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Abstract

The Gribov problem has been around for some thirty years and still no general

solution has been found. After a detailed examination of gauge fixing in QCD

and the Gribov problem in the continuum and in the lattice setting, we introduce

BRST symmetry and how gauge fixing is performed within this framework. Then

we investigate the problem, seemingly a consequence of the Gribov ambiguity,

that expectation values of observables in a BRST invariant lattice theory are not

normalisable. This is known as the Neuberger problem. 'We discuss a simple

model, which clearly displays this problem and provide a solution to the Gribov

problem in this case.
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Chapter 1

Introduction

The standard model has emerged from high energy physics research to be the

best theory we have and which appears to successfully include three out of four

of the forces of nature: electromagnetism and the strong and weak forces. A'l-

though it is almost certainly not a complete theory, it has been very successful in

describing the interaction of the the most fundamental particles in nature. The

part of the standard model which concerns the strong interaction is quantum

chromodynamics(QCD), it tells us how quarks interact via the exchange of glu-

ons. QCD, as with the rest of the standard model, has a fundarnental symmetry:

gauge symmetry. However, this symmetry is not observable in natur€, as out of

all such symmetric states, only one should be included when calculating physical

observables, although it doesn't matter which one. Interesting issues arise as a

consequence of this, which will be the focus of this thesis.

As just mentioned, the very existence of gauge symmetry in QCD means that

there are unphysical degrees of freedom and so in order to perform calculations

we must constrain the theory to the physical degrees of freedorrr only, that is we

must gau.ge fix the theory. The standard gauge frxing method, the Fadeev-Popov

procedure, does not completely fix the gauge and unphysical degrees of freedorn

I



2 CHAPTER 1. I]VTRODUCTION

remain in general. This was first discovered by Gribov in 1978 and is known

as the Gribov problem. It still remains an unsolved problem. All is not lost

however since it is still possible to carry out perturbative calculations and the

results will not be affected. However, if we wish to consider nonperturbative,

long range phenomena, such as quark confinement, further consideration of this

problem is necessary. It may be that the Gribov problem has no effect on the

physical predictions of the theory, but this may not be the case and it could be

that it is necessary to find a method which completely fixes the gauge symme-

try. One particular framework for performing nonpertubative calculations is by

Dyson-Schwinger equations, but here the Gribov problem is not addressed and

the calculations are done without removing all the gauge freedom. Therefore this

method makes the assumption that it is not necessary to completelv fix the gauge

in order to get accurate results. Computer simulations, where spacetime consists

of a discrete, finite lattice are another popular technique for nonpertubative stud-

ies. Here it is possible to find a gauge fixing scheme which is Gribov copy free, the

trade off being that of its nonlocality. Therefore, there seems to be two distinct

approaches to the problem of gauge fixing, the first leaves it alone and includes

the Gribov copies in the calculations and the second eradicates them. This brings

up the question of how we define QCD, since the two approaches seemingly lead

to distinct theories.

BRST symmetry is an alternative way of tackling the gauge fixing problem. It

can be seen as a more general method since the Fadeev-Popov procedure arises as

a special case. In fact BRST symmetry can even be used instead of gauge symme-

try for the quantisation process, thus called BRST quantisation. An immediate

question would be whether rve can define this BRST formalism in a lattice model.

This was indeed attempted by Neuberger with distastrous results. He found that

within a BRST invariant theory in a lattice model, any physical observable took

the indeterminate form $ under very general conditions. This is referred to the
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Neuberger problem. Here this problem will be examined in deta-il and reasons for

the occurance of the $ will be investigated.

This thesis will begin with the basics of QCD as a non-abelian gauge theory,

where we will define quantities and concepts that will be used throughout. We

will also discuss the standard gauge fixing method, the Fadeev-Popov procedure,

in addition to various choices of gau.ge. In the third chapter, we discuss the

Gribov problem and its implications for the Fadeev-Popov procedure, we will

also see that it is irrelevant within perturbation theory. In the fourth chapter, we

will more closely examine the Landau gauge condition and then atternpt to find a

more restrictive condition which does in fact eliminate all the gauge freedom. In

chapter five, we turn to the problem of gauge fixing in a lattice model, where we

will first discuss the general ideas of lattice gauge theory. In ckrapter six we will

examine BRST symmetry and how gauge fixing is carried out in this framework,

as well as some general features of a BRST invariant theory whrich t'ill be useful

later. Chapter seven will begin with the formulation of BRS-T symmetry in a

lattice model and then the Neuberger problem will be derived explicitly. We will

also discuss here a simple lattice model, which displays clearly the mechanism

of the Neuberger problem, as well as making some general corrrments about this

problem. The final chapter will contain the summary and conclusions'
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Part I

Gauge Fixing and the Gribov

Problem
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Chapter 2

QCD and Gauge Fixing

This chapter introduces the basic ideas of Quantum Chromodynamics (QCD)

and gauge fixing. Firstly a brief overview of QCD will be provided to give some

idea of how it came to be the theory describing the strong interaction and to

also introduce some important concepts. Then non-abelian ga"uge invariance in

the context of QCD will be discussed. It continues with an explanation and

motivation as to why gauge fixing is an essential part of QCD, followed by a

derivation of the Fadeev-Popov procedure, the standard gauge fixing method in

QCD.

2.L Introduction to QCD

euantum electrodynamics (QED), the quantum field theory of electromagnetism,

has been remarkably successful in describing the interaction of electrons and

photons. It is an abelian gauge theory since it has an abelian gaug€ symmetry

with spin I matter fields and a force carrying gauge boson: the photon' The

most notable successes of QED are its predictions for the magnetic moment of the

electron and the Lamb shift in the hydrogen atom, both of which are in excellent

agreement with experiment. This prompted the question of whether it would

7



8 CHAPTER 2. QCD AND GAUGE FIXI]VG

be possible to formulate a gauge theory of the strong interaction, making use of

the ideas which were so successful in QED. Early progress was made by Yang

and Mills, who generalised QED to a non-abelian gauge theory, however their

theory did not correspond to the physical world because it predicted unphysical

particles.

The advent of the quark model radically changed the world of particle physics

since it made it possible to understand the vast number of recently discovered el-

ementary particles in terms of a small number of quarks. The proton, previously

considered to be a fundamental point-like particle, became a composite object

consisting of three quarks. In this model, quarks took over the role of the funda-

mental point-like particles. They have spin |, carry a fractional electric charge

and also come in one of six flavours: up, down, strange, charm, bottom and top.

They interact via the strong interaction by exchange of gluons, which a,re mass-

less spin one particles. Predictions made by the quark model were found to agree

with experimental results reasonably well and in fact elementary particles could

now be explained simply in terms of either a three quark bound state or a quark

antiquark bound state, referred to as baryons and mesons respectively.

However, there was a problem with the quark model. A particle consisting

of three up quarks with identical spins was known to exist. This was seemingly

in violation of the Pauli exclusion principle which does not allow two quarks to

occupy the same state. The solution was to introduce a ner¡v degree of freedom,

colour, analogous to electric charge in QED. Thus each quark was thought to

carry a colour charge: red, blue or green. This made it possible for three quarks

of the same flavour to have identical spins, thus making the conflict between the

quark model and the exclusion principle avoidable.

Another problem was that no individual quarks had been observed, they were

always found as baryons and mesons and never alone. This property of quarks

is called confinement. Although individual quarks are predicted at sufficiently
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LOCAL GAUGE IVVARIAIVCE

high energy and density, where normal matter undergoes a phrase transition to

a so called quark-gluon plasma, concrete experimental evidence for this is still

absent. The establishment of a detailed explanation and mechanism for quark

confinement remains an outstanding problem. This is largely due to the fact that

there are few methods which can be applied to large distance phrenomena such as

confinement, since the usual perturbative calculations break down in this case.

Quarks also displayed another interesting property. The force between them

reduce at srnall distances, in contrast to gravity or the electromagnetic force,

which increase at smaller distances. This property of the strong interaction is

referred to as asymptotic freedom. When it was discovered that non-abelian

gauge theories also had this property, it was then thought that such theories

could indeed be successful in describing the strong interaction. QCD was thus

constructed, the gauge symmetry consisting of an arbitrary redefinition of colour

at any point in spacetime and with the gauge bosons being the gluons.

2.2 Non-Abelian Local Gauge Invaria.nce

After the development of QED it was realised that the theor¡r could be formu-

lated by simply constructing the most general U(1) gauge invaria-nt renormalisable

Lagrangian. This is the approach that we will adopt here to derive the QCD La-

grangian, the important difference being that we will require SIJ(3) colour gauge

invariance rather than U(1) invariance. This leads to multiple gauge bosons, cor-

responding to gluons with different colour charges, also giving rise to gluon self

interactions. Thus QCD is fundamentally different to QED, rryhere the photon

does not carry any electric charge and therefore does not interact with other pho-

tons. These gluon self interactions are known to be responsible for asymptotic

freedom. There are many text books where this material can be found (u'S. [t]

{2] 13] [a]) and more details can be found there'

I
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Let us denote the generators of the Lie algebra of SU(3) as ú" where ¿ takes

the values 1,2, . . . ,8. They satisfy the usual commutation relations for a Lie

algebra,

It",tul : 'ilob"t", (2.1)

where f ob" arc the totally antisymmetric structure constants. The normalisation

of the generator matrices is given by,

1}(ú'úö) - c6"b, (2.2)

where the constant C depends on the representation of the generators. It is

sometimes useful to chose the adjoint representation of SU(3), in this case the

generator matrices are given by

(tb)"' : ¿¡"u" (2.3)

Keeping in mind that SU(3) in the fundamental representation, is the group of 3

by 3 unitary matrices with unit determinant, therefore locally, an arbitrary gauge

transformation can be written as,

9 : exp fig,u"(r)t"], (2.4)

where uJo aÍe spacetime dependent gauge transformation parameters and g" is

the QCD coupling constant, inserted here purely for convenience. The above

transformation acts on the matter fields, tþ and, r¿, in the following way,

(2.5)

(2.6)

where the Dirac and colour indices have been omitted. In order to define a

dynamical theory we need to define the derivative of the matter fields, which we

require to satisfy the same transformation property as the fields themselves. Let

Iþs : 91þ,

,þn : ,þgI,
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us try to define the derivative in the direction p, of the matter fields in the obvious

wâY,
1

0rrþ(*): lg3 ¿þþ(" 
+ €tL) - rþ(*)), (2.7)

where p is the unit vector in the direction ¡.r. Thus it is clear that we need to

consider the fields at two spacetime points. But since we have a local Sauge sym-

metry which specifies a different gauge transformation at each point in spacetime,

it means that fields at different spacetime points will transforrn differentlS that

is their transformation properties of the above fields are:

,þn(") : s(r)rþ(r), (2.8)

þe(r+eþ) : g(r*e¡t)tþ(r*rtt), (2.9)

where g(z) is in general different to g(r + €tL). Therefore vrze can define the

quantity U(y,*), taking values in the Lie algebra of SU{3)' which accounts for

the difference in the transformation properties at different spa-cetime points, so

it transforms as

(U(y,")rþ(r))n : g(ùU(a,r)tþ(r). (2.10)

Hence U(y,r)tþ(r) has the same transformation property as Ú(a). This means

thal U(y,r) itself transforms as

(I(a,*)n : s(ùU(a,r)sI@). (2.11)

In general U(A,r) will be dependent on the path taken from r to y, therefore

we should also specify a path associated with t/(y,ø). However, when defining

the derivative we shall consider the limit as the two spacetime points approach

each other, thus there will be no need to specify a path. Let us again attempt

to define a derivative of tþ, this time using U(y,*) to ensure it }as a well deflned

transformation property. We make the following definition,

Drrþ(*) = lg3 lfrt,ø + €u) - U(, + e¡t,r)$\r)). (2-r2)
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The transformation property of the above can be easily found from that of U (y, r)

and tþ(r), it is:

(Drrþ@))n : s(x)Dr1þ(r). (2.13)

Therefore, D, transforms covariantly and is thus referred to as the covariant

derivative. It can be written in a more convenient form if we expand U (r + ett , r)

about r to first order in e . Recall that U(r+eþ,,x) takes values in the Lie algebra

of SU(3) and therefore can be written âs an exponential of a linear combination

of the generators of SU(3) in the same \4ray as we wrote an arbitrary gauge

transformation, hence

U (r + efu, r) : explieg"Alr(r)t"l

: lreAr(r)*0(e2), (2.t4)

where

Ar(r) = ts"A!t"@)t". (2.15)

