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Abstract

A set of machine learning workflows have been developed to automate the generation of accurate anisotropic

coarse-grained models and interaction potentials for small molecules and polymers as well as to analyze the

aggregate structure of dilute semiflexible polymers with anisotropic monomers.

The multiscale coarse-graining method for isotropic coarse-grained particles has been extended to anisotropic

coarse-graining of small molecules and polymers using a mixture of machine learning tools and classical

simulation methods. The resulting coarse-grain interaction potentials derived from the machine-learned force-

matching approach are flexible and scalable with respect to the type of molecules, the size of the simulation, and

the simulation conditions. The robust deep-learning models were specifically used to construct coarse-grained

interaction potentials for single-site anisotropic modeling of organic molecules and have shown the capability of

reproducing the liquid crystal phase behavior of organic semiconductors.

An autoencoder machine learning approach has been used to automate the encoding of atomistic trajectories

into unique anisotropic coarse-grained sites. This automated procedure allows for the creation of a simplified

representation of organic polymers with the added feature of an accurate back mapping to the atomistic

trajectories using the decoder network.

Machine learning tools are also developed in this work to analyze and predict the aggregation tendencies of

small anisotropic molecules and organic semiconducting polymers in either the liquid or solution phase. A prac-

tical deep-learning framework, for the anisotropic coarse-graining of polymers and anisotropic macromolecules,

was implemented alongside an automated workflow to predict the polymers’ key aggregation behaviors based on

their structure, flexibility, and the simulation condition.
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Chapter 1

Introduction

1.1 Organic semiconductors

Organic semiconductors are historically constructed from carbon-based π-bonded molecules which have the

ability to interact with visible light to generate charge carriers. These π-bonded molecules are typically aromatic

rings with strong shape and interaction anisotropy, leading to directionally dependent charge transport. It is

therefore widely understood that the morphology of the semiconducting materials affects their optoelectronic

properties. Since their discovery, they have been used in a wide array of applications including, organic solar

cells, organic light-emitting diodes, and biosensing. The proliferation of organic semiconductor technologies is

due to their low cost, flexibility, and ease of production when compared to traditional inorganic semiconductors.1

These organic semiconductors can be divided into two broad groups namely, polymers and small-molecules.

The polymers can be constructed from monomers that are soluble in organic solvents allowing them to be

solution-processed. On the other hand, small-molecules can be either soluble or insoluble in organic solvents and

are generally thermally evaporated. As a result of these properties, there are many solution processing techniques

that have been used to fabricate organic semiconducting materials such as ink-jet printing, reel-to-reel, and

spin-coating. Organic semiconductors are thus seen as the future of mass-produced flexible electronic devices.2

Even though polymer semiconductors have the potential to make tangible advances in next-generation technology,

there are a few technical hurdles that must be overcome. Since solution processing and thermal deposition

methods typically produce amorphous or polycrystalline material, one major obstacle is the lack of a theory that

describes how aggregate structures in solution can be controlled to optimize optoelectronic properties.3 Over the

past decade, there have been numerous advances in refining a practical approach to achieving high-efficiency

organic semiconductors. Alongside these advances, there has been an experimental exploration of a wide variety

of polymers to elucidate the rules underpinning the most efficient acceptor-donor combinations.4–9 However,

until an empirical or theoretical model is developed to describe the control of aggregation, a purpose-driven

design process of organic electronics will continue to be elusive.

1.2 Molecular dynamics simulation

The use of molecular dynamics software has become commonplace in the effort to understand the aggregation

behavior of organic semiconductors.10 Classical molecular dynamics refers to any computational method which

uses Newtonian mechanics to simulate the interaction of atoms, molecules, or pseudo-atoms representing
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1. INTRODUCTION

united groups of atoms. Bonds and angles are treated as classical springs and non-bonded van der Waals and

electrostatic interactions are implemented using analytical pair-wise or many-body force-fields. Molecular

dynamics simulations allow researchers to probe states that would otherwise be inaccessible to experimental

techniques. Molecular dynamics simulations provide high resolution of molecules and finer control over

experimental conditions than any experimental technique. In the case of organic semiconductors, It allows

control over the starting configuration and provides a detailed description of the progression of the system. These

finer controls are important for understanding the disorder and heterogeneity in organic semiconductor thin

films and the overall non-equilibrium nature of film formation. Simulations also provide an opportunity to make

observations while limiting variables that cannot be eliminated during experimentation.11 Techniques involving

simulations have been successfully applied to soft matter analysis in fields such as biology and engineering.

However, these simulations have their limitations.

The most accurate results from molecular dynamics are obtained from all-atom fine-grained simulations.

Under these conditions, each atom of a molecule is explicitly defined and tracked throughout the simulation.

This process can lead to computationally expensive calculations. The major computational expense, in using

molecular dynamics simulation, comes from the functional form of the non-bonded interactions. On the other

hand, more complex non-bonded force fields usually result in more accurate simulations. The expense of

these simulation processes scales with the number of degrees of freedom (N), in some cases as O(N3).12

This computational cost places an upper bound on the size and the time scale of the simulation.13 These time

scales are often shorter than the time need to observe the aggregation dynamics of organic semiconductors.

Currently, all-atom simulations or organic semiconductors can only access tens of nanometers and hundreds of

nanoseconds). Even with advances in supercomputers and cheaper graphics processing units (GPUs), it is more

practical to study the coarse-grained analog of the systems of interest.

1.3 Coarse-grained models

A coarse-grained model of a molecule such as the one shown in Fig 1.1 is one in which the individual atoms of

the molecule are systematically mapped to a lower number of sites. Coarse-grained models can be developed

based on reference to experimental data (top-down coarse-graining) or by referencing an underlying atomistic

model (bottom-up coarse-graining). For the bottom-up method of coarse-graining, the map to coarse-grained

sites is done to match the local structure and, sometimes, the local dynamics of the fine-grained atomistic

model.14–16 Multiscale coarse-graining17,18 involving the iterative matching of forces acting on the coarse-

grained site to the forces on the atomistic model, and iterative Boltzmann inversion18,19 where the pair potential

of particles is derived from the radial distribution function of the equilibrium ensemble are two methods of

bottom-up coarse-graining while the statistical associating fluid theory,18,20 which is an equation of state linking

macroscopic thermodynamics such as densities and free energies to a molecular bead model, is an example of

top-down coarse-graining. Currently, both bottom-up and top-down methods of coarse-graining have limitations

such as representability, transferability, thermodynamic consistency as well as limited accuracy in reproducing

the thermo-mechanical and dynamical prpperties of materials.

The process of coarse-graining reduces the total number of sites in a molecular dynamics simulation, which

often leads to faster simulation or larger systems over longer time scales. Depending on the procedure used,

coarse-graining can lead to speedups of two or three orders of magnitude.21 These methods, however, are usually
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dependent on the experimenter’s intuition about the system under consideration.22 It is often the case that atoms

in a polymer that are rigidly bonded together are coarse-grained into a single spherical site.23 This procedure

inevitably leads to information loss in the system. A major concern with the degree of coarse-graining is, how to

determine the tolerance for information loss. There is also the problem of developing coarse-grain models that

are representative of the state point at which the model is parameterized as well as coarse-grained models that

are transferable to state points for which it was not parameterized.

There have been numerous papers looking at information loss resulting from the reduced degrees of freedom

between the fine and coarse-grained models.23,24 Information lost during coarse-graining can have significant

implications for the analysis of the results obtained from coarse-grained molecular dynamics. Two such

implications are the information lost about the flexural rigidity of molecules and π-stacking in molecules with

aromatic backbones.25 In organic semiconductors carrier mobility is highly directional, meaning that charge

transport is fastest along the polymer backbone than along the π-stacking direction by up to two orders of

magnitude.

Anisotropic coarse-grained models such as the one shown in Fig 1.2 that retain the general shape of each

molecular subunit provide a better approximation to the fine-grain model than isotropic coarse-graining methods.

However, there is a trade-off between the increased degrees of freedom and computational speed. On one hand,

anisotropic models of molecules have been implemented classically, with great success, especially in biology

where anisotropy plays a major role in the folding of protein chains.26 On the other hand, there are very few

cases where anisotropy has been implemented when considering organic semiconductors. These interactions

are especially important because they determine the conformation of semiconducting polymer in solution.

Multiscale coarse-graining (MS-CG) is a variational method of obtaining optimal coarse-grained potentials

for use in coarse-grained molecular dynamics.27 The coarse-graining equations for the MS-CG method come

from enforcing thermodynamic consistency between the fine-grain and coarse-grain models, which results in

a coarse-grained model that accurately captures the properties of the fine-grain model. The MS-CG method

iteratively updates the parameters of a set of basis functions to optimize the effective force on each coarse-grained

site by matching it to the force on the atomistic model.22 The force-matching algorithm is straightforward,

but, the choice of basis functions is open for manipulation.28 Each choice of basis function comes with a set

of variable parameters which approximates an optimal potential of mean force. The choice of basis functions

also contributes to speedups based on the computational complexity.29 Research is ongoing into the design

and optimization of a set of computationally efficient basis functions with optimal tunability. The anisotropic

force-matching coarse-graining (AFM-CG) method30 is a bottom-up coarse-graining algorithm that extends the

MS-CG method to anisotropic particles.
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1. INTRODUCTION

Figure 1.1: sexithiophen mapped to six isotropic coarse-grained sites.

Figure 1.2: Sexithiophene mapped to a single anisotropic coarse-grained sites.

Other than the misaligned dynamics, there is also the issue of the lack of transferability of classically learned

coarse-grained potentials. Potentials are usually dependent on the thermodynamic conditions under which they

were designed and are generally not transferable.10,31 Coarse-grained models usually have numerous fitting

parameters needed to capture the structural distribution and dynamics of the fine-grain system. Machine learning

has been explored as a possible solution to the optimization of these parameters. Even though bioinformatics

polymer informatics is still a relatively new subdiscipline, rapid advances in machine learning technology have

increased its popularity.10 There has been significant effort to develop machine-learning force-fields that are

transferable to state points beyond the initial parameterization. These approaches try to mitigate the limitations

of pure bottom-up or top-down coarse-graining through a combination of both approaches.32,33

1.4 Machine learning

Machine learning is the term used to describe any algorithm that improves its performance on a task base on

experience.34 A typical machine learning algorithm consists of trainable parameters, input and target data used

for training, validation data used to define a stopping criterion for the algorithm, and a loss metric that is used

to measure the performance of the algorithm on learning the input data. Machine learning algorithms can be

divided into two broad categories, supervised and unsupervised learning. Supervised learning provides an input

data set along with a set of data labels. The prediction of the machine learning algorithm is then compared

against the data labels using the loss metric to evaluate performance. On the other hand, unsupervised learning

4



does not provide a set of labeled data, instead, the algorithm learns by a self-referential route. Unsupervised

machine learning is primarily used for feature extraction and data compression. There are two major categories

of algorithms used in machine learning to update trainable parameters, gradient, and non-gradient methods. Each

of these categories is further divided into more specific families of algorithms such as evolutionary algorithms

for non-gradient and neural networks for gradient methods. Evolutionary algorithms mimic evolutionary

processes to find a set of solutions that best optimize a cost function subjected to a set of constraints. One of

the major advantages of evolutionary algorithms is their ability to handle integer-valued functions which have

no derivatives. Gradient-based learning algorithms are dependent on the back-propagation algorithm which

calculates the derivative of the loss function with respect to all the trainable parameters in a neural network. The

values of the trainable parameters are then iteratively updated based on the direction of the steepest descent on

the loss surface. These neural network algorithms are useful for cases where the machine learning algorithm

needs to produce differentiable functions.

The choice of machine learning algorithm used is highly dependent on the type of problem and information

available. Artificial neural networks, as shown in Fig 1.3, are very good at solving regression and classification-

type problems. Differentiability is an important factor when considering machine-learning applications for

non-bonded interactions. The only limitation of these methods is the amount of data needed to build training

and validation sets. Even though large volumes of data can be generated from molecular dynamics simulations,

neural networks have not attracted enough attention with respect to the solution of the many problems in the

development of anisotropic organic semiconductor coarse-grained models. Many machine-learning architectures

have been deployed to solve some problems in coarse-grained molecular dynamics. Fully connected dense

neural networks, for example, have been used to model the coarse-grained potential of mean force for spherical

isotropic models. Potentials derived using machine learning can better capture the highly non-linear many-bodied

interactions, when compared to classical coarse-graining methods.35 These neural network potentials have also

shown the meaningful ability to integrate seamlessly with molecular dynamics software. Another machine

learning architecture that has been used in molecular dynamics is autoencoders. They are an example of a special

type of neural network that has advanced data compression abilities. They are classified as an unsupervised

machine learning model in that they learn without the need for a separately labeled data set. In an autoencoder,

the input is passed from an input layer with A nodes to a hidden layer with B nodes, where (A > B). The hidden

layers are then connected to an output layer with A nodes and the accuracy of the network is calculated as the

reconstruction loss between the input and output layers. Recent developments in variational autoencoders have

paved the way for their use as a means of coarse-graining.36,37 The many variants of autoencoder along with the

opportunity to develop specialized error functions and layers to optimize performance have attracted a lot of

attention to this architecture.
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1. INTRODUCTION

Figure 1.3: A schematic illustration of a typical feedforward artificial neural network showing the input, output,
and hidden layers.

Polymer informatics is a fast-growing subdiscipline with plenty of opportunities to extend and modify

existing methodologies. As discussed above, there are many areas of molecular dynamics where machine

learning has been applied successfully. However, there has not been a robust deep-learning architecture applied

to anisotropic coarse-graining in an attempt to recover both a configurational and thermodynamical optimized

analog of the underlying fine-grain model. Where machine learning has been used to derive neural network

potentials, the application has not been extended to the anisotropic model. There have been attempts to develop

classical temperature-transferable coarse-grained potentials, but machine learning has not been applied to the

problem. In cases where machine learning has been employed to solve any of the deficiencies, the solution

is only given for simple monomers and as a result, many of the problems that are associated with modeling

the aggregation of organic semiconductors in solution are not fully motivated. There have been efforts made

to model the aggregation phase diagrams of dilute semiflexible isotropic polymer38 as well as semiflexible

polymers with anisotropic monomer units39 using molecular dynamics simulations. However, this approach is

limited by the size of the parameter space that can be effectively explored. A machine learning method capable

of producing a reduced representation of a polymer aggregate that can then be clustered in a smooth latent space

representation is more effective at extracting relationships between the polymer properties and the polymer

aggregate. In the progress towards better machine-learning models there have been efforts to develop metrics

for the evaluation of the transferability of these methods. The focus has shifted away from just comparing the

model’s energy and force losses to comparison of the materials predicted structures and properties.40

1.5 Thesis structure

This thesis consists of six chapters Chapter 1 provides a general introduction to the body of work highlighting

the deficiencies in the field that are addressed in the following chapters. A brief overview of the most common

methods and computational algorithms used in the preparation of this thesis is reviewed in chapter 2. Chapters 3–

6



5 are a collection of unpublished results written in publication format. Chapter 3 covers the introduction, design,

and implementation of anisotropic high-dimensional neural network coarse-grained potentials used to model

small molecules and organic semiconductors. Chapter 4 covers the implementation of a variational autoencoder

used to predict the optimal number of coarse-grained sites, for anisotropic molecules and polymers to obtain the

highest back-mapping fidelity. Chapter 5 addresses the design of a machine-learning workflow for the automatic

labeling and prediction of aggregation phase space of semiflexible polymers with anisotropic monomers. The

final chapter (Chapter 6) provides an overall conclusion to the body of work presented in the preceding chapters.
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Chapter 2

Theory and computational methods

2.1 Atomistic and coarse-grained simulations

Classical molecular dynamics algorithms1 execute simulations in which the time evolution of the particles in

a system is updated according to Newton’s equations for a specified potential energy function for atoms or

finite-size particles as shown in Fig 2.1. The force on a particle i at position ri and mass mi is the negative

derivative of the interaction potential energy given as,

fi(r
n) =−∂U

∂ri
(2.1)

for a system with n particles. According to Newton’s second law, the force on a classical particle is related to its

mass and acceleration since,

fi(r
n) = mi

d2ri

dt2 (2.2)

and the second derivative of position with respect to time t is the acceleration of particle i. Additionally, for

finite-size particles with center-of-mass position,

RI =
∑i∈ζI miri

∑i∈ζI mi
, (2.3)

the rotation-inducing torque is calculated using,

τI(R
N ,ΩN) =−∑

q
ΩI,q ×

∂U
∂ΩI,q

(2.4)

where ΩI is the orientation of finite-size particle I.
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Figure 2.1: Snapshots from a molecular dynamics simulation of (a) isotropic sexithiophene and (b) crystalline
sexithiophene.

The interaction potential U is usually taken as a sum over different contributions which are parameterized to

reproduce the physical observables of a system at a particular state point. That is,

U =Uvdw +Ucoulombic +Ubonds +Uangle +Udihedral (2.5)

where Uvdw and Ucoulombic are the van der Waals and coulombic non-bonded interactions, Ubonds, Uangle, and

Udihedral are interactions due to particles being separated by one or more covalent bonds. These interactions are

typically approximated using analytical functions such as

Ucoulombic =
1

4πε0

qiq j

ri j
, (2.6)

and the van der Waals forces can be calculated from isotropic potentials such as the Lennard-Jones potential

given as,

ULJ = 4εi j
(
α12

i j −α6
i j
)

(2.7)

εi j is the depth of the potential well and αi j = σi j/ri j, where σi j is the distance where the particle-particle

potential is zero. For finite-size ellipsoidal particles, the van der Waals forces can be calculated from anisotropic

potentials such as the Gay-Berne potential given as,

UGB = Ur(A1,A2,r12,γ) ·ηi j(Ωi,Ω j,ν) ·
χi j(Ωi,Ω j,ri j,µ) (2.8)

where, Ωi,Ω j are transformation matrices from the simulation box frame to body frame, Ur is the shifted

distance-dependent interaction based on the distance of closest approach and user-defined parameter γ ηi j and

χi j are orientation-dependent energies based on the user-specified values of ν and µ respectively.

Ubond = KB(b−b0)
2 (2.9)
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where KB is the bond stretching coefficient, and

Uangle = KA(θ −θ0)
2 (2.10)

where KA is the angle coefficient, and

Udihedral =
1
2

K1[1+ cos(φ)]+
1
2

KD[1− cos(2φ)]

+
1
2

K3[1+ cos(3φ)]+
1
2

K4[1− cos(4φ)] (2.11)

where φ is the dihedral angle and KD is a fit parameter.

There is a myriad of possible molecular dynamics packages2–6 available but all atomistic simulations

in this thesis are done with the LAMMPS7,8 simulation package using the OPLS-AA force fields,9,10 using

either the constant pressure or constant volume ensemble unless otherwise stated. The OPLS-AA force field

was specifically developed to describe liquid-phase organic molecules. It has been shown to perform well in

reproducing the flexibility, bulk liquid structure, and energetics of organic molecules. By using these previously

optimized molecular models as a starting point, precise coarse-grained models can be parameterized.

A simulation box with periodic boundary conditions is used for the simulation of bulk liquids. Under these

conditions, the simulation box is replicated in all directions infinitely ensuring that particles that move beyond

the boundary of the simulation box are not lost. The minimum image convention is then used to calculate

the non-bonded and short-ranged interactions between particles, where interactions are calculated over the

shortest distance between particle images. This procedure ensures that bulk properties can be obtained without

surface or finite-size effects while also reducing the total number of interactions that need to be calculated. A

particle–particle particle–mesh method is used to calculate long-ranged electrostatic forces by mapping charges

to a mesh in 3D space. The simulations are usually done using either the constant pressure or constant volume

ensemble unless otherwise stated. In the constant pressure ensemble, the number of particles, the pressure, and,

the temperature are fixed. While the volume, temperature, and number of particles are fixed for the constant

volume ensemble. To maintain the pressure and temperature of these simulations, a Nosé-Hoover thermostat and

barostat is used where additional fictitious variables are used to produce energy and volume fluctuations.

The simulations used for the parameterization of coarse-grained models are typically done in the isotropic

liquid phase or solution phase. The AFM-CG method11 is used for the force, torque, and virial matching

procedure which ensures thermodynamic consistency in the configuration and momentum space as well as

improves temperature transferability. The force, torque, and virial matching conditions are such that,

FI(R
N ,ΩN) =− ∂U

∂RI
=

〈
∑
i∈ζI

fi

〉

RN ,ΩN

(2.12)

where FI is the coarse-grained force and

τI(R
N ,ΩN) =−∑

q
ΩI,q ×

∂U
∂ΩI,q

=

〈
∑
i∈ζI

∆ri ×fi

〉

RN ,ΩN

, (2.13)
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where τI is the coarse-grained torque and

W (RN ,ΩN ,V ) =−∂U
∂V

=

〈
(n−N)kBT

v
+

1
3v

n

∑
i=1

fi ·ri

〉

RN ,ΩN ,V

(2.14)

where W is the coarse-grained virial and V is the corresponding system volume.

This choice of parameterization condition ensures that the coarse-grained potentials have a volume or density

dependence12,13 thus improving the temperature transferability14 of the coarse-grained model. This temperature

transferability is especially important for molecules such as sexithiophene which exhibit multiple liquid crystal

phases15 between the crystalline and isotropic phases. One way of assessing the temperature transferability

of the coarse-grained potential is through structural comparison between atomistic and coarse-grained models

of the simulated material at different temperatures. Structure indicators such as the angular-radial distribution

function (ARDF) can be used to measure the accuracy of the coarse-grained model at different temperatures,

where the ARDF16 defined by

g(r,θ) =
⟨n(r,θ)⟩

4
3 πρ[(r+∆r)3 − r3]sinθ∆θ

, (2.15)

where ⟨n(r,θ)⟩ is the average number of molecules in the spherical shell within the bounds r to r +∆r of

the center-of-mass of a chosen molecule and having an out-of-plane axis rotation of θ with respect to the

out-of-plane axis of the chosen molecule and ρ is the bulk number density. To further confirm that the density

changes were associated with transitions from crystalline through nematic and smectic to the isotropic phase, the

scalar orientational order parameter P2 can be used. For a given simulation snapshot at time t, P2 can be found

by diagonalizing the ordering matrix Q,

Q(t) =
1

2N

N

∑
I=1

[3uI(t)⊗uI(t)−E], (2.16)

where uI is the unit vector along the molecular axis and E is the identity matrix. ⟨P2⟩ is the average over

the largest eigenvalue of this matrix for all snapshots of equilibrium configurations. When the ARDF is used

alongside the scalar orientational order parameter,17,18 a differentiation can be made between the liquid crystal

phases of an organic semiconductor. The coarse-grained simulations are typically done to mirror the conditions

of the atomistic simulations. It is then easier to evaluate the performance of the coarse-grained model. In cases

where only coarse-grain simulations are done without the corresponding fine-grain simulation, the models are

usually representative of typical semiconducting polymers.

2.2 Machine learning

Neural networks are one type of machine-learning algorithm based on mimicking a real neuron’s function. The

simplest neural network is the feedforward neural network shown in Fig 2.2. A feedforward neural network

typically takes in an input x applies some weight C and bias b followed by an activation function f to produce

an output g. That is, the neural network output is given by the following equation:
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g = f (C ·x+b) (2.17)

Figure 2.2: Schematic illustration of the internal working of a feedforward neural network with input (x),
weight matrix (C), bias (b), activation function (A) and output (g)

Multiple layers can be used to model very complex multidimensional nonlinear functions such as the

coarse-grained potential of mean force. The network learns by calculating the gradient of an error function

with respect to the neural network parameters and using backpropagation to update the weight and biases of

all the layers.19 Backpropagation refers to the algorithm which calculates the derivative of the neural network

parameters with respect to the loss. Derivatives are calculated using the chain rule iteratively starting from the

last layer to avoid redundant calculations. A gradient descent algorithm is then used to update the parameters in

the direction of steepest descent with respect to the gradient. The size of the loss that is used to update each

neural network parameter is scaled by the learning rate in order to prevent overshooting the global minimum of

the loss surface. Many of the new gradient descent algorithms have built-in adaptive learning rates for efficient

convergence to the global minimum. The Tensorflow package developed by Google20 and Keras libraries enable

the rapid implementation and testing of machine learning models.21 Tensorflow and Keras already have the

built-in infrastructure to execute backpropagation, multiple gradient descent algorithms, and a wide variety of

optimizers and loss functions. These libraries can be imported and used in python and have one of the largest

developer communities.

The construction of machine-learned neural network potentials requires the neural network activation

function to be continuous and differentiable. Unlike the case for deep learning, the tanh activation function is

sufficient for this application since there is a limited chance of finding a system that could lead to vanishing

gradients in the training of the neural network. Using a feedforward neural network to implement the force

matching between the atomistic and coarse-grained model means that the output of the neural network function

should be the potential whose derivative with respect to the coarse-grain positions should produce the forces

on the coarse-grained sites. Implementation of this architecture is enabled in TensorFlow by the Gradient Tape

algorithm. Gradient Tape is the algorithm that allows the calculation and storage of the derivatives of neural

network parameters with respect to any other connected neural network parameter. Through this method, higher
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derivatives or multiple derivatives can be calculated during the forward propagation of data through the network.

It uses the same mechanics as the backpropagation algorithm to calculate derivatives using the chain rule. This

algorithm also facilitates more advanced matching conditions for anisotropic particles such as torque and virial

matching.

More advanced neural network architectures are also possible within TensorFlow, including generic feed-

forward neural networks, long short-term memory networks, and variational autoencoders.22 Autoencoders in

general are particularly useful for data compression and classification.23 Since they are a form of unsupervised

learning algorithm24 their output is the same as the input, which makes them ideal for the development of back-

mapping algorithms or the identification and classification of polymer aggregates25 in large unlabeled data sets.

Other networks such as feed-forward neural networks are ideal for implementing force-matching conditions since

they produce smooth functions and the complexity of the model can be increased through the implementation

of additional traditional layers or custom layers with filters or symmetry functions. Symmetry functions are

especially important in the representation of atomic or molecular environments because they preserve the inherent

symmetries of the underlying potential. These symmetry functions enforce the cut-off radius for non-bonded

interactions as well as wrap angular coordinates to remove coordinate-induced singularities from molecular

orientation representation. A combination of supervised and unsupervised algorithms can be used effectively to

build workflows to study very complex systems. This is possible because autoencoders can generate a latent

space which is optimal for feature extraction. These latent space representation are important when there is a

desire to generate generalized description of complex systems.
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Chapter 3

Anisotropic molecular coarse-graining by
force and torque matching with neural
networks

3.1 Abstract

We develop a machine-learning method for coarse-graining condensed-phase molecular systems using anisotropic

particles. The method extends currently available high-dimensional neural network potentials by addressing

molecular anisotropy. We demonstrate the flexibility of the method by parametrizing single-site coarse-grained

models of a rigid small molecule (benzene) and a semi-flexible organic semiconductor (sexithiophene), attaining

structural accuracy close to the all-atom models for both molecules. The machine-learning method of constructing

the coarse-grained potential is shown to be straightforward and sufficiently robust to capture anisotropic

interactions and many-body effects. The method is validated through its ability to reproduce the structural

properties of the small molecule’s condensed phase and the phase transitions in the semi-flexible molecule over

a wide temperature range.

3.2 Introduction

Machine learning is quickly becoming an invaluable tool in the search, analysis, and development of new

materials.1,2 Neural networks, in particular, have had major recent success in areas ranging from predicting the

folding geometry of biological macromolecules such as proteins3 to developing highly accurate temperature-

transferable interatomic potentials.4,5

The latter is an important advance in the field of molecular dynamics (MD) simulations. Improvements

in these machine-learning models aim to expand the length and time scale of simulations without sacrificing

accuracy.6,7 Currently used ab initio molecular dynamics simulation models are generally accurate but are

computationally expensive, limiting their ability to probe long time scales.8,9 However, neural-network potentials

can produce ab initio accuracy at the computational cost of classical atomistic models.10,11

Even though simulations at the classical MD level are faster than ab initio MD, the speedup is still insufficient

to model the long time scales needed to fully understand certain phenomena and processes such as supramolecular
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assembly. It is well known that explicit modeling of high-frequency motion is not critical for describing many

phenomena in molecular systems. These simplifications have led to the development of molecular coarse-

grained models to study large, complex materials and biological systems.12 Parameterization of coarse-grained

interaction potentials commonly takes one of two approaches: the top-down approach in which parameters are

tuned to match macroscopic observables, as exemplified by the Martini model,13 and the bottom-up approach

in which interactions are derived from the properties of a fine-grained model with more degrees of freedom.12

By following a similar bottom-up process used to apply machine learning to ab initio MD data, neural-network

approaches have been extended to coarse-grained molecular models, further extending the length and time scale

of simulations with atomistic accuracy.14,15

Neural-network potentials using isotropic coarse-grained particles have several advantages over their pair-

wise additive analytical counterparts since they are constructed as many-body potentials. This many-body

potential can become costly when multiple coarse-grained particles are needed to preserve the shape anisotropy.

