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Abstract

The problem of adjusting conductivity structures so as to
reproduce electromagnetic responses obtained in the field is
still an active area of research., Most of the current computer
programs for calculating responses are expensive to run, as they
require large computation times.

This thesis presents means by which the response of a
layered earth can be calculated more rapidly. The algorithms
have been designed with the Australian prospecting system SIROTEM
in mind, and thus all responses are calculated directly in the
time domain., One algorithm, an asymptotic expansion, yields the
response very rapidly. The asymptotic expansion is valid only at
late times, but it is very easy to determine the regions in which
it is not valid. The other algorithm, a numerical intergration
of an integral, works only when overlying layers are more
resistive than the half-space. This is because the poles in the
Laplece transform of the voltage response have been ignored.
Poles only exist for overlying layers more conductive than the
half-space.

Both algorithms c#n cater for variable ramp rise times,
intergration over time windows, and a variety of loop geometriaes.

These methods have been incorporated within a routine for
inverting SIROTEM data. Run times are of the order of a few
seconds. Inversions performed on synthetic data, in regions when

the methods are valid, illustrate a number of interesting
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lessons., This inversion routimne can be used for obtaining an

initial guess for a slower routime, or alternatively the

algorithms can be incorporated within currently existing routines

to speed computation time significantly.
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Section 1 - Introduction

1.1 The Transient Electromagmetic Prospecting NMethod

Over the past decade the transient electromagnetic (TEM)
method has become increasingly popular as an exploration tool.
The method involves exciting the earth with a time varying
'primary’ magnetic field which is genmerated by a current carrying
transmitter loop., The variation of the primary magnetic field
induces eddy currents in conductors within the earth. The time
taken for the decay of these eddy currents depends primarily on
the conductivity of the conductor. A 'secondary’ magnetic field
is produced by thes? eddy currents. Electromagnetic methods give
a measure of the rate of decay of these secondary fields. This
is normally done by measuring the electromotive force (emf)
induced in the receiver coil by the time rate of change of the
flux of the secondary magnetic field through the receiver loop.
In the time domain the measurements are made while the primary
magnetic field is constant (for example zero) so that the primary
induced emf is zero. Measuring the secondary field whilst the
primary field is zero allows for greater sensitivity and an
enhanced signal to noise ratio — particularly at late times
(C.S.I.R.0. (1978)). It has been reported that conductive
overburdens do not have the same shielding effect in the time
domain as they do in the frequency domain (Spies (1976)).

Early attempts to apply electromagnetic prospecting methods

to the Australian environment met with difficulties. For



example, the common occurrence of saline ground water and
conductive host rocks shield the effect of conductive orebodies.
In 1972 the Commonwealth Scientific and Industrial Research
Organization (C.S.I.R.0.) initiated research into the transient
electromagnetic technique. The time domain system was chosen as
it was thought to be more suitable to the Australian environment
(C.S.I.R.0., (1978), McCracken et al (1980), Spies (1976)), and
capable of distinguishing between highly conductive orebodies,
and conductive host rock and overburden (Buselli (1980a)). The
C.S.I.R.0. set out to make improvements on the time domain
equipment which was available at the time such as the Russian
MPPO-1 system (Buselli (1974)). Since the secondary fields take
longer to decay fof conductive rocks than resistive rocks it was
essential that the new equipment should make measurements at
later times — so as to momnitor this decay (Buselli (1974)).
Furtﬁermore, the Russian MPPO-1 system was susceptible to non—
geologic noise such as lightning (sferics), power lines and VLF
and R.F. radio transmitters (22, 44 and 800 kHz) (Buselli (1977)
and Spies et al (1981)).

The research carried out by the C.S.I.R.0. resulted in the
release in 1978 of the SIROTEM prospecting system (Buselli and
O'Neill (1977)). The final model released could record the
signal at delay times as great as 177.4 milliseconds. The unit
was light (16 kg), simple to operate and recorded data
automatically onto magnetic tape, as well as providing a printout
of the data in the field. Filters reject the noise from radio

transmitters and power lines. Digital stacking of up to 4096



readings helps to minimize random noise. In addition to this the
SIROTEM unit contains a IM6100 microprocessor capable of
rejecting sferic noise, normalizing the voltage response relative
to different transmitter currents, and for each reading it
calculates the mean percentage error amnd the apparent
conductivity (coincident loops only). Many loop configurations
are possible with SIROTEM, but the most commonly used are shown
in figure 1.1.

The usefulness of SIROTEM in cases when conductive
overburden shields an orebody is illustrated by Buselli (1980b).
¥Vhen SIROTEM is used with coincident transmitter and receiver
loops the depth of penetration of the SIROTEM signals is
approximately equ£1 to the loop size (Buselli (1981)). Recent
results obtained with Backus—-Gilbert inversion of SIROTEM data
suggest that in resistive cases the depth of pemnetration may be
up to five times the loop size (P.K. Fullager — University of
Toronto Seminar, Jan. 1984).

1.2 Modelling of TEM Data

The task of a Geophysicist is to deduce the subsurface
structure which produces the TEM response obtained in the field.
This can be done with scale model studies, but with increased
access to computing facilities numerical modelling is becoming
more popular., In numerical and scale modelling the subsurface is
approximated by simple shapes, and the form of the subsurface is
adjusted until the response obtained adequately represents the

field data.

To be able to calculate responses numerically requires that



Roving .Vector Receiver

©

Separated Loops

T ——r
R =
/ Coincident Loops

Figure 1.1 Common loop configurations for SIROTEM, (T demnotes
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Maxwell's equations be solved subject to: (i) the relevant
boundary conditions at interfaces of media with different
constitutive parameters, and (ii) the boundary conditions at
infinity. Solutions have only been obtained in a limited number
of cases such as a horizontally layered earth, or the cases of a
conducting sphere and an infinite cylinder in free space (see
Ward (1967)). The assumption that conductors are suspended in
free space is in general an unrealistic approximation (Singh
(1973)), particularly in the Australian enviromment. WVhen
Maxwell's equations have not been solved analytically, numerical
solutions must be sought. This is a difficult computational
task, and is currently the subject of research (recent examples
being Wannamaker,' Hohmann and San Filipo (1984), and Das and
Verma (1982)). The numerical solutions to Maxwell’s equations
are in general so time consuming that inversion is only really
practical for problems to which analytic solutions have been
found. The work discussed in this thesis has been restricted to
the TEM response of a horizontally layered ground (see figure
1.2). This problem has been solved analytically, and Wait (1982)
gives a good guide to the literature. The response of a layered
earth can be written in closed form after Laplace (or Fourier)
transformation of the time variable, and Hankel transformation of
the radial cylindrical co—ordinate. Thus in principle the
problem is solved, however the inversion of the Laplace and

Hankel transforms is difficult, Morrison, Phillips and O'Brien
(1969) used the trapezoidal quadrature rule for the inverse

Hankel transform, and then a Fast Fourier transform for the
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Figure 1.2 The horizontelly layered ground discussed
in this thesis.



inverse Fourier transform. Lee and Lewis (1974) and Raiche and
Spies (1981) have also solved the layered earth problem by
subtracting out the half-space response. Lee and Lewis fit cubic
splines to the frequency response, and transform the splines
analytically to the time domain. According to Lee (1982) their
program is inaccurate at late times. Raiche and Spies also
subtract out the half-space response, but they perform both
inverse transformations with Patterson’'s (1973) algorithm.
According to Knight and Raiche (1982) the method of subtracting
out the half space response results in difficulties, as it
involves the subtraction of two terms which are the same order of
magnitude at late times. The development of digital filters for
Hankel transformsiof arbitrary order » allows more efficient
programs to be writtem., Efficiency may be increased further by
formulating the Fourier transform as a Hankel transform of order
V=1/2, and using digital filters. Examples of work with digital
filters have been presented by Koefoed et al (1972), Mallick and
Verma (1978) and Anderson (1979)).

By reversing the order of the inverse transformations and
employing the Gaver—-Stehfest (Gaver (1966), Stehfest (1970))
inverse Laplace transform algorithm followed by an adaptive
version of Patterson's (1973) numerical intergration algorithm
for the inverse Hankel transform Knight and Raiche (1982) made a
further improvement in efficiency. It is because the kernel of
the integral is known analytically rather than numerically that
the Gaver—Stehfest algorithm can be employed, and this allows for

gains in the speed, and in the accuracy of the inversion (Knight



and Raiche (1982)). The adaptive Gaussian quadrature for the
inverse Hankel transform in Knight and Raiche's routine has since
been replaced by a digital filter, and the new algorithm is
currently the best available. Further extensions outlined by
Raiche (1983) allow the algorithm to calculate the response for
ramp function inputs and separated transmitting and receiving
loops.

Lee and Lewis (1974) have shown that at early or late times
the TEM response approaches that of a half-space whose
conductivity is equal to that of the top or bottom layer
respectively. Rather than perform time consuming numerical
integrations a more rapid means of obtaining a TEM response would
be to approximate the integrals by asymptotic expansions. Lee
(1982) has developed a two term asymptotic expansion for
coincident transmitter and receiver loops over a layered earth.
The expansion is only valid at late times. Lee's result subsumes
the results of Kamenetski (1969) and Kaufman (1979). Asymptotic
expansions are simple to program, and very rapid to calculate.
They work best at late times, when it seems that the algorithm of
Enight and Raiche is slowest (in its pre—digital filter form).

The algorithms discussed above (such as that of Knight and
Raiche) provide a means of calculating layered earth responses at
relatively little cost. However a Geophysicist’'s task is mnot to
calculate the response from a given earth model (the forward
problem), but rather, to infer the layered structure from the
response of the layered earth (the inverse problem).

In practice the inversion problem is solved by employing anmn



iterative optimization algorithm which automatically adjusts &
layered earth model (from some initial guess) in such a manmner so
as to minimize a cost function which is a measure of the
discrepancy between the response obtained for the adjusted model
and the desired response. The 'solution’ obtained by such an
optimization algorithm will be the local minimizer of the cost
function, and except in exceptional circumstances the solution
obtained is dependent on the initial guess used in the
optimization algorithm. The 'best’ solution can only really be
obtained after a number of initial guesses have been tried for
the optimization program. The choice of these initial guesses
must be guided by the geophysicist’s intuition, knowledge of
geological informafion, and the results of previous runs of the
algorithm. It is therefore essential that if the geophysicist is
to gain a feel as to what the solution space looks like, then the
inversion (or optimization) runs must be made in real time whilst
the user is waiting at an interactive terminal. To achieve this
every possible efficiency must be incorporated into the code
which calculates the forward problem.
1.3 Layered Earth Inversion

Several layered earth inversion schemes currently exist
(such as those developed by Anderson for the EM library of the
United States Geological Survey), but the program developed by
the C.S.I.R.0. and Macquarie University called GRENDL is the most
notable. GRENDL has the following features:

(1) The forward solution is the Knight and Raiche rountine

discussed above.



(2) The inversion algorithm is a modified Marquardt
algorithm (damped least squares) which was developed by Jupp and
Vozoff (1975).

(3) The program allows for simultaneous joint inversion of
two data sets taken at the same locality. The program currently
supports resistivity and TEM layered earth inversiom (either or
both). Joint inversion has the advantage that it may be capable
of resolving the parameters associated with a certain layered
structure which one data set would be unable to do alone. This
is because TEM and resistivity respond differently to certain
layered structures. Thus joint inversion could be useful for
resolving thin resistive layers to which TEM sounding is not
sensitive.

(4) The parameter statistics of the final model give an
estimate of a parameter’s effect in ascertaining the final model,
and an indication of the error or reliability associated with a
particular parameter.

GRENDL provides an excellent means of inverting layered
earth data, but it is subject to two weaknmnesses:

(a) If TEM data is being inverted, thenm GRENDL runs slowly.
This is particularly true for small and medium sized computers,
and this makes it difficult to ron the program interactively.
Therefore it is difficult for the user to develop and apply an
intuition to the problem. Seeing the results of an inversion
soon after an initiel guess has been made provides the user with
quick feedback, and thus confirms or denies any suspicions which

guided the user towards that initial guess. In such a way an



idea of the form of solution space may be built up.

(b) Like many other inversiom schemes the Marquardt
algorithm only finds a local minimum of the cost function. The
statistics estimates are dependent on the shape of the 'valley'
associated with the local minimuﬁ of the cost function, and thus
they will only be correct if the valley found by the optimization
routine is the correct valley (global minimum). Statistical
information should only be taken note of if the user is confident
that the correct valley in the solution space has been obtained.

Overcoming the problem outlined in (a) above (i.e. making
the program quicker) would allow the problem referred to in (b)
to be partially overcome. If the algorithm was to be quicker,
then many initial éuesses could be tried, and thus the user could
gain an indication as to how stable and how geologically feasible
the solutions obtained are. This would substantially decrease
the users reliance on the parameter statistics calculated by the
inversion algorithm,

1.4 Possible Refinements

The aim of this thesis is to investigate methods by which
the TEM response over a layered earth can be calculated more
rapidly. If this is achieved then it may be possible to refine
or complement the GRENDL program at a later stage.

The TEM prospecting system considered consists of a
horizontal receiving loop (R) and a horizontal transmitting loop
(T). The current flowing in the magnetic loop has the following

time dependence.
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FIGURE 1.3
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Such a ramp input function can model various prospecting
systems such as UTEM (Lamontagne et al (1980)), but for small <
or in the limit as v« 0 it models the SIROTEM system (Buselli and
0'Neill (1977)).

Define the following scaled dimensionless variables

QUANTITY UNIT
length A
conductivity On+1l
time Un+1ul2
permitivity °2n+1"x2
electric field intensity volts/A
current density amps/A2

A can be any length, but it is most conveniently chosen as

the radius of the loop (or ome of the side lengths in the case of
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rectangular loops).

We wish to compute the dimensionless gquantity

Z(t) = hogq V/ I

Where V is the electromotive force (emf) induced in the receiving
loop (Volts), Ip is the peak value of the current in the
transmitter loop (Amps) and On+1 is the basement conductivity
(see figure 1.2). Z(t) is related to the mutual impedance of the
transmitting and receiving loops over the layered medium.

O'Brien and Smith (1984) (see appendix for details) show

that the Mutual impedance can be written

Z(t) = '1/(2ni)d/f exp(st) Z(s) ds (1.2)
c
where
Z(s) = -1/(4n) sI(s) J/f dl P(1) K(1,s) (1.3)
o

The form of I,P and K can be obtained from the appendixz. It
is sufficient to point out that K depends on the earth'’s
geometrical and electrical properties and can be computed in
terms of elementary functions. P (the loop function) depends
solely on the loop geometry, and is independent of the electrical
properties of the ground. The contour of inte gration must 1lie
to the right of any singularities of Z(s). In the appendix it is
shown that in the quasi-static approximation K has a square root
branch cut on the line [~ =, -12] and a possibility (in cases of

layers more conductive than the basement) of a finite number of
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poles in the region [-12,0). The singularities are therefore
confined to the negative real axis, and the contour may be any
vertical line in the right half plane. The order of integration

is reversed, and the contour is deformed around the negative real

axis. Thus

© _11
Z(t)= -1/ (4n) d1 P(1) { / ds exp(st) sI(s) D(1,s) + residues
at poles}
o —-o (1.4)

where D is the discontinuity function of K across the branch cut.

D(1,s) = 1/(2ni) 1im [K(1,u—iv)-K(1,u+iv)]
voot

where s=u+iv.

By discarding the effect due to the residue at the poles the

order of integration can again be exchanged, and the following

result is obtained:

Z(t) = (1/<)I By(t) - Bi(t-<) 1] (1.5)
where

Bi(t) = (1/n2)‘//’ dx exp(-x2t) x 2(i-1) g(y) (1.6)

[
and
1
S(x) = n/ZJ/f. de P(mx) D{(m, x)
o

x and m are defined by:
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s=—x2
Taking the limit as t9 0 gives

Z(t) = - By(t) (1.7)

The solution obtained for layered earth responses is given
by (1.5) and (1.7). The results derived are subject to the

following assumptions:

(1) The time dependence of the current is as shown in figure

(2) The transmitter and receiver lie on a flat earth, The
transmitter and receiver wires are filamental.

(3) The earth geometry(as shown in figure 1.2) consists of

a finite number of layers with differing thickness (d;) and

conductivities (o;), The layers are of infinite horizontal

extent, and lie above a half space of infinite horizontal and
vertical extent,

(4) The quasi—-static approximation has been made (€= 0).
Grant and West (1965) have justified the validity of this
approximation. Lee (1981) discusses the validity of the
approximation for a uniform half space.

(5) That the residues due to the poles can be ignored. The
validity of this approximation is discussed later.

Given this formulation of the problem the purpose of this
thesis is to investigate means by which the calculation of TEM
layered earth responses can be performed more rapidly. The

formulation also offers a number of advantages over previous
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formulations. The efficiencies and advantages of the formulation

are outlined below.
1.4.1 Asymptotic Expansion
Equations (1.5) and (1.7) are in a form to which Watson's

lemma (Olver 1974) can be applied.

Bitt) ~ Ai(t) = (1/2n2>Z Sp M((x+1) 72+41) ¢~ ((£+1) /2+4)

=0
(1.8)
where S, are the Taylor co—efficients of the function S.
@
S(x) = xZZ Sy xt
e (1.9)

0'Brien and Smith (1984) show how the terms of the expansiom can
be computed. Computation times are very rapid — being measured
in terms of hundredths of a second for the first time, and
thousandths of a second for all subsequent times. The saving for

later times is because the S, can be computed once and then

stored for later use. The S, gre¢ independent of time, and vary

only with the loop and earth geometry. The advantage of this
asymptotic expansion is that the region of 'convergence’ can be
determined. It is therefore possible to decide whether to employ
the expansion to calculate the TEM response, or to use the more
costly Knight and Raiche routine. The incorporation of the
asymptotic expansion into GRENDL should reduce the total

computation time for GRENDL significantly.
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1.4.2 Numerical Integration

Knight and Raiche decreased the computation time and the
instability of layered earth calculations by incorporating the
Gaver-Stehfest algorithm for the inverse Laplace transform. The
Gaver—Stehfest algorithm requires that the fumction to be
inverted must be known analytically. To achieve this Knight and
Raiche must perform the inverse Laplace transform prior to the
Hankel transform. As a consequence of this the time variable is
contained in the inner integral, and thus inverse Laplace and
Hankel transforms must be computed for each time at which the
response is required. In the formulation of this thesis the time
variable appears only once — in the outer integral of equation
(1.6). This is a consequence of the fact that numerical
instabilities have already been overcome because of the analytic
continuation inherent in the deformation of the conmtour of
integration around the spectrum of the integrand. A direct
numerical integrationm should therefore provide further
efficiencies, as the response at all times can be calculated with
one evaluation of the inverse Hankel transform (the m
integration). In testing this hypothesis standard numerical
integration packages can be employed. The method only works when
the basement is more comductive than any of the overlying layers.
There are two reasons why this is so for resistive overburdens:

(i) The kermel K(1,s) has no poles in the region [-12,0],
and thus no errors are introduoced due to omission of the residues

in equation (1.4),

(ii) The function S(x) is smooth, and therefore the outer
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integration is easily computed.

