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Abstract

A brief history of calculus, leading to Newton and Leibnizs' work in calculus,

is given. The work by Newton and Leibniz, in the development of calculus, is

investigated with the view of incorporating their methods in a new introduc-

tory calculus course for senior Australian school students. It is found that

both mathematicians' early manuscripts on calculus are usable in the class-

room. A course based mainly on Leibniz's methods, with Newton's study

of motion for topics on rates of change, is proposed. Extension material for

talented mathematics students is also presented.



Declaration

This work contains no material which has been accepted for the award

of any other degree or diploma in any university or other tertiary institution

and, to the best of my knowledge and belief, contains no material previously

published or written by another person, except where due reference has been

made in the text.

I give consent to this copy of my thesis, when deposited in the University

Library, being available for loan and photocopying.

D J Woodard-Knight

December 1996

1V



Acknowledgements

I would like to thank my supervisor Dr David Parrott for his comments

and guidance throughout the year. Thanks also to Dr Peter Taylor for his

comments and for proof reading this thesis. David Beard's ready assistance

with ffif 26 and anything else in the field of computing has made the

production of this thesis as a document possible.

Lastly I would like to thank my husband, David Capon, for his comments

and patience, and my son Patrick for getting older.

v



r:J
rt?

Þ

Chapter 1

Introduction

Introductory calculus courses currently being taught in South Australian

schools rely on students understanding limit theory in the early stages of

their course. Limit theory is required to follow the definition for the derivative

function, f'(n) or ffi. lnis,, stated in functional notation is

t@+ù-r@)
f'(r\: Iim'r \*/ /rïô h

This definition arises from the moving of a chord through a curve keeping

one point, P, stationary and the other point, Q, moving closer to it. See

figure 1.1. If P has the coordinates @,f @)) and Q is (z f h,l@ + h)),

where h > 0 then the slope of the chord through PQ is

ystep l@+ù-f@)
rstep r*h-r

As h approaches zero, Q moves closer to P. So, in the limit, we have that

the line through PQ is a tangent at P with slope

f'@):tyrrei#
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Figure 1.1: The chord PQ becomes a tangent at P as h ap-
proaches zero.

This is quite clear to those of us who have studied limit theory and calculus,

but to the novice student it requires the introduction of new notation and

new terminology, as well as the daunting theory of limits. The theory of

limits always seems to present difficulties to students. It is this reason why

an alternative course in calculus is proposed which does not rely on limits

being taught as a separate topic during the introductory course in calculus,

as is currently the case. The development of calculus by mathematicians

such as Newton (7642 - t727) and Leibniz (7646 - 1716) did not involve

the use of limits. They did, however, use the concept of "infinitely small"

steps or increments in their studies. These ideas are more easily taught and

understood than limits. Students would also be removed from the situation

of getting caught up in limit problems during the introduction of the concept

of the derivative.

To introduce an alternative course in calculus, using Newton and Leibnizs'

methods, it is not only necessary to investigate their original work, but also

to review the work of earlier mathematicians who influenced the development
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of calculus. The next chapter presents a brief review of the development of

calculus prior to Newton and Leibniz.

Historically, Zeno (c.450 BC) and his paradoxes on the infinite divisibility

of magnitude were initially presented. Then the process, referred to now

as the Method of Exhaustion, was developed by Eudoxus (c.370 BC). The

method of exhaustion resulted from the work initiated by Antiphon (c.430

BC) in his attempt to find the area of a circle. He considered the circle to be

composed of a regular polygon with the number of sides doubling until a circle

lvas approximated. Eudoxus refined this method by producing more rigorous

proofs. These proofs involved deriving contradictions for inequalities, using

the method of exhaustion, such that the equality must hold. Using the same

method of proof Archimedes (c.225 BC) showed that the area of a parabolic

segment is four thirds of the triangle with the same base and vertex. This

example, shown in section 2.4, displays the use of the method of exhaustion

within a proof by contradiction.

After Archimedes the next development in calculus did not arise until the

fifteenth century in Western Europe. Mathematicians such as Simon Stevin

(154S - 1620) in his study of hydrostatics; Luca Valerio (c.1552 - 1613) in his

paper on finding areas of parabolae; Johann Kepler (1571 - 1630) in his study

of planetary motion and volumes for capacity calculations of wine barrels, all

contributed to methods for finding areas and volumes. This was the initial

work in the field of calculus. Bonaventura Cavalieri (1598 - 7647) produced

the concept of "indivisibles". That is, the very small parts which make up

a line (the points), a surface (the lines) or a solid (the planes). The sum of

3



these indivisibles produces the length, area and volume, respectively.

The need to find maxima and minima resulted in the process of differ-

entiation. Initially, Pierre deFermat (c.1601 - 1665) produced a method for

finding a tangent at a point, using what he called a subtangent. Isaac Bar-

row (1630 - 1677) developed the ratio, known today u" ffi, in a similar style

to Fermat. John Wallis (1616 - 1703) studied areâs of circles and areas be-

tween curves. Using the area of a quadrant of a unit circle he attempted to

calculate zr.

The work of Newton in the field of differentiation and integration is pre-

sented in Chapter 3 and his methods are interpreted using modern math-

ematical language. Excerpts from his original manuscripts are presented.

These excerpts highlight his initial work in finding the ratio of velocities of

moving objects, his anti-differentiation technique and his method for finding

the area under a curve. These are the basic concepts covered in an introduc-

tory calculus course. Similarly, in Chapter 4, the translated works of Leibniz

in his development of differences (dr, say), sums (/) and their relationship

(d I * : n and lx : I dr), as well as his introduction of the integral sign

is presented. AIso, his method for finding the area under a curve, using

his previously introduced sums and differences, is presented. The modern

interpretation of his techniques result in a clear and easy introduction to

calculus.

Within Chapter 5 Newton's methods and their possible inclusion in a

modern calculus course are discussed in detail. Similarly, the style and meth-

ods of Leibniz are studied. Finally, parts of the work of both mathematicians

are utilised to produce an alternative course in introductory calculus. Mainly
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Leibniz's methods are used to set the course, but the style of Newton in his

study of moving bodies and velocity vectors provide an opportunity to discuss

rates of change. Their original manuscripts provide useful templates for in-

vestigative work for talented mathematics students. Ideas for such extension

material are proposed within the final section of Chapter 5.

The incentive behind this work was to present an interesting and innova-

tive introductory calculus course. Using the original works of mathematicians

who had a major role in the development of calculus presents the opportunity

for students to see for themselves how the pioneers of calculus thought about

problems and how they solved them. It also presents an exciting opportunity

for students to read Newton and Leibnizs' actual writings on calculus. Teach-

ers of secondary mathematics are often seeking methods for teaching topics

which will motivate and stimulate students. The course proposed here, along

with ideas for extension material to offer talented students, provides teachers

with the opportunity to introduce calculus in a style which will stimulate and

interest students.

5



Chapter 2

The Introduction of Calculus

It is interesting to note that most courses in mathematics at the senior high

school level introduce the topic of calculus by first considering differentiation,

with integration following. This is in contrast to the historical development

of calculus which arose from the need to find areas, volumes and arc lengths,

resulting in the creation of integration. Differentiation, on the other hand,

arose later as the result of problems requiring tangents to curves and ques-

tions concerning maxima and minima. Actually assigning a date and time

for the beginning of calculus is impossible, and it is incorrect to say that it is

due to Newton (7642 - 1727) and Leibniz (7646 - 1716) alone. Many math-

ematicians produced work which can be regarded as necessary beginnings

to prompt the thinking of later mathematicians. Some historians suggest

looking as far back as ancient Greece in the fifth century BC. Below we will

briefly consider the contribution to calculus of mathematicians before New-

ton and Leibniz. The following books were used for information regarding

the works of the mathematicians considered: Boyer [1], [2], Smith [10], 111]

and struik [12], [13].

6



2.L Zeno (c.450 BC)

Zeno was a philosopher who proposed four paradoxes which were to have

a profound effect on mathematics. These particular paradoxes are related

to how one thinks of magnitude : magnitude being infinitely divisible, or

magnitude being made up of a very large number of small indivisible atomic

parts. The following are examples from Eves [6] which illustrate two of the

paradoxes :

The Dichotomy

If a straight line segment is infinitely divisible then motion is impossible,

for in order to traverse the line segment it is necessary first to reach the

midpoint, and to do this one must first reach the one-quarter point, and to

do this one must first reach the one-eighth point, and so on, ad infinitum. It

follows that the motion can never begin.

The Arrow

If time is made up of indivisible atomic instants, then a moving arrow is

always at rest, for at any instant the arrow is in a fixed position. Since this

is true of every instant it follows that the arroru never moves.

As a result of these paradoxes there was the development of two schools

of thought in mathematics - those following the concept of infinitely divisi-

ble magnitudes and those supporting the concept of large numbers of small

indivisible atomic parts as the composition of magnitudes.

7



2.2 Antiphon (c.430 BC)

The first types of problem arising in the calculus area were concerned with

finding areas, volumes and arc lengths. Antiphon, who lived at the same time

as Socrates, attempted the problem of squaring the circle. That is, finding

the area of a circle, by constructing with pencil and compass a, square with

the same area as a given circle.

Antiphon approached the problem of finding the area of a circle by con-

sidering a regular polygon inscribed in a circle and doubling the number of

sides of the polygon until a very close approximation of a circle is obtained.

The difference in area between the circle and the polygon would eventually be

negligible. In Antiphon's time it was possible to construct a square equal in

area to any regular polygon. So, he proposed that it is possible to construct

a square equal in area to the circle (hence, the use of the term "squaring

the circle" ). There was much criticism against this argument since it did

not hold with the concept of infinitely divisible magnitudes. Supporters of

this train of thought held that the whole circle could never be used by the

polygon inscribed within it and therefore it is not possible to calculate the

area of the circle. This lead to the idea of the Method of Exhaustion which

can be used in answering Zeno's paradoxes.

2.3 Eudoxus (c.370 BC)

Although Antiphon did the preliminary work towards the method of exhaus-

tion, it is generally regarded as being due to Eudoxus. This method assumes

that a magnitude is infinitely divisible and has the following property:

8



If from a,nA nxo,gnitude there be subtracted a part not less than

i,ts half, from the remainder another part not less than its half,

and so on, there will at length rema'in a magni,tude less than any

preassi,gned magni,tude of the same kirzd. (Eves [6])

In modern notation this is the same as the following (Boyer [2]):

that i,f M i,s a giuen magni,tude, e is a preassigned magni,tude of

the same lei,nd, and r i,s a ratio such that ! 1 r 1!, then we can

fi,nd a posi,ti,ue integer N such that M (I - r)" < e, for all posi,tiue

i,ntegers n ) N.

That is,

lim M(7 - r)" :07¿-+oo

According to Archimedes, Eudoxus was the first to use the method of

exhaustion by proving that the volume, V, of a tetrahedron is equal to one

third the volume, P, of a prism of equal base and height. He assumed that

V > IP and then V < +P and using the method of exhaustion derived

contradictions. Hence the equality must hold. This method of proving the

equality by producing contradictions for the inequalities rffas referred to as a

reductio ad absurdunt^

The earlier work of Antiphon, involving the inscribing of regular polygons

within a circle and doubling the number of sides indefinitely to find the area

of the circle, was made more rigorous by Eudoxus' method of exhaustion.

The proof (by the method of exhaustion) that the areas of circles in ratio

eqrral the ratio of their respective squared diameters is given by Euclid in
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his text Elements XIL? (or see Calinger [3], pp136,137) and is probably the

work of Eudoxus. Following is a more modern version of the proof (Boyer [2],

pp101,102) :

Consider circles c1 and c2 with diameters d1 and d,2, and areas A1 and 42.

Prove

Ar d?

A2 d?

Assume

Then there is a magnitude A/t ( A1 such that

Let A1 - A'r lje a preassigned magnitude e > 0. Now inscribe, within

circles c1 and c2, regular polygons of area Pr and Pz. The polygons have the

same number of sides. By doubling the number of sides of these polygons, the

area between the polygon and its respective circle would decrease by more

than half. The method of exhaustion then says this difference in areas can

be reduced by indefinitely doubling the number of sides until Ar - P1 1 €.

Since h - A\: 6, then Pt > A\ using the previous inequality. From

Proposition 1 in Book XII of the Elemenús, Euclid says that if two rectilin-

ear figures are similar their areas are in the same ratio as the squares on

corresponding sides. In this case, then,

d?

B

d?

4

At
A,

A',

Az

d?

æ,

P1

h

10



Now, since A'rf A2 : d?|d7, lheÍl

(2.1)

Pz) Az

This is false as the polygon with area P2 is inscribed within the circle A2

and therefore cannot be of greater area. Hence it is disproved that

A\
Az

P1

h
It has been shown above that P1 > A\, so it follows from (2.1) that

Similarly it can be shown that

At
A,

AT

A2

d?

d7'

d?

dz

d?

dz

is false. Therefore, the equality holds. That is,

At
Az

2.4 Archimedes (c.225 BC)

Archimedes came very close to defining integration when finding the area

of a parabolic segment using the method of exhaustion and the reductio ad

absurdum approach. He showed the area of a parabolic segment is four thirds

of the triangle with the same base and vertex.