It is sometimes more accurate and computationally efficient to represent these groups of atoms as a single

anisotropic coarse-grained particle such as an ellipsoid, such as in the case of large, rigid, anisotropic molecular

fragments. Analytical anisotropic coarse-grained potentials such as the Gay-Berne potential16,17 were developed

to address the poor performance of spherically symmetric potentials in replicating intrinsic anisotropic interac-

tions such as π-stacking. By modeling rigid anisotropic groups of atoms as ellipsoids, the anisotropic properties

of the group are preserved in a single-site model. Shape and interaction anisotropy is especially important for the

study of organic semiconductor molecules, which typically consist of highly anisotropic and rigid π-conjugated

units and often form liquid-crystal phases whose morphology strongly affects their performance in devices such

as solar cells, transistors, and light-emitting diodes.18

Unlike analytical pair-wise additive potentials such as the Gay-Berne potential, high-dimensional neural-

network potentials are constructed based on the immediate neighborhood of a molecule and thus account for

many-body effects as well as local density variations. Notable machine-learning implementations of inter-atomic

and inter-molecular potentials include the neural-network potentials developed by Behler et al.19 The Behler

neural-network potentials are constructed from a set of symmetry functions used to represent the invariant

properties of the atomic environment of each atom taken from ab initio simulations. DeepMD10 and DeepCG14

are two other neural-network codes constructed for atomistic and coarse-grained simulations, respectively. All

of these neural-network potentials rely on an invariant representation of the atomic/molecular environment. The

CGnets deep-learning approach15 employed a prior potential to account for areas in a coarse-grained data set

that may not be properly sampled due to high repulsive energies. These interactions are especially important to

reproduce the local structure of the simulated material.

Machine learning has previously been applied to the parameterization of coarse-grained models with

anisotropic particles,20 but no such implementation has used a nonlinear neural-network optimization method

to construct the coarse-grained potential. In this work, we address this gap in knowledge by using a neural

network to construct a high-dimensional anisotropic coarse-grained potential. We parameterize the neural-

network potential using a recently derived systematic and general bottom-up coarse-graining method called

anisotropic force-matching coarse-graining (AFM-CG)21 which generalizes the multi-scale coarse-graining

(MS-CG) method22 for isotropic coarse-grained particles to anisotropic particles. The method rigorously

accounts for finite-temperature, many-body effects without assuming a specific functional form of the anisotropic

coarse-grained potential. It yields general equations relating the forces, torques, masses, and moments of inertia
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of the coarse-grained particles to properties of a fine-grained (e.g. all-atom) molecular dynamics simulation

based on a mapping between fine-grained and coarse-grained coordinates and momenta, and by matching the

equilibrium coarse-grained phase-space distribution with the mapped distribution of the fine-grained system.

The previous implementations of the AFM-CG method approximated the coarse-grained potential as a sum of

pair interactions between particles.21 Here, we extend this approach to more general many-body anisotropic

interactions described by a neural network potential. We also extend the approach, which was derived for

constant-volume systems in the canonical ensemble to constant-pressure systems by applying a virial-matching

condition previously derived for the MS-CG method.

A general coarse-grained potential should capture any temperature-dependent phase transitions associated

with either melting, annealing, or glass transition temperatures as well as the local structure and density of the

material. The focus is on the development of a model for which trained parameters can be easily obtained and

one capable of reproducing interaction anisotropy, temperature transferability, and many-body effects. The

flexibility of the new model is demonstrated through the matching of structural and thermodynamic properties

of condensed-phase systems of a small anisotropic molecule, benzene, and of a larger, more flexible organic

semiconductor molecule, sexithiophene. These two molecules were chosen to determine the conditions under

which coarse-grained structural inaccuracy outweighs the computational efficiency of a single-anisotropic-site

model.

3.3 Theory

The key aspects of the theory that underpins the AFM-CG method and its extension to constant pressure via

virial matching are summarized below. The reader is referred to Ref. 21 for a more detailed description of the

AFM-CG method and the full derivation of its equations.

The positions rn = {r1,r2, . . . ,rn} of the n fine-grained particles are mapped onto the positions RN =

{R1,R2, . . . ,RN} and orientations ΩN = {Ω1,Ω2, . . . ,ΩN} of the N anisotropic coarse-grained particles. Each

fine-grained particle i is mapped to a single coarse-grained particle by defining N non-intersecting subsets,

ζ1,ζ2, . . . ,ζN , of the FG particle indices such that ζI contains the indices of fine-grained particles mapped onto

coarse-grained particle I. The position RI of coarse-grained particle I is defined to be equal to the center-of-mass

of the group of FG particles that are mapped onto it, i.e.

RI =
∑i∈ζI miri

∑i∈ζI mi
, (3.1)

where mi is the mass of FG particle i. The orientation

ΩI =



ΩI,1

ΩI,2

ΩI,3


 (3.2)

of coarse-grained particle I is specified by the rotation matrix whose components are the particle’s three

normalized principal axes of inertia, ΩI,q for q = 1,2,3. These axes are defined to be equal to the corresponding

principal axes relative to the center-of-mass of the group of fine-grained particles that are mapped onto the
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coarse-grained particle. Thus, these axes are the normalized eigenvectors of the inertia tensor

IIIFG,I = ∑
i∈ζI

mi(||∆ri||2E−∆ri∆rT
i ), (3.3)

where ∆ri = ri −RI is the position of fine-grained particle i relative to the center-of-mass (coarse-grained

particle position) and E is the 3× 3 identity matrix. From these coordinate mappings and the relationship

between generalized coordinates and momenta from Hamilton’s equations,23 mappings from the linear momenta

pn = {p1,p2, . . . ,pn} of the fine-grained particles to the linear momenta P N = {P1,P2, . . . ,PN} and angular

momenta LN = {L1,L2, . . . ,LN} of the anisotropic coarse-grained particles can also be defined.21 The mappings

for coarse-grained particle I are

PI =
MI

∑i∈ζI mi
∑
i∈ζI

pi (3.4)

and

LI = IIIIIII−1
FG,I ∑

i∈ζI

∆ri ×pi, (3.5)

respectively, where IIII is the inertia tensor of coarse-grained particle I.

Given these mappings, several conditions can be derived that the coarse-grained model must satisfy for

its equilibrium coarse-grained phase-space distribution to match the corresponding mapped distribution of the

fine-grained system. Consistency between the configuration-space distributions gives the following matching

conditions between the forces FI and torques τI on coarse-grained particle I and the forces on the fine-grained

particles mapped onto it:21

FI(R
N ,ΩN) =− ∂U

∂RI
=

〈
∑
i∈ζI

fi

〉

RN ,ΩN

(3.6)

and

τI(R
N ,ΩN) =−∑

q
ΩI,q ×

∂U
∂ΩI,q

=

〈
∑
i∈ζI

∆ri ×fi

〉

RN ,ΩN

, (3.7)

where U(RN ,ΩN) is the coarse-grained potential, fi(r
n) = − ∂u

∂ri
is the force on fine-grained particle i, with

u(rn) the fine-grained potential and ⟨· · · ⟩RN ,ΩN denoting an average over fined-grained configurations mapped

to coarse-grained configuration (RN ,ΩN).

Consistency between the momentum-space distributions requires the mass MI of coarse-grained particle I to

be the sum of the masses of its constituent fine-grained particles, i.e.21

MI = ∑
i∈ζI

mi. (3.8)

In addition, provided that the inertia tensor IIIFG,I of the group of fine-grained particles mapped to this coarse-

grained particle does not depend on the configuration of the other particles,21

I1/2
I,q exp

(
−

II,qω2
I,q

2kBT

)
≈
〈

I1/2
FG,I,q exp

(
−

IFG,I,qω2
I,q

2kBT

)〉

RI ,ΩI

, (3.9)
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where II,q, IFG,I,q, and ωI,q are the components of the coarse-grained moment of inertia, fine-grained moment of

inertia, and angular velocity about the q axis, and ⟨· · · ⟩RI ,ΩI denotes an equilibrium average of fine-grained con-

figurations consistent with the coordinate mapping of coarse-grained particle I. Furthermore, if the fluctuations

in IFG,I,q are small compared to its mean, it can be shown that21

II,q ≈
〈
IFG,I,q

〉
RI ,ΩI

, (3.10)

i.e. the principal moment of inertia of a coarse-grained particle about each principal axis q is approximately

equal to the equilibrium average of the corresponding principal moment of the fine-grained particles mapped

onto it.

The AFM-CG method was derived only for the constant-volume conditions of the canonical ensemble, but is

straightforwardly generalized to constant-pressure conditions by analogy with the MS-CG method for spherical

coarse-grained particles in the isothermal-isobaric ensemble.24 Thus, the force- and torque-matching conditions

at constant pressure are the same as those in Eqs. (3.6) and (3.7), except that the coarse-grained forces, torques,

and potential are in general functions of the coarse-grained system volume V and the equilibrium average is

constrained to configurations in which the fine-grained system volume v =V . The coarse-grained potential must

also satisfy a virial-matching condition,24

W (RN ,ΩN ,V ) =−∂U
∂V

=

〈
(n−N)kBT

v
+

1
3v

n

∑
i=1

fi ·ri

〉

RN ,ΩN ,V

(3.11)

In summary, for the equilibrium phase-space distribution of the coarse-grained model to match that of the

fine-grained model in the isothermal-isobaric ensemble, the coarse-grained potential should satisfy Eqs. (3.6),

(3.7), and (3.11), while the coarse-grained masses and principal moments of inertia should satisfy Eqs. (3.8)

and (3.9), respectively. As shown below, using the more approximate Eq. (3.10) to parameterize the moments

of inertia gives almost the same results as Eq. (3.9), even for a flexible molecule, so we have used this simpler

equation for parameterization later on.

3.4 Methods

3.4.1 Force-, torque-, and virial-matching algorithm

The analytical expression for the coarse-grain potential U is not usually known. However, an approximation

to the functional form can be obtained using a neural-network optimization algorithm with Eqs. (3.6), (3.7),

and (3.11) acting as necessary constraints. In general, U(RN ,ΩN ,V ) is a function of the particle configuration

and system volume. In this work, we have assumed that U does not depend explicitly on V , in which case24

∂U
∂V

=
1

3V

N

∑
I=1

∂U
∂RI

·RI. (3.12)
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With this approximation, the virial-matching condition in Eq. (3.11) can be written, using v =V , as

−
N

∑
I=1

∂U
∂RI

·RI =

〈
3(n−N)kBT +

n

∑
i=1

fi ·ri

〉

RN ,ΩN ,V

. (3.13)

Despite this approximation, we show that the coarse-grained models parameterized later on accurately match the

average density of the corresponding all-atom fine-grained system at constant pressure.

To ensure that all equivalent configurations are assigned the same position in coordinate space, a transfor-

mation was made from the set of Cartesian coordinates to a vector DIJ that was invariant under translation,

rotation, and permutation of any pair of coarse-grained particles I and J,10,25–27 which was defined in terms of

the positions, RI and RJ , and orientations, ΩI and ΩJ , of the two particles by

DIJ = {RIJ,RIJ ·ΩI,1,RIJ ·ΩI,2,RIJ ·ΩI,3,

RIJ ·ΩJ,1,RIJ ·ΩJ,2,RIJ ·ΩJ,3,

ΩI,1 ·ΩJ,1,ΩI,1 ·ΩJ,2,ΩI,1 ·ΩJ,3,

ΩI,2 ·ΩJ,1,ΩI,2 ·ΩJ,2,ΩI,2 ·ΩJ,3,

ΩI,3 ·ΩJ,1,ΩI,3 ·ΩJ,2,ΩI,3 ·ΩJ,3} , (3.14)

where RIJ ≡ ∥RIJ∥, RIJ ≡RI −RJ and ΩI and ΩJ are specified by rotation matrices of the form of Eq. (3.2).

The coordinates of each neighbor within the cut-off distance of particle I were transformed to a DIJ vector.

All the DIJ vectors for a given neighborhood were concatenated into a 2D matrix DDDI of size N × dim(DIJ)

representing a unique configurational fingerprint for coarse-grained particle I.

The potential function could then be written in terms of a set of neural network trainable parameters and

activation functions transforming DDDI to a potential energy value. While DDDI is a sufficient specification of the

coarse-grained coordinates to enforce relevant invariant properties of the molecular environment, it does not

possess all the symmetries of the potential energy surface that it aims to fit.25,28 For each molecular environment,

it was assumed that the interactions were predominantly short-ranged such that neighbors beyond a certain

cut-off distance, Rc, do not contribute to the potential.19 This condition can be enforced by a cut-off function of

the form

gc(RIJ) =





1
2

[
cos
(

πRIJ
Rc

)
+1
]
, RIJ ≤ Rc,

0, RIJ > Rc.

(3.15)

A set of these cut-off functions can enforce the radial symmetry conditions of the underlying potential energy

surface by storing information about the radial distribution of neighbors according to19

G1
I = ∑

J ̸=I
gc(RIJ). (3.16)

Continuity of the potential along angular dimensions was ensured by using a compression layer to learn a

set of collective variables from vector DIJ which are constrained by the well-behaved modified G5 symmetry
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function19 given by

G5
I = ∑

J ̸=I

M

∏
µ=1

21−ν (1+λ cosθIJ,µ
)ν e−η(RIJ−Rs)

2
gc(RIJ). (3.17)

where λ ∈ {−1,1} and Rs, ν , and η are tunable hyperparameters and {cosθIJ,µ}, is the set of machine-learned

collective variables with the same properties as the angular component of the underlying potential and M is

the total number of machine-learned angular variables. These angular symmetry functions store information

about the angular-radial distribution of neighbors in the local environment of coarse-grained particle I Unlike the

case of spherically symmetric particles, in a local reference frame, a neighboring anisotropic particle requires a

minimum of seven independent scalar variables to fully describe its position and orientation. However, previous

implementations of analytical potentials, including the Gay-Berne potential,16,17 have used fewer coordinates for

the calculation of the potential and forces. Similarly, for the neural network potential, an additional compression

layer was included to remove the redundant angles from the DIJ vectors, since the combination of translation

and rotation in 3D is parameterized by at most 7 unique coordinates. The Behler symmetry functions were

enforced on the output of the compression layer, ensuring that the learned compression had the same symmetry

and continuity of the underlying potential. The reduction in the dimension of DIJ also decreases the amount of

data that is needed to train a sufficiently accurate potential. By removing the redundant angles in DIJ there is a

reduced possibility of over-fitting on a small data set.

A set of these symmetry functions with hyperparameters (λ ,ν ,η ,Rs,Rc) can be used to uniquely represent the

structural fingerprint of the molecular environment. Symmetry functions used to represent the local environment

were constructed using all possible permutations of values from a specified set of hyperparameters. Training

of the neural network started with 8 symmetry functions and hyperparameters tuned to minimize the loss

function, which is defined below. New symmetry functions were added to the set if they resulted in a significant

reduction in the neural-network loss compared with the preceding iteration. The set of hyperparameters in the

symmetry functions used in the anisotropic coarse-grained models parameterized in this work can be found in

the Supplementary Material.

To further reduce the amount of data needed to train the neural network, a prior repulsive potential was

defined with pairwise additive properties. This potential was used to ensure physical behavior in regions of

the potential where the forces are large and thus are rarely sampled in an equilibrium molecular dynamics

simulation. This prior potential only needs to satisfy two conditions: firstly, it must be repulsive at short radial

separations, and, secondly, the position of its repulsive barrier must be orientationally dependent. A simple

equation satisfying these conditions is

Uprior,I = ∑
J ̸=I

B1σc (DDDI)
−B2 , (3.18)

where σc is a neural-network compression layer function and B1 and B2 are strictly positive trainable parameters.

It is also possible to achieve a similar large repulsive barrier through a more advanced non-linear sampling of

the molecular dynamics simulation data. Uprior fits a purely repulsive potential with angular dependence to the

molecular environment, while UNN fits the attractive and oscillatory corrections to the environment. The final

prediction for the potential energy of the environment of coarse-grained particle I is therefore the sum of the
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neural network potential and the prior repulsive potential,15

UI =UNN,I +Uprior,I, (3.19)

and, thus, the total coarse-grained potential is

U =
N

∑
I=1

UI (3.20)

From the matching conditions in Eqs. (3.6), (3.7), and (3.13), optimization of the neural-network weights

and biases requires a loss function of the form

L =

〈
N

∑
I=1


α

∣∣∣∣FFG,I +
∂U
∂RI

∣∣∣∣
2

+β

∣∣∣∣∣τFG,I +∑
q

ΩI,q ×
∂U

∂ΩI,q

∣∣∣∣∣

2



+ γ

∣∣∣∣∣3(n−N)kBT +
N

∑
I=1

(
W̄FG,I +

∂U
∂RI

·RI

)∣∣∣∣∣

2〉

RN ,ΩN ,V

, (3.21)

where

FFG,I ≡ ∑
i∈ζI

fi, τFG,I ≡ ∑
i∈ζI

∆ri ×fi, W̄FG,I ≡ ∑
i∈ζI

fi ·ri, (3.22)

and α,β , and γ are weights. These weights specify the fraction of each loss that is used for backpropagation

and were free to change with the learning rate during optimization.14 Even though there have been significant

efforts in the development of methods to fit the averaged coarse-grained forces directly,29,30 the average total

fine-grained forces subject to the constraint of matching fine-grained and coarse-grained configurations are not

easily obtained. An indirect means of minimizing the loss function in Eq. (3.21) above is possible by replacing

the constrained ensemble average with an average over instantaneous unconstrained simulation configurations,14

Linst =
Nt

∑
t=1

[
N

∑
I=1

(
α
∣∣∣∣FFG,I(r

n
t )+

∂U(ξt)

∂RI

∣∣∣∣
2

+ β

∣∣∣∣∣τFG,I(r
n
t )+∑

q
ΩI,q(ξt))×

∂U(ξt))

∂ΩI,q

∣∣∣∣∣

2



+ γ

∣∣∣∣∣3(n−N)kBT +
N

∑
I=1

(
W̄FG,I(r

n
t )+

∂U(ξt)

∂RI
·RI(ξt)

)∣∣∣∣∣

2

 , (3.23)

since it can be shown, for a sufficiently large dataset that comprehensively samples the equilibrium ensemble of

the fine-grained system, that L and Linst have the same global minimum. Here, Nt is the number of simulation

configurations in the dataset, rn
t and vt are the fine-grained coordinates and system volume for configuration t,

and ξt = (RN(rn
t ),Ω

N(rn
t ),V (vt)) is the mapped coarse-grained configuration for this fine-grained configuration.

The loss function is optimized using the minibatch gradient descent as implemented in TensorFlow.

The feedforward neural network shown in Fig. 3.1 was then trained, where the forward propagation used

matrixDDDI as an input to predict the coarse-grained potential U , after which TensorFlow’s computational derivative

was used to calculate the outputs, namely the predicted forces, torques, and virial. In the backpropagation
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stage, the loss function was used to calculate the error between the true and predicted values, which was then

used to update the network weights and biases. The errors between the true and predicted parameters were

calculated using TensorFlow’s mean squared error, and gradient descent was implemented using TensorFlow’s

Adam optimizer.31 Once the error of the neural network was minimized, the neural network model was used to

predict the forces, torques, and virial. However, removing the output and derivative layers gives access to the

predicted potential of mean force. By optimizing the partial derivatives of the potential instead of the potential

itself, by the nature of the derivative, there will be less oscillation in the potential at the edges of the data set

close to the cut-off distances.

Figure 3.1: Schematic of anisotropic force-matching neural network architecture.

3.4.2 LAMMPS modification and neural network implementation

The neural network was constructed in Tensorflow (version 2.3.0)32 using the Keras (version 2.4.3) functional

API33 and saved using the Tensorflow SavedModel format. The trained neural network was implemented

in LAMMPS using the Tensorflow C API and cppflow wrapper. All simulations were carried out using the

LAMMPS molecular dynamics (MD) software package (version 20Nov19).34–36 The Optimized Potentials for

Liquid Simulations-All Atom (OPLS-AA) force field37–40 was used for all all-atom simulations with a cut-off

distance of 10 Å for short-ranged non-bonded interactions; long-ranged electrostatic interactions were calculated

with the particle-particle particle-mesh (PPPM) method36,41 The bonds that include hydrogen were constrained

using the SHAKE algorithm.42 Simulations were carried out in the isothermal-isobaric (NPT) ensemble at a

pressure of 1 atm, with the temperature and pressure controlled by a Nosé-Hoover thermostat and barostat.43,44

Neural network training was carried out using data from a 25 ns all-atom simulation in which simulation

configurations and forces and velocities were saved at 2 ps intervals. The simulation snapshots from the last

20 ns were shuffled and then divided into 4 groups of equal size, {g0,g1,g2,g3}. The neural network was initially

trained on g0 and validated on g3. The validation set g3 was further divided into an 8:2 ratio where the lesser was

reserved as the test set. New snapshots were added from g1 and g2 if the mean errors of their predicted forces

and torques were larger than that of the test set. The accuracy of the trained neural network was then compared

to the expected accuracy determined from k-fold cross-validation.45,46 During k-fold cross-validation, the last

20 ns of simulation data was shuffled and divided into 10 folds, {ψ0, ...,ψ9}. The model was validated on ψi
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and trained on
⋃

j ̸=i ψ j for all i, j ∈ {0−9}. The loss of the iterative training method was found to be identical

to the k-fold cross-validation loss.

The coarse-grained simulations were done using a modified version of the LAMMPS software where the

trained neural network was introduced to calculate the forces and energies. The dimensions of the coarse-grained

sites used in the simulations were derived from the inertia tensor of the all-atom model. To test the ability of the

coarse-grained model to capture the properties of the all-atom model under a variety of conditions in addition to

the single temperature at which the neural network was trained, the equilibrium structural properties of equivalent

coarse-grained and all-atom systems were compared in simulations at several different temperatures. In all cases,

the total length of the coarse-grained simulation was 25 ns long with the last 20 ns being used to calculate all

structural properties. The timestep of all coarse-grained simulations was also set to 12 fs.

3.5 Results and Discussion

To demonstrate the flexibility of the method we have used our neural-network model to construct coarse-grained

interaction potentials for benzene, an archetypal anisotropic small molecule, and α-sexithiophene, an organic

semiconductor with significant applications in organic electronic devices47–49 (Fig. 3.2). These molecules were

selected to demonstrate the neural network’s ability to handle anisotropic molecules of varying complexity,

flexibility, and aspect ratio while still reproducing the structural and phase behavior.

Figure 3.2: Chemical structures of (a) benzene and (b) α-sexithiophene with coarse-grained ellipsoid superim-
posed on one possible configuration of each molecule.

The shape of a coarse-grained particle obtained from the AFM-CG method is determined by the "average"

shape of the fine-grained molecule or molecular fragment that is mapped to it under the parameterization

conditions. Thus, the variation of the aspect ratio of the molecule or molecular fragment with temperature in

the all-atom simulations can potentially be used as a qualitative indicator of the temperature transferability of

the coarse-grained model. Here, the aspect ratio of the molecule was calculated as the ratio of the length to the

breadth of the molecule, where the length was defined as the longest principal axis and the breadth was defined

as the sum of the remaining two semi-axes. Unlike benzene, the thiophene-thiophene torsion angles also have a

temperature-dependent effect on the aspect ratio of sexithiophene.

Neural networks in general are very good at interpolation but struggle with extrapolation50–53. The accuracy

of the model is therefore expected to decrease as the aspect ratio of the molecule deviates from that at the
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parameterization temperature, as well as when the density distribution is sufficiently different from the parame-

terization temperature. By parameterizing the systems in the liquid phase, the model can capture a wider variety

of fluctuations in the density of the system and the dimensions of the molecules. The average size of a flexible

molecule in the isotropic phase will be different from the size of the molecule when locked in a rigid crystal

structure.54,55 However, this temperature-dependent size difference should decrease with increased rigidity of

the molecule.

3.5.1 Benzene

Simulations consisting of 500 benzene molecules were carried out at 280, 300, 320, 330, and 350 K, and

the coarse-grained neural-network model was parameterized at 300 K. The time step was 2 fs in the all-atom

simulations and 12 fs in the coarse-grained simulations. The cut-off distance hyperparameter Rc was 10 Å.

The root mean squared validation error for the forces was 2.55 kcalmol−1 Å
−1

and that of the torque was

4.35 kcalmol−1. The average post-training error in the pressure calculated for the entire simulation box volume

and over the entire length of the simulation at the parameterization temperature was 0.0092 atm. Benzene’s

average principal moments of inertia in the all-atom simulation at 300 K were used to determine the principal

moments of the coarse-grained benzene model using Eqn. (3.10) (values given in the Supplementary Material)

since fluctuations in the moments at the parameterization temperature were small.21

The variation of the molecular aspect ratio of the all-atom benzene model with temperature is shown in

Fig. 3.3. The distribution of possible dimensions observed for benzene is narrow and remains fairly constant

with temperature, making benzene an ideal case where molecular flexibility does not contribute significantly to

the overall error of the model.56

Figure 3.3: Length-to-breadth ratio of the all-atom benzene model at 1 atm and various temperatures.

Fig. 3.4 shows that the coarse-grained neural-network model accurately captures the liquid density of the

all-atom model over a wide range of temperatures from just above the freezing point to just below the boiling

point, with only slight deviations for the temperature furthest from the parameterization temperature. As shown

in Fig. 3.5, the coarse-grained model also accurately predicts the radial distribution function (RDF) of the
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all-atom model over the same temperature range.

Figure 3.4: Density versus temperature of the all-atom (AA) and coarse-grained (CG) benzene models at 1 atm.
Error bars are smaller than the symbol

Figure 3.5: Radial distribution function (RDF) of the all-atom (solid lines) and coarse-grained (dashed lines)
benzene models at 1 atm and various temperatures. The RDFs have been shifted vertically for clarity.

To further elucidate the accuracy of the neural network coarse-grained model, the angular-radial distribution

function (ARDF) was analyzed. The ARDF is defined by

g(r,θ) =
⟨n(r,θ)⟩

4
3 πρ[(r+∆r)3 − r3]sinθ∆θ

, (3.24)
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where ⟨n(r,θ)⟩ is the average number of molecules in the spherical shell within the bounds r to r +∆r of

the center-of-mass of a chosen molecule and having an out-of-plane axis rotation of θ with respect to the

out-of-plane axis of the chosen molecule57, and ρ is the bulk number density. Fig. 3.6 shows the 2D heatmap of

the ARDF along with 1D slices of this function at specific angles at 300 K (the parameterization temperature)

for both the all-atom and coarse-grained models. The ARDFs at the other simulated temperatures are compared

in the Supplementary Material. At all simulated temperatures between 280 and 350 K, the coarse-grained

model captures all the major features of the fine-grain structure of the fluid. The only difference is a slight

underestimation of the peak heights by the coarse-grained model. The neural-network model is, however, able

to more faithfully capture the angular radial distribution of benzene at all temperatures compared with the

coarse-grained benzene model previously parameterized with the AFM-CG method using a pair potential to

describe the interactions between coarse-grained particles.21 This improvement can be attributed to the greater

flexibility of the neural-network potential in describing the intermolecular interactions. The neural-network

model can demonstrate improved temperature transferability by adjusting the neural network hyperparameters to

prevent overfitting of the local number density variations.

Figure 3.6: Angular-radial distribution function (ARDF) of the all-atom (AA) (top) and coarse-grained (CG)
(bottom) benzene models at 300 K and 1 atm depicted as a heat map (left) and 1D slices at constant angle (right).
Face-on, edge-on, or parallel displaced configurations occur when the angle is 0°, while T-shape and Y-shape
configurations occur at 90°.