For cases of layers more conductive than the basement it is
possible for the function K(1,s) to have poles, and the pole
terms, although they have no effect on the asymptotic amalysis,
do become important at early times. Also, there are zeros
associated with the discontinuity function D(1,s). They occur in
complex conjugate pairs in the complex x plane. As the
conductivity contrasts increase these zeros migrate towards the
line of integration, and cluster towards the origin. The kermnel
of S(x) therefore develops nasty peaks, and this makes the
numerical integration exceedingly difficult. It is possible to
evaluate the function S(x) ﬁy using adaptive integration
algorithms, but the cost of such calculations is not justified.
The numerical integratiom of (1.5) or (1.7), is therefore only
suitable for resistive overburdens.

1.4.3 Integration Over Time Windows
In practical TEM prospecting systems the quantity measured

is not Z(t), but rather the average of Z(t) over a finite time

interval (window).

tiv1
Z(tj,ti+3) = 1/(t541 —ti)/t Z(t)dt
i

Normally this average would be calculated numerically, but
clearly this is expensive. Formulae (1.5) and (1.7) and (1.8)
can all be analytically integrated with respect to time, and thus
the integration over time windows can be performed with a

negligible increase in the computational cost. There is a marked
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difference between data which has been integrated over a window,
and data which has not (particularly in the early SIROTEM

channels). This, and the effect of altering the ramp rise time

(v) are illustrated later.

1.4.4 Asymptotic Inversion

| The asymptotic expansion (equation (1.8)) can be calculated
so rapidly that when it is incorporated as the forward problem in
an inversion routine it is possible to complete an inversion run
on a Cyber 173 in approximately 5 seconds. On smaller machines
the inversion would also be completed in real time. As the
region of convergence is known, it is possible to devise
algorithms which discard data for those channels at which the
expansion diverges.l The asymptotic formula can therefore be used
to develop the geophysicist’'s intuition concerning the problem,
and to provide the user with a feasible initial guess for a more
sophisticated program such as GRENDL.

The asymptotic formula has been incorporated into a non-
linear least squares optimization program which permits arbitrary
linear constraints to be imposed on the parameters. These
constraints allow for positivity constraints on the
conductivities and thickmnesses, and constraints which are
dictated by geological evidence and the user’s intuition.

Having a TEM fitting program which can be run in real time
is a significant step towards quantative modelling of TEM field
data. It provides an ability to differemciate between the
response of a mnon-layered conductor and the surrounding layered

strata. It also provides a simple means of bedrock mapping, and



the mapping of conductive layers such as coal seams.

18
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Section 2 — Asymptotic Expansions

2.1 General

The asymptotic formula for Bi(t) is as given in equation

(1.8).

Bi(t) ™ Ay(t) = (1/2:12)2: S. M((z+1) 7244) ¢~ ((¥1) /244)

=0

(2.1)
and thus we have
z(t) = (1/%) [By(t) - By(t-v) ] (2.2)
or, as T = 0
Z(t) = - By(t) (2.3)

The details of calculating the co—efficients S, is contained
in the paper listed in the Appendix. The first two terms of this
expansion reduce to the formula given by Lee (1982). For the
uniform half-space the expansion reduces to the formulae given by
Lee and Lewis (1974) and Reiche and Spies (1981).

The expansion for P(mx) D(m,x) is a divergent power series,
and thus the expansion for A; is an asymptotic series. Therefore
the expansions for the ’'scaled voltage' (Z(t)) will in general be

divergent.

Consider the layered earth and loop geometry shown in figure
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TS
—

20 m 0'1 = 0.01 Siemens

40 m 02

03 = 0.05 Siemens

Figure 2.1 The layered earth anmnd loop geometry
considered.

The time dependence is a step function input (T=0).
The magnitude of the first 21 terms in the expansion for

the voltage (evaluated at time t=5.754 milliseconds) are shown in

Figure 2.2 for three different values of o4, For o9 = .01

Siemens the expansion can be regarded as essentially

convergent, as 2l1l the terms calculated are rapidly deceying away

to zero. However for 02 = .3 Siemens the terms decrease in size

until about the eighth term when they start to increase. This
situation can be termed 'apparent convergence’. Notelthat,the
odd and even terms differ substantially in magnitude. In the

case when ¢ = 1 the termsize increases immediately. In this case
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rlotted against term number for Sigma (2) equal
to .01, 0.3 and 1.0 Siemens. For 0.01
Siemens the answer is accurate to within .1%.
For the 0.3 Siemen case it is accurate to
approximately 6%. For the final case the result
is very poor.
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the expansion is divergent.

Erdelyi (1956) has shown that the error in using i terms in

the asymptotic expansion for

//rexp(—xt) / (1+t) dt (2.5)

o

is given by the magnitude of the (i+1)th term. By drawing an
analogy with equation 2,1 it is possible to gain an indication of

the magnitude of the error of the asymptotic expansion by

defining the Error factor:

Error factor Ep =

where Tj; are the individual terms of the expansion and Tj-1 and

T; are the smallest two comsecutive terms. T; and Tj—1 are

defined such that

i i
JWHNE T IR NV RIE N B
i=1 =1

where & is some small tolerance (e.g. .5 x 10—4), This
definition is required, because (as can be seeﬁ from figure 2.2),
the terms in the expansion oscillate in size, and thus requiring
that two consecutive terms be negligible is a more stringent
‘convergence’ criteria than requiring one be mnegligible.

Figure 2.3 is a plot of Z(t) obtained by wusing the
asymptotic expansion for different conductive overburdemns with a

thickness equal to the loop radius. <=0, and the times are
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scaled times. The dotted lines represent the scaled voltages

where the expansion is divergent, From the contour plot it would
be possible to obtain the voltage for any of the times and
conductivities plotted on the diagram by multiplying by the scale
factor Ip / op+1h. For this particular voltage plot the factor
Ep is plotted on figure 2.4. The number of terms required to
calculate the voltage is plotted on figure 2.5. The voltages inmn
the same region calculated by the Knight and Raiche (1982)
algorithm are shown on figure 2.6. The difference between the
asymptotic method and the method of Knight and Raiche (1982)
expressed as a percentage of the asymptotic voltage is shown on
figure 2.7. Similar plots (figures 2.8 to 2.12) have been done
for resistive overburden (coincident circular loops, layer depth
is one scaled wumnit). In the range of cases for which
verification has been done the asymptotic expansion provides
excellent answers for Ep ¢ 0,1, This verifies the hypothesis
adopted that the most accurate answer will be obtained after the
addition of the smallest two consecutive terms in the series.

The time taken to calculate all the voltages on Map 2.3 by
the asymptotic method was .921 seconds of CPU time on a Cyber
173. The Knight and Raiche routine took 1200 seconds of CPU time
on a Vax (runs courtesy of CRA). The Knight and Raiche algorithm
took longer'for the most conductive case compared with the least
conductive case (440 seconds compared with 11 seconds). However

the asymptotic expansion obtained no meaningful voltages for the

most conductive case.
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2.2 Conclusion

The asymptotic approximation to the integral represents an
extremely quick method of calculating the voltages. As the
region of ‘'convergence’ is known, the gain in rum time is
obtained with no loss in accuracy, however it is only valid at
late times (see figures 2.4 and 2.9). The formula can cater for
differing ramp times, and a range of loop geometries. Although
this thesis has restricted discussion to circular coincident
loops, Smith (1982) has shown that for times when the expansion
is valid circular and square loops of the same area have very

similar responses (less than 1% discrepancy).
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Section 3 — Numerical Integration

When the asymptotic expansion is divergent, it may seem
reasonable to integrate equation 1.6 numerically. The advantage
offered by the formulation outlined in Section 1 is that the time
dependence appears only once — in the outer integral. The S(x)
calculated are independent of time, and can be evaluated and
stored for use at all times for which the response is desired.
This could allow substantial savings ii computing times. To
investigate whether such a numerical integration is pogsible we

must look at the integrand. Define R(x,m) by the following

relation:
R(x,m) = P(mx) D(m, x).

The functional form of P and D are given in the appendix.
Considef circular coincident loops lying on a layer over a
half-space. The layer thickness is equal to the loop radius.
The function R(x,m) has been calculated as a function of m and x2
(for ease of programming) and plotted omn figure 3.1. 3.1(a)
shows the function when the top layer is 100 times more
conductive than the basement, and 3.1(b) shows the function when
the top layer is 100 times more resistive than the basement. For
the resistive case the function is smooth, whilst in the
conductive case large spikes occur. To illustrate the manmer in
which the function changes as the conductivity changes the log of

R(x,m) has been plotted for ¢ = 0.01, 0.1, 1, 5, 10 and 100 (See
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figures 3.2 to 3.4). For the resistive cases the function is
smooth, however when the top layer conductivity increases, ridges
due to the complex zeros associated with the function D(m, x)
develop. These zeros occur in the complex plane, and as they
migrate towards the line of integration, the ridges become
sharper and larger, and they cluster towards the origin, Figure
3.5 has been plotted on an expanded scale 0¢{x2¢1 to show the form
of the ridges close to the origin. The position of the 'valleys'’
in each plot are unchanged, as these are the zeros of the Bessel
function contained in the loop function P(mx).

For resistive overburdens the integrations can be done
easily. Figure 3.6(a) shows the voltages for a resistive earth
(Model #1) made up of three layers with conductivities 0.001,
0.01 and 0.005 Siemens and thicknesses 10, 20 and 30 metres (from
top to bottom) above a half space of 0.01 Siemegs. The three
methods used to calculate the voltages all give identical
voltages (to 4 significant figures). The graphs in figure 3.6
were drawn using 20 SIROTEM channgls. but so that the graph would
not be clustered only 10 channels are displayed. Figure 3.6(b)
shows the voltages for Model #2 (two layers, both with
thicknesses of 20 metres and conductivities of 0.1 and 0.01
Siemens above a half-space of 1 Siemen). The asymptotic
expansion has broken down at 4.97 milliseconds, but the numerical
integration and Knight and Raiche’s algorithm agree to 4
significant figures. The calculation times for the asymptotic
expansion is .24 seconds, whilst the numerical integration can be

performed in less than 2 seconds. The numerical integration can
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be efficiently performed with a 15 point rule for the m
integration on [0,1] (see appendix), and a 15 point Laguerre rule
for the x integration (Abramowitz and Slegun (1970) page 923).

For conductive overburdens the ridges in the function R(m,x)
make the integration difficult to perform. Adaptive integration
must be used so as to place the quadrature nodes near where the
function varies rapidly. For the m integration Patterson's
(1973) 225 point rule was used, whilst for the x integration an
adaptive 3 point Newton—-Coates rule was used (0'Brien D.M. (1978
- unpublished)). Results obtained were f;und to be stable with
respect to the relative error requested from the integration
routine. The voltages obtained by such numerical integrations
were found to disagree with the results obtained from Knight and
Raiche (1982), and from the asymptotic expansion when it was not
divergent. The error in the numerical integration was attributed
to the fact that the poles in the spectrum of K(1,s) have been
ignored. As the asymptotic expansion gave valid answers when it
was not divergent the effect of ignoring these poles was
concluded to have no effect on the asymptotic analysis. The
numerical integration of equation 1.6 for TEM responses of
geoelectric sections with layers more conductive than the
basement is not useful. There are two reasons for this:

(1) The function develops nasty ridges which are difficult
and inefficient to integrate, and

(2) the results are unreliable due to the fact that the
poles of K(1,s) on [-12,0] have been ignored.

However for resistive overburdens R(x,m) is smooth, and can
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be evaluated rapidly for many different times. It should

therefore be possible to incorporate the numerical integration of

equation 1.6 into a program such as GRENDL for such resistive

cases.,
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Section 4 - The Effect of Integration Over Channels
and Ramp Rise Time

4.1 Mathematics

For the SIROTEM system, the voltage measured in channel i is
the average voltage over a time window from t; to tj4q (Buselli
and O’'Neill (1977)). The voltage is thus calculated by

evaluating

ti+1
Z (ty, tij41) =1/ (tjeq1 - ti)J[ Z(t) dt
ty
For the asymptotic.expansion we obtain:
Ag(ty) = Ag(tyeg) — Aty — ©) + Ag(tjeq-1) >0

T(tiey = t3)

Z(tip ti+1) =

Al(ti+1) = Al(ti)

(ti+1 = tji)

For the numerical integration:

Z(ty, typq) =1/ (x2(t 1-t;)) / (exp(-x2t )-exp(-x2t;, 1))
& (-x21(-x2)) S(x)dx

where the function I has the form given in the appendix.
The integral over a SIROTEM window can therefore be domne

with 1little additional computational effort. This eliminates
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assumptions made by previous workers that the SIROTEM voltage in
a particular channel can be approximated by the voltage at a time
somewhere in the middle of the chaﬁﬁel.

4.2 The Different Responses

The effect of integration over channel windows, and of
varying the ramp rise time is shown on figure 4.1, For a fixed
layered earth geometry, and coincident circular loops, the
voltage for the first 15 SIROTEM channels has been calculated in
four different situations:

(a) The Voltage is that measured at 5 time in the middle of
the window (i.e. not averaged over a window). The ramp rise time
is 0.0 millisecondg. The times chosen to represent the channels
are those chosén by the GRENDL routine.

(b) The Voltage is integrated over a window. The ramp rise
time is 0.0 milliseconds.

(c) The Voltage is not integrated over a window. The ramp
rise time is 0,2 milliseconds.

(d) The Voltage is integrated over a window. The ramp rise
time is 0.2 milliseconds.

The earth/loop geometry used is a conductive overburden 100
metres thick of 0.0025 Siemens over a basement of 0.001 Siemens.
Circular coincident loops of radius 100 metres are used.

Each calculation displays a refinement which allows the
actual situation to be modelled more closely. It can be seen
that integrating over time channels alters substantially the
value of the voltage obtained, particularly in the early

channels. The value of 0.2 milliseconds for the ramp rise time
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was chosen arbitrarily to illustrate the point that having an
idea of the ramp rise time will allow a better approximation to
the voltaeges obtained with a SIROTEM unit over the prescribed

earth. The effect of ramp rise time was.also consi&ered by

Raiche (1983).
4.3 Fitting the Different Responses

In Section 5 the imnversion of layered earth data is
discussed. So as to comnsider what effect the channel integration
and ramp rise time have we will apply the techniques discussed in
that section to a certain earth model. Synthetic data was
generated for a conducting overburden of 0.02 Siemens, 50 metres
thick over a basement with conductivity 0.01 Siemens. The loops

are coincident and have 2 100 metre radius. This is denoted as

Model 3, and is shown in figure 4.2.

Al

50m U, =-.02 Siemens

02 -.01 Siemens

Figure 4.2 The model used for generating the synthetic
datsa,
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The ramp rise time was 0.05 milliseconds, and the data was

integrated over channel windows. Using the correct answer as an
initial guess, this data was inverted; however the ramp time was
varied, and the forward problem was utilized both with and then
without integration over a window. The inversion results are
illustrated on table 4.1. SSQ is the sum of the squares of the
discrepancy between the final model data and the data of the
model to be inverted. o is a factor which describes the layered
earth geometry. This o factor will be discussed more in Section
5. For this earth model the final solution depends critically on
the ramp rise time, and whether or not voltages are integrated
over a window. If reasonable inversion results for such cases
are to be obtained the voltages must be integrated over a window,
and the ramp rise time must be known fairly accurately. For
SIROTEM the ramp rise time varies with loop size and the
conductivity of the earth. This presents a difficulty with the
design of the SIROTEM system if quantitative interpretation of
SIROTEM data is to be carried out. The improvement gaimned by

integrating over a window and using a ramp function input is

clear.



TABLE 4.1

The effect of Ramp inputs and integration over windows
Ramp time Integration INITIAL GUESS FINAL SOLUTION
(millisec) dq oy oy dq oy oy a ssa
0.05 YES 50 0.02  0.01 50 0.0200  0.01 ~.500 10711
0.04 YES 50 0.02 0.01 48.255 0.0208 0.00997 -.526 .3110—3
0.06 YES 50 0.02 0.01 54.93 0.0188 0.01 -.485 .27110-4
0.00 YES 50 0.02 0.01 57.44 0.0209 0.00985 -.641 .15x10--1
0.05 NO 50 0.02 0.01 68.66 0.0211 0.00934 -.866 .133
0.0 NO 50 0.02 0.01 55.81 0.0247 0.00933 -.9187 .161
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Section 5 — Asymptotic Inversion

5.1 The Inverse Problem

The run times for the forward problem allow SIROTEM voltages
to be calculated interactively. The rapidity of the calculation
and the refinement of integrating over windows makes the forward
problem an attractive method of inverting SIROTEM layered earth
data. Using the asymptotic expansion alone as the forward
problem, run times for the inversion program are about 5 seconds
for a 2 layered earth above a half-space. The rapidity of the
calculation means that many runs can be done interactively. This
will allow the interpreter to gain a feel for the data. When the
expansion breaks dowp at early times the numerical integration
can be nsed, however this slows the run times considerably. By
using the asymptotic expansion only, and by restricting the fit
of the data to the later times when the asymptotic expansion is
valid it is possible to obtain a good initial guess for one of
the longer runs, The idea of gaining an approximate solutiom for
use in a longer inversiom program is similar to the method
advocated by Petrick et al. (1981) with three dimensiomnal
resistivity inversion programs.

Regularization programs such as those of Jupp and Vozoff
(1975) have been employed to handle the instability of the
layered earth inversion problem. The unconstrained non—linear
least squares IMSL (International Mathematical and Statistical
Library) routine 'ZXSSQ’' was tried on the inverse problem. In
general this proved unsuccessful, with the routine returmning

large negative depths and conductivities for some cases.
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Inverting to the logarithm of the parameters places positivity
constraints on these parameters. This refinement was tried but
no significant improvement was achieved. A non-linear least
squares algorithm with linear constraints supplied by Holt, 7.
(personal communication) was incorporated for use in inverting
layered earth SIROTEM data. This algorithm therefore allows
positivity and geologically feasible constraints to be placed on
the parameters. The instability of the problem requires that an
interpreter has an understanding of how the initial guess for the
routine will effect the final outcome of the inversion. To
illuostrate this a large number of inversion runs on synthetic
data, generated by the forward problem, will be presented.

5.2 Inversion of Synthetic Data

The data was generated by the asymptotic expansion. A
single layered earth geometry was chosen such that the asymptotic
expansion would be valid at each SIROTEM channel, Because
inversion runs could be completed in about 5 seconds a large
number of runs can be carried out in an interactive computing
session, This allows the interpreter to use the results from the
previous run to act as a guide for the next initial guess.

