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A B S T R A C T   

Surgical site infections (SSIs) are mainly caused by Staphylococcus aureus (S. aureus) and Staphylococcus epi-
dermidis (S. epidermidis) biofilms. Biofilms are aggregates of bacteria embedded in a self-produced matrix that 
offers protection against antibiotics and promotes the spread of antibiotic-resistance in bacteria. Consequently, 
antibiotic treatment frequently fails, resulting in the need for alternative therapies. The present study describes 
the in vitro efficacy of the Cu(DDC)2 complex (2:1 M ratio of diethyldithiocarbamate (DDC− ) and Cu2+) with 
additional Cu2+ against S. aureus and S. epidermidis biofilms in models mimicking SSIs and in vitro antibacterial 
activity of a liposomal Cu(DDC)2 + Cu2+ formulation. The in vitro activity on S. aureus and S. epidermidis biofilms 
grown on two hernia mesh materials and in a wound model was determined by colony forming unit (CFU) 
counting. Cu2+-liposomes and Cu(DDC)2-liposomes were prepared, and their antibacterial activity was assessed 
in vitro using the alamarBlue assay and CFU counting and in vivo using a Galleria mellonella infection model. The 
combination of 35 μM DDC− and 128 μM Cu2+ inhibited S. aureus and S. epidermidis biofilms on meshes and in a 
wound infection model. Cu(DDC)2-liposomes + free Cu2+ displayed similar antibiofilm activity to free Cu(DDC)2 
+ Cu2+, and significantly increased the survival of S. epidermidis-infected larvae. Whilst Cu(DDC)2 + Cu2+

showed substantial antibiofilm activity in vitro against clinically relevant biofilms, its application in mammalian 
in vivo models is limited by solubility. The liposomal Cu(DDC)2 + Cu2+ formulation showed antibiofilm activity 
in vitro and antibacterial activity and low toxicity in G. mellonella, making it a suitable water-soluble formulation 
for future application on infected wounds in animal trials.   

1. Introduction 

Surgical site infections (SSI) are amongst the most common surgery- 
associated infections and occur in 1.5–20% of surgeries, depending on 
the nature of the surgery and country in which it is performed [1]. SSIs 
develop at the organ/tissue site of surgery [2] and can range from 

wound or implant infections to organ infections [3]. Following a surgical 
procedure, such as hernia mesh repair [4], infections can affect the 
incision site (from superficial to deep tissue), implanted material and 
any part of the anatomy that was exposed or manipulated during surgery 
[5–7]. Consequently, SSIs represent a significant burden, by increasing 
patient morbidity and mortality, and adding additional cost to health 
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systems [2,3,5]. 
The most common pathogens associated with SSIs are Staphylococcus 

aureus (S. aureus) and coagulase negative staphylococci, including 
Staphylococcus epidermidis (S. epidermidis), which are natural compo-
nents of the respiratory tract and skin microbiota, respectively [8]. 
Therefore, prevention of SSIs requires pre-operative preparations of the 
surgical site and antibiotic prophylaxis [2]. If an infection is detected, 
the routine treatment relies on additional antibiotic therapy [9,10]. 
However, over the last two decades, the antibiotic missuse and overuse 
has promoted the emergence of resistant strains, such as methicillin 
resistant S. aureus (MRSA). The situation is exacerbated by biofilm in-
fections, which are frequently staphylococcal, that offer antibiotic 
tolerance [11,12]. Biofilms are aggregates of bacteria embedded in a 
protective matrix, which enables bacteria to persist in hostile conditions, 
communicate with each other and become highly tolerant to antibiotics 
[13]. In comparison to planktonic forms of bacteria, biofilm bacteria 
require 10 to 1000-fold higher concentrations of antibiotics to be 
eradicated [14]. This is a major concern, as biofilms are present in over 
80% of SSIs and are a major cause of delayed wound healing [10]. In 
addition, patient mortality is increased by 2 to 11-fold in 
MRSA-associated SSIs, compared to susceptible S. aureus associated SSIs 
and surgeries without infections [15]. Therefore, there is an unmet need 
for new antimicrobial agents targeting MRSA and S. epidermidis biofilms 
to prevent and treat SSIs. 

Diethyldithiocarbamate (DDC− ) is a metabolite of disulfiram, a drug 
used for the treatment of chronic alcoholism [16], that is being repur-
posed for the treatment of cancer (Clinicaltrials.gov Identifier: 
NCT04234022, NCT05210374) and infections caused by parasites 
[17–19], viruses [20], fungi [21–23] and bacteria [24–27]. The anti-
cancer and antibacterial activity of DDC− is associated with the forma-
tion of complexes with metal ions, with copper ions (Cu2+) being the 
most effective [25,28–30]. The combination of DDC− and Cu2+ was 
antibacterial against Mycobacterium tuberculosis [25], Streptococcus 
pneumoniae [30] and was previously extended to planktonic S. aureus 
and S. epidermidis and their biofilms [31]. At a concentration of 35 μM 
DDC− and 128 μM Cu2+, the combination inhibited multiple steps in the 
biofilm formation cycle, reduced S. aureus and S. epidermidis biofilm 
viability and showed high fibroblast cell viability in vitro. These con-
centrations correspond to the instant formation of the Cu(DDC)2 com-
plex [2 mol DDC− :1 mol Cu2+] and additional Cu2+, and displayed in 
vivo efficacy and non-toxicity in an invertebrate model [31]. 

However, the antibacterial activity of 35 μM DDC− and 128 μM Cu2+

was only observed on biofilms grown in a microtiter well plate over 24 h 
[31] and can alter when exposed to biofilms grown over multiple days or 
in conditions similar to SSIs [32]. In addition, the Cu(DDC)2 complex is 
insoluble (<0.1 mg/ml) in water, limiting its practicality in the clinical 
setting [33]. This necessitates the development of a pharmaceutical 
formulation for optimal drug delivery to infection sites and improved 
antibacterial efficacy. To improve the solubility of Cu(DDC)2, nano-
particles including liposomal formulations of Cu(DDC)2 have been 
developed and successfully used as therapeutically active agents against 
cancer cells [33–37], with enhanced activity against breast cancer cells 
[38], glioblastoma [39] and neuroblastoma cells [40]. 

