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SUMMARY

A new algorithm, evolved by G, Szekeres, is
described, In a manner similar to the continued
fraction approximation of single irrationals, this
algorithm gives a simultaneous approximation to an
ordered pair of irrational numbers: (&,7).

A sequence of values is generated by the
algorithm for the linear form

L(X,Y,Z) =X + Y + 2Zn,
where X,Y,Z are rational integers,

It is shown that the values of L(X,Y,Z) form
a null sequence, but the order of the approximation is
not established directly.

It is known that arbitrarily large X,Y,%Z
values may be found so that

|L(X,Y,2)| = |X + YE + 20| < g (1)

where M = max {|X|,|¥l,|%2l}, and ¢ is some constant
depending on the values of & ard 7, It is conject-
ured that the algorithm generates an infinite sequence
of I1(X,Y,2) values for which (1) holds,
To test this conjecture, the algorithm is
applied to a pair ]
(&)

chosen so that
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1>&>7 >0,
and the triplet
(Ey751)
forms an integral basis to the number-field,
R(®J/D)y
where D is a cube~free rational integer,
The norm of X + Y& + Z7 = L(X,Y,2) is
N(X,Y,Z) = L{X,Y,2)L'(X,Y¥,2)L"(X,Y,2),
where L'(X,Y,Z), L"(X,Y,Z) are the field-conjugates of
L(X,Y,2).
It is easy to show that
L' (X,Y,2)L"(X,Y¥,2) =G (X,Y,Z)
is a positive definite quadratic form, thus the values of
Q(X,Y,Z) form a sequence of the order
M® = (Max{X®, Y2, 2%}]).
1f L(X,Y,Z) is a unit in the given number-field, its
norm has the velue #*1, thus L(X,Y,2) must be of the
order M™®, Hence, if the algorithm produces for every
D the units (numerically smaller than 1) of the field
R(®/D), then the conjecture gatns strong support.

This thesis presents a computational method based
on the algorithm, to detect the units of the number-field
R(3/D), The computations were carried out partly to test
the order of the approximation and partly to explore a
practical, systematic method for finding the units of

cubic number fields.
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In the calculations completed D was allowed to
range over all cub-free integers from 1 to 200, and as a
result, a table of units was prepared. Calculations were
carried out to support the evidence that the units listed

are fundamental,
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1. Pure cubic fields.
a, Introduction

A brief summary of results from the theory of
algebraic number-fields, in particular on pure cubic
fields is given in the following. Proofs of the results
may be found e,g. in the book by Hecke (8),  Notations
introduced here will be used in subsequent chapters.

Let D be a positive cube-free rational integer,
i.ee an integer not divisible by the cube of any rational
integer different from *1. D may be presented in the
factorised form

D = ab? (4=1)
where a,b are positive integers, and a is square-free,
Since D is cube-free, b must also be square-free amd
a and b must be relatively prime.

Denote by B the real cube root of D, i e
the real root of the cubic eguation

F(x) =x®* -D=0 (1-2)

The pure cubic number-field R(B) may be defined
as the field obtained by adjoining B to the field of the
rational numbers R, 1.es R(B) 1is the set [a} where

o = -Z-%- (1-3)

Here f£(x), g(x) are polyncmials with rational coeffic-
ients and g(B) # O.



It can be shown that (1-3) reduces unigquely

to the form
a =X + ¥B + Z46° (1-4)
where X, Y, Z, are rational numbers. Thus the numbers
1! ﬁ’ ﬁa

form a basis for the field R(B).

For an alternative representation we may define

Y = 2/a%b (1=5)
Clearly
Y = % B?
Writing 2 = Zsb in (41-L4) we obtain
a=X+ ¥8 + 2r (1-6)

This representation is also unigue, hence
1s By ¥
may be taken as an alternative basis of R(B).
Let pB',B" be the conjugates of B, 1.es the
other roots of equation (1-2),
Then
B' = pw
B = po?
where w,w® are the complex cube-roots of 1, is.e.
w="'12'+'i§\/3v 0)2=“J§'%/3-
The field-conjugates of « are derived from (1=L4):
o' = X + YB' + Z4B8'2 = X + YBw + Zif%0P

(1=7)
X + YR+ 240w

and o =X + YB" + Z,8"?
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Alternatively, we may use Y a8 in (1-6), and

obtain

a' = X + YPw + Zyw? (1-8)

a" = X + YBoR+ Zyw §
a and its conjugates o', a" are roots of a monic cubic
polynomial

#(x) = x® + Px® + Qx + R (1=9)

where P,Q and R are polynomial functions of X,Y,Z,
with integral coefficients.

The number o is rational if and only if the
coefficients Y and 23 in (1-=7) or ¥ and Z in
(1~8) vanish,

In this case

a=a =a" =X
and

#(x) = (x = a)®,
Disregarding this special case, ¢(x) is always irreduc-
ible and it is then the defining polynomial of «,

Of particular interest in the following is the
norm of the irrational number o, defined as

N(X,Y,2) = a a' a" = «R,
Using (4-8), the norm may be expressed in terms of £ and
¥y and using the relations
B8® = ab®
v? = a®p



and hence
By = ah,
we obtain for the norm the expression
N(X,Y,2) = X® + Y°ab? + Z°a®b - 3XY¥Zab. (1-10)
If the defining (monic) polynomial of an algebraic
number (e,g, $(x) in (1-9) in the case of cubic irrationals)
has rational integral coefficients, the nuwber is called an
algebraic integer. It can be shown that the set of alge-
braic integers is closed to addition and multiplication,
Thus, since B,y are algebraic integers, the number o in
(1-6) is also an algebraic integer. The converse is not
necessarily true, i.e, the form (1-6) does not always
represent all the integers in R(B). In other words,
(1,8,¥) 4is not necessarily an integral basig of R(B)
Dedekind(b) has determined integral bases for all pure
cuble fields and his result is given in the following
(based on the presentation of Leveque)(c).
b Integral basisg.
Assume that o and hence its conjugates o' and
" are algebraic integers of degree 3, i.e, that they are
the roots of a monic polynomial ¢(x), of the third degree,
with integral coefficients, From (1-6) and (1~-8) we obtain

the equations
K=o+ a +a
3¥ab = y(a + a'e? + a"w) (1=11)
3%ab = Bla + a'w + a'w?)i.
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Since the right hand sides of the equations
(1=11) represent algebraic integers and the.left hand sides
are rational, it follows that

3X, 3Yab, 3Zab
are rational integers, Thus (1=6) may be written as
3aba = 3abX + 3ab¥B + 3abiZry,
or writing X = 3abX, ¥ = 3ab¥, Z = 3abZ,
we have
3aba = X + YB + ZY (1~12)
where X, Y, Z are rational integers.

Using results concerning prime-ideal factors in
algebraic number~fields, Dedekind showed first that each of
the numbers X, ¥ and 7 is divisible by every prime
factor of a or b, hence by the product ab, (since a

and b are square-free and relatively prime.)

Let
X -L ) ? ] Z
Xe=gp» ¥ =g %= ap
then
P O PR -
06—-3+3»3+'3"Y’ (113)

where X%, Y#*, Z* are rational integers,
The coefficients of the defining polynomial ¢(x) of «
may now be expressed in terms of X%, Y%, Z* +to obtain

28 o Y
B(x) = x° - xox? o B LLERe - n(Xs,¥4,2%) = 0, (4-14)

where .
N(X#,¥#,2%) = g5(X#® 4+ Yi%ab® + Z+°8%b = 3X“YeZiab)e (1-15)
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There are two cases to be considered:
(1) One of a,b is divisible by 3,
(11) a,b are both relatively prime to 3.
From the condition that all the coefficients in
(1=14) must be rational integers, it follows by elementary
considerations that in case (i) each of the numbers X%,
Y+ and Z* is a multiple of 3, and so by (1=13),
1, By, ¥ form an integral basis in case (1),
In case (ii) it may be shown easily that if any
one of the nunbers X#, Y#*, 2% is a multiple of 3, then all
three of them are multiples of 3, Thus to establish the
conditions for an integer base other than 1, B, v, 1t is
sufficient to consider the case when
a, by X%, Y¥#, Z% are all relatively prime to 3, and
thus
8% = b? = X% = Y»3 = 242 =1 (mod 3) (1-16).
Referring to (1-15), it follows that
X438 4 Yu4®gb® 4 Zw%a®b = X 4 a¥® + bZ* = 0 (mod 3) (1=17).
Bach term on the left hand side of the last congruence is
relatively prime to 3, thus
X% = aY# = bZ+* (mod 3),
and using (1-16) again, it follows that
Y = a?y® = aX* (mod 3)

(1-18)
and Zw = b2Za = bX* (mod 3)
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It follows also from {1~416) that
a® - b® = 3] (1-19)
where J 1s some rational integer.
Meking use of (1-18) and (1-19) it is easy to show that the
coefficients of x in (1-14) are rational integers if and
only it
J=0 (mod 3)y, i.es if

5and only if

82 - b = 0 (mod 9) (1-20).
In this case the integral base may be found by using
(1=18) and writing

¥+ =aX® + 3m,  Z% =bX* + 3n.

We then obtain from (1-13) that

£ b £

ieCeo

o = X::¢(1 +—a% 2 bx) + mB + ny (1"'21)

where X%, m, n are arbitrary rational integers.

Following Dedekind's notation, a pure cubic field

R(®/ab¥)
is called a Tield of the first kind 1if
9 1’(&2 - b%),

In this case, as seen in both situations (i) and (ii), o
is an algebraic integer if and only if X%, ¥Y* and 2%
are multiples of 3, i.es
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{

1, B, ¥ form an integral basig for fields of the first
kind.
If (1-20) holds, i.e.
9] (a® -~ v?)

the field is called a field of the second kind.
It follows from (4-21) that in this case the numbers

j__i_.a:.%;"_px, Bs ¥ (1—22)

form an integral basis.
It should be noted that in this case all integers of form

(1-6) may certainly be represented in terms of basis (1-22),
3X, Y -Xa, Z -Xb Dbeing the respective coefficients}
the converse does not hold: €48
o = % (1 + af + by)

is not of form (1-6).
ce Units

Let R(S8) be an algebraic nunmber-field of degree
n, i.e. the field obtained by adjoining &, an algebraic
nurber with defining equation of degree n, to the field
R of rational numbers, and denote by R[8] the integral
domain of the field, i.,es, the subset of algebraic integers
in R(9).

As in the case of cubic fields, the (relative) norm,
N(z) of any number in R(8) is defined as the product of
g and all its field conjugates. The norm is then some power

of the constant term of the defining (monic) equation of L.
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Thus if g is an algebraic integer, then N(p) is a
rationallinmeger. Furthermore it is easy to show that for
any two numbers g,V in R(8)
N(pv) = N(pIN(¥). (1-23)
¢ is called:.a unit in R[8] if
el
It follows from the definition thai
elp
for a1l p in R[8], and by (1=23) € is a unit in R[A]
if and only if
N(e) = £ 1.
Clearly, the units of the integral domain r[ 4]
form a multiplicative Abelian group.
The question arises firstly whether every integral
domain R[9] has units different from the trivial units 21,
and seconily, if such units exist, how many of them can be

independent in the sense that no relation

ves €5
exists where the indices asi, 8zjyeseds 8IC rational
integers, not all equal O

A full answer for algebraic number-fields of degree
n is given by Dirichlet's(d) theorem on the group of units.
As a special case of this theorem it follows that the pos-

jtive units in R(B) form an infinite cyclic group, i.e.

each unit € may be represented as
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€=i77a,
where 7 is the fundamental unit and a is a positive or
negative integer,

(It may be noted that this result still holds for
the units of a field generated by an algebraic integer
of degree 3, if the defining polynomial has a negative
discriminant, i.es the polynomial has one real and two
imaginary roots, If the defining cubic has three real
roots then the units are of the form

€ = % 1,71y "%2
where 74 and 73 are independent,)

For the fundamental unit of the pure cubic nunber-
field we may choose either the smallest unit which is
greater than 1, or the greatest unit which is less than 1.

No direct way of calculating 7 1is known for the
general field R(B), but its value has been determined in
special cases, when B% =D is not too large. A short

survey of available results is given in the next chapters
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2, Earlier computations of units in cubic fields.

In the following we shall survey the results of
previous workers. Tables of units of cubic number-fields,
mostly of pure cubic fields, have been given before. For
pure cubic fields, units have been evaluated for all values
of D up to 70, some values between 70 and 100, and a few
non-pure cubic fields have been also explored.

The earliest extensive table is by Markoff(a)dated ‘
in 1891, for fields of the form R(2yD), for D wup to 70,
The table is given as an appendix to a fundamental paper on
cubic irrationalities in which the earlier worls of Zolotareff
and Markoff himself are surveyed, (This table is reproduced
in the book by Delone and Faddeev(b).) The units listed are
used as means of discovering the ideal factors of R(3y/D) and
only a short reference is made to his trial and error methods
of obtaining them: "Ne nous arretant pas aux méthodes sures
mais fatigantes pour déterminer 1'unité complexe fondamentale
nous remarquons, gue pour les valeurs petites de a et de b
11 est facile de trouver les unites complexes par le tatonne-
ment en considérant plusieurs nombres & composés des memes
facteurs premiers,"

A probably identical trial and error method is used
by Dedekind who used his own computations to determine the

units for D < 23. This work is described in more detail
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in his paper on cubic fields published in 1900(0). (In this
Same paper can be found his theorem on the integral basis of
the pure cubic field,)

The essence of the method is finding by trial a few
algebraic integers X + ¥YB + Zy with reasonsbly small (real)
coordinates X,Y,Z and having some prime ideals as their
common factors, and then building new algebraic integers by
mul tiplying together various combinations of the prime~ideals
previously found amongst the factors. Amongst these prod-
ucts are some which have different absolute values while
having ldentiecal prime-ideal divisors, The ratio of two
such products must give a unit, The fundamental unit of
the field is then found by selecting it from the set of units
found, e,g. when considering units greater than 1, selecting
the smallest one and checking whether the other units are
exact powers of it,

These methods proved to be laborious and with an
element of uncertainty in finding the fundamental unit,
Dedekind observes that the unit listed for D = 28 by
Markoff is the square of the fundamental unit found by him-
self,

It should be mentioned here that there is one theorem
due to Delone and Nagell(d) which in certain special cases

gives a criterion for fundamental units in R(aJﬁ):
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Consider the equation
x? 4+ Dy® =1 (2-1)
This equation has at most one solution in integers X,y
different from zero, If (xi,yi) is such a solution, then
the number
Xy + ¥4 2D (2-2)
is either the fundamental unit of R(2/D) or its square.
It can be the square of the fundamental unit for only finitely
many values of D,
If the field R(3/D) is of the first kind, (follow-
ing Dedekind's definition), and
N =X3 + ¥4 + zZ3¥ is a unit,
then the square of 7 cannot be of the form (2-2), with one
exception, namely
n =1+ 2/20 - 2/50
= =19 + 7 ::/-2_.
If the field is of the second kind, and a unit of
the form
n = %(xi + YaB + 21¥) exists
where 3 + X4¥1%Z1s then 7% can be of form (2-2) only in

finitely many cases. In particular when x4y 1is even, there

is only one case: D = 19
3 3
FICRELY.. B, NP

There are more cases (but still a finite number of them),

when X, 1is odd.
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An entirely different approach to the problem of unit
finding is suggested by the analogous problem in gquadratic
fields.

Let D be a square~free integer, An integnal basis
for the field R(4/D) can be readily found. It is not hard
to prove that

if D=2 or = 3(mod 4)
then
(1,/D) is such a basis, i.e. all the integers
of the field may be written in the form
a + byD
where a,b are rational integerse.

If D=1 (mod L),

then the integers of the field are of the form

a + bﬁlﬁ

2 9
where a2 ani b are rational integers and either both are
even, or both are odd.
If ¢ is a unit, and € 1its conjugate then
ee! =% 1,

thus (a + byD)(a -~ byD) = £ 1 1in the first case,

and (95—%@)(3—5—1:@) = * 1 1in the second case,

Hence if D=2 or = 3(mod 4), the units of the

field are given by the solution of Pell's equation

x2 - Dy® =t 1, (2"3)
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and if
D = 1(mod 4)

the units are given in the form

x 4+ y/D

2
where (x,y) 1is some (integer) solution of
x® -Dy® =% 4,
(Clearly, x and y are both even or both odd for each
solution,)

The solution of the general problem presented by
Pell's equation was partly accomplished by Euler and completed
by Lagrange.

The result can be stated in terms of the continued
fraction expansion of the number 4D, briefly described in
the following.(®)

Let the symbol

[bo sDagees bnl (2-4)
stand for the (terminating) continued fraction
b“+b3+uoo 3
* o,

Then (2-&) represents a rational number and we may write

ED. = [bo,bi’.ao bn],
an

where pn, dn are relatively prime integers.
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We may next define the expansion of an irrational
number &o.

For v = 041,24+« the number &,4,4 is found

E = by + ;f;; (2-5)

where by = [£y], hence &y4a > 1.

recursively by

Since &, 1is not rational, &y+s in (2-5) cannot be an
integer and so the procedure can be continued indefinitely.

The convergent fractions El may be defined next by
. v

E} = [bosbyyeee Dple (2~6)
v
Defining

Pz =0 D=y =1

Q~z = 1 g~y =0

it is easy to verify that for v > O

Dy = DyDy=1 + Dy-3
(2-7)
Qy = byQye~y + Qu=zj o
The relations (2-7) may be then used to evaluate the values
of py eand qy recursively.

It can be shown that for all v = O

€0 - %%l < 3&2 < ﬂ?

hence the sequence

{%1} converges to &,.
y ]
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It can be shown easily that if the expansion is peri-

odic, i.e., if for some (positive integer) k,
bk+n = bn for all n,
then &, is a quadratic surd,
The converse was shown by Lagrange, and as a speclal case we
may state that
if D is a positive integer, but
not a perfect square, then the continued fraction expansion
of
€0 = Dy

is periodic,
It may be shown next by induction that the numbers &y
defined by the relations (2-5) may be written uniquely in

the form

_JfD+P
&y = =+ ! (2-8)

where P,, Qy are rational integers, Moreover, it follows
from the periodicity of the expansion that
€k = Eo

and hence that the sequences {Pyl, {Qy} are also periodic,
k being the length of their period.

Using the above notations, the following general
result may be stated (without proof).