The fields 4", are called gâuge fields and they are interpreted as the gluons of

QCD. If this is substituted into the definition for Dr, we find that

Drrþ(*) :ïptþ(r) - Ar(r)þ(r), (2.16)

or equivalently

Dtr: 0, - Ar(r) (2.17)

This will be now considered as the definition of the covariant derivative. Express-

ing Dr in the adjoint representation (as defined in (2.3)) allows its components

to be written simply as

DIr" : õ""ap + grf"b" Abt @) (2.18)

The transformation of the ,4, is implicitly given by that of D ¡"4t, let us now find
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an explicit expression for this,

(Drrþ)n : (õp-Aí,)Iþs

: (0, _ ar)srÞ

: 90úþ + (arg)rþ - Art"g1þ

: g(0þ + gt (0rg) - gt Art"ùIþ

: g{7p+ st(ap_ eï)ùú. (2.1e)

Note that it should be understood in the above and the follornring that ô, does

not act outside the parentheses. Usin.g the transformation (2.13) we have

Ap: -eI ((a, - Æìs) Q.2a)

After some rearranging we get

A!*: gApgI - g(At g\ : -g(Dpgt), (2.21)

where we have used

0 : 7r(sst) : s(Ìrst) + (õrs) sI (2.22)

We now consider an infinitesimal gauge transformation, which is given by

g : L * igru"t" + O(u2). (2.23)

Using the transformation (2.21) just derived we can find an expression for the

infinitesimal gauge transformation of Lfl,

Ai -(1 + ig,u"t") (DrG - ig,aoto)) (2.24)

Now expanding and writing in terms of A1,", we arrive at the result

A'ro : Ai, + oru" + grf"o" Aorr' + o(u2)' (2.25)
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In order to describe the propagation and interaction of gluons, we will need to

use the non-abelian version of the Maxwell field strength tensor, which can be

defined as

Fr, = lD, D,] : -ig"Fl,,t", (2.26)

where the expression for the covariant derivative in (2.17) has been inserted to

get the above result. Notice that in the above D, is a differential operator but

F* is not. We have also introduced {,o,, defined as

Fl, : orA?, - a,A!t, + g,f"b" Alt A",. (2.27)

\Me want to know how F¡,, transforms under gauge transformations. From (2.13)

and (2.6) we can deduce that

Dnr: 9Dp9I. (2.28)

It is important to note that D, on the right hand side acts on everything after

the gT, this should be obvious since D, is indeed a differential operator. Now it

is straightforward to see thal F* will have the same transformation property as

D, dftectly from its definition,

Ff,: gF¡,,91. (2.29)

Let us summarise the transformation properties we have found:

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

vþe : 91þ

-rþt : úgr

A!t" : -g(Dpgr),

D't, : gDt"gI ,

Ff, : gF¡,,g|.

The overall aim was to construct the most general gauge invariant renormalisable

Lagrangian. The renormalisable constraint boils down to only allowing terms
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of dimension four or less. We shall also assume that the Lagrangian can only

depend on the gauge fields via the field strength tensor. If we also âssume parity

conservation then the gauge field part of the Lagrangian must take the forml

1
(2.35)Lc

4
Ffi,Ir"u'

When looking at the problem of gauge fixing we will not need to consider the mat-

ter part of the Lagrangian density and so we merely state the forrn of Lagrangian [2] ,

1
L

4
Ffi,F"ø" + t rþ ¡(¿ p - m)ú¡, (2.36)

r

where the sum is over all quark flavours. The gauge invariance of the first term

is easily seen by first expressing it as a trace,

çta çtap'v 
1

'tr' : -CnT"TtgrrF'"), (2'37)

where we have used the definition of F¡", and Eq.(2.2). It is now clear that this

term is gauge invariant using the transformation property above and the cyclicity

of the trace. The gauge invariance of the other terms immedia,tely follows from

Eq.(2.30).

2.3 Gauge Fixing

In order to derive the QCD Lagrangian density, gauge invariance was used as the

guiding principle. In this section we shall see that this gauge invariance leads

directly to ill-defined expectation values, and it needs to be broken in order to

quantise the theory. This breaking of gauge symmetry is referred to as gauge

fixing. In the path integral approach, this corresponds to ¡educing the space

of integration to avoid summing over physically identical gauge configurations'

lFor more details see [1] or [2]
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Gauge fixing will be discussed in general terms here and a particular method will

be described in the next section.

In the following, we will consider the QCD action with gauge fields only, that

is

s" : -1 [ on, Fi,Pl". (2.38)" 4J

The Euclidean space expectation value of some observable, which depends only on

gauge fields, can be defined in the path integral approach as a functional integral

over all fields in the following waY,

(2.3e)

where

d Lrs" = -i J 
on, Fi,Fl'. Q.40)

The above consists of an integration over all gauge fields, but since the QCD

action is gauge invariant, it includes an infinite number of gauge fields corre-

sponding to identical actions. Therefore it is infinite in both the numerator and

the denominator. These infinities need to be removed before meaningful values

can be obtained and thus the region of integration or gauge field configuration

space needs to be examined more carefully.

Two gauge fields are said to be equivalent if they are related by a gauge

transformation, otherwise they are inequivalent. The set of all gauge fields which

are equivalent to some field A is called the gauge orbit of A, denoted [A]. In

order to get a better idea of these concepts, it is helpful to represent gauge

orbits as closed curves in the space of gauge fields, as shown in Fig. 2.L. It

immediately follows that the action Sç is constant around any given gauge orbit.

The functional integral over all gauge fields in (0) can then be thought of as an

integration over all gauge orbits and an integration of the gauge fields in each
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(2.4r)

g'
B

A

g

tAl
B

Figure 2.1: The gauge transformations g and å, act on the two gauge fields, A and

B respectively, producing the corresponding gauge t¡ansformed fields, Ae and Bh.

When all gauge transformations are considered the gauge orbits, [A] and {B], are

constructed. Note that by definition there is no gauge transforrnation which will

transform a ga,uge field on one orbit into a gauge field on the other.

orbit. This can be written as,

ln
I

,l
I

I
I

t

t¡r
¡
I
I
I

lB I
I
I
,

I
,
,

h

I I IDA: DAtneq Ds,

where .Ai'"q are gauge inequivalent gauge fields and g is an elernent from SU(3),

which specifies the gauge fields within a particular gauge orbit. It is the integra-

tion around the gauge orbits that produces the infinity, so our aim is to remove

the integration around the gauge orbit. In order to do this a gauge fixing func-

tional, f', is introduced to constrain the integration to the gâuge fields satisfying

F : 0, which is called the gauge fixing condition.

The idea is to integrate over one and only one gauge field per gauge orbit'

This can be thought about geometrically in the following way. The gauge fixing

condition specifies a surface in gauge field configuration space, which intersects
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F'([AJ,x)

_----J

ì- - - - - - -, , --- F([AJ,x)

\---- F"([AJ,x)

Figure 2.2: Three gauge orbits are shown with three different gauge fixing func-

tions, F, F' and F" . However, F is the only ideal gauge fixing function since it

intersects every gauge orbit once and only once.

each gauge orbit once and only once. This is represented pictorially in Fig. 2.2.

If this is the case, then we say that ,F' : 0 is an ideal gauge fixing condition. The

region in the space of gauge fields that satisfies an ideal gauge fixing condition is

called the fundamental modular region. Therefore if we have an ideal gauge fixing

condition, \rye can integrate over the fundamental modular region and the infinities

discussed earlier would no longer be present in the numerator and denominator.

\Me can think about this from a physical point of view. Two equivalent gauge

fields are physically indistinguishable because they correspond to identical ac-

tions. So the physical ga,uge field configuration space is the space of gauge inequiv-

alent gauge fields or the space of gauge orbits, which is exactly the fundamental

modular region just defined. Therefore, although gauge fixing was motivated as

a way to get well defined expectation values of observables, it can be seen no$¡

to be a necessary and physically relevant process which is essential to properly

define observables in QCD.
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2.4 Standard Gauge Fixing Methods

The Fadeev-Popov procedure[5] is the standard gauge fixing method. It consists

of inserting a delta function of an ideal gauge fixing function, F, into the expecta-

tion value so that the region of integration is restricted to only those gauge fields

for which the gauge fixing function vanishes. Since an ideal gauge fixing function

has, by definition, one zero per gauge orbit then, this delta function will indeed

have the desired effect to reduce the region of integration to one gauge field per

gauge orbit. However, when this is done we must compensate for this change by

multiplying by the Fadeev-Popov determinant, the functional generalisation of

the Jacobian determinant in multivariable calculus.

First the Fadeev-Popov procedure will be described in general and then com-

mon choices for the gauge fixing function will be examined.

2.4.L The Fadeev-Popov Procedure

First recall some basic results from multivariable calculus, which is a good start-

ing point for the Fadeev-Popov procedure since we will consid-er the functional

generalisation of these results. Recall the identity,

I o¡ 6(")1¡J : t, (2.42)
J

where / ir u vector of real numbers with n components. Now consider the situ-

ation where / is specified in terms of n variables d, so that f- : i@). We can

make a change of integration variables from f to r in the follorziring way,

I r,ô(")(/id)) 
1.", 

(#)1,=o :,, (2.48)

where we have inserted the Jacobian determinant for this cha,nge of variables.

The above is true so long ur / h"r one zero within the integration range, or

equivalently, if this change of variables corresponds to a change of basis. Now we
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\,vant to generalise this to functional integration. So we begin with the following

identity

IDF 6lF(lAl,r)l : 1, (2.44)

(2.45)

where A is some gauge field and DF is the functional integration measure. The

notation F(lA),r) means that F is a functional of ,4 and a function of ø. F
will be our gauge fixing function implementing the constraint on the functional

integral, we will assume that it is an ideal gauge fixing function. Therefore we

can write A in the form (Ai"eo)r, where ¿ineo ¡t the unique gauge field satisfying

F(/i""o¡ : 0 and g gives the position of ,4 on the gauge orbit. This also means

that Ai""q can be considered our choice of origin of the gauge orbit and the set

of all Ai""q specifies a fundamental modular region. Now we make a change of

variables from .t'to g, analogously to what was done above. So we have

IDs õlF (lAl, ø)lApp[A] : 1,

and

where

Arp[Á] = la.t (*[o],",r))1":o (2.46)

M(lAl,r,a' - õF(lAl'r))=-Ë#. (2.47)

A"p[A] is the functional version of the Jacobian determinant and is called the

Fadeev-Popov determinant. In this case however, App[,A] is a matrix in colour

space as well as coordinate space because the gauge field, A, is itself a matrix in

colour space.

Recall that the space of integration can be divided into an integration over

gauge inequivalent gauge fields and an integration around each gauge orbit as

explained previously

I IDA: DAt ec Ds. (2.48)



2.4. STANDARD GAUGE FIXI/VG METHODS

Using the above and also (2.45) we find that

2L

.f
'p ¡inet I o g qr ((,4i""4¡01, r)larp [ (Ai""o¡01

J

D A õlF ([(Ai""q) e], u ) I AFp [ (Ai*q) e]

D A 6lF ({(,a1, z)l App [(,a]. (2.4e)

So we see here that the integration over gauge inequivalent ga-uge fields can be

expressed in terms of an integration over all gauge fields via t he Fadeev-Popov

determinant and a delta function constraint. We have argued in the previous

section that we should not integrate over all gauge fields but only over gauge

inequivalent gauge fields in order to produce the correct result and avoid over

counting. Therefore, in the above notation we redefine (O) to fce

f DA;""t?¡¿inec)exp [-S"¡li*c1] |(o) = . (2.õ0)

Now following the same steps as above we get

(o) : (2.51)

Although the gauge fixing procedure is seemingly complete, ideally we would

like to express the expectation value in the form (2.39) with a" different action.

This is useful because the Feynman rules can then be easily found and calculations

can more readily be carried out. We can do this if we write the Fadeev-Popov

determinant as a Grassmann functional integral. Recall that the Fadeev-Popov

determinant is defined by

4""[A] = ]a"t (*{tol,',ù)|, Q.52)

where ,4. lies in the fundamental modular region. The following is a general result

but we only need to consider it in the case of the matrix M"b(lAl,r,y),

I orr" 
"*o l- I o^' dly d(r)M""(lAl,,,ù""@)): ¿et (M (Al,r,ù),

(2.53)
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where c and Z are Lorcntz scalar, anti-commuting fields called Fadeev-Popov

ghosts. There is no violation of the spin-statistics theorem here because these

fields do not correspond to physical particles and are never found in initial or

final states of any interaction. However, before this result can be used the modu-

lus around the Fadeev-Popov determinant must be removed. If we again consider

App to be the generalisation of the Jacobian for a change of variables in mul-

tivariable calculus we can see that this is possible because .t' is an ideal gauge

fixing function. The analogous scenario in multivariable calculus to having an

ideal gauge fixing function is simply a change of basis vectors. In this case the

Jacobian determinant is necessarily non zero. Hence the Fadeev-Popov determi-

nant will also be non zero in the fundamental modular region. Given that any two

gauge fields in the fundamental modular region are connected by a smooth path2,

it follows that App will not change sign in the fundamental modular region{6].

