is public knowledge. To prevent forgery and
impersonation, it must be infeasible to find two distinct inputs that hash to the same

output value, and it must be infeasible to find an input that hashes to a given value.
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Summary: Although the ElGamal scheme based on the difficulty of discrete logarithm
algorithm over a finite field has the same high security features as RSA algorithm, the
complex computation of this method is still based on the large prime p. It means that the
ElGamal scheme also requires the same large memory space as the RSA required, if the

ElGamal scheme would drive to the same high degree security as the RSA scheme.

In the application to MSC with small memory capacity, the chip on the smart card is
restricted in size. Therefore the ElGamal scheme meets the same problem as RSA met, in
which the memory capacity of the chip is not enough to store the large and complex
program and the protocol codes of the cryptography algorithm with the factoring of large

integers.

Elliptic Curve cryptosystems potentially provide equivalent security to the existing public
key schemes, but with shorter key lengths which means smaller memory requirement, and

will be introduced in the next chapter.

2.3  Elliptic Curve Cryptosystem

Abstract: Elliptic Curve Cryptosystems (ECCs), first suggested by Victor Miller [12]
and Neal Koblitz [11], were a natural choice because they are immune to the index
calculus attack (refer to §3.2.2). This means that smaller numbers can be used to achieve
the same degree of security for the ElGamal algorithm as the 512-bit version described

above.

The elliptic curve method has stronger one-way function, because the elliptic curve
method uses a different discrete logarithm algorithm with group operation over the group
of points on an elliptic curve compared to the discrete logarithm with integers mod N

over finite fields, and the group operation is arithmetically more complicated [28].
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The points on an elliptic curve E over a finite field form an Abelian group, hence the
group E can be used to implement an analog of the Diffie-Hellman key exchange scheme,
ElGamal scheme and the other public key cryptosystems. In this chapter, the Elliptic
Curve analogue of the ElGamal cryptosystem is only described to compare with the

multiplication of integers mod p as described in chapter 2.2.

The description of Elliptic Curve Algorithm requires the introduction of elaborate and
complex mathematics. In order to keep the descriptions concise these mathematical issues
are explained in more detail in chapter 3. The remainder of this chapter is organized as
two sectors: Elliptic Curve Cryptography Algorithm and Elliptic Curve Signature

Scheme, which are described as follows.

2.3.1 Elliptic Curve Cryptography Algorithm

The Elliptic Curve Cryptography Algorithm (ECCA) means the elliptic curve analog of
the ElGamal algorithm based on an elliptic curve E, and a point P(x, y) to generate the
whole addition group of E. The base field, curve equation, and starting point are all

public parameters [28].

Let E be the non-supersingular curve (this term will be described in chapter 3):

ytasy =% + ax’ + ag (2.3-1)
defined over F,, where p is a large prime, and let P be a publicly known point on the
elliptic curve E, preferably a generator of E. The elements of F, are assumed to be
represented by a normal basis (see Appendices B). User A randomly chooses an integer
'a' and makes a public key aP. The integer a is user A's secret key. Suppose the messages

M = (my, my, ..., my,.1) are ordered pairs of elements in Fy,.

To transmit the message (my, my) to A, sender B selects a random integer k which is B's

secret key, and computes the points kP and akP = (x', y'). Assuming that x'#0 and y'+0
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(the event X' = 0 or y' = 0 occurs with negligible probability for random k), then B sends
the point (kP, MakP) to A, and MakP is the ordered pair of field elements (m;x’', mpy").

To read the message, A calculates the point akP by A's secret key 'a' to obtain (X', y"),

from which A can recover m; and m; by two divisions.

In the ECCs, four field elements are transmitted in order to convey a message consisting
of two field elements. It is called "message expansion” by a factor of 2. The Message
Expansion can be reduced to 3/2 by only sending x; and a single bit of yi/x; (if x;20),

instead of sending the point P=(x;, y1). The following method can then be used to recover

yi.

Firstly, if x;=0, then y1=a61/2. If x;#0, then the change of variables (x, y) = (X, xz)
transforms the equation of the curve (2.3-1) to 2> + z = x + a, + agx”>. Compute f = x; +a,
+ agxy 2. To solve the quadratic equation z° + z = f, let

Z = (Z0, Z1y+e-» Zn-1) (2.3-2)
and f=(fo, fi,..., fu1) (2.3-3)
be the vector representations of z and f respectively over Fy. Then

2
Z" + Z = (Zn1+2Z0, Zo+Z15e.0,Zn2FZn1)- (2.3-4)

Each choice zy=0 or zp=1 uniquely determines a solution z' to z* + z = £, by comparing the
components of equation (2.3-3) and (2.3-4). The correct solution z' is selected by
comparison with the corresponding bit of yi/x; that was transmitted. Finally, y; is
recovered as y; = x;z'. The drawback of the method is that if an intruder happens to know
m; (or my), he can then easily obtain m, (or m;). This attack can be prevented by only

sending (kP, m;x'), or by embedding m, on the curve [29].
If the user wishes to embed messages on the elliptic curve, the following deterministic

scheme may be used. Suppose that messages are (n-1) bit strings M = (my, my, ..., My2),

where M is an element of Fp, and m,;=0. To embed M on the curve, M is first computed

43



The Applications of Public Key Cryptosystem

and then the Trace of M® (see Appendix H) is evaluated. If Tr(M*)=0, then set x = M,
otherwise set xy = M+1. In either case, Tr(xy) = 0. As in the preceding paragraph, one
can easily find yy such that Py = (xu, yu) is a point on E. Sender B can now send the pair
of points (KP, akP + Py) to A. With this scheme the message expansion is by a factor of
4. The message expansion can be reduced to 2 by sending only the x-coordinate and a

single bit of the y-coordinate of each point.

Note that after user A recovers xu, A can decide whether the message sent is Xy OF Xp+1,

by checking whether the last bit of xu is 0 or 1 respectively.

If every user uses the same elliptic curve and base point P, then the public key, namely
the point aP, is n+1 bits in length. Otherwise the public key consists of as (a2 can be fixed
to be 0), the points P and aP, for a total size of 3n + 2 bits.

2.3.2 Elliptic Curve Signature Scheme

The Elliptic Curve Signature Scheme (ECSS) means that the EIGamal type signature is
constructed on an elliptic curve, which can be implemented in smaller sizes than finite
fields, since the most serious attacks defined on finite fields cannot be applied to elliptic

curves [30]. Therefore such characteristics might be suitably used on signature schemes.

Suppose that an elliptic curve E is over finite the field F, (p#2" is a large prime), and a
base point P € E(F,) with a large prime order q. The user A has a secret key X, and

publishes the corresponding public key Y, = x,P (mod p).

. Signature Generation:
A user does the following:
1) A user chooses a random number k € Fg, and computes R =kP mod p on E,

2) A sets 1 = x(R) mod q and computes s € F, from equation (2.2-5),
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sk = (m + r;x,) (mod q) (2.3-4a)
where x(R) denotes the x-coordinate of R. Here if either x(R) = 0 or s = 0, then A

chooses the random number k again. The signature for m is the pair (r1, s) € Fpx Fg.

oo Signature Verification,
Given m and the signature (r1, s), the verification is as follows,
1) B computes Rs = skP (mod p), (2.3-5)
and r;Y.=rix,P (mod p), (2.3-6)

2) B iterates the following equation by (2.3-5) and (2.3-6),
Rs=(mP + r;Y,) (mod p), (2.3-7)

3) B verifies that it is the same from (2.3-4a),
skP = (mP + r;x,P) (mod p), (2.3-8)
to forge A user's signature for a message m, a forger would have to solve the equation

(2.3-8) for r and s.

Summary: From the description of the Elliptic Curve Cryptosystem (ECCs) above, we
have seen that the elliptic curve analogue of the ElGamal scheme has a different method
of encryption to the ElGamal cryptosystem based on discrete exponentiation in a finite
field. The former has the public key Y = xP with smaller bits size, while the latter has the
public key Y=a* with the same size as the field, namely at least 512 bits in length. Neal
Koblitz [11] said that using the analogous procedure (i.e., doublings and additions),
people can compute a multiple xP of a given point P in the same order of time as it takes
to exponentiate o*. Although there is no strict proof in mathematics proposed currently,
it is believed to be the case that the computation of the group operation based on a group
of points on an elliptic curve is more complex than the computation based on discrete
exponentiation in a finite field [31]. That is the reason why the Elliptic Curve

Cryptography (ECC) is likely to provides equivalent security but with shorter key length.
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The advantages of the ECC providing equivalent security with shorter key length will be
a crucial factor in designing the MSC. The investigation of the efficiency and practicality
of the ECC will be also significant in developing the MSC, and will be introduced in the

next two chapters.

Here, the ECCA describes a very efficient implementation of the group operation in the
Galois field GF(2'). It is easily to see that a properly chosen elliptic curve over GF(2'%)
means using smaller numbers, but offers the same degree of security as working modulo

a 512 bit prime p in the RSA or the ElGamal cryptosystem.
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3. The Principal of Mathematics in the Public Key Cryptosystem

Abstract: All of the properties and efficiencies in a cryptosystem source from the
methods of computation and the architecture of algorithms in cryptography. Both of these
refer to the mathematical principals of the cryptography algorithm. It is necessary to know
the mathematics of principals for exploring the efficiencies of the public key cryptography
algorithm. In this paper, the description will be limited to the public key cryptography
algorithms corresponding to the three cryptosystems discussed in the previous chapter. It
begins with the factoring algorithm used for RSA cryptosystem, then the discrete
logarithm algorithm used for ElGamal cryptosystem will be described, and finally the
elliptic curve algorithm used for the Elliptic Curve cryptosystem (ECCs) will be

introduced.

3.1  The Principle of the Factoring Algorithm

This section presents some basic facts concerning primality and factoring, especially from
the point of view of RSA. The RSA cryptosystem was invented in 1977 by Rivest-
Shamir-Adleman [10], and was the first realization of Diffie-Hellman’s abstract model for
public key cryptography that we introduced in Section 2.1. The security of the RSA
cryptosystem is based on the assumption that is much easier for someone to find two
extremely large prime numbers p and q than it is to recover them, if only their product n is
known. In generating the RSA algorithm, it is necessary to generate large random primes.
In practice large random numbers will be generated, and then be tested for primality. A
primality test is a criterion for a number n not to be a prime. If n “passes” a primality test,
then it may be a prime. On the other hand, if n fails any primality test, then it is definitely

not a prime. Therefore, it leaves a difficult problem: find the prime factors of n.
It is necessary to say that the primality testing of algorithms must run in polynomial time
in order for the receiver to find primes p and q effectively. In this section the probabilistic

polynomial time algorithm such as the Miller-Rabin algorithm will be presented initially,
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then a method of factorization such as the Quadratic Sieve algorithm will be introduced.

3.1.1 Primality Test

A few definitions from number theory have to be introduced, and these are useful in the

primality test to be introduced later.

Fermat's Theorem: Let p be a prime and suppose the greatest common division gcd (a,
p)=1,then a”' =1 (mod p).
According to Fermat's theorem, if n is prime, then for any b such
that ged.(b,n)=1,
b™'=1 (mod n). (3.1-1)
If n is not prime, it is still possible (but not very likely) that

equation (3.1-1) holds for a number of choices of b.

Pseudoprime:If n is an odd composite number and b is an integer such that ged(n, b) =1

and b™! = 1 (mod n) holds, then n is called a pseudoprime to the base b.

Example: The number n = 91 is a pseudoprime to the base b = 3, because 3°° = 1
(mod 91). However, 91 is not a pseudoprime to the base 2, because 29 =
64 (mod 91). If it is had not already known that 91 is composite, the fact
that 2°° % 1 (mod 91) would shown that it is.

The Legendre symbols: Let a is an integer and p > 2 a prime. The Legendre symbol (a/p)
is defined to equal 0, 1 or -1, as follows:
0, if pla

{ﬂ] ={1, if a is a quadratic residue mod p;

p —1, ifaisanon-residue mod p.

Thus, the Legendre symbol is simply a way of identifying whether or not an integer is a

quadratic residue modulo p.
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[f_] = g2 (mod p).
p

Proof. If a is divisible by p, then both sides are = 0 (mod p). Suppose p 0 a. By Fermat’s
Theorem, in F, the square of a®V? s 1, so a® P itself is 1. Let g be a generator
of Fp* (the multiplication group of F},), and let a = g'. The a is a residue if and only
if j is even. And a®? = g®D? is 1 if and only if j(p-1)/2 is divisible by p-1, i.e., if
and only if j is even. Thus, both sides of the congruence in the proposition are *1
in F,, and each side is +1 if and only if j is even.

The Jacobi symbol, general to composite number, is as Legendre symbol.

The Jacobi symbols: Let a is an integer, and let n be any positive odd number. Let n =

P ...p > be the prime factorization of n. Then the Jacobi symbol
(a/n) is defined as the product of the Legendre symbols for the
prime factors of n:

a a,
G- ()
P p,
A word of warning is in order here. If (a/n) = 1 for n composite, it is not necessarily true
that a is a square modulo n. For example, (2/15) = (2/3)(2/5) = (-1)(-1) = 1 (mod 15). Now
the Proposition to the Jacobi symbol [32] is generalized.

Proposition: For any positive odd n, the congruence (EJ =(— 1};1 e is holding.
n

(The reader interested in the proof can refer to Appendix A-3)

Euler Pseudoprimes: Odd composite numbers n satisfying (3.1-2), for some b with (b, n)
=1, is called an Euler Pseudoprimes to the base b. Because (3.1-2)
implies (3.1-1), an Euler pseudoprime to the base b is also a
pseudoprime to the base b. The converse is not true, i.e. 91 is a
pseudoprime but not an Euler pseudoprime to the base 3. Because
(3.1-1) is satisfied but 3* = 27 (mod 91), implying that (3.1-2) is

not satisfied. The number 91 is an Euler pseudoprime to base 10,
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since 10¥ = 10> = -1 (mod 91). From the above two results, we can
obtain an efficient probabilistic test for whether or not a large odd

integer n is a prime, which starting with the following definition.

Lemma 3.1 (Lemma 4.4 in [72]): If n is an odd composite number, then at most half of

the integers b with 1 < b <n and (b, n) = 1 satisfy (3.1-2).

Proof: Firstly suppose that a b’ does not satisfy (3.1-2) (for b =b’). If assume the square
p? of a prime p divides n, then it results b’ = 1 + n/p. Thus, (b’/n) = 1, but the left
side of equation (3.1-2) is not congruent to 1 (mod n), since p does not divide (n-
1)/2.

Secondly, assume that n is a product of distinct primes and p is one of them.
Choosing any quadratic non-residue (refer to Appendix I) s modulo p and let b’
with 1 < b’ <n, satisfy the congruence

b’ =s (mod p),

b’=1 (mod (n/p)).
This b’ can found by the Chinese Remainder Theorem (see Appendix C). So (b’/n)
= -1 but

b’®D2 =1 (mod n/p),

Bring about b’®D2 % -1 (mod n).

To set up a b’ which does not satisfy the equation (3.1-2), let b;with 1 <i <t be all
of the integers satisfying (3.1-2) (as well as the condition 1 < b’ <t where (b’, n) =
1). Where t is threshold with n° < t < n°, s and e is signature key and encryption
key respectively [72]. The numbers

u, =b’b; (mod n) 1<i<t,
are all distinct and satisfy 1 <u; < n and (u;, n) = 1. If u; satisfies (3.1-2), then

(b @D2)(b2) = (b’/n)(b/n) (mod m).

Since b satisfies (3.1-2), it can be deduced further that
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b’ ™2 =(b’/n) (mod n)

This is a contradiction with the facts that b’ does not satisfy (3.1-2). Hence, none

of the numbers u; satisfies (3.1-2). There are as many of them as there are numbers
b.

The Miller-Rabin primality test

The Miller-Rabin test is based on the notion of a “strong pseudoprime”, which will be
introduced below. But some number theoretic facts will be given without proofs. If the

reader is interested more information, please refer to [32].

Suppose that n is a pseudoprime to the base b, i.e., b*' =1 (mod n). The idea of the strong
pseudoprime criterion is to extract successive square roots of the congruence (3.1-1) and
check whether the first number # 1 on the right side of the congruencies thus obtained is
actually equal to —1. For example if b is raised to the ((n-1)/2)th, ((n-1)/2)th,..., ((o-
1)/2%)th powers (where (n-1)/2° is odd), then the first residue class is either 1 or ~lif n is
prime, because x1 are the only square roots of 1 modulo n. If n fails this test, the first
number different from 1 equals ~1, but n is composite, then n is referred to as a strong
pseudoprime to the base b. In practice, one can set n-1 = 2°t with t odd, then computing b

(mod n), if that is not equal to -1, squaring to get b* (mod n), then squaring again to get

bzt (mod n), etc., until one get the residue 1. Before getting 1 the n has be known as

composite, or the -1 must be got.

Definition: Assume n is an odd composite number, and write n-1 = 2°t with t odd. Choose
a number b with 1 <b < n and (b, n) = 1. If n and b satisfy the condition

either
b'=1 (modn) or b2’t =-1 (modn) (3.1-3)

for some r with 0 <r < s, then n is called a strong pseudoprime to the base b.
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Lemma 3.2 (Lemma 4.5 in [72]): If n is an odd composite integer, then n is a strong
pseudoprime to the base b for at most 25% of all b’s satisfying 1 < b < n.
(Proof can be found in [32]).

In the Miller-Rabin primality test, assume n-1 = 2t with odd t, and choose a random
integer b with 0 < b < n. To determine whether a large positive odd integer n is prime or
composite, first compute b* (mod n). If the result is +1, then n passes the test (3.1-3) for
the particular b; repeat the procedure for another b. Otherwise square b' (mod n), then

square that modulo n, and so on, until we get —1. If the —1 is obtained, then n passes the

test. However if the —1 is never obtained, i.e., the sz =1 (mod n) while b2’ # -1 (mod

n), then n fails the test and n is composite. If n passes the test (3.1-3) for all random
choices of b (suppose we try k different bases b), then by Lemma 3.2 the n has at most a 1
out of 4k chance of being composite. Because if n is composite, then at most 2 of the

bases with 0 < b < n satisfy (3.1-3).