The coarse-grained simulation of anisotropic molecules using a neural network potential is more suited for

large, preferably rigid, molecules, for which a high degree of coarse-graining can be achieved. However, the

model was still able to achieve a modest 20× speedup, through a combination of reduced computation time per

timestep and a larger timestep, when compared to the atomistic simulations. This poor performance for a small

molecule such as benzene is due to the small reduction in the number of degrees of freedom from the all-atom

model to the coarse-grained model, coupled with a neural-network potential that is more computationally

expensive than an analytical potential. Nevertheless, computational savings are obtained even in this suboptimal

case. Simulations were carried out on a 4-core Intel i7-4790K CPU, but, further speedups could be achieved by

taking advantage of the GPU-enabled version of TensorFlow.
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3.5.2 Sexithiophene

Simulations of 512 sexithiophene molecules were carried out at 570, 590, 640, and 680 K temperatures,

corresponding to temperatures previously identified in all-atom MD simulations to correspond to crystalline

(K), smectic-A (Sm-A), nematic (N), and isotropic (I) phases respectively.58 The time step was 1 fs in the

all-atom simulations and 12 fs in the CG simulations. Although we have used the OPLS-AA force field for our

all-atom simulations, whereas these previous MD simulations58 used the related AMBER force field59–61 the

structural properties of systems simulated with these two force fields (in particular the density, orientational

order parameter, and radial distribution function discussed below) are very similar for the temperature range

studied. The cut-off distance hyperparameter Rc was set to 21 Å. The neural network model was parameterized

using simulation snapshots from the isotropic phase at 680 K, where the molecular mobility was highest. The

conditions of the isotropic bulk phase are advantageous in efficiently sampling the configuration space, especially

rare high-energy configurations necessary for the accurate reproduction of the repulsive part of the coarse-grained

potential. As shown in Fig. 3.7a, the distributions of the principal moments of inertia of sexithiophene in the

all-atom simulation at the parameterization temperature are broad, indicating that Eqn. (3.10). may not be

adequate for parameterizing the moments of inertia of the coarse-grained model. However, we found that using

the more general Eqn. (3.9) to parameterize the coarse-grained moments of inertia (by fitting the distributions in

Fig. 3.7(b–d) gave values within <1%. So we used the values from Eqn. (3.9) in the coarse-grained model."
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Figure 3.7: (a) Principal moment of inertia distributions for all-atom (AA) sexithiophene model at 680 K and
1 atm. The corresponding angular velocity distributions of each principal axis along with the coarse-grained
(CG) fit to the distribution given by Eq. (3.9) is shown in (b)–(d).

The root mean squared validation error for the sexithiophene forces were 3.95 kcalmol−1 Å
−1

and that of

the torque was 9.8 kcalmol−1. The sexithiophene final force and torque losses were larger than those of benzene
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because the model was not complex enough to account for the bending of the polymer and the rotation of the

individual thiophene rings. The loss is also skewed to larger values when compared with benzene because

sexithiophene is a larger molecule and so the interactions between molecules are stronger overall.

The structural properties of the coarse-grained model were compared to those of its all-atom counterpart at

each of the simulated temperatures. The nonlinear change in density with respect to temperature is associated

with the phase changes that occur at the simulated temperatures (Fig. 3.8).58 The density of the coarse-grained

system agrees well with that of the all-atom system, with minimal deviations from the fine-grained system with

increasing distance from the parameterization temperature. Compared with benzene, sexithiophene has a much

larger change in density between the crystalline and the isotropic phase. This difference results in less overlap

between the local density variations in the crystalline phase at the lowest temperature and the training data

set in the isotropic phase at the highest temperature. The sexithiophene molecule is also much more flexible

than benzene, as seen in the wide distribution of the aspect ratio in the all-atom model at all the simulated

temperatures shown in Fig. 3.9, and its dimensions change significantly with temperature over the range studied.

Another limitation of representing sexithiophene as a single-site ellipsoid is the loss of thiophene–thiophene

torsional information. That is, for any given position and orientation of the coarse-grained ellipsoid there are

multiple different relative orientations between the thiophene groups.62 This loss of information is significant

because the anisotropic interactions of the thiophene subunits are lost, which reduces the neural network’s ability

to isolate which of the two short axes corresponds to the π-stacking direction.

Figure 3.8: Density versus temperature of the all-atom (AA) and coarse-grained (CG) sexithiophene models at
1 atm. Error bars are smaller than the symbols.
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Figure 3.9: Length-to-breadth ratio of all-atom sexithiophene model at 1 atm and various temperatures. The
simulated phase is given in parentheses after each temperature in the legend (I = isotropic, N = nematic, SmA =
smectic A, K = crystal).

To further confirm that the density changes were associated with transitions from crystalline through nematic

and smectic to the isotropic phase, the scalar orientational order parameter P2 was introduced. For a given

simulation snapshot at time t, P2 can be found by diagonalizing the ordering matrix Q,

Q(t) =
1

2N

N

∑
I=1

[3uI(t)⊗uI(t)−E], (3.25)

where uI is the unit vector along the molecular axis and E is the identity matrix. ⟨P2⟩ is the average over

the largest eigenvalue of this matrix for all snapshots of equilibrium configurations.58 Larger values of the

scalar orientational order parameter close to one indicate an ordered crystalline structure while values close to

zero correspond to an isotropic disordered phase. The coarse-grained model reproduces the orientational order

parameter of the all-atom model reasonably well over the temperature range simulation, as shown in Fig. 3.10.

The coarse-grained model underestimates the degree of orientational ordering observed in the all-atom model

away from the parameterization temperature, likely because it does not capture the increasing molecular shape

anisotropy that is observed in the all-atom model as the temperature decreases (Fig. 3.9). As expected, the largest

difference occurs in the predicted crystalline phase.
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Figure 3.10: Orientational order parameter versus temperature for the all-atom (AA) and coarse-grained (CG)
sexithiophene models at 1 atm. Typical simulation configurations are shown at each temperature for each system
(AA model above the data points and CG model below), in which the molecules have been colored according to
their orientation with respect to the phase director (blue = parallel, red = perpendicular). Error bars are smaller
than the symbols.

The same trend is seen in the radial distribution functions shown in Fig. 3.11, in which the agreement

between the coarse-grained and all-atom models at most temperatures is excellent, with the largest deviations

for the crystalline phase. The underestimation and broadening of the peaks in the crystalline radial distribution

function explain the discrepancy between the order parameter of the all-atom and coarse-grained models. The

observed differences are most likely due to the effect on molecular packing of the aforementioned discrepancy

in molecular shape between the two models as temperature decreases.63 Nevertheless, even in the crystalline

phase, the coarse-grained model captures the peak positions of the radial distribution function very well.
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Figure 3.11: Radial distribution function (RDF) of the all-atom (solid lines) and coarse-grained (dashed lines)
sexithiophene models at 1 atm and various temperatures. The RDFs have been shifted vertically for clarity. The
simulated phase is given in parentheses after each temperature in the legend (I = isotropic, N = nematic, SmA =
smectic A, K = crystal).

The coarse-grained model also accurately describes orientational correlations in condensed-phase sexithio-

phene, as illustrated by a comparison with the angular-radial distribution function of the all-atom model. At the

parameterization temperature, the coarse-grained model is able to capture all major features when compared to

the all-atom model (Fig. 3.12). The neural-network model is also able to capture the relevant features in the

structure of sexithiophene’s smectic liquid-crystal phase at 590 K, as shown in Fig. 3.13. The discrepancies in

the width and height of the peaks are likely due to the differences in molecular shape away from the parameteri-

zation temperature that was mentioned earlier. The ARDFs of the two models at 640 K are compared in the

Supplementary Material and show similarly good agreement.
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Figure 3.12: Angular-radial distribution function (ARDF) of the all-atom (AA) (top) and coarse-grained (CG)
(bottom) sexithiophene models at 680 K and 1 atm (isotropic phase) depicted as a heat map (left) and 1D slices
at constant angle (right). Face-on, edge-on, or parallel displaced configurations occur when the angle is 0°, while
T-shape and Y-shape configurations occur at 90 °.

Figure 3.13: Angular-radial distribution function (ARDF) of the all-atom (AA) (top) and coarse-grained (CG)
(bottom) sexithiophene models at 590 K and 1 atm (smectic phase) depicted as a heat map (left) and 1D slices at
constant angle (right). Face-on, edge-on, or parallel displaced configurations occur when the angle is 0°, while
T-shape and Y-shape configurations occur at 90 °.

Despite sexithiophene not strictly meeting the conditions to be coarse-grained to a single anisotropic particle

due to its significant flexibility, the coarse-grained neural-network model is still able to reproduce its condensed-

phase structural properties and phase behavior with remarkable accuracy. The limitation of the single-site model

is only evident under conditions where the conformation of the molecule is highly temperature-dependent. One
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way to construct a neural network model that is independent of temperature would be to extract the training

data from multiple temperatures and define the molecular dimensions as the average over the crystalline and

isotropic phases. While the results for sexithiophene are substantially better than expected given its flexibility,

improvements can be made to the model by considering a coarse-grained mapping consisting of more than one

site.64

The coarse-grained simulation of sexithiophene demonstrated a speed-up of 132× compared to the all-atom

simulation using the same hardware employed for the benzene simulations. This speedup is primarily due to the

large reduction in the number of degrees of freedom in coarse-graining this molecule.

Conclusions

We have applied machine learning and a recently derived systematic coarse-graining method for anisotropic

particles to develop a single-site anisotropic coarse-grained potential of a molecular system. The iterative

training of the neural network potential is able to reproduce the forces, torques, and pressure of the fine-grained

all-atom system. The final loss of the iterative training model was identical to the loss obtained from k-fold

cross-validation. The CG model performs well for a rigid molecule like benzene but remarkably it also describes

the phase behavior and molecular-scale structural correlations of a flexible molecule like sexithiophene with

comparable accuracy, even though the aspect ratio of the molecule changes significantly over the simulated

temperature range. We have demonstrated the versatility of the coarse-graining method by parameterizing

models of benzene and sexithiophene at a single temperature and then studying their accuracy in capturing the

structural properties of the corresponding all-atom model at different temperatures. The sexithiophene model

was also used to show the ability of the model to reproduce the phase behavior of the all-atom model, with the

lowest fidelity coming from the crystalline phase where the aspect ratio of the molecule has the largest deviation

from the parameterization data set. A natural extension to this work would be to generalize the method to a

multi-site anisotropic coarse-grained model for flexible molecules and polymers.
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Chapter 4

Automated anisotropic coarse-graining of
polymers using variational autoencoders

4.1 Abstract

We demonstrate the automated coarse-graining of anisotropic molecules and polymers using an autoencoder

neural network. The encoder network in an autoencoder is used to automatically generate a latent space that

represents the position and orientation of ellipsoidal coarse-grained sites. The decoder network reconstructs

an atomistic configuration from the position and orientations encoded in the latent space. This reconstruction

from the latent space has a higher fidelity when compared to reconstruction from the center-of-mass alone. This

method of automatic anisotropic coarse-graining creates a straightforward strategy to construct an anisotropic

coarse-grained representation of semiconducting polymers with anisotropic subunits, and also provides a back-

mapping technique that preserves the probability distribution of the conformation space of the original molecule.

The automated anisotropic coarse-graining technique is validated through the ability to construct a coarse-grained

representation of a solution-phase hexamer of P(NDI2OD-T2), also known as N2200, that can reproduce the

physical observable of its atomistic counterpart. The technique is further validated on the comparatively smaller

sexithiophene molecule in the liquid phase. We further show that the optimal number of coarse-grained sites can

be determined from the loss versus cost for a given number of coarse-grained sites.

4.2 Introduction

The recent demand for alternative photovoltaic cells, wearable electronics, and optoelectronic devices have led

to intensified research in the area of organic semiconductors.1–3 This has led to the discovery and utilization

of increasingly complex and diverse macromolecules and polymers. It has also become increasingly evident

that computational methods, such as molecular dynamics and more recently machine learning, are playing an

increasingly large role in material design and discovery.4–7 However, there are still some limitations on the

size and length scale of classical atomistic simulations of materials. Coarse-graining has long been used as a

technique to overcome these limitations8 but to fully utilize a coarse-grained model there needs to be sufficiently

accurate, quantifiable, and straightforward back-mapping techniques.

Back-mapping algorithms are important9 in the field of organic semiconductors because they provide an

avenue to study long time-scale properties such as solution-phase aggregation of polymers by running simulations
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at low resolutions with the possibility of upsampling the system at a later time to study properties such as charge

transport or the effects of different functional groups or anisotropy on short-ranged interactions. Many recent

breakthroughs in the area of coarse-graining and back mapping came from the integration of machine learning

into the field of molecular simulations. The fast-paced growth and development of machine learning tools have

increased their popularity in many scientific fields.10 Autoencoders in particular are popular neural networks

developed for data compression problems, in the image-processing sphere,11 and this machine learning tool

has been adapted for uses in the coarse-graining12 of organic molecules to improve simulation speed and scale.

There has been a consistent effort in the attempt to determine the optimal number of coarse-grained sites for

generic molecules.13–16 Unlike traditional methods of coarse-graining, autoencoders do not require a thorough

prior understanding of the simulation system, since it is an unsupervised form of machine learning.17 In general,

autoencoders consist of two feedforward neural networks trained together to minimize the data loss between the

real data and the data reconstructed from the compressed state. The encoder network is responsible for data

compression and in the case of coarse-graining, the encoder network produces the coarse-grained representation

of the molecule from the trajectories of the atomistic model obtained from molecular dynamics simulations. On

the other hand, the decoder network reconstructs the atomistic trajectory from the coarse-grained representation.

This method of coarse-graining attempts to address two major issues in organic semiconductor research. The

first is the creation of a coarse-graining methodology that can be compared and optimized without the need for

further molecular dynamics simulations. The second problem addressed by the method is its ability to produce a

backward map from the coarse-grained representation to the atomistic model.

Even though there have been previous autoencoder models designed to coarse-grain and back-map small

molecules to and from isotropic coarse-grain sites,12 there is still a gap in the knowledge required for coarse-

graining macromolecules and polymers into more general ellipsoidal coarse-grain sites accounting for the

anisotropy in the mass distribution of different monomers and side-chains.

4.3 Theory

For this work, it is assumed that the computational efficiency of a coarse-grain model decreases linearly with

the number of sites, and an optimal coarse-grained representation of a molecule is a model which balances

computational efficiency with reconstruction fidelity. Since the neural network loss versus the number of

coarse-grained sites is defined on the set of integers, it is defined as continuous at point b if g(b) = f (b), where

g(x) is a decay curve fit to the data points on the real interval (a,b) and f (x) is a decay curve fit to the data

points on the real interval [b,c), the fit is discontinuous otherwise. A given number of coarse-grained sites b is

considered optimal on the interval (a,c) if there is a discontinuity at point b as shown in Fig. 4.1. Even though

reconstruction fidelity always increases with the number of sites it is expected that for an optimal coarse-grain

representation there should be a sharp increase in reconstruction fidelity corresponding to a discontinuity in the

loss versus number of site curve.

46



Figure 4.1: Diagram showing a typical case where point b is considered an optimal number of coarse-grained
sites since g(b) ̸= f (b) when g(x) is fitted to the data on the interval (a,b), f (x) is fitted to the data on the
interval [b,c), and g(x) and f (x) are both real-valued functions.

A set of mapping functions M are defined such that each fine-grained coordinate rn is linearly mapped to a

unique coarse-grained site I with position RI and orientation ΩI using

MRI(r
n) =RI (4.1)

and

MΩI(r
n) =ΩI, (4.2)

where MRI maps rn to the centers-of-mass

RI =
∑i∈ζI miri

∑i∈ζI mi
, (4.3)

and MΩI maps rn to the principal inertia axes defined by the inertia tensor,

IIIFG,I = ∑
i∈ζI

mi(||∆ri||2E −∆ri∆rT
i ), (4.4)

where ∆ri = ri −RI is the position of fine-grained particle i relative to the center-of-mass (coarse-grained

particle position), E is the 3×3 identity matrix and the sums are over the set ζI of fine-grained particles that are

mapped onto coarse-grained site I. For consistency between the coarse-grained and fine-grained models, the

configurational distribution of the coarse-grained model must match that of the fine-grained system on which it

is based.

4.3.1 Data preprocessing

The automatic coarse-graining of polymers can take two possible forms as shown in Fig. 4.2
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1. Unconstrained

2. One or more coarse-grained sites per monomer

Figure 4.2: Schematic of the data processing workflow used to map polymer atomistic configurations to
coarse-grained representation.

To determine which method is best suited for a particular polymer, the cost to simulate vs the compression

loss must be optimized. In the case of unconstrained coarse-graining, the total number of CG sites is chosen

to be less than the number of monomers. The entire polymer is treated as a single macromolecule; that is, for

each simulation snapshot, the molecular configuration is flattened into a vector, the center-of-mass is shifted

to zero, and the configuration is rotated such that the principal axes of the polymer align with the laboratory

frame. The neural network is then unconstrained in allocating atoms to each of the coarse-grained sites. This

approach is especially useful for short polymers with simple repeating units. The unconstrained approach can

also be used to coarse-grain rigid polymers in which the persistence length is multiple monomers or other cases

where it is appropriate to map multiple monomers to a single site. On the other hand, to obtain one or more

coarse-grained sites per monomer, the molecular configurations are reshaped to a P×S matrix, where P is the

number of monomer units and S is the number of atoms per monomer, then a similar procedure is followed to

center and rotate the polymers in each snapshot with respect to the center-of-mass of each monomer. The neural

network is then used to assign a predetermined number of coarse-grained sites to each of the monomer units.

For polymers with relatively large repeating units and complex side-chains, it is advantageous to represent the

polymer as a P×S matrix since it increases the number of data points used to train the neural network weights,

effectively eliminating the degree of polymerization as a possible source of error.

The neural network method also allows for the integration of prior knowledge into the definition of the

coarse-grained sites. A condition can be enforced such that all or some of the coarse-grained sites have the same

standard deviation by using the average standard deviation of the specified number of equivalent sites. This

condition allows the user to fix the number of CG site types that can be generated independently of the overall

number of coarse-grained sites specified. The difference in the reconstruction fidelity as a function of CG site

types can also be used to determine the optimal anisotropic coarse-grained representation of any molecule.
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4.3.2 Encoder algorithm

The encoder network is constructed such that

1. The mass of the coarse-grain site is taken as the sum of the masses of the contributing atoms from the

fine-grain model.

2. The inertia tensor of each ellipsoidal site is derived from the average fluctuations of the contributing atoms

about the center-of-mass of the coarse-grain site, which will be further explained in the following sections.

3. No atom from the fine-grained model is mapped to more than one coarse-grained site.

The first and second conditions outlined above are satisfied by using Eqns. (4.3) and (4.4) as target values for

the construction of a normal distribution with mean µI and standard deviation σI . The mean of the probability

distribution of the mass-weighted positions of the atoms corresponds to the mean of the center-of-mass defined in

Eqn. (4.3) and the standard deviation of the 3D joint probability distribution of the mass-weighted atom positions

generates the principal axes of the coarse-grained site defined by Eqn. (4.4). For the case where more than one

center-of-mass is defined corresponding to multiple coarse-grained sites per molecule, the probability distribution

becomes a multi-modal distribution. However, straightforward enforcement of the third condition requires no

mixing between the modes of the distribution, which would require assigning an atom to the coarse-grained site

of the highest probability, according to

Zi = one_hot(argmax
I

{logπiI}) (4.5)

where Zi is a categorical variable and πiI is the probability that atom i is assigned to coarse-grain site I. However,

this argmax function would make the neural network nondifferentiable and prevent learning through backward

propagation.18 To enforce the first condition without trying to backpropagate through a non-differentiable layer,

the Gumbel-softmax reparametrization18 trick is used to approximate an argmax function. Gumbel-softmax

reparameterization allows a variational autoencoder to approximate sampling from a discrete latent space through

the introduction of a neural network temperature variable giving the Ith element of Zi as

ZiI =
exp((GiI + logπiI)/τ)

∑n
j exp((G jI + logπ jI)/τ)

(4.6)

Here, GiI is a sampled from the standard Gumbel distribution and τ is the temperature variable, such that as

τ → 0 the softmax calculations smoothly approach argmax and Zi approximates a one-hot vector. By initializing

the neural network with a sufficiently large temperature variable, each atom in a molecule can transition across

all available coarse-grained sites.12 The subsequent annealing process lowers the temperature gradually ensuring

that each atom is mapped to the optimal coarse-grained site in such a way that the overall coarse-grained model

reproduces the mass distribution of the all-atom model. The encoder network performs linear transformations

assigning the atomistic configurations to the centers-of-mass and the inertia tensor of the coarse-grained ellipsoid.

By retaining the mass distribution along each of the principal axes, the model generalizes spherically symmetric

coarse–grain sites to anisotropic ellipsoidal sites. As the neural network temperature variable decreases, each

atom only contributes to the calculation of the mean of a single coarse-grained site and the fluctuation of the atom

about the mean position defines the standard deviation and by extension the principal axes of the coarse-grained
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site. Since each molecular trajectory is fixed to the molecular center-of-mass, atoms close to the molecular

center-of-mass will have smaller fluctuations and will be the first to anneal into their final position. Atoms

at the far ends of a polymer or side-chains will fluctuate more widely and will require more data to produce

consistent results for their coarse-grained representation. The latent space of the encoder network provides a set

of positions RI and orientations ΩI for each coarse-grained site.

4.3.3 Decoder algorithm

The decoder is responsible for the reconstruction of the atomistic trajectories from the coarse-grained latent space

representation.19 In the automatic anisotropic coarse-graining method, the reconstruction is done using two

pieces of information, the center-of-mass of each coarse-grained site as well as the inertia tensor which describes

an ellipsoidal mass distribution about each of the coarse-grained center-of-mass. Compared to a spherical

coarse-grained model, reconstruction fidelity is improved for the anisotropic model since it uses information

about the inertia tensor in the decoding process. This additional reconstruction fidelity is important for organic

semiconductors since back mapping is an important tool to understand charge transfer in polymer aggregates.20

The loss function of the autoencoder has two sources contributing to the total loss, The first being the

reconstruction loss and the second being the reparameterization loss. The reconstruction loss can be further

broken down into the reconstruction of one–, two– and three–body contributions, that is, the reconstruction of

the atom positions, bonds, and angles respectively. This is achieved through the use of a regression loss function

namely, the mean squared error,

Lrecon = ∥ΓD(ΓE(X,τ,G))−X∥2 (4.7)

where ΓD and ΓE are the decoder and encoder network function, and τ and G are the neural network temperature

variable and the sampled Gumbel distribution, respectively. On the other hand, since the reconstruction of the

trajectories is probabilistic, the reparametrization error minimizes the distance between the true distribution of

the atomic positions and the sampled distribution used for the reconstruction. This reparameterization error is

constructed as the evidence lower bound.21 The variational autoencoder aims to maximize the likelihood of

recovering the data from the latent representation, p(Z|X), where Z is the latent representation and X is the

data. given the input data has true distribution p(X) and the latent representation has distribution q(Z), the

evidence lower bound is defined as

ELBO = Eq

[
log

p(X|Z)

q(Z)

]
, (4.8)

where Eq is the expectation. The total loss is calculated using

Ltotal = Lrecon −0.5×ELBO (4.9)

The gradient descent algorithm was implemented using the Adam optimizer.22 A schematic of the autoen-

coder architecture is shown in Fif. 4.3.
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Figure 4.3: Schematic of the neural network architecture used to map polymer atomistic configurations to
a discrete latent space parameterized by the mean and standard deviation of a multimodal joint ellipsoidal
distribution.

4.3.4 Atomistic simulation and coarse-grained potential

α-Sexithiophene and a hexamer of the polymer P(NDI2OD-T2), also known as N2200, were chosen as test

molecules to demonstrate the different capabilities of the anisotropic autoencoder. Atomistic MD simulations

were done using the molecular dynamics software package LAMMPS (version 20NOV19).23–25 The OPLS-AA

force field26–29 and a cut-off of 10 Å were used for the simulation of 250 sexithiophene molecules in the

isothermal-isobaric (NPT) ensemble with the pressure set at 1 atm and temperature of 680 K.30 A molecular

dynamics simulation of a single N2200 hexamer in a solution of 14680 chloroform molecules was carried out

at 300 K and 1 atm in the NPT ensemble with OPLS-AA force field and a cutoff of 11 Å. For all atomistic

simulations hydrogen bonds were constrained with the SHAKE algorithm,31 long-ranged electrostatic interac-

tions were calculated with the particle–particle particle–mesh (PPPM) method,32,33 and the temperature and

pressure controlled by a Nosé–Hover thermostat and barostat.34,35 The N2200 hexamer in chloroform solution

was equilibrated for 1 ns and then simulations were carried out with the time step set to 2 fs and simulations ran

for 1 ns. The sexithiophene simulations were 25 ns long with a timestep of 1 fs. The last 20 ns of the simulation

data was used for parameterization of the coarse-grained potential and calculation of structural distributions.

To use the coarse-grained models for molecular dynamics simulations, the coarse-grained potential was

fitted by using the instantaneous forces and torques to train a neural network potentntial with explicit inclusion

of dihedral angles between nearest-neighbor anisotropic monomers. This corresponds to the force-matching

condition in the AFM-CG method, which is required for thermodynamic consistency. A schematic of the neural

network used in the force matching procedure is shown in Fig. 4.4.
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Figure 4.4: Schematic of the neural network used to fit the coarse-grain potential.

Each monomer had a ghost atom attached at off-center positions for the definition of bonds between ellipsoids

Fig. 4.5. This ensures that forces and torques are correctly applied to the anisotropic particle and not just the

center-of-mass of the monomer. The bond length, bond angle, and dihedral potentials are given by

Ubond = KB(b−b0)
2 (4.10)

Uangle = KA(θ −θ0)
2 (4.11)

Udihedral =
1
2

K1[1+ cos(φ)]+
1
2

KD[1− cos(2φ)]

+
1
2

K3[1+ cos(3φ)]+
1
2

K4[1− cos(4φ)] (4.12)

where b and b0 are the instantantous and equilibrium bond lengths, respectively, θ and θ0 are the instantaneous

and equilibrium bond angles, respectively, φ is the dihedral angle, KB and KA are the bond and three-body angle

potential parameter, respectively, and K1, KD, K3, and K4 are the coefficient of the OPLS cosine expansion of

the dihedral potential. Non-bonded interactions were defined between particles separated by one bond (1–2

interactions).

Figure 4.5: Schematic of the (a) bonds, (b) angles, and (c) dihedrals as defined for the anisotropic polymer
models.
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Fitting the forces to the derivative of the potential was done using TensorFlow’s gradient descent algorithm

and the derivative of the potential was implemented using TensorFlow’s GradientTape function to evaluate the

computational derivative.36,37 The hyperparameters for the neural network was fitted using modified a modified

version of the Behler symmetry functions.38 When fitting the coarse-grained potential using the neural network,

each coarse-grain site is mapped to an invariant vector representation DIJ which is defined in terms of the

position and orientations of particles I and J and is given by

DIJ = {RIJ,RIJ ·ΩI,1,RIJ ·ΩI,2,RIJ ·ΩI,3,

RIJ ·ΩJ,1,RIJ ·ΩJ,2,RIJ ·ΩJ,3,

ΩI,1 ·ΩJ,1,ΩI,1 ·ΩJ,2,ΩI,1 ·ΩJ,3,

ΩI,2 ·ΩJ,1,ΩI,2 ·ΩJ,2,ΩI,2 ·ΩJ,3,

ΩI,3 ·ΩJ,1,ΩI,3 ·ΩJ,2,ΩI,3 ·ΩJ,3} , (4.13)

where RI , RJ , ΩI , and ΩJ are obtained from the encoder latent space and RIJ ≡RI −RJ . The neighbourhood

of particle I can then be represented by a unique fingerprint DDDI which is obtained from the concatenation of all

the DIJ vectors in the neighbourhood of particle I. The prior repulsive potential can then be represented by the

simply as

Uprior,I = ∑
J ̸=I

B1σc (DDDI)
−B2 , (4.14)

where σc is a neural-network function and B1 and B2 are trainable parameters. The total potential U can then be

written as a sum over all UI contribution given as

UI =UNN,I +Uprior,I +Ubond,I +Uangle,I +Udihedral,I. (4.15)

and

U =
N

∑
I=1

UI (4.16)

A more indepth discussion of the force matching neural network architecture can be found in the supporting

information. The interaction between the N2200 ellipsoids and the spherical solvent particles as well as the

solvent–solvent interactions were derived from the same procedure above.

A six-site coarse-grained representation was used for the coarse-grained simulation of both N2200 and

sexithiophene. The simulations were done in the canonical ensemble (NVT) to match the density of the atomistic

simulations. The sexithiophene coarse-grained simulations were performed at 590 and 680 K with 250 molecules.

A single-site model of sexithiophene was also parameterized under the same conditions. The CG simulations

with the N2200 hexamer and 14680 isotropic chloroform solvents were done at 300 K.39 The N2200 hexamer in

chloroform solution as well as the sexitiophene coarse-grained simulations were 25 ns long with the last 20 ns

used for the calculation of structural distributions.
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4.4 Results and Discussion

4.4.1 α-Sexithiophene

Sexithiophene shown in Fig. 4.6 has been researched as a promising material for organic photovoltaics40

and organic light-emitting diodes.41,42 There has been significant research into controlling the orientation of

sexithiophene deposited on substrates.43,44 Sexithiophene was used to demonstrate the unconstrained coarse-

graining ability of the anisotropic autoencoder. Sexithiophene coarse-grained to a single ellipsoid does not

capture the backbone flexibility or any of the thiophene-thiophene torsional configurations. The neural network

loss was calculated for different numbers of coarse-grained sites ranging from one to six. The plot of loss

versus the number of sites in Fig. 4.7 shows a notable decrease in reconstruction loss when more than one

coarse-grained site is used to model sexithiophene, whereas there is a smaller decrease in reconstruction loss

when the number of sites increases from two to six. Since sexithiophene consists of six monomers, a steep

decrease in the neural network reconstruction loss between five and six coarse-grain sites is expected. With six

available coarse-grain sites the neural network can more accurately reconstruct the mass distribution changes

due to the rotation of the monomers about the thiophene–thiophene bonds as shown in Fig. 4.8.