Inspired by this, our aim was to evaluate the antibacterial properties 
of 35 μM DDC− and 128 μM Cu2+ (Cu(DDC)2 + Cu2+) in biofilm models 
mimicking SSIs and to develop an appropriate drug delivery vehicle for 
Cu(DDC)2 to enable clinical application of the combination. Thus, this 
study advances our previous knowledge by presenting, for the first time, 
the antibiofilm activity of Cu(DDC)2 + Cu2+ against S. aureus and 
S. epidermidis in an in vitro implant and wound infection model. 
Furthermore, we have validated the non-toxicity and efficacy of the 
liposomal Cu(DDC)2 + Cu2+ formulation in vivo using a Galleria mello-
nella infection model. 

2. Methods and materials 

2.1. Bacterial strains, mesh materials and chemicals 

S. aureus ATCC 6538, S. aureus ATCC 700699 (also known as MRSA 
Mu50) and S. epidermidis ATCC 35984 were purchased from the Amer-
ican Type Culture Collection (Manassas, VA, USA). Bacteria were inoc-
ulated at colony forming unit (CFU)/ml or optical density at 600 nm 
(OD600) values stated after dilution of an overnight culture grown in 
tryptone soya broth (TSB) or nutrient broth (Thermo Fisher Scientific, 
Waltham, MA, USA) at 37 ◦C with shaking at 180 rpm. Tryptone soya 
agar (TSA) was prepared by adding 1.5% agar bacteriological (Thermo 
Fisher Scientific). The hernia meshes Parietex Hydrophilic 2-Dimen-
sional mesh (polyester), Parietene Lightweight monofilament poly-
propylene mesh (polypropylene) were donated by Covidien (Dublin, 
Ireland). The saturated phospholipids 1,2-distearoyl-sn-glycero-3-phos-
phocholine (DSPC) and 1,2-distearoyl-sn-glycero-3-phosphoethanol-
amine-N-[methoxy (polyethylene glycerol)-2000] (DSPE-mPEG2000) 
were donated by Lipoid GmbH (Ludwigshafen, Germany). Unless stated 
otherwise, all chemicals, materials, media and supplements were pur-
chased from Sigma-Aldrich (Steinheim, Germany). 

2.2. Biofilm formation on hernia meshes 

Round coupons (1.5 cm diameter) of polyester and polypropylene 
meshes were placed in a 12-well plate and immersed in 2 ml of a bac-
terial suspension (2 × 106 CFU/ml) of S. aureus ATCC 6538, MRSA Mu50 
or S. epidermidis ATCC 35984 in TSB and incubated at 37 ◦C on a rotating 
platform at 70 rpm (3D Gyratory Mixer; Ratek Instruments, Boronia, 
Australia). After 24 h incubation, meshes with attached bacteria were 
washed by immersing the meshes into 3 ml 0.9% (w/v) saline for 30 s at 
room temperature, three times consecutively, and placed into fresh TSB. 
Following another 72 h incubation, the meshes were washed, as previ-
ously described with 0.9% saline, to remove loosely attached cells and 
placed into TSB solutions containing 35 μM DDC− + 128 μM Cu2+. 
Control wells contained TSB alone (untreated control). Following 24 h 
treatment incubation at 37 ◦C on a rotating platform (70 rpm), a third 
washing step was performed prior to CFU counting or imaging of the 
coupons. 

For CFU counting, meshes were collected in 10 ml 0.9% saline and 
biofilms were extracted from the mesh and disrupted by a series of 
vortexing (5 min, maximum speed, VM1 Vortex Mixer, Ratek In-
struments Pty Ltd, Victoria, Australia) and sonication (15 min, Soniclean 
80TD, Pulse swept power 60 W, Soniclean Pty Ltd, South Australia, 
Australia), prior to serial dilution and plating on TSA. CFU were counted 
following 24 h incubation at 37 ◦C. For imaging, the last washing step 
was performed with phosphate buffered saline. Meshes were covered 
and incubated with a 1:500 dilution of LIVE/DEAD BacLight staining 
(1:1 mix of SYTO 9/propidium iodide; Life Technologies, Scoresby, 
Australia) in TSB for 20 min in the dark and imaged using the Olympus 
FV1000 Live cell imaging system (Olympus, Shinjuku, Japan) and a 20 
× /0.5 W objective. Quantitation of live/dead cells was performed using 
ImageJ software (NIH, Bethesda, MA, USA). Briefly, the contrast/ 
brightness was adjusted globally to images to minimize background 
before setting a threshold to highlight cells for automated counting. 

2.3. In vitro wound model 

An artificial dermis made of collagen (Corning, NY, USA) and hyal-
uronic acid (1.20–1.80 MDa; Lifecore Biomedical, MN, USA) was pre-
pared as previously described by Brackman et al. [41]. According to 
established protocols [42], freeze-dried bovine plasma was rehydrated 
in 10 ml 0.9% saline, 19 ml Bolton broth (LabM, Lancashire, UK), 1 ml 
freeze-thaw laked horse blood (Biotrading, Mijdrecht, Netherlands) and 
20 μl heparin 100 IU. An artificial dermis was placed in each well of a 
24-well plate and soaked with 1 ml of this mixture. Then, an overnight 
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culture of MRSA Mu50 or S. epidermidis ATCC 35984 in TSB adjusted to 
an OD600 0.1, was diluted 1:100 in 0.9% saline, 10 μl were added on top 
of each dermis (equal to 104 CFU/well) and incubated statically at 37 ◦C 
for 24 h. Following biofilm formation, 1 ml of 35 μM DDC− + 128 μM 
Cu2+ in TSB was added. Controls included biofilms exposed to TSB 
(untreated control). After 24 h treatment exposure, each dermis was 
placed in 10 ml of 0.9% saline, and biofilms were extracted from the 
dermis and disrupted by three consecutive vortexing and sonication 
cycles for 30 s each. After serial dilution, plating on TSA and incubation 
at 37 ◦C for 24 h, CFU were counted to determine antibiofilm activity. 