In practice one does not have to check through a large number of bases b in order to be
almost sure that n is a prime. If it is a strong pseudoprime to each of these bases, i.e., the
four bases 2, 3, 5, 7, only one composite number n < 2.5 - 10'°, namely n = 3215031751,

is a strong pseudoprime to each of these four bases.

3.1.2 The Quadratic Sieve algorithm

The quadratic sieve algorithm for factoring large integers, developed by Pomerance in the
early 1980's [32], was more successful than any other method for factoring integers n of
general type which have no prime factor of order of magnitude significantly less than Jn.
An important difference between algorithms for primality testing and ones for
factorization is that primality testing algorithms can tell if a given integer is composite or
prime. Factoring algorithms, however, give the actual factors when the integer is

composite.
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There are a huge number of papers on factoring algorithms. Three algorithms that are
most effective on very large number N as follows:

(1)  The Quadratic Sieve algorithm,

(2)  The Elliptic Curve algorithm,

3) The Continued Fraction algorithm.

All of these methods can factor N with the running time:

L(N) = exp{(1 + o(1)v/InnInlnn }. (3.1-3A)
Although no one seems to have any idea how to obtain even heuristic lower bounds for
factoring, most of the papers believe the conjecture that L(N) is in fact the true complexity
of factoring. Here it is not necessary to introduce all of the three algorithms, since all of
them having similar features. Firstly the quadratic sieve algorithm only will be introduced,

then an example given to illustrate the method.

The Quadratic Sieve algorithm:

The Quadratic sieve algorithm is a variant of the Factor Base approach (see Appendix A-
2). As the factor base F someone takes the set of all primes p < B (where B is some bound
to be chosen in some optimal way) such that n is a quadratic residue mod p, i.e., (n/p) =1
for p odd, and p = 2 is always included in F. The set of integers S in which one look for
F-numbers (recall that a F-number is an integer divisible only by primes in F) will be the
same set that someone used in Fermat factorization', namely:
S={2-n|[Vr]+1<t<[Vn]+A}

For some suitably chosen bound A.

The main idea of the method is that, instead of taking each s € S one by one and dividing
it by the prime p € F to see if it is an F-number. One takes each p € F one by one and

examines divisibility by p (and powers of p) simultaneously for all of the s € S. The word

"It is a way to factor a composite number n that is efficient if n is a product of two integers which are close
to one another. This method, called “Fermat factorization”, is based on the fact that n is then equal to a
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“sieve”

refers to this idea, which one can use to make a list of all primes p < A. For

example, to list the primes < 1000 one takes the list of all integers < 1000. Then for each p

=2,3,5,7,11,13, 17, 19, 23, 29, 31, one discards all multiples of p greater than p — one

“lets them fall through a sieve which has holes spaced a distance p apart” — after which

the numbers that remain are the primes. The basic steps are summarized as follows (the

interested reader can refer to [32, 33, 78] for details), then give an example.

Step 1.

Step 2.

Step 3.

Suppose n is an odd composite integer, A and B are bounds, both of order of
magnitude roughly are

exp((logn loglogn)” A,

Generally, A should be larger than B, but not larger than a small power of B, e.g.,

2) has an order of magnitude

B < A < B? This function exp((logn loglogn)
intermediate between polynomial in logn and polynomial in n. If n = 10°, then

L(n) = 400.

Fort= [\/;] +1, [«/;] +2, ..., [\/E] + A, make a column listing the integers t*—
n. For each odd prime p < B, first check that (n/p) = 1; if not, then throw that p out
of the factor base. Assuming that p is an odd prime such that n is a quadratic
residue mod p, solve the equation t* = n (mod pP) for B =1, 2,..., (the details of
this method refer to Exercise 20 of I1.2 in [32]). One takes the increasing values of

B until to find that there is no solution t which is congruent modulo p? to any
integer in the range [\/; H1<t< [\/; JH+A. Let B be the largest integer such that
there is some t in this range for which £ = n (mod p®). Let t; and t; be two
solutions of t* = n (mod pﬁ) with t, = -t; (mod pB), t; and t, are not necessarily in

the range from [\/;] +1to [\[;;] + A.

Still with the same value of p, run down the list of t* — n from step 2. In a column
under p, one puts a 1 next to all values of t> — n for which t differs from t; by a

multiple of p, and changes the 1 to a 2 next to all values of t* — n for which t differs

difference of two squares, one of which is very small.
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from t; by a multiple of p?, and changes the 2 to a 3 next to all values of t* — n for
which t differs from t; by a multiple of p’, and so on until pP. Then do the same

with t; replaced by t,. The largest integer that appears in this column will be .

Step 4. As someone goes through the procedure in step 3, each time one puts down a 1 or
changes a 1 to a 2, a 2 to a 3, etc., divides the corresponding t* —n by p and keeps
a record of what’s left. In the column p = 2, if n # 1 (mod 8), then simply put a 1
next to the t* — n for t odd and divide the corresponding t* —n by 2. If n =1 (mod
8), then solve the equation t* = n (mod 2P) and proceed exactly as in the case of

odd p (except that there will be 4 different solutions t;, ta, 3, ts, modulo 2PifB 2
3).

Step 5. When you finish with all primes < B, throw out all of the t* — n except for those
which have become 1 after division by all the powers of p < B. One will has a
table of the form in Example 9 of §V.3 in [32}, in which the column labeled b; will
have the values of t, [\/_r; ]+1<t< [«/; ]+ A, for which t* — n is a F-number, and
the other columns will correspond to all values of p < B for which n is a quadratic
residue.

The interested reader can refer to §V.3 in [32] for more details.

Example 3.1 (Example in [32]): Let us try to factor n = 1042387, taking the bound P = 50
(the set of all primes p < P) and bound A = 500 (a list of all primes p < A) with P < A <
P2. Here [\/;] = 1020. The factor base consists of the 8 primes {2, 3, 11, 17, 19, 23, 43,
and 47} for which 1042387 is a quadratic residue. Since n # 1 (mod 8), the column

corresponding to p = 2 alternates between 1 and 0, with a 1 beside all odd t, 1021 <t <
1520.

Now it is starting to describe in detail how to form the column under p = 3. One wants a
solution

ti=tio+t113 + 1232+ e +t1p03% to 1,2 = 1042387 (mod 3P),
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where t 1; € {0, 1, 2} (for other solution t;, one can take t; = 3P t). It is clear one can
take t1 0 = 1. (For each of the 8 primes the first step: solving t,> = 1043287 (mod p), it can
be done quickly by trial and error).

Next, it works on modulo 9: (1+ 3t;;)* = 1043287 =7 (mod 9),
6t;,1 =6 (mod 9),
2t;1 =2 (mod 3),
thus ti=1,
And modulo 27: (1+3+9t2)*=1043287 =25 (mod 27),
16 + 18 t;2 =25 (mod 27),
2t12=1 (mod 3),

SO t1ip= 2.
Then modulo 81: (1+3+18+27 t1,3)2 =1043287 =79 (mod 81),
which leads to the t;3=0.

Continuing until 37, one find the solutions: t; = (21021 1)? (mod 37,
t, = (2012012)° (mod 3").

However there is no t between 1021 and 1520, which equals to t; or t; (mod 37). Thus, one
has B = 6, and one takes t; = (210211)> = 589 = 1318 (mod 3%) and t, = 3% —t; = 140 =
1112 (mod 3°) (note that there is no number in the range from 1021 to 1520 which is =t,
(mod 36)).

Now one can construct “sieve” for the prime 3. Starting from 1318, it takes jumps of 3
down until 1021 is reached and up until 1519 is reached. Each time it can put a 1 in the
column. It can divide the corresponding t* — n by 3, and can record the result of the
division (Actually, for t odd, the number divided by 3 is half of t* — n, since 2 has already
divided t* — n when the column of alternating 0’s and 1’s under 2 is formed.). Then one
can do the same with jumps of 9, each time changing the 1 to 2 in the column under 3,
dividing the quotient of t* — n by another 3, and recording the result. One goes through the
analogous procedure with jumps of 27, 81, 243, and 729 (there is no jump possible for
729, one nearly does not change the 5 to 6 next to 1318 and divide the quotient of 13182
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(1043287) by another 3). Finally, one goes through the same steps with t; = 1112 instead
of t; = 1318, this time stopping with jumps of 243.

After passing through this procedure for the remaining 6 primes in factoring base, there is
a 500 x 8 array of exponents, each row corresponding to a value of t between 1021 and
1520. Now one throw out all rows for which t* — n has not been reduced to 1 by repeated
division by powers of p as the table (3-1) formed. Le., the rows for which t* —nis a B-
number is only taken. The following table 3-1 is left for the n = 1043287 (the blank spaces

denote zero exponents):

Table 3-1 the array of exponents

Now it can look for relations modulo 2 between the rows of this matrix. Moving down
from the first row, one looks for a subset of the rows, which sums to an even number in
each column. The first such subset found here is the first three rows, the sum of which is
twice the row 1 3 2 1 - - -, Therefore, one can obtain the congruence:

(1021 - 1027 - 1030)> = (2 - 3*- 11%. 17)* (mod 1043287).

But this is not so lucky: the two numbers being equal in the above congruence are both =
111078 (mod 1043287). So it is necessary to continue down the matrix. Finally, one
notices that the last row, corresponding to the last value of t, is dependent on the earlier

rows. More precisely, it is equal modulo 2 to the fifth row. It gives that
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(1112 - 1520)* = (33 - 17 - 23 - 47 )* (mod 1043287),

thus 6478532 = 496179° (mod 1043287),
the factor is that ~ god(647853 — 496179, 1043287) = 1487.

3.2  The Principal of the Discrete Logarithm Algorithm

The RSA cryptography based on the factoring algorithm that is infeasible to factor the
product of two large primes has been introduced above. The ElGamal cryptography based
on the discrete logarithm algorithm has similar powerful “one way” function with the
RSA has it. When calculating with the real numbers, exponentiation (calculating b*to a
prescribed value) is not significantly easier than the inverse operation (calculating logpx to
a prescribed value). When the work is done in a finite field F, (with the group operation of
multiplication). One can compute b* for large x rather rapidly (in polynomial time in log
x), because of the repeated-squaring method. But if an element which is of the form b*
(suppose that the “base” b is fixed) is given, how can X = logyy be quickly computed? This
is called the “discrete logarithm problem”. Thus, finding discrete logarithm is in fact much

more difficult than raising to a power in a large finite field.

Coppersmith’s algorithm to fine discrete logarithms, namely the Index Calculus
algorithm, works in two steps. The first step (a preprocessing step) is obtaining a system
of linear equations that are satisfied by the discrete logarithms of certain group elements
belonging to a set called a factor base and solving the set of equations to determine the
discrete logarithm of the elements of the factor base. The second step is computing any
desired logarithm from the pre-computed library of logarithms for the factor base. Finally

an example is given to illustrate the algorithm.
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3.2.1. Algorithms for Finding Discrete Logarithms in Finite Fields

This method for computing logarithms in a cyclic group by factoring the order of the
group is called Pohlig-Hellman method [26]. It supposes that all of the prime factors of g—
1 is small. In this case it is said that g-1 is “smooth”. There is a fast algorithm for finding
the discrete logarithm of an element y € F, to the base b under this assumption. For
simplicity, it can also be supposed that b is a generator of Fy.

First, for each prime p dividing g-1, one can compute the p-th roots of unity r,; = par
forj=0, 1, ..., p-1 by the repeated squaring method to raise b to a large power. With the
table of {r,;} determined it is ready to compute the discrete logarithm of any y € Fq (note:

if b is fixed, this first computation needs only be done once, after which the same table is

used for any y). The goal is to find x (0 <x < q— 1), such that b*=y.Ifq— 1= pr %is

the prime factorisation of q — 1, then it suffices to find x (mod p®) for each p dividing q —
1. This x is uniquely determined by using the algorithm in the proof of the Chinese
Remainder Theorem. Now it can start to fix a prime p dividing q — 1, and to show how to

determine x (mod p%).

Suppose that x = xo + x;p + =+ + Xg1p™" (mod p*) with 0 < x; < p. To find xo, one

computes y'4~ VP and gets a p-th root of 1, since y?~! = 1. Since y = b*, it follows that

y(q— Db = px@- D = px0a-Dhp = Tpx0-

Thus, compare y(q' P with the {rpi}o<j<p and to set xo equal to the value of j for which

~-1)/p
y(q )p_rpj.

Next to find x;, one replaces y by y; = y/b™. Then y; has discrete logarithm:
X —Xg=Xip + - + X ip®" (mod p%).

Since y; is a p-th power, it has y;*""? =1 and
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2 2
@D/'p _ b(x—xo)(q—l)/ p_ b(x1+x2p+-~-)(q—1)/p - bx,(q-l)/p -

1 Py,

2
@-/p _
1

P with {rp;} and set x; equal to the value of j for which y

So one compares @t
e compares )
1p;. Continue in the same way to find all xo, x1, ..., Xq.1. Set

Yi — y/bxo+xlp+."+x"“p (Where i= 1, 2, ooy a-l)a

which has discrete logarithm congruent mod po to x; i+ Xo-1 1 Since yi is a pi-th
g g p p p y p

power, thus

yi(q-l)/pi =1
and yi(q-l)/pi+1 - b(x,.+x,.+lp+“‘)(q~1)/l7= bx,(q—l)/P = Ipje
So one can set X; equal to the value of j for which i(q'l)/pi” =r,; and can get x mod p%.
q J Y P g P

After doing this for each p|q-1, One can find x by using the Chinese Remainder Theorem.

This algorithm is efficient, when all of the primes dividing g-1 are small. But clearly the
computation of the table of {r,;} and the comparison of the yi(q'l)/ Pl with this table will

take a long time if -1 is divisible by a large prime.

Example 3.2 (Example 4 in [32] pagel03): To find the discrete logarithm of 28 to the
base 2 in F37 (2 is a generator of Fs7) using the Silver-Pohlig-Hellman
algorithm.

Solution: First, write 37-1 =22 . 3% Calculating 218 =1 (mod 37), so 129 =1, rp,; = -1 (for

p =2, always {r;} = {£1}). Then 2365 = 26, 22393 =10 (mod37), so {r3;} = {1,
26, 10}. Let 2* = 28 (mod 37). Firstly one takes p = 2 and finds x (mod 4),
which can write as xo + 2x;. One calculates 28° 2 =1 (mod 37), hence gets xg =
0. Then one computes 28°%* = -1 (mod 37), hence x; = 1. Next one takes p =3
and finds x (mod 9), which one write as xo + 3x; (for each p, the x; are defined

differently). To find Xo, one calculates 28°%” = 26 (mod 37), so xo = 1. Then
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one computes (28/2)*° = 14* =10 (mod 37), thus, x; =2, s0x=1+2-3=7
(mod 9). The remainder is to find the unique x (mod 36) such that x =2 (mod
4)and x =7 (mod 9). It is x = 34. Thus, 2** = 28 (mod 37).

3.2.2. The Index-calculus algorithm

Index-calculus algorithm [35] has three basic stages. In the first stage, a set of linear
equations giving relations for the elements of the factor base B is generated. In the second
stage, the set of linear equations is solved, to determine the discrete logarithms of the
elements of factor base B. Both stages comprise a precomputation phase. In the third
stage, the calculation of individual logarithms is done using the previously computed
values of the discrete logarithms for the factor base, from which x = log,b can be

recovered.

First stage: The Index Calculus algorithm works well in finite fields GF(q). The reason
is that the factoring is easy for the integers, if all of the prime factors of an
integer I are less than a given bound u, and one can completely factor I

with at most u + log I divisions.

Let q1, ..., qm to be the first m primitive element of GF(q), and let GF be generated by g,
of order n. One randomly chooses an integer B € [1, n] and computes the least positive
integer e with e = g? (mod q). Then one can try to factor e as a product of the first m

primes, using division by these primes. If e factors by this method, a relation of the form

m

gq‘?"‘f = gﬂ, (3.2-1)

j

is obtained. It is clearly shown that if the bigger m is, the chance that e will factor as a
product of the first m primes is greater. But as the m increases, the work to factor residues
and to solve the equations in the second stage increases. Now one introduces an argument
to balance these constraints in order to optimize the running time of the algorithm as

follows:
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Suppose P is chosen from a uniform distribution, then the probability that e will factor as a
product of the first m primes is I'(q,qm)/q, where T'(x, y) is defined to be the number of
positive integers < x that have no prime factors exceeding y. The asymptotic behavior of
the function I has been extensively studied, and in particular it is known that [36]

I'(x, y) =x exp((-1 + o(1)) v log v),
where v = log x/log y, for v—> o« and y = log®x. If gm ~ L(q)° is chosen, where ¢ is a

constant and

L(q) = exp(+/loggloglogg ),

then the probability that e has all prime factors among the first m primes is L(gq) /@,

Therefore one can expected to generate the equation (3.2-1) after trying L(q)l/(2°)+°(1)

values of B, and to generate 2m such equations of (3.2-1) should take about
2l (q) /@D = [ (g)*+VCeroD

values of P. If one uses trial division to do the factoring, then for each B it will take at
most m + log q divisions to decide whether an equation (3.2-1) is given. Therefore one has
a total running time for the generation of relations in the first stage of L(g)**"/®9"®,
Once 2m equations are generated (or any number slightly larger than m), it is reasonable
to expect that the corresponding set of 2m equations in m unknowns should have full rank,
thus the log,q; (which denotes the discrete log of q; € GF(q)) is solved (here the full rank

means full column rank modulo p for every prime p dividing g-1).

Second Stage: The problem of solving a system of linear congruencies does not present
any great difficulty, but there are a few points that deserve comment. For
example, consider the problem of solving the equations:

3x; +2x, =0 (mod 30),
5x) -3x2=2 (mod 30). (3.2-2)

Note that none of the coefficients are invertible modulo 34, and it is impossible to add a

multiple of one row to another in such a way as to introduce a zero entry (to use the
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Gaussian elimination). However, there is a unique solution x; = 16 (mod 30), x = 6 (mod
30).