The equation

x2 - Dy° =L

where D,L are integers and D is positive and is not a
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perfect square, and furthermore
VD > L] > 0 3
is soluble if and only if L occurs amongst the quantities
(=1)YqQy (defire d by (2-8)),

From the periodicity of Qy it follows that in this case
the equation has an infinite number of solutions,

For each v satisfying the relation

(1)’ =L

we obtain the solution

X = Dy—ss Y = Quegoe
If k 1s the number of terms in the recurring period, then
for each positive integer n

Tnk = &0, hence

Pnk = O, Qnk = 1. (referring te (2-8)),
Thus we have as a particular case of the general result, the
theorem of Lagrange on the solution of equation (2-3), It
may be stated gs follows,

The equation

x? - Dy® =1

is always soluble and it has an infinite nunber of solutions.
It

2y
ay

is the vth

convergent of /D and k is the number of
terms in the (smallest) recurring period, then all the solu-

tions are given by
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i

¥ = dnk=4 n = 2,4,6peee 1if k 1s odd,
The equation
X% -~ Dy® = -1 is soluble if

and only if k 1is odd and then the solutions are

X = Pnk=19 ¥ = Qnk=-19 n=1y355000

Thus the problem of determining all the units of the
quadratic number-fleld generated by Jﬁ is accomplished by
the use of a continued fraction algorithm., It should be
noted that this algorithm has two characteristic features:
itsperiodicity and the fact that it provides the best
approximation of the irrational number &, in the sense

that, if
l-g— Eol < l%nﬂ-Eol, then

Q2 An+1e
Also
2n - < =
an ol o7 °
It is possible to extend this later result to the case of
simultaneous approximations.
Let 0440254ee 0y Dbe a set of numbers and let
ol Tl
be fractions approximating simultaneously the given set and

with a common denominator g,
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For each 1, (i = 1,..4n)
Bl (g, < RLtl
q < Uy < q

It is then possible to find an infinite number of positive
integers q so that

|2 o] < = (2-9)
ava
This result may be proved by Dirichlet's box—principle(f).
We may write this in a slightly different form by
defining for a number a the symbol
Hall

as the difference between a and the nearest integer.

We have then

max( “ qﬁg_ “9 “q@z u’ ses ”qen " ) < q— ﬁ..

Instead of considering n numbers depending on the single
variable q, we may consider xn_ _linear forms with m vari-
ables.

The sbove theorem can then be generalised in the
following manner(g).

Let

Ly(x) =3 051 % (1 <i<m 1< J<mn),

be n 1linesr forms in m variables, To every real X > 1
there is an integral Cvector) X #£ 0 such that
Lyl < Xﬂﬂ'; Iz, ) <X (4 <1i<m 1< J<n).(2-10)
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We may regard the approximation theorem referring to a
gingle linear form as another special case of this general
theorem. (cf, Introduction (1)).

The proof of the general theoren can be given by
using Minkowski's linear form theorem from his geometry of
numbers:

There are integers x; not all O such

that

n
| Zatjx_}l < Pt (i = 1,2,09. n)
3=1

provided that
P1eeeon > 4]
where A 1is the determinant of the matrix [ai;].

Generalisations of the continued fraction algorithm
for two or more dimensions have been evolved by various
workers, aiming to preserve either the periodicity of the
one dimensional process, or its property of best approxima-
tion, Mahler(h) has proved that the two cannot (in general)
be preserved simultaneously.

Similtaneous rational approximation by means of a
periodic expansion wes attempted and partially solved by
Jacobi in 1868(1). He devised an extension of the contin-
uved fraction process which enabled him to determine rational
approximations to the mutual ratios of three numbers and

showed that every approximation could be expressed in terms
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of the three preceding ones and the coefficients of the ex-
pansion, He further showed that if the three numbers are
taken to be 1, 6, p + @0 + rf®, where 0 1is the real root
of a rational cubic equation of negative discriminant, the
expansion may become periodic, and in certain numerical cases
he actually demonstrated the periodicity. It has been found
by Bachmanh(j) however, that this periodicity exists only if
a certain limiting inequality is satisfied.

‘ Minkowski's(k) approach is different, A somewhat
more detailed account is given of his algorithm, because
it shows & certain similarity to the algorithm described
in the next chapter, inasmuch that the approach is geometrical.

The inequalities
1T (x,702) | < 01 1<1<3

where all the coefficients are real, pisP2sPa 8re positive, .

and the determinant A of the matrix

i
L = 1o
Lo
does not vanish, determine the interior and the surface of a
parellelepiped.
By the theorem qqpted earlier, this domain can be free
of points of integer coordinates, (other than the origin),

only if
p1P2Pa < |8]
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An "extremal" parallelepiped is defined as one which is
free of internal lattice~points, i.es for which the inequal-

ities

Li(x,y52) < Pt 1<i<3
have no integral solution apart from
X=y=2=0,
but which ceases to be free as soon as any positive number,
however small, is added to any one of the parameters
P4 3Pz 3Pz e
Minkowski proves the existence of transformation-

matrix associated with such an extremal . parallelepiped,

ry 84 ty
P=|r; 8 t ’
rs 83 ts

having the following properties:
each of the (rp,systt! (i = 1,2,3),
means a point with integer coordinates on one of the planes
Ly (xy5s2) = £ py,
and no two of the (ri,s{,ty) are on opposite planes;
the determinant of P 1s equal to 13
the entries of the matrix IP satisfy a certain prescribed
set of inequalities,
He then shows that it is possible to construct a
new set of parameters (o) from the old set (o), 8o
that
(1P)y (x47,2) < 0
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represents again an gxtremal parallelepiped.

An algorithm to obtain uniquely a chain of extremal
parallelepipeds is constructed in this manner. He proposes
this algorithm to be applied for the determination of the
units in the cubic field R(8), where the field has a
positive discriminant, i.e. the defining equation of 9 has
three real roots,

Let o,B,Y be an integer basis of R(8)e. Form the
initial matrix L of the algorithm by using the linear
forms

Ly = aX + By + YZ
and its conjugates L,' and ILy".

The discriminsnt of the field is D, where D = 4%,

a. B ¥
a! ﬁl‘ ,Y.‘l
an ﬁ" Y" .

The norm of L(X,¥y2),

N(L) = LL'L",
is a cubic form in (x,¥,z) with rational integral coeffic-
ients.

It follows from the inequalities imposed on the
coefficients, that if the algorithm is started with a
certain matrix L, there are only a finite number of forms
N(L) possible, so that after a finite numbermof steps some
form must recur, Let (py), (o) represent the parameters

pelonging to the'extremal" parallelepipeds associated with
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identical forms. It can be proved then theaet whenever the
ratios g% are {algebralc) integers, they represent a set
of conjugate units, In this way he proposes to find all

the units of the field, amongst them the fundamentel ones.
(By Dirichlet's theorem there are two independent units in
the case of positive discriminants.)

The algorithm is described in full detail, but it
appears to be a very laborious procedure, and it seems that
it has not been adopted by the various workers who have
evaluated units, although in a paper by Berwick(l) a refer-
ence is made to the work of 1., Kollros, supposed to be
baged on Minkowski's algorithm. Berwick in his own paper
takes up the idea of a periodic algorithm, and devises one
to find ideal classes in cubic number fields.

Earlier, Voronoi suggested an algorithm for finding
the fundamental units of cubic fields with negative dls-
eriminants, Tables of fundamental units based on Vorcnoi's
algorithm were worked out by B, Delone and K, Latyseva(m)
for some 50 cubic fields with negative discriminants not
greater in value than 379.

In 1923 a paper appeared by C. Wolfe(n) in which he
made use of a mixture of methods of previous workers together
with some theoremg to short cut the calculations and he gave
a complete table of the minimum positive solutions of the
indeterminate cubic egquation

x® + Dy® + D%2® - 3Dxyz = 1
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for 1 €« D < 100,

The solutions are identical with the fundamental
wnits of R(2y/D) whenever the field is of the first kind
and D 1is square~free,

In a table given at the end of & paper by
7.0, Cassels(®) in 1950 units are listed for D = 2 to
D = 50 with some uncertainty whether the units given for
D = 29, 41, 46, 47 are fundamental,

H

In the next chapter an algorithm proposed by

G, Szekeres (as yet unpublished) will be desecribed in
detailg
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3« The simultaneous approximgtion algorithm.

The algorithm evolved by G, Szekeres and described
in this chapter is designed for the simultaneous approxima-
tion of the irrational components (&,7) of a two dimension-
al vector. It may be regarded as a two dimensional gener-
alisation of the simple continued fraetion process.

In approximating a s ingle irrational number a by
continued fractions, we may consider two facets of the
problem:

(1) finding a sequence of ratiomals {an} to approximate
the number o,
(11) finding a sequence of linear forms {pnX = an}, such
that pnydn are relatively prime integers and
{pnx = an} » 0 for X = de

Correspondingly, the simultaneous approximation

algorithm is designed to give

(i) a seqguence of ordered pairs of rational numbers
{Ekamx] to epproximate {Z,7},

(ii) a sequence of linear forms with integral coefficients
aky Pks ¢k 80 that

{ex€ + bkn + ok} - O

No proof will be given that the sequences give 'good"
approximations in the sense of relations (2-9) and (2-10).
However, the geometrical illustration of the algorithm will

attempt to demonstrate the plausibility of the conjecture,
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Without loss of generality we may restrict the
values of &,7 to

1>&8>7>0,

and we may also assume that & and 7 are not rationally

dependent, l.e. no rational numbers a,b,c other than O

exist such that

aE + Hﬁ + ¢ = 0,

The above restrictions place the point P(&,7) inside the

triangle AgByCo, as shown on
- Y

o

_ diagram 3%a, where the
‘& %_& g 3 t4
’T /] coordinates of the
i Ra vertices are
i ({b //
(/m'ﬁ)"\ 2(1,0), Bo(151), Go(0,0)
! \
| Cmmepe— e E (3-1)
Co _“\;J'-_ Ao_
Fig-3a

The algorithm will generate a sequence of approximat-
ing triangles

(ABC)k
and the sequences (i) and (ii) will be defined in terms of

the approximating triangles.

The initial terms of sequences (1) and (ii) will bve

given by the coordinates of Agy Bosy Co and by the equation

of the side ApBy respectivelys
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The linear forms representing the left hand sides of
the equations of ApBo yAoCo and DBoCo are:

()e (Erm) = 1 - €
CONCURLENE (32
CONCUR

The coefficients of the forms are relatively prime rational

i}

!
™

I
3

integers and furthermore they are chosen so that

(2a)o(B7)r(Bxc)o(F27) em2 (2ac), (F:7)

are positive,
It will be shown that these properties of the coeffic-
ients are preserved by the forms
La(57)s oo 597)s TaolE07)
defined by the subsequent algorithm,
We next express the Cartesian coordinates (&,7) in

terms of homogenous coordinates (x,y,z) so that

% =&, % =T (3-3)
The representation is made unique by choosing
(ZA)O = (ZB)O = (Zc)o = 1
for the three initial points Aoy Bos Cos and by fixing the
subsequent values of the homogeneous coordinates recursively
as shown in the following.
Let A,B4,C be the vertices of any approximating

triangle, The coordinates of the vertices are
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b y
& =-é’ n _._-—é
A zA A ZA
Xp ' Ig

55 = EE ’ Np = ;E (3=4)
X ¥y
_C _ -G
EC = e 2 g = Zg

We now define a new point D, by prescribing its homogeneous

coordinates as

d'

*p + *¢

ZD=ZB+ZC

It is easily seen that D 1s on the line-segment BC,
dividing it in the ratio ;g N Assuming that the homogene-
ous coordinates of A,B and C are rational integers, it
follows from (3-5) that the homogeneous coordinates of D
are also integers,

The line AD subdivides the triangle ABC into two
smaller triangles, and the point P must be inside one of
the triangles. Thie follows from the fact that the equation
of the line AD is of the form

af + b1 + ¢ = O, (3-6)
where a,b,c cen be chosen to be integers, since the
coordinates of A end D are rational, Since & and 7
are rationally independent, they cannot gsatisfy (3-6), thus

P is not on AD.
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Assume now that the equations of the sides of the
triangle ABC are given by
LAB=0’ LBC=0, LAC=O
where L,n, Lpny Lyo are linear forms in (&,n) with
coprime integral cocefficients, and furthermore that
L&) > 0y Lpo(E)7) > 0, Lyg(E,m) > 0 (3=7)

(Thus the forms L,p, Lpgs Lyg &re uniquely defined.)

Clearly
We pote also that for the initial triangle ApBoCo
ZCLAB(EC,T’C) B ZBLAC(EB’T]B) = ZALBc(fA!nA) = '1’ (3"'9)
and for the purposes of induction we assume that (3=9) is
valld for the kth approximating triangle.
We now define the new linear form, LAD(E,n) by
the relation
*‘LAD(g’n)‘ e |LAB(§,YI) = LAC(fm)‘ (3"‘10)
so that
Lp(E>7m) > 0, (3=11)
i.e.

Lyp(€sm) = Lyp(€sm) = Lyg(€sm) AF
LAB(Ey-ﬁ) > LAC(E’T') >0 (3-12)

and
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LAch’n) = LAC(§’77) - LAB(E’TI) if
LAC(E’Z) > LAB(E'Z) >0 . (3—13)

(The situation LAB(E,'ﬁ) = LAC(E,"F)') ecannot occur
because of the rational independence of & and 7).,
The situations (3-12) and (3-13) can be illustrated

geometrically,

A i,
o
W NS
N NN
F‘ i ~ | \\ :>
,zflf”””fk / i \ .”/, %
L/ [ L,//’/f:
i P
Fig.3b. Fige3c.

In situation (3-12) the point P is inside the triangle
ACD (fige3b), and in case (3-13), P 1s inside the triangle
ABD (fig.3c).
It will be shown next that the equation of the line

AD 1is represented by

L.AD(§A’77A) = 0.
From (3-8) and (3-10) it follows that

L, (E,0m,) = O. (3=14)

To show that
I%D(ED’UD) = 0 (3‘15}
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is also true, write
LAD(E,n)= af + by + ¢ = %(ax + DY + C2Z),

thus, using relations (3-5),

Lyp(&peng) = Zaizc (alxg+xg) + Dlyptyg) + clzgrzg))

= E;%;E(ZBLAD(EB’nB) + ZCLAD(EclnG))'

It follows from (3=-10) that
lImD(§D'nD)|=‘E;%EE(ZBLAB(§B'UB) - ZBLAc(fBrnB)
+ ZCLAB(EC!nC) - ZGLAC(§C’HC>)l

(using (3-8).
Finally, assuming the validity of (3-=9), the truth of (3-15)
follows,

Like the forms LAB’ LAC' LBC’ the form LAD has

rational integral coefficients, and a positive sign for
(Z,M)e This follows from the defining relations (3=10)
and (3~11).

Furthermore, it follows from the defining relation
(3-10), together with relations (3-8) and (3-9) that

| 25T, (Eponp) | = l2lyp(Egang)] = 1. (3~16)
From here it follows immediately that the coefficients
(aybyc) in (3-6) are relatively prime, since’

| 251, (Egomg) | = laxy + byg + czpl = 15
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and the coefficients (a,b,c) and the homogeneous coordin-
ates (xB,yB,zB) are all rational integers. It follows at
the same time that Xp» Y5 and Zp
by similar considerations applied to the relations (3-9) the

are also coprime, and

same is true for (xA,yA,qA) and (xc,yc,zc) respectively.,
The algorithm will be now continued by relsbelling
the vertices. In the situation (3-12) ADC will be used
as the new approximating triangle, hence vertex B is dis-
carded, and similarly in situation (3-13) the algorithm is
continued on triangle ABD, and C discarded, Letting
L, be the linear form associated with the k™ triangle,

we choose L as the linear form associated with the

AD,

k+'lSt triangle, noting that LAD has coprime integral

coefficients as proved above and that assuming that (3-9)
holds for the Xk triangle, relation (3-16) implies that
it also holds for the (k+1)St triangle, (The modulus sign
may be discarded, since in case (3-12), Lnn(fc’"c> > 0, and
in case (3~13) I%D(EB’nB) > 0.)

However, the transition from the kth

to the k+15¥
approximating triangle is still not fully defined.
Remembering that the side

(AB)k+s 1is fixed as (AD)k»
the cholce is to be made between two procedures, illustrated

by the diagrams 34, 3e, and 3f.
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lLet us assume that P is inside the triangle ADC,

To make the transition-procedure clear, we use subscripts

to distinguish between the k

The situation is shown on fig.3d.

Ak

B
ANN

B K i Dk‘n C Kt
Fig-Be

end k+1°% triangle.

Let the relabelling

Ak = Ac+s )

Dg - Bk s (3-17)

Ck ~ Ckaa
define the new vertices,
The new triangle is
shown on fig. 3e¢. The
subsequent subdivision
is now defined by Dg4ie
being on side Bk+1Ck+as
(formerly Dk Ck)e
The alternate relabelling
is

Aq = Br+a

Dk - Ax+s (3-18)

Ck = Ckaa

(fig. 3f.)
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In both cases
(AD)k ~ (AB)k+1s Ck = Ck+as

and the (k+1)St approximating triangles are the same apart
from the naming of two of the vertices, However, the two
procedures lead to different triangles in the (k+2)™% step,
and in case (3-17) Ax+1Dk+1Ck+1 18 of a more elongated
shape than the corresponding triangle in case (3-18),

It appears intuitively that in this particular case
the second choice is more advantageous. Generally it is
deslrable to make the choice so that in the subsequent s tep
of finding the new D point it should be the longer side
which is subdivided to prevent the occurrence of approximat-
ing triangles of elongated shape, (Some justification will
be given later,) Gulded by these considerations, (3~17)
seems to be the reasonable cholce if

IDkCk | > |AxCk] and
(3=18) in the case when
IDkCr | < JAxOk |

It is possible that P is inside triangle ABD
instead of triangle ACD,. To make the relabelling wniformly
(3-17) or (3-18), we may in this case rename first Bx as
Ck (after discarding the original vertex Ck)a

The computation of lengths for the purposes of
comparison is cumbersome, Instead of lengths, we may
define the "sgpan'-s of the sides in the following manner:

If (EA,nA) and (EB,nB) are the Cartesian
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coordinates of the points A and B, then the gpan of the

line-segment AB 1is defined as:
We modify the algorithm slightly by making the choice

(3-17) if Sop > Sac

and (3-18) if Sep < 8

AC *

(It may happen that S, = S,q» but in this case 1t does
not matter which choice is taken, for it does not affect
appreciably the shape of the subsequent approximating
triangle. For definiteness we choose in this case the
relation (3-18).)

To carry further the analogy with ordinary continued
fractions, we may define the "digits" of the algorithm,
(corresponding to the numbers Do, DPisesedc 1D (2«4)).

Assume that we have a run of rk steps so that
in each cycle _

L5 (B0 > Ty (BT,
but in the vk + 1St step

Lyp(EsM) < Lyo(Esm) (7 > 0)
We define

h o gigit, (3~19)

rx +1 =Kk

For the main purpose of this work (unit-finding),

the digits are of no importance, but their computation is
incorporated in the program evolved, partly because of

their intrinsic interest, (e.g.'almost periodic" runs in
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many cases), partly because of their value in comparing and
checking the computations,

It follows from (3-5) that the sequence

{z,}

i.es the sequence of the denominators of the ratiomal
coordinates of the spproximating vertices A, increases,
(though not necessarily with termwise monotonousness), and
hence goes to infinity (zA being integer).($

Thus it follows from (3~9) that

{1,537

is a null-sequence,

Consider now the area of the approximating triangle ABC.