Therefore the modulus is irrelevant and we can use (2.53). Thus u¡e câ,n write

the expectation value in (2.51) as

(0): I o,no-cocexp [-Sç[A] - S¡r[4, c,e]16[F(lA],r)lO(A)

I oloeocexp [-Ss[.A] - Sr'o[,4, c,z]lô[F([,a], r)l

where

SttlA,c,7]= [ anrany e"(r)M""(fAsf,r,ùc'(ù. (2.55)L "J J

The above now consists of an integral over all gauge fields with the extra ghost

terms and a delta function. The presence of the delta function means that only

the gauge fields which lie on the gauge fixed surface in gauge field configuration

space, defined by .F'[A] : 0, will contribute to the functional integral. Due to

the assumption that f' : 0 is an ideal gauge fixing condition one and only one

gauge field per gauge orbit will be integrated over. Thus we have accomplished

what we set out to do. Given a choice a gauge fixing function \4/e can evaluate

the matrix M"b(lAl,r,y) and express the delta function in a convenient manner.

(2.54)

2This will be proved in chapter 4
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Thus we can write (O) as the functional integral over all gauge and ghost fields

of O(A), weighted by the exponential of an effective action. We shall examine

various choices for .t. in what follows, where we will derive explicit expressions

for this effective action.

2.4.2 Generalised Covariant Gauge

Landau gauge is a common choice of gauge, where we consider only those gauge

fields that satisfy 0,Ar: 0. So the gauge fixing function is given by

F(lAl,r) : 0PAp(r). (2.56)

Let us define for later convenience

f (4,r):ÙPAr(r). (2.57)

We can generalise Landau gauge by introducing an arbitrary function, k, such

that

F([A],x): f(lAl,x)-k(x). (2.58)

It is now possible to explicitly calculate the Fadeev-Popov determinant for this

generalised Landau gauge. We will do this now, but we first note that since it is

evaluated at the gauge field for each orbit which lies in the fundamental modular

region, then we will only need to consider a neighbourhood of this gauge field,

this means that only infinitesimal gauge transformations need to be considered.

Recall from (2.25) that an infinitesimal gauge tra¡rsformation can be written as,

Aî" : A"r+ ôru" + grf"b"Alru'+ 0(u2) (2.5e)

Now recall the following functional identity,

#øq"o(*): õ"bql't.){t - o¡' (2.60)
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Now we can calculate the matrix, M""(lA'l,r,y) in Landau gauge,

M"'([A'],n,y) =
6F"(A'l,r)

õr"@)
õ@t - k(r))

6u" a:.(ffi)
: ,f (#6?1ø¡ + fiu"(n) + s"fob"Abr(")r"(r)))

: at ((Eõ'" + s,f"b'Al,(ø))atar1ø - r)) . (2.61)

So the Fadeev-Popov determinant is,

ArprÁr 

: |l.: liåi',"* o':'iriï]]'""' 
- ù)) 1":' 

(2 62)

where the covariant derivative is in the adjoint representation. So if we assume

that this generalised Landau gauge is an ideal gauge fixing condition we can drop

the modulus in the Fadeev-Popov determinant and we have a functional inte-

gral representation for the Fadeev-Popov determinant in this generalised Landau

gauge,

A"p[Á] : I o*"."0 
[- I o^* d,as æ(r)(0pD'p"õ(r- s))""(s)]

: Ir*".*o [- I o^*e"(r)uD"fr"(")] . (2.63)

We can perform a Gaussian weighted average over these generalised Landau

gauges, that is multiply by

It r I*p 
L-4 J 

on" k'(*)1, (2.64)

where { is a constant, then integrate over k. The width of the Gaussian is specified

by {, which we will refer to as the gauge fixing parameter for reasons that will
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become clear. After this Gaussian weighted average over these generalised Landau

gauges is done the expectation value (2.51) is given by

(o)
I oAon exp -sc[Á] - üt d}r k2)õllpAr(r)- .å(r)lapeo(A)

I oAote exp -sclÁl - * t an* k"f õ[IuAr(r) - k(ø)]app

: , (2.65)

where the delta function has eliminated the integration over tÌ- e scalar function

k. When the expression for the Fadeev-Popov determinant is also inserted, we

get

(o) --
DADdDcexp [-S c,ellO(A)

(2.66)
D ADdDc exp [- S.[,4, c, Z]]

where

slA,c,¿l : sc[,4] + | an, ]O'a"rl'të"(r)0.Di,"'"(t)' (2'67)

The Feynman rules for QCD can be derived from this action. Therefore the defi-

nition of perturbative QCD in arbitrary covariant gauge arises from the Fadeev-

Popov gauge fixing method based on a Gaussian averaged generalisation of Lan-

dau gauge. In the limit { -+ 0, the Gaussian width vanishes and we recover

Landau gauge, õpAp:0. Also {: 1 is called Feynman gâ,uge-

2.4.3 Axial Gauge

Axial gauge is a common choice in canonical quantisation but it can also be used

in the path integral approach. Here we will chose to write it in the general form,

nPAr: g, (2.68)

where r¿ is some unit four vector, which \we âre free to choose. If we take r¿ :

(1,0,0,0) this corresponds to temporal gauge,

Ao:0. (2.69)
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So a>cial gâuge refers to a whole class of gauges which can be written in the form

(2.68). The gauge fixing function for axial gauge is given by,

F'([Á], x) : nvAp(x). (2.70)

This gauge fixing scheme is not Lorentz covariant because n specifies a preferred

direction in spacetime. This means that any calculation done in axial gauge will

be reference frame dependent for gauge dependent quantities, which may not be

the desired outcome. All the steps leasing to the arbitrary covariant gauge can

be followed again here by defining

F(tAt'r) 
: ::::,: _:3 e't)

We now calculate the matrix M""(lA'l,r,y) for this generalised a>cial gauge and

find

M"'(lfl,r,y) : "'ffi
: nr((arr + s,f"b"A!r(ø)) ô(4)(r _ r))
: nt'5øc6r6Ø) @ _ ù. (2.72)

Hence the Fadeev-Popov determinant for anial gauge is

Aep[Á] : 
la.t (neõ"'lrõ(n)@ -r))1"=o Q.Tz)

So we find that the expectation value in axial gauge is given by

(o) : I O,loeOc exp l-SlA,c,e]lO(A) (2.74)
DAD-óDI exp -s c,

where

slA,c,¿l : sc[A] + | an* 
f,r{n',+r)" *t(n)n'0rc"(r)- (2.75)

Notice that App is independent of A and thus it can be factored out of an ex-

pectation value. This means that there are no need for ghosts in axial gauge or
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equivalentl¡r that the ghosts decouple from the gauge fields. Just as exact Lan-

dau gauge , 0p Ar(n) : 0 is recovered a.s the € + 0 limit of generalised covariant

gauge, we see that exact axial gauge, nþAr(x) - 0r is the { -r 0 limit of the

Gaussian weighted averaged anial gauge. It should be noted that æcial gauge has

the problem that singularities arise in the propagators and it is not clear how to

deal with these beyond one loop in perturbation theory.
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Chapter 3

The Gribov Problem

Gauge fixing has been described as an essential part of QCD, where the physical

configuration space was identified as the space of gauge orbits, a subset of the

space of all gauge fields. We discussed the Fadeev-Popov gauge fixing scheme as

one method of gauge fixing. However, the key assumption of this method was that

the local gauge fixing condition considered was an ideal gauge fixing condition.

In this chapter we shall examine this assumption further and in fact show that for

the case of Coulomb gauge this is not the case. In addition, under quite general

circumstances an ideal local gauge fixing condition has been shown not to exist.

The multiple zeros of a non ideal gauge fixing condition in a particular gauge

orbit are referred to as Gribov copies. Gribov copies will be examined in the

lattice formulation of QCD and will also be seen to be irrelevant in perturbative

calculations, therefore establishing the Gribov ambiguity as a nonperturbative

problem.

3.1 Gribov Copies in Coulomb Gauge

Gribov[7] showed that Gribov copies exist in Coulomb gauge for SU(2). We shall

discuss this now. We want to find the solutions of the Coulomb gauge fixing

29
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condition for the gauge transformed A. The assumption in the Fadeev-Popov

procedure was that there is only one solution per Sauge orbit. We will n<¡w

demonstrate that this is not the case for SU(2) in Coulomb gauge. Consider the

following general element from a spherically symmetric subset of SU(2)'

i:cos(+) *io'"'"(+) (3 1)

This gauge transformation acts on the gauge field, Á, in the following way

A, + Aï,: -gDþøt. (3.2)

Consider the orbit equivalent to the trivial galrge field, A : 0

Asp: -g7t gl . (3.3)

Coulomb gauge is

0¿A!o : g' (3'4)

Now find solutions to the Coulomb gauge fixing condition, they are solutions to

the equation

ù (þo¿Et) : s. (3.5)

It can be shown that the above equation is equivalent to the second order differ-

ential equation

a" (t) + a.'(t) - 2 sin (o(t)) : o, (3.6)

where ú : log r. This is the classical equation for a damped pendulum in a

gravitational field. One should envisage a pendulum initially in a position of

unstable equilibrium therefore it would most likely not remain in this position.

Depending on the initial conditions it will fall either clockwise or anticlockwise

until it comes to rest in the stable equilibrium. The important fact is that there

are many ways it can do this, for example it could simply go directly to it final

position with minimal oscillations, or it could make any number of complete
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revolutions before it does this. Therefore there are in principle arr infinite number

of solutions to the above differential equation, which also means that there are an

infrnite number of gauge fields that satisfy the coulomb gauge condition and are

related by a gauge transformation. This implies for our problem that there are

an infinite number of Gribov copies. Note that we have restricted ourselves to

considering only spherically symmetric SU(2) gauge transformations and also only

considered one gauge orbit, so there could be many more Gribov copies in this

case. This scenario is expected to be unchanged for SU(3) gaug€ transformations

in Landau gauge.

3.2 Gribov Copies in Axial Gauge

We have seen that Coulomb gauge is not a complete gauge fixing conditibn, this

is also the case for generalised axial gauges. Recall that the generalised axial

gauge condition is given by

nPAp - 0. (3.7)

Gribov copies will be present when there are multiple solutions to the following

equation

nPAqtt : o,

n\gõpgI : 0, (3'9)

where we are again considering only the trivial orbit. Let us first consider tem-

poral gauge, that is

Ao:0. (3.10)

In this case (3.9) becomes

90ogI :0. (3'11)

It is obvious that Nry g independent of øs will satisfy this equation and hence

there are infinitely many solutions to the temporal gauge condition. If we now

(3.8)



32 CHAPTER 3. THE GRIBOV PROBLEM

consider the generalised axial gauge and look for solutions to (3.9) restricted to

infinitesimal gauge transformations, then we have using (2.25),

nþAto : 0,

nþùruo : 0.

(3.12)

(3.13)

It is clear that the above is satisfied whenever n, is orthogonal to ïpu". Therefore

generalised a>rial gauge also has an infinite number of Gribov copies.

3.3 The Fadeev-Popov Procedure Revisited

We have just seen that the choices that we made for the gauge fixing function in

the previous chapter in order to explicitly carry out the Fadeev-Popov procedure

do not satisff the required property that they have one and only one zero for

every gauge orbit. Indeed no such function is known. It has been proven that

this is true under quite general conditions[8].

Therefore it seems that the assumption made in the Fadeev-Popov procedure

is not able to be made, so here we will examine how the Fadeev-Popov procedure

would change if we do not make this assumption.

In the case when the gauge fixing function has multiple zeroes we have in

general
I

J 
on ô [r(,4'g)]AFp[.4] I 1, (3.14)

where

aep[,4] :10.,lry] l"=, (3.1b)

We shall proceed by redefining the Fadeev-Popov determinant as a sum over the

zeros of f', that is

Ã'"[Á] :tla.,f¿rl1'11 ¡ , (3.16)¿¡r' 
? I L õg Jln=n^
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where n labels the zeros of F. However if we were to use this definition in

the Fadeev-Popov procedure, it would not be possible to introduce the ghost

fields to represent the Fadeev-Popov determinant, making it difficult to derive

the Feynman rules for this theory. As an alternative we make the definition

(3.17)

Here we have dropped the modulus around the Fadeev-Popov determinant and

so it can now take positive and negative values. In the case where F has only

one zero per gauge orbit, the sign of the Fadeev-Popov determinant is irrelevant

and n(A) will be unit¡ and so the equality in (3.1a) will be restored. Thus we

see that the above reduces to the identity used in the Fadeev-Popov procedure

in the absence of Gribov copies.

