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Abstract

A brief history of calculus, leading to Newton and Leibnizs’ work in calculus,
is given. The work by Newton and Leibniz, in the development of calculus, is
investigated with the view of incorporating their methods in a new introduc-
tory calculus course for senior Australian school students. It is found that
both mathematicians’ early manuscripts on calculus are usable in the class-
room. A course based mainly on Leibniz’s methods, with Newton’s study
of motion for topics on rates of change, is proposed. Extension material for

talented mathematics students is also presented.
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Chapter 1

Introduction

Introductory calculus courses currently being taught in South Australian
schools rely on students understanding limit theory in the early stages of
their course. Limit theory is required to follow the definition for the derivative

function, f'(x) or %. This, stated in functional notation is

f'(z) = lim

fz+h) - fz)
- :

This definition arises from the moving of a chord through a curve keeping
one point, P, stationary and the other point, ), moving closer to it. See
figure 1.1. If P has the coordinates (z, f(z)) and Q is (z + h, f(z + h)),
where h > 0 then the slope of the chord through PQ is

ystep  f(z+h) — f(x)

zstep T +h—o
_ fe+h) - f(z)
. :

As h approaches zero, ) moves closer to P. So, in the limit, we have that

the line through PQ is a tangent at P with slope

f@+h) - f(z)
" :

f'(z) = lim

h—0



y = f(2)
flz+h) 1 Q
f(z) 1 P
al? x—;—h N

Figure 1.1: The chord PQ becomes a tangent at P as h ap-
proaches zero.

This is quite clear to those of us who have studied limit theory and calculus,
but to the novice student it requires the introduction of new notation and
new terminology, as well as the daunting theory of limits. The theory of
limits always seems to present difficulties to students. It is this reason why
an alternative course in calculus is proposed which does not rely on limits
being taught as a separate topic during the introductory course in calculus,
as is currently the case. The development of calculus by mathematicians
such as Newton (1642 - 1727) and Leibniz (1646 - 1716) did not involve
the use of limits. They did, however, use the concept of “infinitely small”
steps or increments in their studies. These ideas are more easily taught and
understood than limits. Students would also be removed from the situation
of getting caught up in limit problems during the introduction of the concept
of the derivative.

To introduce an alternative course in calculus, using Newton and Leibnizs’
methods, it is not only necessary to investigate their original work, but also

to review the work of earlier mathematicians who influenced the development



of calculus. The next chapter presents a brief review of the development of

calculus prior to Newton and Leibniz.

Historically, Zeno (c.450 BC) and his paradoxes on the infinite divisibility
of magnitude were initially presented. Then the process, referred to now
as the Method of Exhaustion, was developed by Eudoxus (c.370 BC). The
method of exhaustion resulted from the work initiated by Antiphon (c.430
BC) in his attempt to find the area of a circle. He considered the circle to be
composed of a regular polygon with the number of sides doubling until a circle
was approximated. Eudoxus refined this method by producing more rigorous
proofs. These proofs involved deriving contradictions for inequalities, using
the method of exhaustion, such that the equality must hold. Using the same
method of proof Archimedes (c.225 BC) showed that the area of a parabolic
segment is four thirds of the triangle with the same base and vertex. This
example, shown in section 2.4, displays the use of the method of exhaustion
within a proof by contradiction.

After Archimedes the next development in calculus did not arise until the
fifteenth century in Western Europe. Mathematicians such as Simon Stevin
(1548 - 1620) in his study of hydrostatics; Luca Valerio (c.1552 - 1618) in his
paper on finding areas of parabolae; Johann Kepler (1571 - 1630) in his study
of planetary motion and volumes for capacity calculations of wine barrels, all
contributed to methods for finding areas and volumes. This was the initial
work in the field of calculus. Bonaventura Cavalieri (1598 - 1647) produced
the concept of “indivisibles”. That is, the very small parts which make up

a line (the points), a surface (the lines) or a solid (the planes). The sum of



these indivisibles produces the length, area and volume, respectively.