2.4. Liposomal preparation 

Cu2+-liposomes and Cu(DDC)2-liposomes composed of DSPC: 
Cholesterol:DSPE-mPEG2000 [50:45:5 M ratio] were produced and 
characterized according to Hartwig et al. [40]. Briefly, lipid films were 
prepared with the thin film hydration method and hydrated with an 
aqueous Cu2+ solution (150 mM) to obtain a lipid concentration of 40 
mM. Subsequently, the Cu2+-lipid mix was extruded for 41 passages 
through an 80 nm pore-sized polycarbonate membrane (GE Healthcare 
Life Science, Marlborough, MA, USA) at 65 ◦C. Separation of 
non-encapsulated Cu2+ from Cu2+-liposomes was achieved by size 
exclusion chromatography with a Sephadex G-50 Fine (GE Healthcare 
Life Science) column equilibrated with an EDTA containing sucrose 
buffer (300 mM sucrose, 20 mM HEPES, 30 mM EDTA, pH 7.4). Buffer 
exchange to an EDTA-free sucrose buffer (300 mM sucrose, 20 mM 
HEPES, pH 7.4) was performed through three centrifugation steps 
(3000×g, room temperature, 1.5 h) using Vivaspin® Turbo 4 filtration 
units (100 kDa MWCO; Sartorius AG, Göttingen, Germany), followed by 
Cu2+-liposomes collection. 

Cu(DDC)2-liposomes were prepared by complexation of DDC− with 
the liposomal encapsulated Cu2+ at 25 ◦C/300 rpm (Thermomixer 
comfort, Eppendorf, Hamburg, Germany) for 10 min. Excess of DDC−

was removed by three centrifugation steps (3000×g, room temperature, 
45 min) with EDTA-free sucrose buffer. Non-incorporated Cu(DDC)2 
precipitated and was separated from the Cu(DDC)2-liposomes by pre-
filtration through a 0.45 μm cellulose acetate filter (VWR International, 
Radnor, PA, USA) before and after the centrifugation steps. 

Cu2+-liposomes and Cu(DDC)2-liposomes were stored at 4–6 ◦C for 
up to 3 months and were sterile filtered under aseptic conditions 
through a 0.2 μm cellulose acetate filter (VWR International) before use. 
As previously described by Hartwig et al. [40], the hydrodynamic 
diameter (dh) and the polydispersity index (PDI) were measured via 
dynamic light scattering (ZetaPals, Brookhaven Instruments Corpora-
tion, Holtsville, NY, USA) and encapsulated Cu2+ concentrations were 
determined by measuring absorbance of complexed Cu2+ with DDC− in 
methanol at a wavelength of λmax = 435 nm with a GENESYS 10S UV–Vis 
spectrophotometer (Thermo Fisher Scientific). Liposomes were used in 
biofilm challenge experiments to provide the equivalent of 35 μM DDC−

and/or 128 μM Cu2+. 

2.5. Antibacterial activity of liposomes 

Overnight cultures of MRSA Mu50 and S. epidermidis 35984 in 
nutrient broth were adjusted to an OD600 0.5 and further 1:15 (v/v) 
diluted in nutrient broth. Black-walled 96-well microtiter plates 
(Greiner Bio-one, Frickenhausen, Germany) were inoculated with 100 μl 
bacterial suspension and incubated for 24 h at 37 ◦C on a rotating 
platform at 70 rpm. The biofilm was rinsed with 0.9% saline, exposed to 
100 μl of Cu(DDC)2-liposomes, Cu2+-liposomes, [Cu(DDC)2-liposomes 
+ Cu2+-liposomes], [Cu(DDC)2-liposomes + free Cu2+] or 35 μM DDC−

+ 128 μM Cu2+ and further incubated for 24 h under the same condi-
tions. The treatments were removed, and the biofilm rinsed with 0.9% 
saline, before viability was detected by either measurement of metabolic 
activity with the alamarBlue assay or CFU counting. 

The alamarBlue assay was performed according to Richter et al. [43] 

and rinsed biofilms were incubated with a 10% (v/v) alamarBlue™ Cell 
Viability Reagent (Thermo Fisher Scientific) solution in nutrient broth. 
The fluorescence was measured hourly on a TECAN Spark plate reader 
(Männedorf, Switzerland) at λexcitation = 530 nm/λemission = 590 nm until 
maximum fluorescence was reached, then viability was calculated using 
Equation (1). Antibiofilm activity of the different treatments was 
determined as percentage of biofilm viability, where the fluorescence 
intensity of treated and untreated biofilms is represented by Itreated and 
Iuntreated, respectively and Iblank represents the background fluorescence 
of the 10% v/v alamarBlue solution [43]. 

% Biofilm viability=
(

Itreated − Iblank

Iuntreated − Iblank

)

× 100 (1) 

CFU counting was performed according to Van den Driessche et al. 
[44] and 100 μl of 0.9% saline were added to each rinsed biofilm. To 
disrupt the biofilm, the plates were shaken at 150 rpm and sonicated (5 
min each), and the content of each well was collected separately. This 
process was repeated twice to extract all biofilms cells and serial di-
lutions of these suspensions were plated on TSA and incubated at 37 ◦C 
for 24 h, prior to CFU counting. 

2.6. In vivo cytotoxicity and antibacterial activity 

Galleria mellonella (G. mellonella) larvae (Angel-Zentrum, Freiburg, 
Germany) were used on the day of receipt and 30 larvae were assigned to 
each treatment group. Larvae were injected in the last left proleg with 
micro-fine (30 gauge) needle insulin syringes (BD, Franklin Lakes, NJ, 
USA). Four control groups were included, (i) not-injected larvae (unin-
fected, untreated control), (ii) larvae injected with 0.9% saline (unin-
fected, vehicle control), (iii) larvae injected with treatment (uninfected, 
treated control to determine toxicity) and (iv) larvae injected with a 
bacterial suspension and 0.9% saline (infected, vehicle control). To 
determine treatment efficacy, larvae were injected with a S. epidermidis 
ATCC 35984 suspension (OD600 0.05) in nutrient broth and with Cu 
(DDC)2-liposomes, Cu2+-liposomes, [Cu(DDC)2-liposomes + Cu2+-lipo-
somes] or [Cu(DDC)2-liposomes + free Cu2+]. Considering the dilution 
factor within the larvae, the concentrations of the liposomal formula-
tions were increased 10-fold compared to the concentrations used in 
vitro. A total volume of 20 μl was injected comprising treatment or 0.9% 
saline in a 1:1 mix with a bacterial suspension in nutrient broth. Larvae 
were housed in petri dishes in the dark at 37 ◦C and the larvae survival 
was monitored daily over 4 days. 