EpMy 1
1
Area = ¥ |E 1 1] = cmmt A
B 22,255, ABC,
€c Mg 1
Xp Y4 Zp
where AABC = xB yé ZB .
Xo Yo 2¢

Clearly, lAABCl remains unchanged through the algorithm,

since the next value of the determinant is that of

(%) Since =zy = zg+Z,, the triple (z),2
each step by a new triple with the sum Z,+Zp+Z being greater
than before, Furthermore no term of the triple remains conw-

stant, since the choice procedure makes it certain than in a
finite number of steps each vertex is replaced,

B,zc) is replaced in
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A a A
Samp = | *p Vg Zg
xB+xG y,B+yC ZB+ZC
or of
Xy Ya 25
Sacp = Xa Mo 2 ¢

c
Xp+Xy Ipt¥g ZptZg

Since for the initial triangle AgBoCos

1 01
AABC=111 =1,
001
it follows that for the general aspproximation triangle ABC,
1
Area = 5* "
Z,Zp%G

If throughout the algorithm the shape of the triangle is kept
from becoming too elongated, then the sides or altitudes vary
foughly as the square-~root of the area and so it can be

expected that the distance of P from any of the three

approximating vertices varies roughly as

'y

Comparing this with the result (2-9) (previous chapter),
applied for n = 2, it is not unreasonable to expect that
the simultaneous epproximation achieved by the algorithm

described is of the desired order,
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Thus it can be hoped that if the algorithm is
applied to a number pair (&,7), where the triple
(1,€,7m)
forms a basis in the pure cubic field determined by the
equation
x2 =D (D square-free
rational integer),
then the units of the field will occur amongst the terms of
the sequence
{1,n(Es)1s
by the argument brought forward in the summary.
To detect the presence of a unit, the norm of each
I%B(E;ﬁ) must be computed, Then
Lyg = 8% + by + ¢ is a unit if

and only if
N(L,g) = (af + b7 + c)(at’ + by + c)(af" + b + c) = = 1,

Here a&'! + bn’ + ¢ and aZ" + by' + ¢ are the field-

conjugates of LAB'

In the following chapters the solution of the compu-
tational problems presented by this method of unit;finding
will be described. The first requirement for a satisfactory
development of the proposed algorithm is a high accuracy
decimal approximation of the coordinates (&,7)s These,
in the case of the cubic field, depend on the cubic root of

some integer (not a perfect cube,) Ordinary computational
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routines give cubic roots at accuracles of 10 or at most 20
decimal places, This is inadequate in all but a very few
cases,

To develop the algorithm for finding units in the
field

R(J5),
when the value of D was taken from 2 to 200, it was
generally necessary to use in the first place an accuracy of
100 decimal places, and this accuracy was raised to 320
places to find the fundamental units in the fields
R(J/T67) end R(/TT7),

also to check higher powers of the fundamental units in
other fields.

A technique was developed therefore
a) for computing cubic roots to an unlimited accuracy, and

b) to carry out computations with numerals consisting of

several hundreds of digits,
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4, The cubic root procedure.

Computer programs for evaluating the roots of cubic
equations and more specially cubic roots of numbers, are
based on Newton's method., - In principle, this gives a
rapidly converging process for finding the roots. In
practice, however, when a really high accuracy is desired,
the method fails, because the machines do not normally
handle the required multiplications and divisions to more
than 8-10 significant figures, and even with double precis-
jon routines available, the rounding errors swamp the results
after a few iterations and so a limit is put to the nunber of
digits which can reliably be obtained,

It was necessary therefore to evolve a method which «
while considerably slower than Newton's method where only
ordinary asccuracy is needed - is suitable for computing roots
to any required precision, It turned out in the course of
this work that in some cases accuracies up to 320 decimal
places were needed, The method described below has no
restricting upper limit of accuracy other than the increase
in computing time which is roughly proportional to the square
of the number of digits required, With the maximum accuracy
used, the computing time on the IBM 7090 computer was of the
order of one minute.

Let x Dbe the real cubic root of D, where

1<D< 1000, i.e., we want the solution of
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x* =D (L=1)
Since we need the roots of numbers greater than 1000, we do
not restriect D to integer values,
The function
£(€) =D - &
is @ monotonously decreasing function of the real varlable

&€, hence if opn, Tn are two numbers for which

flon) > 0
(4=2)
and f(mh) < O
and x the solution of (L=1), then
On <X < Tne (L~3)

We define the segquences {0} amd {7} to give the lower
and upper decimal approximations of the real root x to n

digits,

Thus
an
Tn = THTT
and ~ (L=lt)

™= .
Here an 1is a positive integer and
10""L ¢ an < 10", (4=5)
It follows from (4=2) snd (4-L4) that
an® < 103 (N=)p < (an+1)?.
This inequality may be rewritten by defining
Dy = 103(n=t)p,

obtaining
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an® < Dn < (an+1)?. (L4-6)
Let xn = 10"~1&, and define fn(xn)
as
£n(xn) = 102(n=2) () = 10°(n=2)(D£®) = Dn = ;m®. (4-7)
The computational process consists of a series of
trials, We try to determine xn = an 80 that the inequal-
ities (4=5) and (4~6) are satisfied. Like f£(£), fn(%n)
is @ monotonously decreasing function, and the value of an
is restricted to positive integers in a limited range, s©
only a few trials are necessary, When an 1is found, we
may step up the accuracy, introducing in a similar manner
the variable xXn+4 and proceeding to find an+i. We estab«
1ish recursion formulae for computing the values of Xn?,
Xn+i"y etCe
To achieve this, we introduce the subscripted diff-

erence functions Vn(%n) and Vn?(xn), defined as

Un(xn) = %02 = (Xn = 1)® = 3xn® = 3xn + 1 (L~8)
and

Yn2(%n) = Yn(Xn) = Yn(xn = 1) = 6xn ~ 6 (L=9)
noting that

n?(xn) = n2(xn) = Vn?(xn = 1) = 6
is constant for all n and all Xne
Assume now that an is known, i.,e, that the cubic root has
been already computed to n digits (counting the units),

i.ee (n - 1) decimal places. Furthermore we have the
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values of Vp(an)s, Vn2(en + 1) and fn(an) listed.

We may then take the following steps to find an4ss
Let
an+s = 10an + Dnia (L4-10)
where bn4s 1is the (n+1)th digit of the cubic root.
Correspondingly the variaeble xn+s 18 given by
Xn+s = 1080 + Yn4a (4-11)
where ¥nys 18 the (n+1)%*"trial aigit", for which we try
In+s = 1sees Pntsy Pntg + 1 where O € bpn+y < 9
Using (4-8) and (4-11) and writing yn+s = 1 we next have
Vn+a(Xn+s) = 300an® + 30an + 1 (k-12)
Substituting %, = an in (4~8) and multiplying by 100,
we obtain
100V (an) = 3008n® -~ 300an + 300.
Subtracting this from (L4=-12), we obtain

Un+1(10an + 1) = 100¥q(an) + 330an = 99. (L4=13)
Also from relation (4~9)
Vn412(108n + 1) = 608 = 10Vh2%(an + 1). (4=14)

The recursion formulae (4~13) and (L-=14) give the initial
values for the subscripted difference-functions VnigsVn+1®e
Since

Xn+1® = (10an + 1)® =10%4p2 + Vn,s (1080 + 1)
we have in the first place

Pr+s(Xn+1) = Dnts = Xn+1® = Dn4s = 10%ap® - Vn+1(10an + 1),

when Xpn+1 = 10an + 1s
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Thus fn+4(10an + 1) = 10°(Dy = 8n®) = Vn4+2(102y + 1),

H

i.e.

fne(10an + 1) = 10°fn(an) = Vn+a(108n + 1), (L=15)

Ir frn4e(108n + 1) > 0, we may increase Yn4+s DBY 1,
i.ey calculate
Vn+1(108n + 2) = Vn4a(108n + 1) + Yn31(108n + 2) (4=16)
where Vn442(40an + 2) = Vn412(10an + 1) + 6, (U4=17)
whence
fn4s(108n + 2) = Dp4y - (1080 + 2)® = Dnyy -
~§(10an + 1)® + Vn41(108n + 2)
= Pneg(10an + 1) = Vn4s(10an + 2) (4=18)
We repeat this procedure, increasing yn+1 by 1 and,
whenever
fria(Xnss) = Tnya(10an+ yn) > O
At some stage, which may be as early as ¥n+1 = 1»
we may find that
fn+1(108n + ¥n+1) < O, (4=19)
If the equality sign holds, the root is exact, and the

procedure is terminated with bpnis = Jnys a8 the last

digit.

In the general case, however, (L=19) is an inequal-

ity, and in that case

bn+1 = ¥n+1 -~ 1. (Note that Yn+s 2 40)

It may alXso happen that for
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Yn+s = 9 we have still
frnsa(Xn) = faypa(10an + 9) > Os

In this case we conclude that

bhn+sr = 9
This is Jjustified, since

frne1(10an + 10) = Dn+s = (10(an + 1))% = 10°(Dn =~ (an + 1)2)<0
(using (L-6)).

Thus, in at most 9 trials, bpn+s1 can be determined, armd we
may proceed to the next digit.
Note that once Vp+4(10an + 1) and Vn%4(10an + 1) are
evaluated by the recursion formulae (4=13) and (L-1L), the
remaining trial-steps, illustrated by the relations (u4-15)
to (L4=18), only involve additions and subtractions.

The recursion formulae (4~13) and (L=~1l4) contain
multiplications by powers of 10 and by 330, apart from
additions and subtractions.

These simple operations, however, have to be
carried out on the numbers an, Dn, etc, which may contain
hundreds of digits,

The calculations are therefore arranged by splitting
all the varisbles Xp, fns Vn, etc, into N Dblocks where N

represents the number of digits reguired in the final answer,

Let o, = Eﬂ-—- be the final approximation desired
N 10N-1

for the cubic root.
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Then

Ned_. . _ soNe
107 oy = ay = 10

1020 -1)p _ p = 103®-1)p(1), 430%2)p(2), \ p{M)

1b; + 10N?2b2 +eaat by (4-20)

(L-21)

V= 103(I=1)g{1) 103=2)g(2), s v (u-22)

v = 103N, » 2 (y23)

As seen before, bi,bz...bN

integers ranging from O to 9, while
Déi), véi), vﬁ(i) (1 = 1,2404N)

are the digits, i.e. non-negative

are integers ranging from 0O to 999,
The arithmetical operations needed in the procedure may then
be carried out on the individual blocks,g.g, V§i>, Déi), etc.
with the provision of "carrying" the overflow digits obtainéd
during the calculation in each block.

To illustrate the procedure, we rewrite the equation

(4=16) as

n+1 i n+1 .

}: 103(r1=1)g (1) 460 10y = }Z:103(n+1°i)(vn$§)(10an+1) +
i=1 i=1

+ B2 (108n+2)) s
Assuming that cp+s is the'overflow-digit" carried when
vn+§t+1) and Vﬁ$&+1) are added, (in this particular
operation ci4s = O or ci,s =1 are the only possibilities),

th

we may write out the addition of the 1 black as
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() () (L)

A
Vn+s(10an + 2) = Ynss(108n + 1) + VB44(108n + 2) + c+s — 1000cy
where

(L)

()
cL = [TOlO-O—( nes(108n + 1) + VBig (10an + 2) + ci+a)ls

(the [ ] symbol is used in the usual menner for “"integer
part of'),
The block-additions, (and subtractions) are all carried out
in this manner,

Multiplication by 10°K means a simple shift by k
blocks when applied to the variables Vn4Dn, etce
The multiplication by 10 or 100 requires more thought,

Regard, e.g, the relation (L-1L4) which we rewrite as
n+1 :
n

}:-1oa(n+i"t)vﬁ£§) (10an + 1) = 10 j{}oa<n‘i)vﬁ(t)(an +1) =
i=1 i=1

n
= Z.‘T.&).u103(n+i-t)va(t)(an + 1).
=1

Hence where the transition from gccuracy n to accuracy n+i
is made, each block of the old VA must be divided by-100-

to obtain the corresponding block of the new VR.i, and this
will result in ghifting some gigits over into the next block.
This is best illustrated by a numerical example:
Let Vi(an + 1) = 32|895|751]|216,
then

V2(10an + 1) = 10v3(an + 1) = 328957512160 =
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= —5(321895] 7511216]000) =
| 0}328]|957|512][160] .
Thus we may write down the relation for the
1*P piock (1 =1,2,3,L,5),
v3(t)(108y + 1) = [xgs B (H)(an + ] + va{t=t)(an + 1) -
- 100 [35 v2{v=*)(an + )]s

Equation {4=~13) involves a multiplication by 330, which may
be arranged as follows,.

330a, = 330(10an-1 + bn) = 103308n-4 + 330bn.
Here b, has only one digit, hence the number 330by, may be
either fibted in the last block, or have just one "carry" -
digit for the (n-1)st block, The other part of the product

mey be evaluated recursively, defining

Rn = 330an.
Thus (L=13) may be rewritten as
Vn+1(10an + 1) = 100Vn(an) + Rn = 99 (L=24)
where
Rn = 10Rn=y + 330bns (4~-25)

The evaluation of Ry, and Vn4s(10an + 1) Dby relation
(4=-24) and (L4~=25) can then be carried out in the manner
described earlier,

Before summarising the whole procedure, we add one
slight modification;:
Define

Tn(xn) = [£n(xn)]=[Dn = xn®]=[Dn] - %02,
(since xn is integer).
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Here
O0<fh -Th <1, hence
if Th(xn) is positive or negative, the same is true for
fn{xn)e In the exceptional case when Tn(xXn) = 0, Xn 1is
an exact root if and only if also fn(xn) = O, hence fn(Xn)
must also be tested, In practice this testing is easy, it
merely means ascertaining whether the radicand D has any
non-zero digits to the right of the section representing Dn.
If there are any non-zero digits left, the computation may
be carried on in the same manner as before, to determine the
later digits of the cube=-root.
The only relations governing the computation and

containing the variable fn(x,) are (L4=15) and (L~18),
or the relations obtained from (L4-18) by substituting
10an + ¥n in the place of 10apn + 1. It is easy to see
that in (L=18) or the more general relations, fn4s may be
replaced by '

[fr+s] = Tneas since Ph+a(10an + yn) 1is an integer,
Thus we obtain J

Tn+1(108n + ¥n + 1) = Tn+1(108n + In) = Vn+1(108n + ¥n + 1)
(L4=-26)

h ¢ the

Relation (L4~15), i.es, the transition from the n
n+15% aigit of the root has to be modified: |

Introduce the nofation D(n) féf fﬁe nth 3-diglt
"Block" of the fadicand, i.ee
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D(n) = [Dn] = 1000[Dn=11le (L=27)
Teking integer parts on both sides of (4=~15),
we obtain
Tnes(10an + 1) = [10°Fn(an)] = Vn4a(10an + 1) .
Using (L~7),
10%£n(an) = 10%(Dn = an®)

10D ~ (10an)® =
= Dn4s = (108n)%.

Making use of notation (4-27) and taking integer parts:
[10°%n(an)] = [Dnyad = (10an)® = D)y 10°([Dn] - &R) =
= D(n+1) + 108 Th(an) e

Thus, (L4=15) becomes
Tpos(10an + 1) = D" 4 108 T (an) = Vn4a(10an + 1)

It is convenient to regard this relation a special case of
(4=~26) and write

Tn4s(108n) = p("*%) L40°Dp (an) (4~28)
The procedure may now be summarised by a flow-diagram.
For greater clarity, each of the variables is denoted as a
single entity, but it should be remembered that on the
actual computation the variables are treated as N-dimensional
vectors, €«Ze (Ji}s {Tn(t)}, {Vn(t)} etc, and the calcu~
lations are carried out on the "components", l.es On blocks

of 3 digits, in the manner described earlier,
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Summary :
Tabulate initial values:
D(1), D(z),...D(N), i,es divide radicand into N sections
(as defined by (u~27))

1:(0) = [p] = p{")
yi =0
Vy = 4 (Using (4~8) and (L4=9)).
V42= 0

V13= V2a = o8¢ = VI?I - 6

Flow diagram for finding the digits:
18t digit: Repeat the following cycle:

—-igﬁiﬁEiéﬁsf Ty (y2+1)=T1 (¥2)-V1 (y1+1) (by (4=-26))
Test the gign of T4
' l ¥
Tilo (owmws ® 2 5 Ta=0 Ty <0
V-4 +1 , If p-[D]=0, First digit is found:
V3-V%+6 ; process terminates. Da=ya-1
Vy-V4 +V5 . Exact cubic root: Ti~Ts+Vi(i.e.recover
' ] ba=y4 privigus
“\ If D=[D]A0 value
Return to ‘caf-:gj.x'uﬁ.:ng,1 froat same,as a9y 742( " -
e S | Yowee Ty >0 Store values of
b1 ,V,_ ,V12 Define
R°=0.
Proceed to next digit
|
Je
2nd digit
J
th’

n ldigit

T
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3

Stored values: an=10an =4 4+bn 9Th »Vn ,Vﬁ sRn~q e

Computation of n+1%% daigit:

Initial values: Rp = 10Rp-—g4+330bn (by (L=25))
Vn +1=100Yn+Rn =99 (by (L=24))
Vn?i_i=1OVn2 (by (LI‘—1L”'))
Tn+1=1OOOTn+D(n+1) (by (L-28))
In41=0
Cyclg_:_) Calc:ulatg: Tn+12-Tn .H_—Vn +4 (i.e e Tn +1(y'n +141 )
Test the gign of Tn4a . Tn+1(yh+1)-vn+1(Yh+1+1))
]
Th4ae>0 Sl » Th4a= Th+4 <0
\ i 1z {%)20 for N |
Yn+1-¥n+1+1 , all k>n+d, Tn+1»Tn+1+Vn+1(restore‘
6 . process terminates. previous
Yn%1oVR s+ . Exact root: : value)
T 2 soFrn sa 4V 2 Tast digit: Vn4+1-VYn41-Ynis
NN+ TN+ " Dn+a=Y¥n+a The n+ist digit:
| | otherwise same 3 . o4
Return to beginning: 88 Tn+1>0 e
I ] Store

PnassThessVn+1sVn}a pRn

J

Proceed to next diglt -» until Nth

dig;t;

For illustrating the procedure the calculation of the first L

38
digits of 429929 1s shown on the table attached, giving 3:10L
as answer,
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N = 29:929 } plocks: D¢1) = 29 p{m) - o
. p{?) 2929 (n3>3)
Yi | Ty Vi -
; 28 :
1 28
i - i 7
2 ! 24 i 19
3 2
b4
bo| ngg %
STORE: Ty Vy -
by 2 19 ;
131 I
Ja § Te Vé ! B&_
: f 2‘928 - 2| 791 ga =:§é3éf 10%38 = 2929
! 0113 i Ry = 4 =
P " t 1 - e = 2791
2 .0l ‘_ 2| 977 R - 1897% % 3 o 3
STORE: | Ta - Va '
I f ,
|7} ! 138 | 2791 |
ve | Ty Va ; Ty = 1000Tp + pts)
i | Be = 10R: + 330D =_g900 30 ,
i 138‘000 ' vﬁ 1007S + Ra - 99 = 2?9? 0 4+ 10230«99 =
A ngg i 269 231 vz*%: 10‘?}2 = ﬂa%o = 289231
STORE: Ts oA

a i
ol 136 ooo ! 28737

D 2 SR .T,__Ie ‘ Ve

4 109|160} 699 .
5 stluzeie7s | 2818761519

b=l ndg 8931751

Ty = 1000 T3 + p{¢)

Ra = 10Rg + 330by =
100V3+ Rg = 99 = 28737100+102300—99

Va

1

V*a= '1OV32 = 18600

102300
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To conclude the description of this computational procedure,
it may be added that the method generalises readily for the
case of mixed cubic equations, i.e, the real gsolutions of
equations of the form

px® + gx + r = 0 (integral coefficients)
may be found with unlimited accuracy.