The need to find maxima and minima resulted in the process of differ-
entiation. Initially, Pierre deFermat (c.1601 - 1665) produced a method for
finding a tangent at a point, using what he called a subtangent. Isaac Bar-
row (1630 - 1677) developed the ratio, known today as %, in a similar style
to Fermat. John Wallis (1616 - 1703) studied areas of circles and areas be-
tween curves. Using the area of a quadrant of a unit circle he attempted to
calculate 7.

The work of Newton in the field of differentiation and integration is pre-
sented in Chapter 3 and his methods are interpreted using modern math-
ematical language. Excerpts from his original manuscripts are presented.
These excerpts highlight his initial work in finding the ratio of velocities of
moving objects, his anti-differentiation technique and his method for finding
the area under a curve. These are the basic concepts covered in an introduc-
tory calculus course. Similarly, in Chapter 4, the translated works of Leibniz
in his development of differences (dz, say), sums ([) and their relationship
(d [z =z and z = [ dz), as well as his introduction of the integral sign
is presented. Also, his method for finding the area under a curve, using
his previously introduced sums and differences, is presented. The modern
interpretation of his techniques result in a clear and easy introduction to
calculus.

Within Chapter 5 Newton’s methods and their possible inclusion in a
modern calculus course are discussed in detail. Similarly, the style and meth-
ods of Leibniz are studied. Finally, parts of the work of both mathematicians

are utilised to produce an alternative course in introductory calculus. Mainly



Leibniz’s methods are used to set the course, but the style of Newton in his
study of moving bodies and velocity vectors provide an opportunity to discuss
rates of change. Their original manuscripts provide useful templates for in-
vestigative work for talented mathematics students. Ideas for such extension
material are proposed within the final section of Chapter 5.

The incentive behind this work was to present an interesting and innova-
tive introductory calculus course. Using the original works of mathematicians
who had a major role in the development of calculus presents the opportunity
for students to see for themselves how the pioneers of calculus thought about
problems and how they solved them. It also presents an exciting opportunity
for students to read Newton and Leibnizs’ actual writings on calculus. Teach-
ers of secondary mathematics are often seeking methods for teaching topics
which will motivate and stimulate students. The course proposed here, along
with ideas for extension material to offer talented students, provides teachers
with the opportunity to introduce calculus in a style which will stimulate and

interest students.



Chapter 2

The Introduction of Calculus

It is interesting to note that most courses in mathematics at the senior high
school level introduce the topic of calculus by first considering differentiation,
with integration following. This is in contrast to the historical development
of calculus which arose from the need to find areas, volumes and arc lengths,
resulting in the creation of integration. Differentiation, on the other hand,
arose later as the result of problems requiring tangents to curves and ques-
tions concerning maxima and minima. Actually assigning a date and time
for the beginning of calculus is impossible, and it is incorrect to say that it is
due to Newton (1642 - 1727) and Leibniz (1646 - 1716) alone. Many math-
ematicians produced work which can be regarded as necessary beginnings
to prompt the thinking of later mathematicians. Some historians suggest
looking as far back as ancient Greece in the fifth century BC. Below we will
briefly consider the contribution to calculus of mathematicians before New-
ton and Leibniz. The following books were used for information regarding
the works of the mathematicians considered: Boyer [1], [2], Smith [10], [11]
and Struik [12], [13].



2.1 Zeno (c.450 BC)

Zeno was a philosopher who proposed four paradoxes which were to have
a profound effect on mathematics. These particular paradoxes are related
to how one thinks of magnitude : magnitude being infinitely divisible, or
magnitude being made up of a very large number of small indivisible atomic
parts. The following are examples from Eves [6] which illustrate two of the
paradoxes :

The Dichotomy

If a straight line segment is infinitely divisible then motion is impossible,
for in order to traverse the line segment it is necessary first to reach the
midpoint, and to do this one must first reach the one-quarter point, and to
do this one must first reach the one-eighth point, and so on, ad infinitum. It
follows that the motion can never begin.

