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Development of Sensor-based Phenotyping Methods for Ascochyta Blight
Resistance Breeding of Chickpea

by Florian TANNER

Increasing pulse production can benefit global nutritional security and improve the
sustainability of food production. The breeding of chickpea, the second most widely
cultivated pulse, for resistance to Ascochyta blight can contribute to this goal, as
this fungal disease limits yield in all major growing areas. Applying sensor-based
phenotyping to disease resistance breeding programs allows for the rapid, precise, and
nondestructive screening of large numbers of plants for improved disease resistance.
In this way, the genetic gain can be increased.

Previous studies have demonstrated the use of optical sensors for resistance breed-
ing in other plant-pathosystems, but not yet for Ascochyta blight of chickpea. More
broadly, the deployment of sensor-based phenotyping to uncontrolled conditions in
the field, especially for measuring plant disease, remains a challenge.

Therefore, the objectives of this thesis were (i) to develop sensor-based phenotyping
methods for scoring Ascochyta blight disease severity in a chickpea breeding program
and (ii) to identify within-scale and cross-scale functional resistance components.
This was addressed by (a) reviewing the literature on sensor-based phenotyping of
plant-pathogen interaction and (b) using an experimental approach in three different
growth environments where chickpea and wild relatives were screened under disease
pressure.

The main outcomes from approach (a), the literature review, were the identifica-
tion of potentially suitable sensor technology for Ascochyta blight of chickpea as
RGB imaging, fluorescence imaging, hyperspectral imaging, and light detection and
ranging, and the designation of potential measurable resistance components such as
loss of healthy biomass, necrosis, chlorosis, and changes in plant metabolism. The
experimental approach was conducted at (b1) single plant scale under controlled
conditions in a glasshouse, (b2) at single pot scale in a disease nursery, and (b3) at plot
scale in the field.
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In the glasshouse (b1), time course RGB imaging and extraction of growth rates in
response to infection was a suitable and transferable method for predicting disease,
achieving an R2 of 0.37 to 0.64 on unseen data. In the disease nursery (b2), also
using RGB time course imaging derived growth rates, disease severity levels could
be classified on unseen data with overall accuracies of 65 - 81 % (κ = 0.43 - 0.59).
For the purpose of early disease detection, infected and non-infected pots could be
distinguished using lesion detection with 92.6 % accuracy 30 days after infection in
one experiment, and 75.7 % accuracy 42 days after infection in a second experiment.
In the field (b3), only single time points of data were acquired with a ground-based
phenotyping platform that carried hyperspectral and lidar sensors. Using those single
time point data, a general plant stress response expressed in the near infrared spectrum
could rank genotypes according to their disease scores with ρ of 0.89.

Across environments (b1) and (b2), models trained on spectral data for early disease
detection and prediction of disease severity showed poor transferability to indepen-
dent data. When hyperspectral data were used to predict disease severity in the
glasshouse (b1) and field (b3), the degree of success was significantly impacted by the
data preprocessing.

These studies showed that time course RGB imaging to derive growth rate estimates
and the measurement of general plant stress responses in the red edge and VNIR
spectrum were suitable to assess the severity of Ascochyta blight disease for resistance
breeding, and demonstrated the use of lesion detection for early detection of the
disease. This thesis represents an important step toward supporting disease resistance
breeding for Ascochyta blight of chickpea and for disease resistance breeding programs
of other crops.
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Chapter 1

Introduction

1.1 Thesis structure

This thesis is structured into six chapters: two introductory and background chapters,
three experimental chapters, and a combined discussion of all chapters. Chapter 1
introduces chickpea and Ascochyta blight (AB) and details the specifics of sensor-based
phenotyping in the context of resistance breeding. Chapter 2, the second background
chapter, contains a review of the literature which was written to explore the utility of
various sensors to measure the signs and symptoms of plant-pathogen interactions,
expanding on those specific to AB discussed in Chapter 1. This review was published
in Plant Methods and is included in the same format.

Chapter 3 is the first experimental chapter and describes the development and
application of RGB- and multispectral sensor-based phenotyping methods for three
years of disease screens of chickpea and wild relatives in outdoor screens of pots.
This chapter was submitted for publication and is included in manuscript form. The
second experimental chapter (4) focuses on hyperspectral sensors and the search
for reflectance features that can quantify the disease severity greenhouse, described
in unpublished manuscript form. Sensor-based field phenotyping in the field was
performed using a ground-based platform and is discussed in the last experimental
chapter (5) in unpublished manuscript form.

A discussion of methods across scales and sensors and a conclusion with recom-
mendations for the deployment of sensor-based phenotyping methods in AB resistance
breeding programs and future research are presented in the last chapter (6).

1.2 Background

1.2.1 The role of chickpea for global food security

Chickpea (Cicer arietinum, NCBI:txid3827) is a predominantly self-pollinating diploid
legume grown primarily for human consumption. In the period between 2010 and
2020, chickpea was the second most produced pulse after common bean (Phaseolus
vulgaris, NCBI:txid3885) with an average annual global production of 13.1 Mt (FAO-
STAT). As a pulse, it contributes to global food security due to its valuable nutritional
profile with a protein content of 16-24 % and a high content of essential amino acids
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FIGURE 1.1: Average yearly global dry grain yield (points and trend
line) and average yearly gains (text boxes) in chickpea compared to total
cereals and total pulses. Cereals include 17 primary cereals harvested
only for dry grain (Wheat, Maize (corn), Rice, Sorghum, Barley, Rye,
Oats, Millet, Triticale, Buckwheat, Fonio, Quinoa, Canary seed, Teff,
Mixed grain, Cereals nec.). Pulses include 11 primary pulses harvested
solely for dry grain, not oil extraction (Phaseolus spp. (beans), Vicia faba
(broad beans), Lens esculenta (lentils), Cicer arietinum (chick peas), Pisum
spp. (peas), Cajanus spp. (pigeon peas), Vigna sinensis (cow peas), Vicia
sativa (vetch), Lupinus spp. (lupins), Vigna spp. (black gram, green gram,

mung, etc.), Pulses nec.) (FAOSTAT).

and micronutrients (Varshney et al., 2019; GRDC, 2017; Rawal and Navarro, 2019).
In addition, its nitrogen-fixing capability can reduce the environmental impacts of
synthetic nitrogen fertilizers. These detrimental impacts include the large primary
energy consumption of fertilizer synthesis, the loss of biodiversity caused by eutrophi-
cation through runoff, and the emission of nitrous oxide, a powerful greenhouse gas
linked to both fertilizer synthesis and eutrophication (Foyer et al., 2016). Despite these
potential benefits of pulse cultivation, the realized yields of chickpea and other pulses
have not risen at the same rate as those of cereals since the 1960s (Figure 1.1) (Rawal
and Navarro, 2019; FAOSTAT; Foyer et al., 2016).

A large gap between potential and realized yields is caused by biotic and abiotic
stresses in chickpea cultivation. The main abiotic stresses are drought and heat, and
the main biotic stresses include pests and diseases such as Helicoverpa punctigera
(NCBI:txid27545), Ascochyta blight (AB), Fusarium wilt, and competition from weeds
(Rawal and Navarro, 2019). Furthermore, a historic neglect of research focused on
the agronomy and breeding of pulse crops in general, and the low genetic variation
in chickpea cultivars in particular have limited the potential yield of the crop (Von
Wettberg et al., 2018; Foyer et al., 2016). Therefore, the FAO called for a “[. . . ] major
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FIGURE 1.2: Ascochyta blight disease cycle. The teleomorph form
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visualization: Ascus after (Trapero-Casas, 1992), Pseudothecium after
(Ixitixl, 2012), Pycnidium after (Piepenbring, 2015), Chickpea leaves

after (Pulse Australia, 2015), Debris after (Slpfeifer, 2013).

thrust in agricultural research and extension, improving credit availability [to facilitate
the adoption of improved varieties and modern agronomic practices], and public
investment.” (Rawal and Navarro, 2019). Plant breeding is one of the pathways to
contribute to raising both yield stability and yield potential in pulses (Foyer et al.,
2016; Jha et al., 2022b).

1.2.2 Ascochyta blight of chickpea

AB is one of the main biotic stresses that affect chickpeas and is caused by the
necrotrophic fungus Ascochyta rabiei (NCBI: txid5454), leading to yield losses in all ma-
jor growing regions (Pande et al., 2005). Integrated AB disease management includes
cultural management through tilling, crop rotation, hygiene, delayed sowing, lower
seed rates, increased potassium fertilization under high nitrogen conditions, resistant
varieties, and chemical control (Pande et al., 2005).

Host-pathogen interactions Infection of chickpea by A. rabiei in its anamorph form
can take place at all stages of growth, from seedling stage to generative stage (Figure
1.2) (Pande et al., 2005). Germination of conidia or ascospores occurs 12-48 hours after
infection in a temperature range of 5-30 °C with an optimum at 20 °C. Leaf wetness is
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essential for a successful infection, optimally for 17 h after infection or longer, which
means that the severity and spread of AB depend heavily on environmental conditions
(Pande et al., 2005; Sharma and Ghosh, 2016). Conidia germinate and penetrate the
host on all aerial parts through stomata, hydathodes, cell junctions, or directly through
the cuticle (Ilarslan and Dolar, 2002; Armstrong-Cho et al., 2015). The germination
tubes produce a mucilaginous substance that attaches to the surface of the plant and
the fungus produces cell-wall lytic compounds and phytotoxins that aid penetration
and cause necrosis (Jayakumar et al., 2005; Pande et al., 2005).

During the asexual stage, the fungus forms pycnidia from which conidia are
emitted. These spores can cause secondary infections on other plant parts when
transmitted by air or water splash (Pande et al., 2005; Sharma and Ghosh, 2016). At
seven DAI, necrosis becomes evident and the fungus colonizes the vascular system
to spread to the petioles and further throughout the plant (Pande et al., 2005). The
necrosis, if severe, can lead to stem breakage which drives yield loss. A. rabiei can stay
infectious in chickpea debris for eight months, 20 months on stems, and five months
on seeds (Pande et al., 2005). However, seed infection can occur for at least 13 years
if the seeds are stored at 4 °C (Kaiser, 1997). These estimates of the survival time
of the anamorph come from research in tillage farming systems and it is suspected
that common Australian no-till farming systems may allow the fungus to survive on
standing stubble for longer periods, as has been observed for Leptosphaeria maculans in
standing canola stubble (McCredden et al., 2018). Dispersal of the spores can occur
by seed, by air, and machinery. By these means, virulent isolates are quickly spread
throughout growing regions (Mehmood et al., 2017). In contrast, an incompatible
host-pathogen can be mediated by two mechanisms, microbe-associated molecular
patterns (MAMP) triggered immunity (MTI) and effector-triggered immunity (ETI)
(Jha et al., 2022b). Both mechanisms can confer levels of resistance to chickpea.

Pathotypes and mating types Two mating types of the fungus (MAT1-1 and MAT1-
2) are required for the fungus to sexually reproduce and enter the teleomorph stage
(Didymella rabiei) (Figure 1.2) (Jayakumar et al., 2005). The teleomorph can survive
on plant residue and produce ascospores that, in turn, can infect live plants (Pande
et al., 2005). The fungal isolates are classified into pathotypes based on their ability to
cause severe AB on a differential set of host genotypes. Depending on the country, the
resolution of this classification is between three to ten groups (Jha et al., 2022b).

1.2.3 Australian context of chickpea cultivation and AB

Chickpea cultivation in Australia In Australia, chickpea is grown due to its price
potential and as part of a sustainable crop rotation to maintain soil fertility and struc-
ture, and to control cereal root diseases that are caused by sustained cereal cultivation
(GRDC, 2017). In the period 2010 - 2020, Australia was the second largest chickpea
producer (average annual production of 0.79 Mt) after India (8.90 Mt) (FAOSTAT). Of
this production, less than 2 % were estimated to be used domestically, the rest being
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exported (ABARES, 2022). Chickpea varieties consist of two types: desi and kabuli
(Figure 1.3). Desi types are characterized by small angular dark seeds, pink flowers,
thick seed coat, more protein, and less available carbohydrates compared to kabuli.
Kabuli types have larger round seeds with a lighter-colored, thinner seed coating
compared to desi and white flowers (Vega, 2011). In Australia, 90-95% of chickpeas
grown are the desi type and most chickpeas are grown in the northern growing re-
gion (New South Wales and Queensland). However, most of the Australian kabuli
production takes place in the southern growing region (Victoria and South Australia)
(GRDC, 2017). The main variable costs in chickpea cultivation in Australia are plant
protection chemicals and seed inoculants (43% of variable costs) (Rawal and Navarro,
2019). Furthermore, seed costs are a major variable cost because relatively high seed
rates and good seed quality are required for a high germination rate and early vigor
(GRDC, 2017; Rawal and Navarro, 2019). The demand for Australian pulses, including
chickpeas, is projected to increase, mainly from the Indian subcontinent (Collis, 2019).
As with other crops, chickpea trade is subject to varying yields across production
zones and trade restrictions, for example, a tariff introduced by India in 2017 led to
lower production in 2018-2019 (ABC, 2017; Goddard, 2022).

Ascochyta blight in Australia All Australian isolates of A. rabiei that have been
tested for mating type have consisted of only one type (MAT1-2), which limits the
fungus to clonal reproduction (Bar et al., 2021). Without sexual reproduction, the
genetic diversity of the pathogen population in Australia is lower compared to other
global populations (Bar et al., 2021). Despite this limitation, pathogen adaption
has been observed, aggressive haplotypes have developed through opportunistic
mutations, and previously effective host resistance in some cultivars is no longer
effective (Mehmood et al., 2017; Bar et al., 2021). Routine screens of A. rabiei of current
isolates collected annually from growing regions across Australia are performed in
controlled environments (Bar et al., 2021). Between 2013 and 2020, 95-200 isolates were
screened each year on a set of control genotypes. The percentages of isolates capable
of causing severe disease increased from 6.7 % to 36.3 % for cultivar (cv.) Genesis090,
from 17.9 % to 51.0 % for cv. PBA HatTrick, from 0 % to 48.3 % for cv. PBA Seamer,
and from 0 % to 10.4 % on breeding line ICC3996, a source of resistance for many
cultivars (Bar, 2022). Based on the severity of the disease in the genotypes ICC3996,
Genesis090, PBA HatTrick and Kyabra, the isolates are grouped into six pathotypes
(pathogenicity group 0 = low, to pathogenicity group 5 = high) in Australia (Bar et al.,
2021). An introduction of the second mating type into Australia, which is regarded as
only a matter of time by some experts, would likely increase the speed of pathogen
adaptation to the host (Ford et al., 2022).

Disease management in Australia Due to the lack of resistant cultivars, other dis-
ease management options are required. Traditional management methods include
delayed sowing, tilling, and lower seed rates. However, they are rarely used as AB
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management measures in Australia, as they can limit yield, especially under drought
conditions (Davidson, personal communication). Other management options recom-
mended by the Grains Research and Development Corporation (GRDC) include seed
treatment with thiram-based fungicides to prevent the spread of the fungus from seed
to seedling, a break of at least three years between repeat cropping of chickpea in
the same paddock, and a distance of 500 m to neighboring fields where chickpeas
were previously planted, which requires the collaboration between farmers (GRDC,
2017). In addition, protective fungicides are used as a control measure. These fungi-
cides protect plants from secondary spread of the disease through rain splash and
prevent germination of conidia on wet leaves. The required frequency of fungicide
applications depends on the degree of susceptibility of the cultivar and the risk of
secondary spread (GRDC, 2017; GRDC, 2020). Current practice in the northern grow-
ing region is to spray protective fungicides before rain events after the detection of
the first symptoms in the field (Brand, 2019; Fanning, 2022). Due to the generally
higher rainfall in the southern growing region, prophylactic sprays 8-10 weeks after
sowing followed by sprays at early flowering and during podding are recommended
for that region (Davidson, personal communication). A single application of these
foliar fungicides costs approximately AU$35 per hectare for chlorothalonil to AU$55
per hectare for fludioxonil + pydiflumetofen (Miravis Star, Syngenta, Australia) (Pulse
Australia, 2015; Pulse Australia, 2019; CropLife Australia, 2017; PIRSA, 2019; Fanning,
2022).

Resistant varieties could reduce the dependence on fungicide application and the
yield-limiting influence of management options such as late sowing and low seed
rates. Therefore, breeding for resistance to AB is an important goal for the Australian
chickpea industry (GRDC, 2017; Li et al., 2017).

1.2.4 Breeding chickpea for AB resistance

Definitions of plant disease resistance vary depending on the context. A strict defini-
tion from the field of plant pathology is: “Resistance reduces pathogen populations
while tolerance reduces fitness loss of the host without altering pathogen develop-
ment.” (Fradin and Thomma, 2006). In an agronomic context, the distinction between
tolerance and resistance is often lost and plant resistance is defined based on the
amount of "economic management" needed to produce an optimum yield beyond
what is provided by genetic resistance (Table 1.1) (GRDC, 2019).

The process towards AB resistant cultivars

Breeding for plant resistance requires three steps (Niks et al., 2019):

1. Identification or creation of a source of resistance

2. Evaluation of the resistance

3. Introgression of the resistance into commercial cultivars
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TABLE 1.1: GRDC AB resistance rating scale. Resistance is rated based
on amount of required economic disease management.

Rating Management Option Description

9: Resistant Disease may be found but will be at such a level that no
economic management is required, even in instances of high
disease pressure.

8: Resistant – Moderately
Resistant

—

7: Moderately Resistant Disease may be observed but no economic management deci-
sions will be required. Preventative sprays not necessary but
disease should be monitored. Management of seed quality
may be required.

6: Moderately Resistant –
Moderately Susceptible

—

5: Moderately Susceptible In the presence of inoculum and in seasons conducive to dis-
ease, the disease will be seen more readily when inspecting
the crop. If the disease appears early in the season then an
economic management decision (preventative spray) may be
appropriate. Later occurrence of the disease may not require
any action. Management of seed quality will be required.

4: Moderately Susceptible
– Susceptible

—

3: Susceptible The disease will be easily found in the crop. Management
decisions will be required to reduce yield loss and will most
probably be economic to do so. Management of seed quality
will be required.

2: Susceptible – Very Sus-
ceptible

—

1: Very Susceptible Do not grow this variety if the disease in question is a regular
occurrence or risk. The variety in question can be a complete
loss if sown and no disease management is applied.
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Sources of resistance In addition to mutagenesis and genetic modification, sources
of resistance can come from elite lines of other breeding programs, landraces, or wild
relatives. Due to bottleneck events in chickpea domestication, the available genetic
variation within the cultivar pool is low (Von Wettberg et al., 2018; Varshney et al.,
2019; Varshney et al., 2021), and therefore, cultivars or breeding lines are not promising
sources of resistance.

However, wild relatives can provide a useful source of variation for multiple
agronomic traits, including AB resistance (Von Wettberg et al., 2018). The genus Cicer
consists of the cultivated chickpea C. arietinum, 34 perennial species, and eight wild
annual relatives, which are endemic to an area from Turkey to central Asia and areas of
Sudan, Egypt, and Ethiopia (Figures 1.3, 4.3) (Upadhyaya et al., 2011). Worldwide, 28
major genebanks hold a collection of more than 1,300 wild accessions alongside more
than 90,000 cultivated accessions (Upadhyaya et al., 2011). Within the annual wild
relatives, genetic variability for resistance to AB has been reported in Cicer bijugum
(NCBI:txid90899), C. judaicum (NCBI:txid92719), C. pinnatifidum (NCBI:txid47088), C.
reticulatum (NCBI:txid90898), and C. echinospermum (NCBI:txid90897) (Newman et al.,
2021; Collard et al., 2001; Singh et al., 2015; Singh and Reddy, 1993; Manjunatha et al.,
2018). The two closest relatives that can be hybridized directly with chickpea are C.
echinospermum and C. reticulatum (Vega, 2011). A recent collection mission in Turkey
largely expanded the pool of available lines of these two species (Von Wettberg et al.,
2018) and variation for resistance to AB was found within the collection (Newman
et al., 2021).

Evaluation of resistance Signs and symptoms can be measured to predict the quan-
titative and qualitative effect of the disease on yield (Mahlein, 2016). Signs are an
indication of disease by the pathogen and symptoms are the response of the plant to
the pathogen (D’Arcy, 2001). Traditionally, visual scoring is used for such an evalua-
tion and detailed guidelines and formalized scoring guides have been published to
increase the reliability and accuracy of scoring. For AB resistance breeding in chickpea,
a commonly used rating scale evaluates the extent of lesions and stem girdling (Singh,
1981). Multiple adaptations of such rating scales exist both for controlled environment
and field experiments. Some of the scales include the percentage of surface area
or percentage of individual plants within a group affected by disease symptoms to
quantitatively assess symptoms (Kimber, 2003; Chongo et al., 2004; Shtienberg et al.,
2006; Armstrong-Cho et al., 2015). Although visual scoring with detailed guidelines
by trained and experienced scorers can reliably quantify disease symptoms, it has limi-
tations. First, it depends on human labor and is therefore prone to error and limited in
throughput (Bock et al., 2020). Second, the human eye can only spot symptoms when
they appear within the visible spectrum (Mahlein, 2016). Third, a traditional ordinal
breeding rating scale confines the scoring of symptoms to a semiquantitative level.



1.2. Background 9

FIGURE 1.3: Side view images of Cicer plants und top view images of
corresponding seeds. a = Cicer arietinum, kabuli type; b = Cicer arietinum,

desi type; c = Cicer reticulatum

Another factor to consider in breeding for AB resistance of chickpea is the depen-
dency of resistance on the development stage of the plant. Varieties that do not show
symptoms at seedling stage may well be susceptible to infection during the generative
phase, which can lead to pod abortion (Elliott, Taylor, and Ford, 2013). Therefore, it
is important to define the type of resistance and to acknowledge the limitations of
specific screening methods. Seedling resistance can be tested in week-old seedlings
in a controlled environment, while adult plant resistance screens require a complete
growth cycle and are preferably performed in the field (Reddy, 1984; Garg et al., 2018).

Introgression After the identification and evaluation of a source of resistance, it
can be used as a donor genotype to develop resistant cultivars, a process that can be
supported by various genomics techniques as reviewed by Jha et al., 2022b. After
introgression, further evaluation of the resistance is required to test whether it is
effective in the genetic background of high-yielding cultivars.
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1.2.5 Phenotyping for disease resistance breeding

The output from research using sensor-based phenotyping has grown exponentially in
the past decade (Saint Cast et al., 2022). In the context of disease resistance breeding,
phenotyping is required to find sources of resistance and evaluate resistance. A more
detailed introduction of the concept of sensor-based phenotyping with a focus on
the sensor technology can be found in Section 2.2. Briefly, the use of sensors for
phenotyping offers a range of advantages over visual evaluation: objectivity, precision,
spectral range, and imaging modalities, and the potential to increase throughput by
automation (Simko, Jimenez-Berni, and Sirault, 2017). In this way, sensor-based plant
phenotyping can increase the rate of genetic gain by addressing the components of the
breeder’s formula (1.1) (Araus et al., 2018; Rebetzke et al., 2019).

Rt =
irσA

y
(1.1)

where Rt is genetic gain over time, i is selection intensity, r is selection accuracy,
σA is genetic variance, and y is time per cycle. i and σA can be increased when a larger
number of genotypes can be screened with higher throughput. r can be increased
with precise measurements and y can potentially be reduced by early measurements
of signs and symptoms enabled by various imaging modalities (Araus et al., 2018;
Rebetzke et al., 2019).

Systems for sensor-based phenotyping not only require appropriate sensors, but
also rely on a network of supporting expertise and technology to proceed from mea-
surement to knowledge and decision support (Figure 1.4) (Fiorani and Schurr, 2013;
Mutka and Bart, 2015).

Data acquisition: Environment, sensor, vector The expression of disease depends
on the plant-pathosystem and environment, this informs the choice of sensor (Chapter
2). The environment where the screens are performed is dictated by the application,
for example, field disease screens or controlled environment screens. The environment,
in turn, influences which sensors and vectors can sensibly be used. Vectors are devices
that either bring the sensor to the plant or the plant to the sensor. These can be ground-
based phenotyping platforms, aerial platforms, satellites, conveyor belt-based systems,
or simple hand-held solutions (Bagley et al., 2020) (Figure 1.4).

Data analysis The goal of sensor data analysis is to retrieve a target trait that is
valuable for the selection process, such as resistance components or the severity of
the disease (Eeuwijk et al., 2019). This can be achieved through two loosely grouped
approaches, deterministic or empirical (Weiss, Jacob, and Duveiller, 2020). Usually,
a minimum of preprocessing and calibration is applied to raw sensor data for either
approach. Beyond that minimum processing, the deterministic approach focuses
on a mechanistic understanding of the plant-pathogen interaction and aims to infer
candidate traits from the radiative process (Weiss, Jacob, and Duveiller, 2020). The
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advantage of this approach is that such defined resistance components may be transfer-
able from controlled environment to the field (Simko, Jimenez-Berni, and Sirault, 2017;
Eeuwijk et al., 2019; Rebetzke et al., 2019). In an empirical approach, the emphasis
is not on understanding the mechanism of disease progression, but the target trait
is predicted directly from sensor data (Baker et al., 2018; Weiss, Jacob, and Duveiller,
2020). This approach can be supported by emerging machine learning algorithms
that work with high-dimensional data (Sperschneider, 2019). The deterministic and
empirical approaches to the analysis are not exclusive. An iteration of empirical and
mechanistic models can be used to break down complicated phenomena such as
disease progression into smaller mechanistic explanations (Baker et al., 2018). After
either way of feature extraction, further hierarchical modeling steps can be applied
to merge data from multiple environments and multiple time points (Eeuwijk et al.,
2019; Tardieu et al., 2017). These steps are correction for spatial and design effects,
longitudinal modeling, and modeling environmental effects (Eeuwijk et al., 2019).

Throughout the entire process from data acquisition to analysis, appropriate data
and metadata management are important to meet the FAIR (Findable, Accessible,
Interoperable, Reusable) data standards (Figure 1.4) (Papoutsoglou et al., 2020).

Plant - 
pathosystem
Signs and 
symptoms

Sensor
Knowledge 

and 
decisions

Data

Mega-environment
Field
Plots
Greenhouse
Growthroom
Lab

Satellite
(Crewed) aircraft
Ground-based
Stationary/Mobile
Conveyor belt
Hand-held

Calibration
Sensor fusion
Low-level traits

Intermediate traits 
Inference / Prediction
Connection to other -omics
Epidemiological modeling 

Environment
Vector

Processing Modelling

Trans-scale
Spatial variability
Temporal variability

Meta analysis

FAIR dataData handling

FIGURE 1.4: Phenotyping as a network of sensor, vector, environment,
and data analysis. To draw knowledge from sensor data, complimen-
tary network components are required. The choice of components is
determined by a) the plant- pathosystem and its signs and symptoms
and b) the compatibilty of the components. At each step, appropriate

data and metadata handling are necessary.
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Sensor-based phenotyping to support disease scoring in breeding programs

Sensor-based phenotyping has been widely used to directly predict visual disease
severity scores to support plant resistance breeding programs. For example, using
a MicaSense RedEdge multispectral camera mounted on an uncrewed aerial vehicle
(UAV) in the field, disease scores of Verticillium wilt of strawberry were predicted with
Normalized Difference Vegetation Index (NDVI) (Cockerton et al., 2019). The authors
realized a 15-fold increase in scoring speed while maintaining a strong correlation
between visual scores and automated scores.

Red, green, blue (RGB) images from handheld cameras were used to predict the
severity of Septoria tritici blotch (STB) of wheat in field plots. The percentage of
affected area was extracted by manual hue, saturation, value (HSV) thresholding. This
trait showed a positive linear correlation with visual scores of the area on a 1-9 scale
(Walter et al., 2019). Instead of extracting traits, convolutional neural networks were
applied directly to RGB images of individual leaves to classify diseases and estimate
the severity of the disease in soybean and coffee on ordinal scales (Ghosal et al., 2018;
Esgario, Krohling, and Ventura, 2020). For soybeans, eight different stresses could be
distinguished with 94 % accuracy and the severity estimates were based on area of
explanation in an unsupervised manner (Ghosal et al., 2018). In coffee, four diseases
and healthy leaves could be identified with 95 % accuracy and the disease severity
class (healthy, very low, low, high, very high) could be predicted with 87 % accuracy.

Sensor-based measurements of signs and symptoms

Chapter 2 contains a review of sensor technology suitable for measuring specific signs
and symptoms, Section 4.3.2 contains a discussion of spectroscopy for measuring plant-
pathogen interactions, and Section 5.3 focusses on the deployment of the technology to
the field. Specific measurements of signs and symptoms have not been performed for
AB of chickpea to date with non-invasive sensors. The following paragraph contains a
discussion of potentially fitting sensor technology to measure the signs and symptoms
of this particular pathosystem.

Phenotyping A. rabiei × Chickpea interactions Interactions between A. rabiei and
chickpea are influenced by constitutive and induced mechanisms of host plant resis-
tance (Pande et al., 2005; Jha et al., 2022a). Although these traits have been largely
discovered using invasive measurements, some of them may also be measured or
estimated by their spectral properties using non-invasive sensors (Chapter 2). Mecha-
nisms that might be quantified using non-invasive sensor technology are detailed in
Table 1.2 and include structural adaptations, constitutive and accumulated phenolic
compounds, phytoalexins, reactive oxygen species signaling, hypersensitive response,
and organic acid contents (Weigand et al., 1986; Höhl, Pfautsch, and Barz, 1990; Daniel
and Barz, 1990; Ilarslan and Dolar, 2002; Jayakumar et al., 2005; Pande et al., 2005;
Ahuja, Kissen, and Bones, 2012; Armstrong-Cho et al., 2015; Çaǧirgan et al., 2011).
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TABLE 1.2: Chickpea responses to A. rabiei infection. Potential options to measure or estimate the responses using sensor-based
non-invasive methods are suggested. All measurements in the referenced studies except visual scoring were performed invasively.

Trait Measurement Reference Potential non-invasive
measurement

Phytoalexins (Medicarpin,
Mackiain) accumulation

HPLC Weigand et al., 1986; Daniel
and Barz, 1990

Spectral imaging

Browning 2DAI,
Hypersensitive response
(HR)

Light microscopy Höhl, Pfautsch, and Barz,
1990

Spectral imaging

Autofluorescence of palisade
parenchyma preceding HR

Fluorescence microscopy Höhl, Pfautsch, and Barz,
1990

Fluorescence imaging

Structural organization of
xylem tissues

Light and fluorescence
microscopy

Angelini et al., 1993 Tomography, Raman
spectroscopy

Polyamine metabolism and
peroxidase

Spectrofluometry,
Spectrophotometry

Angelini et al., 1993 Spectral imaging

Lesions, girdling, stem
breakage

Visual scoring Pande et al., 2005 RGB imaging, Lidar

Malic acid content HPLC Çaǧirgan et al., 2011 Spectral imaging
Upregulation of peroxidase
activity

Spectrophotometry Kaur, Singh, and Gupta, 2012 Spectral imaging
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1.3 Research aims

Current disease screening protocols for AB of chickpea are limited in precision, sensi-
tivity, objectivity, and throughput. The feasibility of predicting visible scores of plant
disease severity using both RGB and hyperspectral imaging has been shown for vari-
ous diseases on different crops, including for AB of chickpea on two cultivars under
various fungicide treatments (Zhang, Chen, and Sankaran, 2019). However, this has
not been applied in high-throughput testing of genetic resources for breeding chick-
pea for AB resistance. Furthermore, no screens for resistance component traits that
can address the phenotypic plasticity of plant disease due to genotype-environment
interactions of host and pathogen have been developed. This left two main aims for
this project:

1. Development of sensor-based phenotyping methods to score disease severity in
a chickpea breeding program

2. Identification of within-scale and cross-scale functional resistance components
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REVIEW

Sensor-based phenotyping of above-ground 
plant-pathogen interactions
Florian Tanner1*† , Sebastian Tonn2†, Jos de Wit3, Guido Van den Ackerveken2, Bettina Berger1 and 
Darren Plett1 

Abstract 

Plant pathogens cause yield losses in crops worldwide. Breeding for improved disease resistance and management by 
precision agriculture are two approaches to limit such yield losses. Both rely on detecting and quantifying signs and 
symptoms of plant disease. To achieve this, the field of plant phenotyping makes use of non-invasive sensor technol-
ogy. Compared to invasive methods, this can offer improved throughput and allow for repeated measurements on liv-
ing plants. Abiotic stress responses and yield components have been successfully measured with phenotyping tech-
nologies, whereas phenotyping methods for biotic stresses are less developed, despite the relevance of plant disease 
in crop production. The interactions between plants and pathogens can lead to a variety of signs (when the pathogen 
itself can be detected) and diverse symptoms (detectable responses of the plant). Here, we review the strengths and 
weaknesses of a broad range of sensor technologies that are being used for sensing of signs and symptoms on plant 
shoots, including monochrome, RGB, hyperspectral, fluorescence, chlorophyll fluorescence and thermal sensors, as 
well as Raman spectroscopy, X-ray computed tomography, and optical coherence tomography. We argue that choos-
ing and combining appropriate sensors for each plant-pathosystem and measuring with sufficient spatial resolution 
can enable specific and accurate measurements of above-ground signs and symptoms of plant disease.

