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Application of Improved Sliding DFT Algorithm for Non-Integer k  

Carl Q. Howard 

School of Mechanical Engineering, The University of Adelaide, South Australia, Australia 
 

ABSTRACT 

An algorithm and network is described in this paper that implements a sliding Discrete Fourier Transform, such 
that it outputs an estimate of  the DFT value for every input sample. Regular DFT algorithms calculate a complex 

value that is proportional to the amplitude and phase of  an equivalent sine wave at the selected analysis f re-
quency. The analysis f requency that can be selected is typically an integer multiple of  the f requency increment of  
the DFT algorithm, and this might not necessarily correspond to the desired analysis f requency. The sliding DFT 

algorithm proposed here overcomes this limitation, and permits the analysis f requency to be any value up to half  
the sampling f requency. The proposed sliding DFT algorithm is demonstrated by analysing a synthetic sine wave, 
and the exhaust noise f rom a V8 diesel engine. 

1 INTRODUCTION 
The Fast Fourier Transform FFT is a computationally ef f icient method of analysing a complicated signal to deter-
mine the amplitudes of  equivalent sine waves over a range of  f requencies. However, for situations where the 

amplitude at a single, or a few, f requencies are desired, other calculation methods are available that are more 
computationally ef f icient. One such algorithm is the Discrete Fourier Transform DFT that outputs a complex num-
ber 

𝑋(𝑘) = ∑𝑥(𝑛)𝑒−𝑗2𝜋(𝑘𝑛 𝑁⁄ )

𝑁−1

𝑛=0

 (1) 

that encapsulates the amplitude and phase of  an equivalent sine wave at analysis f requency 𝑘𝑓𝑠 𝑁⁄  Hz, for an 

input signal 𝑥𝑛 that is sampled at f requency 𝑓𝑠  Hz, at sample number 𝑛 = 0,1, . . 𝑁 − 1. The integer value 𝑁 is the 

number of  f requency ‘bins’ in the traditional FFT algorithm, and the integer value 𝑘 is the bin number. 

There are a couple of  practical issues with implementing Eq. (1) on a digital signal processor to occur in real -time. 

First, the output value of  𝑋(𝑘)  is only available af ter 𝑁 samples have been processed, and multiples thereaf ter. 
While the calculation is being undertaken, no estimate of  the current amplitude of  the equivalent sine wave is 
available. An improvement to this limitation is the sliding-DFT algorithm (Jacobsen and Lyons (2003), Jacobsen 

and Lyons (2004), Duda (2010)) that outputs an estimate of  𝑋(𝑘)  at every time sample. A further improvement is 
the sliding-Goertzel algorithm (Chicharo and Kilani (1996)) which is computationally ef f icient, and outputs an es-
timate of  the DFT at each time sample.  

However, most of  the previous algorithms require that the selected analysis f requency must correspond to integer 

values of  𝑘 and 𝑁, resulting in the analysis f requency to determine the amplitude and phase o f  the equivalent sine 
wave of  𝑘𝑓𝑠 𝑁⁄  Hz. It would benef icial if  the analysis f requency that was selected was precisely the f requency of  
interest, instead of  selecting the nearest f requency “bin” that encapsulates it. Sysel and Rajmic (2012) proposed 

a slight improvement to the sliding-DFT and sliding-Goertzel algorithm, where non-integer values of  𝑘 could be 
used, enabling the selection of  the exact analysis f requency, but the drawback remained that the output of  the 

estimate of  the DFT only occurs af ter 𝑁 samples, and as it does not have a ‘sliding’ feature, the inputs must be 

‘reset’ af ter 𝑁 samples. 

2 PROPOSED ALGORITHM 
Lyons and Howard (2021) proposed an algorithm and network, as shown in Figure 1, that addressed both of  these 

issues, namely, the ability to precisely select the analysis f requency by permitting non-integer values of  𝑘, and a 
‘sliding’ feature so that an estimate of  the DFT is output at every sample.  

One application for this algorithm is in an automatic control system, where it is desirable to have a fast assessment 

of  the ef fect of  adjustments made to a feedback or feedfoward  system, which enables the rapid control (usually  
minimisation) of  some parameter, such as noise or vibration at a particular f requency. For example, in an adaptive-
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passive control system, of ten it is not necessary to know the exact value of  the ‘cost -function’, which is the pa-
rameter that is being minimised, but rather it is suf f icient to know whether the previous adjustment to the system 

reduced or increased the value of  the cost-function. This would enable the next update to the control system and 
adjustment to the actuators to be made, thereby achieving more rapid control, compared with using an algorithm 
that is only able to provide an estimate of  the cost-function af ter N samples.  