11
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P

T

q

Figure 2.1: The parabolic segment QPq used by Archimedes
in Proposition 22 and in his proof on page 15, that a parabolic

segment is four thirds of the triangle with the same base and

height.

To assist his proof he made the following propositions (Heath [9])

Propositi,on 22

If there be a series of areas A,B,C,D,... each of which i,s four

ti,mes the nert in order, and if the largest, A, be equal to the

triangle PQq i,nscribed in a paraboli,c segment PQq and haui,ng

the same base wi,th it and equal height, then (A+ B +C + D + ...)

is less than the area of [parabolic] segment PQq.

See figure 2.1.

In an earlier proposition Archimedes proved that

LPQq: (APQR+LPqr)

Then, since

A: LPQq,

72



we have

LPQRI LPqr : B

The symbol, A, refers to the area of the triangle.

In li,ke nl,anner we proue that the triangles si,milarly i,nscri,bed in

the remaining segments are together equal to the area C, and so

on.

Therefore A + B + C + D + ... i,s equal to the area of a certain

i,nscribed polygon, and i,s therefore less than the area of the seg-

ment.

That is, we have

B : rua,

where A is the area of the triangle QPq. So,

11
¿, + ¿t + ".) < the area of the segment'

C

D

: I": lo,
: tUt : io, and so on,

,7
A(7 + 4+

Proposition 23

Giuen a series of areas A, B, C, D, . . . , Z, of which A is the great-

est, and each i,s equal to four ti,mes the nert in order, then

A+ B + C + D + ... + Z +'=t : !O.33

13



Archimedes proves this proposition by partial sums, since the concept of

the sum of a geometric progression was not known.

He considered areas a,b,c,d, such that

Then, since

and

we have

b - !r",

c:!c,
d : tn,

B

A

1

5
1

4

b

B

B+b:te.

Similarly,

C+c: t="
3

and so on for D + d, E + e, ...

So,

B +C + D +... + Z+b+ c*... * z :|ro* B +c+... +v)

We know that

bt ci d+... t a :]tt * C + n+... + Y),

So, subtracting equation (Z.S) from equation (2.2) will give

B+C+D+...+Z+z:l;A.
J

L4

(2.2)

(2.3)



Add A to both sides to obtain

A+ B + c + D +... + z *!r, : !a.

Now Archimedes has the necessary information to prove the proposition

That Euery segment bounded by a parabola and a chord Qq is equal to four

thi,rds of the tri,angle whi,ch has the sanle base as the segment and equal height.

(Fauvel & Gray [7]).

He begins his proof by letting 6 : fAPQq, referring to figure 2.1 on

page \2.

Suppose the area of the segment is greater than K. Inscribe, in the

segments cut off by PQ and Pq,, triangles with the same base and height

(..S. LPRQ and APrq). Continue inscribing triangles in the remaining

segments and eventually the sum of the segments remaining is less than the

area by which segment PQq exceeds K. So, the polygon formed must be

greater lhan K which is impossible, since from Proposition 23

A+B+C+...+2.!O,
3

where A: APQq. Thus the supposition that 1l is less than the area of the

segment is false.

Now suppose the area of the segment is less than K.

If

aPQq A,

B : tua,

c: )a,

15



and so on, until there is an area X such that

X < K - area of the segment

then,

Now,

1K-(A+B+C+...+X) X

and from (2.4), there exists n ) 7, n € R such that

K - arca of the segment nX

So, (2.5) gives

A+ B +C +... + X* å" :lA from Proposition 23

_K

(2.4)

3
(2.5)

(2.6)

.+x

and from (2.6)

K - nX : area of segment, fl ) l,n e R

+ A* B + C +... +X > area of the segment

which is impossible from Proposition22. Hence the segment is not less than

K

Thus

*-t¿r:AtB+c+

A* : irn,

(2.7)
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It was not until around 1450 that Western Europe became aware of

Archimedes' works, and any further development did not take place until

the early seventeenth century. Mathematicians such as Simon Stevin, Luca

Valerio, Johann Kepler, Bonaventura Cavalieri and Pierre deFermat in the

first half of the seventeenth century, and John Wallis and Isaac Barrow work-

ing later in that century, contributed to the development of calculus prior to

Newton and Leibniz. A brief account of some of their works follows.

2.5 Simon Stevin (1548 - 1620)

Stevin, an engineer from Belgium, worked in the area of hydrostatics. He

found the force against a dam wall, due to the pressure of fluid, by divid-

ing the dam into horizontal strips. This method is similar to the modern

approach.

2.6 Luca Valerio (c.t552 - 1618)

Valerio was an Italian mathematician who published a paper in 1606 titled De

quadratura parabolae. In this paper he uses similar methods to Archimedes

to find the area underneath parabolae.

2.7 Johann Kepler (167I - 1630)

Kepler was involved in the study of planetary motion and required a method

to find areas related to this work. He also required a method for finding

volumes for his work on capacities of wine barrels. To calculate the area of

a circle he considered the circumference as the infinite number of sides of a

t7



regular polygon. See figure 2.2. These sides represented the base of a triangle

with altitude equal to the radius of the circle. The area of the circle then is

the sum of all these triangles. That is, the area of the circle is equal to half

the product of its circumference and radius.

P1

P2

Figure 2.2: Kepler's diagram for finding the area of a circle.
Length P1P2 is infinitely small, such that the altitude, r, is the
radius of the circle with centre C.

To calculate the volume of a sphere Kepler considered an infinite number

of cones, with the base of the cones on the sphere surface and their vertices

at the centre of the sphere.

2.8 Bonaventura Cavalieri (1598 - L647)

Cavalieri, an Italian mathematician, established the concept of indiui,sibles

to produce a simple form of calculus. Parts which make up an object are the

i,ndi,uisibles. For instance, solids are made up of infinitely many planes, sur-

faces are made up of infinitely many lines and lines are composed of inflnitely

many points. The sum of the indiuisibles then produce volumes, areas and

lengths, respectively. Cavalieri stated the theorem:

18



If two soli,ds haue equal alti,tudes, and if sect'i,ons made by planes

parallel to the bases and at equal di,stances from them are always

in a gi,uen ratio, then the uolumes of the solids are also in this

rati,o.

[smith 110]l

An example of the use of this theorem can be seen in the following problem

to find the volume of a sphere:

Consider an hemisphere of radius r and a cylinder with radius r and

height r. Inscribe within the cylinder a cone, such that the base of the cone

is the upper surface of the cylinder and the vertex of the cone is the centre

of the lower base of the cylinder. See figure 2.3. Consider this cone as being

taken out of the cylinder. Now place the cylinder with cone removed and

the hemisphere on the same plane and cut the solids by a line parallel to the

base plane, at a distance h up from it.

T

Figure 2.3: Cavalieri used the hemisphere and cylinder with
cone removed, cut by a plane at height h, to show that they have
equal volumes.

The plane cuts the hemisphere to produce a cross-sectional shape of a

circle and the cylinder to produce an annulus as the cross-section. The

19
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areas of these resultant cross-sections are r(r2 - h2). Cavalieri's theorem

then implies the hemisphere, and cylinder with cone removed, have equal

volumes. From this information the cylinder with cone removed may be used

to find an expression for the volume of a sphere. That is

V :2(voltme of cylinder volume of cone)

: 2(trr2 .r - 
¡rr2 'r ,'3'

4trr3

3

Differentiation developed due to the need to find maximum and minimum

values in problems and also to allow the construction of tangents.

2.9 Pierre deFermat (c.1601 - 1665)

Pierre deFermat was the first to establish ideas in this direction in 1629. In

1638 he communicated a method to Descartes (1596 - 1650) regarding finding

the maximum and minimum. According to modern notation he equated /'(r)
to zero to find maxima and minima. He also established a method for finding

the tangent at a point ofa curve, using the subtangent ofthe point. See figure

2.4. The subtangent is the segment on the r-axis, labelled a, between the

foot of the perpendicular drawn down from the point to the r-axis and the

intersection of the tangent line with the z-axis.

Let the curve be f (r,U):0. Through a point (r,y) on the curve draw

a tangent line meeting the z-axis. Let e be a very small distance in the z

direction and place a point on the tangent line with r coordinate r I e. Then

the length of p in the diagram is g(1 + Ð.

20



@,a)

Figure 2.4: deFermat used the subtangent, Iabelled ø, to find
the tangent. The tangent slope can be found, once ø has been
found. Then the equation of the tangent may be found using the
point (r, g).

Example

Find the subtangent of

13 ly3: a'y i.e. 13 +at -ru:0

Substitute ((" + e),y(L + ;)) for a point on the tangent very close to the

point on the tangent and curve to obtain

(rl-e)3+s3(1 *:)'-a(r+e)(1 +9) :0.

Now use Í(*,A):0, divideby e, and then Iete:0 to obtain the following

expression for the subtangent:

3at - *a
o,

a-3r2

The method of dividing by a number which later is used as zero resulted in

much criticism against calculus. For instance George Berkeley (16Sb - 1753),

an Anglican Minister and Philosopher, wrote The Analyst in 1734 in which

he criticised the use of increments that vanish after a former supposition that

2l
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they were something. He argued that this is a false way of reasoning. [Fauvel

& Gray, [7]l

It was not until after Newton that mathematicians became more rigorous

in their proofs in calculus. Colin Maclaurin (1698 - 1746) responded to

Berkeley's criticism in a paper written in 7742 and provided the basis for a

more rigorous approach to the calculus as set up by Newton, Leibniz and

their predecessors.

2.IO John Wallis (1616 - 1703)

In 1656 Wallis produced a book called Arithmeti,ca Infi,nitorum. Here he

developed a method for using infinite series to assist in solving the problem

of finding the area between curves.

In modern notation we write

ft *^d,*:l'^*' lt: t
Jo lm,flln m-tT

Wallis showed this held for m being a positive or negative integer (except

for m - -1) and for rn fractional. He also attempted to calculate zr by

finding an expression for the area of a quadrant of the unit circle. He did

not have knowledge of the binomial theorem, so to calculate the area of the

quadrant u. f,1r - r')ld,* *u, not possible.

2.LL Isaac Barrow (1630 - L677)

In 1669 Barrow produced his most important work in the area of calculus

ín Lectiones opticae et geometricae. He contributed to the development of

22



differentiation by providing a method to find a ratio which today we refer to

"" #. A summary of his method follows.

Figure 2.5 illustrates the constructions required. Given a curve find the

slope of the tangent at point P. Let Q be a point close to P on the curve

and construct triangle PQR.

P

R

Figure 2.5: Barrow finds the ratio i (the modern j$), *tri"tt irt
this diagram is the ratio of sides PR and QR.

He says triangle PTM is nearly similar to triangle PqR, and that the

closer Q is to P then

RP MP
QR TM'

Lef QR: € â,nd RP : ø, then if P is labelled (r,A), Ç is (r - e,U - o). Sub-

stitute the coordinates for Q into the equation of the curve, neglect squares

and higher powers of ¿ and e and find the ratio f . \ /ith the application of

limit theory, unknown to Barrow, this method can be made more rigorous.

It is interesting to note the similarity between the methods of Fermat and

Barrow.

MT
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Example

13 +y3:r3

where r is constant. Let r become r-eandg become A-o, and substitute

into the above equation. Then

(*-")t+(y-0)3:r3.

So,

13 - 3r2e * 3e2r - eB + a3 - 3a2a I 3a2y - e,3 : .-3.

Neglecting powers of. e2 and a2 and higher, and using fr3 + A3 : rs results in

the following equation

3x2e I 3y2a: 0.

The required ratio is then,

o, -fr2
e y2'

A recognised symbolism and defined sets of rules was needed to tidy up

all the preliminary work in calculus. Leibniz and Newton rffere to provide

this for calculus. Their methods are observed in the next chapters. The

fundamental basis of calculus required more rigorous proofs and this was

provided by the work of Colin Maclaurin, Augustin-Louis Cauchy (1739 -

1857) and mathematicians of the nineteenth century.
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Chapter 3

Isaac Newton (L642 L727)

Throughout this chapter there are sections cited from Newton's translated

papers found in Whiteside's volumes: The Mathemati,cal Worlcs of Isaac

Newton [14] and The Mathematical Papers of Isaac Newton [15]. Newton's

short hand requires some explanation before reading further. Words such

as "which", "the" and "that" are abbreviated to ulr"h" , "a"" and "yt" , re-

spectively. Spelling is different in some cases, for instance, "uniformely"

(uniformly), "bee" (be), "onely" (only), "terme" (term). He sometimes be-

gins sentences in lower case, or with "And" , and some of the grammar he uses

is not practised in modern English. This all makes reading his manuscripts

quite difficult.

Newton referred to variable quantities, such as r and y, as fluents and

denoted their respective fl,urions as r and g. In modern notation, the fluxion

of z is ff and,ù: #.Newton used the letters p, q and r for fluxions until

1691. That is,

dr
p

dt'
dy

dt
q
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and

dz
' dt'

Some of the quotations from Whiteside's [14], [15] volumes in this section use

the n notation so that arguments are more readily followed. Newton used an

arbitrary increase in time, denoted o and called it li,ttle zero. Consequently,

op, oe and or represent increments of the variables r, y and z. In modern

notation we call o, dú giving

oP: df+
dt

dr

and similarly

"q: dt#

-dy

and

As the increment vanishes we have,

o, : dt#

da

dr

dz

d"

: d,Z

q
-:p

L
p

26
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For further simplification Newton often chose ø to be the independent time

- variable with p : 1. Then the increments o8 and or of g and z, with o as

the increment of ø, give

q

and

r

da

dr

dz

d.