Keywords: Plant disease, Phenotyping, Imaging sensors, Plant-pathogen interactions, Biotic stress, Signs and 
symptoms
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Background
Worldwide yield losses in major crops due to pathogens 
and pests are estimated to be 17–30% [1]. In this review, 
we will focus on plant pathogens, i.e., organisms or biotic 
agents that can cause disease [2] and not on pests such as 
insects and nematodes. Plant pathogens belong to various 
taxa including viroids, viruses, phytoplasmas, bacteria, 
oomycetes and fungi [3]. When a pathogen interacts with 
a plant, structural, physical, and biochemical changes can 
occur in both the plant and the pathogen. Depending 
on plant genotype, pathogen strain, and environmental 

conditions, the outcome of plant-pathogen interactions 
(PPI) may be disease, a physiological disturbance of the 
plant [3–5].

Disease resistance breeding and precision agriculture 
are key strategies to reduce yield losses due to plant dis-
ease in a sustainable way. Both rely on detection, iden-
tification and quantification of plant disease on various 
scales. In disease resistance breeding and pre-breeding, 
PPI are examined at the cell, tissue, whole plant and 
field plot level. Zooming in to the cell or tissue level can 
uncover the distinct mechanisms that determine plant 
resistance or susceptibility, and precise quantification 
of disease or resistance levels in whole plants or field 
plots aids the selection of the best genotypes. In preci-
sion agriculture, early and precise disease detection in 
the field enables efficient crop protection, e.g. by targeted 
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pesticide application or eradication of diseased plants. 
The challenge to detect and quantify plant disease in an 
unbiased and precise way initiated the field of plant dis-
ease phenotyping [6–8].

In general, “plant phenotyping” describes the study 
of the manifestation of a genotype under specific envi-
ronmental conditions [9]. In the context of PPI the phe-
notype consists of changes that can be described as 
contrasting indications of disease: signs and symptoms. 
Whereas these terms were originally used for changes 
that are visible to the human eye, here we will use them 
also for changes that can be detected by non-invasive 
sensors.

Following the American Phytopathological Society 
(APS) Illustrated Glossary of Plant Pathology, a “symp-
tom” is an indication of disease by reaction of the host 
[2]. These plant reactions include changes to pigmenta-
tion (e.g. necrosis, chlorosis), primary and secondary 
metabolism, and thermal energy dissipation (Fig.  1). A 
“sign” is an indication of disease from direct observation 
of a pathogen or its parts (e.g. sporulation, formation of 
fruiting bodies, mycelium, bacterial ooze) [2].

While the signs and symptoms are specific for each 
plant-pathosystem and influenced by environmental 
conditions, we classify them by their shared characteris-
tics for this review. In practice, signs and symptoms most 
often do not appear in isolation but occur simultaneously. 
For example, chlorosis, necrosis, and sporulation may 
successively co-occur in the same area of an infected leaf.

Phenotyping of PPI can be addressed with invasive 
methods. For example, colonization of a plant leaf by a 
pathogen can be detected, classified and quantified by 
quantitative polymerase chain reaction (qPCR) or for 
bacterial pathogens by measuring colony-forming units 
in a homogenate. Such invasive methods can be precise 
and objective. However, they are necessarily destructive 

and limited in speed and scalability, limitations that can 
be overcome by non-invasive sensors.

Non-invasive sensing offers the possibility of time-
course measurements, higher throughput and lower costs 
[8, 10, 11]. The classic approach for non-invasive pheno-
typing is visual inspection by humans. This can yield pre-
cise and accurate estimates if raters are well trained and 
appropriate scales are used. However, visual estimates are 
prone to subjectivity, offer limited speed and scalability, 
are often qualitative rather than truly quantitative, and 
are innately limited to the visible spectrum of light [12]. 
Sensor-based non-invasive phenotyping has the potential 
to increase throughput and precision, and can detect dis-
ease signs and symptoms that are invisible to the human 
eye [7]. Essentially, non-invasive sensors capture the 
changes in interactions between electromagnetic radia-
tion and matter (Fig. 2).

The most established sensors for non-invasively meas-
uring PPI are red–green–blue (RGB), hyperspectral, 
thermal, and fluorescence sensors (Table  1). Less often, 
monochrome sensors, Raman spectroscopy, and tomo-
graphic sensors have been used [6, 13–16].

By focusing here on the biological aspects of disease 
phenotyping, namely the signs and symptoms, we high-
light the sensor-based technologies that are most suit-
able for specific plant-pathosystems. We group the signs 
and symptoms into five generalised categories (Fig.  1 
and Table  2) to illustrate the common biological pro-
cesses that underlie sensor-detected signals, to highlight 
similarities between different plant-pathosystems and to 

Primary 
metabolism

Chlorosis &
Necrosis

Secondary
metabolism

Pathogen
signs

Thermal energy dissipation 

Fig. 1 Signs and symptoms of plant-pathogen interactions. Depicted 
skeletal formulas are glucose, representing primary metabolism, and 
cinnamic acid, representing secondary metabolism

Active

Passive

Sensor

Sensor

Transmission

Absorption

Radiation

Emission:
Fluorescence

ThermalScattering

Reflectance

Fig. 2 Physical paths of electromagnetic radiation in biological 
samples and their detection using non-invasive sensors. Passive 
(ambient light) or active radiation can be used to illuminate or 
excite the sample. Radiation can be reflected, transmitted, scattered, 
absorbed and re-emitted by the sample to varying degrees. 
The characteristic radiation can then be measured with sensors 
positioned on the side of the  source of illumination or on the 
opposite side of the sample
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thereby point out possibilities to transfer and adapt phe-
notyping solutions (Table 3).

Signs, symptoms and sensors
Pathogen signs
After successful infection, plant pathogens propagate 
on or inside their host plant, either by rapid replication 
(e.g. bacteria, viruses) or mycelial growth (fungi, oomy-
cetes) [4]. Quantifying the pathogen, based on signs like 
spores or mycelium, is a direct measure of plant resist-
ance, defined in a strict sense as the ability of the host to 
restrict pathogen growth [19]. When a pathogen grows 
on the surface of the plant, sensors that directly capture 
the optical changes caused by its physical presence can 
be used for non-invasive measurement (Table 3).

Powdery mildews are surface-colonizing pathogens 
representing a variety of obligate biotrophic fungi that 
can cause disease on various host plants. Growing on 
the surface, these fungi only penetrate epidermal cells 
and use haustoria to acquire nutrients. RGB imag-
ing was successfully applied to quantify pathogen signs 
both for grapevine powdery mildew (Erysiphe neca-
tor) and cereal powdery mildew infection (Blumeria 
graminis spp.) [20, 21]. In both studies, mycelial growth 
on detached leaf pieces was imaged in automated pheno-
typing systems. For grapevine powdery mildew, this sys-
tem included a movable stage and a DSLR camera [20]. 
For cereal powdery mildew, a monochrome charge-cou-
pled device (CCD) camera was combined with narrow-
bandwidth illumination and a robotic arm system. The 

best correlation to visual estimates of infected area was 
achieved with a simple segmentation algorithm that uses 
the minimum of the three RGB values [21]. While the 
throughput of imaging can be easily increased compared 
to visual scoring for both cereal powdery mildew and 
grapevine powdery mildew, the preparation of leaf sam-
ples remains a bottleneck for these plant-pathosystems.

Unlike powdery mildews, many other filamentous 
pathogens like fungi and oomycetes form signs on the 
surface of the host only at the end of the disease cycle, 
in the form of spore bearing structures. Sporulation of 
Cercospora beticola, a polycyclic necrotrophic ascomy-
cete fungus, occurs on the leaves of infected sugar beet 
in the area of the necrotic lesions. Hyperspectral micros-
copy was used to show that sporulation is correlated to 
an overall decrease in reflectance in the area of lesions 
in the spectral range of 400–900 nm [22]. However, the 
advantage of hyperspectral images over RGB images in 
this study is unclear since the proposed trait is the dif-
ference of the integral of reflectance over the entire 
spectral range of the camera. It would be interesting to 
know whether the difference in reflectivity over a nar-
rower wavelength range (e.g. one of the RGB channels) 
could match or improve the quantification of fungal 
sporulation.

An RGB flatbed scanner was used to assess the inter-
action between a panel of 335 wheat cultivars and 
Mycosphaerella graminicola (Septoria tritici blotch) [23]. 
Leaves were collected from a field trial with natural infec-
tion and scanned. From the scans the density, size and 

Table 1 Summary of sensors that have been used for phenotyping PPI

Sensor, technology Imaging/non-
imaging

Active/passive Effect measured Excitation/
illumination 
wavelengths

Measured 
wavelengths

Monochrome Imaging Mainly active Reflectance Variable Variable

RGB Imaging Mainly active, passive 
at large scale

Reflectance Variable, usually visible 
spectrum

Range: ~ 400–700 nm
R: ~ 600 nm
G: ~ 530 nm
B: ~ 460 nm

Hyperspectral Both Mainly active, passive 
at large scale

Reflectance, transmis-
sion

Variable 400–2500 nm

Thermal Mainly imaging Passive Emission NA 8–15 µm

Chlorophyll fluores-
cence (kinetics)

Imaging/non-imaging Active Emission 400–700 nm ~ 650–800 nm

Fluorescence Imaging/non-imaging Active Emission Mostly 300–400 nm Mainly 400–700 nm

Raman spectroscopy Non-imaging Active Inelastic scattering of 
photons (Raman scat-
tering)

Variable, often 
785–830 nm [17]

Raman bands, 
400–2133  cm−1 [18]

Optical coherence 
tomography

Imaging Active Reflectance of coher-
ent light

800–1000 nm or 
1200–1400 nm

800–1000 nm or 
1200–1400 nm

X-ray computed 
tomography

Imaging Active Attenuation, phase 
shift

~ 0.01–0.1 nm Visible light using 
scintillator
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Table 2 Applications of sensor-based phenotyping of PPI

Sign/symptom Plant Pathogen Sensor / Vector Scale Reference

Pathogen signs Arabidopsis thaliana, Hordeum vulgare Fusarium graminearum expressing 
GFP

Zeiss Stemi-C dissecting microscope 
with a 470 nm excitation filter and 
535 nm emission filter

Whole plants (At), detached spikes 
(Hv)

[26]

Beta vulgaris L. Cercospora beticola Hyperspectral microscope (PFD V10E), 
motorized stage

Individual lesions [22]

Cereals Blumeria graminis Monochrome CCD sensor, 4 channels 
captured

‘Macrobot’, robotic arm [21]

Nicotiana benthamiana Phytophthora infestans expressing RFP Monochrome camera with filter 
wheel and excitation lights (Patho-
Screen imaging system, Phenovation, 
the Netherlands)

Detached leaves [28]

Nicotiana tabacum Tobacco mosaic virus expressing GFP RGB camera under UV illumination 
(Blak-Ray Model B 100AP)

Detached leaves [27]

Phaseolus vulgaris Pseudomonas syringae pv. phaseolicola 
expressing lux-eYFP operon

nightOWL LB 983 in vivo imaging 
system (Berthold Technologies, 
Germany), confocal laser scanning 
microscope Zeiss LSM 880

Detached leaves [34]

Triticum aestivum L. Fusarium graminearum X-ray CT, Biomedical Imaging and 
Therapy beamline (BMIT‐BM, 05B1‐1)

Spikelet [114]

Vitis spp. Erysiphe necator RGB (Nikon D850), automated motor-
ized stage

Individual leaf discs, automated 
imaging

[20]

Primary metabolism Arabidopsis thaliana Pseudomonas syrinae CF Imager (Technologica Ltd., UK), 
NPQ, fPSII, Fv/Fm

Individual plants [149]

Cucumis melo Podosphaera xanthii Open FluorCam 700 MF (Photon 
System Instruments), NPQ, fPSII

Individual leaves [54]

Hordeum vulgare Blumeria graminis f. sp. hordei Chlorophyll Fluorometer IMAGING-
PAM M-series (Walz, Germany)

Individual leaves [150]

Lactuca sativa Bremia lactucae Open FluorCam 700 MF (Photon 
System Instruments), Fv/Fm

Leaf discs [151]

Nicotiana benthamiana Pepper mild mottle virus FluorCam (Photon System Instru-
ments), NPQ, fPSII

Individual leaves [152]

Olea europaea Xylella fastidiosa Micro-hyperspectral imager (VNIR 
model, Headwall Photonics, USA), 400 
– 885 nm, from aircraft 500 m above 
ground

Orchards [48]

Oryza sativa Rhizoctonia solani Non-imaging NeoSpectra micro 
handheld spectrometer (SiWare Sys-
tems, Canada), 1348–2551 nm

Individual leaf spots (non-imaging) [61]

Solanum tuberosum Phytophthora infestans, Alternaria 
solani

Non-imaging field spectrometer SVC 
HR-1024i (350–2500 nm) (Spectra 
Vista Corporation, USA)

Individual leaf spots (non-imaging) [153]
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Table 2 (continued)

Sign/symptom Plant Pathogen Sensor / Vector Scale Reference

Secondary metabolism Beta vulgaris Cercospora beticola SWIR spectral camera, 970–2500 nm 
(HySpex SWIR-320 m-e line camera, 
Norsk Elektro Optikk A/S, Norway)

Detached leaves [154]

Citrus sinensis, Citrus paradisi Candidatus Liberibacter spp. Non-imaging handheld Raman 
spectrometer (Resolve spectrometer 
equipped with 831-nm laser source, 
Agilent, USA)

Detached leaves [86, 87, 90]

Hordeum vulgare Blumeria graminis f.sp. hordei UV line scanner, 250–500 nm (Head-
wall Photonics)

Detached leaves [81]

Nicotiana benthamiana Pepper mild mottle virus Excitation with xenon-lamp + BP 
340/75, imaging with CCD cam-
era + BP 440/20 and BP 520/20

Individual leaves [152]

Triticum aestivum Puccinia triticina, Blumeria graminis f. 
sp. tritici

Non-imaging fiber-optic fluorescence 
spectrometer (IOM GmbH, Germany) 
combined with 337 nm pulsed N2 
laser

Individual leaf spots (non-imaging) [73]

Vitis vinifera Plasmopara viticola Macroscope (AZ100 multizoom, 
Nikon), ex. BP 340/26 and em. LP 371

Leaf parts [69]

Necrosis and chlorosis Arabidopsis thaliana Pseudomonas syringae RGB (Nikon D5200 DSLR) Seedlings growing in well-plates [117]

Arabidopsis thaliana Sclerotinia sclerotiorum RGB (USB camera, full HD 1080p) 
controlled by Raspberry Pi 3 Model B 
motherboards

Detached leaves [115]

Beta vulgaris Cercospora beticola RGB (camera Baumer HXG-40), mul-
tispectral camera (6 bands of 10 nm 
between 450 and 850 nm, AIRPHEN)

Phenomobile 1, 50 distance to 
canopy top (RGB), hexacaopter 
(multispectral)

[119]

Triticum aestivum Mycosphaerella graminicola RGB (flatbed scanner) Detached leaves collected from field 
trial

[23]

Zea mays Setosphaeria turcica RGB Drone, 6 m above ground [118, 120]
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Table 2 (continued)

Sign/symptom Plant Pathogen Sensor / Vector Scale Reference

Thermal energy dissipation Cucumis sativus L. Fusarium oxysporum f. sp. cucumeri-
num

FLIR SC620 Individual leaves [123]

Ipomoea batatas L. Sweet potato feathery mottle virus 
(SPFMV), Sweet potato chlorotic stunt 
virus (SPCSV)

Top-view thermal camera (FLIR A615), 
PlantScreen conveyor system, NaPPI, 
Helsinki

Whole plant [132]

Nicotiana tabacum L. Tobacco mosaic virus (TMV) Infrared imager (Agema THV900LW), 
Cartesian positioning system in imag-
ing chamber

Leaves [131]

Olea europaea L. Verticillium dahliae Temperature sensor (Apogee IRR-P), 
Fixed 1 m above canopy

Single tree canopy [129]

Olea europaea L. Verticillium dahliae Broad-band thermal camera (FLIR 
SC655) on crewed aircraft

3000 ha, spatial resolution = 62 cm [130]

Structural changes Capsicum annuum Stemphylium lycopersici Laboratory-OCT system, 4096-pixel 
line scan camera (spl4096-140 km, 
Basler)

Single leaves [134]

Malus domestica Marssonina coronaria Backpack-based OCT system, 2048-
pixel line scan camera (spL2048-
140 km, Basler, Germany)

Single leaves [133]

Solanum tuberosum Streptomyces scabies Medical X-ray CT scanner (Toshiba 
Xvision high-resolution CT scanner)

Single plants [135]

Triticum aestivum Fusarium graminearum Synchrotron-based phase contrast 
X-ray imaging with the Biomedi-
cal Imaging and Therapy beamline 
(BMIT‐BM, 05B1‐1) at the Canadian 
Light Source

Single excised wheat spikes [114]
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melanisation of pycnidia (signs) as well as lesion size (a 
symptom) were measured. A Genome-Wide Associa-
tion Study using the phenotypic data identified 26 chro-
mosome intervals associated with Septoria tritici blotch 
resistance. Sixteen of these loci overlapped with inter-
vals that had already been identified based on visual 
assessment in previous studies, while ten had not been 
described before, demonstrating the potential power of 
quantitative phenotyping [23]. This example also illus-
trates the benefit of a high resolution, e.g. being able to 
discriminate single pycnidia to determine density and 
size, thus overcoming the weakness of low spatial resolu-
tion of many field phenotyping methods.

Transgenic pathogen strains that express detectable 
markers such as fluorescent proteins or bioluminescence 
conferring enzymes are another alternative to track and 
quantify pathogen growth directly [24, 25]. Fluorescent 
proteins have mainly been used to study the infection 
process in vivo at the cell level using epi-fluorescence or 
fluorescence confocal laser scanning microscopy. But 
also at the level of whole plants or seedlings, pathogens 
expressing fluorescent proteins, including bacteria, fungi, 
oomycetes and viruses have been used to track, image and 
quantify infection and colonization [26–31]. Plant auto-
fluorescence and low fluorescent protein signal intensity 
can hinder imaging at larger scales. Bioluminescence, 
so far mainly applied in bacteria, generates a light signal 
without prior excitation, therefore avoiding plant auto-
fluorescence. But the low signal intensity requires imag-
ing with sensitive cameras and extended exposure time in 
the dark (up to several minutes) [32, 33]. A recent study 
generated bioluminescent and fluorescent Pseudomonas 
syringae pv. phaseolicola [34]. The bioluminescence ena-
bled detection of the bacteria at the leaf scale in a dedi-
cated imaging chamber. Identified colonized plant parts 

could then be sampled and further investigated under the 
fluorescence microscope making use of the expressed flu-
orescent proteins. Since enzymes producing biolumines-
cent compounds have also been identified in fungi, such 
a luminescence based approach might also be feasible to 
facilitate quantification and examination of fungal infec-
tion at the macro- and microscopic level [35]. But all these 
approaches are restricted by the requirement for both 
a protocol for genetic transformation of the pathogen of 
interest and for facilities authorized to carry out experi-
ments with transgenic plant pathogens.

Symptom: changes in primary metabolism
In plant-pathogen interactions, the plant primary metabo-
lism is influenced both by manipulation of the pathogen 
and the immune response of the plant itself. Pathogen 
infection may modify source-sink relations in the plant 
or impair photosynthesis, while plant immune responses 
require additional resources from the pool of primary 
metabolites [36–38]. Together this may lead to detectable 
symptoms based on photosynthetic performance or altered 
accumulation and allocation of primary metabolites.

Photosynthetic performance can be probed by analyz-
ing chlorophyll a fluorescence and the kinetics of chlo-
rophyll a fluorescence (Chl-F) [39, 40]. According to the 
model of photosystem II (PSII) absorbed light energy can 
take three different paths: (i) drive photosynthesis (pho-
tochemical quenching); (ii) dissipate as heat (non-photo-
chemical quenching); (iii) re-emit as fluorescence [39, 41].

Measuring the kinetics of Chl-F, the changes of Chl-F 
under different light conditions, e.g. before and after a 
saturating light pulse, allows separation of these com-
ponents and calculation of diverse parameters that yield 
information about photosystem II (PSII) photochemistry, 
electron flux, and  CO2 assimilation [39, 40]. Commonly 

Table 3 Suitability of sensors for phenotyping PPI

“Not used/unsuitable” (−), “Preliminary” ( +) and “Widely used” (+ +)

RGB Hyperspectral Thermal Fluorescence Chlorophyll 
fluorescence 
(kinetics)

Raman 
spectroscopy

OCT X-ray CT

Pathogen signs Controlled +  + + − + − − + + 

Field +  +  + − − − − + −
Primary metabolism Controlled − + − − +  + + − −

Field − + − − +  + + − −
Secondary metabolism Controlled − + − + − + − −

Field −  + − + − + − −
Necrosis and chlorosis Controlled +  + +  + − + + − + + 

Field +  + + − + + − + −
Thermal energy dissipation Controlled − − +  + − − − − −

Field − − + − − − − −
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used parameters are the maximum quantum efficiency of 
PSII photochemistry  (Fv/Fm), the operating efficiency of 
PSII photochemistry (ɸPSII,  Fq’/Fm’ or ∆F/Fm), the level 
of photochemical quenching of PSII (qP or  Fq’/Fv’) or the 
level of non-photochemical quenching (NPQ) which esti-
mates the rate constant for heat loss from PSII [40].

With commercially available Chl-F kinetics imaging 
systems these parameters can be mapped onto imaged 
leaves or whole plants, enabling identification of spatial 
heterogeneity that may be linked to localized patho-
gen infection [42]. Many of the Chl-F parameters (e.g. 
 Fv/Fm, qP, NPQ) are measured on dark-adapted plants 
and commonly require light sources in close proximity 
to the plant to provide e.g. a saturating pulse to meas-
ure maximum fluorescence  (Fm). Therefore, most Chl-F 
imaging systems are designed for growth chambers or 
greenhouses where LED panels can provide even illumi-
nation and plants can easily be dark adapted [42]. How-
ever, there are also field phenotyping systems that include 
Chl-F imaging with active illumination [43]. Dark adap-
tion in the field can be achieved by imaging at night or 
before dawn. But because the sensor needs to be close to 
the plants, Chl-F imaging with active illumination in the 
field is limited to ground-based phenotyping platforms 
which offer limited throughput compared to uncrewed 
aerial vehicles (UAV).

Analysis of spectral reflectance under sunlight does not 
require active illumination and is therefore an alternative 
for probing photosynthesis that is compatible with aerial 
vectors like UAVs or aircrafts. Spectral reflectance data 
can be used to build predictive models for photosynthetic 
parameters like maximum carboxylation rate of Rubisco 
or to estimate sun-induced chlorophyll fluorescence [44–
47]. For example, sun-induced chlorophyll fluorescence, 
determined from spectral images taken from an aircraft, 
has successfully been used to estimate disease severity of 
olive trees infected with the bacterium Xylella fastidiosa 
[48]. But these approaches are technically challenging, 
both in data acquisition and data analysis, and interpre-
tation is difficult because the relationship of reflectance, 
canopy geometrical structure, leaf physiology and vari-
ation in solar radiation is not fully understood [47, 49, 
50]. So far, these challenges limit applications, despite the 
potential especially for large scale remote sensing of plant 
stress.

Chlorophyll fluorescence imaging systems with active 
illumination on the other hand have been used in numer-
ous studies to monitor the effect of pathogen infection on 
plants [42]. A common response, in many cases prior to 
visual changes, is the decrease of ɸPSII resulting from a 
decreased PSII electron transport as well as an increased 
heat dissipation rate (NPQ). This has also been observed 
for infections of many biotrophic pathogens like powdery 

mildew of wheat and barley (B. graminis), powdery mil-
dew of cucurbits (Podosphaera xanthii), downy mildew 
of lettuce (Bremia lactucae) and downy mildew of grape-
vine (Plasmopara viticola) [51–54]. These biotrophic 
pathogens often induce visible symptoms only at late 
infection stages, thus Chl-F imaging may be particularly 
useful to visualize and quantify early colonization.

A general drawback of Chl-F imaging is the lack of 
specificity as photosynthesis and Chl-F are influenced 
by many biotic and abiotic stress factors alike [55]. This 
could be partially overcome by taking into account the 
differences in spatial patterns of Chl-F changes. Patterns 
induced by localized pathogen infection might be distin-
guishable from patterns induced by abiotic stresses that 
affect the whole plant.

While Chl-F provides information about the current 
productivity of the plant, it does not allow for quantifi-
cation of the actual concentration of primary metabo-
lites. Changes in accumulation and allocation of sugars, 
starch, amino acids or proteins can, in principle, also be 
estimated directly via reflectance spectroscopy or imag-
ing spectroscopy in the visible (VIS, 400–700 nm), near-
infrared (NIR, 700–1000  nm) and shortwave infrared 
(SWIR, 1000–2500 nm) range [56–58]. Such approaches 
are based on combining non-invasive spectroscopic 
measurements with biochemical analysis of the same tis-
sue to build predictive models. For example, Ely et al. [56] 
developed spectra-trait models for leaf starch, glucose, 
and protein content based on reflectance spectroscopy 
(500–2400  nm) and biochemical analysis of leaves of 
eight crop species. However, the usefulness of such mod-
els for linking spectral features to metabolic changes dur-
ing PPI still requires validation.

So far, studies only indicate that reflectance spectros-
copy may sense specific changes in primary metabolism 
during PPI. Gold et  al. [59] collected reflectance spec-
tra (400–2400 nm) with a portable non-imaging contact 
spectrometer from potato leaves at different infection 
stages of Phytophthora infestans or Alternaria solani. 
Using spectra-trait models they estimated pathogen-
induced changes in leaf sugar, starch and nitrogen con-
centration and found increased sugar concentration 
during the biotrophic, necrotrophic and sporulation 
phase of P. infestans. But these estimates were not vali-
dated by chemical analysis and the applied spectra-trait 
models were originally developed on data from forests 
and grasslands [60]. Although the study shows clear dif-
ferences in reflectance spectra between tissue infected 
with the different pathogens and tissue at different infec-
tion stages, the interpretation of these spectral differ-
ences remains unclear.

A similar study in rice with healthy and sheath blight 
(Rhizoctonia solani) affected plants found that differential 
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spectral regions could be linked to absorption features of 
starch, cellulose and protein content, although they were 
not chemically validated [57, 61].

Both of these studies used non-imaging spectrome-
ters and found spectral features in the SWIR range to be 
important for detection of diseased plant tissue. There-
fore, imaging SWIR sensors might be particularly useful 
to not only measure changes to primary metabolites but 
also to provide spatial information on these changes.

Symptom: changes in secondary metabolism
Plant secondary metabolites (PSM) are a large group of 
structurally and functionally diverse metabolites that 
are, as opposed to primary metabolites, considered 
non-essential for primary functions like photosynthesis, 
growth and reproduction [62, 63]. Those PSM that are 
involved in plant immunity are commonly classified into 
two groups, phytoanticipins and phytoalexins [64]. While 
phytoanticipins are constitutively produced and stored in 
plant tissue, phytoalexins are synthesized in response to a 
pathogen. Members of both groups show in vitro antimi-
crobial and insect-deterrent activity [65].

Independent of their function, PSM can be informative 
markers for preformed resistance (phytoanticipins), or 
a symptom of the infection progress, and magnitude or 
quality of the plant immune response (phytoalexins). Due 
to their specific absorption and, in some cases, fluores-
cence spectra they may be detected non-invasively, e.g. 
by reflectance and fluorescence spectroscopy or imaging 
[57, 66].

In grapevine, infection with the downy mildew patho-
gen Plasmopara viticola induces the accumulation of 
stilbenes, a group of phenolic compounds [67]. Pure 
stilbenes emit a violet-blue fluorescence around 400 nm 
when excited with UV light (335 nm) [68]. A fluorescence 
signal with a similar spectrum was imaged in downy mil-
dew infected grapevine leaves at the cell level using con-
focal laser scanning microscopy, as well as at the tissue 
level using epifluorescence macroscopy [68–70]. Mass 
spectrometry imaging revealed co-localization of stil-
benes with the violet-blue fluorescence signal, suggesting 
that stilbenes are indeed the source or at least contribute 
to the observed fluorescence [70]. Since stilbene synthase 
expression has also been linked to downy mildew resist-
ance, the violet-blue fluorescence may not only enable 
detection and quantification of downy mildew infection 
but also allow for the assessment of differences in plant 
defense responses [71].

Blue (around 440 nm) and green (around 520 nm) fluo-
rescence upon UV excitation has also been described in 
Nicotiana benthamiana infected with Pepper mild mot-
tle virus, likely due to accumulation of the phenolic com-
pound chlorogenic acid, and in wheat infected with leaf 

rust (Puccinia triticina) or powdery mildew (Blumeria 
graminis f. sp. Tritici) [72, 73].

These examples indicate that changes in UV-excited 
blue and green fluorescence, induced by certain patho-
gens, is a conserved response across plant species. In 
fact, it has been described as a general conserved stress 
response, also to abiotic stresses including drought, nutri-
ent deficiencies and increased UV irradiation [74–77]. 
Responsible fluorophores in most cases are likely stress-
induced soluble and cell wall bound phenolic compounds 
that fluoresce in the blue-green spectrum [78]. For exam-
ple, the fluorescent stilbenes accumulate in grapevine 
leaves also in response to prolonged UV-C irradiation 
[70]. Consequently, distinction between infections of dif-
ferent pathogens, or between biotic and abiotic stress, 
might not be possible. This is a critical limitation for phe-
notyping in field trials, where various stresses can occur 
simultaneously.

Plant secondary metabolite content of leaves may 
also be estimated via reflectance spectroscopy [79, 80]. 
Spectral indices or models for leaf traits like phenolic 
content have been mostly developed and validated for 
remote sensing in landscape ecology studies [60, 79]. 
For example, Kokaly and Skidmore [80] proposed that 
an absorption feature around 1660 nm is related to con-
tent of phenolic compounds in different plant species and 
showed that in fresh tea leaves (Camellia sinensis), this 
absorption feature correlates with total phenolic com-
pound content.