 

Figure 1: Network of  the sliding-DFT algorithm for non-integer 𝑘 (Lyons and Howard (2021), Fig 5). 

The network shown in Figure 1 can be implemented in Matlab-Simulink, as shown in Figure 2. The Matlab-Sim-
ulink model is available at Howard (2021) on the Mathworks File Exchange repository. The input ports 1 and 2 

are the input signal sampled at a f requency of  Fs, and the value of  𝑘, respectively. The outputs ports 1 and 2 are 
the amplitude and phase of  the calculated DFT value, respectively. A common misconception is that the calculated 

DFT value is the amplitude of  the equivalent sine wave, which it is not, and need s to be rescaled by multiplying 
the calculated DFT value by 2/nDFT. For this Simulink model, the rescaling of  the DFT is not undertaken to enable 
comparison with alternative DFT algorithms.  The ‘Integer Delay’ block is shown as z-d, where d = N = nDFT, 

which is a First-In-First-Out buf fer of  N samples. The triangular blocks are gain (multiplier) operators, the circular 
blocks are summation and subtraction operators, and the square and rectangular blocks are mathematical oper-
ators. 

 

Figure 2: Matlab-Simulink model of  the sliding-DFT algorithm for non-integer 𝑘. 

3 APPLICATIONS 
This section shows the application of  the proposed sliding -DFT algorithm to a synthetic sine wave signal that 

varies in amplitude and phase over time, compared with algorithms proposed by other researchers. First, a com-

parison is shown where the excitation and analysis f requencies correspond to an integer value of  𝑘. The results 

z-N 

+ 

- 

𝑒−𝑗2𝜋𝑘  

𝑥(𝑛) 

𝑒𝑗2𝜋𝑘/𝑁 

𝑥(𝑛− 𝑁) 

z-1 

- 
+ 

- 
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show that most of  the algorithms are able to calculate the DFT amplitude correctly , which is to be expected. Next, 

the excitation and analysis f requencies are altered to correspond to a non-integer value of  𝑘. The results show 
that most of  the algorithms are unable to calculate the DFT correctly, whereas the proposed algorithm , shown in 
Figure 1 and Figure 2, performs well. 

 
Following the application of  the proposed algorithm to a synthetic sine wave signal, the algorithm is used to  ana-
lyse the exhaust noise f rom a V8 turbo-charged diesel engine to extract the amplitude of  the tonal noise at the 

cylinder f iring f requency. Previous work by Howard and Craig (2014a,b) involved the use of  an adaptive-passive 
quarter-wavelength tube to attenuate a tone in the engine exhaust noise. A sliding-Goertzel algorithm was used 

to extract the amplitude of  the tone, which can only occur for integer values of  𝑘. As the analysis f requency 
𝑘𝑓𝑠 𝑁⁄  Hz usually did not correspond precisely to the cylinder f iring f requency, it was necessary to employ addi-
tional signal processing techniques, such as summation of  DFT values f rom nearby ‘bins’ , and using f requency 

domain windowing of  the input signal. Data f rom the experiments conducted in 2014 was re-analysed here using 

the proposed SDFT algorithm, where the use of  a non-integer value of  𝑘 was possible using the proposed algo-
rithm in Figure 1 and Figure 2, and the results suggest that the proposed algorithm is able to rapidly track the 
amplitude of  the tonal noise.  

3.1 Varying Sine Wave 

To compare the behavior of  the DFT algorithms, simulations using Matlab-Simulink models were conducted. A 
sine wave that varied in amplitude between 1 and 2, that had a f requency of  15.0 Hz, and an initial phase angle 
of fset of 45 degrees, was modelled in Simulink as shown in Figure 3. To enable comparison with output of  the 

various DFT algorithms, the amplitude of  the sine wave was multiplied by nDFT/2, where for this example 
nDFT=500.  

 

Figure 3: Simulink model of  varying sine wave excitation source.  

Figure 4 shows the network proposed by Duda (2010, Fig 4), which is a modulating mDFT network that has a 
sliding capability such that it will output a value of  DFT for each input sample, and is  a stable network when k is 
an integer.  

Figure 5 shows a network proposed by Sysel and Rajmic (2012, Fig 2), that provides an estimate of  the DFT 
amplitude when k is an integer or non-integer value. However, the network does not have a sliding capability and 
the calculation method would need to be restarted af ter every nDFT samples.  