The Arrow

If time is made up of indivisible atomic instants, then a moving arrow is
always at rest, for at any instant the arrow is in a fixed position. Since this
is true of every instant it follows that the arrow never moves.

As a result of these paradoxes there was the development of two schools
of thought in mathematics - those following the concept of infinitely divisi-
ble magnitudes and those supporting the concept of large numbers of small

indivisible atomic parts as the composition of magnitudes.



2.2 Antiphon (c.430 BC)

The first types of problem arising in the calculus area were concerned with
finding areas, volumes and arc lengths. Antiphon, who lived at the same time
as Socrates, attempted the problem of squaring the circle. That is, finding
the area of a circle, by constructing with pencil and compass a square with
the same area as a given circle.

Antiphon approached the problem of finding the area of a circle by con-
sidering a regular polygon inscribed in a circle and doubling the number of
sides of the polygon until a very close approximation of a circle is obtained.
The difference in area between the circle and the polygon would eventually be
negligible. In Antiphon’s time it was possible to construct a square equal in
area to any regular polygon. So, he proposed that it is possible to construct
a square equal in area to the circle (hence, the use of the term “squaring
the circle”). There was much criticism against this argument since it did
not hold with the concept of infinitely divisible magnitudes. Supporters of
this train of thought held that the whole circle could never be used by the
polygon inscribed within it and therefore it is not possible to calculate the
area of the circle. This lead to the idea of the Method of Exhaustion which

can be used in answering Zeno’s paradoxes.

2.3 Eudoxus (c.370 BC)

Although Antiphon did the preliminary work towards the method of exhaus-
tion, it is generally regarded as being due to Eudoxus. This method assumes

that a magnitude is infinitely divisible and has the following property:



If from any magnitude there be subtracted a part not less than
its half, from the remainder another part not less than its half,
and so on, there will at length remain o magnitude less than any

preassigned magnitude of the same kind. (Eves [6])
In modern notation this is the same as the following (Boyer [2]):

that if M is a given magnitude, € is a preassigned magnitude of
the same kind, and r is a ratio such that % <r <1, then we can
find a positive integer N such that M(1—r)™ < g, for all positive

integers n > N.

That is,

lim M(1—r)"=0.

n—o0

According to Archimedes, Eudoxus was the first to use the method of
exhaustion by proving that the volume, V, of a tetrahedron is equal to one
third the volume, P, of a prism of equal base and height. He assumed that
V > 1P and then V < 1P and using the method of exhaustion derived
contradictions. Hence the equality must hold. This method of proving the
equality by producing contradictions for the inequalities was referred to as a
reductio ad absurdum.

The earlier work of Antiphon, involving the inscribing of regular polygons
within a circle and doubling the number of sides indefinitely to find the area
of the circle, was made more rigorous by Eudoxus’ method of exhaustion.
The proof (by the method of exhaustion) that the areas of circles in ratio

equal the ratio of their respective squared diameters is given by Euclid in

9



his text Elements XII.2 (or see Calinger [3], pp136,137) and is probably the
work of Eudoxus. Following is a more modern version of the proof (Boyer [2],
ppl101,102) :

Consider circles ¢; and ¢y with diameters d; and ds, and areas A; and As,.

Prove
A _d
Ay dE
Assume
At
4,0 &

Then there is a magnitude A} < A; such that
Ay _di
Ay 4
Let Ay — A} be a preassigned magnitude ¢ > 0. Now inscribe, within
circles ¢; and ¢y, regular polygons of area P; and P». The polygons have the
same number of sides. By doubling the number of sides of these polygons, the
area between the polygon and its respective circle would decrease by more
than half. The method of exhaustion then says this difference in areas can
be reduced by indefinitely doubling the number of sides until 4; — P, < €.
Since A; — A} = ¢, then P, > A using the previous inequality. From
Proposition 1 in Book XII of the Elements, Euclid says that if two rectilin-
ear figures are similar their areas are in the same ratio as the squares on
corresponding sides. In this case, then,

h_d
P, dF

10



Now, since A}/As = d?/d3, then

P A
=4 (2.1)

It has been shown above that P; > A}, so it follows from (2.1) that
P2 > Ag.