Only a few studies have combined spectral measure-
ments with biochemical analysis of diseased plants. 
This is required to link spectral features to physiologi-
cal processes during PPI. Brugger et  al. [81] explored 
spectral imaging in the UV range (250–400  nm), which 
is particularly interesting because many plant secondary 
metabolites involved in stress responses feature absorp-
tion maxima in that range. They found in barley infected 
with powdery mildew (Blumeria graminis f. sp. hordei) 
that changes in flavonoid content during the first 5 days 
of infection correlated with reflectance intensity around 
wavelengths that match flavonoid absorption spectra. 
But adverse interaction of the sensor with the required 
UV light source restrains interpretation of these results. 
Another study combined spectral imaging in the SWIR 
range (970–2500 nm) with untargeted metabolic finger-
printing of three different sugar beet genotypes infected 
with Cercospora beticola [82]. Although there were corre-
lations between several secondary metabolites and spec-
tral data, it remains unclear if this correlation is due to 
direct contribution of these metabolites to the reflectance 
spectrum. Combining imaging spectroscopy with mass 
spectrometry imaging could help to provide direct links 
between specific metabolite groups and spectral features.
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Raman spectroscopy is another technology to measure 
changes in plant secondary metabolism. After excitation 
of the sample with a laser it measures the inelastic scat-
tering of photons (also called Raman scattering), which 
can provide both qualitative and quantitative informa-
tion about the chemical composition of the sample [15, 
83]. Raman scattering can be collected with portable 
non-imaging handheld Raman spectrometers [84, 85] 
and this approach has been applied to detect viral, bacte-
rial and fungal infections in plants [85–89]. For example, 
a handheld Raman spectrometer was used to detect C. 
liberibacter spp. infection in citrus trees. Using orthogo-
nal partial least squares discriminant analysis, grapefruit 
leaves were classified into healthy, infected, and nutri-
ent-deficient categories with 98% accuracy in the train-
ing set, but the authors did not validate the classification 
accuracy in a test set [86, 87]. Infection was associated 
with increased intensity of the Raman band assigned 
to lignin and phenolic compounds. Correspondingly, a 
follow-up study found increased p-coumaric acid con-
tent in infected leaves, a phenolic compound and lignin 
precursor whose Raman spectrum matches the disease 
associated bands [90]. Similar disease associated bands, 
likely corresponding to phenolic compounds, have also 
been described for virus infection in wheat, tomato 
and rose [15, 88, 91]. These studies used non-imaging 
Raman spectrometers, which only provide point meas-
urements and do not yield any spatial information. But 
Raman spectroscopy can also be combined with digital 
imaging so that Raman spectra are recorded for each 
pixel [92]. This has been explored as a tool for quality 
and safety inspection in food, pharmaceutical, and bio-
medical sectors and, for example, to detect watermelon 
seeds infected by the bacteria Acidovorax citrulli [93, 94]. 
So far, the lengthy image acquisition has restricted the 
throughput and therefore applications of Raman imag-
ing, but Lee et al. [94] report a relatively fast system that 
requires 250 s to image an area of five by twenty cm with 
a spatial resolution of 250 by 1024 pixels. Such systems 
may already be useful for certain phenotyping challenges, 
but further reducing the acquisition time would widen 
the range of possible applications.

Symptom: necrosis and chlorosis
Pathogen-induced chlorosis and necrosis are promi-
nent symptoms of plant disease as they are visually evi-
dent and very common. Chlorosis results from changes 
in pigmentation, mainly the degradation of chlorophyll, 
and necrosis from the death of cells and tissue. Both may 
occur locally in lesions, with chlorosis often preceding or 
surrounding necrotic lesions. Viruses can cause chlorosis 
in diverse patterns that are often reflected in their name 

(e.g. “chlorosis”, “mottle”, “mosaic”, “streak”, “vein clear-
ing”, “yellowing”) [95].

Both chlorosis and necrosis can be induced by spe-
cific pathogen-produced metabolites or proteins, e.g. 
the chlorosis inducing coronatine from Pseudomonas 
syringae or the necrosis and ethylene-inducing peptide 
1 (Nep1)-like proteins from Botrytis cinerea [96–101]. 
Particularly pathogens with a necrotrophic life style pro-
duce toxins that kill plant cells, by disrupting the plant 
cell membrane directly or by generating membrane 
damaging reactive oxygen species [102, 103]. In interac-
tions with viruses and biotrophic pathogens like downy 
mildews, chlorosis is often induced in later stages of the 
infection, and chlorophyll degradation appears to be reg-
ulated by the same plant genes that control regular leaf 
senescence [104–106]. The area of chlorotic or necrotic 
tissue can serve as a good proxy to estimate spread of 
the pathogen, as well as the impact on yield, depending 
on plant developmental stage, type of the pathogen and 
stage of the infection.

While chlorotic tissue has reduced chlorophyll con-
tent, necrotic tissue lacks all pigments characteristic for 
healthy plant tissue. This results in changes of absorption 
and reflectance in the visible spectrum, evident as color 
ranging from yellow (chlorosis) to shades of brown to 
black (necrosis). Besides the lack of pigments, necrotic 
tissue also differs from healthy tissue in water content 
and three-dimensional structure due to the collapse 
of cells. A lower ratio of cell surface to intercellular air 
space due to a collapse of e.g. the spongy mesophyll leads 
to reduced reflectance of NIR radiation [107]. Changes 
in water content in necrotic tissue also impacts SWIR 
reflectance due to several water absorption peaks in the 
SWIR range [108, 109]. Consequently, sensors that detect 
reflectance in the VIS–NIR-SWIR range are useful to 
quantify chlorosis and necrosis. The contrast between 
healthy leaf tissue and lesions lacking chlorophyll may 
be enhanced by imaging the red steady-state chlorophyll 
fluorescence [110, 111]. The onset of cell death can also 
be visualised by imaging the increased chlorophyll fluo-
rescence that results from the disassembly of the chloro-
plast thylakoid membrane in tissue undergoing cell death 
[112]. Additionally, the changes in plant internal tissue 
structure that precede and are associated with necro-
sis and tissue damage can be measured with different 
tomography methods, e.g. optical coherence tomography 
(OCT) or X-Ray computed tomography (CT) [113, 114].

In controlled experiments, particularly on samples 
that are easy to image such as detached leaves, RGB 
imaging is an established method to track and quantify 
chlorosis and necrosis. Barbacci et  al. [115] combined 
a detached leaf assay with a setup for automated RGB 
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image acquisition and analysis to quantify necrotic lesion 
development on Arabidopsis inoculated with S. scleroti-
orum. This enabled measurement of latency period and 
lesion doubling time (LDT) at high resolution (measure-
ment every 10 min over 36 h) and of large sample sizes 
(120–270 leaves per imaging unit). Whereas latency 
period varied mostly between different S. sclerotiorum 
isolates, LDT was mainly determined by the plant geno-
type and independent of the inoculated isolate. Using 
the differences in LDT as a robust indicator of quantita-
tive resistance led to the identification of the nucleotide-
binding site leucine-rich repeat gene LAZ5 as a negative 
regulator of quantitative resistance to S. sclerotiorum. On 
a similar scale, RGB imaging enabled quantification of 
chlorosis induced by P. syringae in Arabidopsis seedlings 
growing in 48-well plates [116, 117]. The assay was tested 
in a genome-wide association study to efficiently distin-
guish between presence and absence of effector-triggered 
immunity and confirmed the loci of known resistance 
genes.

In field experiments, necrosis in maize infected by Seto-
sphaeria turcica (Northern corn leaf blight) or sugar beet 
infected by C. beticola (Cercospora leaf spot) has been 
assessed by sensors [118, 119]. Wiesner-Hanks et al. [118, 
120] acquired images with a RGB camera mounted on 
a UAV flying 6 m above a maize field trial. The necrotic 
lesions captured in these images were manually anno-
tated and used to train a CNN. Combining this CNN 
with a conditional random field method allowed auto-
mated segmentation of the aerial images to identify and 
quantify lesion area.

In a sugar beet field trial, Jay et  al. [119] tested both 
RGB imaging from a ground-based vehicle and spectral 
imaging (six bands between 450 and 850  nm) from a 
UAV to assess Cercospora leaf spot severity. They deter-
mined the necrotic spot density from RGB images and 
green fraction from both RGB and spectral images. The 
image data was compared to visual severity scores given 
by an expert on a 1–9 scale. Spot density gave a better 
prediction for low (less severe) visual scores and green 
area was a better predictor for high visual scores. Con-
sequently, combining these two features as input for a 
neural network enabled a good prediction of the visual 
disease scores. Because only the ground-based RGB sen-
sor enabled measuring both of these features, it outper-
formed the aerial spectral sensor.

Symptom: thermal energy dissipation
Plant-pathogen interactions can result in a change of 
tissue temperature by affecting energy balance terms 
such as transpiration or light absorption [121]. These 
induced changes often precede other symptoms and 
are characterized by complex spatial and temporal 

dynamics. This makes thermal energy dissipation an 
interesting candidate trait for early detection of dis-
ease. PPI can cause an increase in tissue temperature 
by inducing stomatal closure and vascular occlusion. 
Conversely, damage to cells and deregulation of sto-
matal opening can lead to decreased tissue tempera-
ture through uncontrolled transpiration [122, 123]. 
Photosynthetic performance has an influence on plant 
temperature as well because part of the absorbed light 
energy, if not emitted as fluorescence or converted in 
photochemistry, is dissipated as heat in the process of 
non-photochemical quenching [39].

Temperature can be remotely measured in the ther-
mal infrared spectrum (TIR, 8000–15,000  nm) with 
radiometric sensors [124]. This technology has long been 
applied to measure abiotic stresses, particularly drought 
stress which is associated with an increased canopy tem-
perature [125, 126]. Multiple plant-pathosystems have 
also been studied with thermal sensors [127].

Vascular pathogens that grow within the xylem of host 
plants can cause occlusion of the vascular system due 
to both their own growth and the plant responses to the 
pathogens. This can lead to symptoms similar to drought 
stress, as the hydraulic conductivity is inhibited by the 
occlusion [128]. In a field experiment, the crown tempera-
ture of olive trees under natural infection with Verticillium 
dahliae, a vascular fungal pathogen, was measured with 
infrared temperature sensors (Apogee IRR-P) mounted 
1 m above the trees. The temperature was positively cor-
related with Verticillium wilt disease severity levels across 
multiple sites [129]. The same authors validated and vastly 
increased the throughput of their methods by mounting 
a broad-band thermal camera (FLIR SC655) on a crewed 
aircraft and flying it over 3000 ha of olive orchards [130].

The measurement of plant thermal energy dissipation is 
not easy to measure in the field as environmental effects 
and the influence of other stresses decrease specificity 
of the measurements. Therefore, many studies of plant 
thermal energy dissipation are performed in controlled 
environments.

An abscisic-acid-induced stomatal closure in leaves of 
cucumber infected with the vascular pathogen Fusar-
ium oxysporum f. sp. Cucumerinum could be detected 
by an increase in temperature with a FLIR SC620 digi-
tal infrared camera in a controlled environment [123]. 
The maximum temperature of leaves of infected plants 
was reached nine days after infection. The authors also 
observed a fast decrease of temperature ten days after 
infection and attributed it to uncontrolled water loss due 
to cell damage. Eleven days after infection, leaf tempera-
ture rose again which was attributed to dehydration of 
the leaves.
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Virus-plant interactions can also influence tissue tem-
perature. Tobacco infected with tobacco mosaic virus 
shows a fast increase in leaf temperature at the initial 
infection site preceding a hypersensitive response. 
This increase in temperature is due to stomatal closure 
which is induced by salicylic acid accumulation. The 
same areas of the leaves later appear as necrotic lesions 
[131]. Changes in leaf temperature were also observed 
in sweet potato upon infection with two different 
viruses, Sweet potato feathery mottle virus (SPFMV) 
and Sweet potato chlorotic stunt virus (SPCSV) [132]. 
In this controlled environment experiment, leaf tem-
perature was measured with a top-view thermal cam-
era (FLIR A615) and differed between healthy plants, 
plants infected with SPFMV, and plants co-infected 
with both viruses. Higher temperatures were associated 
with higher disease severity scores [132].

Sensing structural changes
Preliminary studies using tomographic sensors for phe-
notyping PPI have been performed in various plant-
pathosystems. As these sensors measure spatially 
resolved attenuation, refractive index variation and 
scattering strength inside tissue, they can be useful to 
non-invasively study internal structural changes which 
can allow for early detection and potentially identi-
fication of disease [113, 114, 133, 134]. Besides meas-
uring internal plant and pathogen structure, X-ray CT 
scanning also provides the option to measure through 
substrate and was used to study changes in root mor-
phology of potato affected by Streptomyces scabies 
[135].

Synchrotron‐based phase contrast X-ray CT was used 
to measure differences in tissue degradation in wheat 
caused by Fusarium graminearum [114]. A known resist-
ance mechanism to this fungus is the inhibition of fungal 
colonization from spikelet to spikelet inside the rachis 
internode. Traditional histological studies to quantify 
this type of resistance require destructive sampling. The 
tissue degradation leads to increased tissue porosity, 
which makes it possible to sense the pathogen spread by 
changes in X-ray attenuation.

Leaves of apple trees infected with Marssonina coro-
naria were measured with a custom-built backpack-
based OCT sensor in the field [133]. Disease progression 
causes an enlarged gap between epidermis and palisade 
parenchyma that could be sensed by a reduction in back-
scattering. The presence of infection was confirmed using 
Loop-mediated isothermal amplification, a nucleic-acid 
based technique [133]. Authors from the same group 
applied similar techniques in leaves of Capsicum annuum 
infected with Stemphylium lycopersici [134].

These studies show the potential of tomographic sen-
sors for early detection of disease as well as phenotyping 
of below ground structures.

Discussion
Phenotyping plant-pathogen interactions 
in the field is limited by specificity, canopy structure, 
and environmental conditions
Signs and symptoms are easier to measure in a controlled 
environment where plant material can be accessed from 
multiple angles at close proximity and under optimal 
illumination. Yet field phenotyping is a requirement for 
most disease resistance breeding programs and precision 
agriculture.

Traits identified in controlled environments at small 
scales such as lesion size or sporulation, may, in some 
cases, be transferrable to the field [7, 136, 137]. For exam-
ple, Northern corn leaf blight causes large and obvious 
lesions on maize plants, a symptom that was measured 
on RGB images taken from a UAV at 6 m altitude [118, 
120]. This way, the relative area of necrotic maize tissue 
could be measured with high throughput.

However, it is technically more demanding to meas-
ure signs and symptoms under field conditions. Multiple 
biotic and abiotic stresses can affect plants simultane-
ously and lead to a loss of specificity. For example, chlo-
rosis may be caused both by a pathogen or abiotic stress. 
In a canopy, plants or plant parts can shade each other 
from the sensors, especially in tall growing crops where 
lower plant parts are covered. Applying sensors from a 
distance, e.g. when mounted on UAVs, can result in a lack 
of spatial resolution. Also, natural radiation influences 
sensor-based measurements and can confound the meas-
urement of signs and symptoms.

The effect of natural radiation can be controlled either 
by numerical correction during the data analysis, or by 
shading during the data acquisition, but both approaches 
are difficult due to the spatial and temporal variation of 
natural radiation. The technical limitations involving 
spatial resolution and natural radiation could be over-
come partly by ground-based phenotyping platforms 
that carry sensors close to the canopy and offer a com-
promise between throughput and accuracy. For example, 
ground-based RGB imaging outperformed aerial RGB 
imaging for assessing Cercospora leaf spot in a sugar 
beet field trial [119]. The ground-based platform offered 
higher spatial resolution and artificial illumination which 
enabled measuring necrotic spot size and density, traits 
that could not be measured with the aerial platform. The 
specificity of measurements could potentially be further 
improved by sensor fusion, the integration of data from 
multiple sources [138, 139]. A combination of functional 
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plant traits derived from hyperspectral imaging (400–
885  nm) and a thermal imaging sensor mounted on an 
aircraft enabled early detection of Xylella fastidiosa, a 
xylem-bound bacterial pathogen of olive trees [48].

These examples illustrate that it is feasible to increase 
throughput while maintaining accuracy also under field 
conditions. But it is critical that the challenges of speci-
ficity, canopy architecture, spatial resolution and natural 
radiation are considered and addressed with new solu-
tions like improved sensor and vector technology or sen-
sor fusion.

Non-invasive phenotyping of below-ground 
plant-pathogen interactions remains a challenge
Phenotyping of PPI below ground is still in an early stage 
of development as in-soil non-invasive phenotyping is 
difficult. Using invasive sampling and RGB imaging, 
changes of morphological root characteristics could be 
detected on soybean infected with Fusarium species and 
on alfalfa affected by Phymatotrichopsis root rot [140, 
141]. Tomographic sensors are an option to measure 
PPI on roots growing in substrate in pots non-invasively 
[135]. With new X-ray CT scanners that are installed 
in automated phenotyping facilities, this method may 
become more accessible [142–144].

Sensor data helps to understand plant-pathogen 
interactions in more detail
Sensor-based phenotyping is commonly deployed to sub-
stitute traditional visual disease scores, for example to 
rank a genotype on a spectrum from resistant to suscep-
tible in comparison with other genotypes [12]. Yet sen-
sor-based phenotyping can capture the sum of processes 
that underlie PPI in more detail than what is reflected in 
traditional disease severity scores. To understand which 
specific PPI related changes influence the detected sig-
nals, sensor data needs to be linked with in situ measure-
ments, particularly in the case of advanced sensors. This 
has been shown successfully in two studies that linked 
disease induced accumulation of phenolic compounds 
to specific Raman bands in Raman spectroscopy [90] and 
flavonoids to UV absorption features in spectral imaging 
[81]. Establishing and confirming such links will allow to 
non-invasively measure diverse aspects of PPI simultane-
ously and to transfer those findings between pathosys-
tems and environments.

Advanced sensors expand the range of perceivable signs 
and symptoms but require complementary technologies
Implementation of sensor technology for phenotyping of 
PPI allows for measurement of a wide range of signs and 
symptoms (Table  2). Plant metabolites may be detected 

with spectroscopic methods, and internal plant and 
pathogen structures can be detected with tomographic 
methods [15, 18]. Fluorescence imaging, possibly with 
tagged pathogens, and chlorophyll fluorescence imaging 
are other promising approaches for measuring pathogen 
growth and photosynthetic parameters. To build useful 
phenotyping systems, any improvements and innovation 
in sensor technology need to be matched with appropri-
ate facilities, vector technology, data management and 
data analysis methods. In those fields, constant improve-
ment is pivotal, such as increased payload of UAVs, addi-
tion of active illumination to ground-based phenotyping 
platforms, automation of indoor phenotyping systems, 
implementation of FAIR data standards and new machine 
learning methods for analysis [11, 145–148]. Integration 
of the resulting phenotypes with other-omics data can 
enable a more comprehensive interpretation of sensor 
data and will eventually lead to a deeper understanding of 
plant-pathogen interactions.
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Abstract13

Ascochyta blight is a widely occurring chickpea fungal disease that can cause severe yield14

loss. Breeding the crop for resistance requires a high-throughput evaluation of plant-pathogen15

interactions in genotypes that can serve as sources of resistance. Current practice for the16

evaluation is human visual scoring of disease symptoms, which is limited in throughput and17

precision. Here, we developed open-source sensor-based phenotyping methods using RGB and18

multispectral imaging to measure resistance components and predict disease severity classes in19

chickpea and wild relatives grown outdoors over three seasons. Pots were imaged over time from20

a ground-based platform, providing 86,792 RGB and 8,199 multispectral images. Lesion count21

was estimated with YOLOv5 object detection (F1 score = 0.27 - 0.30), fractional green canopy22

cover was estimated from RGB images, and vegetation indices were extracted from multispectral23

images. A model trained on growth rates normalized to control genotypes could predict disease24

severity classes with an accuracy of 65 - 81 % (κ = 0.43 - 0.59) on unseen independent data25

from three different seasons. The developed methods provide a pathway to predict visual disease26

severity scores and support the breeding of crops for disease resistance. They may also be used to27

characterize disease progression, to find underlying resistance mechanisms, and for early disease28

detection.29

1

48

3.2 Manuscript



1 Introduction30

Chickpea (Cicer arietinum) is an important food legume with an average global production of 13.1331

Mt per year in the period from 2010 to 2020 [1]. During that period, Australia was the second largest32

producer after India with an average yearly production of 0.79 Mt [1]. Ascochyta blight (AB), caused33

by the necrotroph fungus Ascochyta rabiei (syn. Phoma rabiei, NCBI:txid5454), is a major yield-34

limiting biotic stress for chickpea [2]. After successful infection, the fungus induces necrosis on all35

above-ground plant parts, including leaves, stems, and pods. Necrotic lesions on leaves and stems36

cause defoliation and stem breakage. Combined, the symptoms can lead to severe quantitative and37

qualitative yield loss [3]. Currently, there are no cultivars available in Australia that are resistant to38

prevalent isolates, leading farmers to rely on multiple applications of fungicides [4, 5]. Breeding for39

disease resistance is an economically and environmentally sustainable option to decrease the reliance40

on fungicides, but requires large-scale disease screening of genetic resources within the cultivated41

species itself and also within its wild relatives [6–8]. Resistant candidate genotypes have previously42

been reported in wild relatives of chickpea, including Cicer bijugum, C. judaicum, C. pinnatifidum,43

C. reticulatum, and C. echinospermum [9–12]. Multiple resistance mechanisms to AB are known,44

including physical barriers [13], constitutive and accumulated phenolic compounds [14], phytoalexins45

[15–17], reactive oxygen species signaling [14, 18], and hypersensitive response [3].46

Phenotyping for disease resistance Traditionally, disease severity is visually evaluated by ex-47

perts who judge the extent of signs and symptoms using defined rating scales [19]. This approach48

is limited by potential human error, subjectivity, and the innate restriction to the visible light spec-49

trum [20]. Instead of visual scoring, sensor-based phenotyping has the potential to increase precision,50

throughput, and extend the range of perceptible signs and symptoms beyond visible light [21]. In51

this way, specific signs and symptoms can be quantified and used to judge the resistance as well as52

predict disease severity scores. However, this remains difficult under field conditions [22, 23].53

Extraction of phenotypic data from sensor data Several processing steps are involved to54

extract phenotypic data from sensor data [22]. At a minimum, sensor data need to be calibrated55

to incident radiation, which can vary when imaging outside, spectral channels need to be aligned,56

and regions of interest need to be assigned. These still fairly raw data can be used in deep learning57

approaches to directly predict a response variable of interest; however, this can limit the explain-58

ability and transferability of the models [24]. A further step in the analysis can be the extraction59

of features from the measured data, so-called low-level traits which include canopy cover, estimated60

biomass, vegetation indices, and the morphology of signs and symptoms of disease (Table 1) [22,61

23, 25, 26]. From these low-level traits measured at individual time points, intermediate traits such62

as the timing of defined phenotypic stages, dose-response curves, or area-under-the-curve traits can63

be extracted in a next step [27]. To estimate the treatment and genetic effects on traits, the effects64

need to then be distinguished from spatial and longitudinal noise [26].65

2
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Sensor-based field phenotyping for necrotic pathogens For necrotic pathogens including A.66

rabiei, major resistance components that contribute to field resistance are the latency period after67

infection before lesions appear, the total lesion and pycnidia production which drives secondary68

infections, and the ability to maintain healthy biomass under disease pressure [3, 28]. To estimate69

these traits, lesion count and biomass need to be measured over time, which requires non-destructive70

techniques. Plant biomass can be measured accurately and non-destructively by 3D reconstruction71

of plant material [29]. A simpler alternative is to estimate plant biomass by measuring canopy72

cover or vegetation indices that represent plant health [30, 31]. For chickpea, biomass was shown to73

closely correlate with fresh biomass (Berger, unpublished data). All these options for the estimation74

of biomass have been successfully performed in the field [32].75

The detection of necrotic lesions in the field is less common, but has successfully been performed76

using RGB imaging from a drone on maize infected with Northern Leaf Blight with object detection77

algorithms [33, 34]. However, Northern Leaf Blight lesions on corn are larger (10 - 50 mm) than78

the leaf lesions of chickpea AB (< 5 mm). Another successful example was the detection of Cer-79

cospora leaf spot lesions on sugar beet. As these lesions are smaller (2 to 5 mm), a ground-based80

phenotyping platform had to be used to achieve a high spatial resolution [35]. On soybeans infected81

with Cercospora sojina, lesion count, lesion size, and percentage diseased leaf area were measured82

using an ImageJ macro based on thresholding [36]. The authors were able to achieve near-perfect83

correlations with manually measured ground truth, but destructive sampling of individual leaves84

and controlled imaging had to be used.85

Sensor based field phenotyping for AB Sensor-based phenotyping has also been applied to86

AB in the field [37]. Zhang et al. tested multiple fungicides on two infected chickpea genotypes and87

imaged the plots from an octacopter with a thermal camera, a five-band multispectral camera, and88

a modified RGB camera that captured the infrared channel instead of the red channel. Traits were89

extracted for individual imaging timepoints and the correlation with visual scores on a scale from90

one to nine was tested. Depending on the stage of growth of the plants, the traits with the highest91

absolute correlation coefficients were percentage of canopy coverage (r = 0.35 - 0.82), Normalized92

Difference Vegetation Index (NDVI) (r = 0.61 - 0.72), Green Normalized Difference Vegetation Index93

(GNDVI) (r = 0.52 – 0.69), Normalized Difference Red Edge Index (NDRE, also RENDVI) (r = 0.3494

– 0.67), and mean canopy temperature from thermal cameras (r = 0.32 - 0.81) (Table 1) [37]. This95

study showed the suitability of sensor-based phenotyping of AB in the field, but also highlighted96

the need to account for temporal variation along the developmental stages as the various traits had97

different importance depending on the imaging time point.98

The objectives of this study were to develop sensor-based phenotyping methods to support AB99

resistance breeding and for early detection of AB. We measured canopy cover, lesion count, and100

vegetation indices over time and extracted intermediate traits. These were used to define resistance101

components and to classify disease scores into three categories (High, Medium, Low).102
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Figure 1: Nursery disease screens, main part with pots in rows of four is shown.

2 Materials and methods103

2.1 Experimental design104

A selection of chickpea genotypes (Cicer arietinum) and wild relatives (Cicer reticulatum and Cicer105

echinospermum), were screened for resistance to AB in semi-controlled outdoor conditions. The106

screens took place on the Waite Campus of the University of Adelaide (34°58’12.0”S 138°38’24.0”E)107

in the seasons 2020, 2021, and 2022. Five seeds per pot were sown on 2020-06-18, 2021-06-16, and108

2022-06-08, respectively, and grown in Van Schaik’s Bio Gro soil mix (Bio Gro Pty Ltd., Mount109

Gambier, South Australia) in pots with 2.1 l volume and a diameter of 155 mm (Figure 1). The110

pots themselves were placed on a sandy layer above the top soil in a netted terrace. Each pot was111

thinned to four plants after emergence at 46 days after sowing (DAS) in 2020, 30 DAS in 2021, and112

36 DAS in 2022 (Figure 2). The pots were arranged in rows with a width of four pots and grown in a113

randomized complete block design with three replicates per genotype and treatment. Irrigation was114

performed with an overhead system that was scheduled on demand depending on the environmental115

conditions.116

In 2021 and 2022, a subset of 30 genotypes each was grown with disease-infected treatment117

and a control that was not infected and treated with chlorothalonil fungicide (Bravo Weather Stik,118

Syngenta Crop Protection, 720 gl-1 applied at 10 ml per pot) to prevent cross-infection from infected119

pots. Fungicide was applied on the day of infection of the other pots, 22 days after infection (DAI),120

and 43 DAI in 2021. The same fungicide treatment was applied in 2022 at -1 DAI, 21 DAI, 28 DAI121

and 44 DAI (Figure 2). Three replicates of each genotype and treatment combination were grown122

in a split-unit design, resulting in a total of 180 pots each; the treatments were assigned to the main123

units and the genotypes to the subunits. These subsets, including fungicide controls, were used to124

develop the screening methods specific for AB. Instead of being placed in rows of four, these pots125

were spaced further apart in rows of three to avoid overlap of neighboring plant material (Figure 2).126
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Figure 2: Experimental design for all experiments, mean daily temperature sums per period are
shown, calculated with a base temperature of 0 °C. The periods stretch from sowing until inoculation,
0 to 14 DAI, 14 to 28 DAI, 28 to 42 DAI, 42 to 56 DAI, and from 56 DAI until scoring.

Plant material The screened genotypes were grouped into five categories: Australian varieties,127

wild Cicer accessions from a collection mission in eastern Turkey [38], breeding and research material128

from ICARDA’s Food Legume Improvement Program (FLIP) [39], landraces from the N.I. Vavilov129

Research Institute of Plant Industry and introgression lines (Supplementary Table 7). Cultivars130

Howzat (susceptible to AB) and Genesis090 (moderately susceptible to AB) were included as controls131

[9, 40, 41].132

Inoculation and fungal material Each pot was inoculated with 3 ml of spore suspension of133

A. rabiei isolate 16CUR018 (collected from cultivar Genesis090 in Curyo, Victoria, Australia in134

2016) with a concentration of 1 × 106 spores per ml and surfactant Tween 20 (0.01%) (Merck Pty135

Ltd.) [42]. The inoculum was sprayed onto the plants using a commercial hand sprayer (Hardi,136

Australia). Two passes in opposite directions were made while walking along the rows of pots. After137

inoculation, plants were continuously misted for 30 seconds every 30 minutes for the entire season to138

enable polycyclic infection. Misting was temporarily interrupted after rain events. Inoculation was139

carried out on 2020-08-03 (46 DAS), 2021-07-20 (37 DAS), and 2022-07-19 (41 DAS) (Figure 2).140

2.2 Data acquisition141

Scoring142

Experts scored visual symptoms of the disease 56 DAI in 2020, 62 DAI in 2021, and 65 DAI in143

2022, without knowing the treatment or genotype (Figure 2). The four plants per pot were scored144

simultaneously on a scale from 0 - 100 % for four traits: percentage of broken main stems, percentage145
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of main stems with lesions, percentage of diseased side branches, and percentage of diseased leaf area146

[19, 43]. The four traits were then averaged to form a Disease Index (DI) which can take any value147

between 0 and 100, where 0 corresponds to a pot free of symptoms and 100 corresponds to a pot with148

dead plants. For the purpose of classification of disease scores and supporting breeding decisions149

with the developed screening methods, pots were grouped into three categories based on disease150

index. DI > 80 was considered as material to be rejected (High DI), DI ≤ 80 to DI > 40 was151

considered acceptable (Medium DI) and DI ≤ 40 was considered as elite material (Low DI). To152

investigate the repeatability of scoring, 28 pots representative of the range of genotype groups and153

disease severity were each scored twice independently by two expert raters in 2021. The overall154

accuracy and Cohen’s κ for the overlap of the score categories between each combination of scorer155

and round of scoring were then calculated as a measure of repeatability [44].156

Imaging157

RGB imaging The plants were imaged at multiple time points throughout the season using a158

ground-based phenotyping pushcart built from T-slot aluminium profiles (Figure 2). The cart was159

pushed along the rows of pots on C-shaped steel rails. RGB images were taken with a digital single-160

lens reflex camera (2020: Canon EOS 1300D, 2021 & 2022: Canon EOS 1500D) mounted on the161

aluminium frame at a nadir angle at a height of 1.4 m. The camera settings were as follows: An162

18-55 mm kit lens at 18 mm focal length (29 mm full frame equivalent), ISO = 200 or 400 depending163

on light conditions, aperture = f/8, automatic white balance, shutter speed adjusted automatically164

according to light conditions, format = 14 bit raw (cr2 format). The height of the pushcart combined165

with the sensor resolution resulted in a ground sample distance of 0.26 mm / pixel (px) width for166

the Canon EOS 1300D and a ground sample distance of 0.23 mm / px width for the Canon EOS167

1500D (Supplementary Figure 12).168

Multispectral imaging The subset experiments of 2021 and 2022 were additionally imaged with169

a multispectral camera (RedEdge-3, MicaSense, Seattle, WA, USA) with a spatial resolution of 1280170

* 960 px, resulting in a ground sample distance of 0.78 mm / px width (Figure 2). The camera171

records five spectral channels between visible (VIS) and near-infrared (NIR) with center wavelengths172

of 475, 560, 668, 717, and 840 nm and respective bandwidths of 20, 20, 10, 10, and 40 nm.173

Imaging in automated phenotyping system In the season of 2021, 831 pots were selected to174

represent the range of disease severities and plant species and were imaged in an automated phe-175

notyping system (The Plant Accelerator, http://www.plantphenomics.org.au/services/accelerator/)176

immediately after scoring (2021-09-21 to 2021-09-23). The imaging system is described in detail by177

Atieno et al. [45]. Briefly, multi angle RGB-images are taken and LemnaGrid (LemnaTec, Ger-178

many) software is used to measure projected shoot area (PSA), which has been shown to closely179

correlate with shoot biomass (Berger, unpublished data). In addition, fractional green canopy cover180

(FGCC) was measured as described in section 2.3. In a next step, the accuracy of the in situ FGCC181

estimates from the DSLR camera was evaluated by a correlation analysis with the measurements182

from the automated phenotyping system.183
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2.3 RGB image analysis184

Raw development and pre-processing Conversion of raw data to RGB raster images (png185

format) was performed using RawTherapee version 5.8 applying lens correction, automatic white186

balance and dynamic range compression to address lighting differences resulting from shading and187

cloud cover [46]. The images were cropped to the individual pots by manually adjusting a mask on188

which the positions of the pots could be detected using Inkscape version 1.1 [47].189

Foreground segmentation Next, pot images were segmented into foreground and background190

pixels, where healthy plant material was classified as foreground, and soil and diseased plant pixels191

were classified as background. A training set containing 20 images from different time points was192

annotated using the software GIMP version 2.10.14 [48]. A multilayer perceptron neural network193

(MLP-NN) was then trained on the RGB values of annotated foreground pixels and a kernel of 3×3194

neighboring pixels, resulting in a total of 27 values for each pixel [49]. The training and segmentation195

was performed using Python version 3.8.10 packages scipy (v1.7.1), numpy (v1.21.2) and OpenCV196

(v4.5.2) [50–53]. As a next step, erosion followed by dilation with a 3 × 3 kernel was applied. To197

exclude non-plant material, connected component-analysis with a size threshold of 150 pixels for198

the Canon EOS 1500D and a threshold of 110 pixels for the Canon EOS 1300D was applied. The199

predicted binary masks were evaluated based on visual inspection. Finally, FGCC was calculated as200

the ratio of foreground pixels to total pot pixels (Table 1) [31].201

Lesion detection The YOLOv5 (v6.2) object detection algorithm was used for lesion detection202

on processed png images [54]. A total of 1500 images from the 2021 dataset were annotated with203

bounding boxes marking the locations of the lesions using the labelImg version 1.8.6 tool [55].204

Training data was randomly chosen from both inoculated and fungicide-treated pots, stratified by205

date and annotated without knowledge of genotype, imaging time point, and treatment. Of the206

training images, 37% contained lesions. The data was split into training and validation set with207

an 80:20 split. An additional test set of 2020 data containing 300 images was annotated. Multiple208

network architectures were trained on the training set and evaluated with the validation set from209

2021 based on the F1 metric. The medium-sized 5m.pt architecture was chosen as a compromise210

between speed and performance. Finally, the network was evaluated on the unseen data from 2020.211

The networks were trained for a maximum of 600 epochs, and hyperparameters were set to default.212

All training was performed on a local machine with a Nvidia Quadro P1000 GPU. Then the lesion213

detection was applied to all datasets and the number of lesions was extracted.214

2.4 Multispectral image analysis215

The images were pre-processed and calibrated to incident radiation at each imaging date using the216

Python imageprocessing library provided by Micasense [56]. As the imaging distance was fixed to217

1.4 m, spatial alignment of the five spectral channels was achieved by hard-coding the offset between218

each channel and merging all channels into one tiff file. Semantic segmentation was performed with219

MLP-NN classifiers trained on the five pixel values for all channels for each date. For the 2021220
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Table 1: Extracted low-level traits from RGB camera and RedEdge 5-band multispectral camera.