A progrem has been worked out and tested, (so far
for somewhat limited values of the coefficients (p,q,r).
The computation time was of the same order as for the pure

cublc equations,
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5« Computation of units_in fields of the first k :

Assume that
D = ab? (5=1)
is a cube-free number, and & a square~free factor,
Following Dedekind's notation (cf. Chapter (1))
the field
R(?ﬁ) is called of the first kind, if
9T (a® = v?),

In this case the numbers 1, Bs Ys Where
8

B = Va7, Y = Ja%5 (5-2)
form en integral basis, i.e. all the integers of the field,
and in particular all the units of the field may be written
in the form:

X + YB + ZY (5=3)
where X,Y,Z are rational integers, (and of course all
numbers of form (5-3) are integers of the fields)

Using the algorithm described in Chapter (3), we
obtain a sequence of linear forms (5~3), and we may then
test each by finding its normn, Whenever the norm is equal
to 1, (it will be seen that the norms of the nunbers found
by this algorithm are always positive,) the number tested
is a unit.

Using the notations of Chapter (3), we choose now
the nunbers E;ﬁ as follows:

T = maxip - [8], v - [v]} (5wlt)
7 = min{g - [8]l, v = [v]1}
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It is obvious that |
1 >€>7> 0,
The inequalities hold in the strict sense, since B and ¥
are irrational, also rationally independent, since they
form an integral basis. It follows also that & and 7
must be rationally independent.

The successive linear forms and their norms will be
computed following the algorithm given in Chapter (3).

The work throughout involves accuracies of 50-300
decimal places, hence the technigue of working in blocks of
dlgits as indicated in Chapter (4), is used here, In the
program described, the length of the blocks is L digits.’
It does not contain operations other than comparisons,
additions and subtractions and few multiplications and
divisions by integers, which themselves do not exceed one
blocks,

As an illustration of the method, conslder as an
example the addition of the numbers
138719581 2345|1679+ 12910
11859 3780|7529+ | 9915| 3200.

The blocks are always arranged so that the decimal-

a

and b

"

]

point should be at the end of a block. The index of each
block gives the necessary information about the place~value,
- Here a consists of the blocks:
ay = 387, 8s = 9581, as = 2345, as = 1679, as = 2310,
and b of:
by = Oy by = 1859, by = 3780, bs = 7529, bs = 9915,bs= 3200,
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The index of the blocks ending with the decimal point must
be the same, and to have the same number of blocks in each
of the terms to be added, we complete the number a by
ag = O
The addition is started at the highest index, adding blocks
of the seme index. If there is an "overflow", it is "carr-

ied" to the next box,

€l as + bg = 2910 + 9915 = 12825,
Here we "carry"

12825

(5063! = 1

i.es we add 1 to the sum of as and bs, while retaining

12815]
410000

Multiplication by integers not too large does not present

2825 = 12825 - 10000 x [ in the 5°B plock,
any furnther complication, and may be carried out in blocks
in a similar manner,
As an example for subtraction regard the evaluation

of

c=a-+~b,
3+|6812| 7843]2910
and b = 17-|3178|L326| 3459,

i.e‘ ai = 3, ag = 6812’..., bi = 17,... etCI

where 8

To keep all the blocks positive, (with the possible exceptlon
of block 1, we add 10000 to each but the first block, and sub~-
tract 1 from each but the highest index block.

10000 + 2910 = 3459 = 9451

10000 + 78413 - 4326 - 1 = 13986,

Thus cg
cj

ft
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retaining
ce | = 3486 and "carry'-ing 1.
¢z = 10000 + 6812 = 3178 = 1 + 1 = 13634
whence
Co = 3634, 1 carried:

¢y =3 =17 =1+ 1 = =14,
Answer: c¢ = -1l + °*363434869451.
Finally consider as an example for division

1714182| 3120 4 16
a; = 17, @z = 4182, as = 3120.
The dPlocks of the quotient will be i, Qzs das
where
dy = [15%] = 1 and the remainder: as; — 16 [-?—t] =1 1is

carried,

Uy = [1x10(1)20 + az] - [ﬂ-}%g] = 886,

the rvemainder being: ap + 10000 - 16ds = 6, which

iS'carriedql

q, = [_6_>s:10_0$%:_%a] _ [_6113.132_0.] = 3820

i.ece a = 1]0886|3820,

i

No further mention will be made in the description to
follow of this block-arithmetic. Apart from a few operations
where ordinary accuracies are sufficient, and which will be
indicated, the full accuracy of the numbers computed is retained,
and the block-routine is followed,

‘To start the algorithm, the initial values of

LAB(E,E) and IBC(E;H), as given by (3~2) are calculated
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from the values of
B = ?EEE and ¥ = 3355, by the
procedure in Chapter 4, and collected into blocks,
CX-SO
LAC(E’E)J = 10°7Najea + 10%Taj-a + 10Majas + Tajs Where

7, is the 1*P

digit to the right of the
decimal point of Ne

Clearly, the values of LAB’ LAC’ LBC are less than 1.
The initial values of the (homogeneous) coordinates 6f the

vertices of the approximating triangles are given by

XA=1 yA=O ZA=1
x.B=‘1 yB=1 ZB=1 (5"5)
Xg = 0 g = 0 Zn = 1

The values of Xp, ¥p» 2p &and éf LAD(E,E) are found
next by (3-5), (3-10) and (3-11).

To continue the algorithm, a choice must be made between
(3-17) and (3-18) and for this purpose the spans of sides CD
and AC must be calculated, To meske these successive calcul-
ations practicable throughout the algorithm, consider the derin-

ition of the span of a distance PQ:

X ¥ ¥y
Spq = max{!f?-EQI,lnP~nQ|} = max{lgi - ;%l;l;% - E%l} (5-6),

where (EP,nP) and (xP’yP’ZP) represent the Cartesian and

the homogeneous coordinates of P, respectix;l*.
 _X Q

Consider the expression = E Zp Zg ’
P Q ZPZQ
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x .
(here !ﬁg zgl stands for the determinant-value

xpZg = ZPXQ)'
Denote
*p "Q‘ " |y1= ’q
(Kpgle -IzP zy| amd  (Kpgl, = |Zp 7 (5=7)»
ise0 KPQ may be regarded as a vector of two components.
ILet D be defined according to (3~5), i.e.
*p = Xg + X¢
Yp =9 * Jc
It is easy to check that the vectors KBC’ etec, as
defined by (5-7) have the following properties:

(8) Kpg = Kcp <
(v) EKpg = Xpg j

Kpp = Xep = “¥pe (5-8)
(e) K,p = Kpp + Ky

(a) 1s clear.
(Proof of (b)e. Taking x component
Xy X + Xgq x
(KDC)X =lzD Zgl = .XB l ‘ O' = (KBC)X
Similarly for (KDB)X.

IXA Xg+ xc‘ l

*2
Z-A ZD‘=_ZA ZB+Z

= (KAB) + ( ) ).

REE

Proof of (c) (Kpl.=
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Using relations (5-8), the integers (KAB)x’ (KAB)y’ etc.
are computed recursively throughout the algorithm, whenever
the approximating triangle ApnBnCn 1is replaced by
An41Bn+1Cntss The K vector belonging to each (directed)
side of the new triangle is defined by these relations,

beginning with the initial values, which are found usirng
(5=5) amd (5~7)s The initial values are:
= ( O). _ (1Y. _ (1
(Kyp), = <~1 o (Bpgdo = (o)* (Kpo)o = (1) y

The spans of the sides CD and AC required in
the algorithm may be expressed, (using 5-~6 and 5-7) in the

form:
(Knm) (K )
Sgp = max| *;ﬁ%;z ’ -Eggsx li:
® ) K. ) (5-9)

hence the cholce-procedure required involves

a) determining the component greater in absolute value of
(KCD) and (KAC) respectively,

b) evaluating

Ry = P2 (Kep)ely | )y 1}

Zy
and

PA ?
A

c) comparing Rep and Ryqe
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It follows from (5-9) that

> S since

RCD > RAG <=> SCD AG?

ZC 1s always positive,
It shoudd be noted however that the orders of magnitude and
accuracies involved require special care in these computations,.
The integer quantities such as (KCD)X, z,y etce are
evaluated exactly throughout the algorithm, i.e, the block-
method is used and no digits are lost,. The values of RCD
and RAc however are used only for comparison on a single
occasion, and no recursion depends on them, so that standard
accuracy is adeguate here, In the course of calculation the
true values of the integers (KAC)X’ Zn etcs, exceed the
range of the computer, on the other hand the guantity
|IRep = Rypls even if Ry,R,q are calculated with a
satisfactory accuracy, may be of too small order of magnit-

ude for reliable comparison with O,

Noting that RCD’ RAC are positive gquantities, the
expression
By = Bop (5-10)
RAC + Rop
has the same sign as RAC - RCD’ and its order of magnitude

is in the range normally handled by the computer,
To evaluate the ratio: (5-10), the numbers R,n»Rqp
are found first in the following manner,

Assume e.g. that
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75918910]1234]2915| 7283 = 7598940° ., x 4042

L
]

Zp
and that

1822|4183|7238] 11411 = 18224183 ¢ x 10°

ft
H

max{ (KAC)X’ (KAC )y}

Then R,o 18 calculated as

1232918 x 108=18 _ 5 » 10J

where a 18 the ratio of the leading blocks of Kpog 8nd 2z,.
(The first two blocks are taken in each to ensure an acecuracy
of at least 5 sign. figures), and the index J determines the
decimal order,
Let
Ryo = 2,10 and Rop = be10X, where
aybyJ and k are computed separately,
Then
“ac ~ Rep _ aa108 - boiok _a 100k = b oy
Ryo + Rop 84109 + DelOK = 2,109-F + D ¢
The expression (5-11) contains only numbers within the ordinary
working range of the computer, and hence can be easily evaluated,
no matter how large the numbers Zys (KAC), etec, By this simple
device the accuracy of the computations could be indefinitely
increased.,
The choice~procedure governs the algorithm as described
in Chapter (3), On each transition the coordinates of the
vertices, the expressions LAB’(KAB)X etc, belonging to each

side are reassigned.
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Recalling the description of the algorithm in Chapter (3),

the reassignment of these values can be sumnarised in the follow-

Firstly, we reassign, if necessary,
the vertex C and the corresponding
varisbles to make P(Z,7n) internal

to triangle ACD,

/// i.6.
if

R /?’; \ LAB(E’E) > LAC(E’-ﬁ) (figa 5(3))
=/ ! WL S
Pig 5(b)

iscey when _ ) ,
LAB(E’E) - LAC(E’;?‘) - LAD(E,E)P
the coordinates of the vertices remain unchanged,
Lo 1) = Lp(Es7)
and - KBC(E’-ﬁ) - KCD(E’;’.).
In the situation illustrated in 5(b), i.e. when
] L,p(E:7M) < L,,(%,7), hence
1,5(Es7) - Lag(Z,M) - Lyp(Es7)s  then we reassign B,
go that
B C (i.e. xB 5 X etcCs ),
and with this: .
LAB(E’E) - LAC(E’?‘;)’
KAB(E’;’.) == KAC(E’-ﬁ)
Lpo(Esm) = op(Es7) (as in the other case)
and KBC(E’E) d K’C’D(E’ﬁ)"
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The span-comparison is then always applied to triangle ACD,

and if

S

o > Scp (fig. 5(c)),.

then

D->A

A-DB

C-C _
hence Ly (E,7) ~ L,n(E,7)
Fig 5(c) L,g(Es7) » Lyg(E47)
« K (Ts7) » Kyo(E47)

Kyo(Es7) » Kpo(Esm)

= Kyp(Es7) =+ Eup(E57)e

In the other case, when

Sep > Spc (fig. (5(a)),
A we have
5 A=~ A
C->2C
b D-B )
. hence LAC(E;ﬁ) - LAO(E—;_';?.)
Fig 5(d) K, o(Bs7) = Kpo(E5T) i.es no change

= Kop(Ts7) = Kpo(Eym)
K, (5r7) - K, (Ee)e
In each case we have

LAD(E,#) - Lyp(&sm) (5=12)
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The sequence of linear forms with integral coefficients
aybyc and with the property
faf + b7 + ¢} = O
required by the algorithm is defined by the transitions
(5=12). )

As indicated in Chepter (3), the numbers IL,5(Z,7) are
tested whether they are units of the field, by computing their
[orms.

It follows from relations (5-~4) that

Lyg(Tsm) = af + b7 + ¢ =X + Y8 + Vs (5~13)
where

BsY are defined according to (5-2) and X,Y,Z are

rational integers. Every unlt of the fileld is represented
uniquely in the form (5-13) and in particular there exists a
triplet of rational integers X%, ¥%, Z% such that

X# 4+ Y#8 4+ Z*y gives the fundamental
unit of the field, i.e. all the units of the field are
(positive integral) powers of the fundamental unit.

The norm of LAB(E,?D is by definition
N(X,YpZ) = (X + Y8 + Z¥ )X + Y8 + 2Z¥)'(X + ¥B + Zy)",
where (X + YB + 2y)' and (X + Y8 + Zvr)" are the field-
conjugates of LAB‘

Recalling (1-8) and (1-10) in Chapter (1) the norm may
be written as
N(X,Y,2) = (X + YB + Z¥)(X + YBw + ZyuP (X + YBuP + Zyw), (5-14)

where ,w® are the imaginary cubic~roots of 1; or as
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N(X,Y,Z) = X® + ab®Y® + a®bZ® - 3abXY¥Z. (5-15)
Clearly, N(X,Y,Z) is a real rational integer.
LAB(X,Y,Z) ig a unit, if and only if
N(X,Y,2) = £ 1,
However, form (5-15) is unsuited for computational purposes,
(in view of the very large values which are obtained in most
cases for X,Y,Z), and while the expression suppliles a
valuable check in meny instances, it is necessary to evolve
a recursion method for the computation of N(X,Y,Z),
independently of (5-15),

Consider the product

BELaZ) o o (X 4 Y8 + 2y )(X + Y86# + 2w) (using (5-14)).
pplXe Yy

Substituting

w-ﬂ-—".‘——iﬁ- and 0.)2 —M’ we obtain

B 2 B 2

N‘XtY:ZZ
'AB LR

(x - Y8 - 2% + 1/3(¥8 - z£))(x - v8 - 7L - 1/3(v8 20

(LR(X,Y,Z))Z + B(LI(X,Y,Z))z

where
X,¥,2) = X = By ~ Xz
LR( sl ) : p 2Y > (5-16)
jees
N = Lp(Ig? + 3L4%). (5-17)

It follows from (5-17), that N remains positive through-

out the calculations, since the algorithm is arranged to keep
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ImB(X,Y,Z) always positive, and since L,, amd L; are
real, Hence if a unit occurs, its norm must be % 1,

Secordly it follows from the fact that the forms
Lyp(XsY,2), I.R(X,Y,Z) and LI(X,Y,Z) are linear,
that if

X=Xy £Xpy Y=Yy £Yay 2 =24 % Zg
then

LAB(XsY:Z) = LAB(X:lJYi’Zi) X I‘AB(XS sYo 3% )
In (XyYy2) = LR(Xst;vzi) £ IR(XQ:Yh:Zz) (5-18)
LI(XinZ) = LT(XisYivzi) * LI(Xa:Ytha) . )

In each step of the algorithm the value of LAD(E,E)
is computed first by (3-10),and later reassigned as the new
I%B(E;ﬁ) value according to (5~12). Considering (3-10),
and remembering that except for (LAC)o’ all the other
L,o(€ 1) values occurred in the sequence labelled as
LAB(E,E) J and were reassigned later, it is clear that_each
LAB(E,?)') value is a difference of two previaus LAB(E,Ti)
values, It follows clearly from the relations (5-18), that
the X,Y,Z values and the ;R and LI values assoclated
with the current I%B value of the sequence, can be obtained
by a corresponding subtraction from the respective
X,Y,Z,LR,LI values associated with the previous ;AB
values (or L,, value and L, value ).

Thus X,Y,Z,L,LR,LT may be treated simply as the
components of a single vector~quantity, associated with a

line AB, AC etc.,, and the algorithm must be applied to the
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whole of this vector,

The initial values of L,pn,L,nsLlp, are given by (3=2),
The associated initial values of XAB’YAB’L(R)AB’L(I)AB ete.
are found from these, in the following manner,

By denoting suitably a and b in (5-2), we may write
without loss of generality:

g - [B] <v~I[xl, (5-19)
and hence it follows from (5~4) that
E=v=-I[vl, %=8-=I[8

We construct the table of initial values, using (3-2) and

(5-16).
Since

Lypg=1=-%=1+[y]-x

Lo =7==[B] +8

Igg =8 ~n=[Bl ~[v] =B +x
we obtain

I
f
-

Xp=1+ [yl Yyp =0 Zyp

Xpg = ~[8] Ypo=1s Z,5=0

Xpo = [B)-[v], Yo =1, 2z, = 1,
and from these:

Lp)as = ¥ap = Yyp B = Zap 5= 1+ [v] + #v

Liryas = Yan § -~ Zn £ = %1

Lr)ac = *ac ~ Yac £ - Zac £=-18 - %

T1)ac = IV EENTES

L(r)Bc = ¥*Bc " Yac 3 " %m0 Z = (8] - [¥] + %8 - &v
Lir)sc = Ypo 2 = Zgc B = “EA - =V
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The expressions on the right hand side are all easily computable
by the block-method, and the computations can be arranged con~
veniently by first finding L(I)AB and L(I)AC and then find-
ing the other expressions in terms of these,

Thus the program consists of two parts: the initial
values are computed in the firat part as described above and
the algorithm is then executed in the second part, In each
step of the algorithm all the components of the AB,AC etc,
vectors, ice. (L,LR,LI,X,Y,Z) are computed or reassigned
simul taneously,

The computation of the LR and LI components presents
the need for some further manipulation, It can be seen from
(5-17) and the fact that L - O that the L, amd L, values
form generally increasing, unbounded sequences, hence at
certain stages of the calculation the leading block of digitssi
in at least one of L(R)AD or L(I)AD will "overflow", i,e,
exceed the allowed block=maximum (10* in this program).

When this happens it is necessary to carry out a "block-~shifting"
operation, not only in the L(R) or L(I) quantities in which
the overflow actually occurs, but in all the other L(R)BC’
L(I)AC’ etc.e quantities which are stored at that stage,

This means that the last block(of highest index) has to be
discarded and the index of the remaining blocks is raised

by 1, 1.es, the place-value of each index is increased by a

10% factor,.