2.7. Statistical analysis 

Results were statistically analyzed using GraphPad Prism version 
9.00 for Windows (GraphPad Software, CA, USA) and statistical signif-
icance was determined with an α = 0.05. All experiments were carried 
out at least in triplicate. Parametric data are represented by the mean ±
standard deviation (SD), which was analyzed using paired 2-tailed t- 
tests, one-way analysis of variance (ANOVA) with Dunnett’s multiple 
comparison test for finding differences between treatment groups and 
untreated controls and two-way ANOVA with Šidák’s multiple com-
parison tests, as described in the figure legends. G. mellonella survival 
data was analyzed using Kaplan-Meier survival curves with significant 
differences between groups determined by log-rank test, significance 
was Bonferroni-Holm-corrected for multiple comparisons. 

3. Results 

3.1. Treatment of biofilms on hernia mesh materials 

When we consider the antibacterial properties of Cu(DDC)2 + Cu2+

observed in microtiter plates possibly not correlating with complex 
biofilms present in SSIs [30], we used two biofilm models mimicking 
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SSIs to further investigate the antibiofilm activity of 35 μM DDC− + 128 
μM Cu2+ in vitro. These models are based on an implant infection and a 
wound infection. 

As an example of SSI on an implant, we investigated the biofilm 
formation of S. aureus and S. epidermidis on two commonly used, 
commercially available, hernia mesh materials and the ability of Cu 
(DDC)2 + Cu2+ to reduce the bacterial load on these meshes. S. aureus 
ATCC 6538, MRSA Mu50 and S. epidermidis ATCC 35984 formed 
extensive biofilms during 96 h batch incubations on polyester and 
polypropylene mesh material with log (CFU/mesh) values ranging from 
7.21 to 8.91 (Fig. 1). The imaging of S. aureus ATCC 6538 biofilms on 
polyester meshes showed a multifilament mesh structure, exhibiting 
niches for bacteria to attach (Fig. 1D, top left). In contrast, the mono 
filaments of the polypropylene mesh were surrounded by S. aureus ATCC 
6538 biofilms (Fig. 1D, top right). Studies suggest that staphylococci 
biofilms on hernia meshes may be associated with hernia repair failure 
and contribute to mesh shrinkage, chronic pain or hernia recurrence 
[45], and there may be an association between mesh porosity and the 
formation of biofilms [46]. 

When treated with 35 μM DDC− + 128 μM Cu2+, viability of S. aureus 
ATCC 6538 in biofilms was reduced on polyester and polypropylene 
meshes (Fig. 1A). Similar results were observed in MRSA Mu50 (Fig. 1B) 
and S. epidermidis ATCC 35984 (Fig. 1C) biofilms log10 reduction on 
polyester meshes and polypropylene meshes. The S. aureus ATCC 6538 
and MRSA Mu50 log10 reduction was higher on polypropylene meshes 
compared to polyester meshes. This could be due to multifilament 
meshes forming denser biofilms than monofilament meshes because of 
the increased surface and presence of niches [47]. In addition, the highly 
hydrophobic Cu(DDC)2 complex that is formed instantly when DDC−

and Cu2+ are mixed, might not reach the bacteria embedded in the 

niches of the multifilament mesh. 
The imaging of Cu(DDC)2 + Cu2+ treated S. aureus ATCC 6538 

(Fig. 1D, bottom left) confirmed a substantial number of bacteria in the 
niches formed by the intertwined filaments but showed mostly dead 
bacteria (red) on the polyester mesh and was associated with CFU 
reduction. In contrast, the S. aureus ATCC 6538 biofilm that previously 
surrounded the polypropylene filaments was in parts removed during 
washing steps, resulting in only few dead bacteria (red) imaged (Fig. 1D 
bottom right). We quantified the viability based on the percentage of 
green and red fluorescent cells, which showed the viability was reduced 
when treated with Cu(DDC)2 + Cu2+ compared to the untreated control 
on polyester and polypropylene meshes (Supplementary file 1). How-
ever, significant background was present due to autofluorescence of the 
polyester and polypropylene that compose the meshes, which signifi-
cantly affected automated counting of live and dead cells. This was 
unavoidable since further background removal would eliminate valid 
signal from the analysis. Therefore, the microscopy images visually 
complement the quantitative assessment of log10 reduction of bacteria 
due to Cu(DDC)2 + Cu2+. As the overall successful salvage rate of 
infected meshes can be as low as 10% and be inferior for infected 
polyester mesh compared to polypropylene mesh [4], the substantial 
log10 reduction of Cu(DDC)2 + Cu2+ on both mesh material highlights 
the combination as a promising treatment approach for infected hernia 
meshes. 