Abbreviation Trait Equation Citation

Extracted from RGB camera

FGCC Fractional Green
Canopy Cover

nforeground pixels

ntotal pixels
[31]

n lesions Number of lesions As detected with
YOLOv5

[54]

Vegetation indices extracted from RedEdge 5-band camera

ENDVI Enhanced Normalized
Difference Vegetation
Index

(NIR−Green)−(2×Blue)
(NIR+Green)+(2×Blue) [57]

GNDVI Green Normalized
Difference VI

(NIR−Green)
(NIR+Green) [58]

NGRDI Normalized Green-
Red Difference Index

(Green−Red)
(Green+Red) [60]

NDVI Normalized Difference
VI

(NIR−Red)
(NIR+Red) [61]

RENDVI Red Edge Normalized
Difference VI

(NIR−RedEdge)
(NIR+RedEdge) [58]

data, an individual classifier was trained for each imaging date for which the training data was221

made up of 1000 foreground and background pixels from the specific imaging date, as well as 100222

foreground and background pixels from each of the dates, resulting in a total of 6400 training pixels223

per date. Segmentation was evaluated on the basis of accuracy using a 70:30 train-test split. For the224

segmentation of the entire dataset of 2022, a single pixel classifier that was trained for the imaging225

date 35 DAI in 2021 was used and evaluated by examining the predicted masks.226

Feature extraction After segmentation, the reflectance of foreground pixels was averaged and227

vegetation indices (VI) ENDVI, GNDVI, NGRDI, NDVI and RENDVI were calculated (Table 1)228

[57–61]. To evaluate the agreement of semantic segmentation between RGB and multispectral sensor,229

FGCC from both sensors was compared.230

2.5 Spatio-temporal modeling231

All statistical analyses were performed using R version 4.2.1 [62]. Pots where the maximum FGCC232

over all timepoints did not exceed a value of 0.05 were considered to not have germinated and removed233

before spatio-temporal modeling. Spatio-temporal analysis was implemented in the statgenHTP234

v1.0.5 package for all extracted intermediate traits [26, 63, 64]. In a first step, each pot was considered235

individually over time and outliers identified by local regression were removed. The parameters for236

the individual pot outlier removal were chosen based on visual inspection of the splines. A smoothing237

parameter of 0.8 and a confidence interval of 4 were used for each feature of the subset parts of the238

experiments. For the main parts, a smoothing parameter of 0.8 and confidence interval sizes of 2.5 for239
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FGCC and 3.5 for number and size of lesions were used for 2022, and a confidence interval size of 2.5240

for all traits in the main parts was used in 2020 and 2021. Where more than 25% of pot observations241

at a single time point were flagged as outliers, the entire imaging time point was removed from the242

analysis for the respective trait. Next, a two-dimensional P-spline was fitted for spatial modeling243

at each time point and lastly, longitudinal splines with 5 knots for the main experiment parts and244

10 knots for the fungicide treated experimental subsets were fitted to the spatially corrected data245

for each pot. The fitted splines were then used to extract intermediate traits [26]. In addition to246

the manual outlier removal that was applied before fitting the models, a rule-based outlier removal247

was applied to the modeled time-course of the individual experiments. For the main parts in 2020,248

2021 and 2022, pots that did not exceed an FGCC of 0.03 at 0 DAI were removed from the analysis249

to account for non-germinated pots. Due to the proximity of the pots in the main parts where the250

pots were grown in rows of four, overlapping plant material was observed from neighboring pots in251

the late stages of growth. To remove the pots where a high FGCC was reached only due to overlap252

from neighboring pots towards later growth stages, pots that met two conditions were also removed:253

(i) an average FGCC of less than 0.08 between 7 and 28 DAI and (ii) an average FGCC of more254

than 0.12 after 28 DAI. For the subset parts in 2021 and 2022, little overlap was observed due to255

the spacing of the pots. Therefore, the only outliers that were removed were all pots that did not256

exceed a maximum of 0.05 for the fitted FGCC over the entire time, accounting for non-germinated257

pots.258

2.6 Intermediate trait extraction259

After visual inspection of the fitted FGCC splines from the subset experimental part of 2021, eight260

intermediate traits were extracted from the fitted splines for the RGB data (Supplementary Figure261

10). The relative change of FGCC (RGR = 100 × FGCC2−FGCC1

FGCC1
) over four biweekly periods262

(RGR0−14, RGR14−28, RGR28−42, RGR42−56) was chosen to represent the plant response (Figure263

4) [31, 65, 66]. The number of days until the first maximum of the spline after inoculation was defined264

as the Breaking Day when FGCC starts to decline. An additional relative growth rate (RGRcrit)265

was then defined as the change between FGCC on the average Breaking Day of control cultivars266

Howzat and Genesis090 within each experimental subset and FGCC 14 days after the Breaking Day.267

The Latent Period until the appearance of lesions, defined as days after infection until a minimum268

of three lesions are detected on the leaves, was calculated from the fitted splines for the number of269

lesions. A threshold of three lesions rather than a single lesion was chosen to limit the amount of270

false positives.271

For each of the vegetation indices, FGCC and the number of lesion, the area under the curve272

(AUC) of the splines was estimated by integrating the daily modeled values between 0 and 42 DAI273

(TraitAUC =
∑42

dai=0 Traitdai) [67].274

2.7 Genotypic and treatment effects275

To estimate the effects of genotype and treatment on intermediate traits in the subset experimental276

parts, mixed models were fitted using the R package statgenGxE [68] version 1.0.5 with treatment277
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(T) and treatment by year of trial (T:Y) as fixed effects and the rest including genotype (G) as278

random effects.279

y = T + T : Y + (1|G) + (1|G : T ) + (1|G : T : Y )

2.8 Predictive models280

Disease index classification The models were developed and evaluated in the tidymodels ver-281

sion 1.0.0 framework [69]. The score category of each pot was predicted using intermediate traits282

from each RGB-only, multispectral-only, and both sensors combined. A multilayer perceptron neu-283

ral network classifier (MLP-NN) and logistic regression classifier were tested and evaluated based284

on estimated area under the receiver operating characteristic curve (ROC AUC) from five-fold CV285

with five repeats. To determine the variable importance of traits for the prediction of disease index286

classes, 500 random forest models with different random seeds were fitted to the subset datasets of287

2021 and 2022 individually. Permutation-based variable importance scores, based on the decrease in288

model performance when the variable is randomly shuffled, were then extracted for all models using289

the vip v0.3.2 package [70–72].290

Early detection of infection Predictive models to distinguish fungicide treated pots from in-291

fected pots as early as possible were trained on the daily values of the modeled traits FGCC, number292

of lesions, and the five vegetation indices in increments of two days. Hence, the naive model at 0293

DAI included seven predictors from 0 DAI. The model at 2 DAI included the predictors from both294

0 DAI and 2 DAI. Each subsequent model included the traits from previous dates as predictors, as295

well as the most recent ones. A MLP-NN was trained on the data from the individual years after a296

dimensionality reduction to seven principal components and tested on the respective opposite year.297

Permutation testing was used to evaluate whether the algorithms performed significantly better than298

a random classifier.299

3 Results300

3.1 Visual scores301

Most pots that did not receive fungicide showed high disease indices, with a large proportion of pots302

completely dead at the time of scoring in the three years of main parts (Figure 3, Supplementary303

Table 7). The control cultivars Howzat and Genesis090 were scored consistently throughout the304

main parts of the three seasons, with average disease indices (± standard deviation) of 98 ± 5,305

94 ± 11, 90 ± 11 for Howzat and 68 ± 13, 76 ± 7, 57 ± 3 for Genesis090 in 2020, 2021 and 2022,306

respectively. In the infected pots of the subset parts, Howzat was scored 100±0 in 2021 and 73±10307

in 2022 and Genesis090 was scored 84± 11 in 2021 and 59± 14 in 2022, indicating that the disease308

pressure was lower in 2022 than in 2021. The candidate resistant accession WLD085 consistently309

achieved the lowest mean DI across all genotypes in all experiments where it was included (2020310

main: D̄I = 13±11, 2021 Main: D̄I = 8±7, 2022 Main: D̄I = 15±5, 2022 Subset: D̄I = 8±2). The311
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Figure 3: Histograms of scores for all disease screens and dot plot of disease indices of control
genotypes Genesis090 and Howzat and candidate resistant genotype WLD085 (not included in 2021
subset). Dashed lines represent cut-offs for score categories (High DI, Medium DI, Low DI).

fungicide treatment was not able to completely prevent AB infection in both years with treatment312

averages of 81±24 for infected pots and 11±19 for pots treated with fungicides in 2021 and 46±23313

for infected pots and 9 ± 7 for fungicide-treated pots in 2022. All interaction effects of genotype,314

treatment and year as well as main effects were significant for the disease indices (Supplementary315

Table 5).316

Repeatability of visual scoring Within-scorer repeatability was high with overall accuracies of317

96 % (κ = 0.93) for scorer A and 96 % (κ = 0.89) for scorer B, but the between-scorer repeatability318

was lower with accuracies ranging from 75 % (κ = 0.47) to 79 % (κ = 0.55) (Table 2).319
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Table 2: Accuracies and Cohen’s κ for repeated scoring. 28 pots were scored independently twice
by two different expert raters. All three classes of scores (Low, Medium, High) were represented.

Truth Estimate Accuracy κ

Within scorer

Scorer A, Round 1 Scorer A, Round 2 96.43 % 0.93
Scorer B, Round 1 Scorer B, Round 2 96.43 % 0.89

Between scorer

Scorer A, Round 1 Scorer B, Round 1 75.00 % 0.48
Scorer A, Round 1 Scorer B, Round 2 75.00 % 0.48
Scorer A, Round 2 Scorer B, Round 1 75.00 % 0.47
Scorer A, Round 2 Scorer B, Round 2 78.57 % 0.55

3.2 Evaluation of low-level trait extraction320

FCCC can be estimated both with RGB and multispectral data The accuracy of semantic321

segmentation of multispectral images for the 2021 data was 91 % for the first imaging date (27 DAS322

≡ -7 DAI) and then ranged between 96 and 98 % for the remaining imaging time points. For323

multispectral data from 2022 and RGB data, semantic segmentation was only evaluated visually324

based on predicted masks. Pearson’s correlation coefficients between FGCC derived from the RGB325

camera and the multispectral camera were 0.97 and 0.98 in 2021 and 2022, respectively. This326

indicates that even under difficult lighting conditions, both RGB and multispectral camera can327

accurately estimate FGCC.328

In situ measurements of FGCC are strongly correlated to plant shoot area Out of the329

831 plants that were imaged in the automated phenotyping system after scoring in the 2021 season,330

661 belonged to the main experimental set and 170 belonged to the subset and were chosen to test331

the accuracy of the in situ imaging. PSA and FGCC derived from both images in the nursery and332

images in the automated phenotyping system were all strongly and significantly correlated (Table333

3). In an unrelated previous calibration experiment of the automated phenotyping system using cv.334

Genesis090 at various growth stages, a Pearson correlation of 0.99 between fresh weight and PSA was335

observed (Berger, unpublished data). These combined results indicate that in situ measurements of336

FGCC can be used to estimate chickpea shoot biomass.337
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Table 3: Pearson correlations between low-level traits measured in an automated phenotyping system
(’PSA’ and ’FGCC controlled’) with FGCC measured in situ. (*** indicates p < 0.001, Adjustment
= Holm).

Trait PSA FGCC controlled FGCC in situ

Main: PSA 1 — —
Main: FGCC controlled 0.92*** 1 —
Main: FGCC in situ 0.83*** 0.88*** 1

Subset: PSA 1 — —
Subset: FGCC controlled 0.90*** 1 —
Subset: FGCC in situ 0.86*** 0.91*** 1

Lesion detection The network for lesion detection achieved an F1-score of 0.27 on the validation338

set from 2020, and an F1-score of 0.30 on the validation set from 2021 that each consisted of 300339

images. Based on these metrics and visual examination of the predicted lesions, the detection is340

not very accurate but the method can still provide an estimate that would not easily be achievable341

with human vision (Figure 5, Supplementary Figure 9). The training time for the network was342

approximately 37 hours in 345 epochs, and the prediction time for one image was approximately343

0.05 seconds. This detection speed which would allow for real-time detection in the field.344

3.3 Smoothed FGCC and lesion count345

In both years that the fungicide treatment trial was conducted, a reduced average growth rate of346

FGCC was observed for infected pots compared to non-infected pots (Figure 4). This reduction347

was stronger where the disease score class was higher. In 2022, the average reduction of growth348

of FGCC in infected pots was not as pronounced as in 2021 and only started later in the season.349

Similarly, the development of lesions started later in 2022 on average compared to 2021, consistent350

with that year’s lower disease pressure indicated by scores of control genotypes. In 2021, the high351

DI class showed the earliest and fastest development of lesion. The average Breaking Day of the352

control cultivars was 16 DAI in 2021 and 32 DAI in 2022, delaying the period for RGRcrit by 16353

days in 2022. In the main experimental parts, the average Breaking Day of the control genotypes354

was 16 DAI in 2020, 18 DAI in 2021, and 28 DAI in 2022 (Supplementary Figure 9).355

3.4 Treatment effects on intermediate traits in subset experiments356

There was significant genotype by treatment by year interaction for the traits Breaking Day and357

NGRDI AUC. Both traits relating to lesion production, Latent Period and Lesion AUC, as well358

as RGR28−42 and ENDVI AUC showed significant treatment by year and genotype by treatment359

interaction. RGR14−28 and RGR42−56 showed significant genotype by treatment interaction but no360

significant treatment by year interaction. No significant effects were observed for RGR0−14. For361

RGRcrit, only the main genotypic and treatment effects were significant. For the remaining vegeta-362
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Figure 4: Smoothed fractional green canopy cover (FGCC) for pots in subset experiment, grouped
by disease severity class. Individual lines represent individual pots and thick lines represent the
group average. Shaded area corresponds to the 14 days after the respective mean breaking day of
control genotypes Howzat and Genesis090 (RGRcrit).
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Figure 5: Smoothed number of lesions detected with YOLOv5 for pots in subset experiment, grouped
by disease severity class. Individual lines represent individual pots and thick lines represent the group
average. Note different y-axes for the seasons.
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Figure 6: Permutation based variable importance for classification of disease index class, based on
permutation in 500 random forest models trained on infected subset within each season.

tion indices AUC (GNDVI, NDVI, RENDVI), there were significant treatment by year interactions363

and genotypic main effects (Supplementary Figures 10 and 11, Supplementary Table 5).364

3.5 Disease index classification365

Growth rates are the most important predictors for disease index classes For the subset366

in 2021, RGR28−42 was the most important predictor for score classification, followed by RGRcrit367

(Figure 6). In 2022, the most important variable was RGR42−56, again followed by RGRcrit. The368

higher importance of the later period in 2022 compared to 2021 is consistent with the mean Breaking369

Day of the control genotypes that occured 16 days later. As RGRcrit was the second most important370

variable in both years and showed a significant positive Pearson correlation with the respective most371

important growth rate within each year (2021: 0.90, 2022: 0.95), RGRcrit was chosen to train a372

simple classification model.373

Application of trained score classifiers to the main experimental part The logistic re-374

gression model estimating the score class based on RGRcrit was trained on infected pots from the375

fungicide-treated experimental subset from both years (n = 160) and then applied to the main exper-376

imental parts of 2020, 2021 and 2022 (Table 4). The linear decision boundaries of the model returned377

the class ’High DI’ for values of RGRcrit ≤ −20, the class ’Low DI’ for values of RGRcrit > 10 and378

the class ’Medium DI’ for all values of RGRcrit between -20 and 10. The accuracies achieved when379
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Table 4: Confusion matrices and classification metrics for the prediction of score groups of the main
experimental parts with a classifier trained only on the infected pots of subset experiments from
2021 and 2022.

Low DI Medium DI High DI

2020 Main: Accuracy = 72.46 %, κ = 0.50

Predicted: Low DI 40 142 13
Predicted: Medium DI 72 838 266
Predicted: High DI 1 59 577

2021 Main: Accuracy = 80.97 %, κ = 0.59

Predicted: Low DI 44 142 4
Predicted: Medium DI 15 421 230
Predicted: High DI 1 81 1547

2022 Main: Accuracy = 65.48 %, κ = 0.43

Predicted: Low DI 137 239 68
Predicted: Medium DI 93 792 230
Predicted: High DI 0 105 465

applying the classifier to the main experimental subsets were 72.46 % (κ = 0.50) for data from 2020,380

80.97 % (κ = 0.59) for 2021, and 65.48 % (κ = 0.43) in 2022 (Table 4).381

Estimated within-year disease index classification performance For the data from 2021,382

the within-year disease score classification performance estimated by cross-validation was similar383

whether MLP-NN or logistic regression models were used and whether spectral data was included384

or not (Supplementary Table 6). All the models where RGB-derived traits were included achieved385

an estimated accuracy > 80%, irrespective of model choice and inclusion of spectral data. However,386

when using only the spectral traits, the estimated model performance decreased to an accuracy of387

63± 2%. When using only RGRcrit, an estimated accuracy of 72± 2% was achieved. For the data388

from 2022, the simple model based on RGRcrit outperformed all other classifiers with an estimated389

accuracy of 68 ± 2%, showing the transferrability of this model and confirming the results of the390

analysis of variable importance within the experiments (Figure 6).391

3.6 Early detection of disease392

The cross-validation performance of the early detection classifiers showed that infected and non-393

infected plants can be discriminated with > 90% accuracy from 18 DAI in 2021. The estimated394

performance in 2022 is worse, with the best models only reaching accuracies of > 80% 42 DAI395

(Figure 7). An analysis of variable importance at the respective dates showed that the number of396

lesions had the highest importance for the classification. For both years, the three most important397

variables were the lesions counts of the respective most recent three time points (that is, 18, 16,398

14 DAI in 2021; 42, 40 and 38 DAI in 2022). Therefore, a simple classifier based on the presence399
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of three or more lesions was included in the evaluation of between-year prediction accuracy. When400

testing the trained classifiers on the respective opposite seasons, the presence of three or more lesions401

was the most accurate classifier for both years. It showed a consistent upward trend from 12 DAI in402

2021 and 20 DAI in 2022. In 2021, a maximum accuracy of 92.6% was reached 30 DAI, plateauing403

until 38 DAI and then declining again. In 2022, a maximum accuracy of 75.7% was reached 42 DAI.404

Classifiers based on RGB and spectral data were less consistent, with RGB-only data performing405

best in both years (Figure 7).406

4 Discussion407

Limitations of data acquisition Spectral measurements in the field are affected by incident ra-408

diation [73]. Varying imaging times on individual imaging days lead to shading and harsh contrasts409

in some of the images (Supplementary Figure 12). This was addressed by preprocessing the RGB410

sensor data with dynamic range compression but should ideally be controlled for during the acquisi-411

tion, for example by using a dedicated ground-based phenotyping platform to provide shading and412

artificial illumination. The subset part of 2022 was imaged before sunrise when lighting was diffuse,413

and better binary segmentation for the multispectral images was achieved. Unlike the subset part in414

2021, where multispectral segmentation classifiers had to be adjusted for each imaging time point,415

a single classifier trained on data 2021-08-24 (35 DAI) was sufficient for all imaging time points in416

2022.417

Another limitation during data acquisition was the proximity of pots in the main parts of 2020,418

2021 and 2022 that led to overlap of plant material between neighboring pots visible from the top view419

perspective (Figure 1). This issue was partially addressed by developing a rule-based outlier removal420

procedure that detects pots where FGCC only rises late in the season due to neighboring pots.421

However this procedure cannot identify pots where FGCC in regularly growing pots is influenced by422

the neighbors. To improve data acquisition, the pots should be sufficiently spaced.423

The YOLOv5 algorithm for lesion counting performed well enough to provide a useful trait, but424

would likely benefit from more training data and higher image quality with higher spatial resolution.425

Either annotating more training data or transfer learning might further improve the detection of426

lesions [74–76].427

Smoothing and trait extraction In this study, spatio-temporal modeling was applied to esti-428

mate genotypic and treatment effects. Spatio-temporal modeling for sensor-based phenotyping is429

an active area of research and there are multiple approaches [26, 27, 77]. For the chosen method430

using statgenHTP, a minimum of seven imaging time points is required [64]. The required imaging431

and preprocessing for that amount of timepoints is labor intensive, but can compensate for outliers432

caused by data acquisition and experimental design.433

Although more labor intensive, another advantage of longitudinal data for measuring AB severity434

in chickpea is the ability to estimate key phenotypic stages (Breaking Day) that can be used to435

normalize seasonal differences in disease progression and compare with control genotypes (RGRcrit).436

Furthermore, small differences in the early response to the disease can be detected when measuring437
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Figure 7: The upper panel shows within year cross-validation results. Mean and standard error from
five repeats of five-fold cross-validation is shown for models trained on data up to the respective DAI,
based on RGB and spectral traits. The lower panel shows the accuracy of predictions derived from
the model trained on the entire data from the opposite year, as well as the accuracy of predictions
based on the presence of three or more lesions. Dashed green line in lower panel represents the
significance threshold, points that lie above it have a 95% chance of having performed better than
a random classifier.
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over time, and these differences can be useful to breeders given the quantitative nature of resistance438

to AB. In the germplasm that was screened in this study, a large proportion had died by the time439

of visual scoring, particularly within the Wild Cicer and Introgression genotypes in 2020 and the440

Vavilov set in 2021 (Supplementary Table 7). When only few or only end point measurements are441

performed, no matter whether visual scoring or imaging, partial resistance expressed in the early442

response to infection may be missed.443

A potentially infinite number of intermediate traits can be extracted from the splines fitted to444

FGCC, number of lesions, and VI. We chose intermediate traits based on visual inspection of the445

splines of the 2021 subset, but more options are available for trait extraction [64, 77].446

Perspectives Traits extracted from RGB imaging worked better than those from multispectral447

imaging for both early detection and disease index class prediction, but so far, trait extraction from448

multispectral images was limited to AUC traits. It is possible that other traits extracted from449

VI could improve classification, as NDVI at a single time point had high predictive power for AB450

disease severity scores in a study of the effects of fungicide on field-grown chickpea [37]. Therefore,451

more trait extraction and feature selection needs to be performed. Measurements of FGCC from452

multispectral and RGB camera were highly correlated (2021: r = 0.97, 2022: r = 0.98), meaning453

that growth rates could have also been derived from the multispectral images alone.454

The period from 28-56 DAI was most important for disease class prediction, offering a potential455

simplification of the data acquisition process by only measuring at a few select time points. However,456

this would forfeit the ability to fit longitudinal splines. Currently, detection of lesions does not457

contribute to the prediction of the disease class; however, the detection of three or more lesions was458

the best criterion to differentiate between fungicide-treated and infected pots. Incorporating lesion459

detection for the prediction of disease class could be an option to increase specificity in non-controlled460

field screens, where other stressors may influence growth rates [35].461

At this stage, the cropping and assignment of positions to individual pots had to be performed462

manually; this was the major bottleneck for data acquisition. To speed up data acquisition, a fixed463

gantry or cable-driven system or dedicated ground-based phenotyping devices could be used for464

better identification and positioning of pots. Such systems could also improve the lighting with465

active illumination and shading [73]. Optimising the experimental design for imaging by spacing the466

pots further apart might increase the accuracy of scores class prediction. The estimation of growth467

rates could be improved by using 3D biomass estimates instead of FGCC. While we argue that more468

research is needed concerning the trait extraction especially for multispectral data, deep learning469

could offer an alternative approach by skipping trait extraction and using sensor data directly for470

the target trait prediction [24].471

As a tool for breeding, the sensor-based methods were benchmarked on their ability to predict472

classes of visual scores; however, they are not intended as a replica of visual scoring. Instead, selec-473

tions may be made based directly on quantitative traits such as growth rates and lesion development.474

In summary, the proposed methods offer a way to improve screening for resistance to Ascochyta475

blight in chickpeas, which may increase genetic gain in breeding programs. The methods make476

it easier to measure and identify resistance components that would be difficult to measure with477
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human vision alone. Due to the exclusive use of affordable sensors combined with free and open-478

source software tools, the barrier to entry for uptake and adoption of the methods to other host-479

pathosystems is low.480
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Figure 8: Fitted values for FGCC for main parts in each season, grouped by disese severity class.
Individual lines represent individual pots, control genotypes are highlighted by color and the mean
of the control genotypes is indicated as a thicker line. Shaded area represents the 14 days following
the mean Breaking Day of Howzat and Genesis090 in each respective season.
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Figure 9: Fitted values for number of lesions for main parts in each season, grouped by disese severity
class. Individual lines represent individual pots, control genotypes are highlighted by color and the
mean of the control genotypes is indicated as a thicker line.
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Figure 10: Intermediate traits derived from RGB imaging per score group and treatment. Dots
represent individual pots.
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Figure 11: AUC between 0 and 42 DAI of vegetation indices per score group and treatment. Dots
represent individual pots.
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Table 5: P-value for effects of genotype (G), treatment (T), year of trial (Y), and respective inter-
actions.

Trait T G T:Y G:T G:T:Y

Visual score

Disease Index <0.001 <0.001 <0.001 <0.001 0.011

RGB

Breaking Day <0.001 <0.001 <0.001 <0.001 0.046
Latent Period <0.001 <0.001 <0.001 <0.001 0.095
Lesions AUC <0.001 <0.001 <0.001 <0.001 0.503
RGR0−14 0.554 0.875 0.314 0.847 0.083
RGR14−28 0.338 0.028 0.597 0.038 1.000
RGR28−42 <0.001 <0.001 0.001 0.010 1.000
RGR42−56 <0.001 <0.001 0.063 <0.001 1.000
RGRcrit <0.001 0.004 0.133 0.137 0.291

Multispectral

ENDVI AUC 0.027 <0.001 <0.001 0.008 0.313
GNDVI AUC <0.001 <0.001 <0.001 0.293 0.919
NDVI AUC 0.132 <0.001 <0.001 0.204 0.358
NGRDI AUC <0.001 <0.001 <0.001 0.029 0.001
RENDVI AUC 0.277 <0.001 <0.001 0.313 0.873
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Figure 12: Images of five sample pots with varying disease indices over eleven time points, data from
subset in 2021 where lighting was uneven.
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Table 6: Estimated ROC AUC, F1 score and accuracy for score classification using intermediate
traits for infected subsets. Standard error from 5-fold CV with 5 repeats within each season is
shown.

Predictors Model ROC AUC F1 score Accuracy

2021

RGB + VI MLP - NN 0.86 ± 0.02 0.77 ± 0.02 0.81 ± 0.02
RGB + VI Logistic Regression 0.89 ± 0.02 0.75 ± 0.03 0.8 ± 0.02
RGB - only MLP - NN 0.85 ± 0.02 0.74 ± 0.03 0.82 ± 0.02
RGB - only Logistic Regression 0.86 ± 0.02 0.76 ± 0.03 0.82 ± 0.02
VI - only MLP - NN 0.67 ± 0.02 0.46 ± 0.03 0.53 ± 0.02
VI - only Logistic Regression 0.71 ± 0.03 0.58 ± 0.03 0.63 ± 0.02
RGRcrit - only Logistic Regression 0.81 ± 0.02 0.68 ± 0.03 0.72 ± 0.02

2022

RGB + VI MLP - NN 0.67 ± 0.03 0.59 ± 0.03 0.61 ± 0.03
RGB + VI Logistic Regression 0.76 ± 0.03 0.63 ± 0.03 0.65 ± 0.02
RGB - only MLP - NN 0.61 ± 0.03 0.52 ± 0.03 0.55 ± 0.02
RGB - only Logistic Regression 0.71 ± 0.02 0.56 ± 0.02 0.6 ± 0.02
VI - only MLP - NN 0.54 ± 0.03 0.47 ± 0.03 0.48 ± 0.03
VI - only Logistic Regression 0.48 ± 0.02 0.39 ± 0.02 0.43 ± 0.02
RGRcrit - only Logistic Regression 0.79 ± 0.02 0.67 ± 0.03 0.68 ± 0.02
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Table 7: Distribution of disease severity class per experiment, treatment and genotype group.