Here it starts to describe a method for solving a system of equations of linear
congruencies. Suppose one want to solve Bx = B (mod g-1), where B is I x m with rank (B
mod p) = m for every prime p dividing g-1, there are a few steps as follows. First factor g-
1 as a product of prime powers. Then the equations modulo p (for every prime p dividing
g-1) are solved by Gaussian elimination, then the solution modulo p is lifted to a solution
modulo the power of p dividing q-1 by Hensel’s method. Finally using the Chinese
Remainder Theorem combines all the solutions for a solution modulo g-1. However, the
factorization of g-1 is generally not needed to solve the equations and should probably be
avoided. One choice is to perform as if Z/(q-1)Z is a field and attempt to perform
Gaussian elimination in the usual manner. However, this can break down if there is a
column in which no entry is invertible modulo g-1 (as in equation (3.2-2)). The Euclidean
algorithm or Hensel’s method can recover from this by using the Chinese Remainder

Theorem, but the details are somewhat tedious so another strategy is used.

In standard Gaussian elimination, the jth column of the matrix would be searched to find
an entry that is invertible modulo q-1. The rows are exchanged to bring it into the jj
location, and a multiple of the jth row be added to the rows below it to introduce zero
entries. An alternative procedure is searching the jth column to find an entry that is
nonzero and exchanging rows to bring it into the jjth location. Then to introduce a zero
into the ijth location, one uses the extended Euclidean algorithm ([37] §4.5.2) to find
integers g, e, and k for which
g = ged(oyj, o) = ea; + kay;.

Then the row i is replaced by (auj/g)-(tow j)-(oy/g)-(row i), and the row j of the matrix B is
replaced by e-(row i) + k-(row j). These operations on the system preserve the solution set

and have the effect of replacing the ijth and jjth entries by 0 and g respectively.

If this method would be used, the solution of the system of equations will need O(m’)

operations modulo g-1, and O(m?) applications of the Euclidean algorithm. Therefore the
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total expected time for stages one and two to find loggp; is

L(q)(20+1/(20))+0(1) + L(q)3c+o(1) (3 2_3)
operations on integers of size q. Due to the fact each such operation can be done in L(p)*)
bit operations, the same number of bit operations can will be used. If the c=1/2, the

running time for the first two stages is L(p)***® bit operations.

Stage three: This stage starts to compute individual Discrete Logarithms. In order to
compute log,0i, suppose one choices a random integer r, to compute e = og’

(mod q), and to see if e factors as a product of the first m primes. If e =

Hm qr’ is obtained, then this implies
J=1 7

loggo. = Z'j:rjl()ggqj —r (mod (g-1)).

This stage can be analyzed using the same way as before, giving an expected running time

of L(q)©"2°M or L(q)***W (if ¢=1/2).

There are variations of the Index Calculus method due to Coppersmith, Odlyzko, and
Schroeppel [35], which are conjectured to be faster. They describe three such algorithms
that are called the linear sieve, the Residue List sieve, and the Gaussian Integer method. In
each of these methods there is a heuristic analysis that suggests a running time of L(q)“"(l)
for the first two stages, followed by a running time of L(g)"?*® to compute individual
logarithms in the third stage. Here details for the Gaussian Integer method will not be

described. The interested reader can refer to [35].

Example (Example 5.4 in [41): Here is a small, very artificial, example to illustrate the

two steps in the algorithm.

Suppose q = 10007 and a = 5 is the primitive element used as the base of logarithms
module q. Suppose B = {2,3,5,7} is taken as the factor base. Due to logs5 = 1, therefore
there are three logs of factor base elements to be determined. Suppose the “lucky”

exponents that might be chosen are 4063, 5136 and 9865. If x = 4063, then the
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computation is that
5%3 (mod 10007)=42=2x3 x 7.
This leads to the congruence
logs2 + logs3 + logs7 = 4063 (mod 10006).
Similarly, since 551 (mod 10007) = 54 =2 x 3°,
5% (mod 10007) =189 =3 x 7,
two more congruencies can be obtained as follows,
logs2 + 3logs3 = 5136 (mod 10006),
3logs3 + logs7 = 9865 (mod 10006).

Now there are three unknowns in three congruencies, and there are three unique solutions
(mod 10006), namely logs2 = 6578, logs3 = 6190 and logs7 = 1301. Now suppose that one
wishes to find logs9451. Let’s choose the “random” exponent r = 7736, and compute

9451 x 577 (mod 10007) = 8400.

Since 8400 = 2* x 3! x 52 x 7' factors over B, therefore
logs9451 = 4logs2 + logs3 + 2logs5 + logs7 —r (mod 10006)
=4 x 6578 +6190 +2 x 1 + 1301 — 7736 (mod 10006)
= 6057.
To verify, it can be checked by computing 59057 = 9451 (mod 10007). The heuristic
analyses of various versions of the algorithm have been done. Under reasonable

assumptions, the asymptotic running time of the precomputation phase is

o (€(1+a(l))Jln—cﬂn-ln_q), (3.2-4)
and the time to find an individual discrete log is
O(e(l/zw(l)),llnqhﬂn 4). (32-5)
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3.3  The Principal of the Elliptic Curve Algorithm

In recent years the elliptic curves in number theory, more precisely the theory of elliptic
curves defined over finite fields, has found application in cryptography. The basic reason
is that the elliptic curve over finite fields provides an example of Abelian group, which
has advanced functions because of their special structure. For the Factoring and Logarithm
algorithms used with the multiplicative groups of fields, elliptic curve provides a natural
analog of these algorithms, but has the advantage that one has more flexibility in choosing

an elliptic curve than a finite field.

Here the description includes only the minimal amount of background necessary to
understand the applications to cryptography. It starts by presenting the basic definitions
and facts about the Geometry of Elliptic Curve including the Group Law on the Elliptic
Curve. Then the Arithmetic operations of Elliptic Curve in field Fq will be introduced.
Finally it gives an example and concretizes descriptions at the Practice of the Elliptic

Curve Cryptography Algorithm as follows.

3.3.1 The Geometry of Elliptic Curves

Elliptic Curve Cryptography Algorithm (ECCA) is a principal object of study in this
report. The Group law underlies the general principle in the ECCA. It is necessary to have
a thorough understanding of the geometry before making progress on introducing the
properties and algorithm of Group Law over arithmetically interesting fields, such as finite
fields.

In the first section, it starts with the Group Law on elliptic curves, given by explicit
polynomial equations, called Weierstrass equations (see Appendix D). Using these
explicit equations, it is shown that the set of points of an elliptic curve forms an Abelian
group, and the group law is given by rational functions. Then the description of Group

Law on singular and non-singular curve shows that the Group Law satisfies the
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associative law by using the intersection theory. Finally, an example is given to illustrate

the Group Law on an elliptic curve.

3.3.1.1 The Group Law on Elliptic Curves

In this section let K be a field, which will be either be the field of real, rational or complex
numbers, or the finite field Fq with q = p™ elements, p is a prime. Let E be an elliptic

curve given by a Weierstrass equation (see appendix D):

Y2Z+a,XYZ+a;YZ2=X+a, X Z+as X7 +ag 2’

where E e K field consists of the points P = (x, y, 0) satisfying the equation together with
the point O = [0, 1, 0] at infinity. LetL e K’ field is a line. Then since the equation has
degree three, L intersects E at exactly 3 points, said P, Q, and R.

Note: If L is tangent to E, then there are only two intersections, and P, Q, and R may not

be distinct.
O
O
C\ P*O |
| P+O=P
Fig. 3-1. The Group Law on a Elliptic Curve Fig. 3-2. The Verification of the Zero Element

Group Law: Let P, Q € E, L is the line connecting P and Q (if P = Q, L is the tangent
line to E), and R is the third point of intersection of L with E. Let L’ is the
line connecting R and O. Then P + Q is the point such that L’ intersects E
atR, O,andP+ Q,thusP+ Q=0 x (P x Q).

67



The Principal of Mathematics in the Public Key Cryptosystem

The Group law [38] is illustrated in figure 3-1, and O acts as the zero element, as shown
in figure 3-2. (The interested reader can refer to [38] for the detail proof of the Group
Law).

If the Group Law was associative, then the group would existed [39]. The proof of the
Associative Law is following:
Proof: Let P, Q, R be three points on the elliptic curve. To get P + Q, it can form P x Q
and take the third intersection of the line connecting it to O. Toadd P + Q to R
point, it can draw the line from R through P + Q, and that meets the curve at (P +
Q) x R. To get (P + Q) + R, one has to join (P + Q) x R to O and takes the third
intersection. Now the picture is to show that
P+Q+R=P+(Q+R),
it will be enough to show that
(P+Q)xR=Px(Q+R)
as in figure 3-3.

(P+Q)xR
\ :l"_x(Q+R)

Fig. 3-3 The Verification of the Associative Law

To form P x (Q + R), first one has to find Q x R which joins to O, and takes the third
intersection which is Q + R, then one must join Q + R to P, which gives the point P x (Q +
R). That should be the same as (P + Q) x R. Now each of the points O, P, Q,R, P+ Q, Q
+R, Q x R lies on one of the dotted lines and one of the solid lines. It is clear to see that
the dotted line through P + Q and R points and the solid line through P and Q + R points
are the same. So the equation P x (Q + R) = (P + Q) x R has been proved [39].
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The Group Law has the following properties:

1) If a line L intersects E at the points P, Q, and R, then P+ Q+R =0.

2) P+O=P v PeE.

3) P+Q=Q+P v P,QeE.

4) Let P e E, if there is an opposition point (called —P) of E, such that P + (-P) = O.
5) LetP,Q,and R € E, then (P + Q)+ R =P+ (Q +R).

The above properties of the Group Law show that all points on E from an Abelian group
with zero element O (called identity element). The proof of the remaining properties is
omitted, the interested reader can refer to [39].

3.3.1.2 The Group Law on Singular and Non-singular Curve

A Weierstrass equation is a homogeneous equation of degree 3 of the form

X7 + a,XYZ + a;YZ2 = X2 + a,X°Z + a,X 72 + a6 Z’,

where a;, a,, a3, a4, ag € K. The Weierstrass equation is called to be non-singular if for all

projective points P = (X:Y:Z) e P*(K) satisfying
FX,Y,Z)=XZ +a,XYZ + a3YZ? - X° - ,X*Z - a,XZ% - a6Z’ = 0
at least one of the three partial derivatives 0F/0X, OF/8Y, OF/0Z is non-zero at point P. If

all three partial derivatives vanish at some point P, then P is called a singular point, and

the equation is said to be singular.

If the E is non-singular curves over Fom, then the admissible change of variables

transforms E to a curve given by a set of the form

{y* +xy =%+ apx* — a6 | as € Fom, 23 € (0, 1)}. (3.3-1)
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If E is a singular curve over Fym, then the admissible change of variables transforms E to a
curve given by equations of the form
) Y+y=x,
Q) y+y=x+x (3.3-1a)
3) yYHy=x+x+l,

where m is odd, or given by a set of the form

(1) Y Hpy=x+v,
() ¥+ y=x+ax (3.3-1b)
(B) ¥+ y=xX+8,

where m is even [5].

Let E be a singular elliptic curve defined over a field K, such that E is a singular
Weierstrass equation of the form

f(x,y) =y* +axy + azy —x’ —aX” — asx - a6 = 0. (3.3-2)

Then E has precisely one singular point, and suppose that this point is P =(xo, yo) € E(K).

If the variables are changed, such that x — X’ + xg and y =& y’ + yo, then the singular point
can be assumed to be P = (0, 0). Since f(P) =0, 8ﬁ_ f(P)=0and % f(P)=0, it leads
x

to ag = a5 = a3 = 0, and so the Weierstrass equation for E simplifies to

y2 + ajxy — 32X2 X’ = 0, a;, a3 € K. (3.3-3)

If y* + a;xy — asx” = (y - ax)(y - Bx), where o, p are in K or in K; (K; is the quadratic
extension of K), then P is called a node if o # B, or a cusp if a = 3. Let E,(K) denote the
set of solutions (x, y) € K x K to equation (3.3-3), excluding the point P, and including O
at infinity, thus E,4(K) is called the non-singular part of E(K). A Group law on E(K) is
defined by the chord-tangent law, as described in the last section for E(K). The next
result states that En(K) is a group, and determines the structure of this group. K™ and K
denote the addition group of K and Multiplicative group of non-zero elements of K
respectively ([5] §4.2.1).
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Theorem 3.1 (Theorem 7.2 in [40]): Let E is a singular elliptic curve defined over the

)

(i)

(iif)

finite field K with singular point P.
If P is anode, and a, B € K, then the map ¢ : Eq(K) —> K’ defined by
$:0b 1
¢:(%y) > (y-Bx)/(y - ax)

is a group isomorphism.

If Pis a node, and o, B ¢ K, o, B € Kj, then let L be the subgroup of K
consisting of the elements of norm 1. The map @ : E,(K) — L defined by
®:0- 1

D:(x,y) > (y- By - ox)

is a group isomorphism.

If P is a cusp, then the map ¢ : Eq(K) — K" defined by
0:0H- 0
¢:(xy) = x/(y-ox)

is a group isomorphism.

Using the result above, the following results can be derived:

Corollary 3.2 (Theorem 4.2 in [5]) Let E is a singular elliptic curve defined over the finite

(i)

(ii)

field Fq with singular point P.
If P is a node, then the logarithm problem in E,s(F) is reducible in polynomial
time to the logarithm problem in F, or Fy’, depending on whether o € Fq or o &

F,, respectively.

If P is a cusp, then the logarithm problem in E.(Fg) is reducible in polynomial

time to the logarithm problem in F,".

71



The Principal of Mathematics in the Public Key Cryptosystem

If q = p™, where p (which is a small prime) is the characteristic of Fg, then

Fo=f ++ F.

m

It is shown that the logarithm problem in F," can be efficiently solved in polynomial time
by the extended Euclidean algorithm. Thus if a basis of Fq over F; is given, then one can

also compute logarithms in Fy" in polynomial time.

3.3.1.3 The Algorithm of Group Law on Elliptic Curve

Let elliptic curve E over Z, is the set of solutions (x, y) € Z, x Z, to the equation

yV=x’+ax+b (modp), (3.3-4)

where p > 3 is prime, and a, b € Z, are constants such that 42’ + 27b% £ 0 (mod p),

together with a special point O called the point at infinity.

(D If X; = X2, y1 =-y2, then P, + P, = O,
(2)  Ifxy #xp, then Py + P, =P5 is given by

X3=k2-X1—X2,

ys =k(x; — X3) - y1, (3.3-5)
yz_yl )
- X ) if P£Q
With k=47 M
3yi+a (33-6)
A if P=Q
L 2),

Then y =kx + ¢ is the line through P; and P, or tangent to E if P; = Ps.

Note that inverses are very easy to compute. The inverse of (%, y) is (x, -y), for all (x,y) €

E.
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Example (Example 5.7 in [41]): Let E be the elliptic curve ¥ =% +x+ 6 over Z;;. The
first task is to determine the points on E. This can be done by looking at each

possible x € Z;), computing and trying to solve the equation:

v =x>+x+6 (mod 11). (3.3-7)

For a given x, it can be tested to see whether r = x> + x + 6 (mod 11) is a quadratic
residue by applying Euler’s criterion. There is an explicit formula to compute square roots
of quadratic residues (mod p) for primes p = 3 (mod 4). Applying this formula, the square

roots of a quadratic residue r can be obtained as follows:

+M*% (mod 11) =+ (mod 11).

There are 13 points on E. Since any group of prime order being cyclic, it follows that E is
isomorphic to Z,3, and any point other than the point at infinity is a generator of E.
Suppose the generator is P = (2, 7); then the “powers” of P can be computed by writing as

multiples of P, since the group operation is addition.

To compute 2P = (2, 7) + (2, 7), first one can use (3.3-6) to compute
k=Bx22+ D2 x7)" (mod 11)
=8 (mod 11)

Then one can use (3.3-4) and (3.3-5) to calculate
x3=8"-2-2 (mod 11)=5
y3=8(2-5)—7 (mod 11)=2,

so 2P = (5, 2).

Using the same method as above, the remaining multiples can be computed. The results
are shown in Table 3-2. Note that the 13P = O that is called the point at infinity.

Therefore, P = (2, 7) is a primitive element.
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Table 3-2. The Points on the Elliptic Curve over Z;

3.3.2 The Arithmetic Operations of an Elliptic Curve over Field F,(q =2")

For one purpose, the most interested elliptic curve is over finite fields of characteristic

two. Here discuss the most efficient techniques for performing the arithmetic operations in
such fields. The field Fom can be viewed as a vector space of dimension m over F». In

other words, there exists a set of m elements By, B1, ..., Bm-1 in Fom such that each B € Fom

can be written uniquely in the form

m=1
p= Z uifd;, where u; € {0, 1}.
i=0
Then 3 can be represented as the 0 or 1 vector (ug, uy, ..., Um.1). There are many different

bases of Fom over F,. A normal basis of Fom over F is a basis of the form
2 2 m-1
{a 104 ’az 5“',a2 },

where o € Fom; it is well known [42] that such a basis always exists. The § can be written

as

p= uiaz VB eFm whereu; e {0,1}.