This is false as the polygon with area P; is inscribed within the circle A,

and therefore cannot be of greater area. Hence it is disproved that

A @

—_— > :
4, &
Similarly it can be shown that

A @

— <

4L @
is false. Therefore, the equality holds. That is,

A _dt

A &
2.4 Archimedes (c.225 BC)

Archimedes came very close to defining integration when finding the area
of a parabolic segment using the method of exhaustion and the reductio ad
absurdum approach. He showed the area of a parabolic segment is four thirds

of the triangle with the same base and vertex.
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q

Figure 2.1: The parabolic segment QPgq used by Archimedes
in Proposition 22 and in his proof on page 15, that a parabolic
segment is four thirds of the triangle with the same base and
height.

To assist his proof he made the following propositions (Heath [9]):

Proposition 22

If there be a series of areas A, B,C, D, ... each of which is four
times the next in order, and if the largest, A, be equal to the
triangle PQq inscribed in a parabolic segment PQq and having
the same base with it and equal height, then (A+B+C+ D+ ...)

is less than the area of [parabolic] segment PQq.

See figure 2.1.

In an earlier proposition Archimedes proved that
APQq = 4(APQR + APqr).
Then, since
A = APQq,

12



we have

APQR+ APqr = B.

The symbol, A, refers to the area of the triangle.

In like manner we prove that the triangles similarly inscribed in
the remaining segments are together equal to the area C, and so

on.

Therefore A+ B+ C + D + ... is equal to the area of a certain
inscribed polygon, and is therefore less than the area of the seg-

ment.

That is, we have

1
B = -
4’
1 1
¢ = 7B=A,
D = 1C'—lA d
= 40 =54 andsoon,

where A is the area of the triangle QPq. So,

1 1 |
A(l+ 1 + z + Y + ...) < the area of the segment.

Proposition 23

Given a series of areas A, B,C, D, ..., Z, of which A is the great-

est, and each is equal to four times the next in order, then

1 4
A+B+C+D+...+Z+§Z=§A.

13



Archimedes proves this proposition by partial sums, since the concept of
the sum of a geometric progression was not known.

He considered areas a, b, ¢, d, such that

1
b = =B
3 b
1
= =C
c 30>
1
d = =D,...
3 b
Then, since
1
b = =B
3
and B = lA
!
we have
1
B+b=-A.
* 3
Similarly,
1
C = -B
+c 3

and so on for D+d, E +e, ...
So,

1
B+C+D+---+Z+b+c+--~+z=g(A+B+C+---+Y).
(2.2)

We know that
btctdtty=3(B+C+D++Y), (2.3)
So, subtracting equation (2.3) from equation (2.2) will give
B+C+D+---+Z+z= %A.

14



Add A to both sides to obtain

A+B+C+D+---+Z+%Z:§A.

Now Archimedes has the necessary information to prove the proposition
that Every segment bounded by a parabola and a chord Qq is equal to four
thirds of the triangle which has the same base as the segment and equal height.
(Fauvel & Gray [7]).

He begins his proof by letting K = %APQq, referring to figure 2.1 on
page 12.

Suppose the area of the segment is greater than K. Inscribe, in the
segments cut off by PQ and Pgq, triangles with the same base and height
(e.g. APRQ and APrq). Continue inscribing triangles in the remaining
segments and eventually the sum of the segments remaining is less than the
area by which segment PQq exceeds K. So, the polygon formed must be

greater than K which is impossible, since from Proposition 23
4
A+B+C+-+Z< 34,

where A = APQq. Thus the supposition that K is less than the area of the
segment, is false.

Now suppose the area of the segment is less than K.