Genotypes Treatment Low DI Medium DI High DI Total pots

2020 Main

Cultivar Infected 5.7 % (83) 66 % (966) 28.3 % (415) 1464
FLIP Infected 21.4 % (27) 59.5 % (75) 19 % (24) 126
Introgression Infected 0 % (0) 3.3 % (3) 96.7 % (87) 90
Wild cicer Infected 0.8 % (3) 0.8 % (3) 98.4 % (378) 384

2021 Main

Cultivar Infected 0 % (0) 22.2 % (2) 77.8 % (7) 9
FLIP Infected 3.2 % (56) 34.9 % (611) 61.9 % (1084) 1751
Introgression Infected 1.9 % (1) 17 % (9) 81.1 % (43) 53
Vavilov Infected 0.1 % (1) 2.9 % (20) 96.9 % (658) 679
Wild cicer Infected 41.7 % (5) 41.7 % (5) 16.7 % (2) 12

2021 Subset

Cultivar Fungicide 92.9 % (65) 2.9 % (2) 4.3 % (3) 70
Cultivar Infected 5.3 % (4) 30.7 % (23) 64 % (48) 75
Wild cicer Fungicide 100 % (14) 0 % (0) 0 % (0) 14
Wild cicer Infected 35.7 % (5) 14.3 % (2) 50 % (7) 14

2022 Main

Cultivar Infected 28.7 % (27) 61.7 % (58) 9.6 % (9) 94
FLIP Infected 10 % (148) 56.8 % (838) 33.2 % (489) 1475
Introgression Infected 13.7 % (30) 62.1 % (136) 24.2 % (53) 219
Other Infected 18.5 % (5) 77.8 % (21) 3.7 % (1) 27
Vavilov Infected 2 % (1) 52.9 % (27) 45.1 % (23) 51
Wild cicer Infected 8 % (36) 24.3 % (110) 67.7 % (306) 452

2022 Subset

Cultivar Fungicide 100 % (72) 0 % (0) 0 % (0) 72
Cultivar Infected 40.5 % (30) 54.1 % (40) 5.4 % (4) 74
Wild cicer Fungicide 100 % (13) 0 % (0) 0 % (0) 13
Wild cicer Infected 63.6 % (7) 9.1 % (1) 27.3 % (3) 11
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Chapter 4

Time course RGB imaging
outperforms hyperspectral imaging
for chickpea Ascochyta blight
severity prediction in the
greenhouse
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4.1 Declarations
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4.2 Abstract

Hyperspectral imaging can be used for the prediction of disease severity and early
detection of diseases in plants to support resistance breeding and precision agriculture.
So far, it has not been applied to chickpea and Ascochyta blight, a disease caused by
the necrotrophic fungus Ascochyta rabiei (Pass.) Labr. (syn. Phoma rabiei). Here, we
imaged two experiments of greenhouse-grown chickpea plants infected with A. rabiei
in an automated phenotyping system with hyperspectral and RGB sensors for three
weeks after inoculation. We developed regression models to predict disease indices, as
well as classification models to distinguish infected from noninfected plants as early
as possible. Testing the models in cross-validation, the longitudinal traits extracted
from the RGB data resulted in a much more transferable model, achieving a validation
R2 = 0.64 compared to the best hyperspectral imaging-based model that only achieved
a validation R2 = 0.02. Early detection algorithms based on hyperspectral data reached
estimated accuracies of 71% at 12 days after infection in 2020 to 78% at 9 DAI in 2021
in cross-validation. However, the classifiers trained on hyperspectral data were not
transferable from the training experiment to the validation experiment, where they
only achieved accuracies of 42% to 54%, no better than random classifiers. This
study demonstrates the suitability of RGB time course imaging derived traits for the
prediction of the severity of Ascochyta blight disease in greenhouse-grown chickpea
plants and the challenges and limitations of hyperspectral models for both severity
prediction and disease detection.

4.3 Introduction

4.3.1 Spectroscopy for plant disease phenotyping

Hyperspectral sensing can be applied to guide integrated disease management in
precision agriculture, identify sources of resistance in breeding programs and to exam-
ine the biochemical interactions between plants and pathogens (Chapter 2) (Mahlein
et al., 2018). The fine spectral resolution and extended spectral range of hyperspec-
tral sensors can enable the measurement of such specific interactions (Brugger et al.,
2021; Mahlein et al., 2018). Therefore, hyperspectral sensing can support breeding
by detecting small differences in quantitative resistance and potentially detecting
resistance mechanisms (Mahlein et al., 2018). If automated phenotyping systems
are used, hyperspectral sensing has, as other sensor-based methods, the potential
to increase throughput, thereby allowing a larger number of plants to be screened.
Several plant-pathogen interactions and host resistance mechanisms that are known
for chickpea AB could potentially be detected using hyperspectral sensing, including
polyamine metabolism, malic acid content, and up-regulation of peroxidase activity
(Chapter 1). Hyperspectral sensing can be distinguished into imaging (2D, 3D) and
non-imaging (1D) techniques, where imaging techniques can consider the spatial vari-
ability and separate plant material from background material, whereas non-imaging
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FIGURE 4.1: Steps in hyperspectral sensing from data acquisition to
trait prediction. Especially the steps in data processing and target trait
prediction require subjective user choices that can influence the results.

spectroscopy can only measure the average reflectance of an entire scene. The non-
imaging approach can either be proximal or contact sensing, whereby contact sensing
requires manual fixing of the leaves (Fernando Emiliano Romero Galvan et al., 2022).
The application of hyperspectral sensing, in particular imaging, is currently limited by
the required complex technical setup including cameras and illumination as well as
the analysis workflow. The data processing (Figure 4.1) regularly requires subjective
user choices that can have a large influence on the results of the analysis (Paulus and
Mahlein, 2020; Hennessy, Clarke, and Lewis, 2020).
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4.3.2 Related work

Non-imaging spectroscopy

Contact spectroscopy In contact spectroscopy, the sensor is brought close to the sam-
ple with a probe tip. Four potato genotypes inoculated by leaf plug with Phytophtora
infestans were measured daily over the course of one week after inoculation with a
leaf-clip high-spectral-resolution SVC HR-1024i (350–2500 nm) field spectroradiometer
(Spectra Vista Corporation, Schnectady, NY, USA) (Gold et al., 2020b). The spectral
reaction between an R-gene transformed cultivar and its non-transformed counterpart
was similar, whereby the transformed cultivar had a stronger reaction in the VNIR
region. Despite genotypic difference in spectral response, detection accuracy with a
random forest (RF) classifier did not depend strongly on the inclusion of genotypic
information, at both control vs pre-symptomatic timepoints (83.41 % vs 84.83 %) and
control vs postsymptomatic timepoints (82.65 % vs 81.74 %). Three different feature
selection algorithms identified similar wavebands across VIS, VNIR, and SWIR regions
that were important for the detection of disease. It was recommended to include the
SWIR region bands for robust detection models due to the stability of the spectral
response to infection, which remained consistent across cultivars. The metabolic and
physiological changes that were suggested to be linked to spectral response were water
content, nitrogen content, and total phenolics content. Phenolic content and water
content are also affected in chickpea affected by AB, making these traits interesting
candidates for detection (Table 1.2). No disease severity prediction was conducted as
plants with low severity were excluded from the study and no significant differences
between the cultivars were observed, despite the inclusion of a transformed plant
containing a copy of an R-gene from a potato wild relative.

The wavebands related to water content also played a role in the classification
between rice plants treated with mock-inoculation and inoculation of Rhizoctonia solani
(rice sheath blight) (Conrad et al., 2020). Only one day after inoculation, the treatments
could be distinguished with 86.1 % accuracy. The authors used contact sensing in only
the SWIR range with a NeoSpectra micro handheld spectrometer (SiWare Systems, La
Canada, CA, USA; 1348–2551 nm; 16 nm spectral resolution) and found informative
bands linked to moisture, starch, cellulose and protein content (Chapter 2).

In pot-grown peanuts (Arachis hypogaea L.) infected with Athelia rolfsii, leaf-clip
spectrometry between 200 - 1100 nm (Handheld Jaz spectrometer, 0.46 nm optical
resolution, Ocean Optics, Dunedin, FL, USA) was performed and disease severity
was classified in three different models (a) Binary classification: Healthy and Severe,
(b) Three-class model: Healthy, Mild, Severe, and (c) Five-class model: Healthy,
Presymptomatic, Lesion only, Mild, Severe (Wei et al., 2021). The choice of learning
algorithms had significant impact on the classification accuracy, depending on the
number of classes. Various feature selection algorithms chose similar important bands
in VIS, Red-edge and NIR region related to chlorophyll and carotenoid content. This
study highlights the importance of choice of learning algorithm and underlines the
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advantage of ensemble feature selection for robust waveband selection. Even though
daily spectral measurements were taken, the time course data was only considered
insofar that each plant was visually rated at each measurement day, thereby providing
a disease class label for each timepoint. A similar approach to time series data analysis
was chosen by Gold et al., 2020b and has the advantage of normalisation for disease
development between experiments. However, it makes the classification completely
dependent on ground-truthing by visual scoring.

Contact spectroscopy has also been applied to tree diseases. Leaves of lemon
myrtle trees (Backhousia citriodora) affected by Austropuccinia psidii were scanned with
a non-imaging spectroradiometer (Spectral Evolution PSR+ 3500) resampled to a
resolution of 10 nm between 350 - 2500 nm (Heim et al., 2018). High classification
accuracy between (i) healthy, non-treated trees, (ii) treated and (iii) diseased, untreated
trees were achieved. A major influence of derivation of the spectra was observed,
classification accuracy increased from 78 % (κ = 0.68) for primary spectra to 95
% (κ = 0.92) for first-order derivatives, again highlighting the importance of pre-
processing steps. It is possible that factors unrelated to the disease may have increased
the reported detection accuracy, as treatment (i) was sampled at a different location
compared to treatments (ii) and (iii). Important features for the classification were
identified in VIS, VNIR, and SWIR regions linked to necrosis, chlorosis, water content,
and general plant stress.

In a study comparing the spectral response of potato to infection with two different
pathogens (Phytophthora infestans and Alternaria solani), successful presymptomatic
distinction (Accuracy = 80 %) between the diseases was achieved with a contact
spectrometer (SVC HR-1024i; 350–2500 nm; Spectra Vista Corporation, Schnectady,
NY, USA) (Gold et al., 2020a). This study indicates that disease-specific detection is
possible with contact spectrometry.

Proximal spectroscopy does not require contact of the sample and probe tip of the
sensor. This can increase throughput but may reduce data quality because non-plant
materials present in the scene is also measured alongside the material of interest. In one
such study, measurements of wheat infected with powdery mildew in the field were
taken both at flowering and filling from 1 m above the canopy with a handheld non-
imaging spectrometer (FieldSpec Handheld 2, Analytical Spectral Devices, Boulder,
CO, USA, 325–1075 nm) (Ziheng Feng et al., 2021). In addition, a FLIR T650sc thermal
infrared camera (FLIR Systems, Inc., Wilsonville, OR, USA) was used to derive canopy
temperature parameters and RGB-image based texture features. Data fusion of spectral
vegetation indices with temperature and texture parameters improved the prediction
of a disease index, showing that multimodal sensing can improve disease severity
prediction. The authors found that RF regression performed better than support vector
machine (SVM) and partial least squares (PLS) regression, once more highlighting the
influence of learning algorithms. Even though two timepoints were measured, the
results were pooled and only differentiated by the visually scored disease severity at
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the respective time points. It is possible that spectral signatures related to the growth
stage of the plants, not only the disease development, influenced the prediction results.

In an attempt at transferring results from contact spectrometry to proximal spec-
trometry, a non-imaging leaf clip spectrometry (350 - 2500 nm, FieldSpec 4 Hi-Res, ASD
Inc., Boulder, CO, USA) with active illumination was used on wild rocket (Diplotaxis
tenuifolia) infected with three different soil-borne pathogens (Rhizoctonia solani, Scle-
rotium rolfsii, and Sclerotinia sclerotiorum) under greenhouse conditions (Angelica
Galieni et al., 2022). Vegetation indices were calculated from wavebands that were
selected with a random forest feature selection approach. These vegetation indices
were then evaluated on canopy-level reflectance in a more natural growing environ-
ment with the same non-imaging spectrometer with only sunlight as illumination.
Significant rank correlations of indices formed from bands largely in the VIS spectral
region as well as one index from the SWIR region were observed with visual disease
severity scores in both environments. However, all calculated vegetation indices were
also significantly correlated with leaf area and dry matter, which questions whether
the spectral regions are biotic stress-specific, let alone pathogen-specific. It would be
interesting to see how an imaging spectrometer with which foreground reflectance
could be separated from background reflectance would perform at the canopy level.
No classification of causal pathogens was attempted. However, this study showed the
option of scaling up contact spectrometry to proximal spectrometry and estimating
general disease severity of wild rocket with non-invasive hyperspectral sensors at
canopy level. This provides a way for automated stress recognition in the field. A
further field using proximal spectroscopy study for Septoria tritici blotch, a disease
of wheat characterized by necrotic lesion, is discussed in Chapter 5 Section 5.3.3 (Yu
et al., 2018).

Imaging spectroscopy

Imaging of individual leaves Zhang et al., 2022 imaged detached rice leaves from a
field infected with Xanthomonas campestris pv. Oryzae (Rice bacterial blight) with an
imaging spectrograph (ImSpector V10E; Spectral Imaging Ltd., Oulu, Finland; 413
- 1016 nm; 473 bands) and a EMCCD camera (Raptor EM285CL, Raptor Photonics
limited, Larne, United Kingdom). Time course 2D data was collected over eight time
points, but the spectra were simply averaged over time and space for prediction
of lesion proportion and infection status. In a two-stage deep learning algorithm,
infection status could be classified with 92 % accuracy and proportion of lesions
predicted with an R2 of 0.96 on validation data. High classification accuracy and lesion
proportion were achieved, but it is not clear whether the time course nature of the data
provided an advantage as no comparison to using individual time points was made.

Extending the usual spectral range to the UV range, a change in flavonoid content
until 5 DAI of barley leaves infected with Blumeria graminis f. sp. hordei could be linked
with corresponding wavebands (Brugger et al., 2021). The leaves were detached
and imaged with a Hyperspec UV-VIS-Interline CCD Sensor (Headwall Photonics,
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Bolton, MA, USA; 240–500 nm; spectral resolution of 1.4 nm). This study shows
that wavebands beyond the usual spectral range of 400 - 2500 nm can be useful for
measuring specific plant-pathogen interactions (Chapter 2).

Detached leaves of sugar beet infected with Cercospora beticola were imaged with
a HySpex SWIR-320m-e line camera (Norsk Elektro Optikk A/S, Skedsmokorset,
Norway; 970–2,500 nm; Spectral resolution 6 nm) four days after infection from 1 m
distance (Arens et al., 2016). Genotypic differences of leaf metabolite content depend-
ing on the level of resistance were found by mass spectrometry. High correlations of
the metabolite contents to spectral data were found (R2 from 0.71 to 0.94), indicating
that HSI is a suitable technology for screening plant genotypes for resistance based on
specific metabolite contents.

Working on the same plant-pathosystem (Sugar beet - Cercospora beticola), but
imaging at an even closer distance, an overall decrease in reflectance in the spectral
range between 400 - 900 nm was shown to be correlated with sporulation (Oerke,
Leucker, and Steiner, 2019). This was demonstrated by using hyperspectral microscopy
of individual lesions with a spectral line scanner (Spectral camera PFD V10E, Spectral
Imaging Ltd., Oulu, Finland).

Aerial imaging Olive trees infected with Verticillium dahliae were imaged with a
hyperspectral (VNIR model; Headwall Photonics, Fitchburg, MA, USA; 400–885 nm;
260 bands; 40 cm GSD) and a thermal sensor from an aircraft at 500 m altitude (Zarco-
Tejada et al., 2018). The disease could be detected with 81.0 % accuracy (κ = 0.61) when
functional traits from both sensors were combined (Pigment-, Structure-, Fluorescence
and Temperature-based Functional Traits). The omission of fluorescence and thermal
traits only slightly decreased the accuracy to 78.5 % (κ = 0.56). However, when instead
of functional traits, standard vegetation indices where used, the accuracy decreased to
65.4 % (κ = 0.29). This shows the advantage of sensor fusion but even more so the
importance of translating reflectance measurements into functional traits related to
the plant-pathosystem (York, 2019).

Aerial imaging spectroscopy datasets were gathered from olive trees infected
by Verticillium dahliae (Calderón, Navas-Cortés, and Zarco-Tejada, 2015) and Xylella
fastidiosa Zarco-Tejada et al., 2018. These two datasets were combined and it was
shown that functional spectral traits can accurately distinguish the two diseases (98
%, κ = 0.7), even though the symptoms of the diseases are visually similar when
observed in the field (Poblete et al., 2021). This study showed that disease-specific
detection can be achieved.

For the viral disease Grapevine Leafroll-associated Virus Complex 3 (GLRaV-3),
accurate early disease detection was possible with aircraft-based imaging spectroscopy
data (AVIRIS - NG, 380 to 2510 nm range) (Fernando Emiliano Romero Galvan et
al., 2022). At a subsampled ground sampling distance of 3 m, an accuracy of 87 %
(κ = 0.73) was achieved for distinguishing pixels labelled as (a) non-infected and
(b) infected but asymptomatic. The authors thereby showed that the disease can
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be recognised not only at close range, but also at high throughput. However, no
discussion whether the same wavelengths as discovered in previous studies using
proximal and contact sensing were useful or sufficient for detection. Therefore, it is not
possible to hypothesize whether the same mechanisms were responsible for causing
the spectral changes that allowed the classification in each environment.

Spectroscopy for chickpea AB

One study reported the use of spectroscopy for disease severity prediction of chickpea
AB (Zhang, Chen, and Sankaran, 2019). A non-imaging leaf clip spectroradiometer
(SVC HR-1024i; 350–2500 nm; Spectra Vista Corporation, Schnectady, NY, USA) was
used to measure reflectance on three leaves from each of multiple plots of two chickpea
genotypes exposed to AB infection and various fungicide treatments at 11 and 19
DAI. Due to the varying efficacy of the fungicides and genotypic effects, a range
of disease severity was observed across the plots and visually rated on a scale of
1-9. The reflectance was normalized, binned to a bin width of 10 nm, and the three
measurements per plot were averaged. Then, vegetation indices were extracted, of
which many showed significant correlation with the disease rating. The highest
absolute Pearson correlation coefficients for vegetation indices were r = 0.51 11 days
after infection (DAI) with Modified Red Edge Simple Ratio (MRESR) and r = 0.60 19
DAI with Anthocyanin Reflectance Index (ARI2). Additionally, candidate features
were extracted using the least absolute shrinkage and selection operator (LASSO).
Using a linear regression model with the 14 features selected by LASSO as predictors,
correlation coefficients of r = 0.71 on 11 DAI and r = 0.73 on 19 DAI were achieved.
The selected bins were at 670, 680, 730, 770, 1220, 1230, 1241, 1251, 1260, 1271, 1281,
1380, 1391, and 1660 nm. No hypothesis was proposed as to why these wavelengths
were selected by the algorithm except for the inclusion of bands in the red and red edge
region that are used for many vegetation indices. Feature selection was performed with
LASSO, but this algorithm runs the risk of random selection of correlated predictors,
meaning that it should be validated on an independent test set, especially in situations
with high multicollinearity such as hyperspectral data (Figures 4.2, 5.6) (James et al.,
2013). Although the metrics were reported from an unseen test set from the same
experiment, it would be interesting to see how the features transfer to an independent
experiment. In addition, it is not clear how the three sampled leaves were chosen and
how the reflectance at the entire canopy level would perform to estimate severity.

4.3.3 Research opportunities

Whole plant hyperspectral imaging The use of contact non-imaging spectroscopy is
well established for measuring plant-pathogen interactions and high disease detection
accuracies have been achieved (Section 4.3.2; Chapter 2). However, it is not yet
clear how well the technology translates to proximal and imaging spectroscopy. The
imaging spectroscopy that has been performed to date has been largely at canopy scale
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of tree crops (Zarco-Tejada et al., 2018; Poblete et al., 2021) or on detached or fixed plant
parts at close range (Oerke et al., 2016; Oerke, Leucker, and Steiner, 2019; Zhang et al.,
2022). An exception is the study by Fernando Emiliano Romero Galvan et al., 2022,
where grapevines were imaged from the air (Paragraph 4.3.2). This leaves a research
opportunity for whole-plant time course imaging spectroscopy for plant-pathogen
interactions.

Time course hyperspectral imaging A few studies have performed time course
spectroscopy, however the data has often been aggregated by disease rating (Gold
et al., 2020b; Ziheng Feng et al., 2021; Wei et al., 2021) or averaged over time (Zhang et
al., 2022). An opportunity would be to consider the development over time or reduce
dimensionality of the entire dataset rather than averaging (Dorrepaal, Malegori, and
Gowen, 2016).

Detecting genotypic differences Often, the only goal of the studies employing spec-
troscopy is the (early) detection of infected samples compared to non-infected samples.
Less work is available that aims to measure genotypic differences and predict disease
severity.

Examining influence of pre-processing and learning algorithms Many studies do
not apply systematic comparisons of pre-processing and learning algorithms, even
though their influence is well documented (Heim et al., 2018; Wei et al., 2021; Hennessy,
Clarke, and Lewis, 2020).

Opportunities for AB in particular Specifically for AB of chickpea, no HSI has been
performed so far to my knowledge. Yet, multiple functional spectral traits that have
also been found to be important in other plant-pathosystems may be relevant for
chickpea AB, for example water and phenolic content (Table 1.2).

4.3.4 Research aims

This study aimed to predict disease indices of chickpea AB with whole plant time
course imaging using hypserspectral and multi-angle RGB sensors and compare the
sensor suitability. Additionally, the possibility of early disease detection with hyper-
spectral data was evaluated. For both prediction of disease indices and early detection,
the influence of hyperspectral data pre-processing steps and learning algorithms on
prediction performance was examined.
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FIGURE 4.3: Leaves of fully mature chickpea and wild relatives. a =
Cicer echinospermum, b = Cicer reticulatum, c and d = Cicer arietinum

4.4 Materials and methods

4.4.1 Plant material

Multiple commercial chickpea cultivars (CVR477, CVR480, CVR481, CVR484) with
varying degrees of resistance and a candidate resistant wild relative C. reticulatum
accession (WLD085) were grown in two different experiments carried out in a green-
house in 2020 and 2021 (Figure 4.3). A third experiment was conducted in 2021 but
was not considered for the analysis because cross-infection occurred in non-infected
plants. The genotypes were chosen to represent different resistance ratings from sow-
ing guides and based on their performance in disease screens performed in pots in
outdoor conditions (GRDC, 2016; GRDC, 2017) (Chapter 3). Two control genotypes
were also included in the screens. Cv. Howzat serves as a routine very susceptible
control, and cv. Genesis090 is a moderately susceptible cultivar (Raman et al., 2022;
Blake, 2022). Two seeds per pot were sown in draining pots (19.5 cm height × 14.9 cm
diameter, 2.5 l volume) containing Van Schaik’s Bio Gro soil mix (Bio Gro Pty Ltd.,
Mount Gambier, South Australia) and thinned to a single plant 10 days after sowing
(Figure 4.5).

4.4.2 Infection

To establish AB infection, plants were inoculated 14 days after sowing following the
mini-dome protocol with clear plastic cups (Chen, McPhee, and Muehlbauer, 2005).
Each plant was sprayed with 2 ml of A. rabiei isolate 16CUR018 (collected from cv.
Genesis090 in Curyo, Victoria, Australia in 2016) spore suspension at a concentration
of 1× 105 spores per ml using a hand sprayer (Bar, 2019). The inoculum was prepared
with surfactant Tween 20 (0.01%) (Merck Pty Ltd.). Control plants were sprayed with
water and surfactant. After inoculation, the plants were immediately covered with
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FIGURE 4.4: Mini-dome inoculation. Plants are covered with inverted
transparent plastic cups to ensure high humidity after inoculation.

inverted transparent plastic cups (Figure 4.4). In 2020, cups with a volume of 500 ml
were left on the plants for 24 hours and in 2021, cups with a volume of 1 l were used
for 48 hours (Figure 4.5).

4.4.3 Experimental design

All experiments were carried out in greenhouses at the Australian Plant Phenomics
Facility, University of Adelaide. Temperatures were set to a maximum of 21 °C and
high humidity was ensured by running a humidifier on demand at varying intervals.
However, temperature fluctuated in both experiments due to ambient temperatures
and the humidity could not be reliably controlled. The experiment in 2020 was carried
out with five replicates in a randomized complete block design (RCBD) created with
the dae package (Brien et al., 2020). In 2021, the experiment was carried out with six
replicates in a split-unit design created using the agricolae version 1.3.5 package
(Felipe de Mendiburu and Muhammad Yaseen, 2020). The designs were created in the
R versions 3.6.3 and 4.2.1 computing environment, respectively (R Core Team, 2022).
In 2020, all plants were sown on 2020-04-28 and in 2021, the wild accession WLD085
was sown on 2021-05-04, 7 days before the cultivars (sown 2021-05-11) (Figure 4.5).
The wild accession was sown earlier to account for differences in germination rate
and early plant development and to ensure a more uniform plant size at the time of
inoculation.
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FIGURE 4.5: Experimental design with sowing, imaging, thinning,
inoculation, and scoring dates. All imaging timepoints were used for
longitudinal smoothing of RGB data and extraction of intermediate
traits for the prediction of DI. The overlapping imaging dates 2, 6, 13,
21 DAI were used to evaluate early detection algorithms. In 2021, the
wild accession WLD085 was sown seven days before the other plants

(-21 DAI) due to its slower germination and early growth.

4.4.4 Data acquisition

Imaging

Imaging was performed at 12 time points in 2020 (-1, 1, 2, 3, 6, 8, 10, 13, 15, 17, 20, 21
days after inoculation (DAI)) and at 7 time points in 2021 (-1, 2, 6, 9, 13, 16, 21 DAI) in
an automated phenotyping system (Figure 4.5). The system that was used at The Plant
Accelerator® (Australian Plant Phenomics Facility, University of Adelaide) is based
on a conveyor belt that automatically delivers pots to imaging chambers, including
RGB and hyperspectral sensors (Scanalyzer3D, LemnaTec GmbH, Germany).

RGB imaging The RGB image chamber is equipped with four cameras (AlliedVision
Prosilica GT) and four white LED panels for illumination (Gardasoft VTR4-W-28-ETH-
NC). The cameras are positioned at nadir angle, side view, and two additional angled
side views (close and far). When the pots arrive at the imaging chamber, they are
automatically lifted onto a platform and a topview image is taken. The platform with
the plant is then turned in five incremental steps of 35 degrees. At each step the three
side view cameras take images, leading to a total of 19 images capturing 18 side views
and one top view (Figure 4.8).

Hyperspectral imaging The hyperspectral imaging (HSI) chamber contains two
hyperspectral line-scan cameras that cover a wavelength range of 400 - 2,500 nm, and a
halogen light array for equal illumination. The NIR range is covered by a SpecimFX10
camera (Specim, Finland) and the SWIR range is covered by a Specim SWIR 3 camera
(Specim, Finland) (Table 4.1). Top view images were taken with both hyperspectral
cameras (Figure 4.6). The imaging system has a ground sampling distance (GSD) of
1.96 mm per pixel in VNIR data and 2.37 mm per pixel in SWIR data, leading to low
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TABLE 4.1: Specifications of hyperspectral cameras in automated phe-
notyping system at The Plant Accelerator®.

Specification Specim FX10 Specim SWIR 3

Spectral range 397 - 1,005 nm 979 - 2,587 nm
Number of bands 448 288
Full Width at Half Maximum (FWHM) 5.5 nm 12 nm
Spatial resolution 512 * 335 px 384 * 296 px
Ground Sample Distance (GSD) 1.96 mm 2.37 mm
Scanning speed 50 mm/s 50 mm/s
Exposure time 37.00 ms 9.60 ms
Frame rate 26.66 22.42

FIGURE 4.6: Monochrome images from Specim SWIR 3 camera of a
hemp plant compared to chickpea plant. Left: Chickpea plant. Right:
Hemp plant (used with permission from Alison Gill). The small chick-

pea leaflets are covered by only a few pixels each.

coverage of the leaflets, in particular for the C. reticulatum accession WLD085 (Figures
4.3 4.6). The scanning speed for both cameras was fixed at 50 mm/s.

Visual scoring

The disease symptoms were visually scored 21 DAI for percentage of broken main
stems, percentage of main stems with lesions, percentage of diseased side branches
and percentage of diseased leaf area, as described in Chapter 3. The mean of these four
scores was taken to calculate a disease index. This index can take any value between 0
and 100, where 0 indicates no signs or symptoms of disease and 100 indicates a dead
plant.

4.4.5 Data processing

Except for the RGB image analysis that was performed with proprietary LemnaTec
software (LemnaGrid), all data analysis was performed using Python version 3.8.8 and
R version 4.2.1 (R Core Team, 2022; Van Rossum, 2020). The functions and packages
used are cited in the respective parts of the Methods section. Data were visualized



4.4. Materials and methods 101

using the packages ggplot2 version 3.3.6 and ggstatsplot version 0.9.4 (Wickham,
2016; Patil, 2021).

RGB data processing

LemnaTec proprietary image analysis Nearest-neighbor segmentation was used to
distinguish foreground and background pixels, followed by erosion and dilation to
fill areas. Projected shoot area (PSA) was then calculated as the sum of plant pixels of
the top view (TV) camera angle and plant pixels from two images from each of the
three side view cameras (SV, SVclose, SVfar). The difference between the two side view
angles that were used to calculate PSA was 140 degrees.

Trait extraction PSA was smoothed over time using the statgentHTP version 1.0.5
package by fitting a spline with 5 knots to the longitudinal data of each plant (for
more details on smoothing and trait extraction, see Chapter 3). From the fitted splines,
the following intermediate traits were extracted. PSA at 0, 7, 14 and 21 DAI, relative
growth rate (RGR) and absolute growth rate (AGR) between two time points (t1, t2)
(Brien et al., 2020). The chosen periods for the growth rates were 0 to 7 DAI, 7 to 14
DAI, and 14 to 21 DAI (Figure 4.9).

PSA = TV + SV0 + SV140 + SVclose0 + SVclose140 + SVf ar0 + SVf ar140

AGRt1−t2 =
PSAt2 − PSAt1

t2 − t1

RGRt1−t2 =
ln(PSAt2)− ln(PSAt1)

t2 − t1

Hyperspectral data processing

Pre-processing of the hyperspectral data consists of multiple steps (Figure 4.1) (Paulus
and Mahlein, 2020). Up until the merging of VNIR and SWIR sensor data, the process
was performed separately for each camera due to the slightly different imaging angle
and the different spatial resolution of the cameras (Hennessy, Clarke, and Lewis,
2020). To remove noise at the extremes of the spectral range, the data were limited to a
range of 400 to 2500 nm. Multiple algorithms for pre-processing were tested and the
resulting processed data were tested as input for models in cross-validation (Figure
4.1).

Reading and calibrating The raw hyperspectral data were read and calibrated to
black and white reference panels with the functions read_hyper_data() and
calibrate_hyper_data() from the appf_toolbox_v0 (Liu, 2020).
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Segmentation of foreground pixels Training data for a classifier that can predict
foreground and background pixels were created using false-color images of VNIR and
SWIR data each. A total of 20 false-color images were randomly selected to represent
the respective variety of imaged time points, genotypes, fungal isolates, and disease
progressions for each experiment. These false-color images were loaded into the open
source GNU Image Manipulation Program (GIMP) version 2.10.14 and binary masks
of foreground pixels and selected background pixels were created using the Quick
Mask tool (The GIMP Development Team, 2020). A Python script was then used to
extract the hyperspectral pixel values corresponding to the marked pixels from the raw
data using the numpy package and functions from the appf_toolbox_v0 (Van Rossum,
2020; Liu, 2020; Harris et al., 2020).

A radial basis function (RBF) support vector machine (SVM) classifier for semantic
segmentation was trained with a total of 10,000 randomly selected pixels from each
foreground and background extracted from the annotated masks. A 70:30 train-test
split was used, and the kernel and regularization parameter of the SVM classifier
were optimized using a grid search. The trained classifier was applied to the entire
dataset to predict and extract foreground pixels. Packages pandas version 1.3.4, OpenCV
version 4.0.1 and scikit-learn version 1.0.1 were used (team, 2020; Pedregosa et al.,
2011; Bradski, 2000).

Averaging reflectance of foreground pixels The pixel values of all foreground pixels
for each pot were averaged and matched with the experimental design using the
tidyverse version 1.3.2 collection of packages (Wickham et al., 2019).