Since squaring is a linear operator in Fom, hence

m-1
B = Z;.u.az

with indices reduced modulo m.

i+l

m-1 21
= Zui—]a = (um-ls u09 see 9 um-Z),
i=0

Therefore a normal basis representation of Fom is advantageous due to squaring a field

element can be accomplished by a simple rotation of the vector representation, which is
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easily completed with one clock cycle for squaring an element. Multiplication in a normal
basis representation is more complicated. Let

U={(up, uy, ..., Un-1)

V =(Vo, Vs «--5 Vm-1)
are arbitrary elements in Fom, let

W=UV = (wo, Wi, ..., W.1),

then
m-1 m=1m-1 j
W= Swa? uv (3.3-8)
k=0 i=0 j=0
Suppose that
i J m=} I3
a2at =2 a%.  AYe{o1y (3.3-9)
k=0

comparing coefficients of a2 in (3.3-8), then generates the formulae

wi= 35 v A 0<k<m-1. (33-10)
i=0 j=0

If the power grows up to 2™ th on both sides of equation (3.3-9), then it can find that

Ith

_ m—1
(k) k)
= ; Ain j_,,a Z A a (3.3-11)

Equating the coefficients of CZ m (3.3-11), it can show that /1(}‘) ﬂ(.o) L,V 0<L(3,j,

i-h,j-h’

h) £m — 1. Then equation (3.3-10) can be rewritten as

m=1m-1 © m-1m-1 )
Wk:zolzouivjlli-k,j r z{;zou,wvﬁkﬂ .
i=0 j= i=0 j=

Therefore if a logic circuit with inputs U and V is built to compute the product digit wy,
then the same circuit with inputs U** and V** will output the product digit wy. Here the
U** and V** are simply cyclic shifts of the vector representations of U and V. In the same
way W can be computed in m clock cycles [43]. The complexity of such a circuit is

determined by Wy which is the number of non-zero terms 7\.ij(0), because this amount
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measures the number of interconnections between the registers containing U, V and W.
Since Wy < m?%, a lower bound on Wy is that Wy = 2m - 1. If Wy = 2m — 1, then the

normal basis is called optimal [44].

From the point of view of minimizing the number of multiplications, the most efficient
technique to compute an inverse of an element in Fym was introduced in reference [45] as

follows:

2
R " m-1_
If B € Fam, 3 # 0, then ﬂ - ﬂ2 : =(ﬂ2 l) ) (3.3-12)

If m is odd, then since 2™! — 1 = ™12 _ 1)2™ D2 1 1), The term in (3.3-12) can been

'Bz”“—l = ( ﬂz(m—l) / 2—1]2““”””

m-1

-1
Therefore it requires only one multiplication to evaluate ﬁ 2 once the value of

written as

(m—l)IZ_1

ﬂ z has been computed.

If m is even, then the term in (3.3-12) can be written as

(m-2)/ 2_1)(2(m—2) / 2+1)+1

ﬂZm_l‘l _ 182(2

m-1 ('"7”/2—1

-1
it requires two multiplication to evaluate ﬂ 2 once 'B Z has been computed. The

procedure is then repeated recursively. By induction this method requires
f(m) = logy(m-1) + g(m-1) -1
field multiplication, where g(m-1) denotes the number of 1°s in the binary representation

of m-1.
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3.3.3 The Practice of Elliptic Curve algorithm in Cryptosystems

In this subchapter, the principle and complexity of arithmetic for the elliptic curve
cryptosystem will be clearly shown by introducing a practice of implementation of Elliptic
Curve cryptosystem explored by A. J. Menezes [5]. For simplicity, the proofs and

inferences will be abbreviated.

This subchapter consists of three sections. In the first two sections, a description of the
selection of an elliptic curve and field F and counting the points on Elliptic Curves, the
non-singular curves and singular curves over field F,m will be considered. Finally, the

Completion of the ECCA will be discussed in the third section.

3.33.1 Selection of an Elliptic Curve and Field F,

For simplicity, the elliptic curve can be recalled from (3.3-4) as follows:

y*=x"+ax+b (mod p).

If P e E, then the inverse point is -P € E. If Qu,, y2) € E, and Q # -P, then P + Q = Ry, y3),

where x3 = K- X1 — X2, ¥3 = k(X1 — X3) — y1, and

-

Yimh if P Q
K= J xz;.)ﬁ

3x.ta if P=Q

| 2V,

For the discussion above, it was shown that the addition operations of two distinct points

on an elliptic curve will require three multiplications and one inversion of field elements
in the underlying field Fym, and doubling a point will require one inversion and four
multiplications in Fom. Here the additions and subtractions are not considered, because
these operations are not expensive. For minimizing the number of field operations, the

selection of a curve and field Fom has to be a consideration to satisfy certain conditions
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(§6.2 in [5]) as follows:

(1)  The arithmetic operation in field Fom has to be easier to complete than those in
finite fields of characteristic > 3.

(2)  Using a normal basis representation for the elements of Fom, so that doubling a
point becomes a simple cyclic shift operation of the vector representation, and
therefore the squaring operation is reduced to a simple operation.

(3) It is easier to recover the y-coordinate of a point given its x-coordinate with a
single bit of extra information. It is helpful in reducing message expansion in the

ElGamal cryptosystem, as shown in chapter 2.2.

3.3.3.1.1 Selection of an Non-singular Elliptic Curve and Field F

First, consider the non-singular curves over Fom, recalling the equation (3.3-4),

y'=x’+ax+b (mod p),

where a € F\{0} (q =2"), b € Fq. If the method for reducing the elliptic curve logarithm
problem to the discrete logarithm problem in a finite field is not feasible, then the best
algorithm known for the logarithm problem in non-singular elliptic curves is the Baby-
step Giant-step algorithm. A non-singular curve, which is suitable for cryptographic
applications, is the one whose order (see Appendix A-2) is divisible by a large prime
factor of at least 40 decimal digits. Therefore the underlying field should be the size at
least 2'3° (130 binary digits), and should have an optimal normal basis in order to perform

efficiently the arithmetic in the field.

One method for the curve selection is to choose a curve E defined over F,, where q is
small enough so that #E (where #E denotes the number of points on E) can be computed
directly, then the group E(Fqn) can be used for suitable n. The #E(Fqn) can easily be
computed from #E(F,) by the Weil Theorem (see Appendix E). It is shown that if n is
divisible by h, then #E(Fqn) is divisible by #E(Fqn). Therefore the n selected should be

prime, or else a product of a small factor and a large prime.
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Example (Example 6.2 in [5]) If one want to select a non-singular curve over F1s5, one
can select a curve over F,s. There are twelve possibilities for #E(F2s). Of these,
there are five values for which #E(F1s5) is divisible be a large prime. The size
of the largest prime divisor of #E(F,1s5) for these five values is as shown on

table 3-2. The curves with #E(Fa155) = 36 or 42 would be best suited for
security purposes in cryptography.

227 37

28 36
36 46
38 36
42 41

Table 3-2. Five values of the number of points on non-singular curves E over Fos.

Another method of selecting a random curve E was adapted by Neal Koblitz to curves
over fields of characteristic 2 [77]. Using heuristic arguments, Koblitz [77] showed that if
E over F, is a randomly selected non-singular curve, then the probability that N = #E(F,)
is divisible by a prime factor > N/V (V should be an small factor integer) is m™logy(V/2).
So that the probability that the order of a randomly chosen non-singular curve over Fa1ss is

divisible by a 40 digits prime is approximately

1 2155 ~
Elog{leom} 0.136.

Therefore, it is clearly shown that one can expect to try about seven curves before a

suitable one is found successfully.

The computation of kP and kaP takes 29 additions of points, 1 field inversion, 155
doublings and 2 field multiplications. Computing M x and Mz;, where kaP = (;c,;),

takes a further 2 multiplications. Therefore, two field elements can be encrypted taking
2950 field multiplications. Since #E(F,155) is about a 47 digit prime, the square root
attacks can be precluded (refer to [74]). Assuming that a clock rate is 5 MHz, and an

inversion takes f(155) = 10 multiplication, the encryption rate is
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155 %2 x 5,000,000
1000 x 2950x 155

~ 3.4 Kbits/sec.

3.3.3.1.2 Selection of an Singular Curve and Field F,

Now consider the singular curves over Fam, where m is odd. A fourth condition which

should be satisfied in the selection of a singular curve, in addition to except the three

conditions described in the last subchapter, is
(4)  For singular curves over Fm, the inverse operation in doubling a point can be

eliminated by choosing a; = 1, further reducing the operation count.

Recall from subchapter 3.3.1.2, here only consider the curve (3.3-1a), a representative
curve is

V+y=x+x+1.

If Py, yy € E, then inverse point is -Px, .y1) € E. If Quz, y2) € E, and Q # -P, then P + Q =

Rexs, y3), where

X3 = 4

[ 2
+ P4
1™ Vo Fx*Xp P%Q _ [;C-IJF—XEJ(XI+x3)+y1+1, P=£Q
x1t+x2 v3 L

4 4
\xf+1, P=Q x1+y1+1, P=Q

In the subchapter 3.3.2.1, it is shown that doubling a point on the curve (3) is “free”, if a
normal basis representation is chosen for the elements of F,m, while adding two distinct

points needs two multiplication and one inversion. The multiple kP of the point P is
computed by the repeated square and multiply method. If g(k) = t + 1, then the

exponentiation takes 2t multiplication and t inversions.

80



The Principal of Mathematics in the Public Key Cryptosystem

Resorting to projective coordinates can eliminate the inverse operation needed adding two
points. For example, if P = (x1, y1, 1), Q = (X2, ¥2, 22), and R = (X3, y3, Z3), the addition
formula P + Q = R requires 9 multiplication of field elements. So that if the multiple kP
(where P is the affine point (x;, y;, 1)) is computed by repeatedly using the square and
multiply method, the result kP = (x3, y3, Z3) can be converted back into affine coordinates
by multiplying each coordinate by z;". If g(k) = t + 1, then the total operation count to

compute kP is 9t + 2 field multiplications and one inversion.

The estimation of the throughput rate of encryption using the elliptic curve analogue of

the ElGamal cryptosystem is described as follows.

Suppose that a multiplication in ;, takes m clock cycles, while an inversion takes f(m) =

loga(m-1) + g(m-1) — 1 multiplication’s. For simplicity, the cost of field additions and
squaring are ignored. The points on the curve E will be represented using projective
coordinates. To increase the speed of the cryptosystem and to place an upper boundary on

the time for encryption, the Hamming weight' of k would be limited to 30.

The computation of kP and kaP takes 58 additions of points, 2 field inversions, and 4 field
multiplications. Computing M;x and Mz; , where kaP = (;c,;), takes another 2
multiplications. Therefore two field elements can be encrypted taking 528 + 2f(m) field
multiplications. For example: suppose that the curve (3.3-1a) is over Fom. Since #E(F2239)

is a 72 digit prime, the square root attacks can be precluded (refer to [74]). Assuming that
a clock rate is 5 MHz, and an inversion takes f{239) = 12 multiplication, the encryption

rate is then

239% 2% 5,000,000
1000 x (528 +2x12)x 239

~ 18 K bits/sec.
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3.33.2 Counting the Points on Elliptic Curves

In this subchapter two for counting the points on elliptic curve are introduced. First
Schoof’s algorithm shows how to count the points on the non-singular curve, and later
Waterhouse’s algorithm counts the points on the singular curve. The description of the

two algorithms follows.

3.3.3.2.1 Counting the Points on Non-singular Curves

Schoof’s algorithm to compute the number of points on a non-singular elliptic curve is
completed in three steps [5]. The first step consists of computing a number L for which

the equation of the form

[1>4a. (3.3-13)

IsL
1#2,p

holds and of making a list of the division polynomials f, (see Appendix A-2) forn=1, 2,
..., L, where £ is prime. The second step consists of the computation of t (mod ¢) in
equation (3.3-16) for every prime ¢ < L not equal 2 or p. The third step is the computation
of t from the values of t (mod ¢) obtained using the Chinese Remainder Theorem and the
estimate | t| <2 \/E . An outline of Schoof’s algorithm for computing the number of points

on non-singular elliptic curve E over Fq (q = 2™) will now be given.
Recall the equation (3.3-4) for E, which is given as follows:

y=x+ax+b (modp), (3.3-14)
with a, b € Fq and 4a> +27b* = 0. Let F denotes the algebraic closure of Fy. Then E(F)
denote the set of points on E over F, consisting of all the solutions (x, y) of (3.3-14). Let
® be the Frobenius endomorphism (see Appendix A-2) on E(F) defined by

@: (X, Y) o (Xq= yq)

! The Hamming weight of an integer is the number of ones in its binary representation.
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Let Rg, denotes the ring of endomorphisms of E over F. In Rg, the Frobenius
endomorphism satisfies a unique relation

@* + q =td. (3.3-15)
Let #E( F) denotes the number of points on E over Fq in the form
#E(F)=q+1-t, (3.3-16)

where t is called the trace of the Frobenius endomorphism. It satisfies an inequality of the

form:

ltl<2.q. (3.3-17)

To start, choose a number L satisfying (3.3-13), where the product ranges over all primes
¢ (3 £ ¢ < L). Since there is a bound on the size of t by (3.3-17), one can compute t (mod

¢) for each odd prime ¢ < L, such that £ = 3, 5, 7, ..., L, and one can determine t by
applying the Chinese Remainder Theorem. The next step is to describe how to compute t

(mod /) for £, a prime not equal to 2 or q.

Let P(x, y) € E[/], let £ is an odd prime then E[{] = Z, ® Z,, which can be viewed as a
vector space over F,; the vector space has dimension 2. Let k =q (mod ¢), 0 <k < /¢ - 1.

One can search for an integer t, where 0 <t </ - 1, to satisfy
®°P + kP = 1®P. (3.3-15)

From (3.3-15) one deduces that (t - T)®P = O. Therefore, since ®P is a point of order ¢
(see Appendix A-2), t = 1t (mod ¢). The problem with completing this idea is that the
coordinates of P, which are in F, may not lie in any small extension of Fq. Thus, the t can

not be found in general. The solution is by observing thatx is a root of the division
polynomial (see Appendix A-2) f(x) € Fq. The next Theorem 3.4 can be used to obtain an

expression for kP and t®P, where the coordinates of the expressions are rational functions
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in X, y, then one can use the addition rules to sum ®”P and kP.

Theorem 3.4 (Theorem 7.2 in [5]): Letn = 2, P(x, y) € E with nP O, then nP(; 3 ;)can

be obtained by

o+ fn--l{‘m-lg

fﬂ

fn If.q-ﬂ + f,;-z{:»l +(X +y)+
/. xf, xf

fn- fmvi

y—x+y+ 5

n

(where £, = £;(x)).

To test the point P(x, y) in E[/] satisfies (3.3-15), and to determine the correct sign, one
can equate the x-coordinates and y-coordinates of ®’P + kP and t®P, respectively, and
eliminate the denominators and the variable y to result the equations h;(x) = 0 and hy(x) =
0 respectively. Thus one can compute H;(x) = ged(hi(x), fi(x)) and Hy(x) = ged(ha(x),
fi(x)) respectively. If H;(x) # 1 or Ha(x) # 1, then the P satisfies (3.3-15). If Hi(x) = 1, then
the P in E[¢] does not satisfy ®’P + kP = +t®P. If Hy(x) = 1, then P satisfies ®°P + kP = -
T®P. For a detailed description refer to [46].

In the algorithm for pre-computing the polynomials f,, it takes O(log’ q) bits to store these
polynomials. The amount of memory used in the rest of the algorithm is dominated by
O(log® q). The computations of L and the Chinese Remainder Theorem are easily seen to

be dominated by O(log’ q) elementary operations.
The running time of O(log® q) elementary operations in the second step is obtained as
follows: For each /, the search for t satisfying (3.3-15) is dominated by the computations

of the residues of xq and yq modulo f,(x), where ®*P = ( xq : yq ). Due to compute

the degree of f,(x) is O(log® q) operations, these residues can be computed in O(log’ q)

field operations, or O(log’ q) bit operations. If fast multiplication techniques are employed
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for multiplication in K and in F,, then the total running time reduces to O(log™™* q) bit

operations, for any e > 0.

3.3.3.2.2 Counting the Points on Singular Curves

To determine the number of points on a singular elliptic curve E over Fom, the group type

of the curves has to be determined by the Lemma 3.5 described as follows:
Lemma 3.5 [47]: Let #E(Fg) =q + 1 - t,

) Ift* = q, 2q, or 3q, then E(Fg) is cyclic.
2 If £ = 4q, then EFy) = / Jq—n@z Jan depending on whether

t=1 2./q respectively.
(3) Ift=0and q# 3 (mod 4), then E(F) is cyclic. If t = 0 and ¢ = 3 (mod 4), then
E(F,) is cyclic, or E(Fg) = Z(q+l) 27,

where /7 denotes the cyclic group on n elements.

When m is odd: Recall the equation (3.3-1a); each of the 3 isomorphism classes of
singular curves over Fym has a representative with coefficients in F».
One can easily determine the order of curves over Fom by the Weil

Theorem. The results are listed in Table 3-3.

Order of Curve

q+1.

q+1i\/_2_q.
q+l:t\/_2;.

Table 3-3. The Curves and Orders in 3 classes of supersingular curves over F,m (m is odd)
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When m is even: Recall (3.3-1b); let #E(Fym) = q + 1 — t; for the three type of equations.
The three term values of t; are iJZ]_ , 0, and iﬁa respectively can be

obtained by the Theorem 3.6 as following.

Orders of Curves

q+li\/5,

q+1,

q+1j:\/z.

Table 3-4. The Curves and Orders in 3 classes of supersingular curves over Fom (m is even)

Theorem 3.6 [48]: Let p be a prime and q = p™. Let t be an integer with |t]<2 \/3 . Then

(H( - 49), if t* < 4q, and pO t.

H(-4p), ift=0 and m is odd.

1, if * =2q, p=2, m s odd.
Ny(t) = - 1, if # =3q, p=3, mis odd.

1/12{p+6+4(3/ p)+3(4/ p)}, ift*=4q, and m is even.

1+@3/p), if * = q and m is even.

1+(4/ p), ift=0 and m is even.

0, otherwise.

where Ng(t) denotes the number of isomorphism classes of elliptic curves over Fq, H(A)
denotes the Kronecker class number of A (see Proposition 7 in [75]), and “A” denotes a

negative integer congruent to 0 or 1 (mod 4).

It is known that given an arbitrary singular elliptic curve E over Fom, the number of points

#E(Fom) can be computed by first determining to which isomorphism class E belongs.