The Fadeev-Popov determinant will contribute the same magnitude for each

Gribov copy but possibly with a different sign, so n(.4) consists of a sum of

*1's and -1's, representing the contributions from the Gribov copies. The plus

and minus signs can be interpreted as the way in which the gauge fixing surface

intersects the fundamental modular region.

Evidence has been put forward[9][10] that Gribov copies have no effect on

expectation values of observables. Of course this is the preferred outcome because

then the whole issue of the Gribov problem could be ignored, however these

arguments are not conclusive and it is yet to be seen that the Gribov problem

has no effect. There is also the prospect that there might be as many positive

as negative contributions from the Gribov copies, meaning t}n,at n(A) vanishes.

This would be a disastrous scenario, leaving expectation values ill-defined. We

shall return to this possibility later.

n(A) : I "nô[F(A,)].., lry]
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3.4 The Gribov Problem in Perturbative QCD

Perturbation theory is very useful in calculations in QED, since the coupling

constant in QED is small. Such techniques have not been found to be as useful in

QCD since here the coupling is large. However, due to the property of asymptotic

freedom, the coupling is small at high momenta and perturbative calculations can

be used.

Let us remind ourselves about the relevant objects and try to show that Gribov

copies do not contribute to perturbative calculations. The action is given by

1r
Sc[A] : -; I dar F[,F"t""

+J

: #, I o^* Tr(Fp,Fp'), (8.18)

which is written in terms of the gauge invariant quantity

Tr(F*FP') = Tr([Dp D,]IDP,D"l)

: Tr ((A"Ap - 0rA, - lAw A,])@'AP - ap A" - lA',,4"]P'19)

where

Ap = ig,Aflt" (3.20)

Also recall (o)=ffi. (3.21)

For a perturbative calculation we consider the limit as 9s goes to zero, thus

((?) will be dominated by gauge field configurations which give small values of

h(Fp,Ft""). This quantity is positive definite since it is a square and it has the

value 0 only on the trivial gauge orbit, ie. the orbit containing A : 0. So in the

limit g, + 0, (0) is dominated by gauge fields close to the trivial orbit. We want

to show that the Landau gauge condition has only one zero near A: 0 along

its gauge orbit. This is easily seen if we make use of the fact that the stationary
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points of the functional

ll,all'= - l o^r rr(A2r) @.22)

are the gauge fields satisfying Landau gauge (this will be shown explicitly in the

next chapter). ,4 : 0 is clearly a nondegenerate absolute minirnum of (3.22) and

so near A : 0 it must be increasing and therefore A : 0 is the only solution

to the Landau gauge condition near .A : 0. Hence in a perturbative calculation

there are no Gribov copies in Landau gauge.

3.5 The Non-Perturbative Regime

We know now that we do not need to worry about the Gribov problem in pertur-

bative QCD, but what about QCD in the nonperturbative regime? Is the use of

the QCD action derived from the Fadeev-Popov procedure justified in this case?

It seems there are some quite distinct arguments of how one should handle this

situation. One could argue that the gauge equivalent gauge fields are unphysical

and one must integrate over the physical configuration space, that is, a funda-

mental modular region. This necessarily excludes all Gribov copies, but exactly

how one would try to implement this is a non trivial task. The other point of

view one could take is if one says QCD should be defined non-perturbatively with

a non-ideal gauge fixing condition, such as Landau gauge. This means that either

the effects of Gribov copies are ignored or that calculations are assumed to not be

affected by them. This is the point of view generally accepted when considering

non perturbative issues. In fact the renormalisability of QCD is based on the

action derived from the Fadeev-Popov procedure in Landau ga,uge. In addition,

it is the basis for the Dyson-Schwinger formalism, a common nonperturbative

calculational tool. Another possibilit¡ which has found to be quite useful in lat-

tice eCD simulations, is a non local gauge fixing condition which ensures that

Gribov copies do not affect the calculations.

35
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Chapter 4

The F\rndamental Modular

Region of Landau Gauge

It has been shown in the previous chapter that Landau gauge is not an ideal

gauge fixing condition. This immediately invalidates the Fadeev-Popov procedure

since it was a key assumption in the derivation. In the current chapter we shall

attempt to identify the fundamental modular region that lies within the gauge

fixing surface defined by Landau gauge. In order to do this we will find the

local minima of some functional and show that this defines a subset of the gauge

fields in Landau gauge. However it will be found that it does not constitute a

fundamental modular region and therefore \4¡e shall consider absolute minima.

\Me shall see that for this region, Gribov copies are only present on the boundary.

We proceed in much the same way as others have previously[l1][12][13].

4.L Minimising the Norm Functional

Some time ago it was realised[13][1a] that gauge fields corresponding to local

minima over each gauge orbit of the norm functional also satisfied the Landau

37
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gauge condition. We define the norm functional by

Considering one gauge orbit at a time, we wish to find those gauge fields out of

all the gauge fields in each gauge orbit which are local minima of this functional.

Therefore we consider the norm of the gauge transformed field, ¡t , and find its

local minima as we vary the gauge parameter of the gauge transformation g. So

the object we are interested in is,

Ill,all'= - dar Tr(A2r).

g : explig"uo(r)t"1.

(4.1)

(4.2)

(4.3)

llAnll, : - | d}n rr ({narn, - gl,s\') ,

where g is a gauge transformation, which can be written locally in the same !\¡ay

as it was previously,

We shall now explicitly show that the local minima of the above does indeed

satisfy the Landau gauge condition, that is they satisfy

uAu:g (4.4)

Expanding (4.2) locally about the gauge field A, we get

llAnll, : - I o^" T (A,r+ þarsI)' - z(}us\sAr)

: llall' - I ot" T, (Øar st)2 + zst 16, g)Ar) . (4.5)

We need to calculate expressions for the two integrands above. By writing the

gauge transformations, g, as Taylor series and keeping only second order terms,
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we have

39

g0p9 | * i,gru"t" *

: (L + ig,a"t")

: (I + ig,u"t")

: -igrïra"t" -
: -'igrïra"t" r

(ig,u"t")2 L - igru"to (-ig"u"t")2t 1

2 )n(
1I_,2

-,lg,Lruoto -f;n?r"ru ((Lru")ub + u"ar@b¡))

- ig,o ruo to - Lrø?r" (o rub¡ 1t" tb + t'* i )
g!u" (0 rub) ltotb + tbt") + g2,u" (0 *ub)t" tb

g!u" (0 rub) (t"tb - tbt")

1

2
1

t
: -i,g,(0ru")r" +l¡o?l,fob"uo(arub¡t". (4.6)

In the same way it can be shown that

gt}rg :,ig,(Lpuo¡t" +f,s?l,fob'uo(arub)t". (4.7)

We proceed, making use of these expressions, and so (4.5) becomes

llA,llr: llall, I o^r*( (-r" (Lru")t" +f,;?tf"o"-"@ru\t")

+ (zts"larr")t" + is?f"b'u"1auub¡r)o"). (4.s)

The above is easily simplified by discarding terms cubic in ø, e)cpressing A, in its

components Afi and evaluating the trace using (2.2), thus expanding the above

we get

llA'll': ll.4ll' d,a x Tr (- g! (A ru"¡t" 1a pub)tb )

d4 r z g!'h ((0p u") Alrt" to - gl Í "0" u" (ff øb)f Af*)

da x - c g2"(oru") (arub¡õ"b

dar 2c g!(Tuu")Al,6b - c gt, f"o"r'(æt-Ì)A!r6"d (4.9)

: llAll'

I
I
I
I
"n? |: llAll' d,ar 2u"(0uA!p) + (u"@2u") + g,fob"r",+brla'u1)



40 CHAPTER 4. THE FMR OF LANDAU GAUGE

Therefore, the entire result reads

Now that llA'll" has been expressed in the above form it is not even necessary

to carry out the functional differentiation, since we may merely read off the

functional derivatives that we need if we remember the functional version of the

Taylor series expansion of the functional llA'll' about A or equivalently about

u :0. Recall

ll¿'ll' : ll,4ll' -cg? I o^*2u"(0PA'r)+(u"@2uo)+s,fou""Al"(yt'u"))' {a'roi

We now have the expression for llÁ'll2 in a neighbourhood of A, containing only

gauge fields in the gauge orbit of .4. It is necessary to express this result in a

slightly different form, introducing an integral over g and a delta function, so that

functional derivatives can be extracted directly. Proceeding in this way we get

llA'll'

Cs? I d,ard|y 6(a)(r - ù(u"1y)0|u"(r) + s,fob"ro(ùAl,@)alr"fu))

c s? I dÍrd,ay u" (x)u"(s) ( *a|l'<nt 
@ - ù - s"Iou' Aur@)oç ttttt" - y))

: llÁll'- ,tn? I dar u"(n)0uA"r(r) (4.11)

tn? | d}rty u"(x)u"(y)(o*40<nt@ - y) + s,fob"Abr@)ag5@tt" - s)).

llA"ll' : llAll' + d1x uo(r\ 
ô]lA:ll'?

' òuølx)I u=0

o=0
+ ... . (4.t2)

Hence we find the first functional derivative to be

õllA.,ll'
õu"(x) u=0

: -2Cs? AuAfl(r), (4.13)
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and the second functional derivative is

6'llA'll'
6u"(x)õu"(y)

: -zcs?(u*u'- + s,f"b"Abr(ø)a;)otal1 r - s). (4.t4)
ø:0

4r

(4.17)

(4.18)

We know that the gauge field, A, is a local minimum of the norûi functional if the

first functional derivative vanishes at -46 and if the second deriva,tive is positive at

A. It is possible that ,4 could also be a local minimum when the second derivative

vanishes but this is not generally the case. Therefore, for the gauge field A to be

a local minimum it must satisfy

(4.15)

(4.16)

Notice that this is more simply written when we choose the adjoint representation

for the covariant derivative and so

:0,

>0

ar A!,

-af ((u*q,+ s"f"b'Abr(r)) atarlø - r))

0

The object on the left hand side of (4.18) is called the Fadeev-Popov opera-

tor. The Gribov region for Landau gauge, f), is defined as the gauge fields for

which the above conditions hold. On the boundary of 0, called the Gribov hori-

zon(denoted Af-¿), the Fadeev-Popov determinant vanishes (or equivalently the

lowest eigenvalue of the Fadeev-Popov operator vanishes).

It is obvious that any gauge field in C) will also satisfy the Landau gauge

condition used in the Fadeev-Popov procedure. We know ttrat Landau gauge

contains Gribov copies and so in order to identify a true fund-amental modular

region we would need to make further restrictions on the gauge felds to eliminate

the Gribov copies. It should be noted that a fundamental modular region must

contain one gauge field per gauge orbit so we must ensure that lr¡e do not exclude

entire gauge orbits when introducing restrictions on the gauge fields. It has
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been shown elsewhere[l5] that the above gauge fixing does in fact include every

gauge orbit. So let us no\l' proceed to investigate as to whether 0 is indeed a

fundamental modular region.

4.2 Gribov copies within the Gribov Horizon

Here we consider the possibility that there are Gribov copies within the Gribov

horizon, in this case the Gribov region would not form a fundamental modular

region. This will be done by first assuming that the Gribov region contains no

Gribov copies and then finding a contradiction.

Let us begin by assuming that O is a fundamental modular region, then in O

there is one and only one gauge field per gauge orbit. It has been shown that the

elements of O are local minima of the norm functional, this implies that gauge

fields in O are in fact absolute minima since there is only one local minimum per

gauge orbit it must be the absolute minimum. In [13] it was shown that if fl

consisted of absolute minima then the boundary of 0 must also contain absolute

minima by a simple continuity argument. Now take a generic gauge field, As,

from the Gribov horizon, it will be an absolute minimum and will also satisfy the

following,

ôll,4"ll'
õu"(x)

õ'llA',ll'

(4.1e)0,

õu"(r)õu'(y)
:0.