The layered earth and loop geometry used was Model 3 definmed
in section 4.3 and illustrated on figure 4.2, The ramp rise time
is 0.05 milliseconds, and the voltages are integrated over each
SIROTEM channel. See Table 5.1 for the voltages obtained.

Although Model 3 may not be representative of field examples
which require interpretation, and it may be possible to determine

the layer geometry by existing methods (e.g. Raiche and Spies



TABLE 5.1

SIROTEM. Window (millisec) MODEL 3 MODEL 4
(from) (to) Voltages Apparent Conductivity Voltages Apparent Conductivity
0.25 .6 1.102 x 1072 0.0139 9.322 X 1073 0.0125
0.65 1.0 1.373 x 1073 0.0132 1.209 ¥ 1073 0.0119
1.05 1.4 4.511 x 1074 0.0125 4.049 x 1074 0.0116
1.45 1.8 2.085 x 1074 0.0122 - 1.896 x 1074 0.0114
1.85 2.2 1.154 x 1074 0.0119 1.059 x 1074 0.0113
2.25 3.0 5.936 x 1079 0.0117 5.501 x 1073 0.0111
3.05 3.8 2.913 x 1073 0.0115 2.725 x 1073 0.0110
3.85 4.6 1.673 x 1079 0.0113 1.576 x 1073 0.0109
4.65 5.4 1.062 x 1075 0.0112 1.006 x 1073 0.0108
5.45 6.2 7.227 x 1078 0.0111 6.869 x 1076 0.0107
6.25 7.8 4.510 x 1076 0.0110 4.306 x 1076 0.0107
7.85 9.4 2.642 x 1076 0.0109 2.534 x 1076 0.0106
9.45 11.0 1.700 x 1076 0.0108 1.636 x 10°6 0.0106
11.05 12.6 1.169 x 1076 0.0108 1.128 x 1076 0.0105
12.65 14.2 8.434 x 1077 0.0107 8.158 x 1077 0.0105
14.25 17.4 5.597 x 1077 0.0107 5.428 x 107! 0.0104
17.45 20.6 3.483 x 1077 0.0106 3.387 x 1077 £0.0104
20.65 23.8 2.338 x 10”7 0.0106 2.279 x 1077 0.0104
23,85 27.0 1.658 x 1077 0.0105 1.619 x 1077 0.0104
27.05 30.2 1.225 x 1077 0.0105 1.198 x 1077 0.0103
30.25 36.6 8.345 x 1078 0.0105 8.172 x 1078 0.0103
36.65 43.0 5.332 x 1078 0.0104 5.231 x 1078 0.0103
43.05 49.4 3.647 x 1078 0.0104 3.583 x 1078 0.0103
49.45 55.8 2.623 x 1078 0.0104 2.580 x 10”8 0.0103
55.85 62.2 1.961 x 1078 0.0103 1.930 x 1078 0.0102
62.25 75.0 1.351 x 1078 0.0103 1.332 x 1078 0.0102
75.05 87.8 8.746 x 1072 0.0103 8.630 x 1072 0.0102
87.85 100.6 6.038 x 1077 0.0103 5.964 x 1077 0.0102
100.65 113.4 4.374 x 107 0.0103 4.323 x 1077 0.0102
113.45 126.2 3.287 x 1072 0.0102 3.251 x 1072 0.0102
126.25 151.8 2.280 x 1077 0.0102 2.257 x 1072 0.0102
151.85 177.4 1.485 x 1077 0.0102 1.471 x 1077 0.0101
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(1981)), the inversion of this model does illustrate a number of
important aspects of layered earth inversion.

At late times the expansion for the voltage becomes
dominated by the first term in the series. The first term is
proportional to t—5/2. Therefore when the results are plotted in
log—log space the voltage response will be close to a straight
line., This is shown for this particular earth geometry on figure
5.1. The first term of the series is independent of layered
earth geometry. Thus, in situations where the late time respomse
is a straight line of slope -5/2 in log—-log space it is possible
to determine the scale factor Ip/gn+1x from the axis intercept.
This will fix the bgsement conductivity. From figure §.1 it can
be seen that the voltage response is very close to that of a
half-space. The effect the top layer has on the voltage response
is only seen in the early channels.

5.2.1 Apparent Conductivity

Raiche and Spies (1981) define the apparent conductivity at
a certain channel as the conductivity of a half-space which would
give the measured voltage response at that channel. By inverting
a half-space to the voltage in one channel it is possible to
obtain the apparent conductivity for that channel. These and the
relevant voltages have been depicted on Table 5.1 (as Model 3).
The apparent conductivity at late times tends quite clearly to
the half-space conductivity (0.01 Siemens). Thus in this case
the basement conductivity is obtained with little difficulty.
Above this basement there are obviously conductive layers, how-—

ever the conductivities and depths of the layers is not clear
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from the apparent conductivity data. The apparent conductivity
data gives no indication of more thanm one layer above the
basement.

For the inversion routine two types of initial guesses can
be made. Omne involves choosing the top layer conductivity equal
to the basement conductivity and making an intelligent guess for
the depth. The second involves using the earliest time apparent
conductivity for the top layer conductivity and an intelligent
guess for the depth. Table 5.2 shows the first guesses, the final
Parameters returned by the inversion routine and results from
subsequent guesses.

The answer with the best fit to the data is the result with
the least sum of squares. Clearly one run is never sufficient to
obtain the best result. For technique 1 the first guess
indicated that oy and dy; should be larger. This was used in
subsequent guesses. For technique 2 the first guess indicated
that o4 should be larger while d; should be smaller.

These runs, and those on Table 5.3, show how the model
returned by the inversion routine is strongly dependent on the
initial guess.

For n layers above a basement excited by coincident circular
transmitter and receiver loops it is possible to show that Sy and

Sl in Equation 1.9 are given by



TABLE 5.2

INITIAL MODEL FINAL MODEL

depth o1 ) depth o4 Gy a Sum of Squares
TECHNIQUE 1
Run 1 20 .014 .01 68 0174 .009988 -.5074 1073
Run 2 30 .015 .01 49.98 .02 .01 -.5 1077
Run 3 40 .015 .01 49.98 .02 .01 -.5 10”7
TECHNIQUE 1
Run 1 100 .01 .01 82.31 .0161 .01 -.5054 .002
Run 2 82 .0161 .01 82 .0161 .01 ~.5054 .002
Run 3 70 .017 .01 68 .0172 .01 -.494 .001
Run 4 60 .021 .01 49.99 .02 .01 -.5 10710
Run 5 60 .03 .01 49.99 .02 .01 -.5 8 x 10710




TABLE 5.3

INITIAL GUESS DEPENDENCE - INVERSION FOR MODEL 3

INITIAL GUESS FINAL MODEL

d1 o1 Gy dy o1 Gy a Sum of Squares
100 0.015 0.01 113 0.0147 .00997 | -.536 .011

20 0.035 0.02 50 0.0199 .00999 -.500 0.4x10"10
20 0.04 0.01 38.7 0.0228 .00997 -.495 .00004
100 0.02 0.01 109.7 0.01477 .00997 -.528 .0012

20 0.004 0.01 99 0.0152 .00998 -.519 .0013

10 0.01 0.02 10 0.0569 .0101 -.466 .0014

40 0.03 0.01 50 0.02 0.01 -.500 10710

60 0.03 0.02 113 0.0147 0.00997 -.534 .00109
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2]
o
n

2n2/15 (independent of layered earth geometry)

n
n/32 [-2 ) . d; (1-0;)n2]

i=1

-n3 a/16

7, ]
[
I

n
where a =E d;(1-0;)
i=1

The subsequent.si depend on the conductivities and
thicknesses in a2 more complex manner. Note that the top layer
conductivity and thickness are poorly determined; however the
basement conductivity and a in the next to last column of Table
5.3 are in all cases well determined. For late times in the
asymptotic region the expansion will be dominated by the first
two terms. It is therefore possible to see why the parameters o4
and dy are not well determined for this case but o9 and a are.
Note also that in each case where a is well determined the sum of
squares is small. Therefore for late times different layered
earth geometrics with the same o and basement conductivities will
give similar voltage responses. The inversion routine minimizes
the sum of squares, therefore it will in general find the correct
@ very quickly. The o; and d; are highly correlated, and thus
the routine will have difficulty finding the correct combimnation
of 6; and dj. The difficulty is compounded by the fact that for
small sum of squares the step length in parameter space is small.
Therefore many iterations are required to reach the correct

answer. Often the routine will find the correct a quickly, but

if the 03 and dj which make up the @« are a long way off their



317

correct values then the routine will keep iterating slowly, and
stop prior to reaching the correct answer (e.g. rum 2 of
technique 2 Table 5.2). For the cases above which converged to
the correct answer the first iteration resulted in the top layer
thickness or conductivity being to within 30% of its correct
value.

It is important to ensure that guesses are made on either
side of the parameters which are finally decided on as being the
correct value. This ensures that these parameters are correct.
Where possible initial guesses should be in the convergent region
of the asymptotic expansion.

5.2.2 An Initial Guess With Many Layers

Table 5.4 shows the results from a set of inversion runs
with more than one layer in the initial guess. From the five
layer inversion run the conductivity of layer 3 was set to 10~4
(the lower bound constraint used for this run). This is a highly
resistive layer which the 'smoke ring’ of current (Nabighan M.
(1979), Lewis and Lee (1978), Hoverstein and Morrison (1982))
travels rapidly through. Its effect on the voltages is minimal,
and thus can be ignored. Layer 4 has had its thickness set to
zero and this layer also will have little effect considering its
conductivity is so close to that of layer five. Using the
previouns answer with layers 3 and 4 ignored gives a result in
which the effect of the third layer would be negligible. It can
therefore be ignored. Two subsequent 2 layer runs show that the
top layer can be ignored. Finally two one layer runs are

required to yield the correct model,



TABLE 5.4

INITIAL FINAL
Thicknesses Conductivities Thicknesses Conductivities a Sum of Squares
5 layers d 20 oy .02 20.98 f .00618 !
dy 20 gy .02 28.04 { .0381 j
d3 20 o3 .02 35.92 g .0001 -.498 i .1 x1077
d 20 oy .01 1 i .0158 1
dg 20 o5 .01 31,88 & .0145 !
og .01 | .01
3 layers 20 .0618 11.01 i .0059
30 .0381 44.66 ; .029 -.457 .8 x 102
30 .0145 34.82 ' .0001
.01 i .01
2 layers 11 .006 6.1 | .0001
40 .03 39.25 | .2425 -.4991 .5 x 1075
.01 | .01
10 .015 .01 § .001 )
10 .015 49.98 ' .02 -.499 .6 x 1071
.01 .01
1 leyer 40 .024 38.2 .0229 i
-.495 .23 x 1074
.01 .01
30 .03 49.94 .02
-.500 1078
.01 .01
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5.2.3 The Effect of Noise

Noise was added to the Voltage data (Table 5.1) by using the
CDC Cyber Fortran random number function RANF. The data was
corrupted three times and five different noise levels were
selected. The initial guess for the inversion was the correct
answer, and this was kept constant for all runs. The results are
shown in Table 5.5. The figures in brackets are the percent
standard deviation ((standard deviation measurement;/measure-

ment.,) x 100). The percent standard deviation for o7 and dj

increases more rapidly than the noise level. The percent
standard deviation for oy jncreases more slowly than the noise
level, while for ¢ the noise level and percent standard deviation
increased at about the same rate. These figures confirm that a
and 0y gare well determined, and that ci1 and d1 are poorly
determined for this layered earth. This is probably because the
effect of the top layer manifests itself in the early chanmels.
The results for d; and o1 are encouraging for noise levels
of about 1%, as this is of the order of the random noise which
may be expected in the field. For the figures presented the
initial guess used was the correct answer. If an initial guess

away from the correct answer was used then the results would have

appeared worse.
5.2.4 The Thin Resistive Layer Problem

The voltage output and apparent conductivity of the model of

Figure 5.2 is shown om Table 5.1 (Model 4).
The resistive layer is not seen in the apparent condunctivity

data (Table 5.1). Apparent conductivity figures will usually not



TABLE §.5

| Som of Squares

Percent Depth oy oy
Noise Level
.1 49.55 .639 .02008 + ,00012 (.597) .010002 + ,0000026 (.025) + .00053 (.105) ‘1074
.5 49.79 + 1.57 .020025 + .00029 (1.44) .01000017 + .000008 (.08) + 1073
1.0 49.27 + 2.86 .02013 + .0057 (2.85) .0100008 + .00002 (.2) .0055 (1.104) .0008
5.0 45.28 + 25.3 .0243 + .0099 (41.74) .009995 + .000071 .7 + .02
10.0 25.48 + 26.13 (102.55) 1774 + .264 (148.36) .00997 + .000133 (1.334) + .01411 (8.72) .3
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100 m
40m Uy =0.02 Siemens
10m U2 =0.005 Siemens

Uz =0.01 Siemens

Figure 5.2 Model used for generating the data for the
resistive layer problem.

detect thin resistive layers because the smoke ring (Hoverstein
and Morrisom (1982)) passes through’the layer quickly. In
general thin resistive layers are of little interest to the
Geophysicist. If a TEM interpreter had no 'a priori' information
a2 one layer case would be used to fit the model. The final model
obtained from a one layer fit is shown in Table 5.6. The results
from using the technigue of fitting too many layers is also shown
on Table 5.6, The five layer fit gives little indication of a
resistive layer, and it is only with 'a priori’ information that

the interpreter would look closely at the resistive layers.



TABLE 5.6

The thin resistive layer problem
INITIAL MODEL FINAL MODEL
dy o5 d; o3 a Sum of Squares
Run layer | 50 oy .02 31.95 .02096 -.3505 .4 x 1077
Sy .01 .01
Run layer 20 .02 3.47 (small) .0171
20 .02 19.18 .0180
20 .02 20.83 .0195 -.3497 175 x 10_5
20 .01 14.27 .0096
20 .01 29.38 .0089
.01 .01
Run layer 40 .019 35.6 .02017
15 .01 8.3 .0101 -.35 .1 x 1073
14 .009 30.2 .0096
.01 .01
Run layer 30 .03 38.18 .0198 -.35
10 .009 1 .056 .28 x 1078
30 .001 26. .0088
.01 .01
Run layer 31 .015 88.127 .0139
26 .008 50.55 .0105 -.355 .15 x 10_3
.01 .01
Run layer 10 .04 10.33 .034
50 .008 44.16 .012 -.351 .53 x 1076
.01 .01
Run layer 20 .02 38.8 .0198
10 .001 23,91 .0086 -.35 .13 x 10_7
.01 .01
Run layer 38 .02 40.35 .02
"~ 8.8 .005 8.78 .0039 -.35 .15 x 10_10
.01 .01
Run layer 38 .02 39.97 .2 -11
8.8 .005 (fixed) 9.97 .005 -.35 .42 x 10
.01 .01
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Subsequent 3 and 2 layer models do not aid in resolvimng the
Problem. Runs 7 and 8 have guesses very close to the actual
answer, but the correct answer is still not obtained. An initial
guess where the thin layer conductivity is known and fixed will
yield the correct result (Run 9). This serves to illustrate the
difficulty in distinguishing resistive layers unless there is
good geological control. For a resistive layer between two
highly conductive layers the effect would become more marked.

For the synthetic examples discussed above the instability
of the TEM problem is shown. The difficulty is amplified by the
near non—uniqueness of the problem, as earth geometries with
identical o and basement conductivities have similar voltage
responses in the asymptotic region. The blind inversion of TEM
data can be dangerous as any answer can be obtained for a poor
initial guess. Geological control is required:y however the
control should guide the interpretation not dictate the fimnal
answer. The use of geological information is best used to place
feasible bounds on parameters. The interpreter must always be
careful to distinguish between what is a geological fact and what
is interpretation.

The ability to place feasibility bounds on certain
rarameters is of particular advantage in the constrained non-
linear least squares inversion program of Holt (persomnal communi-
cation), as it restricts the parameters to feasible areas in
parameter space (Geologically feasible and mathematically

feasible — positivity).
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5.3 Strategy for Layered Earth Inversion

Prior to using a layered earth inversion algorithm the
interpreter must first check that the data is representative of a
layered earth. This can be done in a number of ways.

(1) Provided that the earth is non—polarizable (no Induced
Polarization (IP) or dispersion effects) negative voltages cannot
exist for a coincident loop geometry (Weidelt (1982)). Thus if
such negative voltages exist, it will not be possible to
adequately represent the induced currents of any earth structure
adequately without taking into account IP effects. To attempt to
fit the data to a non-polarizable layered earth model will there-
fore be of little value. It may be possible to obtain a layered
earth model which fits the data set in which the late time
channels with the sign reversals have been rejected (plus some
before, and those after the reversals). However the accuracy of
this fit cannot be guaranteed without a priori information of the
Cole-Cole model for the conductivity (Pelton et al. 1978)
relevant to the layers in question.

(2) Check to see if at late times the voltage response has a
-5/2 slope when plotted in log-log space. If so, this will fix
the basement conductivity, however it is not always possible to
obtain voltages at late enough times to observe the —5/2 slope.

(3) Check that along a traverse there is only a gradual
change in the Voltage response. If two perpemdicular traverses
both exhibit gradual changes then the earth will approximate a

layered medium.

(4) Look to the geological mapping of the area or drill hole
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information.

Having ascertained that the earth approximates a layered
medium the following strategy should be adopted:

(A) If the number of layers is unknown then determine the
number of layers by:

Either (i) Ascertaining the minimum number of layers
indicated by the apparent conductivity data

or (ii) Fit a half space to the data. Having found the
best half space insert additional layers until any additional
layer becomes redundant

or (iii) Start with as many layers as possible and
eliminate them one by one until a satisfactory solution has been
obtained.

(B) Both when the number of layers is known , and when it is
unknown, the asymptotic expansion should be used initially, and
guesses should be made within the convergent region. The imitial
guess should be varied so as to allow the inversion routine to
cover as large an area of parameter space as possible. This will
give it the best chance of obtaining the global minimum.

(C) If the asymptotic expansion breaks down in the early
channels these channels should be discarded. The discrepancy
between the erromeous voltage given by the asymptotic expansion
and the actual voltage will be large and this will dominate the
sum of squares and therefore adversely effect the results of the
inversion. Using only the late channels the effect of shallow
layers will not be felt, however this method should give a quick

indication of an initial guess which could be used in the more
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costly inversion programs.

(D) The application of the numerical integral of equation
1.6 should only be used when the layers above the half space are
resistive.

Alternatively the asymptotic expansion and the numerical
integration of equation 1.6 for resistive layers could be
incorporated within a routine such as GRENDL to speed the
computation. The data should still be checked to see that it is
representative of a layered earth. The strategy outlimed in (A)
can still be used.