Solving the appropriate root given by Theorem 2.2 in [5] can complete this. There are

several efficient polynomial time algorithms for finding the roots of a polynomial over

Fom in [49]. The interested reader can see [50] for more details.
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3.3.33 The Completion of Elliptic Curve Cryptography Algorithm

The completion of Elliptic Curve cryptography algorithm is to describe the establishment
of the cryptosystem. In chapter 2.3 the Elliptic Curve analog of ElGamal cryptosystem is
well known example to the completion of Elliptic Curve cryptography algorithm. Here
starts with a briefly to describe a implementation of a non-supersingular curve over fields
of characteristic 2. In order to expound the programs of the completion of Elliptic curve
cryptography algorithm, two examples of ElGamal cryptosystem and Menezes-Vanstone

cryptosystem will be presented later.

3.3.3.3.1 Implementation of the ECCs

This subchapter describes how to implement the ECCs on non-supersingular curves over
fields of characteristic 2. In comparison to supersingular curves the addition is slightly
harder to compute, because doubling of a point is more complicated to calculate. The
complexity of the basic arithmetic operations in finite fields differs considerably. The
additions are negligible in comparison to multiplications. The inversions are the most time
consuming operation, therefore the curve is represented in projective coordinates and the
inversions can be eliminated. Only at the end of each calculation two inversions are

needed to get a ‘unique’ representation [51, 29].

Suppose the non-supersingular curve over the field Fq (where g=2") is yV+xy=x+ ax>
+ b, with a point P = (x, y). From a base point P = (x, y), it can calculate mP with a double
point and add point algorithm. Starting with the highest bit of m, it needs only doublings
of a point and additions of two different points of the form (x, y) + (i, yi). Assuming one
point is given in affine coordinates, then P = (xy, y2), Q = (X2, y2), and —P = (x1, X1 +y1). If

Q # -P, then the addition formulas is P + Q = (x3, y3).

Note that two multiplications and an inversion are needed to add two distinct points, and a
point can be doubled in 3 multiplications and an inversion. It also notes that inversions

can be avoided by changing to projective coordinates at the expens of doing more
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multiplications [52].

33332 A Practical Example in ECCs

In completion of ECCs, there is a practical difficulty that is message expansion, since
every ciphertext consists of four field elements. In ElGamal cryptosystem, four field
elements are transmitted in order to convey a message consisting of two field elements,
which is called message expansion by a factor of two, with the system implement in
GF(p") with n > 1. Here is an example of ElGamal cryptosystem using Elliptic Curve

algorithm.

Example 3.6 (Example 5.8 in [41]): Suppose that v =x +x+6, o= (2, 7) and Bob’s
secret exponent is a = 7, so that B = 7o = (7, 2) (recall table 3-2). The
encryption is

ex(Xx, k) = (k(2, 7), x + k(7, 2)),

where x € E and 0 <k < 12, and the decryption is
dx(y1, y2) = y2— Ty1.

Suppose that Alice wishes to encrypt the message x = (10, 9), which is a point on E. If
Alice chooses the random value k = 3, then she will compute
yi=3a=3(2,7)=(8,3),
and y>=(10,9)+3(7,2)
=(10,9)+ (3, 95)
=(10, 2).
soy = ((8, 3), (10, 2)). If Bob receives the ciphertext y, he decrypts it
x = (10, 2) - 7(8, 3)
=(10,2)-(3,5)
=(10,2)+ (3, 6)
=(10,9).
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Therefore the decryption generates the correct plaintext.

Menezes and Vanstone [41] have found one more efficient variation in which the elliptic
curve is used for “masking”, and plaintexts and ciphertexts are allowed to be arbitrary
ordered pairs of non-zero field elements (i.e., they are not required to be points on E). This
will generate a message expansion factor of two, which is the same as in the ElGamal
cryptosystem. An example of the Menezes-Vanstone cryptosystem is introduced as

following.

Example 3.7 (Example 5.9 in [41]): as in example 3.6, suppose that o = (2, 7) and Bob’s
secret exponent is a = 7, so that B = 7a. = (7, 2) (recall table 3-2). Suppose Alice want to
encrypt the plaintext

x = (X1, X2) = (9, 1).

Note that x is not a point on E, and Alice chooses the random value k = 6. She computes
yvo=ka=62,7)=(7,9),
kB =6(7,2)=(8,3)=(c1, ¢2),
then she computes
y1 = ¢1x; (mod P) = 8x; (mod P) =8 x 9 (mod 11) = 6,
y2 = X3 (mod P) = 3x; (mod P) =3 x 1 (mod 11) = 3.

The ciphertext she sends to Bob is

¥y = (o, Y1, ¥2) = ((7,9), 6, 3).
When Bob receives the ciphertext y, he computes
ayo=7(7,9) = (8, 3) = (c1, c2),
Then computes
x = (y1 ¢1”'(mod p), 2 ¢;"'(mod p))
= (6 x 8-1(mod 11), 3 x 3-1(mod 11))
=(9, 1).

Therefore, the decryption generates the correct plaintext.
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Summary:

The descriptions above give a brief introduction to three kinds of mathematical principles
related to three different cryptosystems: the RSA, ElGamal and Elliptic Curve system
respectively. It has show that the security of RSA depends on the difficulty of factoring
large integers, the ElGamal system depends on the difficulty of soving the classical
discrete logarithm problem and the Elliptic Curve system depends on the difficulty of
discrete elliptic logarithm problem. Also it has been clearly shown how these public key
cryptosystems have different degrees of security, length of keys, secure terms (periods)
and running times. Therefore, the mathematical theory already discussed gives a basis for
the computation and comparison of running time and efficiency that will be introduced in

the next chapter.
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4. The Efficiency of Elliptic Curve Cryptosystem

The purpose of this chapter is to discuss the efficiency and practicality of the Elliptic
Curve Cryptosystem (ECCs). The efficiency of ECCs means the system has the same
level of security performance as the classical Discrete Logarithm cryptosystem, but
requires much smaller key length. However, the creation of efficiency in the ECCs is
based on the complexity of computation that requires more time in processing the ECC
operations, and that leads to less practicality. Therefore the efficiency discussed here
contains two aspects, one is the high efficiency in ECCs, and another is the efficiency

trade off for the time of computation.

4.1  The Advance Efficiency in Elliptic Curve Cryptosystems

The dramatic efficiency in ECCs will be determined by the structure of computation of the
group operation in ECCs, which leads to a stronger One Way function and longer security
term with shorter key length. This subchapter starts with security in public key
cryptosystems, which describes security in cryptosystems by two characteristics of
security feature: One Way function and Security Term in RSA, ElGamal and Elliptic
Curve cryptosystems. Then the efficiency advantage will be shown by the comparison of

efficiencies of the cryptosystems between the three cryptosystems.

4.1.1 Security in Public Key Cryptosystem

Currently there does not exist a standard method of measuring the security (including
security level and security term) in a cryptosystem. The One-way function and Key length
are usually considered as two characteristic terms to measure the security of a
cryptosystem. Although no proof is known for the existence of a One-way function, it is
widely believed that One-way function do exist. The following are candidates for One-

way functions since they are easy to compute, but their inversion requires the solution of
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the factoring problem, the ElGamal Discrete Logarithm problem or Elliptic Logarithm

problem, respectively.

This section begins with a discussion of the security in the RSA system, including the
analysis of attacking the system and the security bound on the size of the primes. Then a
discussion follows about security in the ElGamal system. Finally there is a discussion of

the security in the Elliptic Curve system.

4.1.1.1. The Security in the RSA System

Here is a discussion of various security issues related to RSA encryption, as well as

various attacks. Appropriate measures to counteract these threats are presented.

1) Relation to factoring

Recall in chapter 2, the task faced by a passive' adversary is that of recovering plaintext m
from the corresponding ciphertext c, given the public key (n, e) of the intended receiver
Alice. This is called the RSA problem. One possible approach that an adversary could
employ to solving the RSA problem is to first factor n, and then computes ¢(n) and d as
Alice did in chapter 2.1. Once d is obtained, the adversary can decrypt any ciphertext

intended for Alice.

On the other hand, if an adversary could somehow compute d, then it could subsequently
factor n efficiently as next. First note that since ed = 1 (mod ¢), there is an integer k such

that ed — 1 = k¢. Hence, by the fact of a®' = 1 (mod n) for all a € Zy. Let ed — 1 = 2%,

where t is an odd integer. Then it can be shown that 612 ‘% +1 (mod n) for at least half of

all a € Z,; if a is such an integer then ged( azk ‘-1, ) is a non- trivial factor of n. Thus the

! A passive adversary is an adversary who is capable only of reading information from an unsecured
channel.
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adversary simply needs to repeatedly select random a € Z, and compute ged( azk ‘-1, n);

the expected number of a before a non-trivial factor of n is obtained is 2 [53].

The problem of computing the RSA decryption exponent d from the public key (n, €), and
the problem of factoring n, is computationally equivalent. When generating RSA keys, it
is imperative that the primes p and q should be selected so that factoring n = pq is
computationally infeasible. The major restriction on p and q in order to avoid the elliptic
curve factoring algorithm is that p and q should be about the same bit length, and
sufficiently large. For example, if a 1024 bit modulus n is to be used, then each of p and ¢
should be about 512 bits in length. A 512-bit modulus n provides only marginal security
from concerted attack. In order to avoid the quadratic sieve and number field sieve
factoring algorithms, a modulus n of at least 768 bits is recommended. For long term

security, 1024-bit or larger module should be used.

2) Small decryption exponent d

As was the case with the encryption exponent e, it may seem desirable to select a small
decryption exponent d in order to improve the efficiency of decryption. However, if
ged(p-1, g-1) is small, as is typically the case, and if d has up to approximately one-
quarter as many bits as the modulus n, then there is an efficient algorithm [53] for
computing d from the public information (n, e). This algorithm cannot be extended to the
case where d is approximately the same size as n. Therefore, to avoid this attack, the

decryption exponent d should be roughly the same size as n.

(3)  Multiplicative properties
Let m; and m; be two plaintext messages, and let ¢; and c; be their respective RSA
encryption. Observe that

(mym5)° = m,°m,° = ¢y¢, (mod n).
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In other words, the ciphertext corresponding to the plaintext m = mym; (mod n) is ¢ = ¢jc;
(mod n); this is sometimes referred to as the homomorphic property of RSA. This

observation leads to the following adaptive chosen-ciphertext attack on RSA encryption.

Suppose that an active adversary wishes to decrypt a particular ciphertext ¢ = m® (mod n)
intended for Alice. Suppose also that Alice will decrypt arbitrary ciphertext for the
adversary, other than c itself. The analyst can conceal ¢ by selecting a random integer x €
Z,, and computing ¢= cx® (mod n). Upon presentation of ¢, Alice will compute for the

analyst m =(¢ )¢ (mod n). Since
m =(¢)* = ¢!(x°)? = mx (mod n),
the analyst can then compute m = 7 x™ (mod n).

This adaptive chosen-ciphertext attack can be circumvented in practice by imposing some
structural constraints on plaintext messages. If a ciphertext ¢ is decrypted to a message not
possessing this structure, then the decryptor refects ¢ as being fraudulent. Now if a
plaintext message m has this (carefully chosen) structure, then with high probability mx
(mod n) will not have this structure for x € Z,. Therefore the adaptive chosen-ciphertext

attack will fail because Alice will not decrypt ¢ for the adversary [53].

“4) Cycling attacks
Let ¢ = m® (mod n) be a ciphertext. Let k be a positive integer such that ~¢ = ¢ (mod n);

since encryption is a permutation on the message space {0, 1,..., n-1} such an integer k

k-1

must exist. For the same reason it must be the case that »® = m (mod n). This

observation leads to the following cycling attack on RSA encryption. An adversary

computes ¢ (mod n), ¢ (mod n), ¢ (mod n),... until ¢ is obtained for the first time. If

¢® (mod n) = c, then the previous number in the cycle, namely ~¢ (mod n), is equal to
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the plaintext m. A generalized cycling attack is to find the smallest positive integer u such

that £ = ged( Ce" -c,n)> 1. If

€ =c(modp)and o€ # ¢ (mod q), (4.1-1)
then f= p. Similarly, if
o€ # ¢ (mod p)and ¢ = c (mod q), (4.1-2)

then f= q. In either case, n has been factored, and the adversary can recover d and then m.
On the other hand, if both

Ce" = ¢ (mod p) and ceu = ¢ (mod q), (4.1-3)
then f=n and ce" = ¢ (mod n). In fact, u must be the smallest positive integer k for which

¢€ = ¢ (mod n). In this case, the basic cycling attack has succeed and so m = c® ) (mod

n) can be computed efficiently. Since equation (4.1-3) is expected to occur much less
frequently than (4.1-1) or (4.1-2), the generalized cycling attack usually terminates before
the cycling attack. For this reason, the generalized cycling attack can be viewed as being
essentially an algorithm for factoring n. Since factoring n is assumed to be intractable,

these cycling attacks do not pose a threat to the security of RSA encryption.

4.1.1.2. The Security in the ElGamal System

The security in the ElGamal cryptosystem is based on the difficulty of the classical
discrete logarithm problem in a finite group, which is the multiplicative group of GF(p).
Here the discussion of security in the ElGamal cryptosystem includes two parts: security

in encryption and signature.

1) Security of ElGamal encryption
The security of many cryptographic techniques depends on the intractability of the
discrete logarithm problem. These include the Diffie-Hellman and ElGamal systems. The

problem of breaking the ElGamal scheme (i.e., recovering m given p, o, a2, v, and 3) is
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equivalent to solving the Diffie-Hellman problem. In fact the ElGamal scheme can be
viewed as simply comprising a Diffie-Hellman key exchange to determine a session key
o™, and then encrypting the message by multiplication with that session key. For this
reason, the security of the ElGamal scheme is to be based on the discrete logarithm

problem in Z, although such equivalence has not been proven.

It is important that different random integers k be used to encrypt different messages.
Suppose the same k is used to encrypt two messages m; and m; and the resulting
ciphertext pairs are (y;, ;) and (2, 82). Then &)/ &; = my/my, and m; could be easily

computed if m; were known.

(2)  The parameter sizes

A 512-bit modulus p in ElGamal scheme provides only marginal security from concerted
attack. In order to avoid the Index-calculus in Z, algorithms, a modulus n of at least 768
bits is recommended. For long term security, 1024-bit or larger modulus should be used.
For common system-wide parameters even larger key sizes may be warranted. This is
because the dominant stage in the Index calculus algorithm for discrete logarithms in Z, is
the pre-computation of a database of factor base logarithms, following which individual
logarithms can be computed relatively quickly. Therefore computing the database of
logarithms for one particular modulus p will compromise the secrecy of all private keys

derived using p.

A3) Security of ElIGamal signatures
The prime p should be sufficiently large to prevent the Index calculus attack. The integer
p — 1 should be divisible by a prime number q sufficiently large to prevent a Pohlig-
Hellman discrete logarithm attack ([53] page 107). Suppose the generator o satisfies the
following conditions:
(a) o divides (p— 1),
(b)  Computing logarithms in the subgroup S of order o in Z, can be
efficiently done (for example, if a Pohlig-Hellman attack can be mounted
in S).
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Then it is possible for a signature (without knowledge of Alice’s private Key) which will

be accepted by the verification algorithm (algorithm 11.64 in [53]). To see this, suppose

that p - 1 = aq. To sign a message m the adversary does the following:

@) Computing t = (p — 3)/2 and setting r =q,

(i)  Determining z such that a® = y? (mod p) where y is Alice’s public key. This is
possible since a? and y? are elements of S and % is a generator of S.

(iii) Computing s =t - {h(m) — qz} (mod (p — 1)), where h(m) is Hash function (see
Appendix J).

(iv)  The pair (r, s) is a signature on m that will be accepted by the verification
algorithm.

This attack works because the verification equation r'y" = "™ (mod p) is satisfied. To see
this, first observe that

aq = -1 (mod p),
so that =-q"' (mod p),
and that q® V2 =_1 (mod p).
The latter congruence follows from the fact that o, is a generator of Z, and q = -o" (mod
p). From these, one deduces that ¢' = ¢® ~ Vg = -q”! = o (mod p). Now ry" = (q)"™ -
@y = "™ o %y9 that the conditions specified in (iii) above are trivially satisfied. The
Pohlig-Hellman attack can be avoided if a is selected as a generator for a subgroup of Z,

of prime order rather than a generator for Z, itself.

4.1.1.3 The Security in the Elliptic Curve System

The security of elliptic curve cryptosystem is based on the difficulty of the Discrete
Elliptic logarithm problem, in other words based on the difficulty of computing reversibly

the structure of elliptic curve group which is an Abelian group. To get a better perspective

on the discussion of security here, it is assumed that the curves are over the field of [’ Pt
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1) Security of the ECCs over finite fields

The discrete logarithm problem of elliptic curves refers to the elliptic logarithm problem
as following. Let E(F) be an elliptic curve over Fq and P a point in E(F,). For any point R
€ (P) (which is the subgroup generated by P), determine an efficient method to find the
integer k, 0 <k <#P — 1, where #P is the order of P (see Appendix A-2) such that kP = R.

The most powerful general algorithm known at present is the baby-step giant-step

algorithm of Shanks. This method requires O(~/P) in both time and space. Using a
method due to Pollard [54] one can reduce the storage requirement. Pollard’s method
requires about /P iterations on the elliptic curve where everyone iteration requires 3
elliptic curve additions. Since each addition on the curve requires 13 field multiplications

and each field multiplication in [’ % takes 155 clock cycles, it follows that to determine

one elliptic logarithm requires on average about 6045 VP (where 6045 = 3 x 13 x 155)
clock cycles. If the order of the curve E contains a prime factor with at least 36 decimal
digits, then the number of clock cycles to find a logarithm on the curve is about 6 x 10°,
Since the current computer runs at 300 MHz (3 x 10® cycles per second), and if one uses
10° devices in parallel, the time to find one logarithm is 2 x 10'® seconds or at least 200
years. Provided that the square root attacks are the best attacks on the elliptic logarithm

problem, it is shown that an elliptic curve over [’ " with m = 130 provides very secure

systems. It is important to observe that the square root attacks require O(\/F ) iterations

for each logarithm to be found.