3.2. Efficacy in an in vitro wound model 

As second in vitro SSI model, the artificial dermis model was chosen, 
as it closely resembles a chronic wound infection with similar nutritional 
conditions found in wound exudate and a dermis-like scaffold based on 

Fig. 1. Effect of 35 μM dieth-
yldithiocarbamate (DDC− ) + 128 μM Cu2+

(grey; Cu(DDC)2 + Cu2+) on biofilms grown 
on hernia mesh material. Log10 colony 
forming units (CFU) of (A) S. aureus ATCC 
6538, (B) MRSA Mu50 and (C) S. epidermidis 
ATCC 35984 biofilms grown on Parietex 
Hydrophilic 2-Dimensional (polyester) or on 
Parietene Lightweight monofilament poly-
propylene (polypropylene) meshes 
compared to untreated control (white; n = 3; 
mean ± SD; 2-way ANOVA: **p < 0.01, 
***p < 0.001 indicate significant differences 
between Cu(DDC)2 + Cu2+ and untreated 
control by Šidák’s multiple comparison test; 
##p < 0.01, ###p < 0.001 indicate sig-
nificant differences between the polyester 
and the polypropylene mesh; ns = not sig-
nificant). (D) To visually illustrate the 
quantitative culture-based cell-viability 
data, the effect of Cu(DDC)2 + Cu2+ on 
S. aureus ATCC 6538 biofilms were investi-
gated using confocal microscopy of LIVE/ 
DEAD BacLight stained meshes. Confocal 
microscopy images result: green = viable 
bacteria; red = dead bacteria. Z-stack images 
taken with a 20 × /0.5 W objective are 
representative of three independent experi-
ments. Scalebar indicated on bottom-right of 
images correspond to 75 μm. (For interpre-
tation of the references to color in this figure 
legend, the reader is referred to the Web 
version of this article.)   
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hyaluronic acid and collagen on which bacteria can attach and form 
biofilms [41,48]. Here, MRSA Mu50 and S. epidermidis ATCC 35984 
biofilms were grown on an artificial dermis and exposed to 35 μM DDC−

+ 128 μM Cu2+ (Fig. 2). The combination of Cu(DDC)2 + Cu2+

demonstrated a significant biofilm reduction in MRSA Mu50 and in 
S. epidermidis ATCC 35984 biofilms (Fig. 2A). While the log10 reduction 
was smaller compared to the mesh attachment model for both MRSA and 
S. epidermidis biofilms, Cu(DDC)2 + Cu2+ exposure still visually reduced 
the biofilms on the artificial dermis (Fig. 2B) and resulted in 97.2% and 
81.5% MRSA Mu50 and S. epidermidis ATCC 35984 reduction, respec-
tively, despite nutrient rich in vivo-like conditions. We propose three 
explanations for a reduced exposure of Cu(DDC)2 + Cu2+ with the bio-
film on the artificial dermis. 

Firstly, when DDC− and Cu2+ solutions are mixed, the water insol-
uble Cu(DDC)2 complex precipitates and sediments to the bottom of the 
well [49]. In previous biofilm experiments, including the biofilm on 
mesh material, biofilms were grown or placed at the bottom of wells, 
allowing for precipitated Cu(DDC)2 to sediment onto and interact with 
the biofilms, while excess Cu2+ was available in solution. In the wound 
model, biofilms are formed on top of the artificial dermis at the air-liquid 
interface (Fig. 2B). Therefore, when exposed to Cu(DDC)2 + Cu2+, 
limited amount of Cu(DDC)2 would precipitate onto the biofilm on the 

artificial dermis, while the remaining Cu(DDC)2 might interact with the 
hydrophobic collagen or simply sediment to the bottom of the well. 
Secondly, Cu2+ was shown to increase cross-linking of collagen in a 
concentration dependent matter [50], which can result in a reduced 
availability of Cu2+ for the antibiofilm activity. Lastly, DDC− can be 
degraded to diethylamine and carbon sulfide in the presence of blood, 
due to the presence of plasma proteins and may therefore not be avail-
able to form the Cu(DDC)2 complex [51]. Similar effects of the micro-
environmental conditions in the artificial dermis model on the 
antibiofilm activity of antimicrobial agents were reported [42,48,52]. 
For example, Grassi et al. [48] observed inferior biofilm inhibition by 
antimicrobial peptides in the artificial dermis model compared to a 3D 
lung epithelial model due to the presence of blood and proposed the 
development of nanocarriers as drug delivery vehicle [53]. Conse-
quently, to increase water solubility of Cu(DDC)2, prevent Cu(DDC)2 
sedimentation and protect DDC− from degradation, Cu2+ and Cu(DDC)2 
were incorporated into PEGylated liposomes. 

3.3. Characterization of Cu2+-liposomes and Cu(DDC)2-liposomes 

PEGylated Cu2+-liposomes and Cu(DDC)2-liposomes were prepared 
and characterized according to Hartwig et al. [40]. The size, expressed 
as the dh, and the PDI were determined for Cu2+-liposomes and Cu 
(DDC)2-liposomes (Fig. 3) and were similar to previously reported 
values [40]. The size of both the Cu2+-liposomes and the Cu(DDC)2-li-
posomes were below 200 nm, allowing for sterile filtration and 
excluding the presence of large aggregates and extra-liposomal Cu 
(DDC)2 [40]. In addition, the PDI of Cu2+-liposomes and Cu(DDC)2-li-
posomes was below 0.2, indicating a homogenous population of lipo-
somes [54,55], which has previously been confirmed by imaging of 
mostly unilamellar vesicles in cryo-electron microscopy images [33,40]. 
The production of Cu(DDC)2-liposomes is based on DDC− diffusing 
through the membrane of Cu2+-liposomes and forming the insoluble Cu 
(DDC)2 complex within the liposomes, which is characterized by the 
color change [49]. In addition, Wehbe et al. [33] showed that the 
amount of Cu(DDC)2 in liposomes correlates with the amount of Cu2+ in 
liposomes by comparing Cu2+ to lipid ratio to Cu(DDC)2 to lipid ratio. 
Therefore, it can be assumed that both liposomes have the same lipid 
constitution and consequently a similar amount of PEG polymers per 
liposome. Based on this assumption, the different sizes of the liposomes 
and the homogenous vesicle population, the PEGylation of 
Cu2+-liposomes would be denser compared to Cu(DDC)2-liposomes 
(Fig. 3). 