In all cases many initial guesses should be used so as to
gain an idea of the shape of parameter space. In particular
guesses around the answer deemed to be the 'solution’ should be
tried to test the stability of this solution with respect to

variation of the initial guess.
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Section 6 — Conclusion

The currently available large loop layered earth inversion
schemes are computationally time consuming. The aim of this
thesis was to examine means by which the inversion of layered
earth data can be made more efficient, and thus interpretation
made easier and cheaper.

The analysis in the Appendix of this thesis has resulted in
algorithms which have a number of advantages over the methods
presented by previous workers (Knight and Raiche (1982), Lee and
Lewis (1974), Raiche and Spies (1981) and Morrisom, Phillips and
O'’Brien (1969)):

(2) The time dependence of equation 1.6 means that:

(i) The voltages can be calculated more
efficiently. When the asymptotic expansion is valid the
coefficients of the expansion are independent of time, and
therefore having calculated the coefficients for one delay
time they can be re—used for all subsequent delay times.
This results in an extremely rapid computation of the
response. At times when the asymptotic expansion is not
valid, and when the overburden is resistive the integral can
be evaluated numerically. This is also efficient, as the
time dependence appears only in the outer integral, and thus
the S(x) can be evaluated and stored for use at all the
required delay times. The asymptotic expansiom can be

evaluated more quickly than the numerical integration.
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(ii) The voltage can be integrated over a time window
with little extra computation time being required. The
SIROTEM equipment is therefore better represented
mathematically. This is of particular value in the early
STIROTEM channels.

(b) A variety of loop configurations can be modelled. This
means that the voltage response can be calculated for coincident
and separated circular loops, and coincident and separated
rectangular loops. The sizes of the receiver and transmitter
loops may be varied independently., It is also possible to obtain
expressions for other loop configurations.

This means that the half-space response can also be obtained
for these loop geometries. Therefore using a omne variable line
search inversion routine it is possible to obtain the apparent
conductivity at different SIROTEM channels provided that the loop
geometry function P(mx) is known. Apparent conductivity is a
useful interpretative tool, as it can give a good guide as to the
subsurface structure, and also give an indication of a good
initial guess for anm inversion algorithm. This formulation
provides a means of rapidly calculating the apparent
conductivities for loop geometries apart from the coincident loop
configuration.

(c) The incorporation of linear constraints in the non-
linear least squares inversion routine is useful. The
constraints allow the interpreter to place geologically and
mathematically feasible bounds on the parameters, and to prevent

the routine from deviating too far from an initial guess,
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(d) Although Raiche (1983) has also obtained results for a
variable ramp rise time the formulation presented here also

allows for that sophistication - the usefulmness of which is

illustrated in section 4.

The asymptotic and the numerical evaluations can be
incorporated into an inversion routine as the sole forward
algorithms, For channels when neither method gives an accurate
answer the data from those channels must be discarded. This
method was tried on very conductive field data, but the
algorithms were only accurate in the last four channels. The
information obtained from the inversion algorithm was therefore
inconclusive. In less conductive circumstances this method would
provide a good initial guess for a slower more general
algorithm — such as GRENDL.

However, if it is possible to include the asymptotic
expansion and the integration for resistive overburdens into a
routine which can calculate the response at early times for
conductive overburden, them in certain circumstances the
computation time would be decreased. The inversion could
therefore be performed in real time, and interpretation would be
significantly easier. The decrease in run times allows more runs
to be done in a given time, and thus, for the interpreter to
build up a better idea of what the solution space looks like.
This would also decrease the interpreter’'s dependence on the
Parameter statistics used by GRENDL (see Jupp and Vozoff (1975)).

The strategy outlined in section 5.3 represents a systematic

scheme for approaching layered earth inversion, regardless of the
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forward problems used. The incorporation of constraints into the
inversion routine is recommended because of the advantages it

contains.
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at.  time T . We firstly compute  the emd dinduced in Lhe
recedving  loop  and derdve an osymptotic serdes for the emf
ot late tAmes. Secondly, we estimate the evror  din
truncating  the asymptotic serdes ot N terms and design o
reliable numericol  olgorithm  Ffor summding the asymplotic

GET LB,



Froge &

1. TNTRODUCTION.
In this paper we consider the tronsient electromagnetic
(TEM)  response of 0o horizontally layered medium such as thot

shown in figure 1.
FIGURE 1.

This subject has been studied by mony authovs, dn poarticular. hy
ot e s interested in the applicaotion of electromagnetic
techmdgques Lo the detection of minerals. An excel lent gudide Lo
the litevature ds contadined in the hook on geo-electromnoagretism
published recently by Wait C210. In princidple, the TEM response
i completely  Enown. becouss the glectromagnetic Green’s Lensor
o o layered conducting mediun vedoces oo an @lementory
expression  after Laploce Cor Fourder) transformation of the Lime
vardable  and  Honkel  fbransformotion  of  the radiol cylindeical
coordivate, but  dv o proctice the numerdcal inversion of the two
ivbegral  tronsforms poses o probhlem. Morvrdson, FPhillips and
O/ Brdien  [161  gave an early solution which used the trapesodidal
guadirature rule for the  inverse Hankel treansform and the Fast
Fourdier algorithm  for Lthe inverse Fourder transform.  After the
development  of digdital filters for the Hankel fransform of
arbitrary  order U o, several new programs were written which wserd
ddgital  Filters for the Hankel transform and possibly also for
the  Fourder transform, since the latter can be formulated as o
Hankel tronsform with order 2 =1/2. These  progroms  wWerea
considerably more efficient. (Kogfoed [101, Mallick and Verma
L1571, Andervson  [21.) dght and Radche 091 made o further
significant dimprovement in efficiency by reversing the order of

the inverse integral transforms, and applied the Gover - Stehfest
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Cé&: 18, 191 algovithm Lo the inverse Laploce transform Followed
by an adaptive version of Fatterson’s [17]1 algorithm for Goussian
quadrature  to  evalunte the Hoankel transform. The success of
Enight oand  Rodche’s strotegy 48 due to the gain in speed and
ncouracy  of  the Gaver - Stehfest algorithm  when applied to
functions known analytically vather than numerically. {naght and
Kaiche’s algorithm is currently the best available.

Complementary to these computer programs. which attemjd
to  Avnvert  the dntegrol  travnsforms vumerdically. ds the worlk on
nsymptotic ewxponsions of the TEM response alt both early and lote
LERIT=E Lee and Lewis D141 estoblished thot ot eorly or lote
times the TEM response approaches  that of o half space whose
conductivity ds  equal  to  thot  of the top layer or the bobtlom
Layer., respectively. Lee L1331 also developed o two  Lern

naymptotic exponsion valid For lobe times, which subsumed eovlier

results by Kamenetsld 71 and Kawfman L8, In addition to Lheir
simplicity  and  speed,  the asympltotic expoansions often hove Lhe
useful  property  that  they work bhest  when  the more general
computer  programs  are  most  costly. For example, Hndght and
Rodche’s algorithm  seems to be slowest at late times.  precisely
when Lee’s asymplotic formula is applicable.

If  the object werse Lo compote the TEM response of o
gsingle  loygered meddiam: then mony of Lhe refinements above would
not  he wecessary, because  even  the most boasic algorithm will
abtoin  the TEM response for relatively little cost.  However, in
proctice  we want to infer the structure of a Layered ground fromn
observations of 4its TEM response, and Lo do 80 we amploy an
optimisation algordithm which adjusts  the model 4in  order to
mindmise 0o cost Ffunction which measures the discrepancy betwesn

the  octual  dato and  the dota  predicted by the model.  The
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optimisation algordthm will be dtervative ond will proceed From oon
Anitdal  guess  for the model to o Ffinal *solution’s whdich is o
locnl minimiser of  the cost Ffunction. The Stsolution’ 4is
dependent upon  the dndtial  guess, so, dn oddition Lo all the

iterations of lthe optimisation algorithm, 41 is essentiol to

gxperiment with cifferent indtinl  guesses, I+ all this
caleulation is  to  he  performed din o oreal  times so Lthalooa
geophysicist  con dmmediotely interpret hds survey dato,  then the
computer  code which caloulates the TEM response of the loyerard
ground mast enploy every known bime saving device.

With +this motivation. we now tuern to the content of
tLhis paper.

We develop o late time asympltobtic expansion For the TEM
responsge of  the loysred conducting ground depdcted in Figurs 1.
and  we establdish the vegdion of asefulness of the expansion. Thes
terms  of the expansion are easdly computed and can be programmerd
on almost any micro - computer.  The expansdon moy he used on its
own for o very rapid first dinterpretotion of fiseld datas o may
be  coupled with existing software such as the TEM program of
Fnight and Rodiche L[91, to produoce faster dnversion programs.

The transmitting nnel recedving loops must b
hordzontal ., but otherwise Ltheir shapes and positions  are
arbitrary, olthough  in practice we will reguire the loops to be
either  circular or rectangular, In particular, the loops moy be
either  coincident or distinct.  We assume that Lhe tvonsmidtting
loop coarvies o current density

SOty = Mix) Ty (1. 12
where M ds hordzontal. divergence fres and has compact support,

ond Tods bhe ramp Function
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0 if t<o
TCL) #= L/ T AF O gt T (1. &)

1 it Tt
Such o  temporal  vardotion models  the UTEM prospecting system
CLamontagne,  Lodha, Mocrnoe and  West LL21), Lhe FEM prospecting
system  (Crove C91), and also models SIROTEM (Ruselli ond 07Nedll
F31) dn the limit T-—0.

We will work exclusively with scoled, dimensdionless
viordables, defined as follows.

QAuontity Lindt

length A

conduectivity Ony

Lime . Oa“/L>3

prermittivity Cﬁi,;t7€

slectrdc Field dintensity voltasundt scaled length

current densdty ampa/undt sooled areon
Here A denotes ony bypdonl length chosen as the wndt of lerngth.
anch  as  the radivs or side length of the transmitting loop. W
will compute the dimensionless gquantity

Z{ty = N\ On, U/IP : (1. &3
Where Vo ds  the emf dnduced in the vecedving loop. mneasured in
vl s, and IP is  the pesak  value of  the curerent  din Lhe
transmitting  loop, meosureed in amps. 200 ds clearly reloated Lo
the mutual dmpedance of the transmdtting and recediving loops over
the layered mediam.

The key to the asympltotic onalysis of the TEM response
lies dn  the treatment of the dinverse Laplace transform.  We
examine  the singuloarities of the function to be bronsformed and
show that the contour of integration moy be deformed arvound o ocut
ol ong th@vnﬁjntive renl axis. Then Z{4) has the asymptotic form

Z(t) ~ EBi(t) . B10L'~t)31“t ’ (L. 4



Frovgpe &

Whoey e

8

P dx exp-x2t) w20 Ug00 (1. 5)

i
=2

Bi(t)

(o)

il

I
5 2,7

xa dm (1 —~ m

0

m FOma) A Cm, x) : (1. &3

MHere F ois o function which we call the loop Ffunction, becouse 4t
depends  solely on the disposition of the loops and not on the
structure  of  the layered medium, whereos the Ffunction Q@ has Lhe
opposdte  dependence. Wotson s lemng (Copson L4210 con be applied

to BL{t} nyith we obtadin the asymptotic expansion

o

_ -((r+1)/2+1)
B[(t)"' e i (1) = 2dy”! Z 8. Theom + 1y 4+ 40 4 ’ (1. 73
r=0

where S0 . 5, ... are the coefficients in o powsr series For 8

convergent for small w:

oo
. i r
Glx) = w® E 6 _ (1.

The coefficients 9y B 0 depend upon both the geometry of the

tory
it
Tt

leops  oand  the  structure  of the meddiam, but arve independent of
Tdme, Consequently, the coefficients only need be computed once
if  the mutual  dmpedonce  is regquired ot several times.  If the
time  wvardotion of the source curvent is a step rather than o
ramp,  then  the appropriote asymptotic expansion is obtained in
the limit os T—>=0, namely,

Ly~ ~ﬁa(t) . (1. %)

Listed below ore the times token to compute the coefficients by
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Lhe CYRER machding ot the Univevrsity of Adelodide.

Number of loyers. Time to computs St - - Sy -
1 36 msec

2 49 msec

3 64 muec

4 99 msed

b 181 msec

Tho extbro Lime  reguired to sum the asympltobtic series i
negligible, opprosimately 1 msec per Lime.

Im all proctical prospecting systems, the guantity that
is o oactually measured 44 not the mutual dAmpedance ot o poarticular
Lame, bt rather the overage of this guantity over o time chavnvel

to < 1. < t

Thus, the observed gquantity is
L,
- -' e s LN
Attt ) = Cb = 1g) at. Fok) . 1,100
Lo

Froviaded  that both to and Ly are sufficiently laote, than the
nsymptotic expansion  moay be substituted Ffor Z00) and integroted
Levrmnwise Lo give

(Aglt) = Aglt) = Aty = T) 4 Aglt, ~T) , TS O

T (b, = to)
ZCty ot ) § (1. 11)

AL ) = A Ly 2 T=E O

\ (L, - tg)
The asymptotic serdies in (1.7) above 4is divergenth
Cawxcent, for the degenerate cose of o hald  spoce withoot

overburden), hut, for any fixed number of terms, will provide any

desived acouracy  for  sufficiently late times. Mowewver, before
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the asymptotic series can be used successfully, the problems of
chosing  the numbesr  of  terms and  of deciding how late is
Csufficdently late’ must be addressed. Wa will show thot

Boct) - Brew [ <k XV rava 2a e L 64
where Bg is the sum Lo N berms of Lthe asympltoblic series and

Fem,z) = Tq(mfﬁ)fﬁzm

The number é is computoble exoctly in principle, bul in practice
is given sufficiently acourately by the Following expression

d (g1 + 1xI™ L XL O,

=1
&4 (1. 13
d 1ol + x ' Y SN

W gy e

,_
]

aregd Finally

)
n
- 1. ’ £y
i }Zilb . 1, 18]

I E2L> 1. then ﬁﬁé bound, regaorded as o Functdion of N, decreonses
ot first,  poasses thoeough o mindmam, and then diverges. If é?tg
1, the bound simply diverges. The mindmum of Fim,2) occurs when
Y (m/2) = 2 log =z , L. 1é0
whers W is the psi  function,  and typical values of F ol the

manimum ave listed bhelow.

e m oot mdndmuam Fim:sad) at the mindmun

- . = -2
& @ ol ~ 10

3 1% 1.03 » 101

-8
4 33 703 x 10

5 51 695 « 1078
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On the Dbasis of these results, o reasonable strolegy
for truncoting the osymptotic sevies might be os Follows.

(1) Compute X and & from formulaeg (1.14) and (1. 13).

~y

-
[
™.
"

Check whether

E%y >3 ' (1.17)
If wot, set a warning flag to indicqte that the time is too
garly.
(3 Find the closest integer N to the solubtion of (1.18).  This
i ensily done as the values of the psi function can be generated
hy recursion and then stored.
(4) Sum the asymptotic series to N Lerms.
We dmplemented  this strategy and  Ffound it successful but too
conservative: no  doubt  because  the estimote (1.12) iz not
sufficiently shoavp. Tosteod we adopted the following pragmotic
strategy.
(1) Compute o runming average of the moduli of two terms.
(2) Choose N corresponding to the minimam of the ruvming average.
(3) Take the average of the moduli of the last tevm and the first
omitted term as a measure of the error.
We  found  the runnding average necessory becouse the odd and even
order  termgs occasdonally had different orders of magnitude. The
success  of  the strategy 4s  shown  in figure 2 where we plot
contours of the errvor for o medium with o single conductive Layer
with unit  thickness above the basement. The prospecting system
is  SIROTEM with coincident circulor loops with unit rodios and o
step  function  current source driving the tronsmitter loop. The
vardnbles in the plot are time and the conductivity of the loyer.
The errors  were computed by compordison of the osymptotic series
with the progrom  of  Knight and Rodche [9).  Also shown on the

plot are  the theovetical curve
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2. DERIVATION OF Z(s).

for  the

loop:

nnel

glxsnrs)

Here W

intensity.

We  begin  the onalysdis with the following expressions

Laplace transform  of the emf induced in the receiving

= J/‘dg . BElxes) ' (e 1

m— /:ﬁw gl s) Jlx’i8) (row
ATy T

[-)

-1

= (4?‘)]&Hi1/ko} Jo CL]r = pf| Ylemp kg [z~ =] )

0 townp -k, G+ 200 ) hi/wd

&y -
L WD

and  E denote  the dnduced emf and the electric field

The vardiahbles kg,k o ... 0 kg ove defined by

. . =2 4 12,y aa
"'. L - ( &..- wr { G“: a3 {h ]. ) b ( £ o T

and a and b oave elements of the matrix 4 defined ns follows:

a b

c d

Where

Morrison,

exm(kmdd) Q 1 kn+l 1 hb

0 exp (k| d) 1 =k pe 1

ah b.d, so0 adnh bk, d.
cash LLIL lc sinh lLiL

= . (2. &

_['
l, gsinh k. d, cosh ., .
L Lt L t ¢

This vesult may be devived along the lines followed by

Fhillips  ond  O0/Erdien L1410, Alternatively. one coan
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prove that +the special properties of Lhe source currvent densily
Jr that 4t be horvdzontal and divergence free, imply thot thers
ore no charge distributions on the interfoces beltween the loyers
and that Maoxwell’s eguations reduce to the telegraph eguation for
n single scalor  Fdeld. The telegraph  equotion seporobes in
rectongular  coordivmtes  Anto  ordinary  differentinl operotors.
whose spectral kernels con be constrocted by stondord technigues.
Convolution of these kernels yields the spectral kernel for the
telegraph  opevator from which Green’s function g is constrocted.
The remoaining steps which lead to V oare then tedvial.

The function g represents the effect ol o x of o source
nt o and  contadns geometriconl  optics terms whdch must be
dsolated  ond breated separvately. To do so, let g’ reprasant the

reflection of x7 4in the plane = = 0. Then

glzoxrs) = g (g = 2.8 4 p g e = 20 ,8) + Flxxsl (2D
B o L 122 ™ & [ P ot ot Mo
where
, . M2 P ok
Jo (10 8) = anpl-(E,5% +ggs) "r) /(4Tr) (2.

and

8

Floxfhs) = (4w [ dl (1/7k, ) NTQ N O AT PR I AR

© CLh/a - pd . 2.9

The constant p  dis ultdimotely fixed by boundory conditions, butl
ite actunl value will not concern us becouse it will cancel from
the asymplbotic expansion. The dinterpretaotion of g, becomes

opparent after we compute its dinverse Laplaoce transform:

go(r;t) = ol L e Y © St ~ v/e) +

At
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I/
Het - nfe) r I|((t2 4z rzfcz)//tolﬂ

(15 - p2oe2'l (21

g
W ey @

to = 26/C0

R , (2. 110

and H ods the step Ffunchion.