The most successful attack on the elliptic logarithm problem is a method due to Menezes,
Okamotom, and Vanstone [30]. In order to describe this method, first requires some

terminology.

Let E be an elliptic curve over F, which is the algebraic closure of Fy. E(F) is the set of
all points in E with coordinates from Fq. E(F,) has finitely many points, whereas E has
infinitely many. Define E[n] = {P € E : nP = O}. E[n] is called the set of n-torsion points
of E. Now for each n, ged(n, q) = 1, there exists a positive integer k such that E[n] ¢
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E(F 2;,) and an isomorphism from E[n] to a subgroup of [’ ot can be computed using the

Weil pairing (see Appendix E). Miller [55] has shown that there exists a random
polynomial time algorithm for computing the Weil pairing. These results form the basis

for the Menezes Okamoto Vanstone (MOV) attack (see Appendix G).

The MOV attack in the case of supersingular curves becomes a subexponential attack.
This happens because it can be shown that all supersingular curves have very small values
of k associated with them ([52] page 810). However, non-supersingular curves have large

values of k associated with them. If k > log’q, then the index calculus methods in

F o become fully exponential and the MOV attack is worse than the square root attacks.

It notes that a necessary condition for E[n] ¢ E( |’ 2k) is that nl qk -1

As an example of the above discussion, suppose one has a non-supersingular curve E(F,)
where q = 2'**, Tt is known [38] that E(Fy) = Zy; x Zy, where nl ny. Suppose also that p is a
prime dividing n; and that p has about 40 decimal digits (It is possible to find curves over
F, whose ‘order is divisible by a prime factor with up to 46 decimal digits). Now if the

smallest value of k for which E[n;} ¢ E( [ zk) is at least 10, then the MOV attack requires

an Index calculus attack in F field with more than 1500 bits. For this elliptic curve, the
most efficient way to compute elliptic logarithms is by one of the Square root attacks, and

these are infeasible for numbers of this size as pointed out above.

2) The determination of the number of points,

Determining the number of points on an elliptic curve is important for two reasons. First is
that the order must have a prime divisor large enough to give adequate security against
one of the Square root attacks. Second is to permit signatures that are as small as possible.
The supersingular cases can be determined theoretically as [56]. Computing the number of
points is a more difficult problem. Here it will examine the case q = 2'>° in more detail.

The first case is the class of supersingular curves over [’ P Since m = 155 is odd, there

are only 3 curves to examine (refer to chapter 3.3). For the curve y* + y = x°, the k value is
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2, so regardless of the size of the prime factor, dividing 2'°° + 1 and Index calculus attack

in |7 " will compromise the system. The largest prime factor dividing 2'>° + 1 has 17

digits. For the other two supersingular curves over F,, the reduction algorithm requires

computing logarithms in [’ > which is out of range for existent discrete logarithm

methods. For the curve with order 2'% + 1 — 27 the largest prime divisor has 20 digits;
and for the one with order 2'°° + 1 + 278 there is a prime factor with 26 digits. Both of
these curves do not provide enough high security from the Square root attack. If the

supersingular curves are over F, where q = 2*'° (i.e., a quadratic extension of F 7 ), the

situation is much better. For the curves with order q + 1 +JE , the largest prime divisor

has 65 decimal digits. For the curves with order q + 1 - \/E , the largest prime divisor has

54 decimal digits. There are 4 supersingular curves of this type and each of these under

the reduction attack requires the computation of discrete logarithms in [’ - These

curves provide very high security.

Second case is the class of non-supersingular curves over Fq where q = 2'5. The number

2'%% _ 1). This large choice of curves makes it possible to find large

of this curves is 2(
numbers of curves over this field for which the order of a curve is divisible by a large
prime factor. In general, determining the order of an arbitrary non-supersingular curve
over Fy is not trivial and requires some variant of Schoof’s algorithm [57]. There is a
relatively simple method for computing a fairly large number of non-supersingular curves
over Fy and giving a high level of security. The method will use the Weil Conjecture for

lifting curves [52].

Therefore, in order to avoid an easy solution to the discrete logarithm problem using the
techniques that apply to any finite Abelian group, which takes approximately\/;

operations (where p is the largest prime dividing the order of the group). It is important to

choose E and q, so thatn =|E | is divisible by a large prime ([11] page 206).
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4.1.2 The Comparison of Efficiency of the Cryptosystem G

Here comparison of the efficiency of the cryptosystems is mainly concerned with two
points: the security term and key length. From the description in chapter 3, it is shown
that the security of cryptosystem will be determined by the difficulty of reversible
computation of Abilene group. In fact, the different architecture of computations is
existed in different group of finite field. For example, let GF be a finite group, and let a
and b be elements of GF. Then the discrete logarithm problem for GF is to determine a
value x (when it exists) such that a* = b. The value for x is called a logarithm of b to the
base a, and is denoted by log,b. It is clear that the difficulty of determining this quantity
depends on the representation of GF. For example, if the abstract cyclic group of order m
is represented in the form of the integers module m, then the discrete logarithm problem
reduces to the extended Euclidean algorithm. However, if m + 1 is prime, and the group
is represented in the form of the multiplicative group of the finite field Fi.., the problem
is much more difficult to calculate for that representation of group (refer to [52]). If the
group is represented as an elliptic curve group over a finite field, then the problem is

again much more difficult.

In other words, it is convenient for the users of a public key cryptosystems that the key
size be as small as possible. However, most of the known public key cryptosystems are
insecure if the key size is smaller than 135 bits. In the RSA system [10] the public key
consists of the integers e and modulus N. Since factoring 135 bits integers can readily be
done on a microcomputer, the RSA system is insecure for keys of that size. So that
although e can be small, N should be at least 512 bits in length. In the ElGamal system
[25], the same holds true for the system whose security is based on discrete exponentiation
in a finite field. The private key k can be restricted but the public key oX (where o is a
generator of the field) is the size of the field that should be at least vl

An advanced candidate is the Elliptic Curve cryptosystem. The size of the group used in

the ECC needs only 155 bits, but it offers the same of degree security as the RSA or
ElGamal cryptosystem working with 512 bits. The remainder of this chapter will be
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organized in two sections: a comparison between the RSA and the ElGamal cryptosystem,

and a comparison between the ElGamal and the elliptic curve cryptosystem.

4.1.2.1 Comparison between the RSA and the ElGamal cryptosystem

From the discussion of chapter 3, the modulu N is a composite integer in the RSA system.
The security of the RSA cryptosystem depends on the difficulty of factoring the published
modulus N. If the number N can be factored, then the secret key (d, N) can be computed
and all of Alice’s private mail or digital signatures can be read. Therefore, if the RSA
system is to be secure, it is certainly necessary that N = pq must be large enough that
factoring it will be computationally infeasible. Recently Odlyzko [4] has forecast that a
512-bit module will be vulnerable to factorization in a couple of years, and is therefore not
suitable as a long-term basis for security protection. It is likely that a 1024 bit RSA be
become common in the near future. Though it will probably remain secure for many years

[18], it requires too much memory for the multi-application smart card.

It is also been shown that the security of the ElGamal cryptosystem is based on the
difficulty of the discrete logarithm problem in Zy. If the discrete logarithm problem in Zy
can be solved in polynomial time, then N can be factored in expected polynomial time
([53] page 114). In other words, the discrete logarithm problem in Zy is no harder than the
problems of factoring N and computing discrete logarithms in Z, for each prime factor p
of N. When utilizing finite fields GF(p), whether p is prime or p = 2% it is necessary to
ensure that p — 1has a large prime factor, otherwise it is easy to find discrete logarithms in
GF(p). This restriction is also similar to the need to choose the secret primes in the RSA
system carefully [58, 59]. That is the reason that the key length in the ElGamal
cryptosystem should be the same as the RSA cryptosystem. Currently p should be at least
512 bit modules which is secure from factorization for a only a few years, and which is
only suitable for the short-term protection of secrets. If p were to increase to 1024-bit

prime, it will provide over 100 years long-term protection of secrets [60].
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So it can be said that the complexity for finding out the discrete logarithms in a field Z,
for a prime p is the same as the complexity for factoring an integer N with the same size,
where N is the product of two approximately equal primes [35, 61]. That is the reason of

requiring the same key length for the same length of security terms.

An important difference between the RSA and ElGamal cryptosystems is the computing
architecture of cryptosystem. The RSA is a factoring algorithm, which is a “uniformly
secure” system, in the sense that there can be no large sets of “weak messages”: if a crypt-
analyst can decrypt a fraction of messages encrypted with the RSA cryptosystem, then he
could effectively decrypt all messages. Putting it another way, if the RSA cryptosystem
offers security for the encrypted messages, then it offers uniformly high security for all
messages. This follows from the multiplicative nature of the RSA scheme [62]. The
ElGamal system relies on the discrete logarithm algorithm, which is much more difficult
to use to decrypt a fraction of the messages, if the crypt-analyst does not know the key. In
this sense that the ElGamal cryptosystem is based on a more powerful One way function

than the RSA cryptosystem.

4.1.2.2 Comparison between the EIGamal and the Elliptic Curve cryptosystem

The security of the Elliptic Curve cryptosystem is based on the difficulty of the discrete
Elliptic logarithm problem, which is analogous to the discrete logarithm problem on an
elliptic curve over a finite field GF(q). The computation in the groups used in the ECCs

and ElGamal system is the main difference between the two systems.

Recall from chapter 3.3, the points of the elliptic curve E over a finite field K = GF(q),
where q = p™, form an Abelian group. In some ways this group is similar to the

multiplicative group K* of the field K. For example, Hasse proved that the order of the
group | Ex| is equal to q + 1 — ag,, where | apcl<2 \/E , and so it has the same asymptotic

size as | Exs= q -1. Actually, one can obtain K* from the above construction of an

additional law on Ex if one lets Ex “degenerate” by letting the cubic on the right in (3.3-4)
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obtain a double root. Then if the two slopes at the singular point of Ex are in K, it proves
that the set of nonsingular points of Ex (i.e., those whose x-coordinate is not the double
root) form a group isomorphic to K*. But unlike K*, which is a cyclic group, the Abelian
group Ex for K = GF(q) can either be cyclic or else a product of two cyclic groups. In
practice, for a “random” elliptic curve, usually either this group is cyclic or else it can be
written as a product with one of the cyclic factors much smaller than the other. For this
reason, it seems that the elliptic curve cryptosystem based on the discrete elliptic
logarithm are secure over much smaller fields than ElGamal cryptosystem based on the
multiplicative group of the field. Also there is much more choice available when working
with elliptic curves: for fixed q one has only one group F,, but one can obtain many
groups of curves E by varying the coefficients of the defining equation of the elliptic

curve (shown on Table 4-1).

The Addition Formula for E: y* =x’ + ax + b,

a b X y
1) -2 5 1,318 47,849

2) 4 -1 4,321 284,038

10) -19 51 2955980  5,082,205,677

Table 4-1. Isomorphism Classes of Curves over Fq (=2

The total number of elliptic curves E: y* =x> + ax + b over F 2 is calculated by the

equation of the form:

Note that here the coefficients of y* and x° are simplified to be 1. If the coefficient of y* or

x° is selected from the field F P then the total number of curve E is that

{25]_ 0™) .

3 | P o3ka
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Therefore, the size of the group used in the ECC is much smaller than that used in the
ElGamal algorithm. The q needs only 155 bits for short-term protection or 201 bits for
long-term protection. At these levels it offers the same degree of security as the ElGamal
cryptosystem working with respectively 512 bits and 1024 bits prime, since the Elliptic
Curve algorithm uses a different group operation in an Abelian group than multiplication

of integers mod q.

Another target to be discussed is the ratio R of the term of security increased to the bit of

key size increased, shown as Fig. 4-1.

Term of
Security
(Years)
100 . -
; ol ElGamal
| Elliptic &
|
Y~100(years)
ANE|G=5 12 bits

| ANge= 46 bits P |

5 ! / |

>

0 155 201 512 1024 N (bits) |

Fig. 4-1. Comparison of the Efficiency between Two Types of Cryptosystem.

A key advantage is that, if the security term increases quickly, the size of the numbers
needed to achieve a particular level of security increases much more slowly for the
Elliptic Curve system when compared to the ElGamal system. This increase in efficiency
is shown as Fig. 4-1. Let R=Y/AN, where Y and N denote the security terms in years and
the number of bits individually. As previously described, where the size of field is over
GF(q), where g=2" =2 the security term is longer than 100 years[60]. It is reasonable
to take ¥Y=/00 years approximately as the difference between the term based on 155 bits
and the term based on 201 bits, and similarly for ElGamal bit size. The Fig. 4-1 shows
that the Rgig = Y/ANgig = 100/(1024-512) = 0.195 years/bit in the ElGamal algorithm, but
Rec = Y/ANgc = 100/(201-155) = 2.174 years/bit in the Elliptic Curve algorithm. It is
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clearly shown that the efficiency of Rgc is as many as eleven times larger than Rgg. The
significant is that the potential problems to require long term security that restricted in the

small memory capacity were being resulted. For example, to design a smart card system.

4.2  The Efficiency Trade Off Against the Time of Computation

From the discussion above, it is obvious that the security of the RSA system is dependent
on the size of modulus N, which has to be a large prime of more than 512 bits for security
purpose. The security of the ElGamal system depends on the same size of modulus N as
the RSA system, although the discrete logarithm problem of the ElGamal system is
different from the factoring integer problem of RSA system. The large size of modulus N
has the benefits of long-term security, but it needs not only more memory for storage, but

also more time for calculation.

In the case of the Elliptic Curve cryptosystem, it needs much smaller size bits over GF,
but offers the same degree of security as the RSA and ElGamal cryptosystem working
with large bits integer N. Therefore, it can efficiently save much memory space, but
unfortunately it needs a longer time for computation, since the arithmetic of the group
operations is quite complex. This is the main barrier to the practical implementation of the

elliptic curve algorithm.

In a discussion of the computing time in cryptosystems, some basic knowledge of the
measurement of time in cryptography will be abridged to simplify the topic of computing
time (the interested reader should refer to [32]). It starts with the computation of time in
public key cryptosystem and the comparison of time in cryptosystem as follows.

4.2.1 The Computation of Running Time in Cryptosystem

The computation of time in cryptosystem is a very complex topic, since it is related to the

degree of security of each cryptosystem. The purpose here is not specifically that topic,

106



The Efficiency of the Elliptic Curve Cryptosystem

thus the introduction of computation of time will be simplified, so that it is simply shows
that the running time in Elliptic Curve cryptosystem is harder to satisfy the standard
adopted by the ICC.

4.2.1.1 The computation of running time in RSA system,

In the RSA cryptosystem, as N is very large, one has to use multiprecision arithmetic to
perform computations in Z,, and the time required will depend on the number of bits in

the binary representation of N.

Suppose N has k bits in binary representation, i.e., k = | log,N | + 1. Tt is not difficult to see
that an addition of two k-bit integers can be done in time O(k), and a multiplication can be
done in time O(k%). Also a reduction modulo N of an integer having at most 2k bits can be

performed in time O(k?).

Now suppose that p, q € Zy. pq (mod N) can be computed by first calculating the produce
pq (which is 2k-bit integer), and then reducing it modulo N. These two steps can be
performed in time O(k?). This method is called modular multiplication [41).

The computation of a function of the form x° (mod N) is called modular exponentiation.
Thus, both of the encryption and the decryption operations in RSA are modular
exponentiations. Computation of x° (mod N) can be done using ¢ — 1 modular
multiplications. But this is very inefficient if ¢ is large (c might be as big as ¢(N) — 1,

which is exponentially large compared to k).

The square-and-multiply method [63] reduces the number of modular multiplications that
require computing x° (mod N) to at most 21 (where 1 is the maximum length of number of
the bits in the binary representation of c). Since 1 <k, it follows that x° (mod N) can be

computed in time O(k’). Therefore, both encryption and decryption in RSA can be done in
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polynomial time (as a function of k, which is the number of bits in one plaintext or

ciphertext character).

There are many factoring algorithms at present. The three which are the most effective on
large numbers, are the quadratic sieve, the elliptic curve algorithm and the number field
sieve. First it is necessary to introduce a notation of “bound” B in Pollard’s p — 1

algorithm, before briefly introducing the computations of time required.

The Pollard’s p — 1 algorithm has two parameters: the (odd) integer N to be factored, and
a “bound” B. Suppose p is a prime divisor of N, and q < B for every prime power q| (p-—
1). Then it must be the case that (p — 1)| B! [41]. Let

a=2" (mod N),
so that a=2" (mod p).
since p| N, then 2°~1=1 (mod p).
Since (p — 1) B!, then a = 1 (mod p). It has that p | (a— 1) and p| N, so that p | d = ged(a-1,
N).

In the p — 1 algorithm, there are B — 1 modular exponentiations, each requiring at most
2log;B modular multiplications using square-and-multiply. The ged computation can be
done in time O((log N)*) using the Euclidean algorithm. Hence, the complexity of the
algorithm is O(Blog B(log N)* + (log N)). If B is O((log N)) for some fixed integer i,
then the algorithm is indeed a polynomial time algorithm. However, for such a choice of
B, the probability of success will be very small. On the other hand, if the size of B is
increased to N2, then the algorithm will be successful, but it will be no faster than trial

division.

The elliptic curve factoring algorithm (note that it is not the elliptic curve logarithm
algorithm discussed above) by Lenstra in [64], is in fact a generalization of the p — 1
method. The elliptic curve method depends on the more likely situation that an integer

“close to” p has only “small” prime factors. The p — 1 method depends on a relation that
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holds in the group Z,, the elliptic curve method involves groups defined on elliptic curves

modulo p.

Assuming the distribution of integers is not divisible by any prime > B in a small interval
around p. Lenstra proves that the following probabilistic time estimate for the number of

bit operations required produce a nontrivial divisor of N:

O(exp((1+€) y/210g ploglog p ),
where p is the smallest prime factor of N and € approaches zero for large p. Since p

S\/ﬁ , it follows from the above is of the form:

O(exp((1 + €) y/log Nloglog N )).