Since the norm is known to be a (positive) integer,
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formula (5-17) does not require greater precksion than what
is available in ordinary computer (floating-point) arithmetic,
It is sufficlent to take the leading blocks of L,LR,LI,
(at their true place~values,)

In the program (given in the appendix), the integer
coefficients xAB’ YAB’ ZAC are calculated only to the point
where the first unit is found. To check however whether the
square, cube etc, of the first LAB(X$,Y* Z%) which is assumed
to be the fundamental unit, occurs in the algorithm, the rest
of the computation is carried on. The results are listed in
the tablesy but it may be mentioned here that in two instances
the square was missed out, namely in the case of D = 167 and
D =177 even the accuracy of 320 decimal places was insuff-
icient to yield the square of the first unit found, though
the indication is that a further stepping up the accuracy,
(which becomes too costly in computing time) would give the
desired result,

In the Tirst place the program was only developed to
find wunits in fields of the first kind, To extend this for
the computation of units in fields of the secord kind further
considerations are necessary. The description of these is

given in the next chapter,
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6. Computation of units in fields of the second kind.
Following Dedekind's notation, the field R(?ﬁ),
where
D = ab® (D cube-free, 2 square-free),
is called a pure cubic field of the second kind, if
9| (a® = 1?) (6=1).
In this case, recalling Dedekind's theorem (cf, Chapter 1p
the triplet
@ =31 + @ 4 BVETE), B = /5%, =TT (6-2)
forms an integer basis of the field.
To simplify the calculations required by the algorithm,
this basis will be replaced by another one:
1, Bs 4,
where
§=p+ a6 + 1Y (6=3)
and ps,q and r are sultably chosen rational numbers,

Consider the transformation
1 o
T<ﬁ>=<ﬁ> (6-Ls)
¢ Y

tia tiz tis
T = <t21 tos tza)

tas taz tas

where the matrix

has rational integers for all its entries. If furthermore

the determinant

|7} = % 1, (6=5)
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then the numbers

1, By 6 form an integer basis.
(Clearly T™* has also integers for all its entries, thus
1, B, § are integers of R(?ﬁ), and since a,B,Y are
linear functions of integer obefficients of (4, B, 6), all
integers of R(?ﬁ) may be represented in terms of this new
basls,)
Using (6-2) and (6~3) we may write (6-L4) as followst

tis + taeB + tya(p + a8 + ry) % + %B + %Y
taa + t228 + tza(p + @B + rY) B
tays + taafB + tas(p + 9B + rYy) = Yo

By equating the coefficients of 1, 8 and ¥, we
obtain for the matrix T:

— —

1l _Dpb a _bg _b_

3" 3% 3" 3 3r

T = 0 4 0
.2 - a 1

r r r

Since the determinant of this matrix,

It} = g; ’

we must choose

T = % or =~ % to fulfil requirement (6-5).
It should be noted that a and b are relatively prime,
otherwise D could not be cube-free. It follows from this
that 3 cannot be a common divisor of a and b, and by
(6-1) it cannot be the divisor of one and not the other,

This leaves four possibilities for a and b (mod 3.)
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(1) a=1, b
(i) a=-1, Db=1
(iii) a =4, b = «1
(iv) a=1, b= -1,
We may now choose the values of p and q in each case S0
that all the entries of the matrix T are integers,
Furthermore we can choose the sign of r to make J pos-
itive in each case, the other elements of the basis, namely
1 and S being positive,
Without loss of generality, we may assume that
a > by
since the field may be regarded either as
R(?E’f) or as R(?agg)‘
Thus in case (i): r=p =gq = %, hence ¢ = %(1 + 8 + %)
" =3 -+ )y
‘%'»_("1 + B + %)
"8 =3+ -,
(6-6)

ll
i

in case (ii) o = ;,q

]
i

.1

— =

» -3
in case (iii) r =gq = 3,p -% )
P=-gas3

in case (iv) r =

The algorithm can now be applied in a manner similar
to that described in Chapter 5, ¢ replacing ¥ in the basis,
The coordinates of the points to be approximated are
given by
z.

Ki

max(B - [Bl, ¢ - [4])
min(p - [B]l, ¢ - [F]) . (6-7)

The linear expressions evolved in the course of

the algorithm will be of the form:
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L(X,Y,2) =X + Y B + 26 (6-8),
Once the initial values are defined, the algorithm procedure
differs from the algorithm for fields of first kind, only in
the computation of the norm of IL(X,Y,Z).
Consider e.g. case (i).

X + Y8 + 26

X+ Yp + %(1 + B +x)=
=X +2) + (Y +2)p+ &= (6-9)
3 3 3
=X + ¥Y'B + Z'y
where the relation between (X,Y,2) and (X', X', 2')
is given by

X =x+% Y =Y+% 2 =%, (6-10)

The norm of L(X,Y,Z) may now be found, by computing the
expression (5-47), but replacing X,¥Y,Z2 by X',¥',z',

It follows however from (6-10) and from corresponding
relations obtained for cases (ii), (iii) and (iv), that after
finding the initial values for X‘, Y', Z', the successive
values of these, and also those of

L(R)(X’,Y',Z') and L(I)(X',Y',Z’)
can be obtained by the same recursion as the L(X,Y,Z) <forms
and the (X,Y,Z) triples,
It should be noted that now
HMMUTJQ=X’~%‘-¥’
Lip)(X!o¥,27) = gy' - Xz,

The varigbles which are calculated recursively are:

L(XyY,2)s L(p)(X'»¥,21), Lopy(X',Y7,2'), X,Y,2%
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where X,Y,Z, 1i.e. the coefficients of 1,8, are rational
integers, but X, ¥’, 2’ are not necessarily integral, as
can be seen from (6-10),

The extension of the program from fields of the first
kind to those of the second kind is then effected by inserting
a branch-program for the calculation of the necessary initial
values corresponding to AB and AC. Once I, L(R)(X',Y',Z'),
XyY42 etcs, are found for AB the corresponding gquantities
for BC are found the same way as in the unextended program,
hence the calculation of LBc"" etce is not part of the
branch-program,

In constructing the table for the computation of the
initial values, 1t must be remembered that whereas in the
case of fields of the first kind the expressions a®b and
ab® allowed symmetrical roles for a and b, and thus
they could be assigned freely to make

ﬁ"’[ﬁ] <v - [vl,
this is no longer the case when determining the relation
between

¢ - [6] ana p - [8],
A choice has already been made to make a > b, and so in
each of cases (i), (ii), (4ii) and (iv) the program must
include a test to decide between the possibilities

I) § - [¢] > p - [8] and
II) ¢ - [8] <p-1[8l, (ef, (6-1))



Thus there are

the required initial values.

in the followinge.

altogether 8 alternative cases for

The table for these is shown

86,

CASE (i) ! CASE  (ii) CASE (iii) CASE (iv)
a=1 b=t a= -1 D=1 ! g = b= -d a=] =a
= $(148+7) L6 = 3(-B) | = 3(pr-1) 6 = F(~1+p=1)
I 11 I IT l I | I | IT
fs’-[c9]>;se_Lg1l §-[61<p-[p] 6-[81>p-[8] | p-[p]>6-[J] d‘-[d"bﬁli 8-[81<a-[5] §-[61>p-[8] o‘-[d“]<ﬁ-—£ﬁ]
Lﬁ, 1-31 14[8]=6 | 1 ) §l~¢ ' 1 §1-6 . ' 14[6 —6 0 e
TE i s Jifde S Wi T e B
.XY VAN | F } Eé;m-i L 1+F Bl~110 81,0, 1 ‘1+E -1,0 0,-1 | 1+[ s=1,0
}L{I Y:(éz;) '§'+ ";'L"&' 1+L8) -1 0 [ b A Bla=1s O . ['d‘]'*'i': !‘." " 14LBl =150 [6‘]*%’ %‘9 ‘ 1+LB "190 _ _
= _xERéY"I ) I§'+[5]+é-.6+é-'r 14[Bl43p  [S]+&~ #pvby | 1408143 [d‘]+3+eﬁ+g~\r 3 1+[ﬁ]+~2~ﬁ [6]+&+36-%y | 1+[B1+38
e A L INLL i I O T AL BRIl St
é(z);;'”‘ e T 4p | By B - By -1 %8 - %7 | B
Y (- | | A - . ek
| Lu(ﬁ,o") IR, ‘25 g -kl ‘ -1B Tk - &Pl -1 § - 3pei6 | 2P
L(B,8) =.1.- 5 = i 6148 =[6 5T+ o[B8 | -L0l+d ~
3[‘;%’};53' * @iﬁv . r—to‘g% T :[;?%I{l) i e ST Il H ;@em o Egﬁiig :Eéi-;%:%ﬁ- b
}f.r’YEEZ; B 1 Ty FT o R 1 0 : 4&:&,& —LB.”h’,o S AT B 1 RHN RS CIEE * Aok S
N MM O BT O S (pl-bs | -[Oledskp-ty  -Lpl-tp  -[61-3dp-r -lPI=F ~[]- &= 68y
ﬂ“gf"iz" £ P A R P R
Lp)(8:0) ~lel-2p -[6T-36 (126 t-[d‘]+~-ﬁé" ~[p]-tp  -[61-2-20 -18l-=2 - -[8]-z~2S
L (ﬁ,v)_- '; s e e e e =l - s
(1) - - - - 1 i 1 i
_QYL.. sz . B 1 kB - &Y | B | 8 ~ &Y .zfi- & B-%Y 2B ‘é‘ﬁ"‘é':f -
L(I)(ﬁ,é’) IE T kepessT W (& - #8 B ~+4p <6 - F )
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The program, given in the appendix, incorporates the
computation for all cases, i.e. filelds of first kind, and
the four cases listed for fields of the second kind,
Before summarising the results of the computations
listed on the following tables, it may be mentioned that
this work is being extended for fields which are generated
by the roots of equations of type
x* + x =D (D > 0).
These equations, like the pure cubics, have one real and two
imaginary roots, hence the units in the fields to be examined,
form cyclic groups as hefores. The algorithm to be used is
the same as the one described, but meodifications are necessary
in the cubic-root subroutine, and in the calculation of the
norms, The general principle to determine sets of basis
elements has been established, but there are considerably
more cases for computation than in the pure cublic fields,

particularly if D is an even number,
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7. Description of the computer program.

The full print-out of the program to evaluate the
units of pure cubic fields is shown in the appendix. It
is coded in FORTRAN for the IBM 7090 computer, The execution
time taken to evaluate the first two units of a certain field
is roughly proportional to the square of the number of decimal
places needed in the cubic root for an accuracy aedequate for
the purpose, If more units are calculated, the execution
time depends linearly on the number of units, but it is not
proportional to it, because a considerable part of the time
is used to evaluate the necessary cubic roots and the initial
values of the varisables associated with them. TFor an
accuracy of 96 decimal places in the cubic root which proved
to be adequate or more than adequate for the majority of the
fields investigated, the computing time was about 1*4 minute
for each field and it went up to almost 15 minutes for
D=167 and D = 177 when 320 places were used and the
second unit not quite reached,

The program incorporates the procedures for fields
of the first kind and the four types of fields of the second
kind, The cubic~root computation is not part of the main
program, but is carried out as a subroutine. The program,
a result of long experimentations to overcome the difficulties
inherent in the range of numbers handled, is dimensicned to

a maximum accuracy of 320 decimal digits in the cube~root,
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This accuracy could be stepped gup without changing the
program but the computation time becomes prohibitive,

Four items are read in from the data-carda of the
main programs

(1) the accuracy parameter (I)

(1i) the maximum number of units to be computed (MU)
(1ii) the type of field (INST)
(iv) a correction parameter (KEN).

The values of D = @b® and D’ = a®?b together with
the accuracy parameter are on the data~cards belonging to
the subroutine of root-finding (CROOT).

(i) The accuracy parameter, I, regulates the number of
decimal digits to be cbtained in the cubic=-root
process and with it the numbers of digit-blocks
making up the other variables.

(i1) sSince the values of L, are cssentially decreasing,
the first unit expected is the fundamental unit,
Further units are calculated to check whether they
are the second, third, etec, powers of the first unit
found,

(iii) The value of this parameter is 1,2,3 or L, when the
field is of the second kind, as shown on the table
at the end of Chapter (6), and it is 5 when the field
is of the first kind,

(iv) When this parameter has the value 1, the program is

executed in the ordinary manner. When it takes the
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value 2, the program tests at the end of each cycle the
norm of LAB’ corresponding to the alternative approximat-
ing triangle which is discarded after the span-test,  This
is done to discover units which may have been lost in the
choice-procedure.

Where high precision is needed, the variables are
broken up into blocks of 3 or L diglts as described in
Chapters (4) and (5)s These varisbles appear with subscripts,
and some of the varisbles have two subscripts, the second
subseript signifying the number of decimal-block.

The following table connects the variaebles describ-
ed in the previous chapters and their corresponding FORTRAN
gymbols:

The cubic root subroutine (CRALT):

Radicand D (2 blocks of 3 digits): 197(1),147(2),
o (£ block of 3 digits):  NUM(L)
Up (£FB 0w wow oy ygRE(T)
R W v wow ) INCR(L)
Ry (£ 8B v vowow ). gUMR(L)

The current (nth) place is marked with J,

where J = 14,2580 My
(i.ee M 1is the total number of digits required 1n the
cubic-root.)

"Carry'~-digit: Nip,
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9

3
g = Jab® (3P aigit): KNAW(I); T = 1,2,..M.

Number of digits to the
INTK.
left of the decimal point:

3
v = Ja¥b (3 aigit): IEAVE(T): T = 15250000

Number of digits to the

left of the decimal point:§INTL.

The main program:

Vertices:

Homogenous coordinates of A:

x,(£ ™ block of 4 aigite):  NA(Y,L);
yA({;th block of L digits) NA(2,L);
zA({’,th block of L digits) NA(3,L);
Similarly for vertices B,C and D:
(%gs¥pgs2g): NB(M,1L); E
(xC’yC’ZC) NC(M,I')
(XD:yb;ZD) ND(M!L)

Sides:

1925 00.NN

L = 1’2,Q¢.NN

M
L

"

Variables connected with AB (following

of chapter 4).

1,2,.0!NN|

14253
1,2,.-.NN

i

the notations

a) Iyp (v plock of L algits): TLAB(1,L), L = 1,2,e..N

L, (L™ block of L aigits): IAB(2,L)
(2 plock of L aigits): LAB(3,L)

b

" i

[\ 1"
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b) Scaling (shift)-factor: a BgEs
value of g for L, MAB(2)
o HAB(3).
c) Coefficients X,Y,Z of the elements of the integral
basis (l.e. 1,8,y or 1,3,§ resp.)
X2 block of 4 algits) JAB(1,L) L = 1,2,...K
(L ") JaB(2,L) i i
AL ") JaB(3,1) " "
a) (K,p)y (£ ™ pilock of U digits) KAB(1,L), L = 1,2,4..0K
(€,5)y (2 piock of L aigits) KAB(2,L), " "
The variables corresponding to the other sides are denoted

similarly, c.g8.

a) I1AD (M,L) M= 1,2,3; L =1,2,..4N,
b) Mac (M) M= 2,3

c) JBC (M,L) M=1,2,3; L = 1,2,¢eeNK,
d) XCD (M,L) M=1,2; L = 1,2,4¢s]K,

Auxiliary (subscripted) variables used in program:
(i) NAME(K); K = 1,2,40sNK,
This stands (in order) for XCD(M,K); M = 1,2
and KAC(M,K); M = 1,2,

and it is introduced for the purpose of avoiding repetition
of instructions.

(ii) VAL(M)

M= 1,2,

(1ii) 1IND(M)

These two numbers characterise the true values of the

variables (KCD)x etcey, VAL(M) representing the leading
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digits (collected from the two leading blocks) to maximum
accuracy available in floating point, while IND(M) fixes
the required decimal place,
(iv) XEEP(J) J = 1,2,4+430,
This gives a "digit" of the algorithm according to the
definition (3-19)., For convenlence, the output is arranged
so that 30 digits are printed out at a time,

Other non-subscripted varigbles are defined within
the program and require no special explanation.

The subroutine and the main program are executed
according to the description in chapters 4,5 and 6, The
results of the computations are tabulateds An explanation
of the tables and a survey of the results is given in the

‘

next chapter.,.
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8, Survey of the results

The results of the calculations are summarised in
the table of units attached, for values of D Detween 2
and 199 (inclusively), The computations were carried out
over a period of sbout two years and most of the units were
computed several times, It was necessary to carry out many
tests during the development to eliminate initial program
errors, (These arose mainly when the accuracy was raised
from the originally projected accuracy of about 150 decimal
digits to accuracies limited only by the dimension-statement;
at this stage the program had to be rewritten,) The most
important independent check on the coefficients X,Y, and Z
was provided by the formula (41-10) for the value of the norm.

In the case of each field the accuracy parameter was
adjusted to find gt least two successive units of the field.
However, in two cases, namely for D = 167 and D = 177
only one unit was found, It would have been possible to
increase the accuracy further, without altering the program
and raising the dimensions only. The indication is that
an accuracy of 360 digits would have probably yielded the
missing square of the first unit found, but this would have
required excessiveccomputation times, - However, the compu-
tations were carried far enough to show up the third power
of the fundamental unit, if the calculated unit 7, would

have been the gguare of the fundamental unit, Thus there
is still some Jjustification in regarding 7y as the funda-




95

meptal unit in both cases,

The tables attached consist of six columns, The
first column gives the value of D, As seen before, D
is agsumed to be cube-free, Furthermore, since the numbers
Dwmab® and D' = a®b (where a,b are square-free and
relatively prime) generate the same field, it is sufficient
to list one of the numbers D and D', Thus all perfect
squares, apnd more generally, all numbers of form D' = a®b
(a > b), have been omitted, (The fields corresponding to
18, 50, 75, 98, 147 and 180 are those represented by 12,
20, L5, 28, 63 and 150 respectively,) |

The secopd and third golumns give 7, and 73,
the first and second unit found by the

I  §_t ong, listed
to accpracies of' 5 and U4 sighificant figures_nespectively.
In all but two cases 7 i1s the squate of 74,
For D = 28 and‘ D = 123 we find that

M = M1,
il,e. 1t appears that the square of the fundamental unit is
missed out,

In the mgjority of the cases the computations have
produced higher powers of 17,4, i,e, the cube, and often the
fourth, fifth etc. power in succession, A "YES" in the '
fourth column indicates the occurrence of higher powers of 74,

The fifth column gives the three elements of the
integer basis used, For convenience of tabulation the

conventional cubic~root signs are replaced here by Fortran
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symbols, €.Ze
?3 is written as 5%%1/3,

Finally, the last column contains in order the
integer coefficients X,Y,Z of the basis elements (1,8,Y)
or (1,B8,6), in the expressions

ny =X + Y8 + Zy (first kind)
or

Ny =X + ¥YB + 268  (second kind),

Whenever possible, the results have been compared
with other available results, notably those found in tables
by Cassels(o), Mafkotf(b) and Wolfe(n). (Cf. references
at the end of Chapter 2,)

Cassels lists fundamental units for values of D
up to 50, Except for D = 46, this table gives the
fundamental units less than 1 in the form X + YB + Zy,

The results tabulated here agree with all his results and
for D = 46 his result is the reciprocal of the value of
ns llsted here,

All the units listed by Markoff and Wolfe are greater
than 1, The reciprocals of the units, believed to be fund~
amental by these authors, have been computed and compared
with the wvalues listed here. There is agreement with
Markeff. for all values of D (up to 70) except for D = 28
and D = 55, The reciprocals of Markoff's turn out to be
in each case equal to the ggquare of 7y hence in these two

cases the units given by Markoff are not fundamental,
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Wolfe's table, listing fundamental units for D up
to 100 (for square-free D where the field is of the first
kind), agrees with these taebles for all values of D,
except D = 85, Here again the reciprocal of Wolfe's
result is equal to the square of 7; glven here.