3.4. Antibiofilm activity of liposomal Cu(DDC)2 + Cu2+

The liposomes were assessed for their activity against MRSA Mu50 
and S. epidermidis ATCC 35984 biofilms (Fig. 4). As a fast and high 
throughput method [44], the alamarBlue assay was first performed to 
determine antibiofilm activity of the liposomal formulations (Fig. 4A). 
Treatment with Cu2+-liposomes or Cu(DDC)2-liposomes showed no ac-
tivity against MRSA Mu50 and S. epidermidis ATCC 35984 biofilms. 
Similar to the effects of free Cu2+ and Cu(DDC)2 on MRSA and 
S. epidermidis biofilms [31], Cu2+-liposomes and Cu(DDC)2-liposomes 
concentrations up to a 4-fold increase did not inhibit biofilm viability 
(data not shown). The combination of [Cu(DDC)2-liposomes +

Cu2+-liposomes] also showed no antibiofilm activity against MRSA 
Mu50 and S. epidermidis ATCC 35984. This could be a result of the Cu 
(DDC)2-liposomes, the Cu2+-liposomes or both liposomes not releasing 
their content extracellularly or, following bacterial uptake, intracellu-
larly. However, cellular uptake of PEGylated Cu(DDC)2-liposomes were 
observed in LS cells after 6 h incubation [40], which suggest bacterial 
uptake of the Cu(DDC)2-liposomes. Notably, when Cu(DDC)2-liposomes 
were investigated in combination with free Cu2+ [Cu(DDC)2-liposomes 
+ free Cu2+], the biofilm viability of MRSA Mu50 and S. epidermidis 
ATCC 35984 was significantly reduced. This reduction in biofilm 

Fig. 2. Effect of 35 μM diethyldithiocarbamate (DDC− ) + 128 μM Cu2+ on 
MRSA Mu50 and S. epidermidis ATCC 35984 biofilms grown on an artificial 
dermis compared to the untreated control. (A) Log (CFU/dermis) of untreated 
biofilms (white) and biofilms treated with Cu(DDC)2 + Cu2+ (grey; n = 4; mean 
± SD; paired 2-tailed t-tests: **p < 0.01, ***p < 0.001). (B) Representative 
images of MRSA Mu50 (left) and S. epidermidis ATCC 35984 (right) biofilms 
when untreated (top) or treated with Cu(DDC)2 + Cu2+ (bottom). 
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viability was similar to the activity of free Cu(DDC)2 + Cu2+ against 
MRSA Mu50 and S. epidermidis ATCC 35984 biofilms. To further confirm 
these results, CFU counting was performed for treatments showing a 
reduction in biofilm viability with the alamarBlue assay (Fig. 4B). 
Treatment with [Cu(DDC)2-liposomes + free Cu2+] and Cu(DDC)2 +

Cu2+ resulted in a significant MRSA Mu50 log10 reduction and a sig-
nificant S. epidermidis ATCC 35984 log10 reduction. As the antibiofilm 
activity of [Cu(DDC)2-liposomes + free Cu2+] against MRSA and 
S. epidermidis was similar to free Cu(DDC)2 + Cu2+ and treatment with 
free Cu2+ alone previously showed no antibiofilm activity against MRSA 
Mu50 and S. epidermidis ATCC 35984 at the tested concentration [31], 
we concluded that Cu(DDC)2 was released from the Cu(DDC)2-lipo-
somes, either intracellularly following bacterial uptake or 

extracellularly, but not the uncomplexed Cu2+ from the Cu2+-liposomes. 
Liposomes can penetrate the biofilm and release their content by 

fusing with the bacterial phospholipid membrane [56,57]. This inter-
action is dependent on biofilm properties, including bacterial species 
and matrix composition, and by the liposomal physicochemical prop-
erties [56]. Liposomes vary in surface charge, lipid composition, bilayer 
rigidity, surface modification, size and the incorporation of PEG poly-
mers in the liposomal membrane [58,59]. As Cu(DDC)2-liposomes are 
produced by DDC− diffusion into Cu2+-liposomes, it can be expected 
that Cu(DDC)2-liposomes and Cu2+-liposomes have the same lipid 
constitution [33] and are only different in size and membrane PEGyla-
tion density. The denser PEGylation of the Cu2+-liposomes compared to 
the Cu(DDC)2-liposomes (Fig. 3) can present a physical barrier for 
Cu2+-liposome interaction with bacterial membranes or biofilm matrix, 
and therefore, prevent the intracellular uptake of the liposomal content 
[58]. PEGylated liposomes were previously shown to reduce interaction 
with target cells [60] and limit interactions with bacterial biofilms [61]. 
Liposomes with a PEGylated surface showed improved penetration of 
Pseudomonas aeruginosa biofilms but reduced the affinity of liposomes to 
bacteria compared to non-PEGylated liposomes. The PEG modifications 
on the liposome surface increase hydrophilicity of liposomes which 
increased the affinity to biofilm matrix components, such as extracel-
lular polymeric substance [59]. In addition, PEGylated DSPC-containing 
liposomes with a low surface charge and rigid bilayer reduce adsorption 
of the DSPC-liposomes on S. aureus biofilms compared to non-PEGylated 
liposomes [61]. To investigate if the PEG polymers are hindering 
adsorption of Cu2+-liposomes on MRSA and S. epidermidis biofilms and 
consequently result in reduced antibiofilm activity of [Cu(DDC)2-lipo-
somes + Cu2+-liposomes], the penetration of fluorescently-labelled li-
posomes into the biofilm should be determined using microscopical 
analysis [61,62] and the antibiofilm activity of non-PEGylated [Cu 
(DDC)2-liposomes + Cu2+-liposomes] should be investigated. As hy-
drophilic PEG polymers integration on the surface of Cu(DDC)2-lipo-
somes is necessary for superior drug to lipid ratio and improvement of 
colloidal stability during storage compared to non-PEGylated Cu 
(DDC)2-liposomes [40] and [Cu(DDC)2-liposomes + free Cu2+] showed 
high antibiofilm activity against MRSA and S. epidermidis, incorporating 
Cu(DDC)2 into PEGylated liposomes is a water-soluble alternative for a 
potential application on surgical site infections. 