The Quadratic sieve method, developed by Pomerance [65], uses a factor base, which is a
set B of small primes. First it is necessary to obtain several integers x such that all the
prime factors of x> (mod N) occur in the factor base B. The idea is to take the product of
several of these x’s in such a way that every prime in the factor base is an even number of
times. This then gives a congruence of the desired type x? = y* (mod N), which will lead

to a factorization of N.

Suppose B = {p1...., ps} is the factor base. Let C be slightly larger than B (i.e., C=B +

10). Suppose one has obtained C congruences:

xf- = pf"”x pa“x---x pfﬂf(modN), (15j<0)

2
For each j, consider the vector a; = (auy; (mod 2), ..., apj (mod 2)) € Z,°. If a subset of the
a;’s that sum modulo 2 to the vector (0, ..., 0), can be found, then the product of the

corresponding s;’s will use each factor in B an even number of times.

Pomerance [65] has proved that the expected running time of the quadratic sieve factoring

method is asymptotically

O(exp((1 + €) 4/log N loglog N )),
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for any ¢ > 0. There is a fairly large space requirement, also of the form

exp(C \/log Nloglog N ).

The number field sieve method is a more recent factoring algorithm. It also factors N by
constructing a congruence x> = y> (mod N), but it does so by computation in rings of

algebraic integers. It has a running time that is asymptotically

O(exp(2+€)(log N)(loglog N)*?)).

In practice, it appears to be the fastest method for factoring numbers that are at or beyond
the current (1994) upper limits of what can be factored, i.e., more than 150 digits. The

running time of them is converged in Table 4-1.

O(exp((1 + &)vIn NInln N )).
O(exp((1+€)+/2In plnln p )).

O(exp(2-+€)(In N)*(Inln N)**)).

Table 4-1. The running time of three cryptography algorithms

The ¢ denotes a number that approaches 0 as N — oo, and p denotes the smallest prime

factor of N. In the worst case, p ~+/N and the asymptotic running times of the quadratic
sieve and elliptic curve algorithms are the same. But in such a situation, the quadratic
sieve generally is more advanced than the elliptic curve. The elliptic curve method is more

useful if the prime factors of N are of different size [41].

The number field sieve is the most recent of the three algorithms. It seems to have great
potential since its asymptotic running time is faster than either quadratic sieve or the
elliptic curve. Although still in developmental stages, people have speculated that the
number field sieve method might prove to be faster for numbers having more than 130-

150 decimal digits [32].
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Currently the industry of smart card crypt-processor has developed rapidly (refer to
chapter 1). A comparison of the computing time of various chips produced by three main

companies is shown in Table 4-2.

Thomson 150(C) -
Siemins |[220 | 60(C) | --- |450(C) |5MHz | 1.0 um
Motorola | 500 | 125(C) | 5600 | 1500(C) | SMHz | 1.2 ym

Table 4-2. Comparison of the Computing Time of Smart Card Chips

Note that C means Signature time with Chinese Remainder Theorem.

4.2.1.2 The computation of running time in ElIGamal system

The Index calculus method for computing the discrete logarithm is considered to be one of
the best factoring algorithms. Recalling chapter 3.2, this algorithm consists of three stages.
The first two stages belong to pre-computation, and the third stage finds an individual
discrete logarithm. There is a difference in the architecture of the ElGamal system
compared to the RSA system. Consequently, there is also a difference between the method
of computation in both cryptosystems. The computing time of the ElGamal system will
consists of two parts, the running time of pre-computation and the time to find an

individual discrete logarithm. The EIGamal system presents an asymptotic running time of

O(exp((1+0(1))y/In pInin p)),

for the pre-computation phase, and the much shorter running time of

O(exp((1/2+0(1))4/In pInln p )),

for finding an individual logarithm once the pre-computation is done. The running time of
the pre-computation is roughly the same as that of the fastest known algorithms for

factoring integers of size about p. The details are referred to in [35].
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In practice, it is quite different from the situation of the finite field GF(2") (or more
generally, fields GF(p") where p is held to be fixed and n — ) where the first author [2]

has shown that discrete logarithms can be computed in time
O(exp(cn*(In n)*?))

for some ¢ > 0 depending on p. The Index calculus method can be modified to work in

these fields. The pre-computation time is calculated to be
O(exp((1.405 + o(1)) n*(In n)*?)),

and the time to find an individual discrete logarithm is
O(exp((1.098 + o(1)) n"*(In n)*?)).

Therefore, for large values of n (say n > 800), the discrete logarithm problem in GF(2") is
thought to be intractable provided 2" has at least one large prime factor (in order to resist a
Pohlig-Hellman attack).

The fastest known general algorithm for computing discrete logarithms modulo p is based

on the Number-Field sieve and has asymptotic running time [35]

O(exp((c(In p)"*(Inin p)**))

for some small constant c. At present the fastest implementations of discrete logarithm

algorithms have larger asymptotic running time

O(exp((c(In p)"*(Inin p)'?)).

Computing discrete logarithms modulo a prime p seems at present to be infeasible for

primes of more than 120 digits [66].

112



The Efficiency of the Elliptic Curve Cryptosystem

4.2.1.3 The computation time in the Elliptic Curve system,

As described in chapter 4.1, the creation of efficiency in the ECC is based on the principle
and complex computation on the Abelian group with the algebraic operation '+ of the
Elliptic Curve algorithm. Thus, it leads to great complexity of computation and more time
required for the pre-computation stage of the ECC. , Further details may be found in [28].
The brief description of the Elliptic Curve algorithm is listed below,

--- The working on the Elliptic Curve:
a. Adding and Doubling Points,
b. Choosing the curve,

¢. Computing a Multiple of a Point.

--- The more complex computation of field operations:
a. Representation of the Field Elements,
b. Addition and Multiplication of the Field Elements,
¢. Modular Reduction,

d. Computing Reciprocals.

These complex operations cause the time required in processing the ECC to become
gradually longer. At present there is no algorithm faster than the Baby-step Giant-step
algorithm (see Appendix F) for an ECC. The whole algorithm takes

O(q1/4(log q)Z/Ll/Z)
bits operations, and requires

bits of storage [5]. Recall that #E(F,) = q + 1 — t, the calculation of t modulo £ using
Schoof’s algorithm for small primes £ is very simple. However, since deg(f,(x)) = (¢* -

1)/2, the calculation quickly becomes infeasible as the value of £ increases. J.Buchmann

and V. Muller [5] combined Schoof's algorithm with Shanks' Baby-step Giant-step
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method to count the points on a single randomly chosen elliptic curve over F(2"). The
algorithm was implemented in the C language on a SUN-2 SPARC-station with 64
Mbytes of memory [67], as shown in table 4-3.

Table 4-3 Times for computing the points on Elliptic Curve over F(2™)

From a practical point of view, curves over fields of characteristic 2 are more attractive,
since the arithmetic in GF(2™) is easier to implement in hardware than the arithmetic in
GF(p) (p is odd). Schoof’s algorithm for counting the points on an arbitrary curve over
GF(2™) has improved the actual running time [68]. For the sake of comparison, the table
here gives some total time (seconds) of computation using the field GF(2™) and GF(p),
where p is the least prime greater than 2™, as shown in Table 4-4. It considers the 50
random curves of the equation y* = x> + x + b for 1 < b < 50 for each of these primes, and

has been done on a DecAlpha 3000/500 machine.

Table 4-4. Comparison of Running Time for Finite Field GF(2") and GF(q)

The timing of the ECC system that calculated from making a few measurements on the
SPARC (25 MHz) is shown in Table 4-5 [28]. Assuming the clock rate in the chip is 5
MHz.

Table 4-5. Times for ECC operations
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It is pronounced that the computing time for encryption and decryption on a randomly
chosen Elliptic Curve will be longer than 450 ms of a standard operation at 5 MHz [5].
This is the main reason that the ECC system, with only 155-bit size of the group field, is
unavailable in practice. However it is said that the efficiency of the ECC occurs at the

expense of the time of computation.

4.2.2 The Comparison of Running Time in the Cryptosystems

In the comparison between the RSA and ElGamal system, recalled from chapter 4.1, it is
shown that the complexity of finding discrete logarithms in a prime field GF(q) for a
general prime q is essentially the same as the complexity of factoring an integer N of
about the same size (where N is the product of two approximately equal primes). In other
words, both the RSA and ElGamal cryptosystem have similar running times for
computations, which also has been proved by the equations of computing time in the last

subchapter.

Discrete Logarithm Running Times

Index Calculate algorithm GF(q)

Index Caiculate algorithm GF(2")

Table 4-6. Comparison of Running Time between finite field GF(q) and GF(2™)

In comparison between the factoring algorithm shown in Table 4-1 and the discrete
logarithm algorithm shown in Table 4-6, both of the running times are nearly the same.
Since the time of finding discrete logarithm is much less than the pre-computing time,
which is reasonable to be abridged, as shown in Fig. 4-2 (using Index calculate algorithm
in GF(q), where q = 10°).
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Fig. 4-2 Comparison of the Time of Two computing stages

In the comparison between the ElGamal and the Elliptic Curve system, it is well known
that the “Baby-step giant-step” algorithm requires time to be fully exponential in the
length of the largest prime factor of the order of the group. This situation is in contrast
with that of the classical discrete logarithm problem in the multiplicative group of a finite
field. There the “Index calculus” algorithm making the time to solve the discrete
logarithm in GF(q) is bounded by the equation of O(exp((c(In q)"*(Inln @)**)) for a fairly
small constant c. Therefore, from a practical point of view, there are both positive and

negative features using ECCs.

On the positive side, the ECCs potentially provides equivalent security to the existing
public key schemes, but with shorter key lengths giving smaller bandwidth and memory
requirements. This will be a crucial factor in the design of Smart Cards. On the negative
side, the computation time of the ECCs is much more than that of the ElGamal system
over a finite field. Therefore, the computation times on the ECCs are much longer than on
the ElGamal cryptosystem. The running times of modulus and exponent operation

between the three kinds of cryptosystems are listed in Table 4-7.

RSA (CRT)
RSA (standard)
Discrete Logarithm
Elliptic Curve

Table 4-7. The Running Time of Modulus and Exponent Operation
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Note that: (1) It is implementation on the SLE44C200 chip card processor at
5 MHz (for selected operation).
(2)  CRT means running with Chinese Remainder Theorem.
Time A S
(ms)
1000 Elliptic
Curve
660 S
ElGamal
500 i .
450 / N
2 e // Bl imitasion. |
= of Time
220 il —
>
0 135 201 512 1024  N(bits)

Fig. 4-3. Comparison of the Running Times between Three systems

In Fig.4-3, it is clearly shown that the running times for both the RSA system based on a

factoring large integer and ElGamal system based on a classical discrete logarithm

efficiently follow the 450ms running times of limitation made by ISO 7816 and satisfy its

requirement in practice. However, it needs more memory to store the longer length of key

for cryptography. The running times of the ECCs are much longer than the RSA and

ElGamal systems, since its computing architecture is much more complex. This is the

main reason that the ECC, with only 155-bit size of the group field, has been unavailable

in practice, even though it has equivalent security to the other two public key schemes

with the same length of the key. However it is said that the efficiency of the ECC occurs

at the expense of the time of computation.
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Summary:

This chapter has discussed efficiency and running times. From the computation and
comparison of efficiency for the three kinds of public key cryptosystem, the advanced
efficiency of the ECCs has clearly shown that the ECCs is a desirable cryptography
algorithm. It potentially provides equivalent security compared with the existing public
key schemes, but with shorter key lengths allowing smaller bandwidth and memory
requirements and with the potential to be a crucial factor in the design of Multi-
application smart cards. From the computation and comparison of running times, the
disadvantages of a lengthy computation time in the ECCs has shown that the efficiency
trades off with the running times, which is the main reason preventing use of the ECCs in

practice.
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5. Conclusion

The purpose of this research is to explore an efficient cryptographic algorithm to achieve
a high degree of security for multi-application smart card (MSC) in the future. The aim
of the MSC is ultimately to arrive at the day where people will only need to carry one
smart card in their wallet. The security, convenience and integrity of a single smart card
will have beneficial applications as varied as daily services. These advance performances
will need a large number of memory spaces. But the chip on the smart card is restricted
in size by the ISO 7816 standard, with the result that the memory capacity of the chip is
not big enough to store the larger and complex programs for the operating system and to
store protocol codes of the cryptography algorithms for factoring large integers. Within
this limited memory space, cryptographic keys will be stored in EEPROM, the ROM
mask normally store the operating system and higher level instructions which execute
cryptographic algorithms. So investigation for an efficient cryptography algorithm which
satisfies both the security levels based on factoring large integers and the memory space

of the restricted size chip is of importance.

1. Outline of the thesis

The basic design and development of smart card technology for future use has been done.
It is shown that the MSC is much more complex than SSC in both physical and logical
constructions. More importantly, it is necessity to build an operating system and database
inside the chip to achieve security. For these requirements, the MSC will need a large
amount of memory, but the chip has only a small memory space since it is restricted in
size by the ISO 7816 standard. This is the main barrier in the development of the MSC.
Further more it is not certain how far the silicon industry technology will go towards that
goal of having big enough memory size. The significant of this investigation is that the
decision about the direction of smart card technology development will determine the
achievement of MSC in future, or the changes introduced today will determine

tomorrow’s result.
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The public key cryptosystem is the best secure system at present. Three kinds of public
key cryptosystem have been discussed. It has be shown that the elliptic curve algorithm
based on discrete elliptic logarithm has a different method than the ElGamal
cryptosystem based on classical discrete logarithm in a finite field. Foremost it has the
addition group operation, while later it has the multiple group operation. This is the main
reason why the ECC potentially provides equivalent security to the existing public key
schemes, but with shorter key lengths requiring smaller bandwidth and memory and

which are a crucial factor in the design of the MSC.

For more understanding of the creation of the efficiency of elliptic curve cryptosystem,
the minimum knowledge of the principle of mathematics related to three kinds of
cryptosystems is introduced in this thesis, showing the different architecture of
computation and comparing the efficiency and running time between three public key
cryptosystem. In addition, it will give a source of basic notation showing that the
efficiency of the ECC is created by the Abelian group operation, which is especially
important for the MSC where the chip is restricted in size. The ECCA is a unique public
key cryptography algorithm based on the mathematical principles of the Abelian group
operation, and offers an efficient solution to achieve a high degree of security by using
smaller numbers of key. Unfortunately, the lengthy running time is created by the
complexity of the computing method of the ECC, which is the principal deterrent to
developing the MSC.

The comparison of the efficiency and running time clearly shows that the advanced
efficiency of ECCs is as many as eleven times larger than RSA and ElGamal systems.
The disadvantage of the lengthy running time operated by ECCs is gradually longer than
RSA and ElGamal systems, and exceeds the 450 ms standardized by ISO 7816.
Therefore it gives a significant result that the advanced efficiency of the ECCs is trading
off the redundant running time, which is the main reason that the ECC is presently

unavailable for practice application.
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2 The Elliptic Curve Cryptosystem in Future

In encryption and decryption of the MSC, performing the computations with limited
memory in a reasonable time is a difficult task. A reasonable thread in the elliptic curve
algorithm shown above is to increase the memory space on the chip and to reduce the

lengthy running time.

The responsibility for the former belongs to the silicon industry technology, which
expects that the memory size will increase to more than 120 Kbytes (refer to chapter 1) in
a chip sized 25mm? using 0.3 pm CMOS technology [17] in future. Reduction in running
time requires increased speed in integer arithmetic by developing and improving the data
structures and algorithm design. In particular, the arithmetic in characteristic 2 (p = 2™ +

r) is the most efficient means to speed up the implementation of the ECCs.

Currently, the memory size in the chip is smaller than 30 Kbytes. It makes the research of
data structures and algorithm design less attractive for the ECC, since these methods
require more memory space. However, with the growth of memory capacity, the data
structures and algorithm design of the ECC will be developed and improved enormously
since the ECC requires smaller key length, and the additional memory space required for
the improvement of data structures and algorithm design is also not large. Therefore, it
will be possible to reduce lengthy running time to an effective time of 450ms that is
suitable to ISO 7816 standard.

The ECC is a unique efficient algorithm for the achievement of MSC, but the key length
of ECC stays at only 135 bits ~ 155 bits, since its running time is restricted by the
complexity of the computing operation. These bits are only suitable for short-term
security. Further study to expand to field F(2%") (201 bits) would provide a significant
solution to the problem of the smaller memory space and the longer-term security. Under

these conditions, the MSC with a high degree of security will indeed be practical.
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Appendix A. Number Theorem

A-1 One-way Function

A one-way function is a function that is easy to compute, but difficult to invert by any
known method as shown in Fig. A-1. A Polynomial function with many terms is one
example. Other examples abound, but there is no rigorous proof that any function is truly

one way in the sense that a simple inversion technique is impossible.

If extra information permits one to easily invert a one-way function, the extra information
is called "trapdoor", then this function is called a trapdoor one-way function. In public
key cryptography, the private key provides the extra information or “trapdoor”, whereas

the public key specifies the one-way function.

Private Encryption
Key 5 p—
Message
M.M“
Decryption

Fig. A-1. The Framework of One Way Function

A-2  Number Theory

Division Algorithm. If a is an integer and b is a positive integer, then there are unique

integers k and 1 such that a =kb + 1 with 0 <k <b.

Euclidean Algorithm. Let 1o and r; be non-negative integers with r; # 0. If the division

algorithm is applied successively to obtain r; = Kj+irj+1 + 1j+2 With
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0 <rjsp <t1js1 for j =0, 1,..., n - 2 and if r,.1= Kqat'n, then (ro,r1) = ty,

the last non-zero remainder.

Proof: Successive applications of the division algorithm yield:

ro = kiry + 1o, 0<m<n

r1 = korp + 13, 0<r3<m,
In2 = Kp-1fng + 1y, 0 <<ty
I'n1 = knrn.