These findings, together with the evidence given
by the tables themselves, support the belief that all the

ny values listed here are fundamental units.,
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99.
a. MAIN PROGRAM

UNITS IN PURE CUBIC FIELDS
DIMENSTIONKNOW(322) s LEAVE(322)sLAB(3s80)sLAC(3,80)sL.BC(3+s80)sLADI(3
180)sLCD(3s80) sMAB(2) sMAC(3) sMBC(3) sMADI(3)sMCD(3)JAB(3(40)sJACI354
20) 9 JIBC(3440) s JAD(3540) sJCD(3240) sNA(3+50)sNB(3s50)sNC(355C)sNDI(3»
350) s KAB(2940) sKACI2+40) sKBC(2s40) sKCD(2940) sKAD(2540) s NAME(40) s VAL
4LU2) o KFEP(30)sNIPS(3)sIND(2)
IT=10
IH=100
KEY=1000
MUCH=10000
NITH=9399
READINPUTTAPEZ2s102sTeMUsINST o KEN
FORMATI(I2s15s13412)
NM=83%1
N=2¥%]
NN=(5%*1+1)/4
NK=T-1
NG=NN-1
DO100OM=1,3
DO100L=14NG
NA(MsL) =0
NB{MslL)=0
NC(MsL)=0
NA(TMNNY=1
NA(2sNN)=0
NA(3sNN)=1
NB(1sNN)=1
NB{Z2sNN)=1
NB(3sNN)=1
MC(1sNN)=0
NC(2sNN)=0
NC{23sNN)Y=1
NG=NK-1
DD289M=1,73
DO289L.=1+NG
JAB(MslL1=0
JACI(MsL)=0
JBC(MsL =0
DO256M=1,2
DO256L=1sNG
KAB(MsL)=0
KBC(MsL)=0
KACIMsL)=0
KAB(1sNK)y=0
KAB({2sNK)=~-1
KBC(1aNK)=1
KBC(2sNK)=1
KAC(1sNKy=1
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KAC({2sNK)=0
CALLCROOT (INTKsKNOWs INTLsLEAVE)
IF(KNOW(11))216+218,103

NUMK=0

DO301L=1,INTK

LI=INTK-L
NUMK=NUMK+KNOW (L) I T*xL]
NUML=0

DO302L=1sINTL

LI=INTL-L

NUML=NUML+LEAVE (L) *TT**L1]
DO104K=1 4 NM

KK=K+INTK

KL=K+INTL

KNOW (K ) =KNOW ( KK)
LEAVE(K) =L FAVE (KL)
GOTO(601+611s601631641) s INST
LEAVE (NM) =L FAVE (NM)+KNQW (NM)
NIP=LEAVF(NMY/IT

LEAVE (NM)=LEAVE(NM)-TIT*NIP
DO6KO2K=2 ¢ NM

L=NM+1-K

LEAVE (L) =LFAVE (L) +KNOW(LY+NIP
NIP=LEAVE(L)/IT

LEAVE (LY=LEAVE(L)-TIT*NIP
IFCINST-21603+56215216
NUMT=NUML+NUMK+NIP+1

GOTO604

NUMT=NUML+NUMK+NIP-1
NUML=NUMT /3

NTP=NUMT=3*NUML

DO605K=14+NM
LEFT=ITNIP+LEAVF (K)
LEAVE(K)Y=LEFT/3
NIP=LEFT-2%LEAVE(K)

GOTO641
LEAVE(NM)=TT+LFAVE (NM) —KNOW (NM)
NIP=LEAVE (NM)/IT

LEAVE (NM) =LEAVE (NM)=IT*NIP
DO612K=24sNM

L=NM+1-K
LEAVE(L)=IT+LEAVE (1) -KNOW(L)+NIP-1
NIP=LEAVE(L)/IT
LEAVE(L)=LEAVF (L) ~-IT*NIP
NUMT=NUML-NUMK+NTP

GOTO60L

LEAVE (NM)Y =T T+KNOW(NM) =LEAVE (NM)
NIP=LEAVE (NM)/IT
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LEAVE (NM) =LEAVE (NM)=TT#NIP
DO632K=2,4NM
L=NM+1-K
LEAVE(L)=KNOW(L)+IT-LEAVE(L)+NIP-1
NIP=LEAVE(L)/IT
LEAVE(L)=LEAVE(L)~IT*NIP
NUMT=NUMK-NUML+NIP-2
GOT0604
1 DO105K=1sNM
IF (KNOW (K)Y-LEAVE(K)) 1061055108
CONTINUE
5 INTB=NUMK
INTG=NUML
MIND=1
DO107K=1,N
LCD(1sK)=KEY*LEAVE (4%¥K=23)+TH¥LEAVE (4%¥K=2)+IT*LEAVE (4%K-1)+LEAVE (4%
1K)
7 LAC(LsK)=KEY®KNOW (4%K=3)+TH¥KNOW (4%¥K=2)+TT*KNOW (4*K=1)+KNOW (4 %K)
GOTO110
8 INTB=NUML
INTG=NUMK
MIND=2
DO109K=14sN
LAC(1sK)=KEY#LEAVE(4¥K~3) +IH*¥LEAVE (4%K=2)+T1T*LEAVE (4%K-1)+LEAVE (4%
1K)
O LCD(1sK)=KEY*KNOW (4%#K=3)+TH¥KNOW (4%K=2)+TT#KNOW (4%K=1)+KNOW (4 %K)
0 MAB(2)=1
MAB(3)=1
MAC(2)=1
MAC(3)=1
MBC(2)=1
MBC(3)=1
MAD(2)=1
MAD(3)=1
MCD(2)=1
MCDI(32)=1
NIP=1
DO111K=2sN
L=N+2-K
LBC{1sL)=MUCH+LCD(1sL)~LAC(1sL)+NIP=-1
NIP=LBC(1sL}/MUCH
1 LBC(1sL)=LBCl14L)~MUCH¥NIP
LBC(1s1)=LCD(1s1)=LAC(1s1)+NIP-1
DO112K=1sN
L=N+1-K
2 LAB(LsL)=NITH-LCD(1sL)
GOTO(65096505650+6509691) s INST
0 GOTO(6514652) s MIND

g

1t



ITEM=(INTG+1}/2

NIPB=INTG+1-2*%ITEM
GOTO(6535655365596559691) s INST
JOT=(INTB=-1)/3

NIPC=INTR-1-3%JOT

GOTO657

JOT=(INTB+1)/3

NIPC=INTB+1-3%J0OT

DO659K=24N
LCD(2sK)=(NIPB*MUCH+LCD(1sK=-1))/2
NIPB=NIPB*MUCH+LCD(1sK-1)=2%LCD(25K)
LCD(3sK )= (NIPCH¥MUCH+LAC(1sK=1))/3
NIPC=NIPC*MUCH+LAC(1sK—~1)=3%LCDI(3,K)
GOTO(661s663566196619691) s INST
LAB(3sN)=MUCH+LCD(24sN)-LCD(3sN)
NIP=LAB(34sN)/MUCH

LAB(3sN)=LAB{3 ¢N}~MUCH*NIP
PO665K=3sN

L=N+2-K

LAB(3sL)=MUCH+LCD(2,L)-LCD(3sL)+NIP-1

NIP=LAB{(3sL)/MUCH
LAB(3sL)=LAB(3 L) -MUCH*NIP
GOTO(667:6639669+6699691)sINST
LAB{3s1)=ITEMANIP~-(JOT+2)
GOTO673
LAB(3s1)=ITEM+NIP=-(JOT+1)
GOTO6T3

NIP=0

DO6T1IK=24sN

L=N+2-K
LAB(3sL)=LCD(Z2sL)+LCD(3sL)+NIP
NIP=LAB(3,L)/MUCH
LAB(3sL)=LAB(3 4L ) -MUCH*NIP
LAB(3s1)=1TEM+JOT+NIP-1
LAB(2s1)=(3*INTG+1)/2
NIP=3%INTG+1-2*LAB(2s1)
DO6T5K=24sN
LAB(2sK)=(MUCH*NIP+LCD(1sK-1))/2
NIP=MUCH*NIP+LCD(14K~1)=2%LAB(2sK)
IFCINST=3)679s677+677
LAB(2s1)=LAB(2s1)+1
LAC(341)=INTB/2
NIP=INTB-2%LAC(3,1)

DO6EBIK=24N
LAC(34K)=(MUCH®NIP+LAC(1sK=-11))/2
NIP=MUCH*NIP+LAC(1sK=1)=-2%LAC(3,K)
LAC(251)=(3%INTB) /2
NIP=3*%INTRB—-2%LAC(24+1)
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DO683K=24sN

LAC(2sK) = (MUCH*NIP+LAC(1sK=1))/2
NIP=MUCH*NIP+LAC(1sK~-1)=2%LAC(2sK)
DO68S5K=2sN

LAC({2sK)=NITH-LAC(2,4K)
LAC(2s1)==LAC(24+1)~1

GOTO686

ITEM=(INTB+1)/2
NIPB=INTB+1-2%1TEM
GOTO(6544656565696569691) 9 INST
JOT=(INTG=-1)/3

NIPC=INTG-1-3%JOT

GOTO658

JOT=(INTG+1)/3

NIPC=INTG+1-3#J0OT

DO66CK=2sN
LCD(2sK)=(NIPB*MUCH+LAC{1sK~1))/2
NIPB=NIPB*MUCH+LAC(1sK=-1)=2%LCD(2sK)
LCDU3s K )= (NIPCH¥MUCH+LCDI({1sK=1))/3
NIPC=NIPCH*MUCH+LCD(1sK=1)=3%.CD(3:K)
NIP=LAC(3sN)/MUCH
IF(INST=2)666:662+:666
LACI3sN)I=LCD(2sN)+LCD(3sN)
LAC(3sN)=MUCH®*NIP+NITH=LAC(3sN)
DO664K=34N

L=N+2~-K
LAC(3sL)=LCD(2sL)+LCD(3sL)+NIP
NIP=LAC(3,L}/MUCH
LAC(3sL)=MUCH*NIP+NTITH-LAC(3,L)
LAC(341)==(NIP+ITEM+JOT)

GOTO6T74
LAC(3sN)I=MUCH+LCD(3sN)=LCD(2sN)
NIP=LAC(3sN)/MUCH

LAC(3sN)=LAC(3 sN)~MUCH®NIP
DOE68B8K=34N

L=N+2-K
LAC(3sL)=MUCH+LCD(34L)~-LCD{(2sL)+NIP~-1
NIP=LAC(2,L)/MUCH
LAC(3sL)=LAC(3 L) =MUCH*NIP
IF(INST-3)672+670,670
LAC(351)=JO0T-ITEM+NIP-1

GOTO6T4L

LAC(341)=JOT—-1ITEM+NIP
LAB(291)=(3%INTG)/2
NIPB=3#INTG-2*%LAR(2,1)
LAB(Z2+1)=LAB(2s1)+1
LAB(3,1)=INTG/?2
NIPC=INTG=-2¥%LLAB{3s1)
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LAB(3s1)=~(LAB(3+s1)4+1)

DO6T6K=2sN

LAB(2sK )= (MUCHXNIPB+LCD{1sK=~-1)1)/2
NIPB=MUCH*NIPB+LCD(1sK-1)~2%LAB(2sK)
LAB(3sK)=(MUCHX*NIPC+LCD(1sK=~1))/2
NIPC=MUCH*NIPC+LCD(1sK=1)=-2%LAB(3+K)
LAB(3sK)=NITH-LAB (3,4K)
LAC(2s1)=(3*%INTR+1)/2
NIP=3%INTB+1-2%LAC(2s1)
IF(CINST-3)678+6804+680
LAC(251)=—LAC(241)

G0T0682

LAC(2s1)==(LAC(2s1)4+1)

DOBBLK=24N
LAC(E2sK)=(MUCH*NIP+LAC(1sK~-1))/2
NIP=MUCH*NIP+LAC(1sK-1)=2%L AC(25K)
LAC(2sK)=NITH=LAC(2,K)

LBC{Z2sN) =LLAB(2sN)Y+LACI2sN)
NIPB=LBC(2sN)/MUCH
LBCC2sN)Y=MUCH*NIPB+NITH~LBC(2sN)
LBC{3sN)=LAB(3 s N)+LAC(34N)
NIPC=LBC({3sN) /MUCH
LBC(2sN)=NITH+MUCH*NIP-LBC(3sN)
DOBBTK=3,N

L=N+2-K
LBCI2sL)=NIPB+LAB(2,L)+LAC(2,sL)
LBC{3sL)=NIPCHLAB(3,L)+LAC(35L)
NIPEB=LBC(2sL)/MUCH
NIPC=LBC(3sL)/MUCH
LBC(2sL)=NITH+MUCH®*NIPBE-LBC(2sL)
LBCI3sL)=NITH+MUCH*NIPC~LBC{3sL)
LBC(2s10=-LAB(2s1)=LAC(291)=NIPB
LBC(3s1)==LAB(341)~LAC(351)=-NIPC~1
GOTO697

LAB(3s1)=INTG/2
NIPB=INTG-2%LAB(3,1)
LAC(3,1)=INTB/2
NIPC=INTB-2*LAC(3,1)

DO113K=24¢N
LAB(3sK)={(NIPB*MUCH+LCD(1sK~1))/2
NIPB=NIPB*MUCH+LCD(1sK=-1)=2%LAB(3sK)
LACE2sK) = (NIPCHMUCH+LAC{1sK~1))/2
NIPC=NIPCH*MUCH+LAC(1sK=1)=2%LAC(3sK)
DOL14K=24N

L=N+2-K

LAB(2sL)=LAB{3,sL)
LAB({2s1)=INTGHLARB(3,1)+1
DO115K=24N



L=N+2-K

LAC{2sL)=NITH=-LAC(3,L)
LAC(291)=—LAC({3+1)~INTB-1
NIP=0

DO116K=14N

L=N+1-K
LRC(3sLY=LAB{3sL)Y+LAC(3sL)+NIP
NIP=LBC(3sL)/MUCH
LBC(3sL)=LBC(3sL)-MUCH*NIP
DO117K=2sN

L=N+2-K

LBC(3sL)=NITH-LBC{3,4L)
LBC(3s1)=-1-LBC(3,1)

NIp=1

D0118K=2sN

L=2+N-K
LBC(2sL)=MUCH+LAC(3,L)=LAB(3,L)+NIP~1
NIP=LBC(2,0L)/MUCH
LBC(2sL)=LBCI24L)Y-MUCH*NIP

LBC(2s1)=LAC(351)~=LAB(3s1)+NIP+INTB-INTG-1

GOTO(801,811) sMIND
JABU1sNKY=1+INTG
JAB(2sNKy=0
JAB(3sNK) =~
JACCIsNKy==INTR
JAC(2sNK) =1
JACI3,NKy=0
JEC(1sNK)Y=INTB-INTG
JBC(2sNKy=-1
JBC(3sNKy=1

GOoT0821
JAB{1sNKY=1+TINTG
JAB(2sNK)y==-1
JAB(3sNK)=0
JACL1sNK)Y==INTRB
JAC(2sNK) =0
JAC(2sNKY =1
JBC{1sNK)Y=INTB=INTG
JBC(2sNK)Y=1
JBC({34NKy=~

MARK=1

MARKU=0

DO502M=1+3
JCDIMaNKY=JAB (Mo NK)
DOB02K=14N
LCDIMsK)I=LAB(MsK)
DOS1I7NO=1,3
GOTO(50145C35505) s NO
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MOT=4

GOT0200

DO504M=1,43
JAB(MsNK) =JAC M NK)
DO504K=1sN
LAB(MsK)=LAC(M,sK)

MOT=5

GOTO20¢0

DOR06EM=1,2
JAB({MsNKY=JBC(MsNK)
DOBC6EK=14N
LAB({MsK)=LBC(MsK)

MOT=6

GOT02G0

CONTINUE

DO508M=1,473
JAB(MsNK)=JCD (M NK)
DO508K=1sN
LAB(MsK)=1LCD(M,sK)
DO210J=1,30

NOM=1

DO122M=1473

NIP=0

DO121K=2 4NN

L=NN+2-K
ND(MsL)=NBI{MsLY+NC{MsL)I+NIP
NIP=ND{M,sL)/MUCH

ND(Msl )=NDIM»L)~MUCH*NIP
ND{Ms1)=NB{(Ms1)+NCI(Ms1)+NIP
DO124M=1,2

N1p=0

DO0122K=24NK

L=NK+2-X
KAD{MsL)=KAB(MsL)+KACI(MsL)Y+NIP
NIP=KAD(MsL)/MUCH

KAD(Mo L) =KAD (M, L) =MUCH*NIP
KAD(Ms1)=KAB(Ms1)+KACIMs1)+NIP
L=N-1

DO125K=1,sL
IF(LABIL,K)=LAC(1+K))1395125+126
CONTINUE
TFCLABCOTISN)=LAC{1sN))1295s101+126
NOTE=0

DO128M=1,3

NIPS(M)=1

DO127K=2sN

L=N+2-K

LAD(MsL)=MUCH+LAD(M4L) —LACIMsL)+NIPS(M} -1
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NIPSIM)=LAD(MsL ) /MUCH
LAD(MsL)=LADI(Ms L) -MUCH*NIPS (M)
LAD(Ms1)=LAB(My1)=LAC(Ms1)+NIPS(M) -1
DO132M=24+3
NIPS(M)=LAD(Ms 1) /MUCH

LAD(Ms 1) =LAD(Ms 1) =MUCHXNIPS (M)
MOVE=NIPS(IM)

IF(NIPS(M) 130,122,130
DO121K=3sN

L=N+3-K

LAD(MsL)=LAD(M,L~-1)
LAD(Ms2)=MUCH+LAD (M5 1)
NIPS(M)=LAD (Ms2)/MUCH
LAD{Ms2)=LAD(Ms2) -MUCH*NIPS (M)
LAD{Ms L)=MOVE+NIPS(M) -1
DO288K=24N