In October 1666 Newton organised his research in calculus from the pre-

vious two years (autumn L664- May 1666). Whiteside [15] called this work

The October 1666 Tract on Flurions. It was first printed in A R Hall and

Marie Boas Halls' Unpubli'shed Sci,enti,fic Papers of Si,r Isaac Newton [8]. It

is this paper that supplies most of the information on Newton's development

of calculus.

3.1 Newtonts Calculus

Newton's approach to the problem of finding tangents to curves was to con-

sider the r and y coordinates in motion and therefore as functions of time.

So, in fact, the curve f @,A):0 is the locus of the intersection of a moving

vertical line and a moving horizontal line. The movement of a point on the

curve can be described by horizontal motion with particular velocity i and

vertical motion with velocity il. From figure 3.1 it can be seen that the tan-

gent vector is produced by the vector sum of å and g and the slope of the

tangent vector is $.
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tangent vector

f@,a):o

Figure 3.1: The tangent vector, horizontal velocity and vertical
velocity components of a curve.

Newton presented a geometric model, shown in figure 3.2, in which two

or more points A and B travel distances r and gr along different straight

lines, in equal periods of time, with speeds á and E respectively, such that

Í@,a) : o'

ïLfi

B

ir

x)

aa

Figure 3.2: Newton's geometric model for the two points ,4 and
B moving along different lines in the same space of time.

Newton wanted to find the relationship between ø and g, given f @, A) : 0

In The October 1666 Tracú he writes the following proposition:

Proposition 7

Haue'ing an Equation erpressing A" relation twirt two or n'Lore

lines r , y , z €! c: described 'in y" same ti,me by two or more moue'ing
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bodys A,B,C üc: the relati,on of thei,r ueloci,ti,es p,e,r Uc may

bee thus found, uiz: Set all y' termes on one si,de of y' Equation

that they become equall to nothing. And first multi,ply each terme

by so many times ! as r hath dimensions in yt terme. Secondly

multiply each terme by so many ti,mes I ot A hath di,mensions i,n

it. Thirdly (i,f there be 3 unlcnowne quantitys) multi,ply each terme

by so rnanA ti,mes f, as z hath dimensions in yt terme, (i,f there

bee stü more unknowne qua,ntitys doe li,ke to euerA unknowne

quantity). The summe of all these products shall bee equall to

nothing. W"h Equation giues y" relati,on of y" ueloci,tys p,q,r €4c.

An example given by Newton of this method is: If øa I m - UA : 0, then

2?.* - 2!.aa :0.ïa
Here, he has treated ø as constant and his notationlor 12 is rn, and similarly

for y2 (although he sometimes does write 12). Hence the dimensions of r and

A are 2 and the multipliers 2fi and zfi result from his method.

His resultant relationship of velocities is given by

Ï:A:q:P'

Example

Given A : lx3 , find the relationship of the velocities.

Let

Í@,a)-a-ø3:0.

This can be written as

*oat - rsyo :0.
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So, using Newton's Proposition 7 and using å and gr rather than p and q, we

have

or

So

¡0.1+ t.!)roa' - e.Y +o.Y)#ao: o'ra'ra

,! - 3r2ù :0

3r2 is the relationship required

In modern mathematics we would not consider the following demonstra-

tion by Newton (Whiteside [t5]) a valid proof of Proposition 7. It was men-

tioned earlier that a major criticism of Newton's work was his lack of rigorous

proofs.

Propositi,on 7 D emonstrated

Lemma. If two bodys A, B moue uniformely fsee figure 3.3] A"

3T;", lro* I ,o 
;',h,1;,Ír', 

€lc: in a' same t'ime' Then are v'

tines f,f,',8i1;,Y;¿,uÉ[r, €/c: as their uetocitus f,. And, thoush

they moue not uni,formely yet are y' infinitely little lines w"h each

moment they describe, as their uelocitys w"h they haue while they

descri,be g* . As i,f y' body A wth y' uelocity p descri,be y" infi'nitely

Ii,ttle line (cd:¡O x o, in yt moment y" body B wth y" ueloci,ty q

will d,escri,be y' line (gh:)q x o. For p: q ii po : qo. Soe yt if y"

described li,nes bee (ac:)r, g (bg:)y, i,n one rnornent, they will

bee (ad:)r * po, U (bn:1 A + qo in y" nert.

a;:r
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cdef
ttlla

b

shkt
Figure 3.3: To assist the proof of Proposition 7 Newton used

this diagram showing two bodies moving uniformly along different
lines in the same time.

Newton follows his proof with the following demonstration. It is impor-

tant to note that the "d" in the last term, -dAA, in his demonstration is not

a derivative. The "d" represents a position through which body Á moves

as shown in figure 3.3. It is also worthy of note that Newton writes cubic

po\Mers as Í3, for instance, rather than rm.

Demonstr: Now i,f y" equation erpressing A' relation twi,rt y' li,nes

r üA beers -abrlas -dAA:0. Imay substituterlpo €!

y + qo into y' place of r U y; because (bA A' lemma) they as well

as r ü y, doe signi,fy y" li,nes descri,bed by y" bodys A U B. By

doeing so there results

13 - 3p o m I 3pp o or I p3 o3 -abr abp o ¡o,3 - dyA - 2dq o A - dqqo o : 0

But 13 - abr I a3 - dAA : 0 (by supp.). Therefore there remai,nes

onely

3p o rr * Sppo or I p3 os -2dq o A - dqq o o - o,þpo : Q
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Or di,uidi,ng by o ti,s

3pr2 + 3pp o r I p3 o o - 2dqy - dqq o -abp : Q.

Also those termes are i,nfini,telg li,ttle 'in w"h o i,s. Therefore omit-

ti,ng them there rests Sprr - abp - 2dqy : g. The li,ke may bee

done i,n all other equations.

Hence I obserue. Fi,rst yt those termes euer uani,sh w"h are not

multiplyed by o, they being y" propounded equati,on. Secondly

those termes also uanish in w"h o is of more yn one dimens'ion,

because they are infi,nitety lesse yn those in u)"h o i,s but of one

dimension.

The expression r * po used in Newton's demonstration is ø I ro, or in

modern notation r + fr.dt. Similarly A + qo is E * #.at. These new terms

may be substituted into the original equation in place of r and E since, by the

Lemma given on page 30, r * ff.dt and A + #.dt represent the lines r and, y

an infinitely small moment later. Upon simplification, and neglecting terms

ín (dt)2 and higher, the following expression for the relationship between

velocities results:

A:r:(3*'-ab):2dy

or

#,#:(zr2- ab):2d,y

dy 3r2 - ab

2da

or

dr
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Again note that the "d" in the term 2dy is a position through which the body

A moves and is not to be confused with the modern notation for derivative.

To cater for more difficult problems Newton introduced what is now re-

ferred to as the chain rule. He describes the process in the following, taken

from Whiteside [15]:

Note gt if there happen to bee i,n any Equation ei,ther a fracti,on

or surde quantity ... To fi,nd in what proport'ion the unknowne

quantitys 'increase or decrease doe thus. 1 Talce two letters the one

(ot t) to signi,fy yt quantity, y' other (ar) its motion of i,ncrease

or decrease: And maki,ng an Equation betwirt ye letter (Ë) €j y'

quantity si,gnifi,ed by it, find thereby (ba prop 7 ...) y' ualor of

g" other letter ("). 2 Then substituting y" letter ({) si,gni,fyirg A'

quantity, into its place i,n y" mai,ne Equati,on esteeme yt letter ({)

0,s an unknowne quantity Ü performe y" worke of [A'] seauanth

proposi,tion; €! into y' resulti,ng Equation instead of those letters

t ü n substitute thei,re ualors. And soe you haue y' Equati,on

requ'ired.

Erample 1. To frnd p €i q A" motions o! r U y whose relation i,s,

au: r 0,a - !L:x. fi,rst suppose - ï:L or t€+rr-aa:0È- 0"4

€! thereby find r y' moti,on of {, uiz:

(by prop 7) 2r( i 2pr :0. Or -l : r : ffi.
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Secondly i,n y' Equation yy - 0,0, - frlx, writing { i,n stead of

40., - ïr, the result is yy : r{, wherebA frnd y' relati,on of y'

motions p,, Q, I r: uiz (bg prop 7) 2qA : p{ I rr.

In w'h Equation instead oÍ t €i r writi,ng theire ualors, y' result

is, 2qy : p'/aa - rr - ffi W"h was required.

Following the method described by Newton above, and using p : ï, q : '{t

and zr : i, the example used by him can be presented thus:

Let y2 : r\/æ - 12. Suppose t: \/P=æ, then

t'-o'l12:0.

Applying Proposition 7 we obtain

2t€+2rù:0,

or

-TT
È

ë
ç

Now,

a2 a,2 - fr2

so that

a2:rË

So,2g(1 : rt * ri using Proposition 7. Substitute for { and { to obtain

^2*
2Aù: ¡t/az - az - --

¡A¿ - Iz
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as required.

After further rearranging, the ratio of the velocities can be found to be

iJ a2 - 2r2

2*t/z(sz - /2)314'ï

In Proposition 8 Newton presents a method for finding the anti-derivative,

g, given the velocities i and'i7, and the relation between z and f;. He says

that

Prop îth i,s y" Conuerse of this 7th Prop. €l may bee therefore

Analytically demonstrated by i,t.

[Proposition) I If two Bod,ys A €j B, by their uelocitys p U q

describe y' lines r €i A. U an Equati,on bee gi,uen erpressing g"

relati,on twi,rt one of the y" li,nes r, Ü U' ratio fi of their moti,ons

q ü p; To find y' other line y.

Could this bee done all problems whateuer might bee resolued. But

by y" followi,ng rules it may bee uery often done. (Note yt +m €!

Ln are logari,thmes or numbers signi,fying A' di,mensions of r.)

Fi,rst get y' ualor of fr. Whi,ch ¿f ü bee rationall €i its Denominator

consi,st of but one terme: Multi,ply yt ualor of r €l di,uide each

terme of it by y" logari,thme of r in yt terme y' quote shall bee y"

ualor of y.
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Example

If c : qai, rrrlrltiply by r to get arT nr.

Now divide by the power of ø to ger #
That is,

n m+n
U:- . .a'fr n

rn+n

Newton follows Proposition 8 with many examples for the cases when fi is

rational, irrational, a surd, or combinations of these. One example he gives

If

q crn-r
p a,*br" '

then

c
a nab + nbz'

where z : brn and the symbol n is read as "the area of".

To explain how Newton came to derive a solution for y, consider the

following:

crn-l
albr"

Now,

qa
pù

br"z
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so that

So we can write

2 : nbr"-r.ù

ila
7 nbrn-r.r

crn-r 1
V-- a+br" ^ n6r"-t

c

nb(a * br")

That is,

a (3.1)2- nbalnbz'

So we can say

c
", - 

I t_u-¿1
n00, + noz

(3 2)

Equation (3.1) can be written as

dy

dz nbalnbz

So it can be seen that equation (3.2) is, in modern notation,

a: [ , 9. , d"." .l nba I nbz

However, to be more accurate the area under a curve is given by a definite

integral. So, Newton has really produced a method for the inverse of the

chain rule, rather than finding an area.

In the case where the line to be found given the area involved hyperbolic

or circular functions Newton used the binomial series expansion and then

integrated each term. For example if

a

b+cr'
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then by using the binomial series expansion we get

a o,cr ac2:r2
I

-h- b"- b3

which upon applying Proposition 8 results in

0,r 0,cr2 ac2r3
IY- b - w - 3b, -

Problem 5 of The October 1666 Tracú introduces a method for finding

a line given the area. Newton actually uses the Fundamental Theorem of

Calculus to solve the problem, that is

fda
.l ådr : u'

where g is the area.

Prob 5t. To fi,nd y' nature of y" crooked li,ne whose area 'is er-

pressed by any gi,uen equation. That i's; y" nature of y" area being

giuen to find y" nature of y" crooked line whose area i,t is.

To assist reading Newton's following solution consider figure 3.4.

Resol. If y" relati,on of o"b: n, Ü farea]abc: U bee giuen €4 y"

relati,on of ab : r, Ü bc - q bee required (bc bei'ng ordi,nately

applyed at right angles to ab).

Make de ll ab L ad ll be : L. €! y" i,s Zabed : r' Now sup-

posing y" line cbe by parallel motion from ad to descri,be y' two

superfi,cies o,e: fr, €i abc: y; The uelocity rth .ch they increase

38
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r

q:f(r):i¡

I
Figure 3.4: Given the area under the curve y, Newton finds the
line which determines this area.

will bee, as be to bc: yt is, A' motion bA w"h r increaseth bei,ng

be : p : l, a' mot'ion ba ,"h y i'ncreaseth will bee bc: Q. Whi,ch

therefore may bee found by prop.7th.

d
e

Example

If

or

Then from Proposition 7

2r
, t/rn -- a,

-4rn3 *9y2:g

il
q

ù
l2r12
78a

,/r,

{
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So, the curve, whose area is +t/r, , is 1/rr. In modern notation this

means

I
The example supplied by Newton does not clearly show the fundamental

theorem of calculus. Consider figure 3.4. The problem states that given the

area, A) in terms of ø find the curve q: f @).Also given is øb: r,bc: q

and ad: be: I.