A=Ao
(4.20)

Since the second functional derivative is zero, it does not tell us anything about

the nature of the critical point. However if we look at the third functional deriva-

tive at .4s and if we find that it is non zero it means that ,4,¡ is not a local

extremum. Therefore for the argument just described to be consistent, the third

derivative must be zero at As. Dell'Antonio and Zwanzigerfl3] have explicitly

shown, in the case of gauge group SU(2) with spacetimes Ã3 or 7", that there
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are points on A0 which have a non vanishing third derivative. If we take A6 to be

such a point then it is not an absolute minimum and therefore by continuit¡ the

gauge fields in some neighbourhood of As cannot be absolute minima. Since ,4s is

on the boundary of O then the gauge fields in this neighbourhood, which are also

in f) are not absolute minima. Therefore they are necessarily local minima and

are Gribov copies of the gauge field in f) corresponding to the absolute minima

on that same gauge orbit. Thus we see that, at least in the case considered, there

are Gribov copies inside the Gribov horizon. This is believed to be the general

case and we shall continue under this assumption.

4.3 The Absolute Minima of the Norm Func-

tional

Under the assumption that O is not a fundamental modular region, we may then

ask whether 1ve can identify a subset of 0 that does constitute a fundamental

modular region. We shall investigate this now.

Define Ä to be the set gauge fields in O which are absolute minima of the

norm functional on each gauge orbit. Therefore by definition Â consists of one

gauge field per gauge orbit so long as there are no degenerate absolute minima.

Therefore we make the additional definition, let Äs be the set of gauge fields which

are unique absolute minima of the norm functional. Clearly Ä6 is contained in ,4,.

Let us express these ideas more precisely and we shall return later to the question

of degenerate absolute minima. Consider an arbitrary gauge field, ,4', which is

acted on by a gauge transformation g, producing.4s. So lve ca.n define A in the

following waY

n: {Al ll/rnll'> ll. ll',ve e sI/(3)}. (4.21)

The arguments here rely on the fact that Â, is convex, that is, there is a continuous
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path between any two gauge fields in .4,, which is itself contained in A. So given

At, Az in Â, we want to show that

A: sAt+ (1 - s)Az e 
^, 

(4.22)

for s € [0,1], or equivalently that

ll(tÁ' + (1 - s)Ar)nll'- lltÁ' + (1 - s)A2ll2 > 0, (4'23)

for all s and all g. Gauge transforming and expanding this we get

ll(tÁ'+(1 -')At)nll" -lltÁ'+(1 - s)Arll'
r: / rtlltat + (1 - s)Az)n)'- (tÁt + (1 - t)Az)'

I: 
Jttllsltar+(1 -s)Az)gr -s0st)2 -(sA'+(1 - s)Aùz

f: 
J 

*f-rnfsAt r (L - s)A2)õsI + (gosI)r)

: I n('tal - 2sA,gI sogl + @as\') - ,A?

+ (1 - t)(A|-2sAzgtsÌg| + þas|)\ - (1 - ')AZ)
rr (s (a{'? -'A?

ll(Anll'- ll(Á'll'

- (1 - t) (A!r' - AÐ):T
: t(

)

) + (1 - ')(ll(.4ill' - ll(A,ll'z). (4.24)

Since both.4r and A2 are in A then both the above quantities are greater or equal

to zero therefore we have proved (4.23). Notice that we can similarly show that

Ao is convex.

Now take any gauge field A in À - Âs and apply (4.24) with Ar : A and

Az:0. Hence we have

llstn¡" - ll'Áll, : "(ll 
(Anll" - ll(Áll') + (1 - s)lloø¡¡2. (4.25)

Since ,4 is in A then the first term is non negative and the second term is positive

for all values of s (since A:0 is in.A,s), except s:1, therefore

lltAnll'- llsÁll2 > 0, s + 1. (4.26)



^

a Æ"I

4.3. THE ABSOLUTE MINIMA OF THE NORM FUNCTIO-¡\rA¿ 45

Figure 4.1: The linear path from A : 0 to .4e is shown aborze. It crosses the

boundary of Â at s : t. Aen is the gauge field which corresponds to the absolute

minima of the gauge orbit containing Ae.

Thus sA is in,A.s for all s in [0, 1), meaning that .4 is in the boundary of .4,6. Since

,4 was arbitrary, it follows that Ä : ¡\o U 6Â0.

Thus, so far we have found that degenerate minima lie on the boundary of

A, if these degenerate minima are never on the same gauge orbit then Ä, would

constitute a fundamental modular region, but as we shall see this is not the case.

We now consider this problem geometrically[12]. Construct a linear path from

A : 0 to some arbitrary gauge field Ae, in O but not in Â. An arbitrary Sauge

field on this path can be written as sÁe, where s goes from O to 1. Therefore

there is some value of s, say ú, for which fAç¿ lies on the bounda,ry of Â. There is

also a gauge field in,A,, say ,Afi, which is related to .4s by a gauge transformation

and has a norm strictly less than that of ,4o. In general ,4fi rn'ill not lie on the

path. This scenario is shown in Figure 4.I Let us consider what happens when
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(t- e)4,

((r-

O
I (t- e)4,

((t+e)A) s

^
Figure 4.2: The behaviour of the gâuge fields sÁs and (sÁO)e near s : ú is shown

above. When sÁe passes inside A, (sÁCI)o must move outside and therefore at

s : ú they will both lie on the boundary

we start from s : 1 and move along the path towards s : ú. What happens to

the gauge copy of s,4ç¿ as s changes? (sÁo)' is given by (dropping the index ¿r)

("Áo)o:sgAagl-g0gI (4.27)

So we can see that (sÁe)e lies on a linear path from -g0gI to gAegI - g0gI.

Therefore a^s s changes the gauge transformed gauge field (sÁç)g follows its own

continuous one paramter path. This will be useful in the following.

We shall now examine what happens near s : ú. Consider s : ú*e, the gauge

field (ú * e)Ae will still have a gauge copy of itself inside Â, but when s < ú, say

t - e, then there can be no gauge copy inside Â because it is now in the interior

of Â and thus it is a non degenerate absolute minimum. Therefore the gauge

transformed gauge field ((t - e)An¡e must now lie outside of Â. This is shown in

Figure 4.2. Using the result above that (s,4ç)g follows a continuous path, we find

that at s : ú there are, in general, two distinct gauge fields which are related by a
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Figure 4.3: The general scenario with Gribov copies all around- the boundary of

^

gauge transformation: they are Gribov copies. These gauge fields will obviously

have the same norm since they are both absolute minima orr the same gauge

orbit. Since the gauge field ,4e was arbitrary then this is the general scenario, as

shown in Figure 4.3. Thus we have found that the fundamenta,l modular region

of Landau gauge is a non trivial region since we necessarily han¡e to choose only

one of these degenerate minima on the boundary of .4, so that there is only one

contribution from each gauge orbit.
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Chapter 5

Gauge Fixing in Lattice QCD

In this chapter we shall examine gauge fixing and the Gribov problem for QCD

defined on a spacetime lattice. Firstl¡ we will make some general comments

about lattice QCD, which will be followed by the definition of the lattice gauge

fields and lattice expectation values. \Me will then investigate the Gribov problem

on the lattice and then examine some lattice gauge fixing methods.

5.1- Lattice QCD

In order to study long range phenomena, such as confinement, non-perturbative

methods for QCD calculations are required. The formulation of QCD on a finite

spacetime lattice is one such method. The overall aim is to sirnulate QCD on a

computer so that physical quantities can be calculated numerically. This makes

many more calculations possible, giving useful insights into QCD, which may not

have been otherwise possible. The main restriction on the possible calculations is

the computer power available and since the computational speed is ever increas-

ing, the future looks good for lattice QCD. But with the current computational

speed, calculations at physical quark masses cannot be done. Therefore, unphys-

ical heavy quarks are used and then the results are extrapolated to their physical

49
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values. It is clear that this extrapolation must be done correctly in order that

correct results are obtained, exactly how to do this is still an open question.

There is an alternative motivation for studying QCD on a lattice. In the

lattice formulation of QCD all the quantities are finite and well defined in contrast

to the continuum path integral formulation, where the functional integration

measure lacks a rigorous definition. Therefore lattice QCD also provides a useful

framework to carry out rigorous calculations.

Here we shall consider a four dimensional finite spacetime lattice, with a

volume V, where adjacent lattice sites are separated by a distance ø. We shall

label the lattice sites with the discrete variable c. The matter field, tþ(x), arc

defined only for each lattice site. We shall see in the next section that lattice

gauge fields are represented by the directed links ofthe lattice, exactly the parallel

transport operators defined earlier. For a complete introduction to lattice gauge

theory see [16][17].

5.2 Lattiee Gauge Fields

Gauge fields are written in terms of the parallel transport operator from each

lattice site to each of its neighbouring sites.

Recall that in the continuum, rrye define the covariant derivative in the follow-

ing way,

Drrþ(r): 
lg3 

t¿t/tt. 
+ eti,) - U(, + eit,r)þ(n)), (b.1)

where we introduce the quantities U(x + elt,r) to ensure the correct transforma-

tion properties. In the continuum \rye expanded U(r*en,ø) about r, introducing

Ar(')'
U(r + ett, r) : explieg"A!r@)t"): 1 * eAr(r) + O(e2), (5.2)

where

Ar(*) - ts,Afi(n)t". (b.3)
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But we shall not do this to derive the lattice formulation. In the lattice setting

we realise that when defining the covariant derivative our infinitesimal parameter

€ corresponds to the lattice spacing ¿ and we drop the limit beca,use in the lattice

setting ¿ is the smallest distance greater than zero, so

1

Drrþ(*) : ;(Þ{" + a,tr) - Ur(r)tþ(r)), (5.4)

where

Ur(*) : U(r * aP,,r). (5.5)

It is clear that the quantities Ur@) correspond to the lattice link from the site ø

to the site r * aþ. Thus lattice gauge fields are directed link of the lattice.

5.3 The Lattice Expectation Values

In the continuum, the ungauge fixed expectation value of. O ft pure gauge QCD,

is given by (o):ffi. (b.6)

On the lattice we express the gauge fields in terms of the links 7r(r) so we need to

integrate over all possible links. We immediately realise that in any finite lattice

there is a finite number of links, hence the functional integral reduces to a finite

product of one dimensional integrals. Therefore the expectation value on a lattice

is a well defined quantity unlike the functional integral in the continuum. In the

formulation of QCD on the lattice we ensure that gauge invariance is preserved,

so the integration over the links should be done in a gauge inrzariant way, using

a gâuge invariant measure. We will use the group invariant neasure dU, which

satisfies

I dU 1 (5.7)

I (5.8)r(u)du f (su)du,
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for all g in the group. So we define the Iattice expectation value of. O as,

(0)' : I dU r(n) exp[-S (U, (n))]o (U r(r)) (5.e)
f7,rdu, fr exp -s(ur(r))l

Now the action depends on the set of all links on the lattice, that is {Ur(r)} and

thus it is no longer a functional. In practice, a finite number of link variables are

generated with a probability distribution of exp[-S(U)] and then (C?) is just the

average value of O over these configurations, so we have

1N(0)":;Ðo(un), (5.10)

where {U¿} is an ensemble of N, configurations with the probability distribution

exp[-s(U)].

To recover the continuum, we take the infinite configuration limit, the zero

lattice spacing limit and the infinite volume limit in that order

rN(o): JinlisJ'jLiDotu¡. (5.11)
v+Øo- 

ò=l

5.4 The Gribov Problem on the Lattice

Now let us examine the lattice version of QCD in terms of what we know about

the Gribov problem. Recall that the physical space of gauge fields corresponds to

the space of gauge orbits. Gauge fixing was described as limiting the functional

integration over gauge fields to this physical space so that one and only one gauge

field per gauge orbit was integrated over.

An expectation value in lattice QCD is calculated by first taking a finite

ensemble of gauge configurations with a weighting of exp[-Stu]]. So QCD is

approximated on the lattice by taking a finite number of configurations rather

than all possible configurations which is what is done in continuum QCD. So the

Gribov problem will manifest itself in the lattice setting if two configurations in
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the chosen ensemble lie in the same gauge orbit. When calculatirrg the expectation

value of an observable, \tre can sample from anywhere on the gauge orbit since

an observable is gauge invariant and is therefore constant on each gauge orbit.

So we just have to make sure that we do not sample twice frorrt the same gauge

orbit. Remember that even on the lattice there are an infinite number of gauge

orbits. Therefore if we choose l[ gauge fields the likelihood of two of them lying

in the same orbit is vanishingly small. Hence on the lattice when calculating a

physical observable there is no need for gauge fixing and there is also no Gribov

problem. However, when considering gauge dependent quantities, such as the

gluon propagator, the above argument does not hold and gauge fixing is necessary.

In order to avoid the Gribov problem we need to find an ideal gauge fixing. We

no\4r examine the implementation of Landau gauge on the lattice.