Figure 4.6: Chemical structure of sexithiophene

Figure 4.7: Neural network reconstruction loss versus the number of coarse-grained sites when sexithiophene is
mapped to between one and six coarse-grain sites.
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Figure 4.8: Six-site coarse-grained model of sexithiophene. The (a) atomistic configuration was mapped to
the latent space using the (b) learned encoding, producing a mapping to the (c) position and orientation of
the coarse-grained sites. The rows of the encoding matrix in (b) represent each atom and the columns are the
available coarse-grained sites.

The six-site neural network model of sexithiophene captures the structural variations in the liquid and liquid

crystal phases as shown in Fig. 4.9. The six-site coarse-grain model of sexithiophene outperforms the single-site

model when comparing the orientational order parameter in the liquid crystal phase (Fig. 4.10). However, there

are only small differences between the six-site and the single-site model when comparing the center of mass

radial distribution function (Fig. 4.11).
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Figure 4.9: All-atom (solid lines) and six-site (dashed lines) coarse-grained monomer-monomer radial distribu-
tion function for sexithiophene in the isotropic phase (680 K) and the Smectic-A phase (590 K).

Figure 4.10: Orientational order parameter for all-atom, six-site coarse-grain and one-site coarse-grain models
of sexithiophene at 590 and 680 K
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Figure 4.11: All-atom (solid lines), six-site coarse-grained (dashed lines), and single-site coarse-grained (dotted
lines) center-of-mass radial distribution function for sexithiophene in the isotropic phase (680 K) and the
smectic-A phase (590 K).

The one-site sexithiophene model had a 132 × speed-up compared to the all-atom model while the six-site

sexithiophene model had a 17 × speed-up compared to the all-atom model.

4.4.2 P(NDI2OD-T2)

Poly[N,N′-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene) (P(NDI2OD-

T2)), also known as N2200, is a copolymer of naphthalene diimide (NDI) and bithiophene units with alkyl side

chains. There have been significant interest in N2200 as an organic semiconductor.45–49 It is considered one

of the best organic polymer acceptors due to its high electron mobility50 and narrow band gap.51 N2200 has

had recent success in organic solar cell applications52 and energy storage in the form of capacitors.46 N2200

was chosen to demonstrate how well the anisotropic autoencoder handles one or more coarse-grained sites per

monomer. This also provides an opportunity to see how well the neural network method handles flexible alkyl

side chains and an aromatic backbone. Plots of the neural network loss versus the number of coarse-grained sites

are shown in Fig. 4.12. These plots showed several discontinuities where the loss between consecutive numbers

of coarse-grained sites showed a larger decrease than for the pair before or the pair after.
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Figure 4.12: Neural network reconstruction loss versus number of coarse-grained sites for the case where the
number of sites is less than twice the number of monomers for the N2200 hexamer (main plot) and for one or
more sites per monomer for the N2200 hexamer. Lines connecting the data points are solely for visualizing the
trend between adjacent data points.

The unconstrained allocation of coarse-grained sites for the N2200 hexamer starts with a relatively high error

which can be attributed to the attempt to represent a flexible molecule as a rigid ellipsoid. Even though there

is a significant drop in the reconstruction error between one and five sites, the trend still follows the expected

exponential decay that would be expected just from adding more complexity to the model. The only significant

feature that is observed on the interval [1,12] is a discontinuity in the decay trend between five and six coarse-

grained sites. As expected there is a significant drop in the reconstruction error when each of the monomers

in the polymer is assigned to individual sites. There is a discontinuity in the plot of reconstruction loss versus

the number of sites when eighteen and forty-two coarse-grained ellipsoids are allocated. The coarse-grained

model with three sites per monomer separated the backbone of the polymer from the sidechains. The allocation

of the atoms associated with forty-two sites or seven sites per monomer is shown in Fig. 4.13. The anisotropic

autoencoder was able to group each branch of the alkyl side chains into an ellipsoid while also grouping the

naphthalene diimide (NDI) and bithiophene units into individual ellipsoids. Fig. 4.12(inset) shows a trend of

increased reduction in the loss for every six additional sites added to the polymer. By observing how the neural

network allocates the atoms for the seven-site model, a priori information can be added to the neural network by

enforcing a set of only three unique ellipsoid types for the seven available sites: that is, four ellipsoids assigned

to the first type, two to the second and one to the third. The results are shown in the color-coding of Fig. 4.13.

This added flexibility can significantly simplify the output of the neural network latent space with less than 2 %

increase in the reconstruction error.

The comparison of the center-of-mass radius of gyration for the all-atom, six-site coarse-grained, and

back-mapped models is shown in Fig. 4.14. There is a close match between the all-atom and the back-mapped

models, the discrepancy between the coarse-grained and all-atom models can be attributed to the standard way of

calculating the radius of gyration of a polymer, which has not been modified to account for anisotropic particles.
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The method of calculation, assumed that the entire mass of each monomer acts at the center-of-mass of the

coarse-grain ellipsoid instead of distributed over the entire volume. However, the back-mapped model gives a

better representation of the radius of gyration of the coarse-grained model.

Figure 4.13: Neural network representation of coarse-grained N2200 where the number of coarse-grained sites
is set to seven disjoint sets and the color- coding represents sites with the same inertia tensor.

Figure 4.14: A comparison of (a) the distribution of the center-of-mass radius of gyration of the all-atom (AA),
six-site coarse-grained (CG), and the back mapped (BM) model of the N2200 hexamer in chloroform solution at
300 K.

The six-site representation of N2200 hexamer provides an opportunity for high fidelity backmapping. The
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six-site CG model in which each monomer is coarse-grained into a single site does not capture the structural

correlations very well, and has a stronger effective monomer-solvent repulsion than the all-atom model as shown

in the monomer-solvent center-of-mass radial distribution function in Fig. 4.15. The six-site model A higher

resolution model with separate sites for backbone and side-chains is likely needed to accurately capture the

radial distribution function. When the flexible side-chains are coarse-grained together with the backbone, the CG

site dimensions become more isotropic due to an increase in size along the π-stacking direction. This limitation

of the six-site coarse-grained model can explain the discrepancy between the all-atom and coarse-grained radial

distribution function.

The six-site N2200 model had a 161 × speed-up compared to the all-atom model

Figure 4.15: The monomer-solvent center-of-mass radial distribution function for the all-atom and six-site
coarse models of the N2200 hexamer in chloroform solution at 300 K.

CONCLUSIONS

We have shown that an unsupervised machine-learning approach can be used to coarse-grain large molecules

and polymers using either an unconstrained approach or by prescribing one or more sites per monomer. With

the inclusion of anisotropic mass distribution data for the coarse-grained sites, the autoencoder was able to

increase the reconstruction fidelity of large molecules with anisotropic mass distribution. The anisotropic

feature is especially highlighted with the organic semiconducting polymer sexithiophene and N2200 since

they both contain anisotropic monomer units. Additionally, the automatic anisotropic coarse-graining method

provides the ability to specify the number of unique types of ellipsoids independently of the specified number

of coarse-grained sites. This feature simplifies the coarse-grained representation of polymers with complex

monomers such as N2200.
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Chapter 5

Automatic labeling and prediction of
anisotropic semiflexible polymers aggregate
phase diagrams using neural networks

5.1 Abstract

A machine learning pipeline has been developed to understand the role of polymer backbone flexibility in the

temperature-dependent aggregation behavior of anisotropic polymers. A toy polymer model is used to conduct

simulations with variations in a predefined set of polymer properties. The set of variable properties used to model

polymer backbone flexibility includes the coefficient of the angle potential and the coefficient of the dihedral

potential. The temperature of the simulation is also used as a variable to determine the effect of temperature on

the polymer conformations observed. The machine-learning pipeline developed was able to assign an aggregate

type to unlabelled polymer trajectories as well as predict the type of aggregate based on the predefined properties

of the polymer interaction potential.

5.2 Introduction

Organic semiconducting polymers, which typically consist of highly anisotropic monomers, are a major area of

focus in the search for cheap, flexible, and printable optoelectronic devices such as light-emitting diodes and

photovoltaic cells.1–3 The ability to tune the polymer’s flexibility and solubility makes them ideal for solution

processing.4–6 However, to maximize charge transport and overall device efficiency, a deeper understanding of

the polymer aggregation process and the drivers of this process is needed.7 The charge transport capabilities of

an organic semiconductor are affected by chain size, persistent length, and overall crystallinity of the polymer.8

mesoscopic features such as crystallinity and grain sizes are further driven by molecular properties such as the

dihedral angle between monomers and processing conditions such as temperature and annealing rates9. To fully

conceptualize the design space of organic semiconducting devices, mesoscopic polymer aggregation predictions

must be able to consider both molecular properties and processing conditions.

Computational approaches such as molecular dynamics simulations play an important role in bridging
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the atomistic and mesoscopic length scales.10 However, atomistic simulations of bulk polymer aggregates on

equilibrium time scales are not feasible. To bridge the gap between atomistic and mesoscopic time scales,

coarse-grained (CG) simulations are often used.11 It is however important to note that, anisotropic polymers

are best represented by anisotropic subunits capable of capturing the π–π stacking configuration between

polymers using a single CG site.12 To this end, a significant amount of research has gone into the development

of anisotropic potentials and coarse-grained models13–16 capable of reproducing the bonds, angles, and dihedral

distributions of the polymer backbone and side chains. These CG models allow for the efficient sampling of the

conformational space of anisotropic polymers by tuning the backbone flexibility.

The conformational space of polymer organic semiconductors is a high-dimensional space with highly

complex relationships between parameters. Machine learning has been effective in processing data from

high-dimensional data sets while providing useful insight into the complex relationship between input and

target variables.17 There have been significant advances in the accessibility of machine learning to design

powerful architectures with off-the-shelf layers and functions.18 It is especially easy to design variational

autoencoders for dimensionality reduction problems and feedforward classification networks which are useful

in grouping large amounts of data into predefined disjoint sets.19 There have been previous attempts at using

non-machine learning approaches to predict the aggregation behavior of semiflexible polymers with strictly

isotropic monomers.20 Previous works, also explored the aggregation phase diagram of semiflexible polymers

using molecular dynamics simulations without predictive capabilities.21 Machine-learning approaches have been

explored with great success, especially in the field of computational biology.22

In this work, we develop two data-driven workflows assisted by machine learning to identify, classify

and predict the types of polymer aggregates obtained from simulating anisotropic polymers with varying

properties under different simulation conditions. The first algorithm uses an autoencoder to subdivide the entire

conformational space of the simulated polymer into a predefined number of disjoint sets that can be easily

labeled manually. The second algorithm attempts to predict the most probable polymer aggregate to form under

specific simulation conditions for a given set of molecular scale polymer properties. Together, these algorithms

are capable of combining molecular scale properties and processing conditions to predict the mesoscopic bulk

behavior of polymer aggregates and potentially inform design choices for organic optoelectronic devices.

5.3 Theory

5.3.1 Anisotropic polymer model

The generalized coarse-grained polymer model and procedure used for the simulations have been fully described

in previous works.23 These coarse-grained polymers have been designed with the Gay-Berne biaxial potential

for dissimilar particles24,25 and explicit inclusion of dihedral angles between nearest-neighbor anisotropic

monomers. The anisotropic Gay-Berne potential is implemented in the LAMMPS package26 and is given by the

expression12

UGB(A1,A2,r12) = Ur(A1,A2,r12,γ) ·η12(A1,A2,ν) ·
χ12(A1,A2,r12,µ) (5.1)

66



where

Ur = 4ε(ρ12 −ρ6) (5.2)

ρ =
σ

h12 + γσ
(5.3)

where ri j is the distance between the centers-of-mass of the two ellipsoids, Ai and A j are the rotation matrices

transforming the orientation of the ellipsoids from lab frame to body frame. h12 is the approximation to the

distance of closest approach and γ and µ are both set to 1.0. Reduced LJ units are used, so lengths are in units

of σ , energy in units of ε and temperature in units of ε/kB . The mass is in units of the monomer mass m and

time is in units of
√

mσ2/ε .12 Each monomer has noninteracting "ghost" atoms attached at off-center positions

for the definition of bonds between ellipsoids. This ensures that forces and torques are correctly applied to the

anisotropic particle and not just the center of mass of the monomer. The polymer semiflexibility and dihedral

barrier height are determined by the following equations for the bond length, bond angle, and dihedral angle

potentials,12

Ebond = KB(b−b0)
2, (5.4)

Eangle = KA(θ −θ0)
2, (5.5)

Edihedral =
1
2

K1[1+ cos(φ)]+
1
2

KD[1− cos(2φ)]

+
1
2

K3[1+ cos(3φ)]+
1
2

K4[1− cos(4φ)], (5.6)

where b and b0 are the instantantous and equilibrium bond lengths, respectively, θ and θ0 are the instantaneous

and equilibrium bond angles, respectively, φ is the dihedral angle, KB and KA are the bond and three-body angle

potential parameter, respectively, and K1, KD, K3, and K4 are the coefficient of the OPLS cosine expansion of the

dihedral potential.

The angle coefficient KA and the second coefficient of the OPLS cosine expansion KD are manipulated

to represent various backbone flexibility of typical organic semiconductors. For this work the length of the

polymer chain was varied between 22 and 64 monomers and the other coarse-grained we selected was in line

with previously published results.12 A schematic of the bonding and the definition of the dihedral angle is shown

in Fig. 5.1.
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Figure 5.1: Schematic of anisotropic polymer used for the simulations, showing, (a) the bond angle between
anisotropic monomers defined using off-centered sites and (b) the dihedral angle between adjacent monomers.

5.3.2 Neural network architecture

To use a machine learning approach to construct a phase space of aggregates parameterized by the polymer

molecular properties and processing conditions, there has to be a systematic approach to the identification

and classification of the polymer aggregates obtained from long simulations. A variational autoencoder27

implementation is ideal for the unsupervised labeling of all configurations obtained from simulations. This

variational autoencoder shown in Fig. 5.2 is constructed from an encoder network and a decoder network.28

The encoder maps a set of inputs to a mean µ and standard deviation σ . It then samples from the standard

normal distribution to create the latent space Z.29,30 Using a variational autoencoder that samples from a normal

distribution ensures that the latent space can be interpolated. The latent space Z can then be divided into

disjoint sets by resampling from a relaxed one-hot categorical distribution before reconstructing it with a decoder

network. The Gumbel-softmax reparameterization trick is used to approximate an argmax function through the

introduction of a neural network temperature variable.31,32 Once determined, these disjoint sets represent the

labels of different aggregates found in the training data set. During training, the neural network temperature

variable is gradually reduced to anneal each configuration into a unique aggregate label. The decoder network

takes the output of the encoder as an input and tries to reconstruct the input parameters of the encoder from

the latent space representation. The loss function of the autoencoder is calculated as a reconstruction and

regularization loss,4 where the reconstruction error minimizes the difference between the input of the encoder

and the output of the decoder and the regularization loss33 attempts to minimize the distance between the true

distribution and the distribution being sampled. This approach, where the input and the output of a feedforward

neural network are the same, is considered unsupervised learning. This unsupervised learning approach reduces

the prior knowledge about the polymer aggregation that is needed to find a set of the most distinct probable

aggregates.
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Figure 5.2: Schematic of autoencoder

5.3.3 Aggregate preprocessing

To optimize the neural network training, the polymer conformations obtained from the simulation have to be

preprocessed into a representation that is invariant under translation and global rotation. Polymer configurations

are first mapped to a spatial correlation matrix M .34 The (i, j) element of the matrix is given by

Mi j = ui ·u j (5.7)

where, ui is the unit vector pointing from the center-of-mass of ghost atom i to the center-of-mass of the

i+ 1 ghost atom. This ensures that for an uncollapsed (open) polymer (Fig. 5.3c) Mii ≡ 1 ∀i and decreases

exponentially along the length of the chain for all values of Mi j. Hairpin-shaped aggregates (hairpins) (Fig. 5.3g)

will display a square wave pattern with a flat area close to 1 corresponding to the first arm followed by an area of

rapid decay to -1 corresponding to the head and finally a flat region at -1 corresponding to the second arm going

in the opposite direction. Toroidal-shaped aggregates (toroids) (Fig. 5.3e) will present with a repeating sine

wave corresponding to the number of loops making up the toroid. There are no flat regions in the toroid’s spatial

correlation matrix because it does not possess long arms such as those seen in hairpins. A further comparison of

aggregate conformation, and the corresponding spatial correlation matrix and covariogram is shown in Fig. 5.4

The 2D spatial correlation matrix is then condensed into a 1D spatial covariogram, which acts as a statistical

measure of the spatial covariance as a function of distance and is calculated as34

C(h) =
1

n(h)

n

∑
j=1

n

∑
i=1

(ui −µ) · (u j −µ), (5.8)

where h is the distance in space between observation ui and u j, n(h) is the number of observations at a distance

h, and in this case µ= 0⃗ is the mean. C(h) is a scalar function bounded between 1 and -1. The values of h are

chosen from the range 0 to the length of the polymer (L) The cardinality of the set is fixed for all polymers

and is independent of the degree of polymerization. An exponential decay corresponds to an open polymer
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configuration. C(h) for other configurations such as multi-head rackets and toroids oscillate between 1 and -1

and the number of zero crossings corresponds to the number of heads or loops.

Figure 5.3: Typical aggregates in simulation: (a) orientationally disordered globule, (b) flexible four chain
bundle, (c) open, (d) multi-head racket, (e) toroid, (f) rigid four chain bundle and (g) hairpin

Figure 5.4: Typical aggregates along with the corresponding heatmap of the spatial correlation matrix and the
spatial covariogram.

In the case where the number of monomers differs between polymers, the spatial covariogram will also have

different length vectors. To standardize the length of the covariogram vector, the number of elements is set to 63,

and where the number of monomers is less than or greater than 63, the points are interpolated using cubic spline

and then 63 new points are generated along the path.

Training of the aggregate labeling neural network using a standardized data set requires the generation of

data representative of possible aggregate types that would be observed in the coarse-grained polymer simulations.

To generate this training data set, the list of aggregate classes considered is as follows:
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1. Open is used to describe any polymer that has not collapsed into an aggregate.

2. Hairpin describes hairpin-shaped aggregates.

3. Multi-head racket describes an aggregate with more than one racket-shaped head.

4. Toroidal is used to describe all looped polymers independent of the shape or the number of loops.

A standard dataset for each of these classes of aggregates was created by manually selecting examples

of the spatial covariogram associated with each of the aggregate types from the available training data and

adding noise to make the training of the neural network more robust. This standardized data set ensured that all

aggregates in the coarse-grained simulations were compared to and mapped to one of the possible aggregate types

above. However, when the self-referential route was taken, the labeling autoencoder was trained on the spatial

covariogram obtained from the simulated polymer trajectories. The training dataset obtained from molecular

dynamics simulations was unbalanced due to the difference in the lifetime of various aggregates. To account for

this variation in the training data, the autoencoder was trained iteratively. On the first run, a random batch of

50,000 polymer configurations was used to train the autoencoder. In each subsequent run, the trained neural

network was used to evaluate the full set of available training data then the subset of data used for training was

increased by 10% by adding in the polymer configurations with the largest error. The actual training data was

then evaluated using the trained neural network and the bottom 1% with the smallest error was removed from

the training subset. The iterative updating of the training subset was done until the average error of the training

subset was equivalent to the average error of the available training data. This iterative method ensured that

overrepresented configurations in the training subset were removed and rare ones were added. The autoencoder

was trained on a subset of 100,000 data points from the available 4× 106 unique polymer trajectories. The

benefit of the self-referential approach over the standardized data set was that new types of aggregates can be

discovered and the latent space consisted of the most probable types of aggregates. There were however some

disadvantages compared to the standardized dataset. The most significant was that the aggregate classes of the

latent space have to be manually labeled after the training of the neural network was completed.

The conformation of multichain aggregates was determined using the same procedure used for the single-

chain aggregates. The Degree of overlap between the monomers of all pairs of polymers in a multichain

aggregate was quantified using the matrix ∆IJ , whose (i, j) element is

∆IJ
i j =− tanh

(∥rI,i − rJ, j∥
ασ

)
+1 (5.9)

where rI,i is the position of monomer i of polymer I, and rJ, j is the position of monomer j of polymer J, σ is

the same as Eqn. (5.3), and α is an integer to scale the aggregation cut-off distance.

While the covariogram describes the conformation of each polymer, the spatial matrix ∆IJshown in Fig. 5.5

describes the degree of overlap between polymers and highlights the position along the polymer with the highest

interchain aggregation.
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Figure 5.5: The six combinations of the ∆IJ matrix for a four polymer system (a). The partially aggregated
system shows a strong alignment between two pairs of polymers in (e) and (g)

5.3.4 Aggregate prediction

Once all the aggregates from the molecular dynamics simulations have been labeled they could be used to predict

the most probable aggregate that would occur under different conditions for a given set of polymer features. A

machine learning approach allowed for the creation of high-dimensional aggregate phase diagrams. In this case,

the set of polymer parameters along with the simulation condition was used as input D to the neural network

shown in Fig. 5.6, i.e.

D = [τ,KA,KD,N,T ], (5.10)

where KA and KD are the angle and dihedral coefficient, T and N are the simulation temperature and degree

of polymerization, and τ is the time-like variable since parallel tempering was used in the simulation, but the

same analysis could be used for simulation trajectories with unbiased dynamics to predict non-equilibrium phase

diagrams. All the parameters were scaled between 0 and 1 since their raw values had orders of magnitude

differences.

The output of the aggregate prediction network was then compared to the labels obtained from the labeling

autoencoder. The aggregate prediction neural network could explore the aggregate phase space of the polymer

and visually inspect how phase boundaries change over time or with temperature and flexibility.
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Figure 5.6: Schematic of classifier neural network with inputs defined in Eqn. (5.10)

5.3.5 Molecular Dynamics

Molecular dynamics simulations were performed using the LAMMPS package with modification to include an

explicit anisotropic dihedral potential, a list of the corresponding parameters for the interaction potential can be

found in the Supplementary Material. An implicit solvent model was used where the solvent was incorporated via

renormalization of the intermolecular interactions and the use of the Langevin thermostat. Langevin simulations

used a damping parameter of 2 and a timestep of 0.00075. Simulations were performed for chain lengths between

22 and 64 monomers in a volume of 100 and the number of chains in each simulation varied between 1 and 8.

The polymer simulations were performed using parallel tempering. The temperature spacings between replicas

are adjusted such that an acceptance ratio of 20–30 % is achieved for all replicas. This was used to sample a

wide variety of temperatures and the complete configurational space of the polymer aggregation.

25 different simulations were done for different combinations of KA and KD. The value of the KA parameter

was taken from the range 1 ≤ KA ≤ 5, similarly the KD parameter was set to a value in the range 1 ≤ KD ≤ 5.

Each simulation was done using parallel tempering with the temperature range of 0.1 ≤ T ≤ 1.5 for a total of

250 different combinations of KA, KD, and T . Different types of polymer aggregates were observed based on the

chain length and flexibility, temperature, number of chains, and the length of the simulation. The aggregates

ranged from orientationally disordered globules of single chains at low temperatures and high flexibility to open

rod-like multi-chain aggregates at high temperatures and low flexibility. Plots of the spatial correlation matrix

and the spatial covariogram are obtained by analyzing trajectories from the simulation data. This set of known

aggregate types acts as a reference key for manually assigning a name to the significant aggregate labels obtained

from the encoder latent space.

The latent space of the autoencoder was set to 8 disjoint sets, to obtain eight unique aggregate labels and the

neural network temperature variable was set to 2.

The temperature in the Gumbel distribution was gradually reduced by 1% each epoch until it reaches a value

of 0.01. The fraction of each aggregate class was then obtained from the ratio of the number of aggregates

assigned to each class to the total number of aggregates in the simulation data set.

5.4 Results and Discussion

Training of the autoencoding neural network produced the latent space, which can be visualized as a linear

sequence of polymer aggregates parameterized by a single value, as shown in Fig. 5.7. The latent space was

constructed such that aggregates with similar covariograms were grouped close to each other, ensuring smoother
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transitions in the phase space representation once the aggregates are given a unique aggregate label. By assigning

each polymer trajectory to a unique aggregate label, the relative proportion of each aggregate in the data set

could be determined. Fig. 5.8 shows the expected unbalanced dataset where the aggregate labeled A3 accounts

for close to 70% of all observed aggregates.

The one-hot vector associated with the aggregate label A3 could then be passed to the decoder to find

the corresponding covariogram from which the general structure of the aggregate was determined. Therefore,

the decoder portion of the autoencoder must have high reconstruction fidelity. The reconstruction fidelity of

the decoder can be evaluated by comparing the true and the reconstructed covariogram of data that the neural

network did not use for training. The decoder portion of the autoencoder could reconstruct random selections of

aggregates taken from the test set as shown in Fig. 5.9. Even with a 63:1 compression, the general shape of the

covariogram was preserved with only minor deviations where the covariogram was noisy.

Figure 5.7: The reconstructed covariograms derived from a sequence of linearly spaced values in the latent space
of the autoencoder. The color of each covariogram corresponds to the value of its latent space representation.
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Figure 5.8: The relative fraction of each observed aggregate in the available training dataset.

Figure 5.9: Examples of reconstructed covariograms corresponding to a (left) hairpin, (middle) multi-headed
racket, and (right) toroid

It is expected that the conditions under which a polymer is simulated along with its intrinsic properties should

determine the types of aggregates produced. When vector D was used as input to predict the corresponding latent

variable derived from the autoencoding network, the trained classifier network could construct the expected

phase space of any polymer, which lies in the range spanned by the simulated polymer trajectories. Snapshots of

the neural network predicted phase space are presented in Figs. 5.10–5.12. Each slice of the high-dimensional

phase space plot the aggregate latent space parameter as a function of elements of vector D .
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Figure 5.10: KA versus temperature slices from the high-dimensional phase diagram of anisotropic polymer
at equilibrium with KD = 1, for (a) 64-, (b) 44-, and (c) 22-monomer chain. The color bar and associated
covariogram are shown in Fig. 5.7

Figure 5.11: KD versus temperature slices from the high-dimensional phase diagram of anisotropic polymer at
equilibrium with KA = 1, for (a) 64- (b) 44- (c) 22-monomer chain. The color bar and associated covariogram
are shown in Fig. 5.7

Figure 5.12: KA versus KD slices from the high-dimensional phase diagram of anisotropic polymer at equilibrium
with temperature = 0.3, for (a) 64- (b) 44- (c) 22-monomer chain. The color bar and associated covariogram are
shown in Fig. 5.7.

From the plots of the phase diagram, it could be determined that the open polymer dominated at high

temperatures and regions where the polymer was relatively stiff. The neural network aggregate phase model

also showed that flexible long-chain polymers at lower temperatures Fig. 5.10a formed a more coiled aggregate
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while short-chain polymers at the same temperature (Fig. 5.10c) were less likely to do so. For small values of

KA the anisotropic polymers are expected to aggregate at all temperatures and for all chain lengths. However,

for longer chains and lower temperatures, the anisotropic polymer systems form toroids with multiple loops, as

shown in Fig. 5.11. These toroidal aggregates are only expected to form for small values of KA and KA at low

temperatures, as shown in Fig. 5.12. The length of the polymer chain also played a significant role in determining

if toroidal aggregates are formed, since they are less probable for short-chained polymers shown in Fig. 5.12c

The changes related to the effect of time on the long-chain semiflexible polymer are shown in Fig. 5.13, from

partial collapse at small τ to the equilibrium aggregate structure at large τ .

There are similarities between the neural network predicted equilibrium phase diagram shown in Fig. 5.13c

and previously published results for the same set of polymer parameters and simulation conditions.12 Both the

previously published simulated phase diagram12 and the predicted phase diagram in Fig. 5.13c show the open

polymer to be the most abundant conformation at large temperature values (T > 0.7) while aggregates with

multiple loops were abundant at low temperatures (T < 0.2). These multi-loop aggregates were independent

of the value of KA at low temperatures but as temperature increased, there was a transition to a single-loop

aggregate at intermediate temperatures similar to previous results,12 which showed racket-shaped aggregates

as the most common at intermediate temperatures, However, the neural network predicted phase diagram in

Fig. 5.13(c) does not show a distinct transition region at 1 < KA < 2.