If
APQq = A,
1
B = -
1
1
C = {B



and so on, until there is an area X such that

X < K — area of the segment (2.4)
then,
1 4 o
A+B+C’+---+X+§X = §A from Proposition 23
=K
Now,
1
K—(A+B+C+---+X)=§X (2.5)
and from (2.4), there exists n > 1, n € R such that
K — area of the segment = nX. (2.6)
So, (2.5) gives
1
K-3X=A+B+C+ - +X 2.7)

and from (2.6)

K —nX = area of segment, n>1,n€R

= A+ B+ C+---+ X > area of the segment

which is impossible from Proposition 22. Hence the segment is not less than
K.
Thus,

K = -PQq.

16



It was not until around 1450 that Western Europe became aware of
Archimedes’ works, and any further development did not take place until
the early seventeenth century. Mathematicians such as Simon Stevin, Luca
Valerio, Johann Kepler, Bonaventura Cavalieri and Pierre deFermat in the
first half of the seventeenth century, and John Wallis and Isaac Barrow work-
ing later in that century, contributed to the development of calculus prior to

Newton and Leibniz. A brief account of some of their works follows.

2.5 Simon Stevin (1548 - 1620)

Stevin, an engineer from Belgium, worked in the area of hydrostatics. He
found the force against a dam wall, due to the pressure of fluid, by divid-
ing the dam into horizontal strips. This method is similar to the modern

approach.

2.6 Luca Valerio (c.1552 - 1618)

Valerio was an Italian mathematician who published a paper in 1606 titled De
quadratura parabolae. In this paper he uses similar methods to Archimedes

to find the area underneath parabolae.

2.7 Johann Kepler (1571 - 1630)

Kepler was involved in the study of planetary motion and required a method
to find areas related to this work. He also required a method for finding
volumes for his work on capacities of wine barrels. To calculate the area of

a circle he considered the circumference as the infinite number of sides of a

17



regular polygon. See figure 2.2. These sides represented the base of a triangle
with altitude equal to the radius of the circle. The area of the circle then is
the sum of all these triangles. That is, the area of the circle is equal to half

the product of its circumference and radius.

Py

Figure 2.2: Kepler’s diagram for finding the area of a circle.
Length P, P, is infinitely small, such that the altitude, r, is the
radius of the circle with centre C.

To calculate the volume of a sphere Kepler considered an infinite number
of cones, with the base of the cones on the sphere surface and their vertices

at the centre of the sphere.

2.8 Bonaventura Cavalieri (1598 - 1647)

Cavalieri, an Italian mathematician, established the concept of indivisibles
to produce a simple form of calculus. Parts which make up an object are the
indivisibles. For instance, solids are made up of infinitely many planes, sur-
faces are made up of infinitely many lines and lines are composed of infinitely
many points. The sum of the indivisibles then produce volumes, areas and

lengths, respectively. Cavalieri stated the theorem:

18



If two solids have equal altitudes, and if sections made by planes
parallel to the bases and at equal distances from them are always
in a given ratio, then the volumes of the solids are also in this

ratto.

[Smith [10]]

An example of the use of this theorem can be seen in the following problem
to find the volume of a sphere:

Consider an hemisphere of radius r and a cylinder with radius r and
height 7. Inscribe within the cylinder a cone, such that the base of the cone
is the upper surface of the cylinder and the vertex of the cone is the centre
of the lower base of the cylinder. See figure 2.3. Consider this cone as being
taken out of the cylinder. Now place the cylinder with cone removed and

the hemisphere on the same plane and cut the solids by a line parallel to the

base plane, at a distance h up from it.

Figure 2.3: Cavalieri used the hemisphere and cylinder with
cone removed, cut by a plane at height h, to show that they have
equal volumes.

The plane cuts the hemisphere to produce a cross-sectional shape of a

circle and the cylinder to produce an annulus as the cross-section. The

19



areas of these resultant cross-sections are m(r? — h?). Cavalieri’s theorem
then implies the hemisphere, and cylinder with cone removed, have equal
volumes. From this information the cylinder with cone removed may be used

to find an expression for the volume of a sphere. That is

V = 2(volume of cylinder —  volume of cone)
nrir
= 2(mr?r —
(mre.r 3 )
_ Amr®
=

Differentiation developed due to the need to find maximum and minimum

values in problems and also to allow the construction of tangents.