Ht)y = 172 it o= 0 (2,122
1 if L Y0

The cose of most interest is that obbained by setting T = 0, so

that the adr ds o perfect insulator. For bhen
golre 1) = St ~ v/e)/ 4T ™) . (2. 13
MHeve o is  the speed of light in adr (in scaled vardiables!), so
Lhe  First  term  dn (2.7 vepresents Lhe possage of o wove fFront
directly from x  to  x, whereas the second represents the wave
Front reflected from the dinterfoce between the adir and the earth.
Im  the oapplication to  geoprospecting  systems.  the
contributions  Ffrom  the g, terms occur ol times too early to
MESUPe ., Indeed, 4f E, denotes the contribution to E fram ge -

them

= .
Eo (8 = ~(A0,) [dt’ [ d®x g (rot = 47 Jlxib)

(o] T
-
* N(AquIj{sz M) HOL - vw/e) HOT ~ (b - v/e) /T
T (2. 14)
gince  the speed of  light in adir is so lorge compored with the
separation  of the source and recedver: the terms involving ¢ may

he dropped Lo give

Eg 2rt) = ‘---(’}\c‘hﬂ'r)-ll--l('l:—- -1-,)/1.-13;\-:4 M(x’) / (4T ) -3 KD
T
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Consequently, Eq, vanishes for times later than T . Since our odm
is  to  anolyse the signal ot late tdimes, we moy discard the g,
terms Lhroughoot the rest of the paper

If we combine Fformulaoe (.13, (2.2)Y and (2.3, we

3

obtadin

(2.2]

Z€a) = 4w ) slls) [ dl (1/7k,) F(L) expl-lke ~ 1)Cx + 2721

o I B | (2. 14)

Whene

Fa
Fal

3
e
“
R

F¢l) = ., 4> Jg (e = /]y M(x?) expl-1(z + 2]
R
W call Foothe  loop Function,  becouwse all  the geometric
information  concerning  the disposition of the loops 45 embodied
in P So for we hove not restricted M, oport from regudiving M to
he  hordzontal and  divergence free, bult we will now impose the
“thain WA approxdmation’  in which  we oassume  Lhot M 4s
concentrated  on the axdis of Lhe transmitting loop.  Thus, we now
let. T  denote the axis of the tronsmitting loop, voather thon its
volume, and parametrise T by the curve
q —> x’(g) . 0 ¢ g |Tl ,

where ]Tl is  the circumference of T,  Then dx’//dg is o undt

vector tangentinl to T and

Moo= dw’/dg . 2.18)

=t//;§1//ﬁdq Jo(llr = Y ewpl-liz 4 ow)] dyfsedg B N
R T

Are alternative expression  for Focon he obtadined by repented

Hemn ces,

F{L)
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application of Stokes’ theorem to formualo (219

FCl)y = 1 Jo(l]g = vy expl-1(z + z/)] , (2. 20
RT
where the integrations are now over the areos of the loops. This
form  for F is generally more convendient for calculation because
it dnvolves only  scalar  gquantities. For example, when the
transmitting ond recediving loops are circular, with radii o and
by and centres separated by o distance d, vepeated application of
the addition theorem for Bessel functions gives ’
. &

FOL) = 4% ab J, (la) J (1) Jgcld), (2. 21)

The TEM response of the layered medium is obtained From

L0ty o= (240 da Zis) explsl) ' L
where ©  dis o contour poarallel to the imaginary s axdis and which
lies entirely to  the right of the singularities of Z{z). QOur
strategy 45 to locate these singularities ond deform the contour
about  them in  such o way thaot Watson’s lemma can be applied Lo

the integral representotion of Z(L).
3. SINGULARITIES OF Z(s).

We observe thot sI(g) 4is aon  entirve function of s,
namely,
slig) = 1 - exp{~sTIl/ (s T ) , (3. 13
a0 wWe  can focus upon the functions o and b which appear in the
motrix A

Each  factor 7T which appeors in the exponsion of & ds
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an entive Ffunction of

b, o= Eiﬁ + O s ol 1A dn o, (B2
and 50 4% necessardly entire in both s and 1. Consequently A is
o holomovrphic function of & except when

2 2

kg = €, + 1 O

aN

or _ (i, 3)

2 . P
koo @ &ms  tOus L L0
A short analysis shows that, for any fixed 1, A is holomovphic in

the variable s throughout the plane cut as shown in Figure 3.
FIGURE &,

Note  that  the endpoints shown for the ocut on the veal axis are
only correct asymplotically oas E;ﬂ —> 0.

Let  us compute the discontinuity of bh/o oacross the oot
on the real axds.  To do so we establish the convention that Lhe
valuse  of kt on dts associated oult ds token o be dits boundary

vialue From above. Lot

are define Ffor u oon the cut

=1
Gy = (2mdry Lim CihZa = pidun — dv)
V-=>0+

~ (h/a = prlu + 4wl . (3. 4
Since the sign of Koy Teverses when s orosses the cut, and since

l:\(—-h:n+l Y o= ok ) :

N+
n{kng 2o lkpg ? : (QLIED.

we Find that

-1
D) = (2T 40  lim etz = h/alln + 4v) (3. 6)
Vv—>0+
= 21Ti)—'lim Lad = bedAsCac)din + 4w K

V= O+
NO

od o~ bheo o= det A
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pi1W]

ey = J '/(R*w A kgne) ;

n+ v

-~
-

where  the  limit sign hos been omitted on the understonding that
all gquantities  orve  defined on the oot by thedir boundory volues
from abowve.
The analytdc strocture of A sdmplifies 4iF  we now
antroduce the guasi-static approximation which sets
EL” Qo do= o0y L. oL mtl. CH. 100
The cuts  poarallel Lo the imaginary asis recede to infinituy, as
does  the  left hond endpodint of the cut on the veal axis.  Thus,
for  Fixed 1, A ds  holomovphic in the whole s plane, with the

exception  of o out oalong the veal axdis from 00 Lo -1 . The

discontinnity of b/ across this ool ds

.2 Ui

(R (LT + udy A8 d 1 oo (A 117

sS4

anil

Il
-~
-+
=
'

[P (3,130
in Lhe gquasi-stotic approximation.

The gquosi-static approsdimation 4s nearly always used in
the analysis of geoprospecting systems because observaltions are
made  long ofter the wave fronts have passed the observer. Under
these circumstances, the fields evolve according to o diffusion
equation rather than o wave eguation. We will now keep the
guasi-static approximation for the rest of the poaper.

In addition to the sdingulovities of Z(s) associobed
with the branch cuts of kg and kg 0 there will also be poles
ot the xeros of o, These zeros corvespond to eigenvalues of the
aperator

oo - dafdxa + oy : (A.14)

2
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W e e
2 oy
q = €8s 0+ oy ) (31050
- 2, 2 "R . .

on  the Sobolev space W { ). That this should bhe so emerges
naturally  from the construction of Green’s Function g along the
Linves  sketched ol Lhe beginming of section 2, but since most of
the steps are  fodrly routine and would vegquire us to introducs
extensive  notation, we will omit them here. From the positivity

2 ? ] .
of the operator -d” Ade” 5 At ds eosy Lo show that

2 i
P~ VB (e bt o 1T ¢ 0 (5. 16

v 2w (Ffy €4F) + (F,OF) ] & O :

—

I

e

[y

:

~:
L

Whoe e i = 4 oay o and  F o ds the  normalised edgenfunction
corvresponding to s the  zero  of o o Al guosid - sthotdo
approximnation, these inegqualities reduce Lo

2 -
G S O s Q : CEL LR

T
"

v (F. O ) = () . 0319
Fyrom (3.18) and (3,19 we conclude that the zeros of o lie on bhe
negative  reol axdis. Since the contdmaous spectrum of Lods Lhe
interval (-o00, “12], ol sdnce Loconmot hove edgenvalues embeddact
in dts  continuous  spectrum. it follows that the zeros of a are

. . \ 2 - - . . .
confined to the interval [-17, 01, Finally:, consdicder the special

case of o resdstdve overburden: Ffor whdch
o () {1 for w £ 0
Then
(£, ) g 1

and so (3.18) dmplies thoat

i g ~1a

This dis a contradiction and so the function a commot have anyg
aeras 4 Lhe overburden dis resistive.
The conclusion of  the analysis is that (in the

gquasi-static approximation)  the singularvities of b/ for ony
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2

faixed 1 consdst of o square - roolt bhranch point ot - rowWhose

nssociated cut lies on the segment (-0, -1" 1 of the negotive veal

nxis,  together with a  finite number of simple poles in the
[~18

gegmeint » 00 Consegquently, the contour 0§ for the inverse

Laploce  transform  con  be any vertical line in the right hoand =

Trlove.
4

YoODERIVATION OF Z(4) .

The TEM responsse of the layersed medium is

[~ ¢}

FASD TR E: X L F ) e wxplst) «1Cs) [ dl FOLY Dhra-pl ol )

c ©

-
-
ik
—

Tonterchonge  the order  of integration. and deform the contous

around the negoative real axis.  Then

2
-1
SR

]l P(l){‘ f anplat) s10s)
T yim [ Ch/a - pllu - A
Y—=>0+
Chsa = pddu + dv)
n(1)
+2TT A Z{ residue Dexplst) sl{s) (h/a -~ p)l
S= Sk(l)

k=1 (4. &

Here ﬁk(l) denotes Lhe ch zero of o, regavded as o function of s
Wwith 1 as parvameter, The number of such zeros also depends on 1.
indicated by the notation n(l), but wil) is zero for sufficiently
small 1. Hevnce, the zeros sk(l) are shrictly negative for all 2
and  are  bounded  away from zero, from which it follows that the

contributions of tLhe pole terms oare all exponentiaolly damped in

Lime, Since we  are interested in lote times, we discord these
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terms and obtain
2
) -1

PAG DI w'(xfi‘l'l'Jh[ ol FCL) e explst) slis) I(s) (4.
0 -00
Reverse the order of integroation again and substitute
G moe xa and 1 = mx . (4.
Themn
Lty = [k (L) - B (L ~TII/T ) (4.
where

©0

-2 i-1)
™ /  E g VR ~x24) ;-‘:2( 1w s (4.

o

#

B, (12
L

[

[}
S =z an/rdm (1 = m?‘})/2 Mmoo M) AR (M, w) , (4

(o)
andd

= .2
Bim,~) = 4 1 ac. (4.

In the limit ng T —2 0, we Tind

Zt) = Hz(t). (4.
3. ASYMPTOTIC ANALYSIS OF Htit).
We now apply  Wotson’s lemma (Copson [41) to (4.4)

obtain  an asymptotic expoansion for Bi (1) ot late times.

develop S os o convergent power series for small x,

r=0

substitute this into (4.46) and integrate termwise Lo obtain

32

_.
s
~

#

&)

~G
-

1.0

1)
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o0
-
(28 ZSrT’((r FOAX/2 4 i
red

i

=((r+1)/2+1)
Bitt) ~s ﬁt(t) t

N SIS
In this section we will develop two expressions for the Taylor
coefficients Sr v the Ffirst of which will be a convenient tool
for  the analysis bul unsuited to numerdcnl computotion,: whareos
the second will have the opposite properties.

The first step 4is  to develop @ in power series for
small  x, which we achieve by expanding the factors in the mabrix
A an serdies  and then multiplying the serdes together. Next we
develop Foin serdies and  compute  the rotio P/ Finally we
integrate over m.

The motvrix T hos the serdes representation

o0 . .
y L o2t e e e
1 b S Z { L;‘r f,j,'_ Y T r ; (GVIR Y
Cad, !
L=0 "

1 wdy, Fdp

whes e

dp/(2ip + 1) 1

It we let X 2 Th Th_l... 'Tl » then

-y . ar { ne | Sl
X = Xr ™ ’ Sk P

where r=

and

i
ii
i&.
-
<
-t
pu}

.o W
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Let
< B
¥y &
o B
3~ br
A short coloulotion ydelds thot

Qo= (o] -rpna FoxZ01 - n® (w1 + 8602, (5,100

50 Wwe obbodin the sevies for O by further moltiplicotion.

. ., Zr e . r+l
Be « ) U
oo oo
2r+l ar r
(¥1 +8) = m Z V- Ty % & e > D ow

W e

Har
/iukl

Heneen,

1t _
8
Q
<
HQ
x

(Xl 4.-@ )

H
Q
3

Lo = §p . (512

o0
r e
Itm, =) = x2 Zi Qr x ’ (.13
r=0

: Z r.:/u?/ua/ o) - ma.aur)_)% N CE. 1)
p+g=r

Note  thot Bg = 1 and hence is independent of m.  Since Xr g 0

H
™
-

whoe e

—
Ern
1]

polynonial in m of degree 2r. 4t Follows trivially that
degreel Lo ) = & + 1 ) degres( My, ) = 2r )
degreé( /@aul) = : degree( L§n+f) = ey + 1 :
and hence thot the degree of Q. does not exceed » + 20 In fact,
dﬁgr&ﬁ(ﬂr) = . (5. 1%
r

To prove  +this, firstly observe that A o ﬂ ro b’r el 8 0 e

polynomials  4in m2 coand then establish by dinduaction on r» thatl ﬂar
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—1 . . 2 . Ca
and m Q@ must also bhe polynominls dn mo Thus, Q. will have
2r+t Y r

. ST r+e ; . i
ey v A the cowefficient of m is  zero. But  this

coefficient is independent of O, ... + Cn . 0 we sel
O-":::G_a:'.: :.G::.I

and find that

[ém, x) = xa ;

which ¢learly demonstroates that the coefficient of mr+a is aluays
zero i r>0.

Tt ds guite apporent thot formaloe (560 and (5.7 ore
unsuated to numerdcal computotion, becoause tLhe namber of terms in
the  sunmation  for Xr hecomes aextremely Loavge for morse Lhon two
loyers  and  the cost  of  computing the partitions of v and the
matrix products  ds excessdive. Fortumotely, 4t is nobt diffioull

Lo porove by dndoction that

cosh He I sinh T e

-1
€, € { Enkin ¥ mdaih Be b, (8 kind cosh g

where

n

e TR (1 4 Eplig Ay Y01 4 Ealyy /8 k). .. (1 + Erlin A€l kin-i?
(35,173
The summobion is over the signs 81w=t ooso the number of Levrms

. . N AL
in the summation 4s 2
The ratios Migq Fkp  which appeor in CE ave dndependent
of w0 om0 it ds only necessary to expand Lhe hyperbolic functions
in order Lo obtoin the serdies  development of X A& short
colculation

g%gaﬁ
) ’ or (&) -
X " o Xr . CH.180
r=o

13
s

Wheye
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anel

Not e
elements
BV ET
Formugla

TR B0,

Tt

s

_ 2r
a2 (.r E I'\ E

(2r) |

, 2
P = m -~ Oy

K/ (&b (20 4 1)

H& i p‘d( t &gt

the earlier
were polynomials An m,

clearly  that  Lhe
(5.18) is

et

ol olef dne

&>

Mo

€)
/12P—l
50 thot

e

()
Then /ir
(&)

HMess

€3
Lrez
with the
(€)

Ho

®
= om X, i
«©)
VS

E
il liF)

«)
oz ﬂf'

- )JS’

Esroe 4 1oe

dvdtinl values

=W C& f

ENpTEss

KE /Z0Gr + 1) e 4+

CE) - ., ~ ks
/L(‘l B '[J‘ (E "\E )

This recursion formulao is easy to progrom ond fost dn execution,

Thoe

loop

Function

oan

elenmants ore

salisfy the Following

<)

22

ig nlaso an entidre

for X

Frogpes &4

Zr /Ke
(o, 19

AT PN

(5.20)
b e adn (5. %

its

indicoted that

3

but, the present forpala does not

el ! Noretheless,

waell sudlted for computation for the following

Qe ey
(L2

(5. 24)

N1
i;ﬂ
e

i~

recursdon Fformula,

- A e
' CHL 2%

H

= C& p'f(é;pn) :

- CE |-(£ m/ ¢ E‘_n ' ) o (HLEED

funchtion and from
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the representotion 2.20) it de  cleor  Lhat 4t has o series

development of the form oo

~
Frima) = mzxa 2{: Pr (mx) . (5. 27
r=Q

Expressions  for the coefficients Pr are given for coincident
circular loops ond orbitvary rectaongulor loops in appenddx L.
RBoth F and @ hove a xere of the second order ol ox o= Q,
g0  provided thalt »  is less than the modulos of the closest
non-zero  Eero of Q. the serdes for Poond @ can be
mondapuloted as follows., Lel
Fow P/Q (5.