Figure 5.13: KA versus temperature slices from the high-dimensional phase diagram of anisotropic polymer
with KD = 3 for (a) small, (b) medium, and (c) large τ . The color bar and associated covariogram are shown in
Fig. 5.7

There are similarities between the phase diagrams of isotropic polymers21 and the neural network predicted

phase diagrams shown in Fig. 5.10, especially with respect to the aggregate dependence on temperature, but the

transitions between aggregate phases largely happen at different temperatures and stiffness when comparing

isotropic and anisotropic polymers as shown in Fig. 5.14, multi-chain aggregation of the anisotropic polymers

was also similar to the aggregation of multi-chain isotropic polymers21. Each polymer in the pair of aggregated

polymers shown in Fig. 5.14a was predicted to form a single racket-shaped aggregate at low temperatures

(T <0.35), while Fig. 5.14b showed that the hairpins were interlocked. At higher temperatures (T > 4), the neural

network predicts an open configuration, and Fig. 5.14c shows that the pair are expected to completely overlap to

form a rod-like aggregate. Additional phase diagrams can be found in the Supplementary Material.
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Figure 5.14: (a) KA versus temperature slice from the high-dimensional phase diagram of an aggregated pair of
anisotropic polymer at equilibrium with KD = 3 (color bar and associated covariogram are shown in Fig. 5.7).
(b) The ∆IJ matrix for the pair of aggregated polymer with KD = 3 and T = 0.3 and (c) the ∆IJ matrix for the
pair of aggregated polymer with KD = 3 and T = 1.0.

Conclusions

An unsupervised aggregate labeling autoencoder neural network was developed to assign an aggregate type to

trajectories from large simulations either by comparison to a standard set of aggregates or by a self-referential

route. We further showed that this labeled data can be used alongside the polymer molecular scale parameters

and the simulation conditions, to predict the most likely polymer aggregates to occur under different processing

conditions, polymer flexibility, and degree of polymerization. The results confirm that there is a strong

correlation between the molecular scale parameters, the processing conditions, and the equilibrium conformation

of anisotropic polymer semiconductors. The neural network method was able to predict that the number of loops

formed from a single chain aggregate decreases with temperature. Toroidal aggregates are also more abundant

for small values of KA and KD (<2). For multi-chain aggregation, the rod-like structure was most common at

equilibrium except for highly flexible polymers at low temperatures which formed interlocking hairpins. By

comparing slices from the neural network constructed phase diagrams we have shown there is good agreement

with previously published results using the same polymer systems. This machine learning approach, trained

on coarse-grained simulations has the potential to reduce the number of atomistic simulations and experiments

needed to explore the aggregate phase space when designing organic semiconductor devices. The accuracy

for specific polymer systems can be further increased through top-down fine-tuning of the polymer interaction

potentials and dynamics.
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Chapter 6

Conclusion

6.1 Summary

This work has contributed to addressing the knowledge gap that is associated with the automatic modeling

of optimal coarse-grained representation of anisotropic molecules, and is applicable to a broad range of

moleculecular classes, including organic polymers, nucleic acids, and liquid crystals. The development of this

accurate reduced representation of molecules is especially useful to the field of organic semiconductors, for

which the physical observables relevant to device properties occur over relatively large length and time scales

beyond the limit of current computational tractability for atomistic systems. There has been a lot of work

done in this area of research over the decades but the workflow specified in this work automates the process of

mapping atomistic trajectories to a set of optimal coarse-grained coordinates with anisotropic mass distribution.

The preservation of this mass distribution improves the probabilistic reconstruction of the molecule with more

accurate atomic positions, bonds, and angle distributions. This back mapping is an additional beneficial feature

for application to organic semiconductors being researched for application in electronic devices.

A neural network approach for the construction of coarse-grained interaction potentials has been extended

to include high dimensional neural network potentials as described in Chapter 3. With the improved accuracy

of machine learning potentials and the application of anisotropic sites, this work has been able to reproduce

the liquid crystal behavior of one organic semiconductor using only a single-site model, which would not be

possible with spherical coarse-grained sites. This project goes beyond just preserving the spatial distribution of

the representation of coarse-grained molecules. Previous works such as Ref. ( 1) focused on using symmetry

functions to describe the local environment of isotropic coarse-grained molecules. In this work, the symmetry

functions have been modified for anisotropic particles. The most important modification is in the angular

symmetry functions used to describe the orientation of a given coarse-grained particle along with the relative

orientation of its neighbors. In Chapters 3 and 4, the neural network potential used for simulation extends the

well-known MS-CG method to include explicit contributions from rotation-inducing torques. Obtaining an

anisotropic potential from a machine-learning model required extension and modification of previous work done

on the use of a prior analytical potential to capture the large repulsive energies at short separation distances.2 In

Chapters 3 and 4 an angle-dependent prior potential was developed to reduce the need to sample large amounts

of data from high-energy regions. The work done here is also different from other implementations of anisotropic

pair-wise potential using the AFM-CG method, since the machine learning approach can incorporate information

from different state-point to produce a more accurate temperature transferable potential. While the model still
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suffers from some of the limitations of pure bottom-up coarse-graining, the density dependent manybody neural

network potential has shown increased flexibility over traditional analytical approaches in the reproduction of

the liquid crystal phases of sexithiophene using a single site model.

Unlike previously published auto-encoder algorithms, which have focused on isotropic coarse-grained sites,3

the work done in Chapter 4 covers the automatic generation of anisotropic coarse-grained sites by extracting

more information about the spatial distribution of atoms within a molecule over long time-scales. This extension

of previous work on autoencoders has led to increased back-mapping fidelity. This increased accuracy in the

back-mapping algorithm is especially useful for further multi-scale simulation of organic semiconductors or

biological molecules. Other than the increased accuracy of the back-mapped model, the work done in Chapter 4

developed a systematic workflow to handle large molecules and polymers. The use of automatic coarse-graining

has not been done on the scale of a molecule like the N2200 hexamer used for validation of the methodology.

One of the major accomplishments of this work is the use of analytical bonded potential alongside a neural

network potential and using gradient descent to optimize not only the neural network parameters but also the

parameters of the analytical bonded potentials as well. This was accomplished by optimizing a machine learning

approach to incorporate work previously done on using ghost atoms to build the bonds between anisotropic sites

representing the backbone of polymers.4

And finally, after addressing the construction of improved coarse-grained models and interaction potentials,

a machine learning workflow has been developed to automate the process of organic polymer aggregate

identification in large simulation data and ultimately predict the type of polymer aggregate that is most probable

under different simulation conditions and for polymers with different degree of polymerization or backbone

flexibility. This is an extension of works done on isotropic and anisotropic semiflexible polymers in solution.4,5

However, the approach presented in Chapter 5 takes a big data approach to solving the problem of understanding

polymer phase space. The most notable improvement over previous work is the ability to explore and classify

large amounts of aggregates with a simple workflow. the method also has predictive capabilities which are far

superior to traditional linear interpolation between data points in a phase diagram. The workflow developed

in Chapter 5 provides a method to explore a much higher dimensional space than was possible with previous

methodologies. This high-dimensional analysis allows for an easier understanding of the role of the different

factors affecting polymer aggregation. Another major benefit of the methods implemented in Chapter 5 is the use

of compressed representation of polymers instead of actual polymer configurations. The resulting latent space

was capable of smoothly deforming one type of aggregate into anothe aggregate which provides advantages over

naive cluster analysis.

6.2 Future directions

The development of neural network potentials for anisotropic polymers is a natural extension of the works covered

in Chapter 5. This would allow for greater integration between the methods developed in Chapters 3, 4, and 5.

The work in this thesis did not attempt to match the dynamics of the coarse-grained and all-atom models of

organic semiconductors. The development of machine learning techniques to address the disparity between the

dynamics of the coarse-grained system and their fine-grained counterpart would improve the accuracy of the

neural network potential models developed in Chapters 3 and 4. One possible approach is using generalized

Langevin equation, since this has been done for spherical coarse-grained sites, but for anisotropic sites there
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is the added factor of rotational friction. Another future approach of this method can consider the addition of

top-down information to the model to improve the representability and transferability. This approach can then

be validated on a wider range of material properties beyond just forces, torques, virial, and structure. There

are also opportunities to validate the model developed in Chapter 5 against real solution phase aggregation of

anisotropic polymers. One possible application of the automated coarse-graining method is in high-throughput

coarse-graining of a range of organic semiconductor systems to simulate large systems from which general

structure-property relationships can be developed for real systems. Another future possibility is to extend the

coarse-grained potentials to long-range interactions, such as electrostatics.
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We develop a machine-learning method for coarse-graining condensed-phase molecular systems using anisotropic par-
ticles. The method extends currently available high-dimensional neural network potentials by addressing molecular
anisotropy. We demonstrate the flexibility of the method by parametrizing single-site coarse-grained models of a rigid
small molecule (benzene) and a semi-flexible organic semiconductor (sexithiophene), attaining structural accuracy close
to the all-atom models for both molecules. The machine-learning method of constructing the coarse-grained potential
is shown to be straightforward and sufficiently robust to capture anisotropic interactions and many-body effects. The
method is validated through its ability to reproduce the structural properties of the small molecule’s condensed phase
and the phase transitions in the semi-flexible molecule over a wide temperature range.

I. INTRODUCTION

Machine learning is quickly becoming an invaluable tool
in the search, analysis, and development of new materials.1,2

Neural networks, in particular, have had major recent suc-
cess in areas ranging from predicting the folding geome-
try of biological macromolecules such as proteins3 to de-
veloping highly accurate temperature-transferable interatomic
potentials.4,5

The latter is an important advance in the field of molecular
dynamics (MD) simulations. Improvements in these machine-
learning models aim to expand the length and time scale of
simulations without sacrificing accuracy.6,7 Currently used ab
initio molecular dynamics simulation models are generally ac-
curate but are computationally expensive, limiting their ability
to probe long time scales.8,9 However, neural-network poten-
tials can produce ab initio accuracy at the computational cost
of classical atomistic models.10,11

Even though simulations at the classical MD level are faster
than ab initio MD, the speedup is still insufficient to model
the long time scales needed to fully understand certain phe-
nomena and processes such as supramolecular assembly. It
is well known that explicit modeling of high-frequency mo-
tion is not critical for describing many phenomena in molec-
ular systems. These simplifications have led to the develop-
ment of molecular coarse-grained models to study large, com-
plex materials and biological systems.12 Parameterization of
coarse-grained interaction potentials commonly takes one of
two approaches: the top-down approach in which parameters
are tuned to match macroscopic observables, as exemplified
by the Martini model,13 and the bottom-up approach in which
interactions are derived from the properties of a fine-grained
model with more degrees of freedom.12 By following a similar
bottom-up process used to apply machine learning to ab initio
MD data, neural-network approaches have been extended to
coarse-grained molecular models, further extending the length
and time scale of simulations with atomistic accuracy.14,15

Neural-network potentials using isotropic coarse-grained
particles have several advantages over their pair-wise additive

analytical counterparts since they are constructed as many-
body potentials. This many-body potential can become costly
when multiple coarse-grained particles are needed to preserve
the shape anisotropy. It is sometimes more accurate and com-
putationally efficient to represent these groups of atoms as
a single anisotropic coarse-grained particle such as an ellip-
soid, such as in the case of large, rigid, anisotropic molec-
ular fragments. Analytical anisotropic coarse-grained poten-
tials such as the Gay-Berne potential16,17 were developed to
address the poor performance of spherically symmetric poten-
tials in replicating intrinsic anisotropic interactions such as π-
stacking. By modeling rigid anisotropic groups of atoms as el-
lipsoids, the anisotropic properties of the group are preserved
in a single-site model. Shape and interaction anisotropy is
especially important for the study of organic semiconduc-
tor molecules, which typically consist of highly anisotropic
and rigid π-conjugated units and often form liquid-crystal
phases whose morphology strongly affects their performance
in devices such as solar cells, transistors, and light-emitting
diodes.18

Unlike analytical pair-wise additive potentials such as the
Gay-Berne potential, high-dimensional neural-network poten-
tials are constructed based on the immediate neighborhood of
a molecule and thus account for many-body effects as well
as local density variations. Notable machine-learning imple-
mentations of inter-atomic and inter-molecular potentials in-
clude the neural-network potentials developed by Behler et
al.19 The Behler neural-network potentials are constructed
from a set of symmetry functions used to represent the invari-
ant properties of the atomic environment of each atom taken
from ab initio simulations. DeepMD10 and DeepCG14 are
two other neural-network codes constructed for atomistic and
coarse-grained simulations, respectively. All of these neural-
network potentials rely on an invariant representation of the
atomic/molecular environment. The CGnets deep-learning
approach15 employed a prior potential to account for areas in
a coarse-grained data set that may not be properly sampled
due to high repulsive energies. These interactions are espe-
cially important to reproduce the local structure of the simu-
lated material.
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Machine learning has previously been applied to the pa-
rameterization of coarse-grained models with anisotropic
particles,20 but no such implementation has used a nonlinear
neural-network optimization method to construct the coarse-
grained potential. In this work, we address this gap in
knowledge by using a neural network to construct a high-
dimensional anisotropic coarse-grained potential. We param-
eterize the neural-network potential using a recently derived
systematic and general bottom-up coarse-graining method
called anisotropic force-matching coarse-graining (AFM-
CG)21 which generalizes the multi-scale coarse-graining
(MS-CG) method22 for isotropic coarse-grained particles to
anisotropic particles. The method rigorously accounts for
finite-temperature, many-body effects without assuming a
specific functional form of the anisotropic coarse-grained po-
tential. It yields general equations relating the forces, torques,
masses, and moments of inertia of the coarse-grained parti-
cles to properties of a fine-grained (e.g. all-atom) molecu-
lar dynamics simulation based on a mapping between fine-
grained and coarse-grained coordinates and momenta, and by
matching the equilibrium coarse-grained phase-space distri-
bution with the mapped distribution of the fine-grained sys-
tem. The previous implementations of the AFM-CG method
approximated the coarse-grained potential as a sum of pair
interactions between particles.21 Here, we extend this ap-
proach to more general many-body anisotropic interactions
described by a neural network potential. We also extend the
approach, which was derived for constant-volume systems in
the canonical ensemble to constant-pressure systems by ap-
plying a virial-matching condition previously derived for the
MS-CG method.

A general coarse-grained potential should capture any
temperature-dependent phase transitions associated with ei-
ther melting, annealing, or glass transition temperatures as
well as the local structure and density of the material. The
focus is on the development of a model for which trained
parameters can be easily obtained and one capable of repro-
ducing interaction anisotropy, temperature transferability, and
many-body effects. The flexibility of the new model is demon-
strated through the matching of structural and thermodynamic
properties of condensed-phase systems of a small anisotropic
molecule, benzene, and of a larger, more flexible organic
semiconductor molecule, sexithiophene. These two molecules
were chosen to determine the conditions under which coarse-
grained structural inaccuracy outweighs the computational ef-
ficiency of a single-anisotropic-site model.

II. THEORY

The key aspects of the theory that underpins the AFM-CG
method and its extension to constant pressure via virial match-
ing are summarized below. The reader is referred to Ref. 21
for a more detailed description of the AFM-CG method and
the full derivation of its equations.

The positions rn = {r1,r2, . . . ,rn} of the n fine-
grained particles are mapped onto the positions RN =
{R1,R2, . . . ,RN} and orientations ΩN = {Ω1,Ω2, . . . ,ΩN}

of the N anisotropic coarse-grained particles. Each fine-
grained particle i is mapped to a single coarse-grained par-
ticle by defining N non-intersecting subsets, ζ1,ζ2, . . . ,ζN , of
the FG particle indices such that ζI contains the indices of
fine-grained particles mapped onto coarse-grained particle I.
The position RI of coarse-grained particle I is defined to be
equal to the center-of-mass of the group of FG particles that
are mapped onto it, i.e.

RI =
∑i∈ζI miri

∑i∈ζI mi
, (1)

where mi is the mass of FG particle i. The orientation

ΩI =



ΩI,1
ΩI,2
ΩI,3


 (2)

of coarse-grained particle I is specified by the rotation matrix
whose components are the particle’s three normalized princi-
pal axes of inertia, ΩI,q for q = 1,2,3. These axes are defined
to be equal to the corresponding principal axes relative to the
center-of-mass of the group of fine-grained particles that are
mapped onto the coarse-grained particle. Thus, these axes are
the normalized eigenvectors of the inertia tensor

IIIFG,I = ∑
i∈ζI

mi(||∆ri||2E−∆ri∆rT
i ), (3)

where ∆ri = ri −RI is the position of fine-grained par-
ticle i relative to the center-of-mass (coarse-grained parti-
cle position) and E is the 3 × 3 identity matrix. From
these coordinate mappings and the relationship between
generalized coordinates and momenta from Hamilton’s
equations,23 mappings from the linear momenta pn =
{p1,p2, . . . ,pn} of the fine-grained particles to the linear mo-
menta P N = {P1,P2, . . . ,PN} and angular momenta LN =
{L1,L2, . . . ,LN} of the anisotropic coarse-grained particles
can also be defined.21 The mappings for coarse-grained parti-
cle I are

PI =
MI

∑i∈ζI mi
∑
i∈ζI

pi (4)

and

LI = IIIIIII−1
FG,I ∑

i∈ζI

∆ri ×pi, (5)

respectively, where IIII is the inertia tensor of coarse-grained
particle I.

Given these mappings, several conditions can be derived
that the coarse-grained model must satisfy for its equilib-
rium coarse-grained phase-space distribution to match the
corresponding mapped distribution of the fine-grained sys-
tem. Consistency between the configuration-space distribu-
tions gives the following matching conditions between the
forces FI and torques τI on coarse-grained particle I and the
forces on the fine-grained particles mapped onto it:21

FI(R
N ,ΩN) =− ∂U

∂RI
=

〈
∑
i∈ζI

fi

〉

RN ,ΩN

(6)



3

and

τI(R
N ,ΩN) =−∑

q
ΩI,q ×

∂U
∂ΩI,q

=

〈
∑
i∈ζI

∆ri ×fi

〉

RN ,ΩN

,(7)

where U(RN ,ΩN) is the coarse-grained potential, fi(r
n) =

− ∂u
∂ri

is the force on fine-grained particle i, with u(rn) the
fine-grained potential and ⟨· · · ⟩RN ,ΩN denoting an average over
fined-grained configurations mapped to coarse-grained con-
figuration (RN ,ΩN).

Consistency between the momentum-space distributions re-
quires the mass MI of coarse-grained particle I to be the sum
of the masses of its constituent fine-grained particles, i.e.21

MI = ∑
i∈ζI

mi. (8)

In addition, provided that the inertia tensor IIIFG,I of the
group of fine-grained particles mapped to this coarse-grained
particle does not depend on the configuration of the other
particles,21

I1/2
I,q exp

(
−

II,qω2
I,q

2kBT

)
≈
〈

I1/2
FG,I,q exp

(
−

IFG,I,qω2
I,q

2kBT

)〉

RI ,ΩI

,

(9)
where II,q, IFG,I,q, and ωI,q are the components of the coarse-
grained moment of inertia, fine-grained moment of inertia,
and angular velocity about the q axis, and ⟨· · · ⟩RI ,ΩI denotes
an equilibrium average of fine-grained configurations consis-
tent with the coordinate mapping of coarse-grained particle I.
Furthermore, if the fluctuations in IFG,I,q are small compared
to its mean, it can be shown that21

II,q ≈
〈
IFG,I,q

〉
RI ,ΩI

, (10)

i.e. the principal moment of inertia of a coarse-grained parti-
cle about each principal axis q is approximately equal to the
equilibrium average of the corresponding principal moment of
the fine-grained particles mapped onto it.

The AFM-CG method was derived only for the constant-
volume conditions of the canonical ensemble, but is straight-
forwardly generalized to constant-pressure conditions by
analogy with the MS-CG method for spherical coarse-grained
particles in the isothermal-isobaric ensemble.24 Thus, the
force- and torque-matching conditions at constant pressure are
the same as those in Eqs. (6) and (7), except that the coarse-
grained forces, torques, and potential are in general functions
of the coarse-grained system volume V and the equilibrium
average is constrained to configurations in which the fine-
grained system volume v = V . The coarse-grained potential
must also satisfy a virial-matching condition,24

W (RN ,ΩN ,V ) =−∂U
∂V

=

〈
(n−N)kBT

v
+

1
3v

n

∑
i=1

fi ·ri

〉

RN ,ΩN ,V
(11)

In summary, for the equilibrium phase-space distribution
of the coarse-grained model to match that of the fine-grained
model in the isothermal-isobaric ensemble, the coarse-grained
potential should satisfy Eqs. (6), (7), and (11), while the
coarse-grained masses and principal moments of inertia
should satisfy Eqs. (8) and (9), respectively. As shown below,
using the more approximate Eq. (10) to parameterize the mo-
ments of inertia gives almost the same results as Eq. (9), even
for a flexible molecule, so we have used this simpler equation
for parameterization later on.

III. METHODS

A. Force-, torque-, and virial-matching algorithm

The analytical expression for the coarse-grain potential U
is not usually known. However, an approximation to the func-
tional form can be obtained using a neural-network optimiza-
tion algorithm with Eqs. (6), (7), and (11) acting as necessary
constraints. In general, U(RN ,ΩN ,V ) is a function of the par-
ticle configuration and system volume. In this work, we have
assumed that U does not depend explicitly on V , in which
case24

∂U
∂V

=
1

3V

N

∑
I=1

∂U
∂RI

·RI . (12)

With this approximation, the virial-matching condition in
Eq. (11) can be written, using v =V , as

−
N

∑
I=1

∂U
∂RI

·RI =

〈
3(n−N)kBT +

n

∑
i=1

fi ·ri

〉

RN ,ΩN ,V

. (13)

Despite this approximation, we show that the coarse-grained
models parameterized later on accurately match the average
density of the corresponding all-atom fine-grained system at
constant pressure.

To ensure that all equivalent configurations are assigned the
same position in coordinate space, a transformation was made
from the set of Cartesian coordinates to a vector DIJ that was
invariant under translation, rotation, and permutation of any
pair of coarse-grained particles I and J,10,25–27 which was de-
fined in terms of the positions, RI and RJ , and orientations,
ΩI and ΩJ , of the two particles by

DIJ = {RIJ ,RIJ ·ΩI,1,RIJ ·ΩI,2,RIJ ·ΩI,3,

RIJ ·ΩJ,1,RIJ ·ΩJ,2,RIJ ·ΩJ,3,

ΩI,1 ·ΩJ,1,ΩI,1 ·ΩJ,2,ΩI,1 ·ΩJ,3,

ΩI,2 ·ΩJ,1,ΩI,2 ·ΩJ,2,ΩI,2 ·ΩJ,3,

ΩI,3 ·ΩJ,1,ΩI,3 ·ΩJ,2,ΩI,3 ·ΩJ,3} , (14)

where RIJ ≡ ∥RIJ∥, RIJ ≡RI −RJ and ΩI and ΩJ are spec-
ified by rotation matrices of the form of Eq. (2). The coordi-
nates of each neighbor within the cut-off distance of particle
I were transformed to a DIJ vector. All the DIJ vectors for
a given neighborhood were concatenated into a 2D matrix DDDI
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of size N × dim(DIJ) representing a unique configurational
fingerprint for coarse-grained particle I.

The potential function could then be written in terms of a
set of neural network trainable parameters and activation func-
tions transforming DDDI to a potential energy value. While DDDI
is a sufficient specification of the coarse-grained coordinates
to enforce relevant invariant properties of the molecular envi-
ronment, it does not possess all the symmetries of the poten-
tial energy surface that it aims to fit.25,28 For each molecular
environment, it was assumed that the interactions were pre-
dominantly short-ranged such that neighbors beyond a certain
cut-off distance, Rc, do not contribute to the potential.19 This
condition can be enforced by a cut-off function of the form

gc(RIJ) =





1
2

[
cos
(

πRIJ
Rc

)
+1
]
, RIJ ≤ Rc,

0, RIJ > Rc.
(15)

A set of these cut-off functions can enforce the radial sym-
metry conditions of the underlying potential energy surface by
storing information about the radial distribution of neighbors
according to19

G1
I = ∑

J ̸=I
gc(RIJ). (16)

Continuity of the potential along angular dimensions was en-
sured by using a compression layer to learn a set of collective
variables from vector DIJ which are constrained by the well-
behaved modified G5 symmetry function19 given by

G5
I = ∑

J ̸=I

M

∏
µ=1

21−ν (1+λ cosθIJ,µ
)ν e−η(RIJ−Rs)

2
gc(RIJ).(17)

where λ ∈ {−1,1} and Rs, ν , and η are tunable hyperpa-
rameters and {cosθIJ,µ}, is the set of machine-learned collec-
tive variables with the same properties as the angular compo-
nent of the underlying potential and M is the total number of
machine-learned angular variables. These angular symmetry
functions store information about the angular-radial distribu-
tion of neighbors in the local environment of coarse-grained
particle I Unlike the case of spherically symmetric particles,
in a local reference frame, a neighboring anisotropic particle
requires a minimum of seven independent scalar variables to
fully describe its position and orientation. However, previous
implementations of analytical potentials, including the Gay-
Berne potential,16,17 have used fewer coordinates for the cal-
culation of the potential and forces. Similarly, for the neu-
ral network potential, an additional compression layer was in-
cluded to remove the redundant angles from the DIJ vectors,
since the combination of translation and rotation in 3D is pa-
rameterized by at most 7 unique coordinates. The Behler sym-
metry functions were enforced on the output of the compres-
sion layer, ensuring that the learned compression had the same
symmetry and continuity of the underlying potential. The re-
duction in the dimension of DIJ also decreases the amount
of data that is needed to train a sufficiently accurate potential.
By removing the redundant angles in DIJ there is a reduced
possibility of over-fitting on a small data set.

A set of these symmetry functions with tuned hyperparam-
eters (λ ,ν ,η ,Rs,Rc) can be used to uniquely represent the
structural fingerprint of the molecular environment. Symme-
try functions used to represent the local environment were
constructed using all possible permutations of values from a
specified set of hyperparameters. Training of the neural net-
work started with 8 symmetry functions and hyperparameters
tuned to minimize the loss function, which is defined below.
New symmetry functions were added to the set if they resulted
in a significant reduction in the neural-network loss compared
with the preceding iteration. The set of hyperparameters in
the symmetry functions used in the anisotropic coarse-grained
models parameterized in this work can be found in the Sup-
plementary Material.

To further reduce the amount of data needed to train the
neural network, a prior repulsive potential was defined with
pairwise additive properties. This potential was used to ensure
physical behavior in regions of the potential where the forces
are large and thus are rarely sampled in an equilibrium molec-
ular dynamics simulation. This prior potential only needs to
satisfy two conditions: firstly, it must be repulsive at short ra-
dial separations, and, secondly, the position of its repulsive
barrier must be orientationally dependent. A simple equation
satisfying these conditions is

Uprior,I = ∑
J ̸=I

B1σc (DDDI)
−B2 , (18)

where σc is a neural-network compression layer function and
B1 and B2 are strictly positive trainable parameters. It is also
possible to achieve a similar large repulsive barrier through a
more advanced non-linear sampling of the molecular dynam-
ics simulation data. Uprior fits a purely repulsive potential with
angular dependence to the molecular environment, while UNN
fits the attractive and oscillatory corrections to the environ-
ment. The final prediction for the potential energy of the envi-
ronment of coarse-grained particle I is therefore the sum of the
neural network potential and the prior repulsive potential,15

UI =UNN,I +Uprior,I , (19)

and, thus, the total coarse-grained potential is

U =
N

∑
I=1

UI (20)

From the matching conditions in Eqs. (6), (7), and (13), op-
timization of the neural-network weights and biases requires
a loss function of the form

L =

〈
N

∑
I=1


α

∣∣∣∣FFG,I +
∂U
∂RI

∣∣∣∣
2

+β

∣∣∣∣∣τFG,I +∑
q

ΩI,q ×
∂U

∂ΩI,q

∣∣∣∣∣

2



+ γ

∣∣∣∣∣3(n−N)kBT +
N

∑
I=1

(
W̄FG,I +

∂U
∂RI

·RI

)∣∣∣∣∣

2〉

RN ,ΩN ,V

,

(21)

where

FFG,I ≡ ∑
i∈ζI

fi, τFG,I ≡ ∑
i∈ζI

∆ri ×fi, W̄FG,I ≡ ∑
i∈ζI

fi ·ri, (22)
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and α,β , and γ are weights. These weights specify the frac-
tion of each loss that is used for backpropagation and were
free to change with the learning rate during optimization.14

Even though there have been significant efforts in the devel-
opment of methods to fit the averaged coarse-grained forces
directly,29,30 the average total fine-grained forces subject to
the constraint of matching fine-grained and coarse-grained
configurations are not easily obtained. An indirect means of
minimizing the loss function in Eq. (21) above is possible by
replacing the constrained ensemble average with an average
over instantaneous unconstrained simulation configurations,14

Linst =
Nt

∑
t=1

[
N

∑
I=1

(
α
∣∣∣∣FFG,I(r

n
t )+

∂U(ξt)

∂RI

∣∣∣∣
2

+ β

∣∣∣∣∣τFG,I(r
n
t )+∑

q
ΩI,q(ξt))×

∂U(ξt))

∂ΩI,q

∣∣∣∣∣

2



+ γ

∣∣∣∣∣3(n−N)kBT +
N

∑
I=1

(
W̄FG,I(r

n
t )+

∂U(ξt)

∂RI
·RI(ξt)

)∣∣∣∣∣

2

 ,

(23)

since it can be shown, for a sufficiently large dataset that
comprehensively samples the equilibrium ensemble of the
fine-grained system, that L and Linst have the same global
minimum. Here, Nt is the number of simulation config-
urations in the dataset, rn

t and vt are the fine-grained co-
ordinates and system volume for configuration t, and ξt =
(RN(rn

t ),Ω
N(rn

t ),V (vt)) is the mapped coarse-grained con-
figuration for this fine-grained configuration. The loss func-
tion is optimized using the minibatch gradient descent as im-
plemented in TensorFlow.