5.5 Gauge Fixing on the Lattice

In the continuum the Landau gâuge fixing condition is given by )rAu: 0, now

we want to know what the lattice analog of this would be. Recall in the previous

chapter that it was shown that Landau gâuge could be reinterpreted in terms of

the local minima of the norm functional

ll.all'= -lo^*r\(A?"). (5.12)

It was also found that this set of local minima did not constitute a fundamental

modular region and absolute minima were needed to be considered. This defini-

tion of Landau gauge is able to be implemented on the lattice. The quantity that

we want to minimse on the lattice is

F::Irr(nr(x) +u|"(r)). (b.13)2u
The problem with this minimisation process is that most algorithms find local

minima, which are the Gribov copies. In fact finding the absolute minima of this
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functional is a numerical problem of non-polynomial time complexity. Therefore

the gauge choice with this gauge fixing method is a random choice from the

Gribov copies in the gauge orbit. However, Laplacian gauge is an alternative

which is Gribov copy free, but it relies on finding the eþnvector of the lattice

Laplacian operator and thus is a non local gauge fixing scheme, it will not be

discussed here, but details can be found elsewhere[lS][19][20].
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BRST Sy*metry
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Chapter 6

BRST SymmetrY

Recall the Fadeev-Popov gauge fixed Lagrangian which consisted of the usual La-

grangian with the addition of gauge fixing terms deduced from the Fadeev-Popov

procedure. This Lagrangian is no longer invariant under gauge transformations.

This was precisely the aim of gauge fixing since the integration over gauge fields

needed to be restricted to the physical configuration space, the space of gauge

orbits. However when we recall that gauge invariance was the principle that ini-

tially led us to the form of the QCD Lagrangian, it seems undesirable to break

this symmetry straight away to ensure that we make correct calculations of phys-

ical observables. It was discovered by Bechi, Rouet, Stora and Tyupkin [21]

that the gauge fixed Lagrangian does have a residual symmetry, noïtr known as

BRST symmetry. This symmetry is closely related to gauge syrnmetry and in fact

gauge invariance implies BRST invariance. We will see that the Fadeev-Popov

gauge fixed Lagrangian (in Landau gauge) may be obtained from a particular

choice of a BRST invariant Lagrangian and hence the Fadeev-Popov procedure

can be thought to be in some sense contained within a BRST invariant gauge

fixing method. \Me shall take this a step further and suggest that we may el-

evate BRST invariance to the guiding principle in determining the form of the

57
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QCD Lagangian, replacing gauge invariance. This requires the introduction of

the unphysical ghosts fields at the classical level before the theory is quantised.

This approach, referred to as BRST quantisationl22l, is seen to be a far more

elegant and direct method than the Fadeev-Popov procedure. We shall examine

the differences between the two and also investigate some properties of our BRST

invariant theory

6.1 BRST Invariance

Recall that the expectation value of. O in Landau gauge, which was found by the

Fadeev-Popov procedure is given by

(o\ : [21O="Oc exp [-S[A' c'e]l0(A)t) : 'ï DADdDc exp [-s[,4, c, e]l ' (6'1)

where

slA,c,êl : sc[,4] + | an* ]Or'+"rl'+t(r)0'D"r'.'(r). (6.2)

rffe express the above in a slightly different way. The gauge fixing terrn can be

rewritten by the introduction of auxiliary fields åo, using the following identit¡

*' f-+ lruron'f 
: N I Db expll o" f,o'y +b"apAi]. (6 3)

So we have

where

(o): I DADbDdDc exp [-Sc[Á] - ,Scr[Á, c,-c,b]]O(A)

I DAD\EDc exp [-Sc[A] * Sçp[,4, c,ð'b]l '

,scr[Á, c,ê,,b]: I an* - f,{u")' - b"apA"t"+d(x)ôpDor"""(*),

(6.4)

(6.5)

The Fadeev-Popov procedure produces the following gauge fixed Lagrangian

t : -f,Fi,)' - f,Q\' - b"apAi, +topDic'. (6.6)
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õy'.", :
6c" :

õc" :
õb" :

grefob"cbc",

59

(6.7)

(6.13)

(6.8)

(6.e)

(6.10)

(6.11)

This Lagrangian is no longer gauge invariant due to the addition of gauge fixing

terms, which by construction break gauge invariance. Howewer it is invariant

under the so called BRST transformations[21]. The BRST transformations for

the gauge fields are obtained from the infinitesimal gauge transformations by

replacing the gauge parameter by the ghost field. In order to maintain consistency

we therefore require that the infinitesimal parameter is Grassmann valued so that

ec remains a commuting number. That is we make the identification

u(r): ec(x)

This automatically means that any gauge invariant object is BRST invariant.

The ghosts and the auxiliary field do not have gauge transforrnation properties

so we will simply define their BRST transformation properties, which we state

now and will then show that (6.6) is indeed invariant. The infinitesimal BRST

transformations are

c",D";

0,

1

2

ebo

where the delta means the variation of the field under a BRST transformation,

so if { is any freld, A¡", c, c or ä then its BRST transformation is given by

ó-+ó+õó (6.12)

Note that the BRST variation of a product of any two of the above frelds is given

by the usual product rule

6(ó'óz) : õ(ó)óz + órõ(óz)'
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We will first show that the quantity Dffc' is BRST invariant

õ(D"f,c") : 6(0rc" + g,f"b'A!rc")

: are!gr,*o""o"") + s,lob" (<o'f ælt -r-r9,rÍ"o"AIr"i"')

: -f,o"rl"'"((õrcb)c" - (Lrc")cb) + eg"lob"(at cb)c'

+ rg? lob' lb"d A"rcdc' - Trn? f^" f"d" Abrcdc'

: -f,o,rl"'"((Lrcb)c' + (}rcb)c") + eg,f"b"(at cb)c"

f,ro? 
eié 

"e 
1¡abc ¡cde - 2 foce lùd)

: -t rn'retr"oc'(fob'f"'t" - ¡øce¡cbd' + fo,,df,,b.,)

: 0, (6.14)

where the we have used the Jacobi identity to get to the last line.

Now we show explicitly that (6.6) is invariant. The first term is clearly BRST

invariant because it is gauge invariant, second term is trivial, so the transforma-

tion of the third is

The BRST variation of the last term is easy if we use the fact that ô(D["c") : 0,

õ(e"?uD"fc") : õ(e)ApDic" + é0u õ(Di"")

: eb"ÙPDlf c"

6þAþ Ai) : b"AP6@i)

: eb"}pDIfc..

(6.15)

(6.16)

(6.17)

(6.18)

(6.1e)

We immediately see that BRST variation of the above two terms cancel each

other and so (6.6) in indeed invariant under BRST transformations. Now we

define the BRST operator, s, as

õó: esó.
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Since e is Grassmann it implies that s is also Grassmann, in the sense that s(@)

has the opposite Grassmann grading to /. The action of s on the fields follows

directly from this definition,

rA;

gco

sco

sb"

1

2

c"D"; (6.20)

(6.21)

(6.22)

(6.23)

grfob"cbc",

bo,

0

The BRST operator acting on a product of fields is then given by

s(óft2)

where we take the plus(minus) sign when {1 is Grassmânn even(odd). Now the

statement that the (6.6) is invariant under BRST transformation in terms of s

can be written as

st(A,c,õ,b) - 0 (6.28)

The operator s is nilpotent, that is

s2 :0. (6.2e)

This means that when the BRST operator acts twice on any product of the fields

A, c, 7 or b, the result is always zero. We will prove this by induction, so first

: I4,'r')
: 

lfufo,lo" + ó$(óz)

: !(ur(ór)ó, + Sçs(52))

: s(ór)óz I ûs(óz),

(6.24)

(6.25)

(6.26)

(6.27)
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consider s2 acting on one field
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(6.30)

g? Í"u" (fbd" cd c' c' + f"d" c" cd c") : o, (6.31)

(6.32)

(6.33)

t'Ai : s(Dfi"c'):o,

s2 co : -Lro"f"'" r{"0 
"")

1

4

s2æ: s(å"¡ :9,

s2bo : o,

where the first line follows from (6.14) and (6.19). Now assuming that s2 acting

on (rz - 1) fields is zero, we prove that s2 acting on r¿ fields is zero,

s2(þþ2...ó") : s(s(óùô2...ón+ ôp(ô2.. -ó"))

: +s(dr)s(dr...ó")+ s(dr)s(d2...ó")

: 0, (6.34)

where we have used the fact that the Grassmann grading of s(â) is the opposite

to that of ót.Thus the BRST operator is nilpotent.

6.2 The Fadeev-Popov Lagrangian from the BRST

Approach

We now make the observation that we can obtain the Fadeev-Popov gauge fixed

action from the original gauge invariant action in (2.38), by simply requiring

BRST invariance. This method is a more natural way to derive the Fadeev-Popov

Lagrangian rather than resorting to the mathematical trickery of the Fadeev-

Popov procedure. The problems associated with gauge fixing as described in

chapter 3 will still be present since they are independent of the method used,

however we shall note that final result is not exactly the same as the that of the

Fadeev-Popov procedure. Consider the Lagrangian
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1
L (F"r"), - s(¿")b" - s(æ)APAi+æs(AP Afl)

(b"), - b"ap A!t, + co0p Drc" .
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r : -Lutri,)' + ' (-tuu' - ea, or,). (6.35)

The above is BRST invariant since the first term is gauge invariant and the second

due to the nilpotency of s. Therefore,

4
1

4
(F"r")t _

E
2
È

t (6.36)

Therefore the Fadeev-Popov Lagrangian is recovered in the form that we de-

rived earlier, in (6.4), with the auxiliary field, ä, present. Note ttrat in the Fadeev-

Popov procedure, the functional determinant appears with a rnodulus since it is

a Jacobian of a change of variables, then one has to justify dropping the modulus

before expressing it as a functional integral over ghost fields. This was justified

under the assumption of an ideal gauge fixing condition but as discussed previ-

ously we do not know of one. In the BRST formalism the ghost terms in the

gauge fixed Lagrangian appear naturally and there is no need for the Fadeev-

Popov procedure. The BRST approach is a more elegant waSr of achieving the

identical result as the conventional gauge fixing methods, but as we shall see it

provides a more general framework for gauge fixing.

6.3 BRST Quantisation

In the previous section it was shown that the Fadeev-Popov Lagrangian could be

obtained from a BRST invariant Lagrangian. This prompts the idea that BRST

symmetry could elevated to the guiding principle, it can be ttrought of a gener-

alisation of gauge invariance because BRST symmetry implies gauge symmetry

but the reverse is not true. Therefore rather than finding the rnost general gauge

invariant and renormalisable Lagrangian we should be looking for the most gen-

eral BRST invariant and renormalisable Lagrangian. This mea.ns that the gauge
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fixing is done when the Lagrangian is written down rather than having to add

extra terms as in the Fadeev-Popov procedure. This means that the ghosts are

introduced at the classical level and then quantised with the gauge and matter

fields. When taking this approach we are not restricted to considering only one

ghost and its anti-ghost it is possible to introduce more ghosts, but we shall not

consider this here. So we have the fields A, c, ê and b. We now define a ne$r

property, ghost number by specifying that the ghost number of c and Z is *1 and

-1, respectively and the ghost number is zero for the other fields. The ghost

number of a product of fields is the sum of the ghost numbers of the individual

fields. For more details on BRST quantisation see [22][23].

We begin the BRST quantisation procedure by specifying BRST transforma-

tions, which we will use as the guiding principle in developing the theory, they

are exactly ari $¡ere given previously but here they are to be interpreted as the

transformations of classical fields,

tAi,

sco

sú

sb"

: DT"' (6.37)

(6.38)

(6.3e)

(6.40)

Now notice that when the BRST operator, s, acts on the individual fields above

it raises the ghost number by one and this will also hold for any product of fields

since s obeys the product rule above. We say that s has ghost number *1.

6.3.1 The General form of a BRST Invariant Lagrangian

The aim here is to use BRST symmetry to find the most general renormalisable

BRST invariant Lagrangian just as we did in the first chapter when constructing

the QCD Lagrangian from gauge invariance. We can immediately say that the
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action must have ghost number zero since ghosts are unphysical particles and can

not appear in any physical state. Now we claim that the Lagrangian must take

the form

L(A,c,c,b): Lo(A) * sitrr(,A, c,,ê,b), (6.41)

where tÍ is called the gauge fixing fermion, it must have ghost number -1 so that

si[¡ has the required ghost number zero. We now prove this statement in much

the same \r¡ay as done in [2]. First we define a nelry operator ú, which is defined

to give zero when acting on any field except b, in this case we have

tbo:õo (6.42)

Notice that ú lowers the ghost number by one and therefore itself has ghost number

-1. Consider the operator

{r, ú} : st * ts. (6.43)

It is easily deduced that this operator has the property that wtren it acts on any

field it gives zero except for the two cases

{s,t}d : ëo,

{s,t}b" : bo.