L=N+2-K

LABI(Ms L) =LAB(MsL-1)
LACIMs L) =LAC(MaL~1)
LBC(MsL)=LBC(MsL-1)
LCDIMsL)Y=LCD(MsL~1)

LAB(M,1)=0C

LACIM»1)=0C

LBCtMs1)=0

LCD{M»1)=0

MAB (M) =MAB (M) +1
MBCIM)=MBCIM)+1
MACIMY=MAC(M)+1
MCD(M)=MCD (M) +1

MAD (M) =MAD (M) +1

CONTINULC

[IFINOTE) 13451349142

IF({MARKUY 13551354137
DO136M=1,+3

NIPS (M) =0

DO136K=1,NK

L=NK+1-K

JAD (ML) =JAB(MsL ) —JACIMsL)+NIPS (M)
NIPS(M)=JAD(MsL ) /MUCH

JAD(MsL ) =JAD (ML) ~MUCH*NIPS (M)
NOM=NOM+1

DO138M=1,2

DO138K=1,NK

KCD(MsK)==KBC(M,sK)

GOTO151

NOTE=1

DO141M=1,73

NIPS(M)=1
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DO140K=24N

L=N+2-K
LAD(MsL)=MUCH+LAC(MsL)=LAB(MsL)+NIPS(M)~1
NIPS(M)=LAD(MsL)/MUCH
LAD(MsL)=LAD(MsL)~MUCH*NIPS (M)
LAD(Ms1)=LACIMs1)=LAB(Ms1)+NIPS(M)-1
GOTO129

IF(MARKU) 14351435145
DOl44M=1,3

NIPS({M)=0

DO144K=14NK

L=NK+1-K
JAD(MsL)=JACIMsL)~JAB(Ms L) +NIPS (M)
NIPS(M)=JAD (Mol ) /MUCH

JAD (Ms L) =JAD(Ms L) =MUCH*NIPS (M)
DOl146M=1,3

DO146K=1.NN

NC(MsK)=NB (MaK)

DO147M=1,2

DO147K=1,sNK

KACIMsK)=KAB(M,sK)
KCD(MsK)=KBC(MsK)

DO148M=1,43

MAC(M)=MAB (M)

DO148K=1sN

LACIMsK)=LAB(MsK)

IF (MARKU) 14991495151
PO15CM=143

DO150K=1,NK

JACIMsK)=JAB(M4K)

DO152M=1,3

MCD(M)=MBC (M)

DO152K=1sN

LCOD(MsK)=LBC(MsK)

IF(MARKU) 15351534155
DO154M=143

DO154K=1,NK

JCDIMsK)=JBC (M5 K)

DO176NC=1,s2

GOTO(156+159) sNO

M=1

DO158K=1sNK

NAME (K ) =KCD{MsK)

GOTO162

M=1

DO161K=1sNK

NAME (K)=KAC(MsK)

L=NK-1
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DO163K=1,sL
IFINAME(K) ) 16651635166
CONTINUE

IND(M)=—4

T=NAME { NK)
VAL({M)=T*10000,
GOTOl67

IND (M) =4% (NK=K=-1)
T=NAME (K)

U=NAME (K+1)
VAL(M)=T%*10000 ++U
IF(M-1)16841685169

M=2

GOTO(157+s16V) sNO
VALA=ABSF(VAL(1))
VALB=ABSF (VAL (2))
IFCIND(1)Y-IND(2)11725204+170
IF(VALA-VALBY1725170,170
GOTO(L171+174)sNO
SCD=VALA

TCD=VALB

INCD=IND(1)

ICD=IND(2)

GOTO176
GOTO(1734175)sNC
SCD=VALB

TCD=VALA

INCD=IND(2)

ICD=INDI{1)

GOTO176

SAC=VALA

TAC=VALD

INAC=IND(1)

TAC=IND(2)

GOTO176

SAC=VALB

TAC=VALA

INAC=IND(2)

IAC=IND(1)

CONTINUE

L=NN=-1

DO177K=1,L
IFIND(3sK))21651775179
CONTINUE
IFIND(3sNN))216+216.178
INDQ=—-4

T=ND{3sNN)
DIVD=T3#100004

109,



110,

G0T0180

INDQ=4% (NN-K-1)

T=ND{3,K)

U=ND(3sK+1)

DIVD=T*100C0++U

RCD=SCD/DIVD

INCD=INCD-INDQ

ICD=1CD-INDQ

L=NN-1

DO181K=1sL
IF{NA(3,K))216+181,183

CONTINUE

IFINAC33NN))2164+216,182
T=NA{(3sNN)

DIVA=T*10000,

INDQ==4

GOTO184

INDQ=43% (NN-K~1)

T=NA(3,sK)

U=NA(3sK+1)

DIVA=T*10000,+U

RACO=5AC/DIVA

INAC=INAC-INDQ

IAC=TAC~-INDQ

IND=INAC-INCD

RAC=RACO*¥100%%*IND
IFIABSF{(RAC=RCD) /(RACHRCD) )=1eE=-7)9315931,932
[F(RAC-RCD)1855931,193
PACO=TAC/DIVA

IND=TAC~T1CD

PCD=TCD/DIVD

PAC=PACO*10 0% IND

IF(ABSF ({PAC-PCD) /(PACHPCD) 1=1E~7)1935193,933
IFIPAC-PCP)1855193,193
GOTO(480,430) sKEN

DO4321K=1,1

IFCLAD(L oK) ~LCD(1sK))43294315434
CONTINUE

GOTO480
LAB(L1oK+1)=MUCH+LCD(1sK+1)=LAD(1sK+1)
NIP=LAD(1sK+1)/MUCH
LAB{1sK+1)=LAB{1sK+1)-MUCH®*NIP
LAB(1sXK)=LCD{1sK)=LAD(1sK)+NIP-1
DO433M=243
LAB(Ms2)=MUCH+LCD(My2)-LAD(Ms2)
NIPS{M)=LAB(Ms2)/MUCH

LAB(Ms 2)=LAB(Ms2)-MUCH*NIPS(M)
LAB(Ms1)=LCD(Ms1)—~LAD(Ms1)+NIPS(M)~1



MAB{(M)=MCD (M)

MOT=2

GOT0202
LAB{1sK+1)=MUCH4LAD(1sK+1)-LCD(1sK+1)
NIP=LAB(1sK+1}/MUCH
LAB(1sK+1)=LAB(1+sK+1)-MUCH*NIP
LAB(L1sK)=LAD(1sK)~LCDI1sK)+NIP-1
DO435M=2,43
LAB(Ms2)=MUCH+LAD(M,2)-LCD(My2)
NIPS(M)=LAB(Ms2)/MUCH
LAB(Ms2)=LAB(Ms2)=MUCH*NIPS(M)
LAB{M»1)=LAD(Ms1)~LCDIMs1}+NIPS(M)~1
MAB (M) =MAD (M)

MOT=2

GOTOZ202

DO188M=1,s3

DO186K=1,sNN

NB(MsK)=ND{MsK)

DO187K=1sN

LBCIMsKI)=LCD(MsK)
LAB(MsK)=LAD(MsK)

MBC(M)=MCD (M)

MAB (M) =MAD (M)

MOT=1

IF(MARKU)189,189,191

DO190M=1,3

D0190K=1,NK

JBC(MsK)=JCD(M,sK)
JAB(MsK)=JAD(M4K)

DO192M=1,2

DO192K=14NK

KAB(MsK)Y=KAD(M,K)
KBCI{MsK)==~KCD (MsK)

GOT020C

GOTO(490+440) sKEN

DO441K=1,1
IF(LAD(1sK)-LACI1sK))L42944T1 444
CONTINUE

GOTO490
LAB(1sK+1)=MUCH+LAC(1sK+1)=LAD(1sK+1)
NIP=LAB(1s+K+1)/MUCH
LAB(1sK+1)=LAB(1sK+1)=MUCH¥NIP
LAB(1aK)=LAC(L1sK)=LAD(1sK)+NIP-1
DO443M=243
LAB(Me2)=MUCH+LAC(M,2)=LLAD(Ms2)
NIPS{M)=LAB(Ms2)/MUCH
LAB(Ms2)=LAB(Ms2)~-MUCH¥NIPS (M)
LAB(Ms1)=LAC(Ms1)~LAD(Ms1)+NIPS(M)~1
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MAB(M)=MAC(M)

MOT=3

G0T0202
LAB(1sK+1)=MUCH+LAD(1oK+1)—LAC(1sK+1)
NIP=LAB(1sK+1)/MUCH
LAB(1eK+1)=LAB(1sK+1 )-MUCH®NIP
LAB(1sK)=LAD{1sK)=LAC({1sK)+NIP-1
DO445M=2,73
LAB(Ms2)=MUCH+LAD(Ms2)-LAC(Ms2)
NIPS(M)=_LAB(Mas2) /MUCH
LAB(Ms2)=LAB(Ms2)-MUCH®*NIPS(M)
LAB(Mes L )=LAD(Ms1)=LACIMs1)I+NIPS(M)~-1
MAB (M) =MAD (M)

MOT=3

GOT0202

DO195M=1+73

DO194K=1 4NN

NB(MsK)=NA{MsK)

NA(MsK)=ND(MsK)

MBC(M)=MAC (M)

MAB (M) =MAD (M)

MACIM)=MCD (M)

DO195K=1sN

LBC({MsK)=LAC(M4K)
LAB{MsK)=LAD(MsK)
LACIMsK)=LCD(MsK)

MOT=1 .
IF(MARKU)196+196+198

DO197M=1+3

DO197K=1sNK

JBCI{MsK)=JACIMsK)
JAB{MsK)=JAD(MsK)
JAC(MsK)=JCD{MsK)

DO199M=1,.2

DO199K=1 s NK

KBC(MsK)=KAC(MsK)
KAB(MsK)=~KAD(MsK)
KACI{MsK)=—KCD(MsK)

DO201K=14N

IF(LAB(14K) 1216520145202
CONTINUE

KS=((K=-1)1/6)+1
GOTO(T730s7319732+73397349735+736)5KS
J1=43%(K+1)

J2=4%(MAB(2)~2)

J3=4% {MAB(3)~-2)

GOTO751

J1l=4%(K=-5)



L

{

J2=4#*(MAB(2)-5
J3=4%(MAB(3)-5
GOTO751
J1=4%(K-11)
J2=4%(MAB(2)-8)

J3=4%(MAB(3)-8)

GOTO751

J1=4%(K~17)

J2=4%(MAB(2)~-11)

J3=4*(MAB(3)-11)

GOTO751

Jl=4%(K=-23)

J2=4%(MAB(2)-14)

J3=43% (MAB(3)-14)

GOTO751

J1=4%(K-29)

J2=4%{MAB(2)-17)

J3=43%(MAB(3)-17)

GOTO751

J1=4%(K=-35)

J2=4%({MAB(2)-20)

J3=4%(MAB(3)-20)

T=LAB(1,K)

U=LAB(1sK+1)

R=T#10G000++U

TR=LAB(2s1)

UR=LAB(2,2)

SR=TR*¥10000¢+UR

TI=LAB(3,1)

UT=LAB(3.2)

S1=TI*10000e+UI

A=R*¥J1 0¥ (—=J1)

B=SR*10e%¥J2

C=5T1#10%%J3

FORM=A® (B*%2+3 ¢ ¥CH*3#2 )
IF(FORM=145120345203,%902
GOTO(2095480s490951795179517) sMOT
WRITEQUTPUTTAPE3 204 sMARKsMOT
FORMAT(6H MARK=1545H CASEIZ2)
KIND=J1+(KS-1)#%24
WRITEQUTPUTTAPE3+840sRaKIND
FORMAT(5H LAB=F1lels6H EXP==13)
MARKU=MARKU+1

IF {MARKU=1)205+2054209
WRITEOQUTPUTTAPE3s206s (JAB(1sK) sK=1sNK)
FORMAT(3H X=2015/2015)
WRITEOUTPUTTAPER 2075 ( JAB(2,K) sK=1sNK)
FORMAT(3H Y=2015/2015)

)
)
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WRITEQUTPUTTAPE3,208s (JAB(3,K)sK=15NK)
FORMAT (3H 2=2015/2015)
GOTO(850548044905517s5175517)sMOT
MARK=MARK+1

IF (MARKU=MU) 405,405,216
IF(NOTE)1205s120+210

KEEP (J)=NOM

WRITEQUTPUTTAPE3s211sKEEP

FORMAT (3014)
WRITEQUTPUTTAPE35212s(LAB(1sK)sK=1s1)
FORMAT (5H LAB=2015/72015)

DO213K=1,1

IF(LAB(1sK) 1213452134119

CONTINUE

GOTO1U 1

CALLEXIT

END
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b, SUBROUTINE

SUBROUTINECROOT (INTK s KNOWs INTL s LEAVE)
DIMENSIONLOT(2) sNUM{322) sMORE(322) s NEW(322)sINCR(322)sJUMP(322)

17

28

33

36
37

1IKNOW(322) s LEAVE(322)
15=6

1T=10

IN=99

IH=100

MULT=330

KEY=1000

MUCH=10000

NOTE=0
READINPUTTAPEZ2s1sIsINTsLOT
FORMAT(I3,125214)
M=8#%T1+2
IF(LOT(1))90590+3
NUM(1)=LOT(1)

JUMP (1) =0
INCR(1)=0
NEwW(1)=0
MORE(1)=1

DO16N=1,10

KNOW(1)=N=-1
IF(NUM(1)-MORE(1))22s17517
NUM(1)=NUM(1)-MORE(1)
INCR(1)=INCR(1)+IS
MORE(1)=MORE(1)+INCR(1)
MORE (1) =MORE{(1)~INCRI(1)
DO 80 J=2.M
IF(J=2)4s4s5
NUM{JY=L0T(J)

GOTO7

NUM(J)=0

MORE (J) =0
NEW(1)=MORE(1)/IT

D028 K=2,J

NEW(K)=TH*(MORE (K~1)—IT*(MORE(K-1)/IT))+MORE(K)/IT

JUMP {J) =MULT*KNOW(J=1)+IT*(JUMP (J=1)—~TH¥*(JUMP(J=1)/1H))

NIP=JUMP(J)/KEY
JUMP(J)=JUMP (J)=KEY*NIP
IF(J=2)37+37+33

D036 K=3,J

L=J+2-K

JUMP (L) =1 T*#(JUMP (L=-1)—TH*(JUMP(L~=1)/TIH))+JUMP(L)/IH+NIP

NIP=JUMP (L) /KEY
JUMP (L) =JUMP (L) ~KEY*NIP
JUMP (1) =JUMP(1)/IH+NIP

INCR(OJ)=IT*(INCR{J=1)=IH*(INCR(J=-1)/11H})

IF(J=2)Y42942+40



40

41
42

49

52
53

57

66

79
30

DO41K=34J
L=J+2-K

INCROL)=INCR{L)/IH+IT#(INCR(L=1)—IH*( INCR(L=1}/TH))

INCR{1)=INCR(1)/IH

MORE (J)Y=NEW(J)+JUMP(J)~IN
NIP=MORE(J)/KEY
MORE(J)=MORE(J)=KEY#NIP
DO49K=25J

L=J+1-K
MORE(L)=NEW(L)+JUMP(L)+NIP
NIP=MORE(L)/KEY

MORE (L) =MORE(L)=KEY*NIP
DO73N=1510

KNOW (J)=N-1

DO52K=1,J
IF(NUM(K)-MORE(K))B82+s524+53
CONTINUE

NIP=1

DO5TK=2,J

L=J+2-K
NUMCL)=NUM(L)+NIP-1+KEY~MORE (L)
NIP=NUMI(L)/KEY
NUMIL)=NUM(L)-KEY#NIP
NUM(1)=NUM(1)=-1+NIP-MORE(1)
INCROJI=INCR(JI+IS
NIP=INCR({J)/KEY
INCR{J)=INCR(J)-KEY*NIP
DO6EK=25J

L=J+1-K

INCRIL)=INCR(L)+NIP
NIP=INCR(L)/KEY
INCRIL)=INCR(L)~KEY®*NIP
MORE (J)=MORE(J)+INCR(J)
NIP=MORE(J) /KEY
MORE(J)=MORE(J)~KEY*#NIP
DO73K=2sJ

L=J+1~K
MORE(L)=MORE(L)+INCR{L)+NIP
NIP=MORE(L)/KEY
MORE(L)=MORE(L)~KEY*NIP
NIP=1

DOT79K=2sJ

L=J+2~-K

MORE (L) =KEY+MORE(L)+NIP=1~INCR({L)
NIP=MORE(L)/KEY

MORE (L) =MORE(L)-KEY*NIP
MORE(1)=MORE(1)+NIP-1-INCR(1)
IFINOTE)B3+83585
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W

86
87
90

o1
92

DOB4K=1sM

LEAVE (K)=KNOW (K)

INTL=INT
NOTE=1
GOTO9

WRITEOUTPUTTAPE3s2,L0T
FORMAT(214)

INTK=INT

WRITEQUTPUTTAPE3,86s INTKsKNOW

FORMAT ( 5H

INT=I1s6H KNOW=102I1/1X11011/1X11011)

WRITEOQUTPUTTAPE3s87sINTLsLEAVE

FORMAT (5H
GOT092
DO91K=1sM
KNOW (K) =0
RETURN
END

INT=I1s7H LEAVE=10211/1X11011/1X11011)
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10

11

12

14

15

17

19

20

21

22

23

26

28

29

30

UED

2¢5922E- 1
8e1l317E- 3

3.0582E~ 3

87069E~- 2
4e2914E~ 2
3.7455FE— 3

6e0613E~ 3

3e¢5456E— 3

1e1499E~ 2
6e1717E- 5
1.0289E- 3
7421456~ 2
3.0386E- 2

1.9550E~ 4
4e2035E— 4
1e5385E-10

|

3.7504E- 2

Ne

6be7H6E-
6e413E~-
6e612E~
94353E-
Te581E~
le842E~
1l.403E~
3eb6T4E~-
le257E~-
le322E-
34809k~
1,059E~
56 205E~
9e233E-
3e822E~
le767E~
2¢367E-

1.407E-

1e9128E~ 1#*6.999E-

362404E~-18

4e1101E~ 4
|

1e050E=

1l+689E-

Higher
units
2 YES
3 YES
5 YES
6 YES
3 YES
3 YES
5 YES
5 YES
5 YES
4 YES
9 YES
6 YES
3 YES
4 YES
81 YES
7 YES
20 YES
3 YES
3 YES
35 YES
7 YES

C TABILES

Integer basis N = ¥
1s 2%%1/3 H4¥%3%1/73 -1 il
1s 3%%1/3s 9%%1/3 -2 0
1s 5%%1/3s 25%%1/3 ] —4
1s 6%%1/3s 36%%1/3 1 -6
1o T*%1/3s 49%%1/3 2 -1
1s 10%%¥1/3s (1+10%%1/3+100%1/3)/3 -3 -1
1s 11%%1/3 121%%1/3 1 4
1s 12%%1/3, 18%%1/3 1 3
1s 13%%1/3, 169%%1/3 -4 -3
1s 14%%1/3, 196%%1/3 1 2
1 15%¥1/3, 225%%1/3 1 -30
1s 17%%1/3s (1-17%%1/3+289%%1/3)/3 18 -7
1s 19%%1/3s (1+419%%1/3+361%%1/3)/3 1 1
1s 20%%1/3, 50%%1/3 1 1
ls 21%%1/3s 441%%1/3 -47 6
1o 22%%1/3s 484%%1/3 23 3
1s 23%%1/3, H29%%#1/3 -41 399 -3 160
1s 26%%1/3y (1-26%%1/3+676%%1/3)/3 3 -1
1s 98%%1/3, (—1+98%%1/3-28%%1/3)/3 0 0
ls 29%%1/3, B41%%1/3 -322 461 439 103 819 462
1s 30%%1/3, 900%%1/3 1 9

8.