The feedforward neural network shown in Fig. 1 was then
trained, where the forward propagation used matrix DDDI as an
input to predict the coarse-grained potential U , after which
TensorFlow’s computational derivative was used to calculate
the outputs, namely the predicted forces, torques, and virial.
In the backpropagation stage, the loss function was used to
calculate the error between the true and predicted values,
which was then used to update the network weights and bi-
ases. The errors between the true and predicted parameters
were calculated using TensorFlow’s mean squared error, and
gradient descent was implemented using TensorFlow’s Adam
optimizer.31 Once the error of the neural network was min-
imized, the neural network model was used to predict the
forces, torques, and virial. However, removing the output
and derivative layers gives access to the predicted potential
of mean force. By optimizing the partial derivatives of the
potential instead of the potential itself, by the nature of the
derivative, there will be less oscillation in the potential at the
edges of the data set close to the cut-off distances.

B. LAMMPS modification and neural network
implementation

The neural network was constructed in Tensorflow (version
2.3.0)32 using the Keras (version 2.4.3) functional API33 and

FIG. 1. Schematic of anisotropic force-matching neural network ar-
chitecture.

saved using the Tensorflow SavedModel format. The trained
neural network was implemented in LAMMPS using the Ten-
sorflow C API and cppflow wrapper. All simulations were
carried out using the LAMMPS molecular dynamics (MD)
software package (version 20Nov19).34–36 The Optimized Po-
tentials for Liquid Simulations-All Atom (OPLS-AA) force
field37–40 was used for all all-atom simulations with a cut-
off distance of 10 Å for short-ranged non-bonded interac-
tions; long-ranged electrostatic interactions were calculated
with the particle-particle particle-mesh (PPPM) method36,41

The bonds that include hydrogen were constrained using the
SHAKE algorithm.42 Simulations were carried out in the
isothermal-isobaric (NPT) ensemble at a pressure of 1 atm,
with the temperature and pressure controlled by a Nosé-
Hoover thermostat and barostat.43,44

Neural network training was carried out using data from
a 25 ns all-atom simulation in which simulation configura-
tions and forces and velocities were saved at 2 ps intervals.
The simulation snapshots from the last 20 ns were shuffled
and then divided into 4 groups of equal size, {g0,g1,g2,g3}.
The neural network was initially trained on g0 and validated
on g3. The validation set g3 was further divided into an 8:2
ratio where the lesser was reserved as the test set. New snap-
shots were added from g1 and g2 if the mean errors of their
predicted forces and torques were larger than that of the test
set. The accuracy of the trained neural network was then com-
pared to the expected accuracy determined from k-fold cross-
validation.45,46 During k-fold cross-validation, the last 20 ns
of simulation data was shuffled and divided into 10 folds,
{ψ0, ...,ψ9}. The model was validated on ψi and trained on⋃

j ̸=i ψ j for all i, j ∈ {0−9}. The loss of the iterative training
method was found to be identical to the k-fold cross-validation
loss.

The coarse-grained simulations were done using a modified
version of the LAMMPS software where the trained neural
network was introduced to calculate the forces and energies.
The dimensions of the coarse-grained sites used in the sim-
ulations were derived from the inertia tensor of the all-atom
model. To test the ability of the coarse-grained model to cap-
ture the properties of the all-atom model under a variety of



6

FIG. 2. Chemical structures of (a) benzene and (b) α-sexithiophene
with coarse-grained ellipsoid superimposed on one possible configu-
ration of each molecule.

conditions in addition to the single temperature at which the
neural network was trained, the equilibrium structural prop-
erties of equivalent coarse-grained and all-atom systems were
compared in simulations at several different temperatures. In
all cases, the total length of the coarse-grained simulation was
25 ns long with the last 20 ns being used to calculate all struc-
tural properties. The timestep of all coarse-grained simula-
tions was also set to 12 fs.

IV. RESULTS AND DISCUSSION

To demonstrate the flexibility of the method we have used
our neural-network model to construct coarse-grained inter-
action potentials for benzene, an archetypal anisotropic small
molecule, and α-sexithiophene, an organic semiconductor
with significant applications in organic electronic devices47–49

(Fig. 2). These molecules were selected to demonstrate the
neural network’s ability to handle anisotropic molecules of
varying complexity, flexibility, and aspect ratio while still re-
producing the structural and phase behavior.

The shape of a coarse-grained particle obtained from the
AFM-CG method is determined by the "average" shape of the
fine-grained molecule or molecular fragment that is mapped
to it under the parameterization conditions. Thus, the varia-
tion of the aspect ratio of the molecule or molecular fragment
with temperature in the all-atom simulations can potentially
be used as a qualitative indicator of the temperature trans-
ferability of the coarse-grained model. Here, the aspect ra-
tio of the molecule was calculated as the ratio of the length
to the breadth of the molecule, where the length was defined
as the longest principal axis and the breadth was defined as
the sum of the remaining two semi-axes. Unlike benzene, the
thiophene-thiophene torsion angles also have a temperature-
dependent effect on the aspect ratio of sexithiophene.

Neural networks in general are very good at interpolation
but struggle with extrapolation50–53. The accuracy of the
model is therefore expected to decrease as the aspect ratio
of the molecule deviates from that at the parameterization

temperature, as well as when the density distribution is suf-
ficiently different from the parameterization temperature. By
parameterizing the systems in the liquid phase, the model can
capture a wider variety of fluctuations in the density of the
system and the dimensions of the molecules. The average
size of a flexible molecule in the isotropic phase will be dif-
ferent from the size of the molecule when locked in a rigid
crystal structure.54,55 However, this temperature-dependent
size difference should decrease with increased rigidity of the
molecule.

A. Benzene

Simulations consisting of 500 benzene molecules were car-
ried out at 280, 300, 320, 330, and 350 K, and the coarse-
grained neural-network model was parameterized at 300 K.
The time step was 2 fs in the all-atom simulations and 12 fs in
the coarse-grained simulations. The cut-off distance hyperpa-
rameter Rc was 10 Å. The root mean squared validation error
for the forces was 2.55 kcalmol−1 Å

−1
and that of the torque

was 4.35 kcalmol−1. The average post-training error in the
pressure calculated for the entire simulation box volume and
over the entire length of the simulation at the parameteriza-
tion temperature was 0.0092 atm. Benzene’s average princi-
pal moments of inertia in the all-atom simulation at 300 K
were used to determine the principal moments of the coarse-
grained benzene model using Eqn. (10) (values given in the
Supplementary Material) since fluctuations in the moments at
the parameterization temperature were small.21

The variation of the molecular aspect ratio of the all-atom
benzene model with temperature is shown in Fig. 3. The
distribution of possible dimensions observed for benzene is
narrow and remains fairly constant with temperature, mak-
ing benzene an ideal case where molecular flexibility does not
contribute significantly to the overall error of the model.56

Fig. 4 shows that the coarse-grained neural-network model
accurately captures the liquid density of the all-atom model
over a wide range of temperatures from just above the freez-
ing point to just below the boiling point, with only slight devi-
ations for the temperature furthest from the parameterization
temperature. As shown in Fig. 5, the coarse-grained model
also accurately predicts the radial distribution function (RDF)
of the all-atom model over the same temperature range.

To further elucidate the accuracy of the neural network
coarse-grained model, the angular-radial distribution function
(ARDF) was analyzed. The ARDF is defined by

g(r,θ) =
⟨n(r,θ)⟩

4
3 πρ[(r+∆r)3 − r3]sinθ∆θ

, (24)

where ⟨n(r,θ)⟩ is the average number of molecules in the
spherical shell within the bounds r to r + ∆r of the center-
of-mass of a chosen molecule and having an out-of-plane axis
rotation of θ with respect to the out-of-plane axis of the cho-
sen molecule57, and ρ is the bulk number density. Fig. 6
shows the 2D heatmap of the ARDF along with 1D slices of
this function at specific angles at 300 K (the parameterization
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FIG. 3. Length-to-breadth ratio of the all-atom benzene model at
1 atm and various temperatures.

FIG. 4. Density versus temperature of the all-atom (AA) and coarse-
grained (CG) benzene models at 1 atm. Error bars are smaller than
the symbol

temperature) for both the all-atom and coarse-grained models.
The ARDFs at the other simulated temperatures are compared
in the Supplementary Material. At all simulated temperatures
between 280 and 350 K, the coarse-grained model captures
all the major features of the fine-grain structure of the fluid.
The only difference is a slight underestimation of the peak
heights by the coarse-grained model. The neural-network
model is, however, able to more faithfully capture the angular

FIG. 5. Radial distribution function (RDF) of the all-atom (solid
lines) and coarse-grained (dashed lines) benzene models at 1 atm
and various temperatures. The RDFs have been shifted vertically for
clarity.

radial distribution of benzene at all temperatures compared
with the coarse-grained benzene model previously parame-
terized with the AFM-CG method using a pair potential to
describe the interactions between coarse-grained particles.21

This improvement can be attributed to the greater flexibility of
the neural-network potential in describing the intermolecular
interactions. The neural-network model can demonstrate tem-
perature transferability through careful selection of the neu-
ral network hyperparameters to prevent overfitting of the local
number density variations.

The coarse-grained simulation of anisotropic molecules us-
ing a neural network potential is more suited for large, prefer-
ably rigid, molecules, for which a high degree of coarse-
graining can be achieved. However, the model was still able
to achieve a modest 20× speedup, through a combination of
reduced computation time per timestep and a larger timestep,
when compared to the atomistic simulations. This poor per-
formance for a small molecule such as benzene is due to the
small reduction in the number of degrees of freedom from the
all-atom model to the coarse-grained model, coupled with a
neural-network potential that is more computationally expen-
sive than an analytical potential. Nevertheless, computational
savings are obtained even in this suboptimal case. Simulations
were carried out on a 4-core Intel i7-4790K CPU, but, further
speedups could be achieved by taking advantage of the GPU-
enabled version of TensorFlow.

B. Sexithiophene

Simulations of 512 sexithiophene molecules were carried
out at 570, 590, 640, and 680 K temperatures, corresponding
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FIG. 6. Angular-radial distribution function (ARDF) of the all-atom (AA) (top) and coarse-grained (CG) (bottom) benzene models at 300 K
and 1 atm depicted as a heat map (left) and 1D slices at constant angle (right). Face-on, edge-on, or parallel displaced configurations occur
when the angle is 0°, while T-shape and Y-shape configurations occur at 90°.

to temperatures previously identified in all-atom MD simula-
tions to correspond to crystalline (K), smectic-A (Sm-A), ne-
matic (N), and isotropic (I) phases respectively.58 The time
step was 1 fs in the all-atom simulations and 12 fs in the
CG simulations. Although we have used the OPLS-AA force
field for our all-atom simulations, whereas these previous MD
simulations58 used the related AMBER force field59–61 the
structural properties of systems simulated with these two force
fields (in particular the density, orientational order parame-
ter, and radial distribution function discussed below) are very
similar for the temperature range studied. The cut-off dis-
tance hyperparameter Rc was set to 21 Å. The neural network
model was parameterized using simulation snapshots from the
isotropic phase at 680 K, where the molecular mobility was
highest. The conditions of the isotropic bulk phase are advan-
tageous in efficiently sampling the configuration space, espe-
cially rare high-energy configurations necessary for the accu-
rate reproduction of the repulsive part of the coarse-grained
potential. As shown in Fig. 7a, the distributions of the princi-
pal moments of inertia of sexithiophene in the all-atom simu-
lation at the parameterization temperature are broad, indicat-
ing that Eqn. (10). may not be adequate for parameterizing the
moments of inertia of the coarse-grained model. However, we
found that using the more general Eqn. (9) to parameterize the
coarse-grained moments of inertia (by fitting the distributions
in Fig. 7(b–d) gave values within <1%. So we used the values
from Eqn. (9) in the coarse-grained model."

The root mean squared validation error for the sexithio-
phene forces were 3.95 kcalmol−1 Å

−1
and that of the torque

was 9.8 kcalmol−1. The sexithiophene final force and torque
losses were larger than those of benzene because the model
was not complex enough to account for the bending of the
polymer and the rotation of the individual thiophene rings.
The loss is also skewed to larger values when compared with
benzene because sexithiophene is a larger molecule and so the

interactions between molecules are stronger overall.

The structural properties of the coarse-grained model were
compared to those of its all-atom counterpart at each of the
simulated temperatures. The nonlinear change in density with
respect to temperature is associated with the phase changes
that occur at the simulated temperatures (Fig. 8).58 The den-
sity of the coarse-grained system agrees well with that of
the all-atom system, with minimal deviations from the fine-
grained system with increasing distance from the parameter-
ization temperature. Compared with benzene, sexithiophene
has a much larger change in density between the crystalline
and the isotropic phase. This difference results in less overlap
between the local density variations in the crystalline phase at
the lowest temperature and the training data set in the isotropic
phase at the highest temperature. The sexithiophene molecule
is also much more flexible than benzene, as seen in the wide
distribution of the aspect ratio in the all-atom model at all the
simulated temperatures shown in Fig. 9, and its dimensions
change significantly with temperature over the range studied.
Another limitation of representing sexithiophene as a single-
site ellipsoid is the loss of thiophene–thiophene torsional in-
formation. That is, for any given position and orientation of
the coarse-grained ellipsoid there are multiple different rela-
tive orientations between the thiophene groups.62 This loss of
information is significant because the anisotropic interactions
of the thiophene subunits are lost, which reduces the neural
network’s ability to isolate which of the two short axes corre-
sponds to the π-stacking direction.

To further confirm that the density changes were associated
with transitions from crystalline through nematic and smectic
to the isotropic phase, the scalar orientational order parameter
P2 was introduced. For a given simulation snapshot at time t,
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FIG. 7. (a) Principal moment of inertia distributions for all-atom
(AA) sexithiophene model at 680 K and 1 atm. The corresponding
angular velocity distributions of each principal axis along with the
coarse-grained (CG) fit to the distribution given by Eq. (9) is shown
in (b)–(d).

FIG. 8. Density versus temperature of the all-atom (AA) and coarse-
grained (CG) sexithiophene models at 1 atm. Error bars are smaller
than the symbols.

FIG. 9. Length-to-breadth ratio of all-atom sexithiophene model at
1 atm and various temperatures. The simulated phase is given in
parentheses after each temperature in the legend (I = isotropic, N =
nematic, SmA = smectic A, K = crystal).

P2 can be found by diagonalizing the ordering matrix Q,

Q(t) =
1

2N

N

∑
I=1

[3uI(t)⊗uI(t)−E], (25)

where uI is the unit vector along the molecular axis and E
is the identity matrix. ⟨P2⟩ is the average over the largest
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FIG. 10. Orientational order parameter versus temperature for the
all-atom (AA) and coarse-grained (CG) sexithiophene models at
1 atm. Typical simulation configurations are shown at each tempera-
ture for each system (AA model above the data points and CG model
below), in which the molecules have been colored according to their
orientation with respect to the phase director (blue = parallel, red =
perpendicular). Error bars are smaller than the symbols.

eigenvalue of this matrix for all snapshots of equilibrium
configurations.58 Larger values of the scalar orientational or-
der parameter close to one indicate an ordered crystalline
structure while values close to zero correspond to an isotropic
disordered phase. The coarse-grained model reproduces the
orientational order parameter of the all-atom model reason-
ably well over the temperature range simulation, as shown in
Fig. 10. The coarse-grained model underestimates the degree
of orientational ordering observed in the all-atom model away
from the parameterization temperature, likely because it does
not capture the increasing molecular shape anisotropy that is
observed in the all-atom model as the temperature decreases
(Fig. 9). As expected, the largest difference occurs in the pre-
dicted crystalline phase.

The same trend is seen in the radial distribution functions
shown in Fig. 11, in which the agreement between the coarse-
grained and all-atom models at most temperatures is excellent,
with the largest deviations for the crystalline phase. The un-
derestimation and broadening of the peaks in the crystalline
radial distribution function explain the discrepancy between
the order parameter of the all-atom and coarse-grained mod-
els. The observed differences are most likely due to the ef-
fect on molecular packing of the aforementioned discrepancy
in molecular shape between the two models as temperature
decreases.63 Nevertheless, even in the crystalline phase, the
coarse-grained model captures the peak positions of the radial
distribution function very well.

The coarse-grained model also accurately describes orien-
tational correlations in condensed-phase sexithiophene, as il-
lustrated by a comparison with the angular-radial distribution

FIG. 11. Radial distribution function (RDF) of the all-atom (solid
lines) and coarse-grained (dashed lines) sexithiophene models at
1 atm and various temperatures. The RDFs have been shifted ver-
tically for clarity. The simulated phase is given in parentheses after
each temperature in the legend (I = isotropic, N = nematic, SmA =
smectic A, K = crystal).

function of the all-atom model. At the parameterization tem-
perature, the coarse-grained model is able to capture all major
features when compared to the all-atom model (Fig. 12). The
neural-network model is also able to capture the relevant fea-
tures in the structure of sexithiophene’s smectic liquid-crystal
phase at 590 K, as shown in Fig. 13. The discrepancies in the
width and height of the peaks are likely due to the differences
in molecular shape away from the parameterization tempera-
ture that was mentioned earlier. The ARDFs of the two mod-
els at 640 K are compared in the Supplementary Material and
show similarly good agreement.

Despite sexithiophene not strictly meeting the conditions
to be coarse-grained to a single anisotropic particle due to
its significant flexibility, the coarse-grained neural-network
model is still able to reproduce its condensed-phase struc-
tural properties and phase behavior with remarkable accuracy.
The limitation of the single-site model is only evident under
conditions where the conformation of the molecule is highly
temperature-dependent. One way to construct a neural net-
work model that is independent of temperature would be to
extract the training data from multiple temperatures and de-
fine the molecular dimensions as the average over the crys-
talline and isotropic phases. While the results for sexithio-
phene are substantially better than expected given its flexibil-
ity, improvements can be made to the model by considering a
coarse-grained mapping consisting of more than one site.64

The coarse-grained simulation of sexithiophene demon-
strated a speed-up of 132× compared to the all-atom simula-
tion using the same hardware employed for the benzene sim-
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FIG. 12. Angular-radial distribution function (ARDF) of the all-atom (AA) (top) and coarse-grained (CG) (bottom) sexithiophene models at
680 K and 1 atm (isotropic phase) depicted as a heat map (left) and 1D slices at constant angle (right). Face-on, edge-on, or parallel displaced
configurations occur when the angle is 0°, while T-shape and Y-shape configurations occur at 90 °.

FIG. 13. Angular-radial distribution function (ARDF) of the all-atom (AA) (top) and coarse-grained (CG) (bottom) sexithiophene models at
590 K and 1 atm (smectic phase) depicted as a heat map (left) and 1D slices at constant angle (right). Face-on, edge-on, or parallel displaced
configurations occur when the angle is 0°, while T-shape and Y-shape configurations occur at 90 °.

ulations. This speedup is primarily due to the large reduction
in the number of degrees of freedom in coarse-graining this
molecule.

CONCLUSIONS

We have applied machine learning and a recently derived
systematic coarse-graining method for anisotropic particles to
develop a single-site anisotropic coarse-grained potential of a
molecular system. The iterative training of the neural network
potential is able to reproduce the forces, torques, and pressure
of the fine-grained all-atom system. The final loss of the it-
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erative training model was identical to the loss obtained from
k-fold cross-validation. The CG model performs well for a
rigid molecule like benzene but remarkably it also describes
the phase behavior and molecular-scale structural correlations
of a flexible molecule like sexithiophene with comparable ac-
curacy, even though the aspect ratio of the molecule changes
significantly over the simulated temperature range. We have
demonstrated the versatility of the coarse-graining method by
parameterizing models of benzene and sexithiophene at a sin-
gle temperature and then studying their accuracy in capturing
the structural properties of the corresponding all-atom model
at different temperatures. The sexithiophene model was also
used to show the ability of the model to reproduce the phase
behavior of the all-atom model, with the lowest fidelity com-
ing from the crystalline phase where the aspect ratio of the
molecule has the largest deviation from the parameterization
data set. A natural extension to this work would be to gen-
eralize the method to a multi-site anisotropic coarse-grained
model for flexible molecules and polymers.
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SI. BENZENE NETWORK PARAMETERS

The cut-off distance Rc for the benzene neural network was set at 10 Å for the G1 type symmetry

function. For the G5 angular symmetry function, λ had values of -1 and 1. ν has values of 2n,

where n ∈Z. Hyperparameters α , β , and γ in the loss function were adjusted to improve the speed

of convergence, but this did not usually affect the global minimum of the optimization when the

number of training epochs was large.

TABLE S1: Hyperparameters for benzene.

hyperparameter value units

λ [-1.0, 1.0]

η [2.0, 1.0] Å
−2

ν [2.0, 4.0, 8.0, 16.0, 32.0, 64.0]

Rs [3.0,3.7, 4.3, 5.0, 5.7, 6.3, 7.0, 7.7, 8.3, 9.0] Å

Rc [10.0] Å
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SII. ADDITIONAL BENZENE STRUCTURAL DISTRIBUTIONS

TABLE S2: The optimal coarse-grained principal moments of inertia Iq for q = 1,2,3, calculated

using Eqs. (10) of the main paper.

principal axis q Iq (gmol−1 Å
−2

)

1 88.1

2 92.2

3 180.1

FIG. S1: (a) Principal moment of inertia distributions for the all-atom (AA) benzene model at

300 K and 1 atm. The corresponding angular velocity distributions of each principal axis along

with the coarse-grained (CG) fit to the distribution given by I1/2
q exp(− Iqω2

q
2kBT ) is shown in (b)–(d).
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FIG. S2: Angular–radial distribution function (ARDF) of the all-atom (AA) (top) and coarse-

grained (CG) (bottom) benzene models at 280 K and 1 atm depicted as a heat map (left) and 1D

slices at constant angle (right). Face-on, edge-on or parallel displaced configurations occur when

the angle is 0°, while T-shape and Y-shape configurations occur at 90°.

FIG. S3: Angular–radial distribution function (ARDF) of the all-atom (AA) (top) and coarse-

grained (CG) (bottom) benzene models at 320 K and 1 atm depicted as a heat map (left) and 1D

slices at constant angle (right). Face-on, edge-on or parallel displaced configurations occur when

the angle is 0°, while T-shape and Y-shape configurations occur at 90°.
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FIG. S4: Angular–radial distribution function (ARDF) of the all-atom (AA) (top) and coarse-

grained (CG) (bottom) benzene models at 330 K and 1 atm depicted as a heat map (left) and 1D

slices at constant angle (right). Face-on, edge-on or parallel displaced configurations occur when

the angle is 0°, while T-shape and Y-shape configurations occur at 90°.

FIG. S5: Angular–radial distribution function (ARDF) of the all-atom (AA) (top) and coarse-

grained (CG) (bottom) benzene models at 350 K and 1 atm depicted as a heat map (left) and 1D

slices at constant angle (right). Face-on, edge-on or parallel displaced configurations occur when

the angle is 0°, while T-shape and Y-shape configurations occur at 90°.
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SIII. SEXITHIOPHENE NETWORK PARAMETERS

The cut-off distance Rc for the sexithiophene neural network was set to 21 Å for the G1 type

symmetry function. For the G5 angular symmetry function λ had values of -1 and 1, ν has values

of 2n where n ∈ Z. Hyperparameters α , β , and γ in the loss function were adjusted to improve the

speed of convergence but did not usually affect the global minimum of the optimization when the

number of training epochs was large.

TABLE S3: Hyperparameters for sexithiophene

hyperparameter value units

λ [-1.0, 1.0]

η [2.0, 1.0] Å
−2

ν [2.0, 4.0, 8.0, 16.0, 32.0, 64.0]

Rs [0.5, 2.7, 5.0, 7.3, 9.6, 11.8, 14.2, 16.4, 18.7, 21.0] Å

Rc [ 21.0] Å

SIV. ADDITIONAL SEXITHIOPHENE STRUCTURAL DISTRIBUTIONS

TABLE S4: Optimal coarse-grained principal moments of inertia Iq for q= 1,2,3, calculated using

Eqs. (9) and (10) of the main paper and the percentage difference between these values.

principal axis q Iq (Eq. (9)) (gmol−1 Å
−2

) Iq (Eq. (10)) (gmol−1 Å
−2

) % difference

1 1083.0 1080.8 0.2

2 20543.1 20712.5 0.8

3 21280.8 21395.8 0.5
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FIG. S6: Angular–radial distribution function (ARDF) of the all-atom (AA) (top) and coarse-

grained (CG) (bottom) sexithiophene models at 640 K and 1 atm depicted as a heat map (left) and

1D slices at constant angle (right). Face-on, edge-on or parallel displaced configurations occur

when the angle is 0°, while T-shape and Y-shape configurations occur at 90°.

SV. TENSORFLOW AND LAMMPS IMPLEMENTATION REQUIREMENTS

The following list of software is needed to train and use the neural network model in coarse–

grained simulations.

1. Tensorflow C API [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/c/c_api.h]

2. Cpp Flow [https://github.com/serizba/cppflow]

3. Tensorflow Python [https://github.com/tensorflow/tensorflow]

4. Keras [https://github.com/keras-team/keras]

5. LAMMPS [https://github.com/lammps/lammps]

The training and testing of the neural network potential was done with TensorFlow in Python

using the Keras functional API. The force and torque calculations were obtained through Ten-

sorFlow’s Gradient Tape feature, which provides computational derivatives with respect to the

network parameters. The tanh activation function was used for all standard neural network layers

S7



except the output layer since the tanh activation produced a smooth differentiable potential en-

ergy surface. The mean squared error was used when calculating the loss for the forces, torques,

and virials. The Adam optimizer1 was used as the gradient descent algorithm since it was able

to reach the global minimum without manually updating the learning rate during training. The

machine-learning potential was deployed with the TensorFlow C API and Cpp Flow wrapper. Cpp

Flow allows the TensorFlow C model to be accessed directly as a force and torque calculator in a

LAMMPS pair-style function.

REFERENCES
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We demonstrate the automated coarse-graining of anisotropic molecules and polymers using an autoencoder neural
network. The encoder network in an autoencoder is used to automatically generate a latent space that represents the
position and orientation of ellipsoidal coarse-grained sites. The decoder network reconstructs an atomistic configura-
tion from the position and orientations encoded in the latent space. This reconstruction from the latent space has a
higher fidelity when compared to reconstruction from the center-of-mass alone. This method of automatic anisotropic
coarse-graining creates a straightforward strategy to construct an anisotropic coarse-grained representation of semicon-
ducting polymers with anisotropic subunits, and also provides a back-mapping technique that preserves the probability
distribution of the conformation space of the original molecule. The automated anisotropic coarse-graining technique
is validated through the ability to construct a coarse-grained representation of a solution-phase hexamer of P(NDI2OD-
T2), also known as N2200, that can reproduce the physical observable of its atomistic counterpart. The technique is
further validated on the comparatively smaller sexithiophene molecule in the liquid phase. We further show that the op-
timal number of coarse-grained sites can be determined from the loss versus cost for a given number of coarse-grained
sites.

I. INTRODUCTION:

The recent demand for alternative photovoltaic cells, wear-
able electronics, and optoelectronic devices have led to in-
tensified research in the area of organic semiconductors.1–3

This has led to the discovery and utilization of increasingly
complex and diverse macromolecules and polymers. It has
also become increasingly evident that computational methods,
such as molecular dynamics and more recently machine learn-
ing, are playing an increasingly large role in material design
and discovery.4–7 However, there are still some limitations on
the size and length scale of classical atomistic simulations of
materials. Coarse-graining has long been used as a technique
to overcome these limitations8 but to fully utilize a coarse-
grained model there needs to be sufficiently accurate, quan-
tifiable, and straightforward back-mapping techniques.