2.9 Pierre deFermat (c.1601 - 1665)

Pierre deFermat was the first to establish ideas in this direction in 1629. In
1638 he communicated a method to Descartes (1596 - 1650) regarding finding
the maximum and minimum. According to modern notation he equated f'(z)
to zero to find maxima and minima. He also established a method for finding
the tangent at a point of a curve, using the subtangent of the point. See figure
2.4. The subtangent is the segment on the z-axis, labelled a, between the
foot of the perpendicular drawn down from the point to the z-axis and the
intersection of the tangent line with the z-axis.

Let the curve be f(z,y) = 0. Through a point (z,y) on the curve draw
a tangent line meeting the z-axis. Let e be a very small distance in the z
direction and place a point on the tangent line with z coordinate z+e. Then

the length of p in the diagram is y(1 4 £).

20



-
(z,y) L
5 ]
Y P
[ Il R
b a

Figure 2.4: deFermat used the subtangent, labelled a, to find
the tangent. The tangent slope can be found, once a has been
found. Then the equation of the tangent may be found using the

point (z,y).

Example

Find the subtangent of
P24y =ay lexd+yP—zy=0

Substitute ((z + €),y(1+ £)) for a point on the tangent very close to the

point on the tangent and curve to obtain
3 3 €\3 €
(z+e)’+y (1—%—5) —y(m+e)(1+a) =0.

Now use f(z,y) = 0, divide by e, and then let e = 0 to obtain the following

expression for the subtangent:

The method of dividing by a number which later is used as zero resulted in
much criticism against calculus. For instance George Berkeley (1685 - 1753),
an Anglican Minister and Philosopher, wrote The Analyst in 1734 in which

he criticised the use of increments that vanish after a former supposition that

21



they were something. He argued that this is a false way of reasoning. [Fauvel
& Gray, [7]]

It was not until after Newton that mathematicians became more rigorous
in their proofs in calculus. Colin MacLaurin (1698 - 1746) responded to
Berkeley’s criticism in a paper written in 1742 and provided the basis for a
more rigorous approach to the calculus as set up by Newton, Leibniz and

their predecessors.

2.10 John Wallis (1616 - 1703)

In 1656 Wallis produced a book called Arithmetica Infinitorum. Here he
developed a method for using infinite series to assist in solving the problem
of finding the area between curves.

In modern notation we write

/1 . xm+1 1 1
zdr = e .
0 m+1], m+1

Wallis showed this held for m being a positive or negative integer (except

for m = —1) and for m fractional. He also attempted to calculate 7 by
finding an expression for the area of a quadrant of the unit circle. He did
not have knowledge of the binomial theorem, so to calculate the area. of the

quadrant as [, (1 — 22)2dz was not possible.

2.11 Isaac Barrow (1630 - 1677)

In 1669 Barrow produced his most important work in the area of calculus

in Lectiones opticae et geometricae. He contributed to the development of



differentiation by providing a method to find a ratio which today we refer to
as %. A summary of his method follows.

Figure 2.5 illustrates the constructions required. Given a curve find the
slope of the tangent at point P. Let ) be a point close to P on the curve

and construct triangle PQR.

T 1 M

Figure 2.5: Barrow finds the ratio ¢ (the modern %), which in
this diagram is the ratio of sides PR and QR.

He says triangle PT'M is nearly similar to triangle PQR, and that the

closer () is to P then

RP _ MP

QR TM
Let QR = e and RP = q, then if P is labelled (z,y), Q is (z —e,y —a). Sub-
stitute the coordinates for () into the equation of the curve, neglect squares
and higher powers of a and e and find the ratio . With the application of
limit theory, unknown to Barrow, this method can be made more rigorous.
It is interesting to note the similarity between the methods of Fermat and

Barrow.
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Example

23 4y = 1

where 7 is constant. Let x become x — e and y become y — a and substitute

into the above equation. Then
(z—e)+(y—a)P=r’
So,
1® — 3z%e + 3¢’z — €% + ¢® — 3y?a + 3a’y — o = 1>,

Neglecting powers of €? and a? and higher, and using 2® + y3 = r® results in

the following equation
3z%e + 3y%a = 0.