= 3
r -
= 2 -;: F-'r~ ! : (o2

r=0

]
o
e

Whoey e
F3m=P° (530D

anet

't ds eosy to prove by indoction on v Lhat Fr is o polynominl in
m.  that

degras(F) ( " , (5. B
ol that F and m~'E are polynomials dn ne
Al e op N orey  M0E polynomianls 4

Withdin  the region of convergence of the series (5292,

we may dntegrate termwise over m oto obtoadin

. 2 . r e
Slw) = w &r p ' (5. 33

Whe e

—

e e 3
m m

3]
e
1

chm 1 - 50340

~~~
)

Fr(m)
O

To evaluote Sh two oplions are open,
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(1) For odd orders, F2P+1 hos the Form

. S 2
I =om,  poalynomdal dn om

C2r+

Hen e,

+l

=1 Q!A‘ 3 :
=g dm (1 - m™) m Fém4(m) y (.35

[

e

3
2+l

These dintegrals  oon be evoluoted exoctly by Gowssdion gquadiatore
. . 2 e . ) . - w
Wi th wedght 1 - m= 2>, dnterval  L-10417, and  Chebyshey
polynominls of  the second kind. (Stroud and Secrest L2010 To
evaluots the even orders, let
2
Koo

and obtadin

Gop. = E fdw (1w )W e ) . (5. 340

23

i
Recall thot Fér(w z) WA ll he o polynominl din w.  Thus, oy L

I's
“er
. . : . 'fe
evaluated exactly by Goussion guodrature with wedight (L - w) o
anterval L0101 ond  Jocobd polynomiols. (Reylovs  Luagdn and
Yanovich L1121,
() Alternatively,  guodeoture eoles ooy be developed for the

t
(1 - ma)k m3 ;w0 bhat both the odd

interval [0, 11  with wedight
oned ewven  order Sr may  be  evolunted exactly  with  the some
quodrature rule. This approach leads fto o simpler program and is
the one we have followed. We computed Goussdon rules with Ffrom
one Lo twenty points. In order to compute 5. exactly for
O & » LN =32M -1 :

we chose the rule with M podints:
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where wi ol mz are Lhe compubed weighlts and nodes, In appenddix
< arve  tabuloted the weights ond nodes for the 8 point rule,
sufficient to give the first 16 terms of the asympltotic
ENpONSdon.

The algorithm  for  computing  the coetPicients Sr i

summardsed in the flow chart helow.

Compute Fo + F 3

| N for the loop configuration.
Set Sr = Qo ovo= 0 L, Lo s N
Set mt to the first guadrotuore node.
Label 1:  Set /%.m 0 and U, = 0
el & =+, Ey= +, ... g€ = 4
Label &:  Compute Be aned CE
Compute /,((s) R /,L(C,) il ))(3 5 U(:E)
Compute /f? mnd)ﬂ?’ by vecursion,

£
Increment /U-r and D, Mp = Mt /L(r‘) ! V=l 4 )Jr(g.

If not finshed all sign combinations, go to 2.
Compute Qg @, ... Qg Frmm/gﬂ aned 2

Compute Foo F o ... o Fy recursively from Fr and Qp
‘mereament, 5 [ s - 3 .

Increment B G 1= G 4 Wi Frtmg 2

If not findished all guadrature points, go to i

Stoy.
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6. THIN LAYER AFFROXIMATIONS.

At this point we can establish the relation betueen
our  asymptotic expansion and the expansion to two terms obtained

by Lee 1371 To do so, letl

r=0

(k) _ o

and  call 0 the k: thin Iayer approximation to 0. SHince Xo
_ 20, 2ip
contnins o  foctor d, ... dy

it is cleor thot the terms in Lhe
exponsion  of X land  hence of Q) will become very small if the
Iayers are thin, so it is veasonable to truncate the sevies as in
(4. 1) above., Explicit colcoulotion yields

Qe =1

@, = Zmd6, (&, 2

B, = d®0( 6 + ) (2n? = 1) + 67 ]
where © and 0 are gilven hy (1.14).

If the serigs Ffor O is truncated ot Lthe first term

then the recurrence formula (5. 31) degenerates Lo

Froo= m P (4. &)
from which we obtadin

(6. 43

Wl e ]

i 3+r
Cr = U/fﬁm (1 - mz)k m '

s 13 T Ctr 4 4)/2)

2 T (tr 4+ 73/2) ‘ (6. %)

Thus,
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(0%
2 <1 —(r+1)/2+1)
ALY = (2T ZS cpﬂﬁTﬁ((r+1)/2+i) 1, . (6. &)

ra0
This dg Lhe response of o uandform  half  spoce with  the
conductivity of the basement, ns expected becoause all informoation
concerning Lhe Iayers was contadined in the terms dropped from @
The first order thin layer approximation gives

Q)
G = x7rl + Zmed,1 (4. 7

Q) . : . .
Note that Q can vandsh if 6 ¢ 0. corresponding to o conductive
overburden,  so  the thin  layer approdimotdion hos introduced o
gpurious  zero on the x axds.  The recurrence relation for l'-'r TN

agodn be solved explicitly, because eguation (5. 31) reduces to
Fo. ux I:'o
. r.. 5 . 0
Foo=mF. = R Fp ) VL B

which has the solution

r
. PP
Fp = SUTL LI A :

3
L
=
=
—
3
e
Pan
HE
=x)
o

wWhere

(-2 6 )P F:'r_F . (6. 102

T

Thus,

el (o%e]

i —~(r+1)2+0)
ﬁi(t) = (2TE) Cn Lrlﬂ((P+1)/2+i) 1 . (6. 11

r=0
Lee [133  obtadined the first two terms of this nsymptotic

gxponsion  for  the case of coivcident civeulor Lransmitting and

recedving loops.
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7. ERROR ESTIMATES.

I+ the function @ never vanished for non-zero =, bLhen
the serdes Ffor § would converge for all » and the asymptotic
gxpansion  would  bhe o convergent series. This happens only For

the case of o undform half-space. for which

calculated with  orbitvory acouracy by summing sufficiently mony
terms  of  the series. (In practice, however: Lthe series is so
slowly  convergent ot early times thobt the finite word length of
the computer couses lavge concellotion errors when moany Lerms of
Lhe serdes  ove  summed. ) Tyve  oll  obther coses: 0 4% an enbive
function of order 172, and so has an infinite number of isolaled

HETVOE . The proximity of  Lthe

mevos Lo the ordgdn Limd
radive  of convergence of the serdies For % and hence reduces Lho
roange  of  times  for which the asymptotic series is wseful. For
low  conductivity  contrasts  or thdn layers. Lthe zeros of 0 ore
Wwell away From the ordgdn, and the oasymptotic serdes ‘converges®
well: but, for lorger conduactivities and thicker loayers, Lthe
zevos  of Q@ orowd dAn arvound the origin and the Cconvergence’ of
Lhe asymptotic sevies is poor.

To make these intuitive ddeas precise, we will develop

on o estimate for the evror din chopping the osymptotic series ot M

terms. The estimate will be in terms of Lhe quantity
inf é'hn) !

ogmgl
where (7. 12

é'hn) 2 inf ‘xK(m}l :
kK>l
a1l
O = {(m) , N {m) xa(ln) ’

W
”»
o}
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are  Lhe distinct zevos of @, regarded as o function of = wilh
pavameter m,  Cleoarly é is the closest approach to the ordigin of
nll  the zevos of Q@ as m ods ollowed Lo vory over the range RO, 11,
In principle <§ is  computable, because @ is  an  elementory
combination of hyperholic functions and its zeros con be found by
o number of  well established algorithms.  However., the cost of
euch o search  ds  not gustdified, firstly becaunse the progmotdic
olgordithm works well, ond secondly becausse we con approsimote
E'bythequantitg équ defined analogously as the closest opproach
Lo the orvdigdin of the zeros of @(W Tt is easy Lo see thaot

17 &Y = zaled . (7. @
aned g rather lengthy, bt stradghtforward, calculation yields

1 E®) o dlofcr + %"y N S

d (Gl + X oo ox pia (7. ED

This 4ds  the approsimotion  gooted in the dnbeodoction. . g bos
order approximotions could be computed vamerdicolly. bul agodn Tl
cost A% unworrornrbed. To 4llustvate this, the Ffigures bhelow
Compaye .fﬂ), é@) il é in the  cage of o sdingle conductive

Layer over o bosemernt, for which é coan be computed exactly:

iz i ! .
E = lagh (T2 4 1) 7 (O - 1y 3 s 2oy (7. 4

Oy = 10, d, = 0.1 Gy o= 1000, d, = 1

£ 0. 556 0.500 x 10
E£® 0. 633 1.000 ~ 1072

& 1,035 1.000 x 10

These figures olso dllustrate  the generval rule that the zeros
crowd  An around  the ordigin as the product of conductivity and
thickness increoses.

We now  tLurn Lo the devivotion of the evror estimate.
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Lt

and r=0

N 2 I N
8 = o d/ﬂdm (1= w2 %m F (m ‘ (7. &)

(@]

l.emm,

There exdists o constant K such thoat for oll =
" " ? N -
G{n) - bN(N)‘ K =" (s EY Zx ~ £ . (7.

Fyreol,

For each m, F hos only simple poles, so bthe segquence
P e
&y [Foemd| L oe=0, 1, 2
ig bounded. Hemee, there exdsts o covstant Cim) such thol
’ r > 29 ,’ . o
é\nn 'Fr(m)l < Comd for all e,
Since § < é( i) For o all m, it follows that
-, % r Prom o “
[Foomy | € cemys & For all r.
Consdder <<£ . Bince the sevdes for F ois convergent
for such x,
| oo
. N 2 2./ 3 . r
Glw) - 8 () = x cm (L = wmo ) m Feo €md ,
0 N

ok ] o0

l
;~:2ff:}.m (L - ma)/a m3 Z Cim) (xs/& )"

[0} r=N+{

5Cx)

i
[4¢]
=
—~
X
——t
—
7\

= w2 E N G- EY

where |

[/
C ® J/ﬁmn(1~"m232 N3C““

(v}

Thus, (7.7) holdsg with K = (.
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Now congsdeder x D é . The series  4s v Longee

convergsnt, but it dis certainly true thot

|
/
S(x) - SN(x)l { xi//;m (1 - ma)@ 1l lF(m,x}l +
O
|

N
h 2
:\'.2 dm (1 - ma 3 2 N Z ]F'r {m) ) ;\’.r

Since lJol ( 1, it Follows From (2,20 that

[res] g 22Tl IRD
wWhiere |Tl ol IHI denote the oveas  of the tronsmidbting and
recedving leoops.  The function

If2 2
o ma) n3

(1 # SR m, %)

Fas ot worst  an dntegrable singulordity dn ome oso there exdsts o

constant L osuch bhoat

I/2 . .
u/:lm 1 - mzb/ M IPimx}/G(m,x}, ( L. fore all = ;é

o

Hevice,

! N
N lz 3 . g ¥
i) = 8§ (;x'.)l < ;v.a L+ ;\'.E /:lm (1= moYE mogm) Z (x/& )
A :

Choose K so that
L+ 0 &N s =1 (K o rENT s d -
o condition which will be sotisfied provided that
K> 6+ . NN/(N + 1)N+
Then
500 -~ sheol ¢ B g s E - D
Agadn (7.7 holds and the proof is complete. |

Nefdne
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o0

N -2 o o((-1) N
Bi (L) =T / da exp(-x t) = 5 {x)
0

Choose ony  small positive number € o split the integration into
thres ranges. [0, é' -€1, I ﬁ ~e , & 4 €3 and [ é + .00, ani

nee the gstimote for l (x) = & (;xt)l in the first ond last ranges.

N 2(i-1) 3 N
e B (1) = By (] < ity e oz LD POV B g Nk o

20t=1)
4 / dx exp (=210 w0 (8GO - 8 GO
-£
=) 3
/ i @np (- 24 _’\:2( Ko (s E N st &0

oi+1

. _ N
L€ / G (-~ 2yy w (ws &
’/,é’.+£

o}

2 _\lch-'), C N

erp (w1 Gl — &5 (x)

The First  integral is trivial.  Apply the meoan value theovem Lo
the second dntegral.

- 2({+1)
TTa I-?.EH;) I-i{';(t)l { (2¢&) ' H'é r"iN/}.': S W S ,té

:;:aa—')[szsc.—.;.) - Mo ;

,/a N+2L+2

+ ZE gap (-t )
wheve = ds a podat dn the intaervol [é £ é + £] . Frovidaded
that 0 ¢ & < é and  also that é igs nolt too small. then the
dominont  term is the first. T ony coser We can always ancraases

the constant K in order to obtnoin the following bound.

2(¢+) i, N+2(+2
Bty - B ] ¢ carer” "R ET Tz 44+ s .

This is the bound mentioned in the introduction.

8. AFFENDIX 1.
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We assume  that  both  the transmidtting and recedving
loops lie on the surfoce of the ground, so thoat 2 = =9 = 0.
Consider firstly the ¢ose of  concddent  clrculoe
transmitting  and  receiving loops with eadius o Formolo (2021
for the loop function reduces to
. —- .
Fe1) = [2Ta J, (1a) ] . (5. 12
Imsert the serdes  for J? gaven din forpula (f.1.14)  of
Abromowitz and Stegun Dllto obtodin
F

20+ 0 i

2 [ 2r+2
F:'2,r‘ o (FTa)y (1) fa/d) S L SO N

2

L O A R A I

pacxd

LRI R ( )
The sequence of F. dis best computed by recursion. since

] B m LR S 4 AN aie I SETUNN W [ Y A ] o RN B
,2.|"—1-2_ l2r_ o Ly S W N o1y S R oA

_,_
-

[RR]
Pa

DURNTA

. 2
- = T u4

s
fax]
faa
N
ot

Now consider  rectangudlar  transmidtting  and recedving
loops with sides parallel to the » ond y axes.  Suppose thal the
transmitting loop encloses the areo

n’ £ x £ b

¢’ Ly ( d’ (8, 5
o Lhol the recedving loop encloses Lhe aven

nog ow g b

¢ ¢y gd . (8. &)
Insert the serdes for Jo (Abramowits: and Stegun L11. formula

(9.1.10)) to obtain

i
Hm
19
-7
=
)
v

FCLD (8.

where

PZnH

r ar
2 1)< 8 8.
'ar (1) Ur 02 (9 | (1
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nnrel

// : (8.10)
R T
(8.10)

The dntegrations in are over the areas of the loops. Far

the rectuﬁqulnr loops,

b’ d’
9 r
d//“//r e oy’ e — =) 4 dy - g’)a 1 0 (8. 113

Use  the bhinominl theovem on the power to redoce the dntegrand Lo
a o sum of  multivomiols which can then bhe integrated trivially

Thous, r

r
S tash,a’, 07 . WA IR S (8. 13
Ur Z;(k)uk.n Lol h?) ll‘____k (cod, ol e’ 115

Lilvene

U odn,hea b7y = L (h = '}
K

2
E A U VR JAUC2 1y 2k 4+ 221 L0 1)
Formaloe (& 8), (8,12 and (8. 13)  gdive on eosily compuatable

pressdion For Lhe sedquences F}
Y. OAPPENDIX 2.

Listed below are the points and wedlghts for oo Goussian

, fa 3 .
ouoedatore rule with wedight (1 - me) e on the dinterval (0,10,

Foints Wedghts
1 Q. 2082487485379678480+00 0. 278B5946G42747174290-01,
& 0. 9780323803007 4H04672711100 0.9341914443024807891
A 0. 801322460915933592504+00 0. 3794031584391 249746001

4 0. &EIAATATLZ1LE0E27EINE00 0. 322020100441 2132071001
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Q. 5129847011881 766740100 0. 180%4542080283412410-01

0. 357914468607859386311400

=

). GABRBYLYIALLLLBBLENEN-08
0. 2145509491 4385974004+00 0. 120223423390847059 001

0. 24A079993003882648070-01 0. P03P1L79394198274300-04

-
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transform and the fast Fourier algorithm for the inverse Fourier transform. After
the development of digital filters for the Hankel transform of arbitrary order »,
several new programs were written which used digital filters for the Harjel
transform and possiply alsc for the Fourier transform, since the latter can be
formulated as a Hangl transform with order » = i These programs were consid-
erably more efficient. (Koefoed [10}, Mallick and Verma [15], Anderson [2].)
Knight and Raiche [9] made 2 further significant improvement in efficiency by
reversing the order of the inverse integral transforms, and applied the Gaver-
Stehfest [6, 19, 20] algorithm to the inverse Laplace transform followed byan
adaptive version of Patterson’s [17] algorithm for Gaussian quadrature to evaluate
the Hankel transform. The success of Knight and Raiche’s strategy is due to the
gain in speed and accuracy of the Gaver-Stehfest algorithm when applhed to
functions known analytically rather than numerically. After publication of their
paper, Knight and Raiche replaced Patterson’s integration with a digital filter,
and their modified algorithm is currently the best available. :

Complementary to these computer programs, which attempt to invert the
integral transforms numerically, is the work on asymptotic expansions of the
TEM response at both early and late times. Lee and Lewis [14] established that at
early or late times the TEM response approaches that of a half space whose
conductivity is equal to that of the top layer or the bottom laver, respectively. Lee
[13] also developed a two term asymptotic expansion valid for late times, which
subsumed earlier results by Kamenetski [7] and Kaufman [8]. In addition to their
simplicity and speed, the asymptotic expansions often have the useful property
that they work best when the more general computer programs are most costly.
For example, Knight and Raiche’s algorithm seems to be slowest at late times,
precisely when Lee’s asymptotic formula is applicable.

If the object were to compute the TEM response of a single layered medium,
then many of the refinements above would not be necessary, because even the
most basic algorithm will obtain the TEM response for relatively little cost.
However, in practice we want to infer the structure of a layered ground from
observations of its TEM response, and to do so we employ an optimisation
algorithm which adjusts the model in order to minimise a cost function which
measures the discrepancy between the actual data and the data predicted by the
model. The optimisation algorithm will be iterative and will proceed from an
initial guess for the model to a final *solution’, which is a local minimiser of the
cost function. The ‘solution’ is dependent upon the initial guess, so, in addition to
all the iterations of the optimisation algorithm, it is essential to experiment with
different initial guesses. If all this calculation is to be performed in real tume, sO
that a geophysicist can immediately interpret his survey data, then the computer
code which calculates the TEM response of the layered ground must employ every
known time saving device.
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With this motivation, we now turn to the content of this paper.

We develop a late time asymptotic expansion for the TEM response of the
layered conducting ground depicted in Figure 1, and we establish the region of
usefulness of the expansion. The terms of the expansion are easily computed and
can be programmed on almost any microcomputer. The expansion may be used
on its own for a very rapid first interpretation of field data, or may be coupled
with existing software such as the TEM program of Knight and Raichei [9]. to
produce faster inversion programs. B :

The transmitting and receiving loops must be horizontal, but otherwise their
shapes and positions are arbitrary, although in practice we will require the loops
to be either circular or rectangular. In particular, the loops may be either
coincident or distinct. We assume that the transmitting loop carries a current
density

J(x, 1) = M(x)I(¢), (1.1)

where M is horizontal, divergence free and has compact support, and 7 is the
ramp function

0 ifr<0 -
Lo ={1/r ifo<r<r - (1.2)
1 ifr<t.

Such a temporal variation models the UTEM prospecting system (Lamontagne,
Lodha, Macnae and West [12]), the PEM prospecting system (Crone [5]), and also
models SIROTEM (Buselli and O’Neill {3]) in the limit 7 — 0.

It is worth noting that the extension of the analysis to receiving loops which are
not horizontal is straightforward, and only requires the introduction of a new
loop function. However, the extension to transmitters other than horizontal loops
requires more substantial changes. For such sources two complications arise:
firstly, the electric field integnsity has a nonzero vertical component which is
discontinuous across the interfaces between the layers: and secondly, a tensor
rather th;‘ scalar Green’s function is needed. Nevertheless, the analysis is the
same in prifiple, although more cumbersome in practice.

We will work exclusively with variables scaled as follows:

coordinates X - x/l (dimensionless);
conductivity ¢—>o0/0,,, (dimension]ess);
time t = tMl%0,, ) (dimensionless);
permittivity ¢ > e/flno’ ), (dimensionless);
electric field E - E! (volts /unit scaled length);
current density J — J/2 (amps. /unit scaled area).
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Here ! denotes any typical length chosen as the unit of length, such as the radius
or side length of the transmitting loop. We will compute the dimensionless
quantity

Z(¢) =lo, . \V/1, (1.3)

where Vis the e.m.f. induced in the receiving loop, measured in volts, and I, is the
peak value of the current in the transmitting Joop, measured in amps. Z(1) is
clearly related to the mutual impedance of the transmitting and receiving loops
over the layered medium.

The key to the asymptotic analysis of the TEM response lies in the treatment of
the inverse Laplace transform. We examine the singularities of the function to be
transformed and show that the contour of integration maybe deformed around a
cut along the negative real axis. Then Z(t) has the asymptotic form

Z(1) = [By(1) = By(2 = )]/, (1.4)
where
B(1) =72 fo * dx exp(-x2t)x*VS(x), (1.5)
and ;
S(x) = 52 [ dm(1 = m?) mp(mx)/Q(m. x). (1.6)

Here P is a function which we call the loop function, because it depends solely on
the disposition of the loops and not on the structure of the layered medium,
whereas the function Q has the opposite dependence. Watson’s lemma (Copson
{4]) can be applied to B,(t) and we obtain the asymptotic expansion

o0
B,() ~ 4,() = @7 L ST((r+1)/2+ TR AR ()
' r=0
where S;, S;,... are the coefficients in a power series for S convergent for small
x:

oG
S(x)=x*Y, Sx". (1.8)
r=0

The coefficients S,, S, .. depend upon both the geometry of the loops and the
structure of the medium, but are independent of time. Consequently, the coeffi-
cients only need be computed once if the mutual impedance is required at several
times. If the time variation of the source current is a step rather than a ramp, then
the appropriate asymptotic expansion is obtained in the limit as T — 0, namely

Z(1) ~ -A,(1). (1.9)

Listed in Table 1 are the times taken to compute the coefficients by the CYBER 73

machine at the University of Adelaide.
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TaBLE 1.

Number of Layers Time to compute Sy, - - - Sis

36 msec.
49 msec.
66 msec.
99 msec.
181 msec. W:

W o W=

The extra time required to sum the asymptotic series is negligible, approximately
1 msec per time.

In all praciical prospecting systems, the quantity that is actually measured is
not the mutual impedance at a particular time, but rather the average of this
quantity over a time channel

to<t<t; .
Thus, the observed quantity is

Z(t, 1)) = (1, = ro)”f" diZ(t). (1.10)

Provided that both ¢, and ¢, are sufficiently late, then the asymptotic expansion
may be substituted for Z(r) and integrated termwise to give

Ay(ty) — Ay(2)) = Ap(2o — )+ Ag(t, — 7)

(= 1) , >0,
1~ %
Z(t0, 1) = Ay(1)) = A,(1) r=0
(h—1t) ]
(1.11)

The asymptotic series in (1.7) above is divergent (except for the degenerate case
of a half space without overburden), but, for any fixed number of terms, will
provide any desired accuracy for sufficiently late times. However, before the
asymptotic series can be used successfully, the problems of chasing the number of
terms and of deciding how late is ‘sufficiently late’ must be addressed. We will
show that

|B,(£) — BM(1)| < K2+ VF(N + 2(i + 1), £1%), (1.12)
where B} is the sum to N terms of the asymptotic series and
F(m,z)=T(m/2)/z".

The number ¢ is computable exactly in principle, but in practice is given
sufficiently accurately by the following expression

18

18

18
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1/2 )
dlg, i1 + R <0,
gr - [l ). x e}
dloll(l + X) ‘.’ X > O,
where
X= (01 + 02)/012 =
6, = da! Z(l = oi)di
il
E=d Y, (1-0)d(d + - +d,.y—dipy—---—d,) (1.14)
i=]
and finally
d= Y d,. (1.15)

i=1
If £2t > 1, then the bound, regarded as a function of N, decreases at first, passes
through a minimum, and then diverges. If {21 < 1, the bound simply diverges.
The minimum of F(m, z) occurs when

y(m/2) = 2log z, (1.16)
where  is the psi function, and typical values of F at the minimum are listed in
Table 2,

TABLE 2.
z m at minimum F(m, z) at the medium
2 9 227 X 1072
3 19 1.03 x 10-*
4 33 7.03 x 10~
5 51 6.95 x 10712

On the basis of these results, a reasonable strategy for truncating the asymp-
totic series might be as follows.

(1) Compute x and £ from formulae (1.14) and (1.13).

(2) Check whether

£ > 3. ' (1.17)

If not, set a warning flag to indicate that the time is too early.

(3) Find the closest integer N to the solution of (1.16). This is easily done as the
values of the psi function can be generated by recursion and then stored.

(4) Sum the asymptotic series to N terms./We implemented this strategy and
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found it successful but too conservative, no doubt because the estimate (1.12) is
not sufficiently sharp. Instead we adopted the following pragmatic strategy.

(1) Compute a running average of the moduli of two terms.

(2) Choose N corresponding to the minimum of the running average.
- (3) Take the average of the moduli of the last term and the first omitted term as
a measure of the error./Wc found the running average necessary because the odd
and even order terms occasionally had different orders of magnitude. The success
of the strategy is shown in Figure 2 where we plot contours of the error-for a
medium with a single conductive layer with unit thickness above the basement.
The prospecting system is SIROTEM with coincident circular loops with unit
radius and a step function current source driving the transmitter loop. The
variables in the plot are time and the conductivity of the layer. The errors were
computed by comparison of the asymptotic series with the program of Knight
and Raiche [9]. Also shown on the plot are thetheoretical curve

£ =13 (1.18)

and the curve along which the pragmatic algorithm believes it has achieved an
accuracy of 1%. The algorithm clearly is reliable.

2. Derivation of Z(s)

We begin the analysis with the following expressions for the Laplace transform
of the e.m.f. induced in the receiving loop:

V(s)=fRdx-E(x,s). (2.1)
E(x,s) = la_ilL_d’x'g(x,x’,s).](x’,s), (2.2)

and
g(x,x", s) = (47)”" fo T AN\ ko) o(Mr ~r exp  (~kolz = 21)

+exp(-ko(z + z’))b/a} (2.3)
Here V and E denote the induced e.m.f. and the electric field intemsity. The
variables k, ky,...,k, ., are defined by

k= (e,s% + a5 + X)77, (2.4)

and a and b are elements of the matrix A defined as follows:

Ta b]_ |exp(k,.1d) 0 S 1 ko |*
4= . T,---T,
c d 0 exp(-k,.,d) || ~Kni 1 -k

(2.5)
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where

coshk,d; - k;sinhk,d,
. (2.6)

T,=|,
" | k'sinhk,d; coshk,d,

This result may be derived along the lines followed by Morrison, Phillips and
O’Brien [16]. Alternatively, one can prove that the special properties of the source
current density J, that it be horizontal and divergence free, imply that there are
no charge distributions on the interfaces between the layers and that Maxwell’s
equations reduce to the telegraph equation for a single scalar field. The telegraph
equation separates in rectangular coordinates into ordinary differential operators,
whose spectral kernels can be constructed by standard techniques. Convolution of
these kernels yields the spectral kernel for the telegraph operator from which
Green’s function g is constructed. The remaining steps which lead to V are then
trivial.

The function g represents the efect at x of a source at x’ and contains
geometrical optig?terms which must be isolated and treated separately. To do so,
let X’ represent the reflection of x” in the plane z = 0. Then

g(x,x’,5) = go(Ix = x|, 5) + pgo(Ix — &I, 5) + f(x,x".5), (2.7

where
golr,s) = exp[—(eos2 + aos)l/zr]/(47rr) (2.8)
and _ )
f(x,x%,s) = (47r)'lj(;°° dN(N/ko)Jy(Ar = r'|)exp(—k0(z +z°))[b/a - pl.
(2.9)

The first g, term is usually called the primary field in the geophysical TEM
literature, and is the field that would remain if the earth were removed, whereas
the second g, term is a reflection from the air-earth interface. The constant p is
ultimately fixed by boundary conditions, but its actual value will not concern us
because it will cancel from the asymptotic expansion. The interpretation of g
becomes apparent after we compute its inverse Laplace transform:

H(t - r/c)r]l((t2 - rz/cz)l/z/to)

cty(t? - rz/c;z)l/2

golr, 1) = 2B

S(t=r/c) +

(2.10)

where
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1o = 2¢4/0,,

c =2, (2.11)
and H is the step function, ‘
\‘ N
0 ifr<0, - N
H(t)={1 ift=0, (2.12)
1 ifr>0.

The case of most interest is that obtained by setting o, = 0, so that the air is a
perfect insulator, for then
go(r, 1) =8(t = r/c)(4mr). (2.13)

Here c is the speed of light in air (in scaled variables!), so the first term in (2.7)
represents the passage of a wave front directly from x to x’, whereas the second
represents the wave front reflected from the interface between the air and the
earth.

In the application to geoprospecting systems, the contributions from the g,
terms occur at times too early to measure. Indeed, if E, denotes the contribution
to E from g, then

Eo(x, 1) = ~(lo,,;)7 [ @t [ d’xgy(r, ¢ = 1)d(x", 1)
0 T

= —(lg,,,7)" jr d3x'M(x")H(t = r/c)H(r —(t = r/c)) /(4nr)
(2.14)

Since the speed of light in air is so large compared with the separation of the
source and receiver, the terms involving ¢ may be dropped to give

E (x,t) = ~(lo,,7) ' H(7 = 1) /T d*x'M(x’)/(4xr). (2.15)

Consequently, E, vanishes for times later than 7. Since our aim is to analyse the
signal at late times, we may discard the g, terms throughout the rest of the paper.
If we combine formulae (2.1), (2.2) and (2.3), we obtain

Z(s) = —(47) 'sI(s) fo " dN(A/kg)P(N)exp[~(ko — A)(z + 2)][b/a - p]
(2.16)

where
,~(A)=fkdx -frdlxy(,mr-r'|)M(x')exp[_>\(z +2)].  (217)

We call P the loop function, because all the geometric information concerning the
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disposition of the loops is embodied in P. So far we have not restricted M, apart
from requiring M to be horizontal and divergence free, but we will now impose
the ‘thin wire approximation’ in which we assume that M is concentrated on the
axis of the transmitting loop. Thus, we now let T denote the axis of the
transmitting loop, rather than its volume, and parametrise 7 by the curve

g~ x'(q), 0<q<]|T].
where |T| isthe circumference of 7. Then dx’/dg is a unit vector tangential to T
and

£

M = dx’/dg. (2.18)

Hence,
P(A) =j;dx -frquo(Alr; rexp[-A(z + z)] dx’/dg.  (2.19)

An alternative expression for P can be obtained by repeated application of
Stokes’ theorem to formula (2.19):

PO = [ [ Wh(Ale = eexp[-A(z + )], (220

where the integrations arenow over the areas of the loops. This form for P is
generally more convenient for calculation because it involves only scalar quanti-
ties. For example, when the transmitting and receiving loops are circular, with
radii a and b, and centres separated by a distance d, repeated application of the
addition theorem for Bessel fundifions gives

P()) = dn%ably(Aa) J,(ABV,(Ad). (2.21)

The TEM response of the layered medium is obtained from Z(s) by inverse
Laplace transform,

Z(1) = mi)" fc dsZ(s)exp(st). (2.22)

where C is a contour parallel to the imaginary s axis and which lies entirely to the
right of the singularities of Z(s). Our strategy is to locate these singularities and
deform the contour about them in such a way that Watson’s lemma can be
applied to the integral representation of Z(r).

3. Singularities of Z(s)

We observe that s/(s) is an entire function of s, namely,

sI(s) = [1 — exp(-s7)]/(s7), (3.1)

e ———
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so we can focus upon the functions a and b which appear in the matrix 4.
Each factor T which appears in the expansion of 4 is an entire function of

ki=gsi+as+N, 1<i<n, (3.2)

and so is necessarily entire in both s and A. Consequently 4 is a holomorphic
function of s except when

k=g s2+N<0 (3.3)
¢

or -
ki,=€,1s + o, 5+ N <0.

A short analysis shows that, for any fixed A, 4 is holomorphic in the variable s
throughout the plane cut as shown in Figure 3.

Note that the endpoints shown for the cut on the real axis are only correct
asymptotically as e, ., — 0.

Let us compute the discontinuity of b/a across the cut on the real axis. To do
so we establish the convention that the value of k; on its associated cut is taken to
be its boundary value from above. Let

=y + v,
and define for v on the cut

D(u) = (27i)" lim [(b/a = p)(u = iv)

—(b/a - p)(u + iv)]. (3.4)
Since the sign of k, , ; reverses when s crosses the cut, and since

b("kn-»-l) = d(kn+l)v

a(-k,.1) = (ki) (33)
we find that
D(u) = (27i)" lim_[d/c — b/a}(u + iv) (3.6)
(0"
= (2mi)™! vlin(}+ [(ad — bc)/(ac)](u + iv). (3.7)
Now
ad — be = det A = k,,,/ko, (3.8)
$0
D(u) = k,.,/(2mikqac), (3.9)

where the limit sign has been omitted on the understanding that all quantities are
defined on the cut by their boundary values from above.

The analytic structure of A simplifies if we now introduce the quasistatic
approximation which sets
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e,

e =0, i=0,1,..;n+1. (3.10)
The cuts parallel to the imaginary axis recede tb'infinity, as does the left hand
endpoint of the cut on the real axis. Thus, for fixed A, A is holomorphic in the
whole s plane, with the exception of a cut along the real axis from -co to -A2,
The discontinuity of b/a across this cut is '

D(u) = (¥ + u)"*/(2zikac) (3.11)
since
ko=2A (3.12)
and
Ky = (N2 + u)'7? (3.13)

In the quasistatic approximation.

The quasistatic approximation is nearly always used in the analysis of geopro-
specting systems because observations are made long after the wave fronts have
passed the observer. Under these circumstances, the fields evolve according to a
diffusion equation rather than a wave equation. We will now keep the quasistatic
approximation for the rest of the paper.

In addition to the singularities of Z(s) associated with the branch cuts of kg
and k,, . ,, there will also be poles at the zeros of a. Here we regard a as a function
of 5 with parameter A, and we denote the number of zeros by n(A) and their
positions by sl()\),...,sn(,\)(A). These zeros correspond to eigenvalues of the
operator

L=-4%/4,% + q, (3.]4)
where

introduce extensive notation, we will omit them here, Instead, we will show that
the zeros must lie in the interval [-A2,0], and that n(A) is zero if A is sufficiently
small.

From the positivity of the operator ~d?/dz?, it is easy to show that
(u? — ?)(y, ef) +u(fiof) + X <0, (3.16)
v[2u(f,ef) +(f.0f)] = o, (3.17)

where s = u + iy and fis the normalised eigenfunction corresponding to the zero
of a. In the quasistatic approximation, these inequalities reduce to
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u(f.of ) + X <0, ' - (3.18)

v(f,af)=0. I , (3.19)

From (3.18) and (3.19) we conclude that the zeros of a lie on the negative real

axis. Since the point -A? will lie in the continuous spectrum of L if s is in the

interval (-oo0, —)F], and since L cannot have eigenvalues embedded in its continu-
ous spectrum, it follows that the zeros of g are confined to the interval [-A%,0].

We obtain an upper bound on the zeros of a by comparing the spectrum of L

with the spectrum of a refffted operator L, whose conductivity fiinction has only

a single layer above the basement.

LEMMA. Let & denote the maximum value of o, and suppose that G is greater than
1. Then n()) is zero if : .

_ N<M=x2/[44%(5 - 1)]. (3.20)

Any zeros of a must satisfy
s;{(A) < -M. (3.21)
PROOF. We will tfestrict s to be real and negative, and show that, when |s] is less
than M, L cannot have any eigenvalues, Consequently, a cannot have any zeros.
Equivalently, any zeros of a must satisfy the inequality (3.21). Since all zeros of 4

lie in the interval [-A2, 0], then Is| < M whenever (3.20) is true, so n(X) must be
zero.,

Let g, denote the ¢ potential’ with ¢ replaced by the function

1, z<-4,
ou(z)=1{5, -d<:zx0, (3.22)
0, 0<2,

and let L, denote the differential operator with q replaced by gq,,. Then L and L,
have the same essential spectrum, namely, the interval [s,0) (Schechter [18],
Theorem 5.8.1), and, if L, does not have any eigenvalues, then neither can L.
Indeed, if L has an eigenvalue { below the essential spectrum, with normalised
eigenfunction f, then

(f,L.f)+(f,[q—q...]f)=§<s.

Since ¢ — ¢, is both bounded and positive, it follows that

(f’Ltf)<g<s’
which implies that L, also has an eigenvalue (Schechter [18], Corollary 4.4.1), and
we have a contradiction. Lastly, it is a standard result from quantum mechanics.
that L, does not have any eigenvalues if |s] < M (Schechter [18], Corollary 3.3.1).
Finally; we note the special case of a resistive overburden, for which
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6(z) <1 forz<O.
Then
_ (f.of) <1
and so (3.18) implies that

u < -N.

“This is a contradiction and so the function a cannot have any zeros if the

overburden is resistive.

The conclusion of the analysis is that the singularities of b/a consist of a
square-root branch point at the point -A? and a finite number of simple poles in
the segment [-A%,0]. The branch cut for the square root lies along the segment

(~o0, =N} of the negative real axis. Consequently, the contour C for the inverse '

Laplace transform can be any vertical line in the right hand s plane.

In the next section we will deform the contour C around the negative real axis
of the s plane. It is interesting to note here the role of the quasistatic approxima-
tion, without which the three cuts would pinch on the origin of the s plane as
A — 0. Whether or not the contour C could be deformed would become quite a