Back-mapping algorithms are important9 in the field of or-
ganic semiconductors because they provide an avenue to study
long time-scale properties such as solution-phase aggregation
of polymers by running simulations at low resolutions with the
possibility of upsampling the system at a later time to study
properties such as charge transport or the effects of different
functional groups or anisotropy on short-ranged interactions.
Many recent breakthroughs in the area of coarse-graining and
back mapping came from the integration of machine learn-
ing into the field of molecular simulations. The fast-paced
growth and development of machine learning tools have in-
creased their popularity in many scientific fields.10 Autoen-
coders in particular are popular neural networks developed for
data compression problems, in the image-processing sphere,11

and this machine learning tool has been adapted for uses in
the coarse-graining12 of organic molecules to improve simu-
lation speed and scale. There has been a consistent effort in
the attempt to determine the optimal number of coarse-grained
sites for generic molecules.13–16 Unlike traditional methods

of coarse-graining, autoencoders do not require a thorough
prior understanding of the simulation system, since it is an
unsupervised form of machine learning.17 In general, autoen-
coders consist of two feedforward neural networks trained to-
gether to minimize the data loss between the real data and the
data reconstructed from the compressed state. The encoder
network is responsible for data compression and in the case
of coarse-graining, the encoder network produces the coarse-
grained representation of the molecule from the trajectories of
the atomistic model obtained from molecular dynamics simu-
lations. On the other hand, the decoder network reconstructs
the atomistic trajectory from the coarse-grained representa-
tion. This method of coarse-graining attempts to address two
major issues in organic semiconductor research. The first is
the creation of a coarse-graining methodology that can be
compared and optimized without the need for further molecu-
lar dynamics simulations. The second problem addressed by
the method is its ability to produce a backward map from the
coarse-grained representation to the atomistic model.

Even though there have been previous autoencoder mod-
els designed to coarse-grain and back-map small molecules to
and from isotropic coarse-grain sites,12 there is still a gap in
the knowledge required for coarse-graining macromolecules
and polymers into more general ellipsoidal coarse-grain sites
accounting for the anisotropy in the mass distribution of dif-
ferent monomers and side-chains.

II. THEORY

For this work, it is assumed that the computational effi-
ciency of a coarse-grain model decreases linearly with the
number of sites, and an optimal coarse-grained representation
of a molecule is a model which balances computational effi-
ciency with reconstruction fidelity. Since the neural network
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loss versus the number of coarse-grained sites is defined on
the set of integers, it is defined as continuous at point b if
g(b) = f (b), where g(x) is a decay curve fit to the data points
on the real interval (a,b) and f (x) is a decay curve fit to the
data points on the real interval [b,c), the fit is discontinuous
otherwise. A given number of coarse-grained sites b is con-
sidered optimal on the interval (a,c) if there is a discontinuity
at point b as shown in Fig. 1.

FIG. 1. Diagram showing a typical case where point b is considered
an optimal number of coarse-grained sites since g(b) ̸= f (b) when
g(x) is fitted to the data on the interval (a,b), f (x) is fitted to the
data on the interval [b,c), and g(x) and f (x) are both real-valued
functions.

A set of mapping functions M are defined such that each
fine-grained coordinate rn is linearly mapped to a unique
coarse-grained site I with position RI and orientation ΩI us-
ing

MRI(r
n) =RI (1)

and

MΩI(r
n) =ΩI , (2)

where MRI maps rn to the centers-of-mass

RI =
∑i∈ζI miri

∑i∈ζI mi
, (3)

and MΩI maps rn to the principal inertia axes defined by the
inertia tensor,

IIIFG,I = ∑
i∈ζI

mi(||∆ri||2E −∆ri∆rT
i ), (4)

where ∆ri = ri −RI is the position of fine-grained particle
i relative to the center-of-mass (coarse-grained particle posi-
tion), E is the 3×3 identity matrix and the sums are over the
set ζI of fine-grained particles that are mapped onto coarse-
grained site I. For consistency between the coarse-grained

and fine-grained models, the configurational distribution of
the coarse-grained model must match that of the fine-grained
system on which it is based.

A. Data preprocessing

The automatic coarse-graining of polymers can take two
possible forms:

1. Unconstrained

2. One or more coarse-grained sites per monomer

To determine which method is best suited for a particular poly-
mer, the cost to simulate vs the compression loss must be opti-
mized. In the case of unconstrained coarse-graining, the total
number of CG sites is chosen to be less than the number of
monomers. The entire polymer is treated as a single macro-
molecule; that is, for each simulation snapshot, the molecu-
lar configuration is flattened into a vector, the center-of-mass
is shifted to zero, and the configuration is rotated such that
the principal axes of the polymer align with the laboratory
frame. The neural network is then unconstrained in allocat-
ing atoms to each of the coarse-grained sites. This approach
is especially useful for short polymers with simple repeating
units. The unconstrained approach can also be used to coarse-
grain rigid polymers in which the persistence length is mul-
tiple monomers or other cases where it is appropriate to map
multiple monomers to a single site. On the other hand, to ob-
tain one or more coarse-grained sites per monomer, the molec-
ular configurations are reshaped to a P×S matrix, where P is
the number of monomer units and S is the number of atoms
per monomer, then a similar procedure is followed to cen-
ter and rotate the polymers in each snapshot with respect to
the center-of-mass of each monomer. The neural network is
then used to assign a predetermined number of coarse-grained
sites to each of the monomer units. For polymers with rela-
tively large repeating units and complex side-chains, it is ad-
vantageous to represent the polymer as a P× S matrix since
it increases the number of data points used to train the neural
network weights, effectively eliminating the degree of poly-
merization as a possible source of error.

The neural network method also allows for the integration
of prior knowledge into the definition of the coarse-grained
sites. A condition can be enforced such that all or some of the
coarse-grained sites have the same standard deviation by us-
ing the average standard deviation of the specified number of
equivalent sites. This condition allows the user to fix the num-
ber of CG site types that can be generated independently of
the overall number of coarse-grained sites specified. The dif-
ference in the reconstruction fidelity as a function of CG site
types can also be used to determine the optimal anisotropic
coarse-grained representation of any molecule.

B. Encoder algorithm

The encoder network is constructed such that
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1. The mass of the coarse-grain site is taken as the sum of
the masses of the contributing atoms from the fine-grain
model.

2. The inertia tensor of each ellipsoidal site is derived from
the average fluctuations of the contributing atoms about
the center-of-mass of the coarse-grain site, which will
be further explained in the following sections.

3. No atom from the fine-grained model is mapped to more
than one coarse-grained site.

The first and second conditions outlined above are satis-
fied by using Eqns. (3) and (4) as target values for the con-
struction of a normal distribution with mean µI and stan-
dard deviation σI . The mean of the probability distribution
of the mass-weighted positions of the atoms corresponds to
the mean of the center-of-mass defined in Eqn. (3) and the
standard deviation of the 3D joint probability distribution of
the mass-weighted atom positions generates the principal axes
of the coarse-grained site defined by Eqn. (4). For the case
where more than one center-of-mass is defined corresponding
to multiple coarse-grained sites per molecule, the probabil-
ity distribution becomes a multi-modal distribution. However,
straightforward enforcement of the third condition requires no
mixing between the modes of the distribution, which would
require assigning an atom to the coarse-grained site of the
highest probability, according to

Zi = one_hot(argmax
I

{logπiI}) (5)

where Zi is a categorical variable and πiI is the probability
that atom i is assigned to coarse-grain site I. However, this
argmax function would make the neural network nondifferen-
tiable and prevent learning through backward propagation.18

To enforce the first condition without trying to backpropa-
gate through a non-differentiable layer, the Gumbel-softmax
reparametrization18 trick is used to approximate an argmax
function. Gumbel-softmax reparameterization allows a vari-
ational autoencoder to approximate sampling from a discrete
latent space through the introduction of a neural network tem-
perature variable giving the Ith element of Zi as

ZiI =
exp((GiI + logπiI)/τ)

∑n
j exp((G jI + logπ jI)/τ)

(6)

Here, GiI is a sampled from the standard Gumbel distribu-
tion and τ is the temperature variable, such that as τ → 0
the softmax calculations smoothly approach argmax and Zi
approximates a one-hot vector. By initializing the neural
network with a sufficiently large temperature variable, each
atom in a molecule can transition across all available coarse-
grained sites.12 The subsequent annealing process lowers the
temperature gradually ensuring that each atom is mapped to
the optimal coarse-grained site in such a way that the over-
all coarse-grained model reproduces the mass distribution of
the all-atom model. The encoder network performs linear
transformations assigning the atomistic configurations to the
centers-of-mass and the inertia tensor of the coarse-grained

ellipsoid. By retaining the mass distribution along each of the
principal axes, the model generalizes spherically symmetric
coarse–grain sites to anisotropic ellipsoidal sites. As the neu-
ral network temperature variable decreases, each atom only
contributes to the calculation of the mean of a single coarse-
grained site and the fluctuation of the atom about the mean
position defines the standard deviation and by extension the
principal axes of the coarse-grained site. Since each molecu-
lar trajectory is fixed to the molecular center-of-mass, atoms
close to the molecular center-of-mass will have smaller fluc-
tuations and will be the first to anneal into their final position.
Atoms at the far ends of a polymer or side-chains will fluctu-
ate more widely and will require more data to produce consis-
tent results for their coarse-grained representation. The latent
space of the encoder network provides a set of positions RI
and orientations ΩI for each coarse-grained site.

C. Decoder algorithm

The decoder is responsible for the reconstruction of the
atomistic trajectories from the coarse-grained latent space
representation.19 In the automatic anisotropic coarse-graining
method, the reconstruction is done using two pieces of in-
formation, the center-of-mass of each coarse-grained site as
well as the inertia tensor which describes an ellipsoidal mass
distribution about each of the coarse-grained center-of-mass.
Compared to a spherical coarse-grained model, reconstruction
fidelity is improved for the anisotropic model since it uses
information about the inertia tensor in the decoding process.
This additional reconstruction fidelity is important for organic
semiconductors since back mapping is an important tool to
understand charge transfer in polymer aggregates.20

The loss function of the autoencoder has two sources con-
tributing to the total loss, The first being the reconstruction
loss and the second being the reparameterization loss. The
reconstruction loss can be further broken down into the re-
construction of one–, two– and three–body contributions, that
is, the reconstruction of the atom positions, bonds, and angles
respectively. This is achieved through the use of a regression
loss function namely, the mean squared error,

Lrecon = ∥ΓD(ΓE(X,τ,G))−X∥2 (7)

where ΓD and ΓE are the decoder and encoder network func-
tion, and τ and G are the neural network temperature vari-
able and the sampled Gumbel distribution, respectively. On
the other hand, since the reconstruction of the trajectories is
probabilistic, the reparametrization error minimizes the dis-
tance between the true distribution of the atomic positions
and the sampled distribution used for the reconstruction. This
reparameterization error is constructed as the evidence lower
bound.21 The variational autoencoder aims to maximize the
likelihood of recovering the data from the latent representa-
tion, p(Z|X), where Z is the latent representation and X is
the data. given the input data has true distribution p(X) and
the latent representation has distribution q(Z), the evidence
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lower bound is defined as

ELBO = Eq

[
log

p(X|Z)

q(Z)

]
, (8)

where Eq is the expectation. The total loss is calculated using

Ltotal = Lrecon −0.5×ELBO (9)

The gradient descent algorithm was implemented using the
Adam optimizer.22 A schematic of the autoencoder architec-
ture is shown in Fif. 2.

D. Atomistic simulation and coarse-grained potential

α-Sexithiophene and a hexamer of the polymer
P(NDI2OD-T2), also known as N2200, were chosen as
test molecules to demonstrate the different capabilities of
the anisotropic autoencoder. Atomistic MD simulations
were done using the molecular dynamics software package
LAMMPS (version 20NOV19).23–25 The OPLS-AA force
field26–29 and a cut-off of 10 Å were used for the simulation
of 250 sexithiophene molecules in the isothermal-isobaric
(NPT) ensemble with the pressure set at 1 atm and tempera-
ture of 680 K.30 A molecular dynamics simulation of a single
N2200 hexamer in a solution of 14680 chloroform molecules
was carried out at 300 K and 1 atm in the NPT ensemble with
OPLS-AA force field and a cutoff of 11 Å. For all atomistic
simulations hydrogen bonds were constrained with the
SHAKE algorithm,31 long-ranged electrostatic interactions
were calculated with the particle–particle particle–mesh
(PPPM) method,32,33 and the temperature and pressure
controlled by a Nosé–Hover thermostat and barostat.34,35 The
N2200 hexamer in chloroform solution was equilibrated for
1 ns and then simulations were carried out with the time step
set to 2 fs and simulations ran for 1 ns. The sexithiophene
simulations were 25 ns long with a timestep of 1 fs. The last
20 ns of the simulation data was used for parameterization
of the coarse-grained potential and calculation of structural
distributions.

To use the coarse-grained models for molecular dynamics
simulations, the coarse-grained potential was fitted by using
the instantaneous forces and torques to train a neural network
potentntial with explicit inclusion of dihedral angles between
nearest-neighbor anisotropic monomers. This corresponds to
the force-matching condition in the AFM-CG method, which
is required for thermodynamic consistency. A schematic of
the neural network used in the force matching procedure is
shown in Fig. 3.

Each monomer had a ghost atom attached at off-center po-
sitions for the definition of bonds between ellipsoids Fig. 4.
This ensures that forces and torques are correctly applied to
the anisotropic particle and not just the center-of-mass of the
monomer. The bond length, bond angle, and dihedral poten-
tials are given by

Ubond = KB(b−b0)
2 (10)

Uangle = KA(θ −θ0)
2 (11)

Udihedral =
1
2

K1[1+ cos(φ)]+
1
2

KD[1− cos(2φ)]

+
1
2

K3[1+ cos(3φ)]+
1
2

K4[1− cos(4φ)](12)

where b and b0 are the instantantous and equilibrium bond
lengths, respectively, θ and θ0 are the instantaneous and equi-
librium bond angles, respectively, φ is the dihedral angle, KB
and KA are the bond and three-body angle potential parame-
ter, respectively, and K1, KD, K3, and K4 are the coefficient
of the OPLS cosine expansion of the dihedral potential. Non-
bonded interactions were defined between particles separated
by one bond (1–2 interactions).

Fitting the forces to the derivative of the potential was
done using TensorFlow’s gradient descent algorithm and the
derivative of the potential was implemented using Tensor-
Flow’s GradientTape function to evaluate the computational
derivative.36,37 The hyperparameters for the neural network
was fitted using modified a modified version of the Behler
symmetry functions.38 When fitting the coarse-grained poten-
tial using the neural network, each coarse-grain site is mapped
to an invariant vector representation DIJ which is defined in
terms of the position and orientations of particles I and J and
is given by

DIJ = {RIJ ,RIJ ·ΩI,1,RIJ ·ΩI,2,RIJ ·ΩI,3,

RIJ ·ΩJ,1,RIJ ·ΩJ,2,RIJ ·ΩJ,3,

ΩI,1 ·ΩJ,1,ΩI,1 ·ΩJ,2,ΩI,1 ·ΩJ,3,

ΩI,2 ·ΩJ,1,ΩI,2 ·ΩJ,2,ΩI,2 ·ΩJ,3,

ΩI,3 ·ΩJ,1,ΩI,3 ·ΩJ,2,ΩI,3 ·ΩJ,3} , (13)

where RI , RJ , ΩI , and ΩJ are obtained from the encoder la-
tent space and RIJ ≡RI −RJ . The neighbourhood of particle
I can then be represented by a unique fingerprint DDDI which is
obtained from the concatenation of all the DIJ vectors in the
neighbourhood of particle I. The prior repulsive potential can
then be represented by the simply as

Uprior,I = ∑
J ̸=I

B1σc (DDDI)
−B2 , (14)

where σc is a neural-network function and B1 and B2 are train-
able parameters. The total potential U can then be written as
a sum over all UI contribution given as

UI =UNN,I +Uprior,I +Ubond,I +Uangle,I +Udihedral,I . (15)

and

U =
N

∑
I=1

UI (16)

A more indepth discussion of the force matching neural net-
work architecture can be found in the supporting information.



5

FIG. 2. Schematic of the neural network architecture used to map polymer atomistic configurations to a discrete latent space parameterized by
the mean and standard deviation of a multimodal joint ellipsoidal distribution.

FIG. 3. Schematic of the neural network used to fit the coarse-grain
potential.

The interaction between the N2200 ellipsoids and the spheri-
cal solvent particles as well as the solvent–solvent interactions
were derived from the same procedure above.

A six-site coarse-grained representation was used for the
coarse-grained simulation of both N2200 and sexithiophene.
The simulations were done in the canonical ensemble (NVT)
to match the density of the atomistic simulations. The
sexithiophene coarse-grained simulations were performed at
590 and 680 K with 250 molecules. A single-site model of
sexithiophene was also parameterized under the same con-
ditions. The CG simulations with the N2200 hexamer and
14680 isotropic chloroform solvents were done at 300 K.39

The N2200 hexamer in chloroform solution as well as the sex-
itiophene coarse-grained simulations were 25 ns long with the
last 20 ns used for the calculation of structural distributions.

III. RESULTS AND DISCUSSION

A. α-Sexithiophene

Sexithiophene shown in Fig. 5 has been researched as a
promising material for organic photovoltaics40 and organic
light-emitting diodes.41,42 There has been significant research

into controlling the orientation of sexithiophene deposited on
substrates.43,44 Sexithiophene was used to demonstrate the un-
constrained coarse-graining ability of the anisotropic autoen-
coder. Sexithiophene coarse-grained to a single ellipsoid does
not capture the backbone flexibility or any of the thiophene-
thiophene torsional configurations. The neural network loss
was calculated for different numbers of coarse-grained sites
ranging from one to six. The plot of loss versus the number
of sites in Fig. 6 shows a notable decrease in reconstruction
loss when more than one coarse-grained site is used to model
sexithiophene, whereas there is a smaller decrease in recon-
struction loss when the number of sites increases from two to
six. Since sexithiophene consists of six monomers, a steep
decrease in the neural network reconstruction loss between
five and six coarse-grain sites is expected. With six available
coarse-grain sites the neural network can more accurately re-
construct the mass distribution changes due to the rotation of
the monomers about the thiophene–thiophene bonds as shown
in Fig. 7.

The six-site neural network model of sexithiophene cap-
tures the structural variations in the liquid and liquid crystal
phases as shown in Fig. 8. The six-site coarse-grain model of
sexithiophene outperforms the single-site model when com-
paring the orientational order parameter in the liquid crystal
phase (Fig. 9). However, there are only small differences be-
tween the six-site and the single-site model when comparing
the center of mass radial distribution function (Fig. 10).

The one-site sexithiophene model had a 132 × speed-up
compared to the all-atom model while the six-site sexithio-
phene model had a 17 × speed-up compared to the all-atom
model.

B. P(NDI2OD-T2)

Poly[N,N′-bis(2-octyldodecyl)naphthalene-1,4,5,8-
bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)
(P(NDI2OD-T2)), also known as N2200, is a copolymer
of naphthalene diimide (NDI) and bithiophene units with
alkyl side chains. There have been significant interest in
N2200 as an organic semiconductor.45–49 It is considered
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FIG. 4. Schematic of the (a) bonds, (b) angles, and (c) dihedrals as defined for the anisotropic polymer models.

FIG. 5. Chemical structure of sexithiophene

FIG. 6. Neural network reconstruction loss versus the number of
coarse-grained sites when sexithiophene is mapped to between one
and six coarse-grain sites.

one of the best organic polymer acceptors due to its high
electron mobility50 and narrow band gap.51 N2200 has had
recent success in organic solar cell applications52 and energy
storage in the form of capacitors.46 N2200 was chosen to
demonstrate how well the anisotropic autoencoder handles
one or more coarse-grained sites per monomer. This also
provides an opportunity to see how well the neural network

FIG. 7. Six-site coarse-grained model of sexithiophene. The (a)
atomistic configuration was mapped to the latent space using the (b)
learned encoding, producing a mapping to the (c) position and orien-
tation of the coarse-grained sites. The rows of the encoding matrix
in (b) represent each atom and the columns are the available coarse-
grained sites.

method handles flexible alkyl side chains and an aromatic
backbone. Plots of the neural network loss versus the
number of coarse-grained sites are shown in Fig. 11. These
plots showed several discontinuities where the loss between
consecutive numbers of coarse-grained sites showed a larger
decrease than for the pair before or the pair after.

The unconstrained allocation of coarse-grained sites for the
N2200 hexamer starts with a relatively high error which can
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FIG. 8. All-atom (solid lines) and six-site (dashed lines) coarse-
grained monomer-monomer radial distribution function for sexithio-
phene in the isotropic phase (680 K) and the Smectic-A phase
(590 K).

FIG. 9. Orientational order parameter for all-atom, six-site
coarse-grain and one-site coarse-grain models of sexithiophene at
590 and 680 K

be attributed to the attempt to represent a flexible molecule
as a rigid ellipsoid. Even though there is a significant drop
in the reconstruction error between one and five sites, the
trend still follows the expected exponential decay that would
be expected just from adding more complexity to the model.
The only significant feature that is observed on the interval
[1,12] is a discontinuity in the decay trend between five and

FIG. 10. All-atom (solid lines), six-site coarse-grained (dashed
lines), and single-site coarse-grained (dotted lines) center-of-mass
radial distribution function for sexithiophene in the isotropic phase
(680 K) and the smectic-A phase (590 K).

FIG. 11. Neural network reconstruction loss versus number of
coarse-grained sites for the case where the number of sites is less
than twice the number of monomers for the N2200 hexamer (main
plot) and for one or more sites per monomer for the N2200 hexamer.
Lines connecting the data points are solely for visualizing the trend
between adjacent data points.
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six coarse-grained sites. As expected there is a significant
drop in the reconstruction error when each of the monomers
in the polymer is assigned to individual sites. There is a dis-
continuity in the plot of reconstruction loss versus the num-
ber of sites when eighteen and forty-two coarse-grained ellip-
soids are allocated. The coarse-grained model with three sites
per monomer separated the backbone of the polymer from the
sidechains. The allocation of the atoms associated with forty-
two sites or seven sites per monomer is shown in Fig. 12.
The anisotropic autoencoder was able to group each branch
of the alkyl side chains into an ellipsoid while also grouping
the naphthalene diimide (NDI) and bithiophene units into in-
dividual ellipsoids. Fig. 11(inset) shows a trend of increased
reduction in the loss for every six additional sites added to the
polymer. By observing how the neural network allocates the
atoms for the seven-site model, a priori information can be
added to the neural network by enforcing a set of only three
unique ellipsoid types for the seven available sites: that is,
four ellipsoids assigned to the first type, two to the second
and one to the third. The results are shown in the color-coding
of Fig. 12. This added flexibility can significantly simplify the
output of the neural network latent space with less than 2 %
increase in the reconstruction error.

The comparison of the center-of-mass radius of gyration for
the all-atom, six-site coarse-grained, and back-mapped mod-
els is shown in Fig. 13. There is a close match between the all-
atom and the back-mapped models, the discrepancy between
the coarse-grained and all-atom models can be attributed to
the method of calculation, where it was assumed that the en-
tire mass of each monomer acts at the center-of-mass of the
coarse-grain ellipsoid instead of distributed over the entire
volume.

The six-site representation of N2200 hexamer provides an
opportunity for high fidelity backmapping but lacks the flex-
ibility to fully capture the radius of gyration or the solute-
solvent distributions as shown in Fig. 14. A higher resolu-
tion model with allocation for side-chain interactions would
be required to study polymer–solvent interactions. The six-
site N2200 model had a 161 × speed-up compared to the all-
atom model

CONCLUSIONS

We have shown that an unsupervised machine-learning ap-
proach can be used to coarse-grain large molecules and poly-
mers using either an unconstrained approach or by prescrib-
ing one or more sites per monomer. With the inclusion
of anisotropic mass distribution data for the coarse-grained
sites, the autoencoder was able to increase the reconstruc-
tion fidelity of large molecules with anisotropic mass distribu-
tion. The anisotropic feature is especially highlighted with the
organic semiconducting polymer sexithiophene and N2200
since they both contain anisotropic monomer units. Addition-
ally, the automatic anisotropic coarse-graining method pro-
vides the ability to specify the number of unique types of ellip-
soids independently of the specified number of coarse-grained
sites. This feature simplifies the coarse-grained representation

FIG. 12. Neural network representation of coarse-grained N2200
where the number of coarse-grained sites is set to seven disjoint sets
and the color- coding represents sites with the same inertia tensor.

of polymers with complex monomers such as N2200.
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SI. FORCE MATCHING ALGORITHM

The set of G1
I and G5

I symmetry functions used to construct the local environment of coarse-

grained particle I have the functional form

G1
I = ∑

J ̸=I
gc(RIJ). (S1)

Where RIJ is the separation distance between particle I and J and gc is a cut-off function with

hyperparameter Rc and

G5
I = ∑

J ̸=I

M

∏
µ=1

21−ν (1+λ cosθIJ,µ
)ν e−η(RIJ−Rs)

2
gc(RIJ). (S2)

where λ ∈ {−1,1} and Rs, ν , and η are tunable hyperparameters and {cosθIJ,µ}, is the set of

machine-learned collective variables with the same properties as the angular component of the

underlying potential and M is the total number of machine-learned angular variables. The hyper-

parameters used for sexithiophene and the N2200 hexamer are listed in Tables S1 and S4.

The loss function for fitting the coarse-grained forces is

Linst =
Nt

∑
t=1




N

∑
I=1


α

∣∣∣∣FFG,I(r
n
t )+

∂U(ξt)

∂RI

∣∣∣∣
2

+β

∣∣∣∣∣τFG,I(r
n
t )+∑

q
ΩI,q(ξt))×

∂U(ξt))

∂ΩI,q

∣∣∣∣∣

2



 , (S3)

a modified version of the one used in Chapter 3, where the virial matching has been removed

since simulations were done at constant volume instead of constant pressure. Here, Nt is the num-

ber of simulation configurations in the dataset, rn
t are the fine-grained coordinates for configura-

tion t, and ξt = (RN(rn
t ),Ω

N(rn
t )) is the mapped coarse-grained configuration for this fine-grained

configuration. The loss function is optimized using the minibatch gradient descent as implemented

in TensorFlow. Where α,β , and γ are weights which specify the fraction of each loss that is used

for backpropagation and were free to change with the learning rate during optimization
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SII. SEXITHIOPHENE COARSE-GRAIN POTENTIAL PARAMETERS

TABLE S1: Hyperparameters for sexithiophene single-site model

hyperparameter value units

λ [-1.0, 1.0]

η [2.0, 1.0] Å
−2

ν [2.0, 4.0, 8.0, 16.0, 32.0, 64.0]

Rs [0.5, 2.7, 5.0, 7.3, 9.6, 11.8, 14.2, 16.4, 18.7, 21.0] Å

Rc [ 21.0] Å

TABLE S2: Hyperparameters for sexithiophene six-site model

hyperparameter value units

λ [-1.0, 1.0]

η [2.0, 1.0] Å
−2

ν [2.0, 4.0, 8.0, 16.0, 32.0, 64.0]

Rs [0.5, 2.7, 5.0, 7.3, 9.6, 11.8, 14.2, 16.4, 18.7, 21.0] Å

Rc [ 21.0] Å

TABLE S3: Sexithiophene six-site model bond, angle, and dihedral parameters

Parameter value Units

KB 200 kcal/mol.Å

b0 0.2 Å

KD 6.45

KA 14.52 kcal/mol/rad2

θ0 180 (◦)

The dihedral parameters K1, K3, K4 were all set to 0.
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SIII. N2200 COARSE-GRAIN POTENTIAL PARAMETERS

TABLE S4: Hyperparameters for N2200 hexamer six-site model

hyperparameter value units

λ [-1.0, 1.0]

η [2.0, 1.0] Å
−2

ν [2.0, 4.0, 8.0, 16.0, 32.0, 64.0]

Rs [0.5, 1.3, 2.5, 4.7, 8.0, 10.3, 15.6, 21.8, 26.2, 30.4, 37.7, 42.0] Å

Rc [ 43.0] Å

TABLE S5: N2200 hexamer six-site model bond, angle, and dihedral parameters.

Parameter value

KB 200 kcal/mol.Å

b0 0.2 Å

KD 13.45

KA 29.52 kcal/mol/rad2

θ0 180 (◦)

The dihedral parameters K1, K3, K4 were all set to 0.
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A machine learning pipeline has been developed to understand the role of polymer backbone flexibility in the
temperature-dependent A machine learning pipeline has been developed to understand the role of polymer backbone
flexibility in the temperature-dependent aggregation behavior of anisotropic polymers. A toy polymer model is used
to conduct simulations with variations in a predefined set of polymer properties. The set of variable properties used
to model polymer backbone flexibility includes the coefficient of the angle potential and the coefficient of the dihedral
potential. The temperature of the simulation is also used as a variable to determine the effect of temperature on the
polymer conformations observed. The machine-learning pipeline developed was able to assign an aggregate type to un-
labelled polymer trajectories as well as predict the type of aggregate based on the predefined properties of the polymer
interaction potential.