The required ratio is then,

A recognised symbolism and defined sets of rules was needed to tidy up
all the preliminary work in calculus. Leibniz and Newton were to provide
this for calculus. Their methods are observed in the next chapters. The
fundamental basis of calculus required more rigorous proofs and this was
provided by the work of Colin MacLaurin, Augustin-Louis Cauchy (1789 -

1857) and mathematicians of the nineteenth century.
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Chapter 3

Isaac Newton (1642 - 1727)

Throughout this chapter there are sections cited from Newton’s translated
papers found in Whiteside’s volumes: The Mathematical Works of Isaac
Newton [14] and The Mathematical Papers of Isaac Newton [15]. Newton’s
short hand requires some explanation before reading further. Words such
as “which”, “the” and “that” are abbreviated to “w*”, “y¢” and “y*”, re-
spectively. Spelling is different in some cases, for instance, “uniformely”
(uniformly), “bee” (be), “onely” (only), “terme” (term). He sometimes be-
gins sentences in lower case, or with “And”, and some of the grammar he uses
is not practised in modern English. This all makes reading his manuscripts
quite difficult.

Newton referred to variable quantities, such as = and y, as fluents and
denoted their respective fluzions as £ and . In modern notation, the fluxion
of x is —%” and §y = %. Newton used the letters p, ¢ and r for fluxions until

1691. That is,

dw

p dt)
_ B
q dt’



and

L_de
dt’

Some of the quotations from Whiteside’s [14], [15] volumes in this section use

the £ notation so that arguments are more readily followed. Newton used an

arbitrary increase in time, denoted o and called it little zero. Consequently,

op, oq and or represent increments of the variables z, y and z. In modern

notation we call o, dt giving

dx
= dt—
P=T0
= dz
and similarly
dy
= dt—
o=
= dy
and
dz
=dt—
or 7
= dz
As the increment vanishes we have,
a_d
p dx
and
T &
p dx’
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For further simplification Newton often chose z to be the independent time
- variable with p = 1. Then the increments oq and or of y and z, with o as

the increment of z, give

_dy

q_dx
and

_d

T dz’

In October 1666 Newton organised his research in calculus from the pre-
vious two years (autumn 1664 - May 1666). Whiteside [15] called this work
The October 1666 Tract on Flurions. It was first printed in A R Hall and
Marie Boas Halls’ Unpublished Scientific Papers of Sir Isaac Newton [8]. It
is this paper that supplies most of the information on Newton’s development

of calculus.

3.1 Newton’s Calculus

Newton’s approach to the problem of finding tangents to curves was to con-
sider the z and y coordinates in motion and therefore as functions of time.
So, in fact, the curve f(z,y) = 0 is the locus of the intersection of a moving
vertical line and a moving horizontal line. The movement of a point on the
curve can be described by horizontal motion with particular velocity ¢ and
vertical motion with velocity 9. From figure 3.1 it can be seen that the tan-
gent vector is produced by the vector sum of £ and ¢ and the slope of the

i Y
tangent vector 1s %.
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tangent vector

f(.’lf,y) =

Figure 3.1: The tangent vector, horizontal velocity and vertical
velocity components of a curve.

Newton presented a geometric model, shown in figure 3.2, in which two
or more points A and B travel distances x and y along different straight
lines, in equal periods of time, with speeds # and ¢ respectively, such that
flz,y)=0.

9 A z

y B Y
| S

Figure 3.2: Newton’s geometric model for the two points A and
B moving along different lines in the same space of time.

Newton wanted to find the relationship between & and ¢, given f(z,y) = 0.