370 284

-3




Higher

D N4 N2 AnA b Integer basis X 4 Z
31 3.2635E~ 6|1e085E~ 11 YES |1 31%%1/3, 961%%1/3
-367 54 20
33 2.1828E-14|4.765E~ 28 YES |1s 33%%1/3, L089%%1/3 /
3 742 201 97 392 -394 098
34 9e9755E— 7|94951E~ 13 YES |1» 34%%1/3, 1156%%1/3
613 —-24 -51
35 3.5961E— 3|14293E~ 5 VES |1 35%%1/3, (1-35%%1/3+1225%%1/3)/3
-7 3 -1
37 343344E~ 3|1e1126= 5 VES  |1s 37#¥1/3, (1437%¥1/3+1369%%1/3)/3
10 == 0
38 1e1466F~ 5|14315E= 10 YES |1 38%%1/3s 1444%%1/3
~151 55 =
39 6.3010E~ 4|3.970E~ 7 YES |1s 39%%1/3, 1521%%1/3
=23 0 2
41 345796E-25|14281E= 49 1s 41¥%1/3, 1681%%1/3
-211 991 370 839 305 478 475 184 -70 761 183 382
42 1e5746E— 5| 24479E= 10 YES  |1s 42%%1/3, 1764%%1/3
i -42 | 12
43 6e7961E~ 3|4e619E~ 5 YES |1 43%%1/3, 1849%%1/3
-7 2 0
L4 2 4956E~ 4|6+228E- 8 VES  |1s G4%%1/3s (=1+44%%1/3+242%%1/3)/3
32 5 =il
45 2.2561F~ 7|5.090E- 14 YES |1 45%%1/3, 75%%1/3
1 o8l 66 -312
46 2.0265E~ 8 |44107E~ 16 VES |1 46X%1/3s (1+46%%1/3+2116%%1/3)/3
-4 448 ~261 927
47 5,9212F~13|3.506E~ 25 ls 4T%¥1/3, 2209%%1/3 |
-592 199 69 704 64 786 |
51 3.0908FE~ 9|9.553E- 18 YES |1s 51%%1/3, 2601%%1/3 '
-11 015 2 592 102
52 1e5949E~ 3 |2+544E= 6 YES |1 52%%1/3, 338%%1/3
1 —4 2
53 2 O494LE~12 |Be699E~ 24 VES |1, 53%%1/3, (1-53%%1/3+2809%%1/3)/3
367 542 27 719 69 606
55 1.0117E-14|1.024E~ 28 VES |1s 55¥%1/3, (1+455%%1/3+3025%%1/3)/3
6 787 357 -822 258 -569 988
57 2 2816E— 7|5.206E~ 14 YES |1 57%%1/3, 3249%%1/3
1 084 57 -88
58 3.5881F— 4 |1e287E~ 7 VES |1s 58%%1/3, 3364%%1/3
1 -8 2
59 1e5419E-23|2.37 E- 46 1> 59%%1/3s 3481%%1/3
46 334 227 393 —42 285 555 004 7 804 684 934




D M4 N2
60 1e5424E— 4 |24379E-
61 8e5361E~ 5 |7e286E-
62 3¢7332E~ 5 |14393E~
63 2609436~ 2 |44386E~
65 2.0726E— 2 |44296E~
66 3¢5069E~ 5 [14230E~
67 7e7718E~ 5 |64040E~
68 1e3611E~ 4 |1.853E~
69 8e232BE-46 64 7T78E-
70 209735E~ 4 848420~
71 1.8639E-19I3.474E-
73 243357E~ 6|1e113E~
T4 342500E~ 7 |14056E~
76 1.0929E~ 3}1.194E~
77 8.8838E—l7i7.892E—
78 3.3951E-1414153E~
79 849980E— 7/84096E-
82 143081E-13|1.711E-
83 4e4373E-32|1.969E~
84 2.0042E~ 6|44017E-

8

9

9

91

27

13

26

63

12

Higher
qgits
YES
YES

YES

YES
YES
YES

YES

YES
YES
YES
YES
YES
YES
YES
YES

YES

YES

1

1>

1o

1

Integer

basis

60%¥]1 /3,

61%3%1/3,

62%%1/3,

63%#1/3,

65%*1 /3,

66%%¥1 /3,

6T*%1/3,

68%%1/3,

69%%1 /3,

T0%¥1/3,

T1#%1/3,

T3%%1/3,

T4#%1/3 s

T6%%1/3,

TT%%1/3,

T8#*%1/3

T9%%] /3,

Ba3#%]1 /3

BLt*1/3,

450%%1/3

3721%%1/3

(1-62%%1/3+3844%%1/3)/3

147%%1/3

4225%%1/3

4356%%1/3

4489%%1 /3

578%%1/3

4761%%1/3

4900%%]1/3

(1-71%%1/3+5041%%1/3)/3 il

13

523 894 008

392

(1+733%%1/34+5329%%1/3)/3

5476%3%1/3
T22%%1/3

5926%%1/3
6084%%1/3

6241%%1/3

—40

(1+482%%1/3+6724%%1/3)/3 1

6889%%1/3

882%¥*1/3

146 072 952

1
1

753 628
059 401

1

287 490
142
-961

1

232 807
134 079
292

521 461

1
401 913

379

=5

308 465 438

=315

454 318

149

630
120

733

113

841

158

188

-12,
-16

-18

24
16
12

6686
720

301
795
-99

-23

944
95

445

152-164

12

555

459 615 284

-18 183

894

[SY]

-80

=273

383 888 363

| 2C.

266
770

798

36

60

986

154

-38

730

874

-45




85

86

87

U

50590E-19

58997E~ 4

3.8329E-39l

8+8960E-10)
5¢7155C~ 6
4ell71E~ 3|
3.1108E~ 9|

|
3.6980E~12
34675613
943204E~14
342049E~22
le4062F~22
8+48012E=22

3.8518E-12

" 1e4615E-19

369641E-10
1,9529E— 9
8e¢8302E-24
3e2524E~ 9

6e0496E~ 4

Nl

2.559E~
3.481E~

le469L-

7Te914E~
3.267E-
146956~
9e677E~
1.367E-
1.202E-
8e629E-
1.027E~
1.977E~
74 TH6E-
1e484E-
24136E-
1.571E~
3.814E~
Te797E-
1.058E-

3. 660E-

37

77

7

Higher

~units

YES

YES

YES

YES

YES

YES

YES

YES

1l

1o

1s

1o

Integer

85%%1/3,
B6%¥1/3,

BT*%1/3,

§O*%1/3,
90*%1/3,
91%%1/3,
92%%1/3,
93%%1/3,
9u*%1/3,
95%%1 /3,
97 %%1/3,
99%%1/3,
101%%1/3,
102%%1/3,
103%%1/3,
105%3%1/3,
106%%1/3,
107%%1/3
109%%1/3,

110%1/3,

basis

7225%%1/3
7396%%1/3

7569%%1/3

(1-89%%1/3+7921%%1/3)/3
300%%1/3
(1+91%%1/3+8281%%1/3)/3
1058%%1/3
B649%*1/3
8836%%1/3
9025%%1/3
9409%*1/3
363%%1/3

10201#%%1/3

104043%%1/3

10609%%1/3

11025%%1/3

11236%%1/3

(1=107%%1/3+11449%%1/3)/3

(1+109#%1/3+11881%%1/3)/3

12100%+*1/3

‘Q\\\** 445

487 074 437

™~

-2
153

21

-8

-16

-1 128

1 867

—-12 891 251
-50 708 057
=7 591 749

=123

~239 972

30

-8

220 355 178

11

707 361

025
495

729

279

uz2

-J
(S
=

321

368

399

839

929

972

029

=213 091 974

7 987

10 025

4 748

=293

~-16 965

2
582 499 903 407

=1

-64

107

419

833

456

284

71

511

6

295
744

649

=54

137

428

457

488

890 |

082

228

883

844

177 |
451 |

806 |

25 409

906 405 399 771

-1 127

606

-669

=22 320

628

~-414
342
-2 617

36

0

1 139

15 001 ]

30 965
2 246!
887!
152 |
396E
708
536 248

-120|

—288:
903 094 |

—252;

1 i




) M4 k N2 units Integer basis
11 161344E-22] 1.4287E~ 44 1s 111%%1/3, 12321%%1/3
13 6e9199E-20] 44789E~ 39 . 1s 113%%1/3s 12769%%1/3
14 8.0647E~11] 6.504F= 21 YES 13 114%%1/3s 12996%%1/3
15 1.0989E~15 1.208E~ 30 YES  1s 115%%1/3, 13225%%1/3
16 440092F-11 1.607E- 21 YES  1s 116%%1/3s (—1+116%%*1/3+1682%%1/3)/3
07 2.5881E— 6 6.698E~ 12 YES  (ls 117%%1/3, 507%%1/3
18 1e4312F-15 24049E~ 30 YES ‘1, 1i8**1/35 (1+118%%1/3+13924%%1/3)/3
19 1e4357FE=19 24061E~ 38 ‘19 119%#1/3s 14161%%1/3
22 2.1856F— 5 4,777E= 10 YES  |1s 122%%1/3s 14884%%1/3
23 1.0377F—-24 1.118F= 72% 1s 123%%1/3s 15129%%1/3
24 143369FE— 2 147B7E~ 4 YES I1, 124%%1/3s 1922%%1/3
26 1e3298E— 2 1.768E~ 4 YES 1s 126%%1/3, 588%%1/3
27 145333E-12 24351E- 24 YES  |1s 127%%1/3s (14127%%1/3+16129%%1/3)/3
29 6e9415F~11 4.819E- 21 = YES H, 129%#%1/3, 16641%%1/3
30 5e6970F~ 5:3.246E— 9 YES  [ls 130%%1/3s 16900%%1/3
31 4.82205—34!2.3255— 67 1s 131%%1/3s 17161%%1/3
.
32 3.6502E-12| 1.362E- 23 YES ls 132%%1/3s 2178%%1/3
133 742568FE~ 8| 54266E~ 15 YES  |ls 133%%1/3s 17689%%1/3
134 1.5961F-11| 2,548E~ 22 ! YES  ls 134%%1/3s (1-134%%1/3+17956%%1/3)/3
137 3e4081E=59| 1e162E-117 | s 137%%1/3s 18769%%1/3

43

~-589

X

525 986
462 929

61
-19 825

66

16 170

712 946

540 519

-431

25

023 631 038 413

=224

-87

110 262 725 140
285 942 750 281 801l

334

921

-30)
G99

531
6 4
3]_5|

454

723

-5
234

o

~12 634 237 8306

=147 738 928

~244

9 801

639 648

702 964
123 102

-13 758

437 980

13 914

=50

500 588

884 818

=25

566 106

-1

I}

-39 054

10

15

3
485 850

—-22 959

=426

29 653

008 527
976 810

i

401

T44 387

=74 815
542

=25

864
-21 015

21 865 679

60

420 809 483 281

26

-8

=3 042 778 664
338 593 522 149

122

939

420

148

d

156

076

540|

340




138
139
140
141
142
143
145
146
148
149
150
151
153
154
155
156
157
158
159
161

163

ﬂim___
4ot 295E-17
343940E-15
4475516~ 4
346653612
6.0384E~10

1.3689E~10

Te2446F-32
|

5.0656E—22)
|
|

1077476 7
3,87736-31
1.2300E~ 3
546606E-15
1e7655E- 4
be6399E=10
4,1293E-19]
1.7591F~10]|
8.3083E—2§
3.72635—15
400149E-28
8.4870E-15)

6e4985FE—12

U=
1.962C~
1e152E-
26261E-
1e344E~
3e0646E-
1e874E~
56 248E~-
2eH66E~
3¢ 150E-
1e503E-
1e513E=-
3e204E-
36.117E-
2e153E~
1,705F~
3609KE~
6e903E~-
1.389E~
le612E~
Te203E~

462230

19

20

63

43

29

25

Higher

units

YES

YES
YES
YES

YES

YES

1o

1s

1o
1o

1o

1s
1o
1
1»

1o

Integer
138%%1/3s
139%%1/3,
140%%1/3
141%%1/3%
142%%1/3,
143%%1/3
145%%1/3
146%%1/3
148%%1/3
149%%1/3,
150%%1/3
151%%1/3
153%%1/3
154%%1/3
1565%%1/3,
156%%1/3,
157%%1/3
158%%1/3
159%%1/3
161%%1/3

163%%1/3

basis

19044%%1/3
19321%%1/3
2450%%1/3

19881%%1/3

20164%%1/3

(1=143%%1/3+20449%3%1/3)/3

25

9

(1+145%%1/3+421025%%1/3)1/3 1519 308 851

21316%%1/3

2738%*%1/3

22201%%1/3

180%%1/3

22801%%1/3

86T¥%1/3

(14154%#%1/3423716%%1/73)/3

24025%%1/3
3042%%1/3

24649%%1/3
24964%%1/3

25281%%1/3

(1-161%%1/3425921%%1/3)/3

(14+163%%1/3+26569%%1/3)/3,

1 392

968 734 389

-1 036

1 866 152
10
-17 294 170

-1

429

4073

253
14
57

609

658

545

-30
060

—42

010
949

158

=112

Y

951 13 776 309
114 182 707

1 5
801 -12 306
059 -5 199
935& -6 732
577i517 220 331 337 970
961: -4 998 461 411

1 259
041] ~16 895 323 473 828

1 3
391 1 183 490
~50 4
923 3 277
919 87 752 416
119 -501
433 46 378 481 778
881l -1 625 176
567 ~2 947 566 357 324
729] 1 070 123
310 ~147 747

—~194 821 322

899

~31 280 904

19

-72 720

1 133 335

15

-2

359

032

945

79

1

569

3

089

-41

052

~556

75

123,

144

696




164
165
166

167

170
171
172

173

178

179

181

182

N1

2.0530E~- 6
2¢5507E~ 6
1.8858E- 7

1,6101E-96

1.8982E-12

5e4645F— 5

1le7049E- 5

2e5664E-6T

le4158E~ 9

4he&4091F-—- 6

2.1786F—86

Te9026E-20

201287E-40

548939E-20

1e15330C- 3

44215E~ 12

66506E~ 17

2e556E~ 14

36602~ 24

26986F~ 11

2.907C~ 10

6eHD8TE-134

2.00/+E'_ 18|
le94gE~- 11
6e245E- 39

44531E- 80

30474~ 39

Higher

_units

YES

YES

YES

YES

YES

1l

1o»

1o

1s

1

1

1>

Integer

basis

loa%%1/3,
165%#%1/3
166%%]1/3

167%%1/ 3

170%%1/3
171%%1/3
3698%%1 /3,

173%%1/3,

174%%1/3
175%%1/7

177%%1/ 39

178%%1/3,

179%%1/3»

181%%1/3

182%%1/3

3362%%1/3

27225%%1/3

27556%%1/3

27889%%1/3

(1-170%3%1/3+28900%%1/3)/3

1083%%1/2

(=1+3698%%1/3-172%%1/31/3

29929%*1/3

30276%%1/3

245%%1/3

31329%%1/3

31684%%1/3

(1=179%%1/3+32041%%1/3)/3

(1+181%%1/3+32761%#%1/2)/3

33124%%1/3

\'24,

X Y
329 22 -30
1 -66 12
1 =242 44
~414 88 -2
411 640 332 837 485|411 858 685 575 128 389 448 363 592 189
844 486 202 518 490 (211 051 461 889 731 536 246 123 766 369
191 124 803 514 079|145 880 700 684 356 541 842 554 650 894
466 507 ~27 117 -36 288
58 -16 3
-167 25 ~T4
769 -234 17
611 096 692 874 048|967 686 855 369 942 381 000 165 954 164
289 533 337 276 313|565 128 259 329 518 160 843 978 023 656
15 661 -2| 688 -21
281 -48 -2
4 515 784 771 33U -388 619 389 648 -74 031 651 038
872 029 175 376 073 (488 019 539 741| 577 223 302 112 488 966
843 773 853 415 073 (919 054 294 269 092 095 838 395 821 054
1 558 656 289 -413 710 656 24 288 330
-8 137 6 619 -3 225
124 021 611 676 250|334 337 680 932 937 824 769 061 566 414
-2 769 372 839 245 785 405 107 029 295
-17 3 0




Higher

e N2 units
183 7e8737E=50| 642006~ 99

185 20 7TTTE-12| T4 716E~ 24 YES

186 1.5489F-10| 2.399F— 20 YES
187 1+0485E~30| 1.099E~ 60

188 8¢0418E-22| 604675~ 43 YES
190 1e3820E-17| 1.910E~ 34
191 243794F~45] 5.661E~ 90
193 1e0727E=27 Le151E= 54
194 448923E-26| 2.394F— 51
195 3¢2233E-21] 1.039E~ 4]
197 140223FE-60] 1.045E~120
198 2.8035FE— 4| 7.860FE- 8

199 3e3415F= 5| 1,117~ 9 YES

Integer

1833%3¢1/3,

185%%#1/3,
186%%1/3,
187%%1/3,
188%%1/3,
190%%1/3,

191%%1/3,

193%%1/3,
194%3%1/3,
165%%1 /3,

197%%1/3»

198%%1/3,

199#%1/3,

basis

33489%%1/73

34225%%1 /3
34596%%1/3

34969%%1/3

529

647

(=1+188%%1/34+4418%%1/3)/3

(1+190%%1/3+36100%%1/3)/3

36481%%1/3

37249%%1/3
37636%#1/3

38025%%1/3

551

-19

(1-197%%1/3+38809%%1/3)/3<146

1452%%1/3

785

(1+199%*1/3+39601%%1/3) /3

269

250

-20

082
961

807

638
560

X

271 061
104 509

-118
=36

250 118
726 135

-3
228

717
301
612 630
954 442
072 427

623
077

568
859

738
999

399

827

471

762

377

874
439

93
886 674 837

67 257 618

-528

g3

2

605 848 762

1 130 191
=406 402
2 018

097
557

96 324
162 396

564
442

68

666

013

767

300
774

108

766

399
121

180
290|990
460
676

096 8

935l

139

546’
884|541

734
104 |

168

|
-40
807

519
529

-6

16

53 977
225 190 121

-8

1

031 526 351
3 370 937
11 971

=287
548

288 731
402 141 569
-13 586 300

=197 318

688 460 813
488 452 596

125,

369
592

636

107

520
644

l
-10|
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