If the area is regarded as being produced by the movement of the vertical

line öc with velocit¡ # : ù :1, then, Newton says, the two areas r and y

will increase as be to bc: At is, A" moti,on bA ,'h ri,ncreaseth being be: p:

(") : 7, y" moti,on by w'h A increaseth wi,ll bee bc : Q. So, in fact he has

said that the rate of change (with respect to time) of the area, A,r is q. That

is

dy

dt 8'

or

Withn:p:1then

2r
T 1/rr ar,/r,

qa

a
=:Qr

40

da

dr

or

q



So, to find the curve (q) whose area is y, Newton says to use Proposition

7 to find H. l" the above example, the area isA -+t/r" and followinghis

method results in the curve ffi: ,¡A.
In modern notation he has used

a: l!.a"
or

area

o"Tea: (curue) dr

Therefore, Newton has used the Fundamental Theorem of Calculus in

that / ffid,r: gr where gr is the area and ff is ttre curve which produces that

3.2 Fluents and Fluxions

Newton's first paper introducing the terms fluents and fluxions was written

between 1670 and 1671 and is called De Methodis Seri,erum et Flurionum

(Methods of Series and Fluxions). It was published in 1737 and appears

in Volume 3 of Whiteside [15]. Whiteside uses the dot notation for speeds

rather than lettets p,8,r etc. The following excerpts taken from Whiteside

highlight the introduction of the terminology used by Newton for quantities

and their resultant speeds. A problem very similar to one used earlier to

demonstrate Proposition 7 is shown, as well as the proof for this method of

solution. Rather than being a repeat of what has been shown earlier the

works from his later paper show how his thoughts have developed in the area

of calculus.
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... to di,sti,ngui,sh the quanti,ties whi,ch I consi,der as just percepti,bly

but indefi,nitely growing from others which'in any equations are to

be loolced on as known and determi,ned are designated by the ini,ti,al

letters a,b,c and so on, I wi,ll hereafter call them fl,uents and

designate them by the fi,nal letters u,n,U, and z. And the speeds

wi,th whi,ch they each flnw and are 'increased by their generating

motion (whi,ch I might more read'ily call fl,urions or simply speeds)

I will desi,gnate by the letters ù,ù,ù and 2 ...

Problem L Gi,uen the relation of the fl,owing quanti,ties to one

another, to determi,ne the relation of the fl,urions

Arrange the equation by which the giuen relati,on is erpressed ac-

cordi,ng to the di.mensions of some fl,uent quanti,ty, say r, and

multiply its terms by any arithmeti,cal progressi,on and then by

i Carry out thi,s operation separately for each one of the fl,u-

ent quantities and then put the sum of all the products equal to

nothi,ng, and you haue the desi,red equation.

This algorithm is equivalent to that in proposition 7 stated earlier. Here,

though, Newton uses his new terminology and in the example following dis-

plays an alternative setting out for the solution.

Example. Iet ø3 - an2 I ary - A3 :0, then considering the r quantity

first we get

"'.@T) - or'.çz!) + ary.(!) - g,'.(o) : o,
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and then for the g quantity

-a3.ß
a

) + ars.( ) - ar2.(o) + ø3(o) :6
a

a

a

The sum of all the products gives

3ùr2 - 2arr * ara - 3ùa' + ayr :0,

which will give the relation between fluxions r and y.

So, with r as the independent variable, that is r : 1, we can say

dy 3r2 -2arlay
dr 3y2 - ar

Newton's proof of this method is similar to his proof of Proposition 7, but

now he uses the terms "fl.uents", "fl.uxions" and "moments" and uses limit

increments resulting in a more detailed outcome.

The moments of the fluent quanti,ti,es (that is, thei,r i,ndefi,ni,tely

small parts, by additi,on of which they i,ncrease during each i,n-

fini,tely small period of ti,me) are as their speeds of flow. Where-

fore i,f the moment of any particular one, so,A r, be erpressed by

the product of i,ts speed r and an i,nfi,ni,tely small quantity o (that

i,s, by ro), then the moments of the others, u,U,z, wi,ll be er-

pressed by ùo,'!7o,2o,.... Now, since the moments (say, ro and,

yo) of fluent quanti,ti,es (r andA, say) are the i,nfi,ni,tely small ad-

diti,ons by which those quanti,ti,es 'increase duri,ng each infinitely

small i,nterual of time, it follows that those quantities r and y

after any infi,ni,tely small i,nterual of ti,me will become r I ùo and

a -til". Consequently, an equation whi,ch erpresses a relati,onship
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of fl,uent quanti,ties without uariance at all times will erpress that

relati,onshi,p equally between r t ùo and g * i1o as between r and

g; and so r * ùo and A * yo may be substi,tuted i,n place of the

latter quantiti,es, n and g, in the said equati,on.

Let there be giuen, accordi,ngly, aflA equati,on

13-ar2lary-a3:0

and substi,tute r I ro i,n place of r and A + Ao in place of y: there

will emerge

0: ("'*3ro rz +3r2 o2 r]-¿tot) - (o*'lZaronlan2o2)

-l (ary * ar o a -t aù o r i aùyo2) - (at -l 3i1 o a2 + 3it2 o2 a ]-útot).

Now by hypothesis 13 - ar2 I ary - A3 : 0, and when these terms

are erased and the rest di,uided by o there wi,ll remain

0 :3ùr2 + 3ù2 o r * ù3 o2 -2aùr - aù2 o +ara

t ailr -l aùþ o -3(tA' - 3ù" o A - ùt o' .

But further, since o i,s supposed to be i,nfinitely small so that it

be able to erpress moments of quanti,ti,es, terms which haue i,t as

a factor will be equiualent to nothi,ng in respect of the others. I
therefore cast them out and there remains

3rr2 - 2aùr * aùy * aùr - 3,1/a2 :0

As mentioned previously, if ú represents time then o:dt andís,r,i| and

2 are the respective speed, H,#,ffi and ffi.
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Although this presentation of Proposition 7 and its"proof" are very sim-

ilar to his earlier work in The October 1666 Tract it is much easier to follow

given the new terminology for flowing quantities (fluents) and their respective

speeds (fluxions) as well as the introduction of the term "moments". In mod-

ern notation moments represent the infinitely small increments du,, dr, dy and

dz of the variables u,r,y and z, respectively. By introducing these infi,ni,tely

small addi,tions by whi,ch those quanti,ties i,ncrease duri,ng each infi,nitely small

interual of time Newton has produced a proof using limit increments. Con-

sequently the substitution of r * ro and a * ù" into his original equation is

more plausible.
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Chapter 4

Gottfried Leibniz (L646 L716)

Leibniz began seriously studying mathematics during 7672 in Paris. He

wanted to create a system of notation and terminology to simplify math-

ematics. His notation made solutions to problems more easily followed and

provided an opportunity for more rigorous proofs in calculus. Edwards [5]

examines two examples of the simplification of problems due to Leibniz no-

tation, one of which is relevant to the approach taken by Leibniz in the

development of calculus.

Examples

1. In Lagrange's functional notation the rule for the derivative of a com-

posite function is :

If

h(r): f Ø@)),

then

h'(r): Í'(g("))g'(")

Why this is true is not obvious at first, but using Leibniz notation and setting
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z : Í(a) and sr : s(ø) then

Now the situation is more readily seen, and there is the opportunity for proof

by considering dr,dy and dz as Lr, Ay and Lz and using limits.

2. Consider the problem of finding the area of a surface resulting from

rotating y : f @) about the r axis. An expression for the area can be found

to be

dz dy

dy d"
dz

d"

A: | ,.0 (,. (H)')' o.

Using Leibniz notation we have the following situation, rather than a lengthy

summation of series using a Riemann sum.

a

Í@) : ads

dr

T

Figure 4.I: ds is an infinitesimal length of the curve a: l@).
d,r and dy arc infinitesimal lengths representing the horizontal and
vertical components of the right angled triangle.
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Let ds be an infinitesimal segment of the curve A : f @) shown in fig-

ure 4.1, then

ds: (dy)2 + (dr)2

:dr

When the segment, ds, is rotated about the ø axis in a circle of radius E,

then the expression for an infinitesimal area is

d,A:2ry.ds

:2trAdr 1+ da

dr

dA

2

Therefore the total area is the sum of all infinitesimal areas, dA. That is,

A: I:l 2rydr

InL7I4, two years before his death, Leibniz wrote Histori,a et origo calcul,i

di,fferentialzs (History and Origin of the Differential Calculus). In this paper

he supplies the history of his own development of calculus. He begins his

history by explaining simple number properties which lead him to think of

differences and relationships between numbers within sequences. The mean-

ing and the use Leibniz made of the differences and sums of elements of a

sequence becomes clear in the following sections.

The English translation of the paper mentioned above is presented in J

M Child's la] fhe early mathemati,cal manuscripts of Leibniz. It is this book

to which most of this chapter refers.
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4.L Sequences and Series

In 1672 Leibniz stated that

... the sum of the consecutiue di,fferences equals the difference of

the first and last terms of the original sequence.

That is, if as, a¡, a2¡ . . . , an is a sequence and denoting the difference between

consecutive terms to be

d¿: a¡ - ai-t

then the sum of the differences is

d,r * d'z+''' + dn : an - ao.

Leibniz gives the following example:

0, 1, 4, 9, 16, 25

has differences

1,3,5,7,9

so that the sum of the differences is 1 * 3 + 5 +7 +9 : 25 - 0 : 25.

Leibniz presented his work to Christiaan Huygens (1629 - 1695) who was a

well known scientist on the continent at the time. Huygens suggested solving

the series

1111 1

1+;*ã*10+. +r¡**1y2+.... (4 1)

To solve the problem Leibniz began with Pascal's arithmetic triangle:

11
34
610
10 20

15 35

11
56
15 27

35 56

70 726

11
t2
13
74
15
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In the arithmetic triangle the r¿th element in each row is the sum of the

first n elements in the previous row. Leibniz considered what he called the

harmonic triangle:

where subsequent rows are formed by taking differences, rather than sums in

the case of the arithmetic triangle. Using his work from 7672;

for a decreasing sequence aL¡a2¡. . . ,an with differences

b¿: a¿ - ai+t,

then

hlbz+"'+bn:at-antr

which, in the limit, will give the sum of the differences âs û1. So, using the

above argument for a decreasing sequence the second row of the harmonic

triangle gives

111111I? t L i_ I
26L220304211111
1TTT1054 20 60 140111
E 30 1ob

1
7

11__r_
2'6

111+n+zo+so+ .-1. (4.2)

That is, the sum of the terms in each row is equal to the first element of the

preceding row.

Note that the nth element of the second row of the harmonic triangle is

111
n ni-l n(n+7)
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This is half of the nth number in the series posed by Huygens in (4.1) viz;

2ln(n+t). So, multiplying (4.2) by 2 gives the solution to Huygen's problem:

1111
-I-I-I-J1'3'6 10I

1
-l---r--.-o- ntn+IW-r"'-z'

Leibniz noticed the inverse relationship between Pascal's arithmetic tri-

angle and his so called harmonic triangle:

Arithmetic Triangle:

each row consists of sums of the terms in the preceding row (and differences

of terms in the following row).

Harmonic Triangle:

each row consists of differences of the terms in the preceding row.

The notion of an inverse relationship between the operation of taking

differences and that of forming sums of the elements of a sequence, played a

major role in Leibniz's development of calculus.

4.2 The Characteristic Tliangle

Leibniz was familiar with the work of Pascal. Pascal had proven the theorem

stated by Archimedes for measuring the surface of a sphere. He used a

method whereby the surface of the solid, produced by rotation about an

axis, can be reduced to a plane figure. Leibniz made use of this method and

stated that

Porti,ons of a strai,ght li,ne normal to a curue, i,ntercepted between

the curue and an aris, when taken i,n order and applied at right
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angles to the aris giue rise to a figure equiualent to the moment

of the curl)e about the ari,s.

This theorem becomes clear when examples of similar triangles are examined

with Leibniz's diagram illustrated in figure 4.2. He calls the triangle YyDY2

the characteristic triangle and considers three cases of similarity. For each

case Leibniz's notation and results will be presented first, followed by an

analysis using modern notation.

aT
A

Xy

U21 Zz

Xz

F
Figure 4.2: Leibniz's diagram showing the characteristic trian-
gle, Y1DY2, required for cases 1,2 and 3 following this diagram.
Note that the ø direction is vertical and the g direction is hori-
zontal.

From figure 4.2 notice that DYr : XtXz, DY2 - Z1Z2 and YyY2 is

Y1Y2 is part of the tangent TV. The tangent line, ?V, should only touch

the curve once, but is shown in the diagram cutting the curve at Y1 and
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Y2. Leibniz is indicating here that the area between the curve and ?I/ is

meant to be negligible and that triangle Y1DY2 is infinitely small. The axes

are referred to as AX (the r axis) and AZ (the y axis) by Leibniz. Then

Xt,Xz or X, and 21,22, or Z are positions along fhe AX and AZ axes,

respectively. Leibniz considered the following three sets of similarity using

the characteristic triangle in each case. Most important to all the following

arguments is that the characteristic triangle YtDYz is infinitely small.