Smoothing The average reflectance of each entry was smoothed along the spectrum
with a Savitzky-Golay filter implemented in the prospectr version 0.2.4 package
(Stevens and Ramirez-Lopez, 2020; Savitzky and Golay, 1964). For VNIR and SWIR
data, the windowlength and polynomial order were chosen based on visual inspection
of the smoothed graphs. A window length of 19 with a third-degree polynomial
function was used for the VNIR data. For the SWIR data, the chosen window length
was nine, also combined with a third-degree polynomial function. The window length
was set to a higher number for VNIR due to the higher number of bands and the
smaller band width (Table 4.1). In the case where derivatives of the reflectance were
calculated, the smoothing step was integrated as a lagged difference with a gap size
chosen based on the desired bin width. To combine VNIR and SWIR data, an overlap
of the range of wavelengths is required. Savitzky-Golay filtering cuts off the outer
edges of the spectral range because half the windowlength is required to calculate
the outmost value. Therefore, the outer edges of the spectrum were padded with
smoothed values from a shorter windowlength of five. This ensured overlap between
the ranges of VNIR and SWIR data.
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Sensor selection Both data exclusively from the VNIR sensor and combined data
from both VWIR and SWIR sensors were tested as input for the algorithms.

Combining VNIR and SWIR data For full spectrum analysis, VNIR and SWIR data
were combined by fitting a linear least squares model to the reflectance values of the
last five wavelengths of the VNIR range (994.65, 996.06, 997.47, 998.88, 1000.29 nm) to
predict the reflectance at 1002.18 nm, which is the wavelength of the first used band
from the SWIR sensor. The difference between the predicted reflectance at 1002.18
nm and the measured reflectance at 1002.18 nm was then added to the SWIR data to
normalize the entire range of SWIR data (Liu, personal communication).

Spectral binning Due to the full width at half maximum (FWHM) of the sensors that
spans multiple bands and the optical properties of the plant tissue, adjacent spectral
bands carry redundant information (Figure 4.2) (Moghimi, Yang, and Marchetto,
2018). To minimize autocorrelation and reduce the number of predictors, multiple
neighboring bands can be averaged, so called binning (Lowe, Harrison, and French,
2017). Here, spectral binning was performed per sensor with the bin width chosen
based on the FWHM of each sensor (Table 4.1). Two bin sizes were tested in the
modeling pipeline, binning at FWHM and binning at double FWHM. Binning at
FWHM reduced the total number of spectral bands from 710 to 233 and binning at
double FWHM reduced the spectral bands to 117.

Normalization Due to differences in illumination that can exist even under con-
trolled conditions, normalization of reflectance data was tested (Pu et al., 2012). The
reflectance of the plant material at each band was divided by the mean reflectance
over all bands.

Calculation of derivatives Gapped second and first derivatives were calculated
from unsmoothed data. This was implemented with the gapDer function from the
prospectr package. A window length of 11 and a gap size of 9 were used. Savitzky-
Golay smoothing is performed at the given window length, followed by calculation of
derivatives under the given gap size (Stevens and Ramirez-Lopez, 2020; Savitzky and
Golay, 1964).

4.4.6 Analysis of disease indices and extracted traits

The genotypic and treatment effects on the disease indices and extracted traits were
examined with analysis of variance. Where the effects were significant, pairwise
differences were analyzed with Tukey Honest Significant Differences, implemented in
the R package agricolae (Felipe de Mendiburu and Muhammad Yaseen, 2020).
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4.4.7 Early detection of disease

The processed hyperspectral data were used to classify infected and non-infected
plants at each imaging time point. Random forest (RF) and radial basis function
support-vector machine (SVM) classifiers were trained and evaluated using tidymodels

version 0.2.0 framework and ranger version 0.13.1, kernlab version 0.9-30 (Kuhn and
Wickham, 2020; Karatzoglou, Smola, and Hornik, 2022; Wright and Ziegler, 2017).
Five-fold cross-validation (CV) with five repeats was used to evaluate each model’s
performance within the individual experiments. To evaluate whether the model per-
formed better than a random classifier, the accuracies achieved in cross-validation
were compared to the accuracies that random classifiers achieved on the same samples
with a t-test. This information was used to choose the best algorithm made up of a
pre-processing pipeline and a learning algorithm for each imaging time point. The
respective best algorithms within each year were then trained on the entire dataset for
that year and tested on the full dataset from the other year where the imaging dates
overlapped, which were 2, 6, 13, and 21 DAI (Figure 4.5).

4.4.8 Disease index prediction

Disease index prediction with RGB data

All traits extracted from RGB data were tested for their correlation with the disease
index and both a simple linear regression model containing only the traits with the
highest correlation to the disease index and a RF model containing all extracted traits
as predictors were tested. Same as for the early detection, the algorithms were first
evaluated within each year with five-fold CV with five repeats and then tested on the
respective opposite year using a model trained on the entire data.

Disease index prediction with hyperspectral data

Disease indices were predicted using hyperspectral data from 21 DAI, the day of
scoring. RF, SVM, and PLS regression were used.

4.5 Results

4.5.1 Disease indices

In general, the disease pressure in both experiments was low (Figure 4.7). There were
significant genotypic effects on the DI only in 2021 (Supplementary Table 4.4). The
wild accession WLD085, which was sown a week before the cultivars, had a signifi-
cantly lower DI than CVR477 and CVR484, and CVR480 had a significantly lower DI
than CVR484. No significant differences in DI were observed in 2020. Although the
included control genotypes have differing variety resistance ratings (Howzat = sus-
ceptible to AB, Genesis090 = moderately susceptible to AB), no significant differences
between their DI were observed in either year (Blake, 2022).
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FIGURE 4.7: Disease indices of infected plants in greenhouse experi-
ments in 2020 and 2021. Black dots indicate individual pots and red
crosses indicate the mean disease indices. Accessions CVR481 and
WLD085 were not grown in 2020. Letters indicate groups where pair-
wise comparisons are significantly different at α = 0.05 within each

year. n.s. = non-significant.

4.5.2 Projected shoot area

Overall, the wild accession WLD085 was much smaller compared to the C. arietinum
accessions, despite the earlier sowing date (Figures 4.9 and 4.8). In response to
inoculation, some genotypes showed a slowing of growth. This is reflected in a
reduced RGR7−14 (Supplementary Figure 4.12). Interaction effects between genotype
and treatment on RGR7−14 were significant in both experiments (Supplementary Table
4.4).

4.5.3 Early detection of AB using hyperspectral data

Using hyperspectral data, the infected plants could be distinguished from the non-
infected plants 2 DAI with estimated accuracies (± standard deviation) of 62 % ±
12 % in 2020 and 72 % ± 12 % in 2021. The best discrimination between infected
and non-infected plants was reached 17 DAI in 2020 (72 % ± 11 %) and 9 DAI after
infection in 2021 (78 % ± 9 %) (Supplementary Table 4.6). On average over all imaging
time points, the estimated detection accuracy was lower in 2020 with 63 % than in 2021
with 74 % , possibly due to the overall lower disease indices in 2020. Within each year,
all classifiers were estimated to perform significantly better than a random classifier,
except for the models at -1 and 1 DAI in 2020.

However, the accuracy when testing the best models trained on the entire data
from each time point in 2020 on data from the corresponding equivalent time points
in 2021 was low (Table 4.2). For the best models from 2, 6, 13, and 21 DAI trained
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FIGURE 4.8: Side view images of plants in greenhouse from 2021 experi-
ment, from -1 DAI to 21 DAI. a) = CVR484 control (DI = 0), b) = CVR484
infected (DI = 70), c) = WLD085 control (DI = 0), d) = WLD085 infected
(DI = 0). Despite the earlier sowing date, WLD085 was smaller than the
cultivars at the time of inoculation. DI = 70 was the highest observed
DI for the entire experiment. The entire grid image was adjusted for

exposure and color using Adobe Lightroom automatic settings.
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on the full dataset from 2020 and tested on the full dataset from 2021, the respective
accuracies were only 54 %, 49 %, 51 %, and 42 %. Evaluating vice versa, the best models
from 2, 6, 13 and 21 DAI trained on the full dataset from 2021 achieved respective
accuracies of 52 %, 42 %, 50 %, and 50 % when applied to 2020 data, indicating a
complete lack of transferability. The models were highly biased towards one treatment
class or the other (Table 4.2). For DAI 13 and 21 of 2020 data, only control treatment
was predicted. Similarly, for 6 DAI and 21 DAI of 2021, only control treatment was
predicted. However, for 13 DAI of 2021 data, only infected treatment was predicted.

TABLE 4.2: Confusion matrices for early detection algorithms. The
infection status at progressing DAI was predicted with models trained
on hyperspectral data from the respective opposite year. Columns

represent true values and rows represent predicted values.

2020 Data 2021 Data
Infected Control Infected Control

2 DAI
Predicted: Infected 15 14 16 12
Predicted: Control 10 11 26 29

6 DAI
Predicted: Infected 5 9 0 0
Predicted: Control 20 16 42 41

13 DAI
Predicted: Infected 0 0 42 41
Predicted: Control 25 25 0 0

21 DAI
Predicted: Infected 0 0 0 6
Predicted: Control 25 25 42 35

4.5.4 Prediction of disease index

Prediction of disease index with RGB image data

Of all the extracted traits, RGR7−14 and RGR14−21 showed the strongest correlation
with the DI in both years, however only reaching a significant level in 2021 (Figure
4.10). Plants with a higher DI tended to show a reduced growth rate in the second
and third week after inoculation. Both PSA0 and PSA7 showed a consistent, albeit
non-significant, weak correlation to the DI, indicating that plants that were larger at
infection were more strongly affected by the disease at the time of scoring.

A linear regression model was built using predictors PSA0, RGR7−14, and RGR14−21

and compared with a RF model containing all extracted traits as predictors. In 5-fold
cross-validation, the RF model achieved an estimated mean root mean squared error
(RMSE) of 6.66± 0.27 in 2020 and an estimated mean RMSE of 12.03± 0.44 in 2021. In
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comparison, the reduced linear model had an estimated mean RMSE of 5.78± 0.25 in
2020 and 12.71± 0.6 in 2021.

When training the linear and RF model on all data from 2020 and testing on all
data from 2021, the linear model achieved an RMSE of 12.43 (R2 = 0.64) while the RF
model achieved an RMSE of 19.21 (R2 = 0.30) (Figure 4.11). The opposite evaluation,
that is, training on the entire data of 2021 and testing on 2020, resulted in an RMSE
of 5.99 (R2 = 0.37) for the linear model and an RMSE of 7.12 (R2 = 0.12) for the RF
model.

Prediction of disease index with hyperspectral data

The algorithm with the lowest mean RMSE in cross-validation for the prediction of
disease index used non-smoothed, VNIR-only, non-binned, Pu-normalized second
derivative data in a RF model in 2020. The cross-validation results for that algorithm
were a mean RMSE of 6.44± 1.83 for 2020 data and 12.72± 2.16 for 2021 data (Sup-
plementary Table 4.5). For 2021, the best algorithm used non-smoothed, VNIR-only,
binned at double FWHM, not normalized, first derivative data in a PLSR model. The
cross-validation results here were a mean RMSE of 7.34 ± 1.75 for 2020 data and
11.77± 2.25 for 2021 data (Table 4.5). For the final evaluation, the best algorithm
developed with 2020 data was fit to the entire 2020 data and then tested on the 2021
data. The resulting RMSE was 21.08 (R2 = 0.02) (Figure 4.11). The opposite way of
evaluation, training the best algorithm found for 2021 data on all data from that year
and then testing on 2020 data resulted in an RMSE of 8.08 (R2 = 0.00), indicating that
these full spectrum hyperspectral models were not transferable.

Influence of processing steps and learning algorithms on DI prediction results
For the prediction of DI from 2020 data, only the choice of learning algorithm had
a significant effect on the RMSE achieved in cross-validation, but none of the data
processing steps (Table 4.3). Random forest models performed best for 2020 data.
However, for 2021 data, all processing steps except smoothing and the inclusion of
SWIR data had a significant effect on RMSE, and so did the choice of learning algo-
rithm. The results indicate that the spectral region of SWIR does not contribute to the
prediction of DI.
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FIGURE 4.10: Disease index correlation matrices for traits extracted
from RGB images for experiments in 2020 and 2021. n.s. = non-
significant, * = significant at p < 0.05, ** = significant at p < 0.01,

*** = significant at p < 0.001 (Adjustment = Holm).
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Disease indices of 2020 predicted with models trained on 2021 data
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FIGURE 4.11: Predicted disease indices for 2020 (top row) and 2021
(bottom row) compared to ground truth of respective year, predicted
with the respective best 1) hyperspectral algorithm (left column, black
circles), 2) RGB trait RF model (middle column, pink triangles), 3) RGB
trait linear regression model (right column, turquoise crosses). The
models were trained on the full datasets of the respective other year.
Axis limits are adjusted to match observed disease indices within each

year, they were higher in 2021 than in 2020.
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TABLE 4.3: Influence of processing steps on DI prediction performance.
RMSE ± standard deviation from 5 repeats and 5 fold CV within each

experiment grouped by the respective step is shown.

Pipeline Step 2020 RMSE 2021 RMSE

Binning

Full spectrum 7.86± 2.47 14.84± 4.2
FWHM binned 8.06± 2.5 15.09± 4.2
Double FWHM binned 8.02± 2.42 15.64± 4.77

Derivation

None 8.05± 2.45 15.15± 4.49
First 7.96± 2.51 14.56± 4.03
Second 7.85± 2.45 15.91± 4.51

Normalization

None 8± 2.37 15.74± 4.56
Pu 7.95± 2.56 14.64± 4.19

Learning algorithm

PLSR 8.97± 2.77 13.72± 4.15
RF 6.86± 1.89 14.86± 3.46
SVM 8.1± 2.18 16.99± 4.87

Smoothing

Raw 7.96± 2.48 15.21± 4.38
Smoothed 8.03± 2.43 15.13± 4.5

VNIR + SWIR

VNIR + SWIR 7.97± 2.5 15.13± 4.23
VNIR only 7.99± 2.43 15.25± 4.59
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4.6 Discussion

4.6.1 Low disease pressure in the greenhouse

In general and compared to outdoor disease tests (Chapters 3 and 5, Figure 5.4 and
5.5), the disease pressure in the greenhouse was low (Figure 4.7). The observation of
exclusively low disease indices (< 25) during the first experiment in 2020 led us to
adapt the inoculation protocol for the next experiment. We used larger mini-domes to
prevent contact of plants with the inside of the cups and doubled the period under
the cups to 48 h in 2021. This may have contributed to the higher disease indices in
the experiment in 2021 (Jhorar, Butler, and Mathauda, 1998). However, the ranking
of the genotypes according to their DI was consistent with the variety guides, the
results of the outdoor screens (Chapter 3), and between both greenhouse experiments,
although the genotypic differences were not significant in 2020. The low disease
pressure could have decreased the differences in spectral response, thereby leading
to an underestimation of prediction performance that may be achieved with a more
natural disease expression. In a study on early detection of potato late blight, plants
that had not reached severe disease by the end of the study were removed from
the analysis (Gold et al., 2020b). With a larger contrast between treatments, better
prediction may be achieved.

4.6.2 Full spectrum early detection models were not transferable between
experiments

Within each year, infection could be detected as early as 2 DAI, suggesting that
metabolic changes may be detected before the appearance of visible symptoms. The
estimated accuracies in 2021 were generally better, which may have been due to
increased disease pressure and consequently larger differences between the treatment
groups. In 2021, even the classifier that was trained on data from before the inoculation,
-1 DAI, performed significantly better than a random classifier, indicating that there
was a systematic difference between the two groups not due to inoculation, potentially
caused by the imaging times of the plants. In 2021, all non-infected plants were imaged
before the infected plants to avoid cross-contamination. The imaging of each group
took approximately 1.5 hours, and this temporal separation between the groups might
explain the discriminatory power of the classifier on the day before the inoculation.
These results also cast doubt on the estimated accuracy that was achieved for later
days after inoculation for the 2021 experiment. In 2020 however, no such temporal
separation was performed; plants from both treatment groups were mixed during
imaging.

When transferring trained models between experiments, none of the detection
models performed better than a random classifier. This may be due to multiple
reasons. There is a risk of overfitting when using hyperspectral data and training on
few experimental units, known as the curse of dimensionality (n >> p), since there
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were only 50 pots in 2020 and 84 pots in 2021, but the full spectrum hyperspectral data
had 710 bands after merging VNIR and SWIR data (Table 4.1) (Lowe, Harrison, and
French, 2017). Even when binning at double FWHM, the number of predictors (117)
still exceeded the number of observations. Furthermore, the low spatial resolution in
relation to the size of the leaflets will have led to mixed pixels, potentially confounding
the average plant spectra (Figures 4.3 and 4.6). The biases of the models towards either
infected or control treatment may have also been due to differences in disease pressure
between the years and systematic differences in imaging time between the treatments
in 2021 (Table 4.2). The disease indices were lower in 2020 than in 2021, which may
explain that no pots were predicted to be infected after 6 DAI for 2020 data (Figure
4.7). As the differences in disease indices were low in 2020, the predictions for 2021
data may have been randomly biased towards either infected treatment at 13 DAI or
control treatment at 6 and 21 DAI (Table 4.2).

4.6.3 RGB-based growth rates are stable predictors for disease indices

Longitudinal traits derived from RGB outperformed hyperspectral sensors for the
prediction of disease indices. The transferability of the linear regression model us-
ing PSA0, RGR7−14, and RGR14−21 as input was the highest compared to the best
hyperspectral model. Whether full spectrum data or only VNIR data were used did
not make a consistent difference. The advantage of RGB-derived traits may be due
to the longitudinal dimension that allows normalization of genotype growth habits
and can represent the response to the disease, as observed in Chapter 3. The same
drawbacks of the measured hyperspectral data as discussed for early detection may
also apply for the prediction of DI, that is, high dimensionality, low spatial resolution,
and mixed pixels. For example, the best regression algorithm for 2020 was an RF
model with 394 predictors fit to 25 observational units, which may explain overfitting
and low transferability to the second experiment. However, dimensionality reduction
techniques, such as spectral binning or PLSR, did not improve the performance of the
models consistently either (Table 4.3).

4.6.4 Perspectives

Ensuring high disease pressure and avoiding cross-contamination

The disease pressure may be strengthened by increasing the concentration of spores
in the inoculum (Chen, McPhee, and Muehlbauer, 2005). Another option to increase
disease pressure may be to use growth rooms instead of a greenhouse, where constant
high humidity and temperatures conducive to disease can be maintained (Pande et al.,
2011; Newman et al., 2021). Cross-contamination was observed in one experiment that
was performed but was excluded from the analysis for this study. In this experiment,
an RCBD was used that could have led the non-infected and infected plants to touch
and thereby cause cross-infection. In both of the studies considered here, no signs
of cross-contamination were observed. In 2020, the infected and non-infected plants
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were fully spatially separated, and in 2021, a split-unit design was used. Therefore,
careful separation of infected and non-infected plants is required. Conversely, the
same ordering of the imaging of the treatments for the sake of separation will result in
the confounding of treatment differences with any systematic difference between the
first and second imaging periods.

Potential approaches to increase suitability of hyperspectral data

Spatial resolution The spatial resolution of both the VNIR and SWIR cameras was
too low to resolve individual chickpea leaflets, and pixels that have mixed background
and foreground reflectance were unavoidable despite the use of a strict semantic
segmentation classifier. Such mixed pixels can be removed with erosion, whereby
pixels are removed at the outer edges of the foreground segments of the plant are
removed (Moghimi et al., 2018; Paulus and Mahlein, 2020).

However, the spatial resolution in this experiment did not allow erosion as even
when using the smallest kernel possible (3 ∗ 3), many leaflets were completely eroded.
This would leave too few pixels, especially for the SWIR data that had the lowest
spatial resolution (Figure 4.3, Table 4.1). Ideally, the spatial resolution should be
increased, for example by reducing the imaging distance. In a situation where closed
canopies, not single plants, are monitored, mixed pixels caused by small leaflets would
not be an issue and HSI may be more suitable (Chapter 5).

3D correction Another possible option to improve the quality of hyperspectral data
is 3D correction, a pre-processing step that can address the influence of the angle
of different parts of the plant on the reflectance (Paulus and Mahlein, 2020). Such
a correction requires simultaneous construction of a 3D plant model while HSI is
performed. It is possible that a 3D correction of HSI could improve the predictive
performance of the early detection severity prediction algorithms, but again, higher
spatial resolution would be required.

Further analysis algorithms Further analysis methods for the hyperspectral data
that may be attempted include Standard Normal Variate (SNV) normalization and
neural networks (NN) as learning algorithms (Liu, personal communication). As the
normalization and learning algorithms that were tested in this thesis had significant
influences on the results of the analysis, it is possible that implementing further steps
such as SNV and NN may positively influence the results.

Furthermore, the learning algorithms (RF, SVM, and PLSR) were used individ-
ually in this thesis. However, it is possible to stack learning algorithms to combine
the advantages of multiple models, and such ensemble modeling was proposed for
hyperspectral data analysis (Moghimi, Yang, and Marchetto, 2018).

Longitudinal analysis A promising approach to better use the HSI data would be
to consider the progression over the course of the infection. So far, only the HSI data



4.7. Conclusion 115

acquired on the day of scoring were considered for the predictions of severity. More
feature extraction and longitudinal analysis of HSI data need to be performed. It has
been proposed to apply dimensionality reduction to entire sets of time series HSI
(Dorrepaal, Malegori, and Gowen, 2016). Other approaches that have been performed
are pooling of timepoints and aggregating observations by the coinciding disease
severity or averaging spectra over the measured timepoints (Section 4.3.3) (Ziheng
Feng et al., 2021; Zhang et al., 2022; Gold et al., 2020b; Wei et al., 2021).

Wet lab ground-truthing The approach of this study was to use hyperspectral data
to predict disease scores. However, the disease scores are derived from RGB informa-
tion perceived by the human eye, which may favor the RGB sensors and forfeit the
advantages of hyperspectral sensors. Instead of predicting disease scores, a different
approach would be to remotely sense metabolites associated with the infection such as
presented in Table 1.2. Such an approach would require ground truthing of metabolite
levels in the wet lab, not only visual scoring (Brugger et al., 2021; Kuska et al., 2018).

4.6.5 Study outcomes in relation to research aims

1. Development of sensor-based phenotyping methods to score disease severity in
a chickpea breeding program The disease pressure in the greenhouse experiments
was not sufficient for fine discrimination of genotypes, which would be required for
selection. In 2020, no significant genotypic differences in DI were observed at all
and in 2021, only the genotypes at the extremes showed significant differences in DI
(Figure 4.7). Despite varying resistance ratings in sowing guides, cultivars Howzat
and Genesis090 did not show significant differences in either year, unlike in the disease
nursery (Chapter 3, Figure 3) and in the field (Figure 5.4). Therefore, the priority for
supporting breeding programs with sensor-based methods in greenhouse screens
should be on improving experimental design and inoculation protocols (Newman
et al., 2021). Before choosing an approach for greenhouse-based screens, further
validation under higher disease pressure and comparison to improved hyperspectral
data need to be performed.

2. Identification of within-scale and cross-scale functional resistance components
Based on the predictive power for DI, weekly relative growth-rates after infection were
suitable candidate traits, indicating that RGB time course imaging may be suitable for
supporting selection. These results are consistent with Chapter 3.

4.7 Conclusion

We showed that intermediate traits extracted from time-series RGB images performed
better than single time point hyperspectral images acquired on the day of scoring for
the prediction of Ascochyta blight disease indices of greenhouse-grown chickpeas.
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Disease indices were negatively correlated with the relative growth rates derived from
RGB two to three weeks after inoculation. Models for the prediction of disease indices
and for the early detection of infection trained on full spectrum hyperspectral data
were essentially not transferrable to unseen independent data. After experiencing
cross-infection, low disease pressure and possible temporal effects from imaging,
we narrowed the design space for greenhouse experiments to using split-units in
combination with large mini-dome inoculation for 48 h, and imaging of all treatments
together while ensuring that cross-infection did not occur. We showed that time-series
RGB is a suitable candidate for supporting Ascochyta blight disease screens in the
greenhouse, but more research towards feature extraction from hyperspectral data, in
particular over the longitudinal dimension and at higher spatial resolution, is required.
This may lead to the detection of AB-specific features and transferable models.

4.8 Data availability

The data and code required to reproduce these results is available via

• https://github.com/FCTanner/ab_hsi_phenotyping

• https://projects.pawsey.org.au/appf-tpa-0521-ph-ua-tpa-tanner-chic

kpea/index.html

• https://projects.pawsey.org.au/appf-tpa-0588-ph-ua-tpa-tanner-chic

kpea/index.html
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FIGURE 4.12: Relative growth rates 7 - 14 DAI. Significant differences
are marked with asterisks (∗ ∗ ∗ = p < 0.001). Accessions CVR481 and

WLD085 were not grown in 2020.
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TABLE 4.4: P-values for genotypic, treatment, and interaction effect on
scores and measured traits. Where interaction terms are significant, the
main effects are omitted. DI was only examined for genotypic effects

on infected plants, therefore the other effects are NA.

Trait Year Genotype Treatment Genotype x Treatment

DI 2020 0.082 NA NA
DI 2021 0.001 NA NA

AGR0−7 2020 — — 0.037
AGR0−7 2021 < 0.001 0.160 0.574
AGR7−14 2020 < 0.001 0.009 0.179
AGR7−14 2021 < 0.001 < 0.001 0.275
AGR14−21 2020 — — 0.031
AGR14−21 2021 < 0.001 < 0.001 0.359

PSA0 2020 0.006 0.546 0.333
PSA0 2021 < 0.001 0.877 0.272
PSA7 2020 < 0.001 0.916 0.085
PSA7 2021 < 0.001 0.553 0.566
PSA14 2020 < 0.001 0.279 0.108
PSA14 2021 < 0.001 0.007 0.636
PSA21 2020 < 0.001 0.059 0.059
PSA21 2021 < 0.001 < 0.001 0.533

RGR0−7 2020 < 0.001 0.236 0.360
RGR0−7 2021 < 0.001 0.099 0.077
RGR7−14 2020 — — 0.009
RGR7−14 2021 — — 0.025
RGR14−21 2020 — — 0.039
RGR14−21 2021 0.017 < 0.001 0.080
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TABLE 4.5: Cross-validation results for prediction of DI with hyperspectral data and longitudinal traits extracted from RGB data. RMSE
± standard deviation from 5 repeats and 5 fold cross-validation within each experiment is shown. The top five algorithms including

pre-processing steps were selected within each year und then also tested in cross-validation on data from the opposite year.

Binning Smoothing Sensors Normalization Derivative Model RMSE 2020 RMSE 2021

Best hyperspectral algorithms 2020

Full spectrum Raw VNIR only Pu Second RF 6.44± 1.83 12.72± 2.16
Full spectrum Raw VNIR + SWIR Pu None RF 6.47± 1.7 13.58± 3
Full spectrum Smoothed VNIR + SWIR Pu None RF 6.53± 1.7 13.46± 3.03
Full spectrum Raw VNIR only None Second RF 6.55± 1.69 14.02± 2.02
FWHM binned Raw VNIR + SWIR Pu None RF 6.58± 1.78 13.41± 2.9

Best hyperspectral algorithms 2021

Double FWHM binned Raw VNIR only None First PLSR 7.34± 1.75 11.77± 2.25
Full spectrum Raw VNIR only Pu First RF 6.89± 1.9 12.18± 2.16
Double FWHM binned Raw VNIR only Pu First PLSR 6.97± 2.27 12.2± 2.28
FWHM binned Raw VNIR only Pu First PLSR 7.99± 2.66 12.38± 3.03
FWHM binned Raw VNIR only Pu First RF 6.89± 1.89 12.39± 2.25

Longitudinal RGB traits

Full RF model — — — — — 6.66± 0.27 12.03± 0.44
Reduced linear model — — — — — 5.78± 0.25 12.71± 0.6
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TABLE 4.6: Accuracy (± standard deviation) of early detection of AB at each imaging time point with the best respective algorithm,
estimated with 5-fold CV with 5 repeats. The p-value relates to the cross-validation performance compared to a random classifier.

DAI Binning Smoothing Sensors Normalization Derivative Model Accuracy P-value

2020

-1 Double FWHM binned Raw VNIR only Pu Second SVM 49 % ± 16 % = 0.527
1 Double FWHM binned Raw VNIR only None Second SVM 54 % ± 16 % = 0.097
2 Double FWHM binned Raw VNIR only Pu Second RF 62 % ± 12 % < 0.001
3 FWHM binned Raw VNIR only Pu Second RF 64 % ± 12 % < 0.001
6 Full spectrum Raw VNIR only None Second SVM 62 % ± 14 % = 0.001
8 Double FWHM binned Raw VNIR only None None SVM 67 % ± 15 % < 0.001

10 Double FWHM binned Raw VNIR only Pu Second SVM 64 % ± 15 % < 0.001
13 FWHM binned Smoothed VNIR + SWIR Pu None SVM 71 % ± 9 % < 0.001
15 Double FWHM binned Raw VNIR + SWIR None None RF 69 % ± 14 % < 0.001
17 FWHM binned Raw VNIR + SWIR None Second RF 72 % ± 11 % < 0.001
20 FWHM binned Smoothed VNIR + SWIR None None RF 60 % ± 13 % = 0.002
21 Full spectrum Raw VNIR only None Second RF 59 % ± 12 % = 0.003

2021

-1 Full spectrum Raw VNIR + SWIR None First SVM 71 % ± 11 % < 0.001
2 Full spectrum Raw VNIR + SWIR Pu First SVM 72 % ± 12 % < 0.001
6 Full spectrum Raw VNIR + SWIR Pu First SVM 72 % ± 12 % < 0.001
9 Full spectrum Raw VNIR + SWIR None First SVM 78 % ± 10 % < 0.001

13 Full spectrum Raw VNIR + SWIR None First SVM 78 % ± 9 % < 0.001
16 Full spectrum Raw VNIR + SWIR None None RF 73 % ± 11 % < 0.001
21 Full spectrum Raw VNIR + SWIR None Second SVM 76 % ± 12 % < 0.001
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Chapter 5

Prediction of Ascochyta blight
damage on field-grown chickpea
using lidar and hyperspectral data
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5.1 Declarations
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5.2 Abstract

Evaluation of Ascochyta blight damage in the field is required for resistance breeding
of chickpea. However, such screens are currently dependent on human visual scoring
and limited in precision and throughput. Here, we tested the potential of a ground-
based phenotyping platform carrying hyperspectral and lidar sensors to predict visual
scores of Ascochyta blight damage to various genotypes grown in field plots and trays.
We evaluated the specificity of the methods by including soil salinity as a second
stress. We show that measuring a general response to plant stress in the visible to
near-infrared spectral region can accurately replicate a ranking of genotypes according
to their visual scores of damage on unseen data from an independent experiment
(ρ = 0.89). Distinction between infected and fungicide-protected plots was possible
with near perfect accuracy estimated in cross-validation within a season and the
distinction between (a) infected, (b) fungicide-protected, and (c) fungicide-protected
and salinity-treated trays achieved an accuracy of 75 % estimated in within-season
cross-validation. This study serves as a proof of concept for using sensor-based
phenotyping to screen genetic material for Ascochyta blight resistance in the field,
showing that visual scores of damage can be predicted, but that methods need to be
supervised for specificity.

5.3 Introduction

5.3.1 Field disease screening

Field disease screenings are an important part of the breeding process to evaluate
whether resistance is effective under farming conditions (Niks et al., 2019). This is
particularly important for Ascochyta blight (AB) resistance, which can occasionally
differ between seedling stage and adult plant stage (Garg et al., 2018). Resistance that
is detected in seedlings needs to be confirmed in adult plants by quantifying signs
and symptoms in the field. Traditionally, signs and symptoms are evaluated visually,
which can limit accuracy and throughput (Bock et al., 2020). These limitations can be
addressed with sensor-based phenotyping methods that have the potential to increase
genetic gain in breeding programs (Chapter 1) (Araus et al., 2018).

5.3.2 Sensor-based disease phenotyping in the field

Compared to sensor-based phenotyping in controlled environments, the deployment
of sensor technology in the field, especially in the context of biotic stress trials, is
still less common (Araus and Cairns, 2014). This can be attributed to a set of chal-
lenges, including passive illumination that influences spectral measurements, spatial
variability in the field, and exposure to secondary biotic or abiotic stressors other
than the target pathogen (Araus and Cairns, 2014). To bring the sensors to the plant,
many dedicated ground-based and aerial vehicles have been designed (Xu and Li,
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2022). Ground-based vehicles can offer the advantages of higher spatial resolution
due to the proximity of the sensors to the plants, higher payload for heavy sensors,
and the option of shading and active illumination. These advantages come at the
cost of lower throughput compared to aerial platforms. For very high throughput
and measurements at field scale, aircraft or satellite-based measurements can be used
(Zarco-Tejada et al., 2018; Poblete et al., 2021).