Figure 6 shows a Simulink model used to calculate the FFT of  an input signal. An overlap of  75% is achieved 
using a f irst-in-f irst-out buf fer, thereby reducing the time to output an estimate of  the FFT amplitude. A Hanning 
window is applied to the input signal, the FFT magnitudes for all nFFT= 29 = 512 points are calculated, and then 

a subset of  the appropriate FFT bin corresponding to the excitation f requency and the adjacent bins are summed 
to output the FFT magnitude of  the input signal.  
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Figure 4: Modulating mDFT network proposed by Duda (2010, Fig 4.) 

 

Figure 5: Network proposed by Sysel and Rajmic (2012, Fig 2), for non-integer k. 

 

Figure 6: Simulink model used to calculate the FFT of  an input signal, that utilizes the sum of  the central FFT bin 

and the adjacent bins. 
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The DFT amplitudes of  the input varying sine wave, shown in Figure 3, were calculated using the 

• proposed network f rom Lyons and Howard (2021, Fig 5), shown here in Figure 2, 

• modulating mDFT network proposed by Duda (2010, Fig 4), shown here in Figure 4, 

• the network proposed by Sysel and Rajmic (2012, Fig 2), for non-integer k, shown here in Figure 5, and 

• a traditional method using an FFT algorithm, shown here in Figure 6. 

Initially these algorithms were compared using a sine wave of  f requency 15.0 Hz, a sampling rate of  Fs=3750 Hz, 

nDFT=500 samples, resulting in a value of  𝑘 = 15 × 500 3750 = 2.0⁄ , an integer value, as shown in Figure 7. The 
black solid line shows the DFT amplitude of  the input sine wave signal, where the amplitude varies every 1.0s, 
and can be considered the desired output value that the other algorithms should calculate. The thick gray line 

shows the DFT estimate using the algorithm proposed by Duda (2010) and shows it tracks rapidly to the desired 
DFT value (black line). The light blue dotted line shows the estimate using the Sysel and Ramjic network and 
shows that it initially calculates the correct value af ter nDFT = 500 samples = 500/3750 = 0.13s, however it con-

tinues to diverge, as it does not have a sliding capability and it would be necessary to restart the algorithm every 
nDFT samples. The blue dash-dot line shows a traditional FFT based method and shows that it tracks the desired 
DFT value (black line) when there are changes in the input signal. The dashed yellow line show the DFT estimate 

using the Lyons and Howard (2021) algorithm, and shows that it has the same output as the thick gray line of  the 
network proposed by Duda (2010).  

 

Figure 7: Comparison of  DFT amplitudes calculated using various algorithms for k=2.0.  

Figure 8 shows a close-up view of  Figure 7 where the time axis has been zoomed to 0.8s to 2.2s to highlight the 
convergence of  the algorithms. At time 1.0s, the amplitude of  the 15.0 Hz sine wave was alt ered f rom 1.0 to 2.0, 

resulting in a transition of  DFT amplitude (black line) f rom 250 to 500. It can be seen that the algorithms by Duda 
(2010) (gray line), and the Lyons and Howard (2021) (yellow dashed line) start to transition immediately. However,  
the estimate using the FFT method (blue dash-dot line) only starts to transition towards the correct value af ter 

about 0.1s.  

The ability to start trending towards the correct DFT amplitude is important when used in a control system, as it 
enables the rapid convergence of  the control system, such as minimizing noise in an active noise control system. 

It is not necessary to know the precise estimate of  the amplitude of  the cost function, which would be the amplitude 
of  the sine wave in this example, but merely an indication of  whether a previous adjustment of  the controller output 
had resulted in an increase or decrease of  the cost-function. In this example, the correct estimate of  the DFT 

amplitude only occurs af ter nDFT samples = 500/3750 = 0.13s, and for the FFT based method af ter 
512/3750=0.186s. However, at 1.01s, 0.01s af ter the transition in amplitude, the networks by Duda (2010) ( thick 
gray line), and Lyons and Howard (2021) (yellow dashed line) start trending towards the correct value and would 

be suf f icient to indicate whether a previous adjustment by a control system resulted in an increase, decrease, or 
no-change to the cost-function. If  the FFT method were used (noting that we have attempted to improve the speed 
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by using 75% overlap), only at 1.094s could an assessment of  the ef f icacy of the controller could be made, which 
is greater than if  a sliding DFT algorithm had been used.  

 

 

Figure 8: Zoomed version of  Figure 7, between time 0.8s to 2.2s, showing comparison of  DFT amplitudes.  