Case 1. In triangle Y2X2P,Y2P is the perpendicular, or normal, to the

curve and X2P is the subnormal to the curve.

YrDYz is similar to Y2X2P, so

PY2xYD:Y2X2xY2Y1.

That is,

rectangle arcaPY2.Y1D rectangle arcaY2X2.Y2Y1. (4.3)

He calls Y2XyY2Y1 the moment of the element of the curve about the axis,

and that the moment of the curve about lhe r axis is equal to the area under

a second curve (the quadraúr'ir) whose g coordinate is the normal, PY2, to

the original curve.

Hence the whole rnoment of the curue is obtained by formi'ng the

sum of these perpendiculars to the ari,s.

Leibniz uses the phrase moment of the curue to represent a portion of

the area of the surface formed by the rotation of the curve YrYz about the

axis AX. If d,s : YtYz, d,r : Y1D and dA : Y2D tepresent the sides of
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the infinitely small characteristic triangle, and U : XzYz and n : YzP lhen

similar triangles Y1DY2 and Y2X2P give

ds dr
na

or

yds:ndr

So that the whole moment, that is the sum of the infinitesimals, is

I ads- ndr

The integral sign was not introduced by Leibniz until 1675, so he ex-

pressed himself in words (as in equation (4.3)). The area of the surface

resulting from the rotation of the original curve about the r axis is found by

multiplying the moment by 2tr, giving

A- 2ry ds

Case 2. The characteristic triangle YrDYz and triangleTHV are similar,

giving

Y1Y2:Y2D:TV:VH

or

VH xYYz:TV xYzD (4.4)

That is,
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the rectangle contained by the constant length v H and the el-

ement of the curue YYz, i,s equal to the rectangle contained by

TV and Y2D, or the element of the coabscissa, ZtZz. Hence the

plane figure produced by applying the lines TV i,n order at ri'ght

angles to AZ is equal to the rectangle contained by the curue when

strai,ghtened out and the constant length HV.

In this case Leibniz has developed a method for rectification of curves.

That is, finding a straight line segment equal in length to a given curve. If

we let t:TV and ø be the constant length VH,then the arclength' s, of

the curve can be found by the summation of the elements above in equation

(4.4).That is,

11
lvnd(Y{z): lTV.d(YrD)JJ

or

I ads: t dv.

So, finding the length of a line segment (or arclength, s) is equivalent to

finding the area between lhe y axis and another curve whose r axis is the

tangent to the given curve.

Case 3. Tliangles YtDYz and Y2X2P are similar, so that

Y1D : DY2 - Y2X2: X2P',

or

X2P xYlD -Y2X2x DY2'

That is,
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the sum of the subnormals X2P taken in order and appli,ed to the

ari,s, ei,ther to Y1D or to X1X2, wi,il be equal to the sum of the

products of the ordi,nates Y2X2 and, their elements, Y2D, taken i,n

order.

Using the modern notation, and with u : XzP equation (4.5) becomes

udr:ada.

So that we have

udr: ada (4.6)

and noting that

:, (Y\ ØT)" \d*)

we have the result

l'(#) a*: ludu
Leibniz referred to this method as [reducing] these quadratures [areas] o/

fi,gures to an inuerse problem of tangents.

He noted that if AZ : Z L, lhen AZ L is a right angled triangle with area

+(AZ)'.

... straight lines that conti,nually 'increase from zero, when each i's

multiplied by its element of increase, form altogether a triangle.

...and thus the figure that is produced by taki'ng the subnormals i,n

order and applyi,ng them perpendicular to the aris wi,ll always be

equal to half the square on the ordinate.
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So in equation (a.6) for a curve on an interval of [0, b], passing through (0,0)

the area of the triangle, with base and height b, is tb2.

The method of reducing an area problem to an inverse tangent problem

requires finding another curve for which the subnormal, U, is the given curve.

To illustrate the method consider an example posed by Edwards [5]. It is

required to find the area under the curve z: tn on the interval 0 ( ø ( ø.

So; by Leibniz's method it is required to find a curve' g, with subnormal

'u : frn so that

rn dr: ada

1l ^loilr'),, (4'8)

where gr is a function of r.

If we try U : brk then, with the use of o : A.# from equation (4.7),

u:brk x bknk-r

- 6z¡*2k-1.

But

'l): In

so

,n - 62¡*2k-I

when

1
(rz + 1)

I

k
2
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and

-L/2
b- 1

2
(rz + 1)

Substituting A : brk into equation (4.8) results in

lo" 
," o* : Tl{ tt" + 1) lz)-ttzrø+ttrz¡21"

On*I

n-ll

In the Historia et ori,go, Leibniz summarises the three cases above: Thus,

to fi,nd the area of a giuen figure, another fi,gure is sought such that its sub-

normals are equal to the ordi,nates of the gi,uen fi,gure, and then this second

fi,gure is the quadratri,r of the gi,uen one; and thus from this ertremely ele-

gant consi,derati,on we obta'in the reducti,on of areas of surfaces descri,bed by

rotati,on to plane quadratures, as well as the recti,fication of curues; at the

sarne time we can reduce these quadratures of fi,gures to an i,nuerse problem

of tangents.

The term "quadrature" refers to the method of finding the area of a figure.

The method involves constructing a second plane figure, of equal area to the

original, and subsequently finding the area of the simpler figure. This second

figure is called the quadratrix and is often a square or rectangle.

In a letter to I'Hôpital written twenty years after his initial work in this

area, Leibniz summarises that

use of what I call the characteristic triangle, formed from

the elements of the coordi,nates and the curue, I thus found as it
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were in the twi,nkli,ng of an eyeli,d nearly all the theorems that I

afterward found in the uorlcs of Barrow and Gregory.

He continued to write that he did not know the algebra of Descartes, but

given encouragement from Huygens he continued his work and came upon

my differenti,al calculus.

Thi,s was as follows. I had for some ti,me preuiously taken a plea-

sure in finding the sums of seri,es of numbers, and for this I had

made use of the well-known theorem, that, in a series decreasi,ng

to i,nfi,ni,ty, the fi,rst term i,s equal to the sum of all the di,fferences.

From this I had obtai,ned what I call the "harmon'ic triangle",

as opposed to the "arithmeti,c triangle" of Pascal ... Recogni,sing

from this the great utility of di,fferences and seei,ng by the [al7e-

bral of M. Descartes the ordi,nates of the curue could be erpressed

numeri,cally, I saw that to find quadratures or the sums of the

ordi,nates was the san'Le thing as to find an ordi,nate (that of the

quadratrir), of which the di,fference is proporti,onal to the giuen or-

dinate. I also recogni,sed almost i'mmediately that to find tangents

is nothi,ng else but to fi,nd differences, and that to fi'nd quadratures

i,s nothing else but to find su,rns, prouided that one supposes that

the di,fferences are'incomparably small.

4.3 The Integral Sign

In a manuscript dated 29 October 7675 Leibniz introduces the integral sign

as we know it in modern mathematics. The manuscript is called Analy-
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seos Tetrl,gonisticae pars secunda (Second part of analytical quadrature),

Child l ]. He begins with a similar diagram to that in the last section but

with different labelling as seen in figure 4.3. Initially, he :uses ornn to rep-

resent the sum of ..., and later introduces the new symbol, /. Uis working

sometimes shows an overline which indicates that the section of text involved

should be in brackets. See equation (4.9) for instance.

T

P

Figure 4.3: Leibniz used this diagram to show his use of the
notation omn. He replaced this notation with the modern integral
sign in his later works.

He states that with WL:l,TB:t, GW : a,, BP -p, then

U : omn.I

In other words the total length, A 1 car' be written as the sum of infinitesimally

small lengths l.

;
I

I

I
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I
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I
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FYom similar triangles GWL and LBP,

p

a omn.l'

That is,

omn.l
p

a

So,

omn.I ,
On'Ln.P : OTyÙTL.- 'l'

0,
(4.e)

If Aq -- QL, then AQL is a right angled triangle, and from the previous

section it was shown that it will have area l(AQ)2. So applying Leibniz's

Case 3 to this situation with p : n,l : dU, a: dr and g : omn.l results in

omn.l'1
omn,P: , a2

2

Therefore, substitutingfor omn.p in equation (4.9)

omn.l' 

- 

I
______=_ : ornn.ornn.l.L. (4.10)2a

In modern notation I : dA and ¿ : dr : 1 so that equation (4.10)

becomes

,u o,) Iu o,)oo,

f,., I
or
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In this manuscript Leibniz also states that

omn.rl: r.omn.l - omn.omn.l,

where I i,s taken to be a term of a progression lof differences], and r is the

number whi,ch erpresses the posi,tion or order of the I corresponding to i't.

So, in other words, he is referring to a, sequence of differences of ordinates.

Using integral notation the above equation becomes

l,or:" I au- ll au

-ra- I adr

He introduces the integral sign later in the manuscript

It wi,il be useful to write Ï lo, omn, so that

I I - omn.l, or the sum of the l's

Thus

: I l,* (4.11)

and

(4.12)

The use of these two equations may be seen when appropriate substi-

tutions are made. For instance, when I : d"r in equation (a.11) the result

IS

ln:" lt- Il'

', lroa': lrl d,r)d,r
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that is,

which becomes

So, upon rearrangement

and therefore

12

2

il*o*:l

r dr.

With I : r dr in equation (4.I2) Leibniz would obtain

l,.d,r:r l.o,- ll"o,

l,'a*:..+- l**

| ,'a*:!r''

4.4 Later Manuscripts

There is some contention as to the correct date on a manuscript in which

Leibniz introduces the notation dr. The manuscript, dated 11 November,

1675 (or 1673) uses dr, but he still considers it to be a constant equal to

one. In a manuscript dated 1 November 1675 he introduced the difference

notation $ to represent the modern dy, arrd in the manuscript mentioned

previously he attempts to find an expression for d(fr) and d("rþ). It was not

until 11 July 7677 that he obtained

d("a)-rda*ydr
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In an undated manuscript, thought to be a revised version of the 11 July

1677 manuscript, Leibniz states The fundamental pri,nciple of the calculus

and provides proofs of the fundamental rules of differentiation. He also con-

siders the integral as the sum of rectangles, by setting up the following as

shown in frgure 4.4.

3

Ds

Figure 4.4: Leibniz's diagram to assist his argument for stating
that / dy : A and for frnding the area under a curve.

Let CC be a line, of which the ari's is AB, and let BC be ordinates

perpenilicular to this aris, these being called y, and let AB be the

abscissae cut off along the aris, these being called' r'

Leibniz calls CD the differences of the abscissae and labels CtDtCzDz,CzDz,

4

Ts

T2

T1

A
B1

B2

Bs

Ba

D1
\

\D2
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etc. as dr. similarly, the Iines D1C2,DrCs,DsCa, etc. are the differences of

ord,inates which Leibniz calls dy. These distances, dr and dy, are taken to be

infinitely small and are two sides of his characteristic triangle. He considers

the straight lines ctcz,,czcs,csca elc. to be elements of the curue or a

si,d,e of the i,nfinite-angled, polygon that stands for the curue' These lines are

extended to the AB axis toT1,,Tz,Ts etc., respectively, to produce tangents.

Then, he says

T1B1 : BtCt: CtDt: D1C2,

or using that in general TtBt,TzBz, or TsBs are called ú,

t:y:dr:dY.

In modern notation we would write

dva
dr t'

Considering the triangle TtBtCt in figure 4.4 it can be seen that # : T

results in finding the ratio of the sides g : BtCt and ú : TtBr' hence the

tangent slope may be obtained. That is, ffi is calculated. similarly for

triangles T2B2C2 etc. Leibniz summarises:

Thus to fi,nd, the d,i,fferences of seri'es ldr and dyl is to fi'nd the

tangents.

Next he considers the sums of differences:

Moreouer, d'ifferences are the opposite of sums; thus B¿Ct is the

sum of allthe ilifferences such as DsCq,D2Cs, etc' as far as A,
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euen if they are i,nfi,nite i,n number. Thi,s fact I represent thus,

lda:a'

He illustrates here very clearly how I dA : g as well as the relationship

between sums and differences.

For the entire curve, CC, he says:

Also I represent the area of a fi,gure bg the sum of all the rectangles

contained by the ordi,nates and the di,fferences of the absc'issae,

i,.e., by the sum BtDt Í BzDz I B3Dsl etc. For the narcow

triangles C1D1C2,C2D2C¡, etc., s'ince they are i,nfi,nitely small

compared wi,th the said rectangles, may be omi,tted without risk;

and thus I represent in my calculus the area of the fi,gure by j y dr,

or the sum of the rectangles contained by each y and the dr that

corresponds to i,t.

The diagonals B1D1 , BzDz, BsDs etc., referred to in the above text rep-

resent the notation for the areas of rectangles 81C1 by C1Dy, BzCzby C2D2

etc. So it can be seen that the sum (/) of the rectangles (g x dr) can be

represented by / y dr. Provided that the triangles C1D1C2,C2D2C¡, etc. are

infinitely small, this is the area under the curve.