Eventually, a remainder of zero is obtained because the r; > 12 >..> 1, > 0, which ensures
that the sequence of remainders has fewer than r; terms. Lemma 1 implies that (to, 1) =

(r1,r2) = ... = (tn1, tn) = (tn, 0) =1n. Thus, (ro, 11) = 1.

e The Euler totient function:

@(N) is the number of positive integers less than N that are relatively prime to N. For

prime p, G(p) =p - 1.
¢ Euler's Theorem:
If N is a positive integer and a is an integer with (a, N) = 1, then
2”™ = 1 (mod N)
or, equivalently a®™ (mod N) = 1

So Euler's theorem can be used to find inverses modulo N:

ax (mod N) =1
or ax =1 (mod N) (A2-1)

where (a, N) = 1. If 1 £x <N, the solution can be expressed as

x =2 (mod N) (A.2-2)
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e Theorem A-2.1 (Theorem 7 in [21]):
If p and q are primes and N = pq, then FN) = (p-1)(g-1).

e Definition A-2.2: The Order
—- Order of a field (in [73] page 32): A finite field is a field which has a finite

number of elements, this number being called the order of the
field.

--- Order of a point (in [5] page 26): Let E is a torsion group, i.e., for each point P
e E there is a positive integer k such that kP = O. The smallest
such integer is called the order of point P. An n-tOrsion point is a

point P € (F,) satisfying nP = O.

—-- Order of a curve (Lemma 2.9 in [5]): Let #E(F,) denotes the number of points

on elliptic curve E defined over F,. By Hasse’s Theorem: Let

HE(F) =q+1—t, then|tI<2g.

There exists an elliptic curve E over Fq such that E(F;) has
order q + 1 — t if and only if one of the following conditions
holds:
(D) t=0 (mod p) and t < 4q.
(I1) m is odd and one of the following holds:

1 t=0,

(2) t=2qandp=2,

(3) t*=3qandp=3.
(II1) m is even and one of the following holds:

() t=4q,

(2) tt=qandp#1(mod?3),

(3) t=0andp=#1(mod4).
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e Definition A-2.3: Factor Base

A Factor Base (FB) is a set B = {p1, p2,..., pn} of distinct primes, except that p; may be
the integer —1. We say that the square of an integer b is a B-number (for a given n) if the

least absolute residue b® (mod n) can be written as a product of numbers from B.

Example: For n = 4633 and B = {-1, 2, 3}, the squares of the three integers 67, 68 and 69
are B-numbers, because 67° = -144 (mod 4633), 682 = -9 (mod 4633), and 69°> = 128
(mod 4633).

Let th denote the vector space over the field of two elements, which consists of h-tuples
of zeros and ones. Given n and a factor base B containing h numbers, we show how to

correspond a vector € € F" to every B-number. Namely, we write b (mod n) in the form
Hj,_l qu and set the j-th component €j equal to o; (mod 2), i.e., & = 0 if o; is even, and
N Y

gj =1 if a; is odd.

¢ Definition A-2.4: Division Polynomials

Let =2, and let E be a non-supersingular elliptic curve over Fy, and has the form
V2 +xy =% +ax* + a, (A2.4-1)

where a; € {0, v}, y € Fy being a fixed element of trace 1, and a5 € Fq‘. The division

polynomials f,(x) € Fy[x] associated with the non-supsingular curve E given by the

equation (A2.4-1) [77]:

fo=0
f1=1
f2=X

fH=x'+x*+ag
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fy= X6+ a6x2
f2n+1 = f3nf?’n+2 + fn-1f3n+ls nx2
xfon = flzn-lfnfn+2 +fho fn fzn+1; n23.

The polynomials f, are monic in x, and if n is odd then the degree of f; is (- 1)/2.

e Definition A-2.5: Endomorphism

Let EndgE denotes the ring of endomorphisms of E that are defined over Fg. For any
integer m, the multiplication-by-m map P - mP is an endomorphism of E, and hence Z
€ EndcE. The map ® e EndgE sending (x, y) to (x% y?) and fixing O is called the
Frobenius endomorphism of E. In EndgE, @ satisfies the relation
O’ -td+q=0

for a unique t € Z, called the trace of the Frobenius endomorphism. In fact, t =q + 1 -
#E(F,). Recall that if £ is an odd prime then E[{] = Z, ® Z,. Consequently, E[/] can be
viewed as a vector space over F,; the vector space has dimension 2. The map ® restricted

to E[¢] is a linear transformation on E[¢] with characteristic equation @*-td +q=0.

Proposition A-3: For any positive odd n, the congruence (—2—) = (—1}" ) is holding.
n

Proof: Let f(n) denote the function on the rigt side of the equality, as in the proof of
Proposition I1.2.4 in [32]. It is easy to see that f(nin,) = f(n)f(n,) for any two odd
numbers n; and n, (Just consider the different possibilities for n; and n; modulo

8). This means that the right side of the equality in the proposition equals.

ooy {2] (2

r

al‘

But this is (2/n), by definition.

This proof is not tight, some parts of the argument are omitted. The interested reader can
refer to reference [32] page 44 for more details.
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Appendix B. Optimal Normal Bases

A normal basis for F(2'%) over F; is a basis of the form

_ 2 22 2104
N=(f S S

The basis is optimal if its multiplication table is as “simple” as possible; see [69] for more

details and for an easy way to construct such a basis. Given any o € [/ s then one can

104 2 .
express o, =Zi=0 C, ﬂ , where ¢; € F», and write o = (cq, €1, C, .., C104). In software,

is represented by a bit vector of length 105, i.e. on a 32-bit machine, a. is stored in an

array of unsigned integers of length 4, the last 23 bits of which are unused.

Addition of elements is achieved by simply XOR the vector representations. Since

104

2 2 _& 2
o =§Ciﬂ =ZC;—1ﬂ

i=0

(with indices reduced modulo 105), squaring o is accomplished by a cyclic shift of its

vector representation.

The most efficient way to compute the inverse of a is that first convert to a polynomial

basis representation of [ " using a precomputed change of basis matrix, to compute

the inverse using an efficient implementation of the extended Euclidean algorithm as
described in [70]. Then it can transform the result back to the normal basis

representation.
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Appendix C. Chinese Remainder Theorem

The Chinese Remainder Theorem is useful for purposes such as simplifying modular
arithmetic. Suppose my, ..., m, are pairwise relatively prime (that is ged(m;, mj) =1 if i #
j). Suppose aj, ..., a, are integers, and consider the following system of congruencies:

X = a; (mod my)

X = a3 (mod my)

X = a, (mod my),

The Chinese Remainder Theorem asserts that this system has a unique solution modulo

M=m; xmy X ...X my.

This result will be proved in [41], and also describe an efficient algorithm for solving

systems of congruencies of this type.

It is convenient to study the function &: Zy - Zm x ... x Zm, which be defined as
follows:

E(x) = (x mod my, ..., x mod m,).

Example: Suppose r = 2, m; = 5 and mp = 3, so M = 15. Then the function & has the

following values:

£(0)=(0, 0) sbH=(11 =022
&3 =G,0) §4=361 &(5)=(0,2)
&) =(1,0) &N=21n E®=G,2)
§(9) =4, 0) &(10)=(0, I) g1 =(1,2)
§(12)=(Q2, 0) &(13)=G, D g14)=@4,2).
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Appendix D. Weierstrass Equations

Let Fy denote the finite field containing q elements, where q is a prime power. Let K is a
field, let K denote its algebraic closure. The projective plane P*(K) over K is the set of
equivalence classes of the relation “~” acting on K3\{(0, 0, 0)}, where (X1, ¥i, z1) ~ (X2, Y2,
7,) if and only if there exists u € K* such that x; = Uxa, y1 = Uy, 21 = uzp. A Weierstrass

Equation is a homogeneous equation of degree 3 of the form
Y27+ a;XYZ + a5YZ? = X* + a,X°Z + a,XZ* + a6Z’,

where aj, a;, a3, a1, a5 € K . The Weierstrass Equation is called to be smooth or non-

singular if for all projective points P = (x,y, z) € PX(K ) satisfying
F(X, Y, Z) = Y*Z + a;XYZ + a3YZ? - X* - 0X°Z - a4XZ? - a6Z’ = 0,

at least one of the three partial derivatives OF/0X, OF/0Y, OF/0Z is non-zero at P point. If
all three partial derivatives vanish at some point P, then P is called a singular point, and

the Weierstrass Equation is said to be singular.

For convenience, the Weierstrass Equation is usually be written for an elliptic curve using
affine coordinates on Z plane (by mapping plane), such as let x = X/Z and y = Y/Z instead
into equation (D — 1). Therefore, the form is that

E: y2 +a)xy +azy = x>+ a2x2 + agx + ag,

always remembering that there is the extra point O = [0, 1, 0] out at infinity. If a;, ay, a3,

a4, ag € K, then E is said to be defined over K.
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Appendix E. Weil Pairing & Weil Theorem

E-1. Weil Pairing,

Let K = Fyand let K denote its algebraic closure. Let E be an elliptic curve defined over

K. If L is any field containing K, then E(L) denotes the set of points on the curve whose

coordinates are both in L, and including the point at infinity. We will write E for E(K).

A divisor D is a formal sum of points in E, D = Yny(P), where n, € Z, and np = 0 for
all but finitely many P e E. The degree of D is the integer >np. The divisors of degree 0
form an additive group, denoted D°. The support of D is the set {P € E | np#0}.

If E is defined by the equation (X, y) = 0, r € K[x, y], then the function field K(E) of E
over K is the field of fractions of the domain K[x, y}/I, where I denotes the ideal
generated by r. Similarly, K (E) is the field of fractions of K [x, y/I..

Let f € K (E)*. For each P € E, define vi(f) to be n > 0 or —n < 0 if f has a zero or a pole
of order n at P, respectively. One can associate the divisor 2v:(f)(P) to f, and denote it by
(f), and can verity that (f) € D°. A divisor D = ¥'n,(P) is said to be principal if D = (f) for

some f e K (E)*. One can also verify that D is principal, if and only if >n, = 0 and XnpP
=0.

Let Dy denotes the set of all principal divisors; D; forms a subgroup of D’ I1fD,, D, € D",
one can write D; ~ D, if Dy, D, € DI. For each D € DO there exists a unique point P € E
such that D ~ (P) — (O). If D = Xn(P) is a divisor and f € K (E)* such that D and (f)
have disjoint supports, then one defines f(D) = HpeEf(P)“P.
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Now let m be an integer co-prime to q and let P, Q € E[m]. Let A,B € D° such that A ~
(P) — (O) and B ~ (Q) — (O), and A and B have disjoint supports. Let fa, fs € K (E) be
such that (fo) = mA and (fg) = mB. Then the Weil pairing en(P, Q) is defined to be

em(P, Q) = fa(B)/fa(A).

E-2. Weil Theorem

The Weil theorem says in a much more general context (algebraic varieties of any
dimension) that the zeta function has a very special form. In the case of an elliptic curve
E/Fy Weil proved it as following.

Weil Theorem (Conjectures) for an elliptic curve:

The Zeta function is a rational function of T having the form

Z(T; E/F) = (1 +aT =qT% /(1 -T)(1 - qT),

where only the integer ‘a’ depends on the particular elliptic curve E. The value ‘a’ is

related to N =N as follows:
N=q+1-a.

In addition, the discriminate of the quadratic polynomial in the numerator is negative

(i.e., a®° < 4q, which is Hasse’s Theorem), and so the quadratic has two complex
conjugate roots o,  both of absolute value Jq_ (more precisely, 1/a and 1/ are the

roots, and a,, f are the “reciprocal roots”).
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Appendix F.  Baby-step giant-step Algorithm

Assume that a subset X < Z ,.1 is known such that the required solution of g* =y (mod p)
satisfies s € X. Choose ‘small’ sets A, B — Z,.; such that X ¢ A + B where the sum of
the set is defined by A + B={a+ b (mod p-1) : a € A, b € B}. Rewrite g* =y (mod p) as
g*'® =y (mod p) or as g* = yg® (mod p). Crete the lists {g* (mod p)}aca and {yg® (mod
P)lves, sort (or hash) them, and find a common member, g’= yg® (mod p). The

corresponding ‘a’ and ‘b’ define the required solution, x = a + b (mod p-1).

The method has time complexity O(s log(s)) (or O(s) if hashing is used) and space

complexity O(s) where s = max{| Al, | Bl }. Clearly, s 2,/|X| for any choice of A and B

that satisfies X < A + B.

This example describe Pollard,s A-method for catching kangaroos [71], in which X is
some segment within Z,.;, or an arithmetic sequence in Z.;. Let n = [log p-l denotes the
number of bits in p, t is some number between 0 and n, [n] denotes the set {0, 1, ..., n —
1}, and ||x|| denotes the Hamming weight of a number x, that is the number of 1’s in the
binary representation of X. Also, X = {x € Z,.; : ||x || =t} denotes the set of logarithms
with Hamming weight exactly t, and X« = {x € Zy : [[x|| Yeb< t} denotes the set of

logarithms with Hamming weight at most t.

¢ Step 1. For X = X5 with t < n/2 choose A =B = X.

® Step 2. For X« with t < n/2 guesses the Hamming weight of x and solves as

above. Alternatively, choose A =B = Xq.
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® Step 3. For X = X with t > n/2 a cosmetic change in the method is convenient:

choose A = Xy=(n+ty2 and B = Xy=(nty2, note that X < A\B, and solve g"'b =
y, that is g*=yg" (mod p).

¢ Step 4. When some subset I < [n] is known to project every x € X in the same
way. Namely, there are some fixed values ¢; € {0, 1} for i e I, such that
every X =Z:; X 2i e X satisfies x; = ¢; for all i € I. For this case, one can
pick I < [n] and Ig < [n] of (roughly) the same size, which are disjoint
and satisfy 1400z = [n] \ I. Then one can choose A = XN{x:Vie I, X; =
0} and B= {x:Vie I0Ig, x;=0}.

® Step 5. If X has restricted Hamming weight and in addition is restricted by some

subset I < [n] with fixed value c; for i € I as above, the decomposition is
easily obtained by ‘merging’ the two corresponding decompositions

above.

Note that the complexity of Step 4 is exactly the square-root of the size of the structured
set, X. The complexity of small Haming weight DL is worse than this, say | X|P for some

B>1/2.
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Appendix G. Menezes-Okamoto-Vanstone attack

Let E be an elliptic curve over Fq, which is the algebraic closure of Fq. E(F) is the set of
all points in E with coordinates from Fq. E(Fy) has finitely many points, whereas E has
infinitely many. Define E[n] = {P € E : nP = O}. E[n] is called the set of n-torsion points
of E. Now for each n, ged(n, q) = 1, there exists a positive integer k such that E[n] c

E( Fq") and an isomorphism from E[n] to a subgroup of Fq” can be computed using

the Weil pairing. A random polynomial time algorithm for computing the Weil pairing
has been proved by Miller in [55]. These results form the basis for the Menezes-
Okamoto-Vanstone (MOV) attack.

Let E(F,) be an elliptic curve over Fy and let P be a point of order n (i.e., #(P) = n). To
apply the MOV method if ged(n, q) = 1, determine the smallest value of k such that E[n]
c E( Fq")' Now if R is a point of E(Fg) whose logarithm with respect to P is to be

found, one proceeds as follows. Check that R e (P) so that there will exist some integer s
such that R = sP. Determine an element Q € E[n] such that the Weil pairing of P and Q in

Fq" generates the cyclic subgroup isomorphic to E[n]. Finally, determine the logarithm
in Fq* of the Weil pairing of Q and R. This logarithm is s. Note that this logarithm can

be found by using the index calculus methods for F:Ik Thus, even though the index

calculus methods do not apply directly to E(F,), one can map a subgroup of this group

into an algebraic structure where the method does apply.
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Appendix H. Trace Function

Let Trace function denotes the linear function Tr : Fom — F5 defined by

1 2 -1
Tr:o o +062 +a2 +---+a2 .

If m is even, then let Te denotes the Trace function Te : Fom — F4 defined by

Te:otl]a +a2 +a2 +'--+a2m~ .

The elements of F4 are denoted by 0, 1, ¢y, and c;. Thus the identities are
cil+c+1=0,
e +er+1=0,
cicp=1,
cite=1.

Note that Te(cia) = ¢;Te(ar), and Te(caa) = coTe(w).

The quadratic equation +ax+b=0 (a, b € Fom, a = 0),
has a solution in Fom if and only if Tr(a'zb) = (. If x; is one solution, then the another

solution is x; + a.

Using the general results in [ecc 98] concerning the number of roots of an affine
polynomial over a finite field, one obtains the following results on the number of
solutions in Fm of the quartic equation

x*+ax+b=0 (a, b € Fom, a % 0). (H-

)

(1)  Ifmis odd, then (H-1) has either no solution or exactly two solutions.
(2) Ifmis even and a is not a cube, then (H-1) has exactly one solution.
(3) Ifmis even and a is a cube, then (H-1) has four solutions if Te(b/a*?) = 0, and no

sokution if Te(b/a**) = 0.
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Appendix L Quadratic Residue

Suppose that p is an odd prime, ie., p > 2. It is interested in knowing which of the
nonzero elements {1, 2, ..., p-1} of F,, are squares. If some a € F,* is a square, say b’ =
a, then a has precisely two square roots 1b (since the equation X? — a =0 has at most two
solutions in a field). Thus, the squares in F,* can all be found by computing b? (mod p)
forb=1, 2,3, ..., (p-1)/2 (since the remaining integers up to p — 1 are all = -b for one of
these b), and precisely half of the elements in F,* are squares. For example, the squares
inFjare 12=1,22=4,3%=9, 4% =552 = 3. The squares in F, are called quadratic
residues modulo p. The remaining nonzero elements are called nonresidues. For p = 11

the nonresidues are 2, 6, 7, 8, 10.There are (p-1)/2 residues and (p-1)/2 nonresidues.
If g is a generator of Fp, then any element can be written in the form gJ Thus, the square

of any element is of the form g with j even. Conversely, any element of the form g with j

even is the square of some element, namely +g?,
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