Next, the excitation and analysis f requencies were changed to 18.75 Hz, that result in a value of  𝑘 =
18.75 × 500 3750 = 2.5⁄ , a non-integer value. The algorithms described above were used to analyse the input 
signal and the results are shown in Figure 9. The black line indicates the DFT amplitude that the algorithms should 

calculate. The estimate using the networks by Duda (2010) (gray thick line), and Sysel and Ramjic (2012) (light 
blue dotted line) diverges af ter 500/3750 = 0.13s. It can be seen that the algorithm proposed by Lyons and Howard  
(2021) (yellow dashed line) tracks towards the correct DFT amplitude (black line), which is the desired outcome. 

The estimate using the FFT method (blue dash-dot line), also tracks towards the correct DFT amplitude (black 

line), but converges slower than the method by Lyons and Howard (2021).  

 

Figure 9: Comparison of  DFT amplitudes calculated using various algorithms for k=2.5. 
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3.2 V8 Diesel Engine Noise 
This example involves re-analysing previously published work in Howard and Craig (2014a), Howard and Craig 

(2014b) of  the sound pressure of  an 8-cylinder diesel engine that has a capacity of  14-litres, rated power of  
350 kW, and was turbo-charged and intercooled. The engine was loaded by a water-brake dynamometer. An 
adaptive quarter-wavelength tube was attached to a side-branch to the main exhaust pipe. The length of  the tube 

was adjusted until it corresponded to one-quarter of  the acoustic wavelength of  interest, which caused the ampli-
tude of  the sound in the main exhaust duct at the wavelength of  interest to be reduced (Craig and Howard, 2012). 

When the engine crankshaf t was rotating at 1600 rpm, the main cylinder f iring f requency was (1600/60)*(8/2) = 

106.67 Hz, as each cylinder f ires once every two crankshaf t revolutions in a four-stroke engine. Af ter digitising 
the microphone signal at a sample rate of  1600 Hz,  the sliding-DFT network shown in Figure 1 was used to 
monitor the amplitude of  the tone at 106.67 Hz as the piston inside the quarter-wavelength tube was fully ex-

tended, to simulate an exhaust system without a side-branch and quarter-wavelength tube installed, then gradu-
ally retracted. When the position of  the AQWT was optimized, it caused  the sound pressure level in the exhaust  
duct to be minimized. For this example, number of  DFT points was nDFT = 1024, resulting in a non-integer value 

of  k of  

𝑘 =
106.67nDFT

𝑓𝑠
=
106.67 × 1024

1600
= 68.27 (2) 

Figure 10 shows the amplitude of  the exhaust sound pressure level vs time at 106.67 Hz when the length of  the 

adaptive quarter-wavelength tube was adjusted f rom the shortest length at time 0 seconds, to  simulate an exhaust  
system without a quarter-wavelength tube installed, and was gradually extended  by moving every 1s. The f igure 
shows that at time 130 seconds, the quarter-wavelength tube was tuned and reduced the exhaust sound pressure 

by roughly 13 dB, which indicates the potential for the AQWT to provide noise reduction of  the exhaust tone.  

 

Figure 10: Sound pressure level in the exhaust at 106.67 Hz calculated using the sliding-DFT algorithm in 

Figure 1, as the length of  the AQWT was adjusted every second. 

Figure 11 shows corresponding sound pressure level vs f requency when the AQWT was fully extended so the 
side-branch tube was the shortest, which is ef fectively the case where the side-branch does not exist, and when 
the AQWT was optimally tuned to attenuate the tone at the 1x Cylinder Firing Frequency, which was at 

106.7 Hz, and shows that the SPL was reduced by 13 dB.   

If  the proposed sliding-DFT algorithm shown in Figure 1 had been used for this adaptive control system, it would 
have been able to provide estimates of  the amplitude of  the tonal noise at 106.7 Hz faster than if  an FFT was 

used for signal monitoring, and would have enabled more rapid control system updates and convergence.  
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Figure 11: Spectrum of  the sound pressure level when the AQWT was fully extended (red dashed line), and when 

it was optimally tuned (blue thick line). 

4 CONCLUSIONS 

The results f rom these simulations of  sliding-DFT algorithms show that the proposed algorithm in Figure 1 is 
able to provide an estimate of  the DFT amplitude at non-integer values of  k, and has a sliding feature so esti-

mates of  the DFT are available at every sample. This is in contrast to other algorithms that have limitations 
where only non-integer values of  k can be used, or they do not have a sliding capability. It was demonstrated 
that the proposed algorithm was also able to provide an indication of  the change in the DFT magnitude when 

the magnitude of  the input signal alters, before nDFT samples had been processed, which enables rapid update 
of  a control system. By using the DFT methods, computational ef fort is only expended to determine the ampli-
tudes at the f requencies of  interest. Reducing the computational ef fort is vital when implementing real -time con-

trol systems as it provides greater time for other non-real-time tasks, or enables greater f requency resolution.  
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