Also in this undated manuscript Leibniz supplies a statement on the fun-

damental principle of his calculus:

The fundamental pri,nci,ple of the calculus

Differences and surns o,re the inuerses of one another, that is to

say, the sum of the di,fferences of a series i,s a term of the series,
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and, the d,ifference of the sums of a seTies i,s a term of the seTies;

and, I enunciate the former thus, I dn : r, and the latter thus,

d, j r : r. Thus, let the d,ifferences of a seri'es, the seri'es i'tself,

and, the sums of the seri,es, be, let us saq'

4 5 ... dr
6 1015
10 20 25

Diffs.
Seri,es

Sums

T

.[ r

t23
013
014

Then the terrns of the series are the sums of the differences' or

r - [ dr; thus, 3: 1 * 2,6 : I+2]-3, etc; on the other

hand,, the ili,fferences of the sums of the series are the terms of

the series, or d, [ ï : r; thus, 3 is the difference between 7 and

4, 6 between 4 and, L0. Also, da : 0, if i't is giuen that a is a

constant quanti,tY, s'ince a - a:0'

He then supplies information on rules for addition, subtraction, multipli-

cation and division type problems' For instance, he says

:x+A-u-- dr*dy-du

and

ï+A-'u: n* a-I I L)

and states that This i,s euid,ent at si,ght, i,f you take three series, set out their

sums and, their d,i,fferences, and, talce them together correspondi,nglg as aboue'

For multiplication he states the modern product rule

d("a)-nda*sdr

and supplies the following Proof:
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d, rE is the same thing as the di,fference between two s'tlccessl,ue

ry's; let one of these be ry, and the other r I dr i'nto y -f da;

then we haue

dry - r+d,r'Y+dY - rY (4'13)

- ndA*Ydr*drdY;

the omi,ssi,on of the quanti,ty dr dy, whi,ch i,s i,nfi,ni,tely small in

comparison wi,th the rest, for i,t i,s supposed that dr and dg are

infi,ni,tety small, will leaue n dy * y dr'

In equation (a.13) he has just written the difference of successive terms (ø *

d")(a + d,ù and. ry with the overlines representing brackets.

Similarly, he found the quotient rule by considering the difference between

successive terms. He states the rule

,A rdY - Ydr
IL Í lxr

and for the proof he writes

d a arda a

x) rldr r
rdy-ydr
rrlrdr
rdg-ydr

rT

The term r d,r ort the denominator may be omitted due to it being infinitely

small in comparison wi,th rr.

Leibniz shows in this manuscript that, in general, for any positive inte-

d,fr" : e.r9=Ldr,

get, e)
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by using

For instance, Iet

where

then, from equation (4.L4)

Hence also

drug : rA da I ru dy I uy dr.

d,n3 : druy

I :,U : U and dr : d,u : d,A,

dr\ :3n2 dr

(4.t4)

,1!: -frn

hdr
-h+l

For, i'f *, : *", then e - -h, and r'-r : #'

He continues by considering fractions (The same thing wi,ll do for fractions)

and irrationals:

d{rn : drh", (where by h: r I mean *, o, h diuided ba r),

or d,n" (taking e equal to ?), or e.t'-r d,n, by what has been said

aboue, or (by substituting once more h: r for e, and h - r : r for

e - I) b.*h-r'r.¿r; and, thus finally we get the ualue oÍ d'Vfr.

He finally states the converse for the last three derivatives:
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Moreouer, conuersely, we haue

I
I ne

I i/*n ¿r: -! . ifa-

These are the 
"rr)rnn 

ory orrr"';r: of the d,ifferentiat and, sum-

matory [integral] calculus, by means of uhich highly compli,cated

formulas can be dealt wi,th, not only for a fracti,on or an irrati,onal

quanti,ty, or anything else; but also an ind,efini'te quanti,ty, such

0,s fr or A, or any other thing erpressi,ng generally the terms of

any series, ffiaA enter into i't.

^e+l
r"d,r:n-.eIL'

dr:-.--f ,.
e - 7.re-r'

1
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Chapter 5

Alternative Approaches in the
Teaching of Calculus

The conventional way of introducing calculus in the senior years of Australian

high schools is to begin with limits in conjunction with investigating slopes of

chords through curves. One ofthe points the chord goes through is considered

to move closer to the other fixed point until a tangent line is produced. The

slopes of the chords may be calculated by using the gradient formula learnt

and practiced in earlier years. Using this approach the slope of the tangent

is approximated. Terms such as "tends towards", "approaches" and "in the

limit" are introduced as the chord gradually becomes the tangent line at the

fixed point. It is advisable to illustrate the above geometrically.

The derivative is defined eventually as

/'(") : lTò
r@+h) - r@) (5 1)

h

This requires knowledge of limit notation and at least a good intuitive idea

of what a limit is. Many students are not comfortable with the concept of

the limit being an operator, and are confused by the use of the word "of" in

the term "the limit of". The lvord "of" has, for many of their school years'
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been synonymous with "product".

Before the first principles definition of the derivative is introduced a large

amount of work on limits must be covered. AII the limit rules must be

encountered and lengthy algebraic manipulation within limit problems must

be mastered if a complete formal treatment is given. so, initially, the idea

of a chord becoming a tangent in the limit is introduced, then limits ancl

applicable rules are introduced and practiced, and finally the two are put

together to introduce the derivative function, f'@), as in equation (5'1)'

Many problems are set to frnd the derivative of a function as a function

of a variable, r, say. As well, problems are set which enable the slope of

the tangent to be found by calculating the derivative at a point on a curve.

Then the rules of differentiation are explained, sometimes using the limit

definition in equation (5.1) for the proofs. Alternative notation such as iff is

also introduced and problems can now be considered using a general formula

such as:

if f (r) : a" then /'(ø) : nr'-r fot neR'

Later, the product and quotient rules are introduced, usually by the first

principles method.

To enhance the understanding of the derivative, there are software pack-

ages available. One of these is ANUgrapñ,. This may be used to display the

changing chord approaching the tangent line with more accuracy than on a

whiteboard or blackboard. Obviously the diagrams are not static either. An-

other approach to assist with the understanding is to consider displacement-

time graphs with their corresponding velocity-time graphs' Here, discus-
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sions can take place regarding rates of change. For instance, from a curved

distance-time graph questions may be posed about the speed: when was it

greatest, least, constant? A velocity-time graph may then be drawn by find-

ing approximations for the slopes (of the tangents) at set points along the

original curve, and plotting the resultant slopes against time. Discussions

from this type of activity will enhance the understanding of the concept of

slopes of tangents as well as the ability to interpret graphs.

This technique for introducing calculus is usually followed by considering,

graphically, other functions and their resultant gradient or derivative func-

tions. Here, again, the use of computers can enhance the graphical picture

and lead into ÍkffJ@ for the slope of the tangent for small h. Investiga-

tions then lead the student to discover a relationship between the original

function and the derivative or derived function.

After studying the development of calculus by Newton and Leibniz it

becomes apparent that there are alternative methods available for teaching

calculus. Newton and Leibniz were criticised for not being rigorous in their

proofs: Newton for dismissing the little zero, or o, as being negligible and

Leibniz for neglecting multiples of differences such as drdy. However, it is

possible to produce a course in introductory calculus using mostly Leibniz's

methods as a basis with Newton's study of the motion of objects to highlight

rates of change. In the following sections, the work of Newton and Leibniz is

discussed along with its suitability for inclusion in an introductory calculus

course. In the final section a course structure is discussed as well as some

ideas for investigative work for talented students. Since the majority of the
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course suggested uses the methods of Leibniz, his work is discussed initially

in the next four sections.

5.1 Leibnizts Differences

Leibniz's approach to calculus is quite different to the moving bodies in

Newton's work. Leibniz, in his own history of calculus, says that it was his

experimenting with number series which labelled the beginnings of his work

in calculus. His terminology and notation are very easy to follow and the use

of a simple number series in his explanation for the fundamental pri,nciple of

the calculus in section 4.4 on page 66 highlights the simplicity of his initial

approach. His methods are also well within the grasp of students new to

calculus. He says, for aseries 013 610 15... the differences are I2345...

and are called dø. These are obviously obtained by the differences between

consecutive terms of the original series. The sums are 0 1 4 70 20 25... and

are labelled I ,, indicating that the sum of the first n elements of the series

gives the r¿th term of the sums row. For instance, 0 f 1+ 3 + 6 : 10, the 4th

number of the sums row. Experimenting with series would be the first step to

introducing calculus by Leibniz's methods. Students may be given the series

row and from that calculate the sums and differences ro\4/. Using Leibniz's

set up (as on page 66) could be a way for students to find the relationship

between the series, differences and sums as Leibniz himself did. That is, the

inverse relationship between differences and sums. Consider the following:

Example

Given the series 0 1 4 I 16 25... set the problem out in the style of Leibniz:
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Diffs. 1 3 5 7 I ... dr
Series01491625r
Sums 0 1 5 14 30 55 jr

Suggest that students try to obtain the original series by considering only

the differences, and also try to obtain the series by considering only the sums.

Hopefully they will find, as did Leibniz, that the sum of the differences is a

term of the series. Hence, the notation j dr for the "sum of the differences"

equals the series, ø. That is, J dr: r. Also, "the difference of the sums"

d I ,, equals the series, r. That is, d j r : t.

This simple technique is a way of introducing the notation for calculus. It

is far less cumbersome than delving straight into limit theory and derivatives.

Beyond high school mathematics, the more correct notation, !, for the sum

should be explained.

6.2 Leibnizts Tangents arrd, H

In the Hi,stori,a et Origo Leibniz explains his use of the characteristic triangle

in finding the areas of solids of revolutions (in section 4.2 described on pages

51 - 56). For simplicity, consider the characteristic triangle as a right angled

triangle with the hypotenuse as the length of an element of the curue or

a side of the infini,te-angled polygon that stands for the curue. In Leibniz's

diagram the vertical length is the difference in the ø coordinates, labelled dr

and the horizontal length is the difference in E coordinates, labelled dy. For

the characteristic triangle all these lengths must be infinitely small. To assist

the understanding of what "infinitely small" means one could use a phrase

by Leibniz: the two points on the curue are understood to be a di,stance apart
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that is less than any giuen length. To develop the concept of tangent and the

relationship ro ffi consider the following diagram:

C+

Ct

a

Cz

1

T2

Bt B3 82 B1

Figure 5.1: This diagram is essentially figure 4.4 shown on page

64. Here, the axes are represented as we would use them today.

Here, the characteristic triangle is C1D1C2 and has sides ClDr : dr)

DtCz: dA and CtCz: ds. The line through C1C2 meets the r axis at T1

and since CtC" is an infinitely small length, consider T1C1 as the tangent to

the curve at Ct. TrBr is a length along the r direction, labelled ú1, and BtCt

is a length along the y direction, Iabelled gr. Using similar triangles CtCzDt

and T1C1Br students should have no problem showing that

Now that this ratio is found the slope of the tangent has consequently

been found, since it is the ratio of the g step and u step which gives the
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slope. That is, the slope of the tangent is really the slope of the hypotenuse

of an infinitesimal triangle, which it #. Now, to match modern day usage

and notation, denote f* as the slope of the tangent or alternatively caII ffi
the derivative (of the curve).

It is important to illustrate the derivative as an indication of how the

curve is changing. One method is to compare other similar triangles to the

characteristic triangle. For instance, if T1BL : tt, TzBz : tz, BtCl : 91 and

BzCz - y2, then at Cz

dy BzCz Uz

dr BzTz t2

Comparing the derivatives at C1 and C2 will show that the curvature must

be changing.

For the moment, before derivatives are calculated from a curve, observa-

tion will need to be used to stress the rate of change. The use of software

such as ANugraph would be useful in lessons to display that with a greater

derivative, the greater the rate of change and hence the steeper the curve,

for instance. Negative cases also need to be considered. Starting with simple

parabolae, for example A - ï2, ole can illustrate the rate of change of the

curve by drawing tangents (for r )- 0 at first) and assigning values fot ffi at

various points along the curve. This way, the students can see the value of

ffi changing and the resulting change in the curve - becoming more steep as

the derivative becomes greater. The same may be done for r < 0. Here the

discussion is about the derivative becoming more negative (or the absolute

value becoming greater) at values of ø becoming more negative, and the con-

sequent change to the slope of the curve and the tangent. Next, discussions
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regarding azero slope, or a flat tangent, and where this takes place on curves

take place.

At this stage, if this method of introducing calculus is used, students do

not know how to differentiate functions, but have knowledge of the termi-

nology d,r,d,y,ff, slop. of the tangent and derivative. They will also be able

to judge what is happening to simple curves given values of the derivative at

points on the curve. The problem now, is how to introduce differentiation.

Leibniz uses differences between elements of a series to develop some rules of

differentiation. To assist the proofs offered by Leibniz for the development

of these rules found on pages 67-69 in section 4.4, consider the following

explanation:

If a series has a member of the type r then the next member will be

r * dr. Similarly, if the series has general term ry then the next term will

be (ø + dn)(A + dy). So, if we considered the differences row and series row

we would have

Diffs., (d("v)) @+dr)(a +da) - ra
Series, (xy) lxa @ + dr)(U + ay¡

Now (r + dr)(A + da) - ry is the general term for d(ry).In other words

d("a) : ra + r dY * Y d't i dn dY - rY

-rdAiydr-ldrdy.

But the term dr dy may be neglected since it is infi,ni,tely small i,n compari,son

with the rest, for i,t i,s supposed that dr and dy are i'nfi,ni'tely small.