5.3.3 Related work

Sensor - based screening of necrotrophic fungi in the field

Necrotrophic fungi cause the formation of necrotic lesions and sporulation followed
by more widespread necrosis of plant tissue. These signs and symptoms can be targets
for sensor-based phenotyping with RGB cameras, but generally require a high spatial
resolution, which excludes the use of high-flying aerial platforms (Chapter 2). In
the case of maize Northern Leaf Blight, RGB images acquired with a telephoto lens
from a drone flying at a low altitude of 6 m over the canopy provided enough spatial
resolution to measure lesion size, as the lesions of Northern Leaf Blight reach a size
of 1 cm in width and 5 cm in length wihtin a few weeks after infection (Wiesner-
Hanks et al., 2019; Wiesner-Hanks et al., 2018; DeChant et al., 2017). Contrary to
that, Cercospora Leaf Blight of sugar beet causes small lesions between 2 and 5 mm
in diameter. In a field trial with this plant-pathosystem, the size and density of the
spots could only be detected from a ground-based phenotyping platform, but not
from an airborne hexacopter. Due to the lower resolution of the data from the airborne
platform, the only trait that could be extracted from the images was green fraction.
The traits measured on the ground could predict the visual scores of Cercospora Leaf
Spot with lower root mean squared error (RMSE) (Jay et al., 2020).

Instead of directly measuring morphological features such as green fraction or
necrotic lesions, using average reflectance data over whole observational units is
another approach and can be achieved by either averaging the foreground reflectance
of imaging data or using non-imaging spectroscopy. For example, the reflectance
at canopy level (1.5 m above the canopy) of wheat affected by Septoria tritici blotch
was measured with a non-imaging spectrometer (Yu et al., 2018). This pathogen
causes necrosis and sporulation which were rated visually on the top three leaf layers.
Multiple vegetation indices (VI) related to biomass, chlorophyll content, and water
content were negatively correlated with visual scores, while Structure Insensitive
Pigment Index (SIPI) and Plant Senescence Reflectance Index (PSRI) were positively
correlated with visual scores. Toward the latter stages of disease progression, an
overall reduction in reflectance was observed in the green spectrum in the infected
plots and was attributed to a reduction in chlorophyll content caused by chlorosis
and necrosis (Yu et al., 2018). More studies employing spectroscopy in the field are
discussed in Section 4.3.2 and include wheat powdery mildew (Ziheng Feng et al.,
2021) and soil-borne pathogens of wild rocket (Angelica Galieni et al., 2022).
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5.3.4 Research opportunities

Considerations and applications for AB screens

AB can cause necrotic lesions on all above-ground plant parts and sporulation on
the surface of the lesions. When lesions occur on stems, stem breakage can occur,
which leads to a reduction of biomass and yield loss (Pande et al., 2005). These signs
and symptoms must be measured to select genotypes with high levels of resistance.
Suitable sensors to measure these signs and symptoms include light detection and
ranging (lidar) sensors for the loss of biomass and imaging sensors for the degree of
necrosis and sporulation (Chapter 2).

Sensor-based phenotyping of AB screens of chickpea under field conditions has
been performed previously in trials examining the efficacy of fungicides. Plots were
imaged from a drone over three seasons between 2016 and 2018 with multiple sensors
at different flight heights on different days after planting (Zhang, Chen, and Sankaran,
2019). Multiple VI and canopy temperature were used to predict visual scores that
were recorded on a 1 to 9 scale and correlation coefficients between 0.35 and 0.81 were
reported. In addition to the aerial data, leaf-level reflectance data were also collected
with a leaf-clip spectroradiometer in the spectral range between 350 and 2500 nm in
2018. From a total of 1024 recorded bands, 14 wavebands were selected using the
Least Absolute Shrinkage and Selection Operator (LASSO) variable selection method.
The selected bands could predict the disease score in a linear model with a correlation
coefficient of r = 0.71 at 36 days after planting and r = 0.73 at 50 days after planting.
However, this was not an improvement compared to the prediction of disease index
when simply using the normalized difference vegetation index (NDVI) measured
from a drone, which resulted in r = 0.73 at 36 days after planting and r = 0.72 at 50
days after planting (Zhang, Chen, and Sankaran, 2019). This indicates that when the
average reflectance per plot is used for predicting Ascochyta blight disease severity,
simple vegetation indices that can be acquired at high throughput may be sufficient.

Specificity of stress detection in the field

To reliably identify a stress and distinguish it from other stresses, sensor-based meth-
ods must have high specificity (Anderegg et al., 2019). Spatial variability in the field,
abiotic stresses, and secondary pathogens can mask the effects of the fungus or lead
to false positive detection. In managed field trials, this can be controlled to some
extent (Jay et al., 2020). In a farming context where early detection of AB may be used
as a management tool, specificity is important so that fungicides are applied only
where needed. Spectroscopy is a promising tool for distinguishing biotic stresses, as
shown with contact spectroscopy on potato infected with either Phytophthora infestans
or Alternaria solani and aerial imaging of olive trees infected with either Verticillium
dahliae or Xyllela fastidiosa (Poblete et al., 2021; Gold et al., 2020a).

Salinity is an important abiotic stress in chickpeas and can cause a reduction
in plant height and plant biomass in the vegetative stage in the greenhouse and a
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reduction in seed yield in the field (Atieno et al., 2017; Flowers et al., 2010). Symptoms
of salinity stress caused by ion accumulation in the shoot include chlorosis, early
senescence, and necrosis of the leaves (Carillo et al., 2011; Atieno et al., 2021). Therefore,
both observations of optical properties and estimates of plant biomass can be suitable
for judging salinity tolerance and detecting the stress (Stoddard et al., 2006; Maliro
et al., 2008). Due to the symptoms of senescence/necrosis and loss of healthy biomass
that are comparable between salinity stress and AB, salinity stress was chosen for this
study to evaluate whether the developed AB detection method is specific and capable
of distinguishing between symptoms of AB and salinity stress.

5.3.5 Aims of this study

We evaluated the potential of using a ground-based phenotyping platform with hy-
perspectral and lidar sensors to detect AB compared to non-infected plants, fungicide
protected plants, and to distinguish the specific AB stress from salinity stress. Fur-
thermore, the possibility of predicting the percentage of area diseased (PAD) scores in
infected plots and trays was evaluated.

5.4 Materials and methods

5.4.1 Experimental design

2020 Field experiment The South Australian Research and Development Institute
(SARDI) conducted AB field screens in Kingsford, South Australia in the 2020 season
(34°33’15.5"S 138°46’57.8"E). In total, nine genotypes were screened (CVR020, CVR021,
CVR022, CVR478, CVR479, CVR481, CVR482, Genesis090, Howzat). All genotypes
are anonymized here in line with the other chapters except for the control cultivars
Genesis090 (moderately susceptible to AB) and Howzat (very susceptible to AB) (Ra-
man et al., 2022; Blake, 2022). Four plots per treatment and genotype combination
were grown in a randomized complete block design in 7 m long plots with six rows
of plants. All plots were infected with stubble containing unspecified A. rabiei iso-
lates and exposed to three treatments: (i) Nil, (ii) fortnightly Chlorothalonil, and (iii)
strategically applied Veritas (Azoxystrobin + Tebuconazole, Adama, Australia) (Figure
5.1). Accessions CVR021, Genesis090 and Howzat were also screened in a separate
experiment with treatments (i), (ii), (iii), and additionally (iv) strategically applied
Chlorothalonil and (v) strategically applied Aviator (Bixafen + Prothioconazole, Bayer
Crop Science, Australia). The plants were seeded on 2020-06-06, infected on 2020-07-22
(46 days after sowing (DAS)), scored on 2020-10-15 (85 days after infection (DAI)), and
imaged on 2020-10-20 (90 DAI). For treatment details, see Supplementary Table 5.6.

2022 Tray experiment In the 2022 season, three accessions (Genesis090, CVR484, and
WLD085) were grown in draining trays of 420 mm length, 320 mm width, and 130 mm
height in the same experimental setup as described in Chapter 3. Briefly, 20 seeds per
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FIGURE 5.1: Plots and lesions in 2020 field experiment imaged on 2020-
09-16 (56 DAI) (used with permission from Sara Blake). a = cv. Howzat
+ fortnightly Chlorothalonil (ii), b = cv. Howzat + Nil treatment (i), c =

Leaf lesions on unknown cultivar.

tray were seeded in Van Schaik’s Bio Gro soil mix (Bio Gro Pty Ltd., Mount Gambier,
South Australia) on 2022-06-08, placed on a sandy soil layer, infected with a spore
suspension of A. rabiei on 2022-07-19 (40 DAS), scored on 2022-09-14 (58 DAI) and
imaged on 2022-09-15 (59 DAI) (Figure 5.2). The inoculum had a concentration of
1× 106 pycnidiospores ml-1 of isolate 16CUR018 (collected on cv. Genesis090 in Curyo,
Victoria, Australia in 2016) and surfactant Tween 20 (0.01%) (Merck Pty Ltd.) and was
sprayed to runoff (Bar, 2019). The same isolate was used in Chapters 3 and 4. Three
treatments were applied to 4 replicates in a split plot design: (i) inoculation, (ii) no
inoculation and treatment with Chlorothalonil (Bravo Weather Stik, Syngenta Crop
Protection, 720 g l-1 applied at 40 ml per tray), and (iii) no inoculation, application
of saline solution and treatment with Chlorothalonil (same as described for (ii)). Soil
salinization was performed at the same time as inoculation (40 DAS) by applying 3.3 l
of 60 mM NaCl solution to each tray with a watering can. Salinization was repeated
with the same volume of 60 mM NaCl solution on 28 DAI and with the same volume,
but with a concentration of 120 mM on 42 DAI. Fungicide treatment was carried out
the day before inoculation, 21 DAI, 28 DAI and 44 DAI (Supplementary Table 5.6).

5.4.2 Data acquisition

The plots were visually scored by an expert pathologist for PAD per plot or tray. The
plots and trays were phenotyped using a ground-based field phenotyping platform
(Field Explorer / TraitSeeker, CropTraits; Phenokey) carrying hyperspectral cameras
with active illumination (Table 5.1) and a lidar sensor (SICK LMS400-1000, SICK, USA).
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FIGURE 5.2: Trays in 2020 field experiment imaged on 2022-09-16 (60
DAI) a = cv. Howzat + no inoculation and treatment with Chlorothalonil
(ii) (0 PAD), b = cv. Howzat + no inoculation, application of saline solu-
tion and treatment with Chlorothalonil (iii) (30 PAD), c = cv. Howzat +
inoculation (i) (95 PAD), d = WLD085 + (ii) (0 PAD), e = WLD085 + (iii)

(0 PAD), f = WLD085 + (i) (0 PAD).

TABLE 5.1: Specifications of hyperspectral cameras in Field Explorer.

Camera Spectral range Bands FWHM

Specim FX10 397 - 1,004 nm 224 5.5 nm
Specim FX17 937 - 1,718 nm 112 16 nm

FWHM: Full Width at Half Maximum
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FIGURE 5.3: Reconstituted RGB image of a plot with low chickpea
biomass and wireweed coverage.

5.4.3 Data analysis

Calibration and fusion of hyperspectral and lidar data

Hyperspectral data from VNIR and SWIR sensors were calibrated, fused, and merged
with the point cloud derived from lidar data. In the 2020 season, the reflectance data
was limited to plant material 10 cm or higher above the ground. This height threshold
was implemented because large sections of the soil of the plots were covered with
scrambling prostrate wireweed (Polygonum aviculare subsp. aviculare), particularly in
plots where chickpeas were severely damaged and the ground was exposed (Figure
5.3).

Full spectrum hyperspectral data pre-processing

Following radiometric calibration and spatial segmentation, a series of smoothing,
normalization, and binning steps were applied to the hyperspectral data as described
in Chapter 4 (Paulus and Mahlein, 2020). The smoothing parameters and binwidths
for spectral binning were adapted to the equipped sensors (Table 5.1). After visual
inspection of the reflectance curves, the VNIR data were smoothed with a Savitzky-
Golay filter with third polynomial order and a window length of seven, and the SWIR
data were smoothed with a Savitzky-Golay filter with third order polynomial and a
window length of nine. SWIR reflectance was adjusted to the baseline of the VNIR
reflectance and the ends of the spectral range were limited to > 410 nm and < 1680 nm
to remove noisy bands at the extremes of the range. Spectral binning was performed
at both single and double FWHM of each sensor. The derivatives were calculated with
a gap size of 1 and a window length of 9. Binning, smoothing, and derivation were
performed using the packages tidyverse version 1.3.2 and prospectr version 0.2.6 for

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=701426
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R version 4.2.1 (Wickham et al., 2019; Stevens and Ramirez-Lopez, 2020; R Core Team,
2022). After smoothing and fusion of VNIR and SWIR data, Principal Component
Analysis (PCA) was used to explore the dimensionality of the data and the sources
of variation, using the ggfortify R version 0.4.14 package (Tang, Horikoshi, and Li,
2016).

Feature extraction from hyperspectral and lidar data

Ground cover per plot was estimated using lidar data thresholded by NDVI, and
biomass was estimated from the volume of voxels in the point cloud (Supplementary
Table 5.5). From the smoothed hyperspectral data, the following VI were calculated
from specific wavebands: Modified Simple Ratio (MSR), Plant Senescence Reflectance
Index (PSRI), Red Edge Modified Simple Ratio (REMSR / MRESR) and Structure
Insensitive Pigment Index (SIPI). Additionally, the average reflectance was taken over
all 307 bands to calculate the mean reflectance (MR) (Supplementary Table 5.5).

To evaluate the potential of using vegetation indices derived from RGB or multispec-
tral sensors, four multispectral channels were emulated from hyperspectral data by
averaging the raw reflectance within spectral ranges corresponding to typical ranges
of RGB and multispectral sensors: 418 - 510 nm (blue), 490 - 580 nm (green), 573 - 645
nm (red), and 705 - 820 (NIR), (Zhang et al., 2017). From these averaged bands, the fol-
lowing VI were calculated: Enhanced Normalized Difference VI (ENDVI), Enhanced
Vegetation Index (EVI), Excess Green Index (EXGI), Green Chromatic Coordinate
(GCC), Green Red VI (GRVI), Modified Soil Adjusted VI (MSAVI), Normalized Dif-
ference VI (NDVI), Red Edge Normalized Difference VI (RENDVI), Red Edge Simple
Ratio (SR), Green Red VI (VARI) (Supplementary Table 5.5).

Learning algorithms and model selection

Learning algorithms Both full spectrum reflectance data as well as ground cover
and biomass were used for the prediction of PAD scores and the classification between
fungicide and non-fungicide treatments. As in Chapter 4, random forest (RF), support
vector machines (SVM), and partial least squares regression / - discriminant analysis
(PLSR / PLS-DA) were used as learning algorithms for regression and classification
analyses. In addition, least absolute shrinkage and selection operator (LASSO) with
and without a correlation filter of 0.7 were tested for regression (James et al., 2013; Li
et al., 2019).

Model selection The models were trained with five repeats of five - fold cross
- validation using the tidymodels framework for each year (Kuhn and Wickham,
2020). Regression models were evaluated based on the estimated RMSE and squared
Pearson’s correlation coefficient (R2), and classification models were evaluated based
on the estimated accuracy and Cohen’s kappa (κ). The best algorithms within each
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year were selected, trained on the entire data set of the season, and evaluated on the
data from the opposite season. The models for the prediction of PAD were only trained
on the data from the infected trays and plots. As there were only 11 recorded infected
trays in 2022, no regression models were trained on this year’s data.

The training data for the classification task from the 2020 data contained only two
classes of treatment, i.e. (i) Fungicide treated and (ii) non-fungicide treated. The data
from the 2022 season instead contained three treatment classes: (i) Infected, (ii) non-
infected and fungicide treated, (iii) non-infected, fungicide treated and salinity treated.
In the evaluation of the final models, a predicted classification was considered correct
if the infection status was predicted successfully, regardless of salinity treatment (Table
5.3).

The influence of the pre-processing steps (Smoothing, VNIR and SWIR fusion,
Normalization, Derivation, Binning) and learning algorithms (LASSO, LASSO with 0.7
correlation filter, RF, SVM, PLSR for regression; RF, SVM and PLSDA for classification)
on cross-validation (CV) results within each year was examined by analysis of variance
(Chapter 4).

Feature selection

Variable importance was determined by permutation in RF models as described in
Chapter 3. In the case of PAD score prediction, a linear least squares regression model
with the most important trait as predictor was trained and in the case of classification
between treatments, a multinomial regression model, again with the most important
trait as predictor was trained (Li et al., 2019; Gregorutti, Michel, and Saint-Pierre,
2017).

Analysis of treatment and genotypic effects on PAD scores

The effects of fungicide treatment on PAD scores as well as genotypic effects within the
nil-treated plots were examined as described in Chapter 3 by analysis of variance and
comparison of Tukey Honest Significant Differences, implemented in the agricolae R

package (Felipe de Mendiburu and Muhammad Yaseen, 2020).

5.5 Results

5.5.1 Visual scoring of AB damage

2020 season

PAD scores in untreated plots The PAD scores for the 2020 plots that were not
treated with fungicides ranged from 2 to 90 % and there were significant genotypic
differences (Figure 5.4). The susceptible control genotype cv. Howzat had an average
score of 74.4 % AB damage over eight plots and the most resistant screened genotype
CVR021 had an average score of 9.4 % over four plots.
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indicate individual plots / trays and red crosses indicate the mean PAD.
Letters indicate groups where pairwise comparisons are significantly

different at α = 0.05, within each year.

Treatment effects on PAD scores Only the fortnightly Chlorothalonil treatment
could fully prevent AB damage in 2020. AB damage was still observed under strategic
application of Aviator, Veritas, or Chlorothalonil (Figure 5.5). Therefore, only the
fortnightly Chlorothalonil treatment was chosen as control treatment for the disease
detection algorithm in 2020.

2022 season

Genotypic effects in untreated trays In the trays in 2022, all three genotypes showed
significantly different AB damage under the infection treatment. Howzat scored
highest with a mean PAD score of 91.25 %, Genesis090 scored in the middle with
a mean PAD score of 52.5 %, and WLD085, the candidate resistant C. reticulatum
accession, scored lowest with a mean PAD score of 0.5 %. Only one out of four trays
of WLD085 showed any signs or symptoms of AB, confirming the resistance of this
genotype (Figure 5.4, Chapter 3).

Treatment effects The infected trays had significantly higher PAD scores than both
the salt and fungicide-treated and the fungicide-treated trays (Figure 5.4). However,
both fungicide-only and fungicide and salinity treated trays were given visual scores
of more than zero in a concealed test where the rater was not aware of genotype
and treatment. Three of the twelve fungicide-protected trays were rated as showing
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FIGURE 5.6: Symmetric correlation matrix between reflectance at in-
dividual bands for smoothed hyperspectral data within each season.
For the 2020 data, two treatments (fortnightly Chlorothalonil and No-
fungicide) are included and for the 2022 data, all treatments are in-

cluded.

minimal AB damage of 5 % or less, and nine of the salinity-treated but fungicide-
protected trays were rated as showing varying degrees of AB damage up to 30 %
(Figure 5.5).

5.5.2 Exploratory analysis of hyperspectral data

In both seasons, the smoothed hyperspectral data showed high autocorrelation and
redundant features across both fortnightly chlorothalonil treated and non-fungicide
treated plots, reaching near-perfect correlation across all bands in the 2020 season
(Figure 5.6). In 2022, the VIS region of the trays (sub 700 nm) showed a lower correla-
tion to the near-infrared region (between 700 and 1300 nm). The correlation between
the VIS and NIR - SWIR region was even lower when only the infected trays were
considered (Figure 5.9). Principal component analysis (PCA) could capture a large
fraction of the variation within the spectral data in few components for both seasons
(Figure 5.7). For the 2020 data, the first and second PC represented 98.31 % and 1 % of
the variation in the spectral data, respectively, and strong clustering of the treatments
was apparent. In the 2022 season, the first two components represented 75.87 % and
16.86 % of the variation, respectively, and the three treatments did not show the same
level of clustering as the 2020 data.
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5.5.3 Prediction of AB damage

Regression using full spectrum hyperspectral data The best estimated prediction
of PAD scores with full spectrum hyperspectral data (Figure 5.8) for the 2020 season
was achieved using the second derivative of non-normalized raw reflectance data,
binned at double FWHM, in a random forest model. The estimated RMSE ± standard
deviation was 9.27± 2.14 (R2 = 0.89± 0.07). When testing this algorithm on the data
from trays of 2022 (Figure 5.9), an RMSE of 31.32 (R2 = 0.51) was achieved (Table 5.2).
Due to the trimodal distribution of the observed scores, Spearman’s rank correlation
coefficient was also calculated for the between-year evaluation (ρ = 0.74) (Figure 5.4).
Each step of the pre-processing pipeline except for the inclusion of SWIR data had
a significant influence on the results of the within-year CV in 2020 (Supplementary
Table 5.4).
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TABLE 5.2: Between-year PAD score prediction validation results of a
random forest model trained on processed full spectrum hyperspectral
data (Full spectrum model), linear regression model trained on re-
flectance at 792 nm (Single band model) and a linear regression model
trained on EVI (EVI model). Model RMSE, squared Pearson’s correla-
tion coefficient (R2) and Spearman’s rank correlation coefficient (ρ) are

reported. No models were trained on 2022 data.

Validation Full spectrum model Single band model (792 nm) EVI model

2020 model, RMSE = 31.32 RMSE = 41.18 RMSE = 27.35
2022 data R2 = 0.51 R2 = 0.68 R2 = 0.70

ρ = 0.74 ρ = 0.89 ρ = 0.77

2022 model, — — —
2020 data
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Variable extraction for regression The important spectral regions for the prediction
of PAD scores in 2020 ranged from 520 to 570 nm and from 740 to 850 nm (Figure 5.8).
Bands within and between these two spectral regions were strongly correlated (r >
0.99) (Figure 5.6). Furthermore, the lidar-derived ground cover was important for the
prediction of PAD scores. The region between 740 and 850 nm was also important for
the prediction in 2022 (Figure 5.9). Therefore, a simple linear regression model with a
center wavelength of 792 nm as the only predictor was evaluated in cross-validation
for 2020 data (RMSE = 13.02± 0.54, R2 = 0.81± 0.02), and then trained on the entire
data of 2020 and tested on 2022 data (RMSE = 41.18, R2 = 0.68, ρ = 0.89) (Table 5.2).

Vegetation indices for regression Due to the high collinearity between wavebands,
the extracted vegetation indices were also strongly autocorrelated. For the infected
plots in 2020, the correlation coefficients of all extracted indices with PAD scores
ranged between absolute values of (r = 0.7 and r = 0.9). The strongest correlations
were EVI (r = −0.9), ExGI (r = −0.89) and MSAVI (r = −0.89), which are correlated
with plant vigor (Huete et al., 2002; M. Woebbecke et al., 1995; Larrinaga and Brotons,
2019; Qi et al., 1994). Out of all the extracted traits, only PSRI showed a positive
correlation with PAD scores (r = 0.72), this index is correlated with leaf senescence
(Merzlyak et al., 1999). Mean reflectance (MR) had a correlation of -0.88 with PAD
scores (Figures 5.8 5.9). All of these correlations were significant at p < 0.05. In the
2022 season, PAD scores were also strongly correlated with vegetation indices, but that
year the correlations were not significant, possibly because only 11 trays were recorded.
EVI again showed the strongest correlation to PAD scores on the trays (r = −0.84),
followed by MSAVI, SR, and RENDVI (all r = −0.83). MR had a correlation of -0.67
to PAD scores. As in 2020, the only index with a positive correlation to PAD scores
was PSRI (r = 0.11). In cross-validation within 2020 data, EVI achieved an RMSE of
12.2± 0.50, R2 = 0.83± 0.02. When the EVI linear regression model was trained on all
data of 2020 and applied to 2022 data, the results were RMSE = 27.4, R2 = 0.7, ρ = 0.77
(Table 5.2).

5.5.4 Treatment classification

Classification using full spectrum hyperspectral data The best algorithm to distin-
guish non-fungicide treated plots from those treated fortnightly with Chlorothalonil
in 2020 used the first derivative of normalized raw full spectrum data in an SVM
model, achieving an estimated accuracy of 99.6 % ± 1.5 %. When training on the
entire data from 2020 and applying the model to 2022 data, the accuracy was 34.4
% (κ = 0.00, Table 5.3). As for the regression model, all preprocessing steps and the
choice of learning algorithm had a significant influence on the CV performance of
the classifiers, except for the inclusion of SWIR data (Supplementary Table 5.4). The
best algorithm to distinguish salt and fungicide treated, fungicide-only treated, and
infected trays in 2022 used raw reflectance VNIR-only data in a random forest model,
achieving an estimated accuracy of 70.1 %± 15.0 % (Figure 5.11). Applying the trained
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FIGURE 5.10: Smoothed reflectance of all plots used for the treatment
classifier in 2020 and feature importance. Thin lines represent smoothed
reflectance for individual plots with treatment indicated as color (upper
panel), with the average for each treatment overlayed as a thick line.
Waveband and lidar-based trait importance (VI) for prediction of PAD
based on permutation in 500 random forest models is shown in lower

panel.

model from 2022 to 2020 data resulted in an accuracy of 72.9 % (κ = 0.458, Table 5.3).
The selection of learning algorithm and all preprocessing steps except smoothing
all had a significant influence on the CV results of classifiers trained on 2022 data
(Supplementary Table 5.4).
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148TABLE 5.3: Upper table shows treatment predictions for 2020 data made with models trained on 2022 data, both with a single
band model (logistic regression with reflectance at 756 nm as predictor) and full spectrum model. Predictions that were considered
correct are highlighted green and predictions that are considered wrong are highlighted red . Overall accuracy and Cohen’s κ are

reported. The lower table shows the opposite validation, prediction for 2022 made with models trained on 2020 data.

2022 models predicting 2020 data Plots + FN chlorothalonil Plots without fungicide

Single band model (756 nm): Accuracy = 81.2 %, κ = 0.63

Predicted: Trays + Infected 11 41
Predicted: Trays + Fungicide 22 1
Predicted: Trays + Salt + Fungicide 15 6

Full spectrum model (VNIR, RF): Accuracy = 72.9 %, κ = 0.46

Predicted: Trays + Infected 25 47
Predicted: Trays + Fungicide 23 1
Predicted: Trays + Salt + Fungicide 0 0

2020 models predicting 2022 data Trays: Infected Trays: Fungicide Trays: Salt + Fungicide

Single band model (756 nm): Accuracy = 71.9 %, κ = 0.30

Predicted: Plots + FN chlorothalonil 7 10 9
Predicted: Plots without fungicide 4 0 2

Full spectrum model (VNIR + SWIR, SVM): Accuracy = 34.4 %, κ = 0.00

Predicted: Plots + FN chlorothalonil 0 0 0
Predicted: Plots without fungicide 11 10 11
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Variable extraction for classification The most important spectral region for clas-
sification of fungicide-treated and untreated plots in 2020 was between 756 and 784
nm (Figure 5.10). In 2022, the important region was between 721 and 811 nm with
greater importance towards shorter wavelengths (Figure 5.11). The reflectance at an
intermediate wavelength of 756 nm was chosen as the only predictor. This band had a
Pearson correlation greater than 0.99 with the bands where importance was highest at
776 and 726 nm, respectively, for each year. The classifiers trained on that individual
band achieved estimated accuracies of 81.8 % ± 1.5 % in 2020 and 74.5 % ± 3.2 % in
2022. The prediction of data from 2022 with the model trained on 2020 data achieved
an accuracy of 71.9 % (κ = 0.301). Testing the algorithm from 2022 on 2020 data
resulted in an accuracy of 81.2 % (κ = 0.625) (Table 5.3).

5.6 Discussion

5.6.1 General discussion

PAD scores The performance of the genotypes in the infected and nil-treated subsets
was consistent throughout the growing seasons and in experiments in other environ-
ments (Chapters 3 and 4). Cv. Howzat performed the worst, cv. Genesis090 showed
moderate susceptibility and the candidate resistance of the wild accession WLD085
was confirmed (Figure 5.4). Concerning the treatment effects on PAD scores, only the
fortnightly chlorothalonil treatment could completely prevent AB in plots in 2020, but
not the strategic applications of fungicides before rain events. Therefore, frequent
fungicide applications are required for complete disease management. Despite such
frequent applications, the fungicide-protected trays in 2022 were also rated positive for
AB symptoms. It is possible that there was a small amount of cross-infection from the
infected trays facilitated by favorable environmental conditions in the nursery, despite
the fungicide treatment and spatial separation of the trays (Chapter 3). Among the
fungicide-protected trays, those that also received salt treatments had slightly higher
PAD scores (Figure 5.5). While this difference was not significant, it may be explained
by three factors. (i) The salt-treated trays could have been more cross-contaminated
than the non-salt-treated trays by chance or (ii) the plants could have been stressed
by the salt treatment and therefore been more susceptible to cross-infection (Bostock,
Pye, and Roubtsova, 2014). Another potential explanation is (iii) false positive scoring,
in which salt damage could have been interpreted as AB damage, as the scoring was
performed as a concealed trial with respect to the treatment (Figure 5.2).

Hyperspectral imaging of chickpea AB interaction in the field High autocorrela-
tion between bands was observed in 2020 across the entire measured spectrum and
within 400 to 700 nm in 2022, consistent with published literature and Chapter 4
(Hennessy, Clarke, and Lewis, 2020). The lower correlation of the wavelengths longer
than 700 nm with the other bands in 2022 may be explained by trays with overall
low reflectance across the entire spectrum and infected trays that showed a less steep
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red edge section (Figure 5.11). In the cross-validation of all classification and regres-
sion models trained on hyperspectral data in 2020, there was no significant effect of
including SWIR data, probably due to the high correlation with bands in the VNIR
region (Figure 5.6). However, all other processing steps, as well as the choice of learn-
ing algorithm, had significant influences on cross-validation performance, except for
smoothing for the classifier in 2022. The correlation between VNIR and SWIR bands
was lower in 2022, which could be the reason that the inclusion of SWIR bands had a
significant negative effect on the CV treatment classification results (Supplementary
Table 5.4). These results confirm the influence of hyperspectral data preprocessing
methods and learning algorithms on the success of the treatment classification and
disease severity prediction. Therefore, the methods need to be chosen carefully (Hen-
nessy, Clarke, and Lewis, 2020; Paulus and Mahlein, 2020; Heim et al., 2018; Wei et al.,
2021).

Prediction of PAD An accurate ranking of genotypes grown in 2022 according to
their PAD was achieved with a linear model trained on the reflectance of plots from
a single waveband at 792 nm from 2020 (ρ = 0.89). This linear model performed
similarly to one trained on EVI when evaluated on R2, with EVI performing better
based on RMSE, while the single band achieved better results based on ρ. The lower
RMSE when using EVI may be due to the normalization step when calculating this
vegetation index (Supplementary Table 5.5). Both the single band model and the EVI
model performed better than the model trained on full spectrum data, indicating that
dimensionality reduction improves transferrability of the model. The band at 792 nm
was chosen as predictor because it shared high importance in both seasons (Figures 5.8,
5.9). The band is located between the red edge region and NIR plateau and is related
to the collapse of the leaf cell structure (Malthus and Madeira, 1993; Hennessy, Clarke,
and Lewis, 2020). In the 2020 season, the greenness and lidar-based groundcover
were important in addition to the red edge / NIR region. As the segmentation of
plant material is performed using sensor fusion with lidar and no correction for soil
reflectance needs to be performed, the green brightness can represent the ratio of
healthy plant tissue to necrotic plant tissue in the remaining plant material (Gitelson
et al., 2002). Stem breakage caused by AB leads to a loss of biomass up to a complete
absence of plants in heavily diseased plots, which might explain the importance of the
trait Ground cover for the prediction of PAD. Ground cover, however measured by
RGB image segmentation, not lidar, was also found to be an important predictor for
disease index classes of pots in Chapter 3.