I. INTRODUCTION:

Organic semiconducting polymers, which typically con-
sist of highly anisotropic monomers, are a major area of fo-
cus in the search for cheap, flexible, and printable optoelec-
tronic devices such as light-emitting diodes and photovoltaic
cells.1–3 The ability to tune the polymer’s flexibility and solu-
bility makes them ideal for solution processing.4–6 However,
to maximize charge transport and overall device efficiency,
a deeper understanding of the polymer aggregation process
and the drivers of this process is needed.7 The charge trans-
port capabilities of an organic semiconductor are affected by
chain size, persistent length, and overall crystallinity of the
polymer.8 mesoscopic features such as crystallinity and grain
sizes are further driven by molecular properties such as the
dihedral angle between monomers and processing conditions
such as temperature and annealing rates9. To fully concep-
tualize the design space of organic semiconducting devices,
mesoscopic polymer aggregation predictions must be able to
consider both molecular properties and processing conditions.

Computational approaches such as molecular dynamics
simulations play an important role in bridging the atomistic
and mesoscopic length scales.10 However, atomistic simula-
tions of bulk polymer aggregates on equilibrium time scales
are not feasible. To bridge the gap between atomistic and
mesoscopic time scales, coarse-grained (CG) simulations are
often used.11 It is however important to note that, anisotropic
polymers are best represented by anisotropic subunits ca-
pable of capturing the π–π stacking configuration between
polymers using a single CG site.12 To this end, a signifi-
cant amount of research has gone into the development of
anisotropic potentials and coarse-grained models13–16 capable
of reproducing the bonds, angles, and dihedral distributions of
the polymer backbone and side chains. These CG models al-
low for the efficient sampling of the conformational space of
anisotropic polymers by tuning the backbone flexibility.

The conformational space of polymer organic semiconduc-
tors is a high-dimensional space with highly complex rela-

tionships between parameters. Machine learning has been
effective in processing data from high-dimensional data sets
while providing useful insight into the complex relationship
between input and target variables.17 There have been sig-
nificant advances in the accessibility of machine learning to
design powerful architectures with off-the-shelf layers and
functions.18 It is especially easy to design variational au-
toencoders for dimensionality reduction problems and feed-
forward classification networks which are useful in grouping
large amounts of data into predefined disjoint sets.19 There
have been previous attempts at using non-machine learning
approaches to predict the aggregation behavior of semiflexible
polymers with strictly isotropic monomers.20 Previous works,
also explored the aggregation phase diagram of semiflexible
polymers using molecular dynamics simulations without pre-
dictive capabilities.21 Machine-learning approaches have been
explored with great success, especially in the field of compu-
tational biology.22

In this work, we develop two data-driven workflows as-
sisted by machine learning to identify, classify and predict
the types of polymer aggregates obtained from simulating
anisotropic polymers with varying properties under different
simulation conditions. The first algorithm uses an autoen-
coder to subdivide the entire conformational space of the sim-
ulated polymer into a predefined number of disjoint sets that
can be easily labeled manually. The second algorithm at-
tempts to predict the most probable polymer aggregate to form
under specific simulation conditions for a given set of molec-
ular scale polymer properties. Together, these algorithms are
capable of combining molecular scale properties and process-
ing conditions to predict the mesoscopic bulk behavior of
polymer aggregates and potentially inform design choices for
organic optoelectronic devices.
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II. THEORY

A. Anisotropic polymer model

The generalized coarse-grained polymer model and pro-
cedure used for the simulations have been fully described
in previous works.23 These coarse-grained polymers have
been designed with the Gay-Berne biaxial potential for dis-
similar particles24,25 and explicit inclusion of dihedral an-
gles between nearest-neighbor anisotropic monomers. The
anisotropic Gay-Berne potential is implemented in the
LAMMPS package26 and is given by the expression12

UGB(A1,A2,r12) = Ur(A1,A2,r12,γ) ·η12(A1,A2,ν) ·
χ12(A1,A2,r12,µ) (1)

where

Ur = 4ε(ρ12 −ρ6) (2)

ρ =
σ

h12 + γσ
(3)

where ri j is the distance between the centers-of-mass of the
two ellipsoids, Ai and A j are the rotation matrices transform-
ing the orientation of the ellipsoids from lab frame to body
frame. h12 is the approximation to the distance of closest ap-
proach and γ and µ are both set to 1.0. Reduced LJ units are
used, so lengths are in units of σ , energy in units of ε and
temperature in units of ε/kBT . The mass is in units of the
monomer mass m and time is in units of

√
mσ2/ε .12 Each

monomer has noninteracting "ghost" atoms attached at off-
center positions for the definition of bonds between ellipsoids.
This ensures that forces and torques are correctly applied to
the anisotropic particle and not just the center of mass of the
monomer. The polymer semiflexibility and dihedral barrier
height are determined by the following equations for the bond
length, bond angle, and dihedral angle potentials,12

Ebond = KB(b−b0)
2, (4)

Eangle = KA(θ −θ0)
2, (5)

Edihedral =
1
2

K1[1+ cos(φ)]+
1
2

KD[1− cos(2φ)]

+
1
2

K3[1+ cos(3φ)]+
1
2

K4[1− cos(4φ)], (6)

where b and b0 are the instantantous and equilibrium bond
lengths, respectively, θ and θ0 are the instantaneous and equi-
librium bond angles, respectively, φ is the dihedral angle, KB
and KA are the bond and three-body angle potential parame-
ter, respectively, and K1, KD, K3, and K4 are the coefficient of
the OPLS cosine expansion of the dihedral potential.

The angle coefficient KA and the second coefficient of the
OPLS cosine expansion KD are manipulated to represent var-
ious backbone flexibility of typical organic semiconductors.
For this work the length of the polymer chain was varied be-
tween 22 and 64 monomers and the other coarse-grained we
selected was in line with previously published results.12 A
schematic of the bonding and the definition of the dihedral
angle is shown in Fig. 1.

B. Neural network architecture

To use a machine learning approach to construct a phase
space of aggregates parameterized by the polymer molecular
properties and processing conditions, there has to be a sys-
tematic approach to the identification and classification of the
polymer aggregates obtained from long simulations. A varia-
tional autoencoder27 implementation is ideal for the unsuper-
vised labeling of all configurations obtained from simulations.
This variational autoencoder shown in Fig. 2 is constructed
from an encoder network and a decoder network.28 The en-
coder maps a set of inputs to a mean µ and standard deviation
σ . It then samples from the standard normal distribution to
create the latent space Z.29,30 Using a variational autoencoder
that samples from a normal distribution ensures that the la-
tent space can be interpolated. The latent space Z can then be
divided into disjoint sets by resampling from a relaxed one-
hot categorical distribution before reconstructing it with a de-
coder network. The Gumbel-softmax reparameterization trick
is used to approximate an argmax function through the intro-
duction of a neural network temperature variable.31,32 Once
determined, these disjoint sets represent the labels of different
aggregates found in the training data set. During training, the
neural network temperature variable is gradually reduced to
anneal each configuration into a unique aggregate label. The
decoder network takes the output of the encoder as an input
and tries to reconstruct the input parameters of the encoder
from the latent space representation. The loss function of the
autoencoder is calculated as a reconstruction and regulariza-
tion loss,4 where the reconstruction error minimizes the dif-
ference between the input of the encoder and the output of the
decoder and the regularization loss33 attempts to minimize the
distance between the true distribution and the distribution be-
ing sampled. This approach, where the input and the output
of a feedforward neural network are the same, is considered
unsupervised learning. This unsupervised learning approach
reduces the prior knowledge about the polymer aggregation
that is needed to find a set of the most distinct probable aggre-
gates.

C. Aggregate preprocessing

To optimize the neural network training, the polymer con-
formations obtained from the simulation have to be prepro-
cessed into a representation that is invariant under translation
and global rotation. Polymer configurations are first mapped
to a spatial correlation matrix M .34 The (i, j) element of the



3

FIG. 1. Schematic of anisotropic polymer used for the simulations, showing, (a) the bond angle between anisotropic monomers defined using
off-centered sites and (b) the dihedral angle between adjacent monomers.

FIG. 2. Schematic of autoencoder

matrix is given by

Mi j = ui ·u j (7)

where, ui is the unit vector pointing from the center-of-mass
of ghost atom i to the center-of-mass of the i+1 ghost atom.
This ensures that for an uncollapsed (open) polymer (Fig. 3c)
Mii ≡ 1 ∀i and decreases exponentially along the length of the
chain for all values of Mi j. Hairpin-shaped aggregates (hair-
pins) (Fig. 3g) will display a square wave pattern with a flat
area close to 1 corresponding to the first arm followed by an
area of rapid decay to -1 corresponding to the head and finally
a flat region at -1 corresponding to the second arm going in
the opposite direction. Toroidal-shaped aggregates (toroids)
(Fig. 3e) will present with a repeating sine wave correspond-
ing to the number of loops making up the toroid. There are no
flat regions in the toroid’s spatial correlation matrix because it
does not possess long arms such as those seen in hairpins. A
further comparison of aggregate conformation, and the corre-
sponding spatial correlation matrix and covariogram is shown
in Fig. 4 The 2D spatial correlation matrix is then condensed
into a 1D spatial covariogram, which acts as a statistical mea-
sure of the spatial covariance as a function of distance and is
calculated as34

C(h) =
1

n(h)

n

∑
j=1

n

∑
i=1

(ui −µ) · (u j −µ), (8)

where h is the distance in space between observation ui and
u j, n(h) is the number of observations at a distance h, and in
this case µ= 0⃗ is the mean. C(h) is a scalar function bounded
between 1 and -1. The values of h are chosen from the range
0 to the length of the polymer (L) The cardinality of the set
is fixed for all polymers and is independent of the degree of
polymerization. An exponential decay corresponds to an open
polymer configuration. C(h) for other configurations such as
multi-head rackets and toroids oscillate between 1 and -1 and
the number of zero crossings corresponds to the number of
heads or loops.

In the case where the number of monomers differs between
polymers, the spatial covariogram will also have different
length vectors. To standardize the length of the covariogram
vector, the number of elements is set to 63, and where the
number of monomers is less than or greater than 63, the points
are interpolated using cubic spline and then 63 new points are
generated along the path.

Training of the aggregate labeling neural network using a
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FIG. 3. Typical aggregates in simulation: (a) orientationally disordered globule, (b) flexible four chain bundle, (c) open, (d) multi-head racket,
(e) toroid, (f) rigid four chain bundle and (g) hairpin

FIG. 4. Typical aggregates along with the corresponding heatmap of
the spatial correlation matrix and the spatial covariogram.

standardized data set requires the generation of data repre-
sentative of possible aggregate types that would be observed
in the coarse-grained polymer simulations. To generate this
training data set, the list of aggregate classes considered is as
follows:

1. Open is used to describe any polymer that has not col-
lapsed into an aggregate.

2. Hairpin describes hairpin-shaped aggregates.

3. Multi-head racket describes an aggregate with more
than one racket-shaped head.

4. Toroidal is used to describe all looped polymers inde-

pendent of the shape or the number of loops.

A standard dataset for each of these classes of aggregates
was created by manually selecting examples of the spatial co-
variogram associated with each of the aggregate types from
the available training data and adding noise to make the train-
ing of the neural network more robust. This standardized data
set ensured that all aggregates in the coarse-grained simula-
tions were compared to and mapped to one of the possible ag-
gregate types above. However, when the self-referential route
was taken, the labeling autoencoder was trained on the spa-
tial covariogram obtained from the simulated polymer trajec-
tories. The training dataset obtained from molecular dynam-
ics simulations was unbalanced due to the difference in the
lifetime of various aggregates. To account for this variation
in the training data, the autoencoder was trained iteratively.
On the first run, a random batch of 50,000 polymer configu-
rations was used to train the autoencoder. In each subsequent
run, the trained neural network was used to evaluate the full
set of available training data then the subset of data used for
training was increased by 10% by adding in the polymer con-
figurations with the largest error. The actual training data was
then evaluated using the trained neural network and the bot-
tom 1% with the smallest error was removed from the training
subset. The iterative updating of the training subset was done
until the average error of the training subset was equivalent
to the average error of the available training data. This itera-
tive method ensured that overrepresented configurations in the
training subset were removed and rare ones were added. The
autoencoder was trained on a subset of 100,000 data points
from the available 4× 106 unique polymer trajectories. The
benefit of the self-referential approach over the standardized
data set was that new types of aggregates can be discovered
and the latent space consisted of the most probable types of
aggregates. There were however some disadvantages com-
pared to the standardized dataset. The most significant was
that the aggregate classes of the latent space have to be manu-
ally labeled after the training of the neural network was com-
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pleted.
The same procedure was used to determine the conforma-

tion of each polymer in a multichain aggregate. However, a
further spatial metric shown in Fig. 5 was defined between
each polymer to determine the degree of overlap between the
monomers of each polymer, the matrix ∆IJ , whose (i, j) ele-
ment is

∆IJ
i j =− tanh

(∥rI,i − rJ, j∥
ασ

)
+1 (9)

where rI,i is the position of monomer i of polymer I, and rJ, j
is the position of monomer j of polymer J and σ is the same
as Eqn. (3) and α is an integer to scale the aggregation cut-off
distance. While the covariogram describes the conformation
of each polymer, the matrix ∆IJ describes the degree of over-
lap between polymers and highlights the position along the
polymer with the highest interchain aggregation.

D. Aggregate prediction

Once all the aggregates from the molecular dynamics sim-
ulations have been labeled they could be used to predict the
most probable aggregate that would occur under different con-
ditions for a given set of polymer features. A machine learning
approach allowed for the creation of high-dimensional aggre-
gate phase diagrams. In this case, the set of polymer parame-
ters along with the simulation condition was used as input D
to the neural network shown in Fig. 6, i.e.

D = [τ,KA,KD,N,T ], (10)

where KA and KD are the angle and dihedral coefficient, T
and N are the simulation temperature and degree of polymer-
ization, and τ is the time-like variable since parallel temper-
ing was used in the simulation, but the same analysis could
be used for simulation trajectories with unbiased dynamics to
predict non-equilibrium phase diagrams. All the parameters
were scaled between 0 and 1 since their raw values had orders
of magnitude differences.

The output of the aggregate prediction network was then
compared to the labels obtained from the labeling autoen-
coder. The aggregate prediction neural network could explore
the aggregate phase space of the polymer and visually inspect
how phase boundaries change over time or with temperature
and flexibility.

E. Molecular Dynamics

Molecular dynamics simulations were performed using the
LAMMPS package with modification to include an explicit
anisotropic dihedral potential, a list of the corresponding pa-
rameters for the interaction potential can be found in the Sup-
plementary Material. An implicit solvent model was used
where the solvent was incorporated via renormalization of the

intermolecular interactions and the use of the Langevin ther-
mostat. Langevin simulations used a damping parameter of 2
and a timestep of 0.00075. Simulations were performed for
chain lengths between 22 and 64 monomers in a volume of
100 (σ3) and the number of chains in each simulation varied
between 1 and 8. The polymer simulations were performed
using parallel tempering. The temperature spacings between
replicas are adjusted such that an acceptance ratio of 20–30 %
is achieved for all replicas. This was used to sample a wide va-
riety of temperatures and the complete configurational space
of the polymer aggregation.

25 different simulations were done for different combina-
tions of KA and KD. The value of the KA parameter was taken
from the range 1 ≤ KA ≤ 5, similarly the KD parameter was
set to a value in the range 1 ≤ KD ≤ 5. Each simulation was
done using parallel tempering with the temperature range of
0.1 ≤ T ≤ 1.5 for a total of 250 different combinations of KA,
KD, and T . Different types of polymer aggregates were ob-
served based on the chain length and flexibility, temperature,
number of chains, and the length of the simulation. The ag-
gregates ranged from orientationally disordered globules of
single chains at low temperatures and high flexibility to open
rod-like multi-chain aggregates at high temperatures and low
flexibility. Plots of the spatial correlation matrix and the spa-
tial covariogram are obtained by analyzing trajectories from
the simulation data. This set of known aggregate types acts as
a reference key for manually assigning a name to the signifi-
cant aggregate labels obtained from the encoder latent space.

The latent space of the autoencoder was set to 8 disjoint
sets, to obtain eight unique aggregate labels and the neural
network temperature variable was set to 2.

The temperature in the Gumbel distribution was gradually
reduced by 1% each epoch until it reaches a value of 0.01.
The fraction of each aggregate class was then obtained from
the ratio of the number of aggregates assigned to each class to
the total number of aggregates in the simulation data set.

III. RESULTS AND DISCUSSION

Training of the autoencoding neural network produced the
latent space, which can be visualized as a linear sequence of
polymer aggregates parameterized by a single value, as shown
in Fig. 7. The latent space was constructed such that aggre-
gates with similar covariograms were grouped close to each
other, ensuring smoother transitions in the phase space rep-
resentation once the aggregates are given a unique aggregate
label. By assigning each polymer trajectory to a unique ag-
gregate label, the relative proportion of each aggregate in the
data set could be determined. Fig. 8 shows the expected un-
balanced dataset where the aggregate labeled A3 accounts for
close to 70% of all observed aggregates.

The one-hot vector associated with the aggregate label A3
could then be passed to the decoder to find the corresponding
covariogram from which the general structure of the aggregate
was determined. Therefore, the decoder portion of the autoen-
coder must have high reconstruction fidelity. The reconstruc-
tion fidelity of the decoder can be evaluated by comparing the
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FIG. 5. The six combinations of the ∆IJ matrix for a four polymer system (a). The partially aggregated system shows a strong alignment
between two pairs of polymers in (e) and (g)

FIG. 6. Schematic of classifier neural network with inputs defined in
Eqn. (10)

true and the reconstructed covariogram of data that the neu-
ral network did not use for training. The decoder portion of
the autoencoder could reconstruct random selections of aggre-
gates taken from the test set as shown in Fig. 9. Even with a
63:1 compression, the general shape of the covariogram was
preserved with only minor deviations where the covariogram
was noisy.

It is expected that the conditions under which a polymer is
simulated along with its intrinsic properties should determine
the types of aggregates produced. When vector D was used as
input to predict the corresponding latent variable derived from
the autoencoding network, the trained classifier network could
construct the expected phase space of any polymer, which lies
in the range spanned by the simulated polymer trajectories.
Snapshots of the neural network predicted phase space are
presented in Figs. 10–12. Each slice of the high-dimensional
phase space plot the aggregate latent space parameter as a
function of elements of vector D .

From the plots of the phase diagram, it could be determined
that the open polymer dominated at high temperatures and re-
gions where the polymer was relatively stiff. The neural net-
work aggregate phase model also showed that flexible long-
chain polymers at lower temperatures Fig. 10a formed a more
coiled aggregate while short-chain polymers at the same tem-
perature (Fig. 10c) were less likely to do so. For small val-
ues of KA the anisotropic polymers are expected to aggregate
at all temperatures and for all chain lengths. However, for
longer chains and lower temperatures, the anisotropic poly-
mer systems form toroids with multiple loops, as shown in
Fig. 11. These toroidal aggregates are only expected to form
for small values of KA and KA at low temperatures, as shown
in Fig. 12. The length of the polymer chain also played a sig-
nificant role in determining if toroidal aggregates are formed,
since they are less probable for short-chained polymers shown
in Fig. 12c The changes related to the effect of time on the
long-chain semiflexible polymer are shown in Fig. 13, from
partial collapse at small τ to the equilibrium aggregate struc-
ture at large τ .

There are similarities between the neural network predicted
equilibrium phase diagram shown in Fig. 13c and previously
published results for the same set of polymer parameters and
simulation conditions.12 Both the previously published sim-
ulated phase diagram12 and the predicted phase diagram in
Fig. 13c show the open polymer to be the most abundant con-
formation at large temperature values (T > 0.7) while aggre-
gates with multiple loops were abundant at low temperatures
(T < 0.2). These multi-loop aggregates were independent of
the value of KA at low temperatures but as temperature in-
creased, there was a transition to a single-loop aggregate at
intermediate temperatures similar to previous results,12 which
showed racket-shaped aggregates as the most common at in-
termediate temperatures, However, the neural network pre-
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FIG. 7. The reconstructed covariograms derived from a sequence of linearly spaced values in the latent space of the autoencoder. The color of
each covariogram corresponds to the value of its latent space representation.

FIG. 8. The relative fraction of each observed aggregate in the avail-
able training dataset.

dicted phase diagram in Fig. 13(c) does not show a distinct
transition region at 1 < KA < 2.

There are similarities between the phase diagrams of
isotropic polymers21 and the neural network predicted phase
diagrams shown in Fig. 10, especially with respect to the ag-
gregate dependence on temperature, but the transitions be-
tween aggregate phases largely happen at different tempera-
tures and stiffness when comparing isotropic and anisotropic
polymers as shown in Fig. 14, multi-chain aggregation of the
anisotropic polymers was also similar to the aggregation of

FIG. 9. Examples of reconstructed covariograms corresponding to a
(left) hairpin, (middle) multi-headed racket, and (right) toroid

FIG. 10. KA versus temperature slices from the high-dimensional
phase diagram of anisotropic polymer at equilibrium with KD = 1,
for (a) 64-, (b) 44-, and (c) 22-monomer chain. The color bar and
associated covariogram are shown in Fig. 7
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FIG. 11. KD versus temperature slices from the high-dimensional
phase diagram of anisotropic polymer at equilibrium with KA = 1,
for (a) 64- (b) 44- (c) 22-monomer chain. The color bar and associ-
ated covariogram are shown in Fig. 7

FIG. 12. KA versus KD slices from the high-dimensional phase dia-
gram of anisotropic polymer at equilibrium with temperature = 0.3,
for (a) 64- (b) 44- (c) 22-monomer chain. The color bar and associ-
ated covariogram are shown in Fig. 7.

multi-chain isotropic polymers21. Each polymer in the pair
of aggregated polymers shown in Fig. 14a was predicted to
form a single racket-shaped aggregate at low temperatures
(T <0.35), while Fig. 14b showed that the hairpins were inter-
locked. At higher temperatures (T > 4), the neural network
predicts an open configuration, and Fig. 14c shows that the
pair are expected to completely overlap to form a rod-like ag-
gregate. Additional phase diagrams can be found in the Sup-
plementary Material.

CONCLUSIONS

An unsupervised aggregate labeling autoencoder neural
network was developed to assign an aggregate type to trajec-
tories from large simulations either by comparison to a stan-
dard set of aggregates or by a self-referential route. We fur-
ther showed that this labeled data can be used alongside the
polymer molecular scale parameters and the simulation con-
ditions, to predict the most likely polymer aggregates to oc-
cur under different processing conditions, polymer flexibil-
ity, and degree of polymerization. The results confirm that
there is a strong correlation between the molecular scale pa-

FIG. 13. KA versus temperature slices from the high-dimensional
phase diagram of anisotropic polymer with KD = 3 for (a) small, (b)
medium, and (c) large τ . The color bar and associated covariogram
are shown in Fig. 7

FIG. 14. (a) KA versus temperature slice from the high-dimensional
phase diagram of an aggregated pair of anisotropic polymer at equi-
librium with KD = 3 (color bar and associated covariogram are
shown in Fig. 7). (b) The ∆IJ matrix for the pair of aggregated
polymer with KD = 3 and T = 0.3 and (c) the ∆IJ matrix for the pair
of aggregated polymer with KD = 3 and T = 1.0.

rameters, the processing conditions, and the equilibrium con-
formation of anisotropic polymer semiconductors. The neu-
ral network method was able to predict that the number of
loops formed from a single chain aggregate decreases with
temperature. Toroidal aggregates are also more abundant for
small values of KA and KD (<2). For multi-chain aggrega-
tion, the rod-like structure was most common at equilibrium
except for highly flexible polymers at low temperatures which
formed interlocking hairpins. By comparing slices from the
neural network constructed phase diagrams we have shown
there is good agreement with previously published results us-
ing the same polymer systems. This machine learning ap-
proach, trained on coarse-grained simulations has the poten-
tial to reduce the number of atomistic simulations and exper-
iments needed to explore the aggregate phase space when de-
signing organic semiconductor devices. The accuracy for spe-
cific polymer systems can be further increased through top-
down fine-tuning of the polymer interaction potentials and dy-
namics.
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SI. INTERACTION POTENTIAL PARAMETERS

TABLE S1: Gay–Berne parameters.

Parameter value

γ 1

υ 1

µ 1

cutoff 3

ε 1

σ 1

σa 1.0

σb 0.7

σc 0.4

εa 0.25

εb 1.0

εc 0.1

TABLE S2: Bond parameters.

Parameter value

KB 200

b0 0.2

The θ0 parameter in the angle potential is set to 180 and the dihedral parameters K1, K3, K4 are

all set to 0.
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SII. ADDITIONAL PHASE DIAGRAMS

FIG. S1: Slices from the high dimensional phase diagram of the anisotropic polymer consisting

of 22 monomers. Each plot shows the most probable polymer conformation as a function of

temperature and chain semiflexibility parameter KA. Plots from left to right represent increasing

τ ∈ {500,2500,7500} while plots from top to bottom show increasing KD ∈ {1,3,5}. The range

of the parameters of vector D have all been standardized between 0 and 1.
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FIG. S2: Slices from the high dimensional phase diagram of the anisotropic polymer consist-

ing of 44 monomers. Each plot shows the most probable polymer confirmation as a function of

temperature and chain semiflexibility parameter KA. Plots from left to right represent increasing

τ ∈ {500,2500,7500} while plots from top to bottom show increasing KD ∈ {1,3,5}. The range

of the parameters of vector D have all been standardized between 0 and 1.
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FIG. S3: Slices from the high dimensional phase diagram of the anisotropic polymer consist-

ing of 64 monomers. Each plot shows the most probable polymer confirmation as a function of

temperature and chain semiflexibility parameter KA. Plots from left to right represent increasing

τ ∈ {500,2500,7500} while plots from top to bottom show increasing KD ∈ {1,3,5}. The range

of the parameters of vector D have all been standardized between 0 and 1.
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FIG. S4: Slices from the high dimensional phase diagram of the anisotropic polymer consist-

ing of 22 monomers. Each plot shows the most probable polymer confirmation as a function of

temperature and chain semiflexibility parameter KD. Plots from left to right represent increasing

τ ∈ {500,2500,7500} while plots from top to bottom show increasing KA ∈ {1,3,5}. The range

of the parameters of vector D have all been standardized between 0 and 1.
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FIG. S5: Slices from the high dimensional phase diagram of the anisotropic polymer consist-

ing of 44 monomers. Each plot shows the most probable polymer confirmation as a function of

temperature and chain semiflexibility parameter KD. Plots from left to right represent increasing

τ ∈ {500,2500,7500} while plots from top to bottom show increasing KA ∈ {1,3,5}. The range

of the parameters of vector D have all been standardized between 0 and 1.
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FIG. S6: Slices from the high dimensional phase diagram of the anisotropic polymer consist-

ing of 64 monomers. Each plot shows the most probable polymer confirmation as a function of

temperature and chain semiflexibility parameter KD. Plots from left to right represent increasing

τ ∈ {500,2500,7500} while plots from top to bottom show increasing KA ∈ {1,3,5}. The range

of the parameters of vector D have all been standardized between 0 and 1.
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FIG. S7: Slices from the high dimensional phase diagram of the anisotropic polymer consisting of

22 monomers. Plots from left to right represent increasing τ ∈ {500,2500,7500} while plots from

top to bottom show increasing T ∈ {0.1,0.6,1.5}. The range of the parameters of vector D have

all been standardized between 0 and 1.
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FIG. S8: Slices from the high dimensional phase diagram of the anisotropic polymer consisting

of 44 monomers. Each plot shows the most probable polymer confirmation as a function of chain

semiflexibility parameter KD vs. semiflexibility parameter KD. Plots from left to right represent in-

creasing τ ∈ {500,2500,7500} while plots from top to bottom show increasing T ∈ {0.1,0.6,1.5}.

The range of the parameters of vector D have all been standardized between 0 and 1.
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FIG. S9: Slices from the high dimensional phase diagram of the anisotropic polymer consisting

of 64 monomers. Each plot shows the most probable polymer confirmation as a function of chain

semiflexibility parameter KD vs. semiflexibility parameter KD. Plots from left to right represent in-

creasing τ ∈ {500,2500,7500} while plots from top to bottom show increasing T ∈ {0.1,0.6,1.5}.

The range of the parameters of vector D have all been standardized between 0 and 1.
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