delicate question.

4. Derivation of Z(1)
The TEM response of the layered medium is
Z(t) = —(8w2i)'1f dsexp(sl).s'l(s)f,c dAP(M)[b/a - pl(A,s). (4.1)
c 0

With the contour C in the right half plane, we may interchange the order of
integration. Having done so, we deform the contour C around the negative real
axis. Then
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Z(t) = —(8772[)"-(:0 d}\P(}\){j:': dsexp(st)sl(s)‘_}iné+ [[6/a — p)(u —iv) —[b/a — pl(u + iv)]

n(x)
+(27i) Y resi(%;‘u): [exp(st)sI(s)(b/a - p)]} (4.2)
iml 55 .
Because the zeros s;(A) are strictly negative for all A and are bounded away from
zero, it follows that the contributions of the pole terms are all exponentially
damped in time. In fact, the second term in (4.2) is bounded by
n(A) '
PN Y residt;f [sI(s)(b/a — p)]|-
i=1

s=5:(

(47) 'exp(-Mt) fo ® A
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~ Since we are interested in late times, we discard these terms and obtain

(1) = ~(4n) [T arP(A) [ dsexp(st)st(s) D(s). (4.3)
: . 0 ~00
Reverse the order of integration again and substitute
s=-x?and X = mx. : (4.4)
Then '
2 =[B() =BGt =n/re N (85)
where
B(1)=n2[" deexp(-x’)xX-s(x), (4.6)
0 ‘
S(x)= xzfl dm(vlv - mz)l/sz(mx)/Q(m,x), 4.7
sl ¢ /
and
O(m, x) = 4N\%ac. (4.8)

In the limit as 7 — 0, we find
Z(t) = -B,(1). _ (4.9)

S. Asymptotic analysis of B,(t)

We now apply Watson’s lemma (Copson [4]) to (4.6) to obtain an asymptotic
expansion for B,(¢) at late times. We develop S as a convergent power series for
small x,

og
S(x)=x2Y Sx’, (5.1)
r=0
substitute this into (4.6) and integrate termwise to obtain
20
B(1) ~ 4,(1) = 2n*) L ST((r+1)/2 + i)e+1/2+b_ (53)
r=0

In this section we will develop two expressions for the Taylor coefficients S,, the

- first of which will be a convenient tool for the analysis but unsuited to numerical

computation, whereas the second will have the opposite properties.

The first step is to develop Q in power series for small x, which we achieve by
expanding the factors in the matrix A4 in series and then multiplying the series
together. Next we develop P in series and compute the ratio P/Q. Finally we
integrate over m.

The matrix T, has the series representation
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where

(-] (k d )Z‘r
Rl Mo 14
E‘u (2i,)!

- 1 2i,/d,
Ir= : .

Ifwelet X = 7,T,_, --- T,, then

o0
X=3 xx¥,
r=0
where
X=X (m?~a)" - (m?=q,)"x!,
li]=r
_ d2h ... d}in oe ;
= (2i:)! @iy I
and
i=(iy,... i),
lil=iy + -+ +1i,.
Let

a B a, B
X=[7 5]‘ X’=[Yr Gr]'

A short calculation yields that '
Q = (ah + B)* + x2(1 = m?)(yA + 8)?,
so we obtain the series for Q by further multiplication.

o0 oc og
(eA+B)=mY ax¥+1 4 Y Bx¥=1Y p,x"*1

r=0 r=0 r=0
0 xR o0
(YA+8)=mY yx¥*' 4+ Yo5x¥=Y yx*
r=0 r=0 r=0
where
F'Zr = mar’ l’2r-|>1 bl er’
"’27—1 = Br’ I'Zr = 8r'
Hence,

Q(m, x) = x2 i Q,x",

r=0

(5.3)

(54)

(5.5)
(5.6)

(5.7)

(5.8)
(5.9)

(5.10)

(5.11)

(5.12)

(5.13)
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where
Q= X [mp,+(1-md)yy]. (5.14)
prqm=r -
Note that @ = 1 and hence is independent of 7. Since X, is a polynomial in m of
degree 2r, it follows trivially that '

degree(p,,) = 2r + 1, degree(v,,) = 2r, N
degree(p,,_,) = 2r,  degree(v,,.,,) =2r+ 1,
and hence that the degree of Q, does not exceed r + 2. In fact,
degree(Q,) = r. (5.15)

To prove this, firstly observe that a,, B., v, and §, are polynomials in m?, and then
establish by induction on 7 that Q,, and m~'Q,,, | must also be polynomials in
m?. Thus, O, will have degree r if the coefficient of m”*2 is zero. But this
coefficient is independent of 0),...,0,, SO we set

0,=0= +--=g,=1
and find that

Q(m ’ x) = x2’
which clearly demonstrates that the coefficient of m”+2 is always zero if r > 0.

It is quite apparent that formulae (5.6) and (5.7) are unsuited to numerical
computation, because the number of terms in the summation for X, becomes
extremely large for more than two layers and the cost of computing the partitions
of r and the matrix products is excessive. Fortunately, it is not difficult to prove
by induction that

> cosh B, k,sinh B, (5.16)
X= C 5.1
e, | (£4k,) " sinh B, k,(e,k,)” cosh B,
where

B¢=kld1 +£2k2d2+ ce +£"k"dn,

C=2""(1+ e2ky/k, ) (1 + e3ky/eaky) - (1 + €k n/Ey sk, 1).(5.17)
The summation is over the signs &, = +, so the number of terms in the
summation is 271,
The ratios &, ;/k, which appear in C, are independent of x, so it is only
necessary to expand the hyperbolic functions in order to obtain the series
development of X. A short calculation gives

X=3Y x¥Yxo, » (5.18)

r=0 [

where
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el 1 - 2rp /K
X = Ck.’ . - /K, ] (5.19)
@r)t K /(eap,(2r + 1)) p /(eqpn)
and
pi = (m2 . "i)l/z’ (5-20)\‘-
K,=pd +e;p,dy+ -+ +e,p,d,. (5.21)

Note that the earlier expression for X, indicated that its elements were poly-
nomials in m, but the present formula does not even show clearly that the
elements are real! Nonetheless, formula (5.18) is well suited for computation for

the following reason. Let
xo=|% B (5.22)
A A ) '

and define
K= malh, w0y = myl), fo25]
ML= B, ofy = 8,
so that
Bo=2p®, oy =Y. (5.24)
13 e
Then p? and »{® satisfy the following recursion formula,
K = WK/ + 1)(r + 2], (525
vty = v OKY/[(r +1)(r + 2)], '
with the initial values
) =mC, p§ = C e .
Ko ’ 0" = C.p1/(e,p,) (5.26)

F’;.!) = pIC;Kv v{t) = CeKtm/(Enpn)'

This recursion formula is easy to program and fast in execution.
The loop function is also an entire function and from the representation (2.20)
it is clear that it has a series development of the form

o0
P(mx)=m?x? Y P(mx)". (5.27)
r=0
Expressions for the coefficients P, are given for coincident circular loops and
arbitrary rectangular loops in Appendix 1.
Both P and Q have a zero of the second order at x = 0, so provided that x is
less than the modulus of the closest nonzero zero of Q, the series for P and Q can
be manipulated as follows. Let
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F=P/Q (5.28)

[-
= m? Z Ex', (5.29)
r=0

where .

F,= P, (5.30)
and
F=mP, - Y Q,F,_p ~ r>0. (5.31)
. p=1 : .

It is easy to prove by induction on r that F, is a polynomial in m. that
degree(F.) < r, (5.32)
and that F,, and m™1F,,, are polynomials in m?.

Within the region of convergence of the series (5.29), we may integrate
termwise over m to obtain

S(x)=x2) Sx", (5.33)
r=0
where
S = f’ dm(1 — m*)*m*F,(m). (5.34)
0

To evaluate S, two options are open.
(1) For odd orders, F;,, has the form
2

F,,,, = m - polynomial in m~.

Hence,
Syi1 = 2'1f+l dm(1 - m?)" > m’F,, . (m). (5.35)
=1

These integrals can be evaluated exactly by Gaussian quadrature with weight
(1 — m?)*/2, interval [-1, +1}, and Chebyshev polynomials of the second kind.
(Stroud and Secrest [21]). To evaluate the even orders, let

w=mz

and obtain

S, =2 Law(l — w)PwEy, (w'?). (5.36)
0

Recall that F, (w'/2) will be a polynomial in w. Thus, S,, may be evaluated
exactly by Gaussian quadrature with weight (1 — w)'/ 2, interval {0, 1] and Jacobi
polynomials. (Krylov, Lugin and Yanovich [11].) g

(2) Altornatively, quadrature rules may be developed for the interval [0, 1] with

776

778

782

785

787

790

793
794

796

804

806

814




R .

16700766

weight (1 — m?)}/2m?, so that both the odd and even order S, may be evaluated
exactly with the same quadrature rule. This approach leads to a simpler program
and is the one we have followed. We computed Gaussian rules with from one to
twenty points. In order to compute S, exactly for

.

0O<r<N=2M-1,
we chose the rule with M points:
M

Sr . Z w,.F,(m,-),
L=l
where w; and m, are the computed weights and nodes. In Appendix 2 are
tabulated the weights and nodes for the 8 point rule, sufficient to give the first 16
terms of the asymptotic expansfon.
The algorithm for computing the coefficients S, is summarised in the flow chart
below.
Compute Py, P,, - - -, P, for the loop configuration.
SetS,=0,r=0,1,...,N.
Set m; to the first quadrature node.
Label 1: Set p,=0and »,=0.
Sete, = +, &= +,...,e, = +.
Label 2: Compute B, and C,.
Compute u, i and »{®, »{®.
Compute u!* and »{* by recursion.
Increment p, and v,. p, 1= p_+ pl®, v,:= »_+ p(©
If not finished all sign combinations, go to 2.
Compute Q,, 0,,...,Q, from p_and v,.
Compute Fy, F,...,Fy recursively from P and Q,.
Increment §,. S,:= § + w, F.(m,).
If not finished all quadrature points, gotol.
Stop.

6. Thin layer approximations

At this point we can establish the relation between our asymptotic expansion
and the expansion to two terms obtained by Lee [13]. To do so, let
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k . .
QW =x23 0, (6.1)
r=0
and call 0 the kth thin layer approximation to Q. Since X, contains a factor
d2 - d2, it is clear that the terms in the expansion of X (and hence of Q) will

become very small if the layers are thin, so it is reasonable to truncate the series
as in (6.1) above. Explicit calculation yields '

Q=1
0, = 2mdé, (6.2)
0, = d*[(6, + 6,)@m* ~ 1) + 67]

where 8, and 6, are given by (1.14).

If the series for Q is truncated at the first term, then the recurrence formula
(5.31) degenerates to

F =m'P, (6.3)
from which we obtain
S, =cP, (6.4)
where
¢, = fl dm(l - m2)1/2m3+r'
0
T(3/2)T((r + 4)/2)
= ‘ (6.5)
2T ((r + 7)/2)
Thus,
A1) = @a2) "t Y ¢, PT((r+1)/2 4+ i) D20, (6.6)

r=0
This is the response of a uniform half space with the conductivity of the
basement, as expected, because all information concerning the layers was con-
tained in the terms dropped from Q.
The first order thin layer approximation gives

oM = x*[1 + 2mxd4,]. (6.7)

Note that @ can vanish if , < 0, corresponding to a conductive overburden, 5o
the thin layer approximation has introduced a spurious zero on the x axis. The
recurrence relation for F, can again be solved explicitly, because equation (5.31)

reduces to
F, =P, (6.5)
Fr=m’Pr_Q1Fr—1s ’

which has the solution
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F'r= Z (_Ql)Pm’_pPr—p’

p=0
= m'L" (6.9)
where
; :
L = Y (-2d6,)°P,_,. (6.10)
Al 7
Thus,
S’ = crLr
and
A (1) = 277 T o, LT((r + 1)/2 + i)e~Ur+v/2+i (6.11)

r=0
Lee [13] obtained the first two terms of this asymptotic expansion for the case of
coincident circular transmitting and receiving loops.

7. Error estimates
If the function Q never vanishedfor nonzero x, then the series for S would
converge for all x and the asymptotic expansion would be a convergent series.
This happens only for the case of a uniform half space, for which

Q=x 2’
so in principle the transient response of the half space could be calculated with

arbitrary accuracy by summing sufficiently many terms of the series. (In practice,
however, the series is so slowly convergent at early times that the finite word

|englhkof the series are summed.) In all other cases, Q is an entire function of

order }, and so has an infinite number of isolated zeros. The proximity of these
zeros to the origin limits the radius of convergence for the series for S, and hence
reduces the range of times for which the asymptotic series is useful. For low
conductivity contrasts or thin layers, the zeros of Q are well away from the origin,
and the asymptotic series ‘converges’ well, but, for larger conductivities and
thicker layers, the zeros of Q crowd in around the origin and the ‘convergence’ of
the asymptotic series is poor.

To make these intuitive ideas, precise we will develop an estimate for the error
in chopping the asymptotic series at N terms. The estimate will be in terms of the
quantity

§= inf &(m), (7.1)
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where
£(m) = gfl lxk(m)l-
and
B.e_ 0=x0(m)sx‘1(m)’x2(m),'-"

are/distinct zeros of Q, regarded as a function of x with parameter m. Clearly £ is
the closest approach to the origin of all the zeros of Q as m is allowed to vary over
the range [0,1). In principle £ is computable, because Q is an elementary
combination of hyperbolic functions and its zeros can be found by a number of
well established algorithms. However, the cost of such a search is not justified,
firstly because the pragmatic algorithm works well, and secondly because we can
approximate £ by the quantity £ defined analogously as the closest approach to
the origin of the zeros of Q%). It is easy to see that

1/80 = 24|6,], o (12)
and a rather lengthy, but straightforward, calculation yields

d|01|(1+lxl"&),x <0

dle,|(1 + x)"%.% > 0.
This is the approximation quoted in the introduction. Higher order approxima-
tions could be computed numerically, but again the cost is unwarranted. To

illustrate this, the figures in Table 3 compare £, ¢ and £ in the case of a single
conductive layer over a basement, for which £ can be computed exactly:

1760 = (7.3)

£ =log[(al? + 1) /(0} - 1)]/(2017%4,). (7.4)
TABLE 3.
o, = 10,d, = 0.1 0, = 1000, d, = 1
¢m 0.556 0.500 x 10°3
¢ 0.833 1.000 x 103
¢ 1.035 1.000 x 103

These figures also illustrate the general rule that the zeros crowd in around the
origin as the product of conductivity and thickness increases.
We now turn to the derivation of the error estimate. Let

N
FN =m?Y Fpx’ (1.5)
r=0
and
S"’=x2f1 dm(1 = m?)"2mF"(m). (7.6)
0
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LEMMA. There exists a constant K such that Jor all x
IS(x) = $¥(x)| < Kx*(x/8)"/1x ~ ¢l. (7.7)
ProoF. For each m, F has only simple poles, so the sequence

£(m)"|F,(m)|, r= 0.’1}2{' ..

is bounded. Hence, there exists a constant C(m) such that

§(m)'|F.(m)| < C(m) forall r. o

Since § < £(m) for all m, it follows that

|F.(m)|< C(m)/¢" forallr.

Consider x < ¢. Since the series for Fis convergent for such x,
. [« 2}
S(x) - SMx) = xzfl dm(l - m?)"’m3 ¥ F.(m)x",
0 r=N+1
and
ISCx) =S¥ < %2 1 dm(1 = m?) 2w T C(m)(xs8)” Y
: 0 ' reN+1

=x2C(x/8)""' /(1 = x/8),

where

C =/l dm(1 — m*)"2mC(m).
0

Thus, (7.7) holds with K = C.
Now consider x > £. The series is no longer convergent, but it is certainly true
that

IS(x) - $¥(x)| < x?-jo‘_ dm(1 = m2)""m|F(m, x)|

N
+x2f1 dam(1 = m?)"*m3 Y |F(m)|x"
0

r=0

Since |Jy] < 1, it follows from (2.20) that

1PV <KITTIRI,

where |T'| and |R| denote the areas of the transmitting and receiving loops. The
function

2
(1 = m*)'?m*x/0(m, x)
has at worst an integrable singularity in 1, so there exists a constant L such that

f] dm(1 - mz)l/zmlP(mx)/Q(m, x)|< L forallx > ¢
0
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Hence,

|S(x) = $¥(x)| < x2L + x? fo L dm(1 = m2) " m’C(m) ﬁ (x/8)"

r=0
= x*[L+ c1 ~(x/8)""Y) /(1 - x/8)].

Choose X so that

L+ C(x/8)"" f(x/8 = 1) < K(x/8)" " f(x/8 - 1),
a condition which will be satisfied provided that

K> C+ LNM/(N+ 1)V,

Then ;
|S(x) ~ s¥(x)| < x2K (x/8)"*" /(x/8 - 1).

Again (7.7) holds and the proof is complete.
Define

BM(t) = w‘sz dx exp(-x21)x*=Ng¥( x),
0

Choose any small positive number e, split the integration into three ranges,
[0, —e).[§£ — & £+ eland [£ + ¢, 0), and use the estimate for |S(x) — SN(x)|
in the first and last ranges.

w?|B,(1) ~ BM(6)| < 77 dx exp(-x21)x " VKx(x/£)" /(£ - x)
. 0 ’
+f£+ ¢ dx exp(-x?1)x*'=V|S(x) - S¥(x)|
E—~e
® 2}y 2i-Dgry3 N
+f dxexp(-x*t)x*"VKx¥(x/£)" /(x - §)
£+e
< e“wa dx exp(-x2)x2* Y (x/£)"
0
+f£+e dx exp(-x*1)x2"V|S(x) - S¥(x)| .
(34 '
The first integral is trivial. Apply the mean value theorem to the second integral.
w?|B (1) — BM(1)] < (2e) ' KEXHVT(N/2 + i + 1) /(£1/2) N 2+2

+2eexp(-z%) 2 Y[S(z2) — S™(2)),

where z is a point in the interval [ — &, £ + ¢€]. Provided that 0 < ¢ < £ and also
that £ is not too small, then the dominant term is the first. In any case, we can
always increase the constant X in order to obtain the following bound.
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|Bi(1) = BM(1)| < (2n7%) "KEXTIT(N/2 + i + 1) (402N

This is the bound mentioned in the introduction.

Appendix 1

We assume that both the transmitting and receiving loops lie on the surface of
the ground, so that z = z* = Q. S

Consider firstly the case of concident circular transmitting and receiving loops
with radius a. Formula (2.21) for the loop function reduces to

P(A) = [27a/, (M), (8.1)

Insert the series for J? given in formula (9.1.14) of Abramowitz and Stegun [1] to
obtain

Py =0,
2(-1)"(a/2)" 3 (2r + 2) (8.2)
Al(r+ 1) (r+2)
The sequence of P, is best computed by recursion, since
Pyva= =P, a*(2r + 3)/[2(r + 1)(r + 2)(r + 3)], (8.3)

Pz, = (27Ta

and
P, = 77", (8.4)

Now consider rectangular transmitting and receiving loops with sides parallel
to the x and y axes. Suppose that the transmitting loop encloses the area

a’ < b,
8.5
<y<d’ (8.5)
and that the receiving loop encloses the area

asx<b

c<y<d (8.6)
Insert the series for J, (Abramowitz and Stegun [1), formula (9.1.10)) to obtain
€%
P(A)=XN)Y PN, . (8.7)
r=0
where
Py =0 (8.8)

Py = (-)V/[27(ry] (8.9)
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and .
N fR fT|r—-r’ . (8.10)

The integrations in (8.10) are over the areas of the loops. For the rectangular
loops,

= [faf o] o[ -2+ 0 - G

Use the binomial theorem on the power to reduce the integrand to a sum of
multinomials which can then be integrated trivially. Thus,

v, = ):'(',’C)Uk(a, b, a’, b)U._,(c, d,c’, d”) (8.12)
k=0

where

T

1126

1134

1138

U(a,b,a’,b") = [(b—a)**? =(a = a’)*"* = (b~ b'Y**? 4 (a - b)) /(2K + 1)(2k + 2)).

(8.13)

Formulae (8.8), (8.12) and (8.13) give an easily computable expression for the
sequence P,.

Appendix 2

Listed in Table 4 are the points and weights for a Gaussian quadrature rule
with weight (1 — m?)!/2#7 on the interval (0, 1).
TABLE 4
Points Weights

0.908248748533967848D + 00 0.278859654274717499D-01
0.9765 32380300760677D + 00 0.934191464302680789D-02
0.801322605159335985D + 00 0.379453158439124976 D-01
0.66544563671505;751D + 00 0.322020100441213207D-01
0.51298670112516676D + 00 0.180965420802834124 D-01
0.357914686098593863D + 00 0.648895926666688655D-02
0.214550949148259760D + 00 0.128223423390867559D-02

0.960799955038826807D-01 0.903917939419827435D-04
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