So we have

d(*y) - rda isdr
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Now if U : r, then using equation (5.2)

d(r2):rdrlrdr

:2r dr

Leibniz also obtains

d(ryu) : rA du I ru dy t uy dr

(5.3)

which may be proved in a similar way to equation (5.2). Here if we let

r : U: u then as found earlier from equation (5.4),

d(r3) :3r2 dr .

Students experimenting with these two equations, (5.4) and (5.2), to find

simple derivatives of the type rk, will see a pattern emerge. That is,

d,(rr) : krk-r dr f or keR.

(5.4)

(5.5)

If we let U : rk then using equation (5.5)

da : lcrk-t dr,

which may be written in the form

Keeping in mind that dy is the difference of g values and dr is the difference

of u values, then for a curve a : tk,the ratio ffi is arindication of the rate

of change of the curve due to the differences of g and ø. And since g and r

are connected by the relationship U : rk the rate of change or derivative is

da

dr
krk-7
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determined by that relationship. That is, the slopes of tangents to the curve

a : frk are determined by ffi: ¡t*n-r at any point along the curve.

If the cases for k being only positive and an integer have been considered,

k negative, as a fraction and an irrational should also be encountered using

the general rule in equation (5.5).

The quotient rule as we know it today may be introduced using the same

technique as for the product rule (equation (5.2)). That is, consider the

general term of a series to be fi then the next term woul¿be ffi so that

(;)
u*du u

d, uldu u

udu-udu
u2+udu

The term u du may be omitted due to it being infinitely small compared to

u2. For a curve of the Lype A - s the derivative, or slope of the tangent, at

any point of the curve will be given by

1 'u,du-udu0'a: u2 '

For example, if u : 12 arrdu:3t2r,then du:2rdr and du:2dr,so

that

, :x2 .2 dr - (3 + 2r).2r dra'g: (J+Zry

or

dy -2n2 - 6r
dr (3 + 2r)2

Students who become conversant with this sort of algebraic substitution

will be able to cope with composite function derivatives and the chain rule,

later in calculus, with relative ease.
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5.3 Leibnizts Areas and Integration

To consider Leibniz's approach for finding the area under curves, figure 5.1

is required again. It is repeated here as figure 5.2, without tangent lines, for

ease of reference.

a

Cs

C1

Ba Bs B2 81 T

Ct

Cz

Figure 5.2: This diagram is essentially figure 5.1 shown on page

76. The following text shows how to find the area under the
curve, using Leibniz's technique of summing the rectangles under
the curve.

Leibniz begins by stating that the sum of the lengths C+Ds, CsDz, CzDu . . .

etc. to A equals the length B+Ca. The lengths CaDs,CzDz,CzDt,... etc.

are differences in E values, dy. So,, recalling that he uses / to represent the

sum, he says that I dA : y,, the length of. CqB+. These lengths, dy, are

infinitely small. It is easily seen from figure 5.2 that the length C+B+ is this

sum of dgrs. He then says that since the triangles CaDsCs,C3D2C2,CzDtCt

etc. are infinitely small compared to the rectangles underneath them, the
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area under the curve may be found by summing all the rectangles B1C1 x

CtDt-lBzCzxCzDz*... etc. Each length 81C1,BzCz,BsCs,B¿,C+ etc. may

be represented by I dA : g. So the total area is the sum of the rectangles,

y x dr, where dz is the lengths CtDt,CzDz,... etc. That is, the area under

the curve \s I y dr.

Having covered Leibniz's use and meaning of sums and differences this

method of finding the area is easily explainable and is a way of introducing

areas and integration to students. To find the integral of a function, consider

the inverse relationship between sums and differences shown earlier by Leib-

niz. That is, I dr : ø ând d I " - r by using Leibniz's rows of differences

(dø), scries (z) and sums (/r). Hence, if we consider the series with general

!,erm rk with difference

d,("r) : krh-r dr,

then the converse is

I d("0) - rk,

so that

lcrk-r d,r : rk

If we let p: k, - 1, then krk-| : (p + l)re and we have

f *o d,*: !. .aP+L , for peL, p -1.J- P+L-- ' ror?en'jP

The terms "integral" and "integration" may be introduced here to replace

the phrase "finding the sum of" and to match modern terminology.

82



6.4 Using Leibniz in the Classroom

Since modern notation is that of Leibniz, his ideas are easier to teach. The

approach taken by Leibniz in his study of series and consequent development

of the inverse relationship between differences and sums is very logical and

easy to follow. His method introduces the necessary notation very simply and

offers a unique method of introducing calculus. Considering the values on

the r and g axes, corresponding to the curve, as a pair of related series leads

nicely to his dr and dy of the characteristic triangle, and the consequent ratio

ffi tot the tangent line at any point. The geometric picture becomes clear

with this explanation as well as highlighting the concept of related series on

the axes. Recognising that the axes represent a pair of related series is not

stressed in school mathematics. Using Leibniz's approach students would see

the relationship and understand the relevance of series work encountered in

their earlier years.

The concept of "infinitely small", when teaching a course based on Leib-

niz's methods, would need to be covered. Diagrammatically, students can

see that the characteristic triangle is small. Consider figure 5.2. Suggest

students try to fit in as many rectangles between the line C¿Ba and A as

they can. They will soon see that it is possible to draw more lines simply by

reducing the thickness of their pen or pencil.

His explanation for finding the area under a curve, modified in section 5.3,

is very clear and suitable for inclusion in an introductory course in calculus.

Leibniz's style of writing is very easy to follow. His ideas and explanations

are logical and fluent and his original manuscripts are readable, especially
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once he begins using notation currently used today.

5.5 Newtonts Differentiation.

In section 3.1 it was shown that Newton's ideas are based on the movement of

objects as functions of time. He looked at points travelling different distances

along straight lines in the same period of time. Proposition 7, shown on page

28, states how to find the ratio of the speeds, r and g, of two objects r and

A. In summar¡ his method for a funclion f (r,U) :0, where r and A are

functions of time, is to multiply the r term by the po'wer of that term as well

as f . Similarly for any terms in E. For example, if f (r,A) : A2 - rB :0 then

!.r, - zL.rr :0,
ax)

so that

2ù.A - 3ù.r2 :0

and the ratio of velocities is

.^ta óï'
h 2v'

Introducing calculus using Newton's approach by finding the ratio of

speeds of objects is not acceptable. Students need to have studied the forma-

tion of curves or loci produced by two moving objects. For instance a curve

with functional notation /(r, y) : 0, can be thought of as the horizontal

motion, ï, by an object coinciding with vertical motion, E. Loci problems

are usually encountered in the earlier high school years (Years 8 and 9) and

to treat the ø and gr axes as lines along which an object moves, over a certain

2
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period of time, should not be an impossible task. It would also be advan-

tageous if students had studied horizontal and vertical velocity vectors in a

mathematics or physics course. The reasons become clear by considering the

following example. In the example, notation and terminology is introduced

for the novice student.

Exarnple

Consider the relationship between two moving bodies to be A : 12 where

y and, lx are both functions of time, ú. That is, g: g(ú) and r: n(t). The

speed of an object is given by ü#, so the speed of one object would be

ù: + and the other ,: *, where A is read to be "change in". Drawing

the locus Í (r, A) - a - 12 : 0 results in the diagram shown in figure 5.3'

a(t)

f@,a):o
16

Ay

n(t)

Figure 5.3: The locus of y - 12 :0, where y and n are functions
of time. The tangent line shown at point P is the vector sum of
(¡ and ù.

At any point, P, on the curve there is a velocity in the horizontal and

I
lx

0
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vertical directions, labelled :t and gr respectively. The tangent line, defined

as the line which touches the curve once, is the resultant vector sum of z and

y and, has a slope or gradient of ffi which is, f . the slope of the tangent

may be approximated by:

Consider Lr:1 - the size betweer t:3 and r:4 in figure 5.3. Then

the corresponding Agr would be given by

Aa:42_ 32

_i
-t

So, the slope of the tangent is

Note that if modern methods for finding the derivative at r : 3 are used,

the slope of the tangent is 6, not 7. The use of a large value for Aø results

in an obvious inaccuracy.

Now, rather than being faced with this sort of calculation at any point P

on the curve, Newton's later version of Proposition 7 in section 3.2 beginning

on page 42 (and proof beginning on 43) may be used.

First, introduce the term "moment" to be the very small distance moved

by r, say, over a very small period of time. This small increment in time is

denoted o to use Newton's original notation. By using the original notation

of a well known mathematician within his development of calculus, students

could well be inspired and interested. Newton called r and E fluents and

expressed the moment of r and of g as zo and go, respectively. It can be

seen that the moments are infinitely small changes in the respective distances
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of r and y by showing students that

. changei,ndi,stancer
ti,rne

SO

. chansei,ndi,stance
ùo - ti,me " ---= ,¿*"

that is,

ùo : chang e i,n distance.

Using Newton's proof of Proposition 7 rffe can now find a general formula

for the ratio fi rather than finding values at specific points on the curve. It

is also more accurate, since the increments øo and '!o are infinitely smaller

than the Ar and Ag used at the beginning of the example.

In figure 5.3, consider a point Q on the curve a very small distance from

P. The point Q would have the coordinates (r* ro,yl yo) and since Q

lies on the curve f @,A): 0 these coordinates must satisfy this equation.

Substitute the coordinates of Q into A - n2: 0 to obtain

A+ilo-(rl-ho)2:g

That is,

A-fr2-2molùo-ù2o2:0.

This equation simplifies further due to A - 12 :0

yo-2rùo-a,2o2:Q.
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Newton says that the period of time, o, is infinitely small, so when comparing

terms with factor o2 or higher ordered, these terms may be neglected. So,

the above equation is reduced to

yo-2rùo:Q,

or

T: z,
Io

leading to the ratio

A:ù:2r:t

or

T:z*.

After exposure to functions f (r,y) :0, of the same type, and use of the

previous method, a pattern should be observed by the students in that, if

a: frn

then

!: n*"-t
lx

The terms "derivative" and "differentiation" need to be introduced. That

is, the ratio of velocities, $, is the derivative and the process of differentiation

is the process in which the derivative of a function at any point on the curve is

:x
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found. Newton's notation for the derivative shows the ratio of velocities and

since this gives the slope of the tangent anywhere on the curve it also gives

an indication of how the curve is changing. In this sense, then, the concept

of rate of change is introduced to students. This is a valuable inclusion to a

calculus course as it is very easy for students to lose sight of the meaning of

derivative.

If the methods of Newton are followed for more complicated differentia-

tion problems, his version of the modern chain rule is shown by example on

på,ges 33 - 35. For the sake of clarity, consider a simpler example:

If g : (*' - 4)t,Newton would let u, say, be 12 - 4,so that g : 23. Now,

using Proposition 7 we have,

'tt :2rù

and

'ù : 3u2it.

So, substituting for z and z gives

a:3(r2-+)2.zrr

and the ratio of velocities, or derivative, is

:6r(12 - 4)'

5.6 Newtonts Anti-differentiation

Newton uses the converse of Proposition 7 to find a curve given the ratio of

component velocities (see section 3.1 on page 35 for Prop.8). That is, given
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f; in terms of ø, say, find the curve E

divide by the power of the resulting z

He says to multiply by r, and then

So that, for instance, if

I : nr"-r ,
T

then

nfrn-l xrr
a n

_-n
-&

Before simplification the denominatot) n, is the resulting power of u on the

numerator. This method is essentially the same as current methods in the

classroom, and can be used to gain familiarity with simple anti-derivative

problems.

The relationship between areas and tangents using Newton's version of

the fundamental theorem of calculus is described on pages 38 - 41. He con-

siders an area, gt, being formed by the movement of a line Q: bc (see figure

3.4 on page 39) and shows that for a given area the curve, q: Í(r), which

produces that area is, q: g. Hit reasoning is that the rate of increase of the

area will be in ratio to the movement of the line, óc. From figure 3.4 it can

be seen that the rate of increase of the area yl is determined by the rate of

incease of area r, multiplied by the height, Ç. So that we have

a
Q: ..ï

qn a

or, as Newton says,
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Notice that Newton uses q to mean the height bc as well as the curve /, or

/(r). So, for example, if an area is given as g: 4r3,t'hen the curve, Q:u*,

is found by applying Proposition 7 to the area. That is,

a : 4'3# '!r
: 7212.ù

and

l :12t2 '
x)

That is, given the area is y - 4r3, the curve which gives that area is Q : 1212.

Newton's approach for finding the curve whose area is given may be used

to highlight the reciprocal relationship between integration and differentia-

tion. The Fundamental Theorem of Calculus states that

fdu
J ådr: u

where gr is the area and ff is th" curve. Once integral notation is known

to students, using Newton's diagram in figure 3.4 would be a useful way

to display the reciprocal relationship within the Fundamental Theorem of

Calculus. For instance, given a curve with gr coordinate ffi, tt. slope of

the curve will be rn, by using Proposition 7. A curve with g coordinate r"

has an area beneath it as #, ul.o by Proposition 7. Since, if

'r: 'n*tn*I

is the given area, then

da

dr
rn
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Conversely, if

*n+7ú
" n*L

is the curve, then by Proposition 7 the slope of the curve will be

rn
da

dr

So that, with Leibniz's notation, we have

or

I#dr:a'

r ^n|lI r"d,r- n

J n*7 for the above example.