Treatment classification The CV performance of the full spectrum model within the
2020 season was almost perfect with more than 99 % accuracy, but the full model had
no predictive power for the 2022 data (κ = 0), a clear sign of overfitting that is a strong
risk in situations where the number of predictors exceeds the number of observations
(Table 5.3) (James et al., 2013). In contrast, the full spectrum model trained on 2022
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showed a lower within-year estimated CV accuracy (70 %) than the between-year
accuracy (72.9 %, κ = 0.46), potentially due to the smaller training data set. In 2020, the
important spectral bands for classification were limited to the red edge region between
756 nm and 784 nm, indicating that capturing a general plant stress response expressed
as a reduction in reflectance in the red edge region is sufficient to distinguish between
fungicide-treated and nil-treated plots (Figure 5.10) (Clevers et al., 2002). When a
third treatment was included in 2022, a larger spectral region from 721 to 811 nm
contributed to model performance, indicating that there are differences in the spectral
response of plants to AB and salt stress (Figure 5.11) (Lowe, Harrison, and French,
2017; Moghimi, Yang, and Marchetto, 2018). Lidar-based traits in themselves did
not contribute to treatment classification accuracy in either season, but sensor fusion
enabled limitation of the spectral measures to the plant material and elimination of
background signals.

Specificity and sensor suitability Despite the larger region of variable importance
for classification between three treatments in 2022, the specificity of treatment classifi-
cation was low and the spectral response to salt stress and infection was similar, as
shown in the clustering of treatments in PCA, the reflectance curves, and the lower
estimated classification accuracy of 70 % compared to an estimated accuracy of 99 %
when only distinguishing between nil-treated and fungicide protected plots (Figures
5.7, 5.10 and 5.11). However, there was still more evidence of differences in the spectral
response between salt and infection treatment, as no salinity was predicted with the
full spectrum model trained on 2022 data applied to 2020 data, unlike the single band
model (Table 5.3).

The specificity of detection may be improved by limiting the influence of secondary
stresses in controlled trials, or using human supervision when in doubt, as suggested
for Cercospora Leaf Spot on sugar beet (Jay et al., 2020). Alternatively, increased
specificity via sensor technology may be achieved by the addition of high-resolution
RGB sensors to the phenotyping platform, which would allow to detect lesions with
the methods developed in Chapter 3. Specific distinction between two biotic stresses
was also shown to be possible in the controlled environment with contact spectrometry
(Gold et al., 2020b) and even using imaging spectroscopy from an airplane (Poblete
et al., 2021) (Section 4.3.2).

Lidar sensors facilitate the semantic segmentation and limit the reflectance mea-
surements to the remaining plant material; this task would be more difficult if only
spectral measurements were available. The results of whether lidar-based traits them-
selves are useful compared to spectral measurements alone were inconclusive and
should be investigated in future field trials (Figure 5.8). In the investigation of within-
year variable importance, ground cover was only important for the prediction of
PAD in 2020, possibly due to the presence of the sprawling weeds. Lidar-based traits
were not important for the other season. An alternative vector for measuring average
plot-level reflectance could be aerial platforms to increase the throughput, but this
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would limit the ability to perform 3D reconstruction, reflectance from the soil would
need to be controlled for, and lesion detection would likely not be possible due to low
spatial resolution.

5.6.2 Study outcomes in relation to research aims

1. Development of sensor-based phenotyping methods to score disease severity in
a chickpea breeding program Breeding selection may be supported using simple
sensors that can measure reflectance in the RGB and the VNIR spectrum. At plot-level,
that reflectance may also be measured with higher throughput by mounting such
sensors on UAVs. However, specificity to AB stress cannot be guaranteed when using
simple vegetation indices. Therefore, the following options exist to support breeding
with sensor-based methods in the field with simple vegetation indices. (i) Secondary
stresses need to be removed, (ii) human supervision of the methods can be used to
recognize secondary stresses, (iii) sensor-based methods need to be developed further
for higher specificity.

2. Identification of within-scale and cross-scale functional resistance components
At the field scale, single band reflectance at 792 nm or EVI were suitable candidate
traits for prediction of DI. However, it is implausible that they are functional resistance
components due to their non-specificity as shown in the tray experiments in 2022. No
time-series measurements were performed for the field-scale, therefore no relative
growth rates in response to inoculation (promising potential resistance components
in Chapter 3 and 4) could be derived and compared to the single time point spectral
traits.

5.7 Conclusion

In summary, we showed that spectral measurements in the VNIR region of chickpeas
affected by Ascochyta blight in the field can accurately rank genotypes according
to their visual scores. The transferability of AB damage prediction and treatment
classification models could be increased by selecting features from full spectrum
hyperspectral data such as simple vegetation indices or single waveband reflectance.
The best ranking of unseen data from an independent experiment was achieved with
a least squares regression model trained on the reflectance from a single band at 792
nm (ρ = 0.89). Treatment classification models using a single band at 756 nm achieved
accuracies of 71.9 % and 81.2 % in between-year validation. However, the specificity
of stress detection was not very high, as the chosen feature was a general plant stress
response. The results for classification accuracy should be confirmed in additional
trials, as salt treatment was only included in one of the two seasons. Ground cover and
biomass estimates derived from lidar data seemed not to be important for treatment
classification and prediction of PAD scores, but enabled 3D reconstruction of the



5.8. Acknowledgements 153

plant material and, thus, improved the spectral data. Similarly, the inclusion of SWIR
data did not improve treatment classification and prediction of PAD scores. Our
methods open up the possibility of predicting Ascochyta blight damage with simple
spectral indices in field trials where secondary stresses can be mitigated. As average
plot-level indices were suitable predictors, data acquisition may be simplified from
using ground-based hyperspectral measurements to using multispectral sensors on
airborne platforms that would achieve increased throughput at a lower cost. However,
more work is needed to increase the specificity of the methods by including multi-
environment, multi-year data.

5.8 Acknowledgements

Technical assistance was provided by the field team of the South Australian Research
and Development Institute (SARDI) Clare field team, Scientific Officer Sara Blake of
SARDI Urrbrae who ran the field experiment in 2020, and technical officer Marzena
Krysinska-Kaczmarek of SARDI Urrbrae who provided A. rabiei isolates for the 2022
tray experiment.

5.9 Data availability

The data and code required to reproduce these results are available via
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TABLE 5.4: Influence of hyperspectral data processing and learning
algorithms. Mean RMSE ± standard deviation of CV results for the
PAD prediction models from 2020 and the mean AUC ROC ± stan-
dard deviation for treatment classification models of 2020 and 2022 are

shown.

Pipeline Step 2020 RMSE 2020 ROC AUC 2022 ROC AUC

Binning

Full spectrum 13.94± 5.1 0.98± 0.03 0.79± 0.14
FWHM binned 13.63± 4.12 0.98± 0.03 0.8± 0.14
Double FWHM binned 13.84± 4.29 0.98± 0.04 0.78± 0.15

Derivation

None 13.93± 4.37 0.98± 0.04 0.8± 0.15
First 14.28± 5.24 0.99± 0.01 0.79± 0.13
Second 13.11± 3.93 0.98± 0.03 0.78± 0.14

Learning algorithm

LASSO 12.81± 3.09 — —
LASSO + Cor. filter 18.13± 6.65 — —
PLSR / PLSDA 12.44± 3.15 1± 0.01 0.78± 0.14
RF 12.89± 3.82 0.97± 0.05 0.81± 0.14
SVM 13.92± 3.65 0.99± 0.03 0.77± 0.15

Normalization

None 12.18± 3.54 0.97± 0.05 0.81± 0.14
Pu 15.25± 4.81 1± 0.01 0.77± 0.15

Sensors

VNIR + SWIR 13.84± 4.49 0.98± 0.03 0.78± 0.15
VNIR only 13.76± 4.56 0.98± 0.04 0.8± 0.14

Smoothing

Raw 13.76± 4.56 0.99± 0.03 0.79± 0.14
Smoothed 13.93± 4.39 0.98± 0.04 0.8± 0.15
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TABLE 5.5: Low-level traits extracted from average hyperspectral data and lidar at plot level.

Abbreviation Trait Equation Reference

Extracted from lidar data

BM Biomass > 10 cm Sum of plant voxel volumes CropTraits
GC Ground cover CoveredGround

ScannedSur f ace CropTraits

Vegetation indices

ENDVI Enhanced Normalized Difference VI (NIR+Green)−(2×Blue)
(NIR+Green)+(2×Blue) ENDVI

EVI Enhanced Vegetation Index 2.5 ∗ (NIR−Red)
(NIR+6∗Red+7.5∗Blue+1) Huete et al., 2002

ExGI Excess Green Index 2 ∗ Green− Red + Blue M. Woebbecke et al., 1995
GCC Green Chromatic Coordinate (Green)

(Blue+Green+Red) D. M. Woebbecke et al., 1995

GRVI Green Red VI (Green−Red)
(Green+Red) Rouse Jr et al., 1973

MR Mean Reflectance ∑R1676
R=R411 R

307

MSAVI Modified Soil Adjusted VI 2NIR+1−
√

(2NIR+1)2−8(NIR−Red)
2 Qi et al., 1994

MSR Modified Simple Ratio (R800/R670)−1√
(R800/R670+1)

Chen, 1996

NDVI Normalized Difference VI (NIR−Red)
(NIR+Red) Rouse Jr et al., 1973

PSRI Plant Senescence Reflectance Index R680−R500
R750 Merzlyak et al., 1999; Yu et al., 2018

REMSR Red Edge Modified Simple Ratio (MRESR) R750−R445
R705−R445 Sims and Gamon, 2002

RENDVI Red Edge Normalized Difference VI (NIR−RedEdge)
(NIR+RedEdge) Gitelson, Kaufman, and Merzlyak, 1996

SIPI Structure Insensitive Pigment Index R800−R445
R800+R680 Haboudane et al., 2002; Yu et al., 2018

SR Red Edge Simple Ratio (NIR)
(RedEdge) Ehammer et al., 2010

VARI Green Red VI (Green−Red)
(Blue+Green+Red) Gitelson et al., 2002
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TABLE 5.6: Details and timing of treatments (i) to (v) applied to 2020 plots and treatments (i) to (iii) applied to trays in 2022.

Treatment DAI Details

2020 plots

i Nil (only infection) 0 Infection from stubble
ii Fortnightly

Chlorothalonil720®
Fortnightly 720 g l-1 chlorothalonil applied at 2 l ha-1

iii Strategic Veritas® 43, 56, 71,
91

200 g l-1 tebuconazole plus 120 g l-1 azoxystrobin, Adama, Aus-
tralia, applied at 1 l ha-1

iv Strategic
Chlorothalonil720®

43, 56, 71,
91

720 g l-1 chlorothalonil applied at 2 l ha-1

v Strategic AviatorXpro® 43, 56, 71,
91

150 g l-1 prothioconazole plus 75 g l-1 bixafen, Bayer Crop Science,
Australia, applied at 600 ml ha-1)

2022 trays

i Inoculation 0
ii Bravo Weather Stik® -1, 21, 28, 44 720 g l-1 chlorothalonil applied at 40 ml per tray (Syngenta Crop

Protection)
iiii Bravo Weather Stik® -1, 21, 28, 44 720 g l-1 chlorothalonil applied at 40 ml per tray (Syngenta Crop

Protection)
iiiii Salinity 0, 28 3.3 l of 60 mM NaCl solution
iiiiii Salinity 42 3.3 l of 120 mM NaCl solution
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Chapter 6

Discussion

6.1 Discussion structure

This integrated discussion chapter contains a synthesis of the previous thesis chapters
with the aim of establishing logical links between the chapters and providing a high-
level analysis and interpretation. The first section provides a connected overview of
the thesis chapters with summarised study aims and key results. The key outcomes
across the study environments are discussed in the next section. Then, the overall
significance, limitations, and disciplinary implications of the work are presented and
perspectives for future research and deployment of the methods are discussed.

6.2 Thesis overview

The aim of this thesis was to develop sensor-based phenotyping methods to contribute
to genetic gain for chickpea Ascochyta blight (AB) resistance breeding. In Chapter
1, chickpea production and AB impacts are introduced and opportunities for sensor-
based phenotyping for resistance breeding are identified as (i) prediction of disease
severity scores and (ii) measurement of resistance components. A literature review
(Chapter 2) explores the potential of sensor technology to measure specific signs and
symptoms of plant disease, that is, changes to primary and secondary metabolism,
chlorosis and necrosis, thermal energy dissipation, and growth of the pathogen. Suit-
able sensors for measuring chickpea and A. rabiei interactions were identified as RGB,
fluorescence and hyperspectral imaging, and light detection and ranging (lidar). In the
following three experimental chapters, most of these sensors were tested in nursery
disease screens (Chapter 3: RGB and multispectral), controlled environment (Chapter
4: RGB and hyperspectral), and in the field (Chapter 5: lidar and hyperspectral).

In Chapter 3, methods were developed to complement visual scoring in a disease
resistance screen run on chickpea and wild relatives grown outdoors in pots, which
is part of a breeding program. We showed that features extracted from time course
RGB imaging combined with spatial and longitudinal modeling can accurately predict
disease score classes on unseen data across three seasons (accuracies of 72.46 %,
80.97 %, 65.48 %, κ of 0.50, 0.59, 0.43), performing better than traits extracted from
multispectral imaging.
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In the following Chapter 4, the automated phenotyping system at The Plant Accel-
erator® was used to image plants grown in the greenhouse with the aim of identifying
hyperspectral features for early detection of disease and identifying RGB- and hyper-
spectral based methods to predict disease indices. Low disease pressure was observed
and impacted the results. Early disease detection algorithms were not transferable
between the two experiments, performing no better than random classifiers. For
the prediction of disease indices (DI), relative growth rates derived from RGB data
performed better than single time point hyperspectral data. A pipeline to evaluate
the impact of pre-processing methods of smoothing, normalization, derivation, and
spectral binning on the DI prediction performance was developed and it was shown
that (a) pre-processing significantly influenced the results and (b) inclusion of short
wave infrared (SWIR) data with visible near-infrared (VNIR) data did not improve
performance compared to VNIR alone.

In Chapter 5, a ground-based phenotyping platform (Field Explorer) was deployed
in the field and hyperspectral and lidar data were used to distinguish infected un-
treated plots from infected fungicide treated plots as well as to predict disease scores.
The same methods were applied to a second season where plants were grown in trays
and a second stress, salinity, was introduced to evaluate the detection methods for
specificity to AB. It was shown that a general spectral plant stress response in the
VNIR region can accurately distinguish the fungicide and nil treatments in the field,
but that the classification accuracy decreases when a secondary stress is included. For
the prediction of DI, a model trained on features from the field data achieved a ρ of
0.89 for ranking the genotypes grown in trays, showing high transferability.

6.3 Thesis outcomes

6.3.1 Key outcomes

Symptoms of chickpea AB can be measured with imaging sensors

Relating to research aim two of this thesis (Identification of within-scale and cross-scale
functional resistance components), the following two symptoms could be measured
using RGB-based imaging: Lesion formation and reduction of healthy plant biomass
caused by stem breakage. This would not have been possible with a comparable
throughput by visual assessment alone. Although lesion detection only achieved F1-
scores of 0.27 and 0.30 on unseen image data, the method could still provide estimates
that were useful for distinguishing non-infected and infected pots with accuracies
of more than 90% in 2021 and more than 75% in 2022 (Chapter 3, Figure 3.5). The
detection of lesions showed promise and may be further improved with better data
acquisition and detection algorithms.

Image-based estimates of chickpea shoot biomass that could be used to calculate
growth rates were achievable both in the glasshouse using an automated multiangle
imaging system, and in outdoor-grown chickpeas with topview imaging alone. In
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summary, this means that sensor-based phenotyping is a suitable method for measur-
ing the interaction of A. rabiei and chickpea and evaluating resistance, especially as
there is potential to measure further plant-pathogen interactions (Chapter 2, Section
6.4.2).

RGB-imaging based growth rates are suitable for prediction for DI

Of the measured symptoms, the time-series derived growth rates were suitable to
predict DI in the greenhouse, where R2 of 0.64 (RMSE = 12.43) and R2 of 0.37 (RMSE
= 5.99) were achieved for the respective between-year validations (Chapter 4, Figure
4.11). Growth rates were also able to predict DI classes in the nursery, where a classifier
achieved accuracies of 72.46 %, 80.97 %, 65.48 %, (κ of 0.50, 0.59, 0.43) (Table 3.4). In
both environments, growth rates performed better than all other traits that were tested.
Such growth rates have previously been used to quantify salt tolerance in chickpea in
the greenhouse using the same automated imaging system as in Chapter 4, but have
not yet been applied for chickpea AB in glasshouse and outdoors (Atieno et al., 2017;
Atieno et al., 2021).

A possible advantage of the RGB-derived growth rates over spectral traits in the
nursery was that they could consider disease progression over time. In the case of
the nursery, they allowed the determination of critical phenotypic stages and were
used to normalize for disease pressure differences between the years. However, only
simple longitudinal trait extraction was performed for the multispectral imaging in the
nursery. So far, the only extracted traits for that experiment were area under the curve
(AUC) traits. In the greenhouse, no longitudinal trait extraction from hyperspectral
data was performed at all; only single time point hyperspectral data from the day
of scoring was tested for the prediction of DI. The AUC traits in the nursery as well
as single time point hyperspectral data in the greenhouse had lower DI prediction
performance than RGB - based growth rates, but it is possible that they could achieve
higher performance if the longitudinal aspect was integrated (Section 4.3.3). Recently,
time course spectroscopy was performed for potato late blight and peanut stem rot,
where time course measurements were pooled and aggregated by visual disease
severity rather than time points (Wei et al., 2021; Gold et al., 2020b; Ziheng Feng et al.,
2021). Another recent approach was averaging of spectra from multiple timepoints,
which has been done for wheat powdery mildew and rice bacterial blight (Zhang et al.,
2022).

In the field, no imaging over time was performed, yet single time point data still
provided a good prediction of AB damage, possibly due to the broad range of observed
damage or the data quality achieved with the Field Explorer.

Lesion detection enables early detection of disease

Early detection of AB infection was attempted in the glasshouse and in the nursery.
In the glasshouse, this was done by classifying infected versus non-infected plants
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with hyperspectral data at single imaging time points at increasing days after infection
(DAI) (Chapter 4). To determine the earliest timepoint at which classification between
infected versus fungicide-treated pots was possible in the nursery, both vegetation
indices and the RGB-derived traits collected until that timepoint were tested in incre-
mental steps. In both the glasshouse and nursery, the early classification within trials
resulted in acceptable accuracies (Figure 3.7 and Section 4.5.3). However, the classifiers
that used spectral data showed low transferability between trials in both environments.
Factors that negatively influenced the results may have been (a) overfitting of spectral
models, (b) small amounts of cross-infection in the nursery, (c) systematic differences
other than infection in the glasshouse (i.e. split imaging times), and (d) very low
disease pressure in the glasshouse. A better classification accuracy and transferability
between trials in the nursery was achieved by using the presence of three or more
lesions as the only criterion.

In the field (Chapter 5), early detection was not attempted as imaging was only
performed once at the time of scoring. At that time point, a general stress response
in the red edge to near-infrared (NIR) spectral region (756 - 782 nm) was sufficient to
distinguish between infected and fungicide-protected control treatment. These bands
overlap with important bands selected in another study which predicted AB disease
severity scores using proximal spectrometry (Zhang, Chen, and Sankaran, 2019).

However, all models built in this chapter struggled to distinguish between salinity
stressed and infected trays, which indicates that biotic and abiotic non-AB stressors
should be minimised in the experimental design. In the field, a complete control of
secondary stressors is unrealistic, therefore, the specificity of the phenotyping methods
also needs to be increased. This could potentially be achieved by including more
wavebands, sensor fusion, integrating lesion detection, or using human supervision
(Jay et al., 2020; Poblete et al., 2021; Gold et al., 2020a).

Hyperspectral models are significantly influenced by the choice of pre-processing
steps and learning algorithms

In both the greenhouse (Section 4.5.4) and the field (Sections 5.5.3 and 5.5.4), pre-
processing steps of hyperspectral data including smoothing, derivation, normalization,
and binning as well as the choice of learning algorithms had a significant influence
on the performance of the prediction of scores and classification of treatments. These
results are consistent with the literature and imply that pre-processing methods need
to be considered carefully (Hennessy, Clarke, and Lewis, 2020; Paulus and Mahlein,
2020; Heim et al., 2018; Wei et al., 2021).

Conservative growth may be a resistance mechanism

In the greenhouse, PSA at the time of infection was weakly positively correlated with
DI (Figure 4.10) and in the nursery, a similar trend for the correlation between FGCC at
the time of scoring with DI was observed (Figure 3.4). This indicates that conservative
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growth, in particular within the wild species compared to the cultivars, may be a
resistance mechanism. Conservative growth as a resistance mechanism can have an
associated metabolic cost (Karasov et al., 2017). Should such a slow-growing genotype
be used as a source of resistance, yield may be negatively impacted.

6.4 Perspectives

6.4.1 Summarised recommendations for deployment

Based on the results for the sensors, environments, and vectors that were tested in this
thesis, we make the following recommendations for the deployment of sensor-based
phenotyping methods to glasshouse, nursery, and field. Section 6.4.2 further covers
the limitations and possible improvements of these recommendations.

Recommendations for deployment to nursery disease screens

For the goal of high throughput screens of genetic material on pot scale, top view
RGB time course imaging is a suitable method as DI classes of independent unseen
data over three seasons could be accurately predicted with growth rates derived from
topview imaging. The focus for further development of the methods should be on
data acquisition, such as increasing spatial resolution, eliminating shading, optimizing
experimental design and positioning systems to identify pots and assign regions
of interest automatically. This could be achieved with an improved ground-based
phenotyping platform or a fixed gantry system.

Recommendations for deployment to glasshouse disease screens

If screens are undertaken in the glasshouse, time course RGB imaging-based growth
rates are also a suitable tool for the prediction of DI. Using an automated conveyor-
belt-based system offers the opportunity to completely automate the data acquisition.
Unlike in the field, the issue in the glasshouse would not be data acquisition, but the
creation of suitable environmental conditions, as high disease pressure needs to be
created and cross-infection needs to be prevented. If such a robust inoculation pro-
cedure can be developed, the consistency and comparability of disease development
across experiments could be improved.

Recommendations for deployment to field disease screens

The prediction of PAD in the field was highly accurate by simply using the reflectance
of plant material at a band in the NIR region (792 nm) as a predictor. The use of a
dedicated ground-based phenotyping platform such as the Field Explorer provided
high quality sensor data, allowing the reflectance measurements to be limited to the
chickpea plant material by sensor fusion with lidar data. This way, the reflectance of
ground-covering weeds could be excluded from the measurements.
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If the chickpea canopy cover is high enough, for example earlier in the season
before the disease has damaged the crop or under generally lower disease pressure,
average plot reflectance of chickpea infected with AB may also be measurable well
enough from a UAV with multispectral sensors, as shown by Zhang, Chen, and
Sankaran, 2019. This would offer a comparatively easy option for deployment. If
specificity is a concern, for example, when secondary stresses may influence growth
rates and simple spectral stress responses, lesion detection or spectral features such as
those important for the discrimination of salinity-stressed and infected trays could
be included in the imaging. For both the ground-based and potential aerial-based
approach, more research and repeated experiments on field plots, not trays, are
required.

6.4.2 Summarised recommendations for further research

Application of other sensor technologies

The selection of sensors for each environment in this thesis was constrained by time
and the availability of platforms for each of the environments. However, other
promising sensor technology exists to measure interactions between host plants and
necrotrophic fungi, although they are often not as readily available and usable. One
such option identified in Chapter 1 (Table 1.2) and Section 2.2.3 is chlorophyll fluo-
rescence imaging which could enable detection of changes in primary metabolism,
necrosis, and chlorosis, potentially before visual symptoms. This has been successfully
shown at high throughput in the field using sun-induced chlorophyll fluorescence
for predicting disease severity on olive trees infected with Xylella fastidiosa (Section
2.2.3) (Zarco-Tejada et al., 2018). Alternatively, at close range, fluorescence imaging
may potentially be used to detect the autofluorescence of the palisade parenchyma
occuring before hypersensitive response. Another proximal sensing option would
be optical coherence tomography (OCT), with which the induced changes to leaf cell
structure could be measured on individual leaves in the field using a backpack-based
system (Lee et al., 2019; Ravichandran et al., 2016). Furthermore, high resolution
hyperspectral measurements may be coupled with metabolic profiling to potentially
identify signatures of secondary plant metabolites involved in resistance (Brugger
et al., 2021; Arens et al., 2016). While the proximal sensing options are likely not
suitable for high throughput screens by themselves and are difficult to deploy to
the field (Section 2.2.4), they may be used to identify functional traits that could be
measured across environments with simpler technology (Simko, Jimenez-Berni, and
Sirault, 2017; Eeuwijk et al., 2019).

As only a single year of field screens with large-scale plots was performed, valida-
tion of lidar sensors and time course imaging should be performed, and RGB sensors
should be included to evaluate RGB derived growth rates as a predictor in the field.
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Exploration of trait extraction

To further develop the methods from this thesis, more research is required both for the
extraction of low-level traits and intermediate traits, as well as exploring the suitability
of deep learning approaches to directly predict disease scores from sensor data. A
next step in the analysis could be to consider the experiments as multi-environment
trials and extract higher order traits (Malosetti, Ribaut, and Eeuwijk, 2013; Eeuwijk
et al., 2019).

Low-level trait extraction Especially for the imaging performed in the nursery, more
research is needed for the low-level trait extraction from RGB and spectral data.
Concerning RGB images, both the lesion detection and biomass estimation should
be improved. The lesion detection algorithm may benefit from annotating more
training data or using different object detection algorithms (Wiesner-Hanks et al.,
2019). The biomass estimates could be improved if 3D plant structure was considered
in the nursery as well, not only FGCC. Either of these approaches would benefit
from improved data acquisition in terms of higher spatial resolution and illumination.
Concerning spectral data, additional feature selection approaches and vegetation
indices should be tested for the glasshouse and field. Alternatively, data augmentation
of hyperspectral data might improve the issue of high dimensionality where only few
observations are possible (Hennessy, Clarke, and Lewis, 2020).

Intermediate trait extraction The intermediate trait extraction depends on spatio-
temporal modeling of the low-level traits, for which multiple approaches exist that
should be examined in more detail (Roth et al., 2021; Brien et al., 2020; Pérez-Valencia
et al., 2022). More focus should be placed on the extraction of intermediate traits from
spectral data. While intermediate traits such as growth rates and time until lesion
appearance were derived from RGB data, the only longitudinal traits extracted from
multispectral images in this thesis were AUC traits, and the hyperspectral data in the
glasshouse was not modelled over time at all. Neither AUC traits from the nursery nor
single time point hyperspectral data in the greenhouse could match the DI prediction
performance of RGB - based growth rates, but it is possible that they could do so if the
longitudinal aspect was integrated (Dorrepaal, Malegori, and Gowen, 2016).

Trait normalization Across experiments, high genotypic variation in plant growth
habits was observed, particularly in the wild Cicer relatives but also within the cultivar
germplasm (Figure 1.3). This will have led to increased variation in the measured traits
relating to plant biomass, and may have also influenced the other measured traits. The
approach to mitigate the effect in Chapter 4 was to sow the wild relative species earlier
than the cultivars, but even that did not result in a comparable projected shoot area
(Figures 4.8 and 4.9). A similar effect was observed in the nursery, where no mitigation
was performed (Figure 3). Fine-tuning the sowing dates according to expected growth
habits could be one approach to normalise the growth habit, but the differences in
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developmental stages could in turn influence the plant-pathogen interaction (Develey-
Rivière and Galiana, 2007). Other than finely tuning sowing dates, normalizing plant
traits to early development stages may be another option, for example with the Digital
Adjustment of Plant Development (DAPD) method (Lozano-Claros et al., 2020).

Caveats of trait extraction Manual trait extraction was performed for all environ-
ments, both for low-level and intermediate traits. One risk of such manual trait
extraction is that the study turns into ’recreactional phenotyping’ or ’stamp-collecting’,
meaning that everything that can be measured is collected without any value propo-
sition (Rebetzke et al., 2019). Another risk is wasting valuable information from the
sensor data by reducing it to traits that are chosen based on assumptions. Instead of
attempting to manually define traits, the sensor data could be used in deep learning
to predict target traits directly (Baker et al., 2018; Weiss, Jacob, and Duveiller, 2020;
Sperschneider, 2019). However, the manual extraction of functional traits provided
explainability and the option to select for the traits in breeding programs directly
(Section 1.2.5). There was also evidence that simplifying the models to single growth
rates or single reflectance bands improved the transferability of the models between
experiments. Explainable machine learning methods offer the opportunity to use
iterations of trait extraction and deep learning to narrow down mechanisms (Baker
et al., 2018; Nagasubramanian et al., 2019; Ghosal et al., 2018).

Direct selection for sensor-based traits

Visual disease scores of Ascochyta blight of chickpea have been shown to correlate
well with field resistance, that is, yield under disease pressure (Davidson, personal
communication). Therefore, we used the prediction of scores as a benchmark for
the evaluation of the sensor-based methods developed in this thesis. However, it is
not necessary to use the traits that are extracted from sensor-based measurements to
predict the disease scores that are then selected for. Instead, the sensor-based traits
may be selected for directly as they can indicate resistance components. The consensus
in the literature seems to be to eventually move from visual scoring to sensor-based
phenotyping or at least combine both methods for the evaluation of plant resistance,
including for AB of chickpea (Araus et al., 2018; Bock et al., 2020; Ford et al., 2022).
Ultimately, the methods need to be evaluated based on genetic gain in terms of field
resistance.

6.5 Significance and implications of research

Worldwide, yield losses and fungicide use in chickpea due to AB are high. Breeding
for resistance is an economically and ecologically sustainable way to improve chickpea
cultivars and contribute to global food security (Foyer et al., 2016; Jha et al., 2022).
The methods developed here can contribute to genetic gain in breeding programs
by increasing precision, throughput, and the range of measurable symptoms of the
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disease. To my knowledge, sensor-based phenotyping has not been applied for
breeding of chickpea for AB resistance so far. We showed that RGB-imaging-derived
growth rates can predict disease severity both in the glasshouse and in less controlled
conditions in the nursery. Therefore, this work can help alleviate the prevalent "field
phenotyping bottleneck" for biotic stresses (Araus et al., 2018). Our lesion detection
methods may be applied as a tool to screen for resistance by increasing specificity and
measuring resistance components, but also as a tool for early detection of disease in
the field, which may be used to guide precision agriculture. Many other diseases that
cause necrotic lesions and reduced growth rates exist for other crops. Our methods
may be transferable to such host-pathosystems and the transfer would be facilitated by
our use of low-cost sensors combined with free, open-source software. The multi-year,
multi-scale data that were collected for this thesis were published for further method
development. In particular, the set of 86,792 time course topview RGB images gathered
outside at pot level across three seasons and annotated with visual disease scores
provides a valuable resource. Overall, the work presented in this thesis can contribute
to the development of resistant cultivars, not only for chickpea AB, but also other
crops and other diseases.

6.6 Conclusion

The research in this thesis identified suitable sensor-based phenotyping methods to
evaluate chickpea AB resistance. Time-series RGB imaging was used to identify criti-
cal growth rates and allows for method transfer between seasons by normalizing for
varying disease pressure and disease progression. The methods have been shown
to work across two greenhouse experiments and three seasons of outdoor disease
screens. Additionally, pathways for automating the sensor-based screens were pro-
posed. Furthermore, the research has narrowed the experimental design space for
hyperspectral imaging of single plants in the greenhouse, enabling further research
on the identification of spectral features. Accurate early detection of disease has been
achieved with lesion detection algorithms which may guide precision agriculture for
targeted fungicide applications. Together, the methods have the potential to increase
genetic gain of chickpea resistance breeding programs and can inform the design of
phenotyping methods more broadly for other crops. Easy adoption and further devel-
opment of the methods is possible, as simple RGB sensors and free and open-source
software were used.
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