(6.44)

(6.45)

Note also that when acting on a product of fields it merely gives the total number

of Z and b fields in the product, that is

{s,t}ót. . . ô* - nót... ó^, (6.46)

where the product û. .. @- consists of a total of n c and b fields. The motivation

for introducing this new operator ú will become clear when we expand an arbitrary

Lagrangian as a sum of particular total numbers of Z and ä fields, that is

L(A, c, c, b) : D t-*çq, c, c, b),
oo

n:0
(6.47)
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\4/here Ln(A,c,-c,b) has a total of n ê, and å fields. \Me notice that the BRST

transformations conserve the total number of Z and ö frelds. Therefore the re-

quirement that the Lagrangian be BRST invariant means that each term in the

sum has to be BRST invariant since there will be no cancellation between terms

with different total numbers of c and ö fields. Now consider the operator {r, ú}

acting on each term Ln in the sum. We have just found that this operator will

just give the same result back again multiplied by the total number of Z and ö

fields, therefore

{s,t}t'": nLn' (6'48)

But we also realise that

{s,t}L": ltLn, (6'49)

since each ,C" is BRST invariant. Therefore we have

stt'n: ¡7f,n' (6'50)

This tells us that for n I 0 each term Ln can be written as s acting on some

product of fields.

L(A,c,¿,b) : Lo(A,c) + st fi*r"rO,c,E,b). (6.51)

We know that .40 is independent of Z and b since it has n : 0 and if we also

require that the Lagrangian have ghost number zero then \4¡e can also deduce

that .40 must be independent of c. Hence v¡e can write an arbitrary Lagrangian

in the form

L(A,c,c,b) : LoØ) * sÜ(4, c,ê,b), (6.52)

which will have ghost number zero so long as iú has ghost number -1.

6.3.2 Expectation Values and Physical Observables

Up to now, everything has been classical and now we quantise the theory by the

path integral method by expressing expectation values as a functional integral



weighted by the exponential of the action. Therefore we write the expectation

value of some operator as

(o) : DADdDcDbexp -Sc[Á] - [ dn* sitrr(,4, c,e,,b)f O(A,c,,ô,b)
(6.53)

I DAD=cDcDbexp -sc[/] - dar s{t(A,c,c, b)

Unlike the case in chapter 2, the gauge fixing has already been done and the

above does not contain infinite integrals around the gauge orbits. We have gener-

alised the Fadeev-Popov procedure since we can easily recover the results obtained

in the Fadeev-Popov procedure by making a particular choice for t[. However

the Fadeev-Popov procedure is restricted to gauge fixing terms quadratic in the

ghosts, but here there is no such restriction because \4/e are free to choose V to

contain higher order terms in the ghosts (eg. we could include a 4 ghost interac-

tion, which is not present in the Landau gauge fixed theory).

Let us now examine some properties of the physical observables in the BRST

formalism. A BRST exact quantity is one which can be written as s acting on

something else, so if O is BRST exact then there exists some ()' such that

O: sO'
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We now show that the integral of a BRST exact quantity vanishes, that is
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(6.54)

I D ADdDcDb sO(A, c,ê,b) : 0, (6.55)

where (? is some arbitrary product of the fields A, c, ê, b. First consider the

quantity

I o,qo"rcDb o(A,c,c,b). (6.56)
J

Now make a change of integration variables corresponding to a, BRST transfor-

mation, that is we change each field by the action of the field under a BRST

transformation

ó-+ó+6ó:ó*esþ, (6.57)
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where / is any of the fields. The integration measure is BRST invariant so it

does not change under this transforrnation, but (2 tloes change since it is not

necessarily BRST invariant

O+O*esO. (6.58)

Since ure are merely performing a change of variables the actual value of the

integral will be the same so we get the following

DADdDcDb O : DADdDcDb (O + esO). (6.5e)

Therefore

IDADdDcDb sO :0.

This result is useful because it implies that the same result would apply to ex-

pectation values because the same change of variables could be done for (O) and

since the action is BRST invariant we would get the analogous result that

(s0(A,c,-c,b)) - 0. (6.61)

An<i so we fin<i that expectation values remain unchanged when we add a BRST

exact term and so

(o + so') : (o) + (t0') : (o\ (6.62)

Therefore two quantities are physically equivalent if their difference is a BRST

exact object. Hence quantities are only defined up to the addition of a BRST

exact quantity. Now consider O to be a physical observable. It is gauge invariant

and therefore it is BRST invariant, which means that

s0 :0. (6.63)

This condition is trivially satisfied if (? is itself BRST exact since

I I
(6.60)

sO : s(sO') : s20' :0 (6.64)
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This is true for all O' since the BRST operator is nilpotent. So we now see that

any observable that is BRST exact is physically equivalent to 0. Therefore the

physical observables are in fact those quantities which are BRST invariant but

are not BRST exact. This set of objects is referred to a"s the BRST cohomolory.
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Chapter 7

The Neuberger Problem

In the last two chapters we have discussed lattice gauge fixing and the BRST

formalism, now the aim is to combine these two and define BRST symmetry in

the lattice setting. This was attempted some time ago by Neuberger[24], but

it was also found that this lead to expectation values of observables taking the

indeterminate form $. fnis is what is referred to as the Neuberger problem. Here

we shall discuss this problem and work through a simple model, which clearly

displays the problem.

7.L Lattice BRST Symmetry

First we want to find the lattice BRST transformations. Since on the lattice we

express the gauge fields as the links Ur(*) and not the fields Ar@), we want to

define the BRST transformation of Ur(r). Recall that the BRST transformations

for the gauge fields were merely the gauge transformations with the gauge pa-

rameter replaced by the ghost field, so we can define the BRST transformation

on ur(r) in the same $ray. Recall that the gauge transformation of ur@) is

Ur(*)' : s(n + aP.)ur(r)st (r),

7t

(7.1)
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g(r) : expliu"(r)t"1.

Ur(*)' = Ur(r)': (1+ iu"(x+aþ)t")IJr(")(t - iu"(n)t")

: ur(*) - iur@)u"(r)t" + iu"(r + aþ)t"tI*(n).

Expanding the gauge transformations in pou¡ers of the lattice spacing we get,

g(r) : L + i,u" (r)t" + o1a2¡.

where

Therefore

So the BRST variation is

Using

we can find the BRST transformation of Ur(*), we get

(7.2)

(7.3)

(7.4)

(7.6)

(7.8)

(7.e)

(7.10)

Hence the gauge variation of Ur(r) is given by

õou fir) : i(u" (r t aþ)t"u r(r) - u r@)u" (r)t"). (7.5)

\Me obtain the BRST variation by replacing the gauge parameter with the ghost

field multiplied by e, a Grassmann parameter, that is

u(r) : ec(n).

õU r(r) : ei(c" (r + aþ)t"U r(n) - U r(n)c" (r)t"). (7.7)

ó': es,

su r@) : t (c@ + aþ)u r(r) - u r(r)c@)),

where

c(x) : c"(x)t".



The transformation of the lattice ghost field follows from the constraint s2(Jr(r) :

0, the rest are the same as the continuum transformations except that the fields

are only defined on lattice sites. So the lattice BRST transforrnations are

: i(c(r + aþ)Ur(r) - Ur@)c(r)),
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sUr(r)

sc" (r)

st(r)

sb'(r)
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(7.11)

(7.12)

(7.13)

(7.r4)

-lrr"u""u {r)"'(r),

b" (*),

0.

Now define a BRST invariant measure on the lattice so that the lattice can be

integrated over in a BRST invariant way.

dp =E(a""1*¡r""@)d,b"@))Ior,rr, (2.1b)

where the measure dUr(r) is the invariant group measure as used previously (see

section 5.3).

It has been shown[24] that the most general BRST invariant lattice action

takes the form

S(U,c,c,b) : So(U) + siÛ(d c,c,b), (7'16)

where ^g¡ 
is a QCD lattice action with gauge fields only and Ü is the lattice version

of the gauge fixing fermion. This is proved in much the same u¡ay as was done

previously for the continuum case by counting the number of c- and b fields'

Here the action is not a functional any longer since it depends on a finite

number of variables, one for each link and three for each lattice site. This is the

same result which was found in the continuum and so it is no surprise. Now we

can write down the lattice expectation value in a BRST invariant theory on a

lattice

(o) I d¡t exp ¡-So(U) - silr(U, c,é,b))O(U,c,z,b)

J dp, exp [-So(U) - sü(U' c,é,b)]
(7.r7)
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7.2 The Neuberger Problem

We shall now explicitly derive the Neuberger problem, that is that the lattice

expectation value of an observable has the indeterminate form $ within the BRST

framework. We begin by defining[25]

Fo(t) : I ar"*p [-So(U) - tsú(t],c,ð,b)lO([1, c,,ê,,b), (2.18)
J

where ú is some real number. Fs(t) is defined in this way so that Fe(l) is the

numerator af. ({)). Let us first take a look at Fe(0),

I
Fo(0) : JOrexp[-Ss(U)]O(U,c,E,b). (Z.te)

Notice that the integrand does not contain any ghost fields so by the rules of

Grassmannian integration it r¡anishes. So we have

Fo(O) :0. (7.20)

Now we differentiate .t'e with respect to ú,

dFo(t) 
- [ r,., -ttttrf- ; A\\^-.-r o /rr\ 4^,r]t.:f^ = L\] / tÌt, - t\

dt J 
-n \-ÐË\vturvru)) t¿LP [-tJ0\L/ ) - "ötv\u)urcru)Jt-/\Urc)crO).

(7.21)

Since ,Ss is gauge invariant and therefore BRST invariant, (? is BRST invariant

and also due to the nilpotency of s, \rye can write the above as

dF^(t\ ft# : I o, t( - *tu, c,c,b)exp [-^9s(U) - tsv(u, c,E,b)]o(U,c,-, ó)).

(7.22)

The measurc dp, is BRST invariant and integral of a BRST exact object vanishes,

as given in(6.S5). This implies that

dFoft)
dt' 

.:0. (7.29)

Therefore Fcr is independent of ú and so it follows that

Fo(L): t¡c2(0) : 0. (7.24)
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So the numerator of the expectation value of (? vanishes. It is easily seen that

the denominator also vanishes by simply considering the case when the operator,

(? is the identity. Therefore the expectation value of a BRST invariant operator

has the indeterminate form $. Since all observables are BRST invariant then we

have shown that every observable has the value f;.

7.3 A Simple Example of the Neuberger Prob-

lem

Testa proposed[26] a simple model which displayed the Gribov problem explicitly

here we shall examine this model in detail. Consider the simplest lattice model

with gauge group U(1) in one dimension and consider only one link variable as

shown in Figure 7.1. The link variable can be written as

U : exp liaAl . (7.25)

Recall the BRST transformation on the links as we derived earlier

stJr@) : i("@ + a¡,t)u,(r) - ur@)4ù). (7.26)

In this case we have

s[J : i(c2 - c)U. (7.27)

Note that the ghosts commute with the links in this U(1) model. It will be more

useful to work with the variable A and also we can derive its BRST transformation

easily from the above, we get

sA : !þ2 - c1). (7.28)
a'

We could continue and derive the BRST transformation of the two ghost fields,

but instead we make the simplification, which just amounts to a change of vari-

ables 

": 
!çr- cr). F.zg)
û
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Figure 7.1: The simple lattice model

The transformation of the c field is zero due to the nilpotency of s. To complete

the BRST algebra we need one anti-ghost and auxiliary field, which transform as

we would expect. Therefore the BRST transformations for this model are

sA (7.30)

(7.31)

(7 ?2\

(7.33)

In order to write down the action for this model we need to find the field strength

tensor, but we see that it is trivial in this one dimensional model,

Fr, : 0rA - 0rA: 0. (7.34)

The ungauge fixed expectation value of.0 in this case is

f ¡ a,q oØ)(0):+. (7.35)

Ï¡ at

Now adding a BRST exact gauge fixing term we get

d,A I:*db I Fcdc exp [sìú(,4, c,-c,b)]O(A)

2

c2

c2

b2

U1

c1

ê1

b,,

c)

0

0

c¡:h

8C

sb

(0):
aî

ø
dA ï:*db [ ñdc exp [sü(,4,c,c,b)f

(7.36)
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We shall choose iú so that we get the generalised covariant gauge, hence

ú(A,c,-c,b) : i¿f (A) - luo g.37)

Therefore

(o) : ) Irrr^ I:aa | æa" *o 
[-tr, + ibrØ) - icr'Ø)4oØ), (2.38)

where

t = Irrt^ I:au | æaceo 
[-f 

a, + i,bÍ(A) - icr,Ø)4. (7.3e)

We can .oort.a'in the possible forms for the gauge fixing function, l,byrequiring
that the expectation values of BRST exact quantities vanish as was found to be

the case in any BRST symmetric theory. Therefore let

f = i-cF(A,b), (7.40)

and so

sf : ibF(A,b) - ieF'(A,b)c, (7.41)

where the prime denotes differentiation with respect to.4. Evaluating the Grass-

mann integrals using a Taylor expansion for the exponential inrzolving ghosts, we

get

(,r) = I_r,oo Ilm I n*" 
",.o [-;r' + ibÍ(A) - r,ef'@)c]sr

,Ë": 
I_'"oo I*" I n*" *o 

l-tu'+ 
ibl(A)]

.(1 - ief'(A)c)(ibF(A, b) - ieF'(A,b)c)

: f: *.*p l-f¿' ] [' d,A expþbf Ø)](i'zbf'(A)F(a,b) +iF'(A,b))J-* ^ L 2 JJ-i
: , I:d,b expljt] 

I_rroo ft@*oþbrØ)tl(A,b))

: , I:dä exp 
l-tr+ibr@]F(A,b)lo:r "

(7.42)
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The above is zero only if the functions F and / are periodic with period T. Wu

can now explicitly show that (Ol : $, itt agreement with the Neuberger problem.