5.7 Using Newton in the Classroom

The main advantage in using Newton's methods in a calculus course is that

the concept of rate of change is constantly present. The notation $ indicates

this. The difficulties arise when we try to convert his methods into modern

mathematical language. Since the r and g he uses are functions of time, then

* : # and, y : ffi and his increment of time, o, is dú in modern notation.

Showing students that [ : ffi early in a calculus course is not advisable.

The meaning would be too difficult for students to grasp at the beginning of

a course. Newton often used å : 1 which is another reason why explaining

his work is difficult.

Using Newton's method of differentiating, or finding the ratio of velocities,

by introducing moments of fluent quantities requires an understanding of the
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physics of objects in motion. However, his method of substituting r* åo and

A-til" into an equation is useful for students to experience. Not only do they

experience an original method by a famous mathematician, but they also

see the reasoning behind infinitely small increments of time being negligible

when its dimensions are greater than one. This is also an ideal opportunity

to consider the meaning of "infinitely small" and why terms containing o

with dimensions greater than one may be neglected.

Another problem is how to introduce the modern integral notation under

Newton's calculus. The integral sign, ,[, *a,t introduced by Leibniz to repre-

sent the sum, but Newton did not consider area as the sum of rectangles of

infinitesimal width, as did Leibniz. He did, however, use the symbol n mean-

ing "the area of", and used Proposition 8, the anti-differentiation technique,

to find the area under a curve (see pages 35 - 37). His lack of explanation

for why the process of anti-differentiation results in the area under a curve

would lead to many problems in the classroom.

Newton's method for finding the curve, given the area under the curve,

may be used to explain the reciprocal relationship between integration and

differentiation as stated in the Fundamental Theorem of Calculus. As men-

tioned in the previous section Newton's figure 3.4 and his explanation (with

modern interpretation) show how the movement of a line q produces an area,

A. If Leibniz's integral notation is known to students, Newton's problem

could provide an explanation for why

l#dr:u
where ffi is ttt" curve and y is the (given) area. The example given in the
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previous section where the area is g - ffi u"a the curve is Ír', compared

to a curve A : ## with slope # : ," shows the reciprocal relationship

between integration and differentiation.

Newton's style of writing is difficult to follow. Often his propositions

are statements of the type "Do it this way", and only upon reading his

examples and proofs are the ideas understood. His original manuscripts

offer interesting material for students very capable in mathematics. Offering

these students the opportunity to study Proposition 7 and proof, for example,

within an extension programme would be of value. They would discover how

Newton thought about problems and his style of solution. Extension work

of this type is presented in the final section of this chapter.

5.8 An Alternative Course in Introductory
Calculus

In this section an outline for a course in introductory calculus is presented, as

well as some ideas for extending talented students. The works of Leibniz are

mainly used, with Newton's work supplementing topics on rates of change

and as an alternative notation for the derivative. The following is suggested

for a course in calculus:

1. As does Leibniz, first consider series to introduce the notation and to

instil the concept of differences and sums and their relationship.

2. Apply related series to a set of axes resulting in the use of a character-

istic triangle to find the slope of the tangent. Use problems and discussions

to enhance the concept of change to the curve in relation to the values of jf

at various stages on the curve.
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3. Use differences of general terms of series to generate the product rule

and d(ryu) : *A dulru dy-luy dr. From these rules derive the generalisation

thaf d(rk) : lcnk-r dr.

4. Generate the quotient rule by using general terms (;) *' (m)
5. Introduce the idea of finding area by finding sums by using Leibniz's

sum of rectangles of length y and width dø, with the infinitely small charac-

teristic triangles under the curve being negligible.

6. Introduce the concept of integration as the converse of differentiation

by using the inverse relationship between the sums and differences of the

terms of a series. That is, use [dr: r and d,[r: r to develop, for

instance,

[*r¿*- r nr*r.
J 

* **- k+r*

7. Discuss the fact that if a curve does not pass through the origin a con-

stant of integration needs to be introduced. (Leibniz says in his fundamental

principle of the calculus on page 66 that da : 0 if ø is constant, since the

difference in that type of series results in a - a: 0. That is, da:0.)

8. To enhance the understanding of rate of change, consider the set of

axes as functions of time r(t),,y(t) and the resulting curve as a locus of

f(*,a):0. Discuss the meaning of #: #/ff using velocity vectors.

(Provided the definition of velocity is known to students and ffi and ff are

explained in that context). Use Newton's vector sum of i1 and ø to obtain f .

Discuss 4 in relation to rates of change.

9. Discuss more difficult problems involving methods of differentiation,

integration, finding areas and applications to rate of change problems.
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This course outline uses Leibniz's style and explanations for the concepts

of differentiation and integration, but Newton's bodies in motion and rate of

change approach is important too. Newton's approach for finding areas and

anti-differentiation are unnecessarily complicated compared to Leibniz's area

under the curve, using sums of rectangles, and his integration represented as

the converse of differences. From the students' points of view, seeing the

original works of Leibniz and setting their work out in a similar fashion at

some stages, may be inspiring. For instance, it was suggested earlier to set

out three rows; Differences, Series, Sums in the style of Leibniz to generate

the relationship between differences and sums, and also to the original series.

Showing students the actual translated manuscripts to let them attempt to

decipher sections would also be an interesting exercise. Care would need to

be taken on the choice of excerpts to ensure there were no mistakes and an

easily understood section is represented.

Extension work for mathematically talented students can be found in

both Leibniz and Newtons' works. This extension work can be written to

suit the investigation style of assessment currently required at the senior level

in South Australian schools. The following is an outline of extension work

possible for students to undertake:

1. From section 4.2 beginning on page 51 is the introduction of Leibniz's

characteristic triangle and his use of it to

(a) find the area of a solid by finding another plane figure (Case 1 pp

53-54),

(b) find the length of a curve (Case 2 pp 54-55) and

(c) reduce an area problem to an inverse tangent problem (Case 3 pp
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55-56).

Using the work presented on these pages teachers could set the problem

for students to obtain the three similar triangle results themselves and then

study the interpretation, in modern notation, of the work presented in that

section.

2. Using figure 4.3 supply students with the information that y : omn.l,

and that by using the appropriate similar triangles the relationship t : h .

Use the text on pages 61 - 63 to formulate an investigation on Leibniz's use

of overlines and the introduction of the integral sign.

3. Using figure 4.4 on page 64 and Leibniz's explanation for the diagram,

set an investigation with the text on pages 64- 66 such that students interpret

Leibniz's explanations for finding the area under a curve in modern notation.

4. Set problems to find the converse of a difference with the expectation

that this will lead to Leibniz's integrals on page 70.

5. Give students a copy of Newton's Proposition 7 and example using

ø and g notation (from page 41). Set various problems to find the ratio f.
Give students a copy of the demonstration by Newton of Proposition 7 (on

pages 43 - 44). Set problems in which students demonstrate the ratios found

previously.

6. Provide a simplified version of Newton's chain rule (see pages 33 and

39). Set problems of this style for students to solve.

7. Provide a copy of Proposition 8 (on page 35) by Newton. Students

interpret and attempt various examples following his method.

8. The information on pages 38 - 41 shows Newton's use of The F\rnda-

mental Theorem of Calculus. Formulate an investigation such that students
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analyse Newton's Problem 5 and interpret it in modern notation. This would

be very difficult for students unless they had a sound understanding of cal-

culus. It would therefore represent a good test of their understanding of the

calculus.

As can be seen from this section, the original works of Leibniz and Newton

present possibilities for a ne\4¡ approach to the introduction of calculus, as

well as new supplementary material for extension or investigative work.
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ERRATA

page 2 Sentence beginning with "The theory of limits '..
replace with
"Having taught for thirteen years, it has been my experience that the
theory of limits always seems to present difficulties to students."

page 71 Sentence beginning with "Many students are not ..."
replace with
"It has been my experience that many students are not comfortable
with the concept of the limit being an operator, and are confused by
the use of the word "of" in the term "the limit of"."

page 80 Replace the last three equations with the following equations

da: (3 + 2r).zr dr - 12 .2 dr
(z + zr)z )

dA _ 6r+2n2
dr (3 + 2n)2

page 83 Sentence beginning with "Since modern notation ..."

replace with
"Since modern notation is that of Leibniz, his ideas, in my opinion, are

easier to teach."

page 83 Sentence beginning with "Using Leibniz's approach '.."
replace with
"Using Leibniz's approach I suggest that students would see the rela-

tionship and understand the relevance of series work encountered in
their earlier years."

page 84 Sentence beginning with "Introducing calculus .'."
replace with
"I would advise against introducing calculus using Newton's approach

by finding the ratio of speeds of objects. This method would result in
having to explain the chain rule at a very early stage."
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The following is to be included at the end of Chapter 4.

4.5 Newton, Leibniz arrd Modern Calculus
In this section a comparison of the work of Leibniz and Newton, and their
influence on modern teaching techniques, is presented.

From Chapter 3 one can see that Newton's approach in his development
of calculus is to compare velocities of objects to produce a ratio I ot l, where

ù: H and z: ff in modern notation. So, the notatio" # does not refer

to the slope of the tangent line to a curve, but to the ratio, #l#, of two

moving objects. This ratio, to Newton, indicates the rate of change to the
system over a period of time. The concept of rate of change is not usually
encountered at the beginning of a calculus course, and the ratio

i7 _ da ¡drù dtl dt
dy

dr

would be a difficult way of introducing calculus in my opinion.
Newton's propositions outlining the process of differentiation and anti-

differentiation are basically algorithms. In modern calculus we introduce the
concept of the derivative as the slope of the tangent at a point on the curve,
and use limit notation to establish

r(r_rD_f@)
f,(*): lg. r,

Newton and Leibniz used the "idea" of limits but did not have the concept
of real number properties to explain their ideas. Their approach was based
on geometric arguments as opposed to the numerical and algebraic approach
taken in modern calculus. The algorithms presented by Newton as Propo-
sitions 7 and 8 are used in the teaching of calculus today once the "First
Principles" approach, in the above equation, has been covered.

It is interesting to note that the notation of Leibniz for the derivative, or
slope of the tangent (ffi), and, the integral (/) allow modern calculus to be
more easily followed. For instance, we avoid using Newton's symbol, n, to
denote the area under the curve, and his method for finding a curve given
the area is not a technique used today.

Comparing Newton and Leibniz's approaches for finding the area under a
curve we see that Leibniz's approach is more recognisable in the modern style
of teaching calculus. We use Leibniz's integral sign and a similar method of
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summing areas of rectangles under a curve. Newton's method is to reverse
the chain rule (that is, undertake anti-differentiation) and use the symbol,
n, to denote the area under the curve.

The usual approach to introducing calculus today does not use Leibniz's
series method to develop the dr notation for the differences of consecutive
members of the series, nor the integral sign, /, for the sum of terms. Leib-
niz's characteristic triangle technique introduces the terminology ffi for the
slope of the tangent which is an obvious part of any calculus course. The
characteristic triangle, although new to basic calculus, is not an uncommon
method for solving problems involving similarity.

The modern approach to teaching calculus sees the use of limit theory.
The work of Newton and Leibniz was made more rigorous by later mathe-
maticians such as Cauchy. Cauchy defined the derivative as

hence the notatio" ffi is not seen as a ratio, but the interpretation of Leibniz's

ffiistttat it is a fraction. However, I feel there is an opportunity to produce
an alternative course in introductory calculus using mainly Leibniz's work.
His method of introducing the currently used notation via his series approach,
and his development of some simple concepts of calculus may well be able
to be taught at the Year 11 level. The following Year 12 course could then
introduce limit theory to establish a firm grounding in modern calculus. We
undertake this style of teaching in other areas in the curriculum. For instance,
initially only the square root of positive numbers is presented to students,
with the square root of negative numbers being introduced in Year 12. Prior
to the Year t2 course, students see the square root of a negative number as

giving no solution. In fact, it should be said that there is no real solution, so

that there is room to introduce the concept of complex numbers.

In the next chapter an alternative course for introducing calculus is pre-
sented. Within this chapter there are discussions on the works of both New-
ton and Leibniz in calculus with the view of including both their works in
the alternative course. The resulting course would present interesting, new
and more motivating material for students.

da

dr
,. Ly
llIIì 

-
An-+O Lr
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On page 98, add the following after the last paragraph

The object of this thesis is to present an outline for a new course in
introductory calculus. To verify that this proposed alternative method for
teaching calculus is an improvement on the current methods used in schools
it needs to be trialled within schools along with the appropriate empirical
research material in place.l

lThe material in this thesis has been personally presented, in part, to groups of mathe-
matics teachers attending workshops held by the Mathematical Association of South Aus-
tralia in February 1997. The seminar consisted of an alternative method for introducing
calculus, possibly at the Year 11 level. It involved using Leibniz's fundamental principles
of calculus statement, as found on page 66, to introduce the notation dr for the difference
of consecutive terms in a series, and / for the sum of terms in a series. It was also shown
how to establish I d* : u and d, I r : r. Leibniz's use of the characteristic triangle to
develop the tangent to a curve and the consequent jf notation was illustrated, as well as

the method for finding the area under a curve, as shown on pages 64-66. The seminars,
in my opinion, were well received, and some teachers seemed interested in trialling parts
of this thesis with Year 11 students.
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