3.5. In vivo toxicity and antimicrobial activity of liposomal DDC− + Cu2+

G. mellonella is an invertebrate infection model that is cost- and time- 
efficient, can mimic physiological conditions of mammals, such as 
temperature of 37 ◦C, and expresses a cellular and humoral innate im-
mune system [63]. This immune system is capable of recognizing 

Fig. 3. Schematic illustration of Cu2+-liposomes 
and Cu(DDC)2-liposomes. Diethyldithiocarba 
mate (DDC− ) diffuses through the membrane of 
the smaller Cu2+-liposomes and binds the 
encapsulated Cu2+ to form the water insoluble 
Cu(DDC)2. The trapped Cu(DDC)2 accumulates 
within the liposome, resulting in an increase in 
size. DSPC = 1,2-distearoyl-sn-glycero-3-phos-
phocholine; DSPE-mPEG2000 = 1,2-distearoyl-sn- 
glycero-3-phosphoethanolamine-N-[methoxy 
(polyethylene glycerol)-2000]; dh = hydrody-
namic diameter; PDI = polydispersity index (n =
15; mean ± SD).   

Fig. 4. Effect of Cu2+-liposomes, Cu(DDC)2-liposomes, [Cu(DDC)2-liposomes 
+ Cu2+-liposomes], [Cu(DDC)2-liposomes + free Cu2+] and Cu(DDC)2 + Cu2+

(35 μM DDC− + 128 μM Cu2+) on MRSA Mu50 and S. epidermidis ATCC 35984 
biofilm viability in comparison to the untreated control by using (A) the ala-
marBlue assay and (B) colony forming unit (CFU) counting. The concentrations 
of Cu(DDC)2-liposomes and Cu2+-liposomes or the combinations correspond to 
35 μM diethyldithiocarbamate (DDC− ) and/or 128 μM Cu2+, respectively (n =
3–4; mean ± SD; 1-way ANOVA: ***p < 0.001 by Dunnett’s multiple com-
parison tests). 
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pathogens and recruiting hemocytes to engulf pathogens and produce 
reactive oxygen species and antimicrobial peptides [64–66]. This model 
is in use for investigating pathogen virulence, for determining phar-
macokinetic properties of antimicrobial agents and in vivo screening for 
antimicrobial activity and toxicity [66–69]. Efficacy and toxicity of 
antibiotics in G. mellonella infection models were reported to empirically 
support the observed effects of antibiotics in murine infection models 
and antibiotic susceptibility in humans [70]. 

To investigate potential toxic effects of the liposomes in vivo, G. 
mellonella larvae were exposed to liposomes and the survival was 
monitored over 4 days. Injection with Cu(DDC)2-liposomes, Cu2+-lipo-
somes, the combination of [Cu(DDC)2-liposomes + Cu2+-liposomes] and 
the combination of [Cu(DDC)2-liposomes + free Cu2+] showed similar 
survival rates as the vehicle control (0.9% saline) and the untreated 
larvae, indicating no treatment toxicity in G. mellonella (Fig. 5A). Like-
wise, injection of free Cu2+ (concentration within larvae 128 μM) has 
been previously shown to be not toxic to G. mellonella larvae [31]. 

To assess the antimicrobial activity of [Cu(DDC)2-liposomes + Cu2+- 
liposomes] and [Cu(DDC)2-liposomes + free Cu2+] in vivo, the survival 
of S. epidermidis-infected G. mellonella was determined over 4 days 

(Fig. 5B). In S. epidermidis-infected larvae, treatment with Cu(DDC)2-li-
posomes or Cu2+-liposomes resulted in a low survival rate, similar to the 
vehicle control (p > 0.05). However, S. epidermidis-infected and [Cu 
(DDC)2-liposomes + Cu2+-liposomes] or [Cu(DDC)2-liposomes + free 
Cu2+] treated larvae showed a significantly higher survival rate 
compared to S. epidermidis-infected, saline treated larvae (p = 0.0018 
and p = 0.0015, respectively). Moreover, the survival rates of both 
S. epidermidis-infected larvae treated with either [Cu(DDC)2-liposomes 
+ Cu2+-liposomes] or [Cu(DDC)2-liposomes + free Cu2+] were signifi-
cantly higher compared to treatment with Cu(DDC)2-liposomes alone (p 
= 0.0048 and p = 0.0015, respectively) or Cu2+-liposomes alone (p =
0.0203 and p = 0.0015, respectively). Notably, the substantial increase 
in survival of the S. epidermidis-infected, [Cu(DDC)2-liposomes + free 
Cu2+] treated larvae showed no significant difference to the survival rate 
of uninfected, untreated larvae (p > 0.05). While treatment with free 
Cu2+ previously showed no effect on S. epidermidis-infected larvae [31], 
treatment with [Cu(DDC)2-liposomes + free Cu2+] indicated efficacy 
against S. epidermidis in vivo. 

Interestingly, the [Cu(DDC)2-liposomes + Cu2+-liposomes] combi-
nation significantly increased the survival rate of S. epidermidis-infected 
G. mellonella larvae, despite showing no antibiofilm activity in vitro. This 
increase in S. epidermidis-infected larvae survival was not significantly 
different to the [Cu(DDC)2-liposomes + free Cu2+] combination (p >
0.05). Consequently, the Cu2+-liposomes released their content in vivo, 
rendered excess Cu2+ available and resulted in antibacterial activity. 
However, G. mellonella larvae were injected with bacteria and liposomes 
simultaneously, not allowing for in vivo formation of biofilms before 
treatment. Therefore, the in vivo activity of [Cu(DDC)2-liposomes +
Cu2+-liposomes] might be limited to planktonic bacteria. In addition, 
survival of S. epidermidis-infected larvae, treated with Cu(DDC)2-lipo-
somes alone was not significantly different to the survival rate of 
S. epidermidis-infected, untreated larvae, validating previously deter-
mined effects of free Cu(DDC)2 + Cu2+ in S. epidermidis-infected larvae, 
where excess of Cu2+ was crucial for antibacterial activity. Moreover, 
absence of toxicity of Cu(DDC)2-liposomes and Cu2+-liposomes in 
G. mellonella larvae are in line with previous toxicity results of free Cu 
(DDC)2 + Cu2+ in G. mellonella and cell culture studies [31]. Conse-
quently, the lack of toxicity and high efficacy of liposomal Cu(DDC)2 +

Cu2+ observed in the G. mellonella model justify progressing to a 
mammalian in vivo infection model for pharmacological testing. 