The denominator of ((?) is

z : 
I_'"oo I_" | *a""*rl-tr + ibtØ) - i¿r'Ø)4

: -,lT I_"oo*'l-å,/(.4))'] r'Ø)

-rT: -¿t/ur J_,oo l'Ø) ô(/(A)), (7.43)

where € + 0 produced the delta function. Now recall the following identity

¡(/(")) : 
Ð

6(x - r")
v'@"

(7.44)

where o,n aîe the zeros of /(ø). Using this the above becomes

z:ltFhr+ffi. (7.45)

/'rl^^-l-- ¿L:^ :^ ^ -^-^+^-+ +:-^^ ^f ¡ 1t^ ^-.l 1t^ --.L:^L :^ l^+^-*:-^J l--,\-/rçöIrJ ùlIlS llt a1, UUIIÈrl,óIrU UUIIt,I' i1 ÐUllI Ur -fI ü ó¡l(l -I ù, wlIlLlI lÐ tlul,tllrr¡rrtu LrJ

the sign of the derivative at each zero. We know that / is periodic and thus it

has an even number of zeros io [-ä,f]. Also, there is necessarily as many zeros

with positive derivative as those with negative derivative, meaning that overall

everything will cancel, giving

Z : 0. (7.46)

We consider no\r¡ the numerator of (O), the only difference will be the presence

of the function O(A). If this function is an observable then it will be constant

around the gauge orbit, that is it will have the same value at every zero of f (A)

and so the numerator will be the same as the denominator up to a constant.

Hence

0

0
(o): (7.47)
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It is clear how this zero arises, \rye are using a non ideal gauge fu<ing function and

when we naively calculate the expectation value of an observa,ble we sum over

all the contributions from the Gribov copies and in this case rrue get zero. This

explicitly shows the Neuberger problem at work.

A solution proposed by Testa[26] is to redefine the delta function which im-

poses the the constraint of the b field to a periodic delta function. The idea is

to make the number of zeros of / odd and prevent the cancella,tion between the

Gribov copies. Let us define

ô(/(A)) + õ"ff(A)' = ,ä õUØ) - "+). U.48)

Using the Poisson summation formula, which is given by

I O(" - n) : I u"o l}trixnl,
oo

,L=-æ

oo

t¿=-oo

oo

,L:-æ

(7.4s)

(7.50)

Í¡e can write ôp as

where

õrff(A)) * E exp(ianf (A))
,¡: - oo

oo

* D exp(iä'l(.4)),

bn = an. (7.51)

So the auxiliary fields take discrete values and the change to the BRST transfor-

mations is the obvious one

sc : bn. 3.52)

Therefore the gauge fixed expectation value is now given by

(ô)-rlrr*,Ð*f 
æa" 

"*o l-t, + ib^r (A) - i r' (A)4, (7.53)
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dAD Fulc exp b?"+ tb"f (A) - i¿,Í'(A)

where

L
ø I €

2 "]

Again we require that the expectation value of a BRST exact quantity vanishes

f : iF(A,b^), (7.55)

sf : ibF(A,b^) - i¿,Ft(A,bn)c, (2.56)

The same calculation can be carried out as before and we end up with a similar

result

Ì
o tx=-oo

(sr) :
t¡=-oo

+ L A) F(A,b")

(7.54)

(7.57)

(7.5e)

(7.60)

Ë exp

!-
oA:

b"Í
c

ïu'' (

^- î
a

The important difference this time is that the above will still remain zero if the

gauge fixing function / is periodic up to a shift, but with tr. still strictly periodic,

that is

Í(A+'fl: rØ) ++. (7.5s)

Using the above note that

""p [ra"¡1-t¡] u*rln*¡1_o-Trl

,*oþu#qLo) - *"'rf

"*plru"¡ç[) - zrmf

"pltu"¡(¡f .

Now it quickly follows that (si) still vanishes

('r) : ,ä "rl-tb?,]rri,a,) (exp l*^¡tT,l]- exp l*"¡cîtl)
0.

This means that / will now have an odd number of zeros io [-i, ff] and therefore

Z will not vanish and the Gribov problem will be avoided.
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Figure 7.2: Two examples of functions periodic up to a shift "f +. The lower

function has one zero and the other has three zeros and we can see that in general

there will be an odd number of zeros

7.4 The Neuberger Problem Revisited

Let us return to examining the details of the Neuberger problem in order to

understand better how it arises[27].

Standard lattice gauge fixing consists of adding the following term to the

action

sf : os(z,f) + þs(¿b). (7.61)

An expectation value can be written as

(o) : j d,p, expl-So(u) - os(z/) + þs(¿b)l o (u)
(7.62)

I d¡r exp [-So(U) - as(zf) + þs(¿b)]

Normally, sð : b and sö : 0 and the second term is j¡st Bb2. So all the depen-

dence on the ghosts lies in the first term. This is the key point because if we set
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d to zeÍo) we get

(o) : dp, exp[-so(u) - pb2l9(U)

d,p, expl-So(t¡) -
We see that all dependence on the ghost is gone and therefore the Grassmann

integrals give zero. Therefore when o : 0 an expectation value of an observable

is zero over zero (we must ensure that the remaining Gaussian integral over b

does not diverge because in that case we must consider 0 times oo, which can be

a finite number). This will be the case in general if the expectation value does

not depend on o, which is neccessarily the case because any physical observable

must be independent on the gauge fixing parameters.

The solution to this problem is to ensure that ghost terms remain when o

is set to zero then the ghost integrals will not vanish. This will happen if the

transformation of the ä field contains ghosts. Since b has ghost number zero, sb

has ghost number one, so só could involve one ghost or two ghosts and an anti-

ghost or any other combination with overall ghost number one. Schaden[28][29]

he-s nrnnosed a. le.ttiee RR.,ST svmmetrv where the b field transforms non triv-

ially. This situation arises naturally when the lattice gauge theory is gauge fixed

equivariantly. In the case considered in [29] an SU(2) lattice gauge theory was

reduced to a U(1) lattice gauge theory.

(7.63)



Chapter 8

Surnmary and Conclusions

Recall that we began by reviewing QCD as a non-abelian gauge theory and then

discussed the fundamentals of gauge fixing, while introducing the key concepts

that are necessary to consider this problem. We saw that a functional integral

over the space of all gauge fields could be divided into an integral over the space

of all gauge orbits and an integral over all gauge transformations. It was deduced

that the physical configuration space is the spâce of all gauge orbits, also referred

to as a fundamental modular region(FMR), and any functiona,l integral should

be constrained to this space only. In order to do this a gauge fi.><ing function was

introduced, which was required to satisfy the property that it had one zero for each

and every gauge orbit, a so called ideal gauge fixing function. \ffe then explicitly

showed how standard gauge fixing is done via the Fadeev-Popow procedure, which

of course relied on the assumption that we could find such an ideal gauge fixing

function. Particular examples of such gauge fixing functions, like Landau gauge'

axial gauge and a generalised covariant gauge were then discussed.

In the following chapter we found that our earlier assumption was not justified

and we saw that at least in Coulomb gauge for an SU(2) gauge tlneory this was not

the case. The problem \4ras seen to be equivalent to finding solutions to a damped

83
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pendulum in a graviational field. Then we showed that in perturbative QCD

the Gribov problem is irrelevent and correct results can be obtained using the

standard gauge fixing techniques. In chapter 4, the problem of finding the FMR

that lies within the set of gauge fields that satisfies the Landau gange condition.

It was found that the local minina of the norm functional satisfied Landau gauge

and that the Fadeev-Popov operator was positive. Therefore the Gribov region

was defined to be all those gauge fields which satisfy these conditions. The Gribov

problem says that there are gauge equivalent gauge fields inside the Gribov region

and this was indeed seen to be the case. Thus it was necessary to constrain the

Gribov region further in order to search for a FMR, therefore the absolute minima

of the norm functional was considered as a possible FMR. After showing that this

region $/as convex, it was seen that the Gribov copies lay on the boundary of this

region and they corresponded to degenerate absolute minima. Therefore we found

a FMR, which consisted of all nondegenerate absoltue minima and includes only

one of each of the gauge equivalent degenerate absolute minima. This gives the

FMR a non trivial feature, since exactly how we are to choose from the degenerate

minima is a non trivial task.

We then moved on to discussing gauge fixing in a lattice model, where we

merely introduced the basic ideas of lattice gauge theory and gauge fixing on the

lattice. We concluded that gauge fixing was only required on the lattice for gauge

dependent quantities, such as the gluon propagator. It was also mentioned that

there exists.a Gribov copy free, but nonlocal gauge fixing scheme on the lattice.

The second part of this thesis r\'âs concerned with gauge fixing in a BRST

symmetric theory and began with an explanation of the funamental concepts

of BRST symmetry. The Fadeev-Popov gauge fixed Lagrangian was obtained by

making a particular choice of a BRST exact term to be added to the ungauge fixed

action. Therefore gauge fixing in the BRST formalism was found to be a more

general and natural method, compared to that of the Fadeev-Popov procedure.
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We then discussed BRST quantisation where BRST symmtery was elevated to

the guiding principle in the quantisation process and thus we found the most

general BRST invariant Lagrangian. We found that in a BRST invariant theory

the physical observables are those BRST invariant functions of the fields, with

ghost number zero, such that they cannot be written as the BRST variation of

something else. So physical observables are exactly the BRST cohomology.

Chapter seven consisted of an investigation of the Neuberger problem. Firstly,

BRST symmtery was defined in the lattice setting and then the Neuberger prob-

lem was proved explicitly as Neuberger had done previously. In order to gain

further insight into the problem we considered a simple lattice model, where cal-

culations could be carried out explicitly. This U(1) model consisted of one lattice

link, the BRST transformations were derived and found to be of a simple form.

A gauge fixing term was added to the action, which would correspond to the gen-

eralised covariant gauge. The gauge fixing function was restricted to be periodic

when we required that the expectation value of a BRST exact object vanishes, a"s

must be true in any BRST invariant theory. With this constraint the expectation

value of some observable was calculated and found to be $. This is exactly what

the Neuberger problem tells us it should be. In this case however we know the

mechanism that produces this result. The numerator and denorninator both con-

sist of a sum over the Gribov copies weighted by the derivative of the gauge fixing

function. Since the gauge fixing function is periodic the sign of the derivative will

alternate and there will be an even number overall. Therefore the contributions

from the Gribov copies will exactly cancel producing the indeterminate form of

the expectation value.The solution to the Gribov problem in this case was found

by redefining the delta function which imposed the gauge fixing constraint. When

a periodic delta function was used instead of the usual delta function then the

number of zeros of the gauge fixing function was odd and the same cancellation

between contributions from the Gribov copies was impossible.
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In a final remark it was noted that the Neuberger problem depended on the

BRST variation of the auxiliary field being zero. Thus within a BRST frarnework

where the BRST transformation of the auxiliary freld involved ghost terms, the

ghosts and the auxiliary field could not be decoupled and the Neuberger argument

broke down. A simple generalisation from the lattice model discussed to such a

BRST formalism was found not to be possible. However, Schaden has already

put forward a BRST structure with the required property, and he claims that one

can avoid the Neuberger problem through his equivariant lattice gauge theory.

The obvious continuation of this work would be to examine the work of Schaden

with the aim to further understand the nature of the Neuberger problem.
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