4. Discussion 

We previously reported antibacterial and cytotoxic results of Cu 
(DDC)2 + Cu2+ against S. aureus and S. epidermidis in vitro and in 
G. mellonella larvae [31]. While the antibiofilm activity of Cu(DDC)2 +

Cu2+ was determined in an in vitro biofilm model that is sufficient for an 
initial high throughput screening of novel antimicrobial drugs [31], this 
model is limited by the lack of resemblance to the microenvironment 
present in a human wound. Specific factors, such as wound exudate, host 
tissue, access to nutrients, formation of a biofilm gradient, presence of 
multiple bacterial species, inflammatory responses, and the immune 
system, influence the progression of a biofilm infection and the wound 
healing process [32]. By investigating the efficacy of antimicrobial 
compounds in physiologically relevant in vitro biofilm models of surgical 
site infections, instabilities of the drug or interactions with wound 
components can be detected and addressed to increase animal study 
validity before progressing to costly animal studies [48]. Although Cu 
(DDC)2 + Cu2+ preserved significant antibiofilm activity in challenging 
host-mimicking conditions, many factors present in an infected surgical 
wound, such as multiple bacterial species, the inflammatory response 
and the immune system were not incorporated in these in vitro models 
and can alter the outcome of future in vivo studies. Here, the effects of Cu 
(DDC)2 + Cu2+ on biofilms of the artificial dermis assay were diminished 
by the low water solubility of Cu(DDC)2 and by possible interactions 
with matrix components, which significantly limits the clinical 

Fig. 5. Effect of Cu2+-liposomes (blue), Cu(DDC)2-liposomes (brown), [Cu 
(DDC)2-liposomes + Cu2+-liposomes] (grey) and [Cu(DDC)2-liposomes + free 
Cu2+] (purple) on (A) the probability of Galleria mellonella survival (30/group; 
n = 180; ns = p > 0.05) and on (B) probability of survival of Galleria mellonella 
infected with S. epidermidis ATCC 35984 (30/group; n = 180; **p < 0.01). 
Vehicle = 0.9% saline (black); control = untreated, uninfected (pink). The 
concentrations of Cu(DDC)2-liposomes and Cu2+-liposomes correspond to 350 
μM diethyldithiocarbamate (DDC− ) and 1280 μM Cu2+, respectively. The 
combination of [Cu(DDC)2-liposomes + Cu2+-liposomes] and [Cu(DDC)2-lipo-
somes + free Cu2+] represent a ratio of [1:6.2 mol] and correspond to 350 μM 
DDC− + 1280 μM Cu2+. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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application of the free compounds and shows the importance of an 
appropriate drug delivery system. By narrowing the gap between in vitro 
results and in vivo translation, we comply with the 3Rs principles by 
Russell et al. [71] to improve the welfare of animals used for research. 

While Cu(DDC)2 showed in vitro activity against Mycobacteria [25], 
Streptococci [30,72], and Mycoplasma [73], the antibacterial effects 
have yet to be confirmed in animal models. In contrast, the research on 
Cu(DDC)2 as cancer treatment has progressed to in vivo experiments and 
first clinical trials. The application of Cu(DDC)2 in clinical trials is based 
on the separate oral administration of disulfiram and copper ions and 
the in-situ formation of Cu(DDC)2 [74]. However, poor biostability and 
solubility of disulfiram and Cu(DDC)2 often limit the treatment efficacy 
[51]. Alternative strategies are based on the encapsulation of Cu(DDC)2 
into nanocarrier, such as micelles [75], cyclodextrins [76] and lipo-
somes [39,77,78]. Here, Cu2+-liposomes and Cu(DDC)2-liposomes 
composed of DSPC, cholesterol and DSPE-mPEG2000 were investigated, 
as characteristics, including size, PDI, imaging, drug-to-lipid ratio and 
stability were described by Hartwig et al. [40] and Wehbe et al. [39] and 
freeze-drying of the liposomes enabled prolonged storage [79]. In 
addition, intravenous administration of 12.5 mg/kg modified PEGylated 
Cu(DDC)2-liposomes (without cholesterol) and 8 mg/kg of Cu 
(DDC)2-liposomes composed of DSPC and cholesterol were well toler-
ated in mice [39]. However, Wehbe et al. [39] only investigated the 
safety of Cu(DDC)2-liposomes and not the combination of [Cu 
(DDC)2-liposomes + Cu2+-liposomes] or [Cu(DDC)2-liposomes + free 
Cu2+], which is necessary for the antibiofilm activity. Furthermore, the 
outcome of in vivo safety experiments could be altered by the different 
lipid composition of the PEGylated liposomes and the non-PEGylated 
liposomes, due to changes in circulation lifetime after intravenous 
administration [39]. While the non-PEGylated liposomes were not 
investigated because of instabilities during storage [40], the PEGylated 
Cu(DDC)2-liposomes with cholesterol were stable and showed no 
toxicity in G. mellonella at 6.4 mg/kg. G. mellonella larvae are a good 
indicator for toxicity and efficacy before progressing to mammalian 
studies, but the mechanisms of toxicity of the tested compounds can be 
altered by lack of mammal-specific metabolization processes. Therefore, 
the combined results of G. mellonella and cell assay studies are a pre-
dictor of low toxicity of antimicrobial agents but do not replace safety 
experiments in mammals [70,80]. 

5. Conclusion 

The Cu(DDC)2 + Cu2+ combination at concentrations of 35 μM 
DDC− + 128 μM Cu2+ reduced the bacterial load of MRSA and 
S. epidermidis biofilms in an implant and wound model in vitro. In 
addition, the low water solubility of Cu(DDC)2 was overcome by 
incorporating the agents into liposomal carriers. Liposomal Cu(DDC)2 +

Cu2+ showed antibiofilm activity in vitro against MRSA and 
S. epidermidis and in vivo efficacy against S. epidermidis, while being non- 
toxic. Therefore, the Cu(DDC)2 + Cu2+ combination represents a 
promising treatment strategy against S. aureus and S. epidermidis biofilm 
infections. Future studies will investigate the safety and efficacy of 
liposomal Cu(DDC)2 + Cu2+ in a mammalian model of wound infection. 
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