In The October 1666 Tract he writes the following proposition:

Proposition 7

Haveing an Equation expressing y° relation twizt two or more

lines x,y, z €c: described in y¢ same time by two or more moveing
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bodys A, B,C &c: the relation of their velocities p,q,r €c may
bee thus found, viz: Set all y¢ termes on one side of y¢ Fquation
that they become equall to nothing. And first multiply each terme
by so many times £ as x hath dimensions in yt terme. Secondly
multiply each terme by so many times % as y hath dimensions in
it. Thirdly (if there be 3 unknowne quantitys) multiply each terme
by so many times © as z hath dimensions in y* terme, (if there
bee still more unknowne quantitys doe like to every unknowne

quantity). The summe of all these products shall bee equall to

nothing. W Equation gives y¢ relation of y® velocitys p,q,r &c.
An example given by Newton of this method is: If aa+zz —yy = 0, then
2£.xac — 2g.yy =0.
T Y

Here, he has treated a as constant and his notation for z? is zz, and similarly
for y? (although he sometimes does write z%). Hence the dimensions of z and
y are 2 and the multipliers 22 and 2% result from his method.

His resultant relationship of velocities is given by
r:iy=4q:p.
Example

Given y = z3, find the relationship of the velocities.

Let
flz,y)=y—2°=0.
This can be written as
2yt — 234 = 0.
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So, using Newton’s Proposition 7 and using & and g rather than p and ¢, we

have
(0.E + l.y)acoy1 — (3.?- + O.E)alc:"’y0 =0
T Y € Y
or
g — 3222 = 0.
So

= 32% is the relationship required.

8|S,

In modern mathematics we would not consider the following demonstra-
tion by Newton (Whiteside [15]) a valid proof of Proposition 7. It was men-
tioned earlier that a major criticism of Newton’s work was his lack of rigorous

proofs.

Proposition 7 Demonstrated

Lemma. If two bodys A, B move uniformely [see figure 3.3] y°

g?heer from z to ;, %ek,];’ &e: in y© same time. Then are y*
b b Y

lines Zg: g;%’%%%,&gf]g, Ec: as their velocitys g And though
they move not uniformely yet are y® infinitely little lines w* each
moment they describe, as their velocitys w they have while they
describe y™. Asif y© body A wth y° velocity p describe y° infinitely
little line (cd =)p x o, in y* moment y® body B w'™ y® velocity q
will describe y® line (gh =)g X o. Forp:q:: po:gqo. Soey" if y°
described lines bee (ac =)z, & (bg =)y, in one moment, they will

bee (ad =)z + po, & (bh =) y + go in y°® newt.
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e | ] | | -

T
g h kI

Figure 3.3: To assist the proof of Proposition 7 Newton used
this diagram showing two bodies moving uniformly along different
lines in the same time.

Newton follows his proof with the following demonstration. It is impor-
tant to note that the “d” in the last term, —dyy, in his demonstration is not
a derivative. The “d” represents a position through which body A moves
as shown in figure 3.3. It is also worthy of note that Newton writes cubic

powers as z3, for instance, rather than zzz.

Demonstr: Now if y¢ equation expressing y¢ relation twizt y° lines
z &y bee 2° — abz + a® — dyy = 0. I may substitute x + po &
y 4 qo into y© place of x & y; because (by y® lemma) they as well
as x & vy, doe signify y© lines described by y°® bodys A & B. By

doeing so there results
22 — 3poxz + 3pp o ox + p® 0> —abz abp o +a® — dyy — 2dgoy — dggoo = 0.

But ® — abx +a® — dyy = 0 (by supp.). Therefore there remaines

onely

3p o zx + 3pp o oz + p® 0° —~2dq o y — dgq o o — abpo = 0.
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modern notation x + ‘fi—f.dt. Similarly y + go is y + %.dt. These new terms
may be substituted into the original equation in place of x and y since, by the
Lemma given on page 30, z + ‘fi—f.dt and y + %’f.dt represent the lines x and y
an infinitely small moment later. Upon simplification, and neglecting terms

in (dt)? and higher, the following expression for the relationship between

Or dividing by o tis

3pz® + 3ppox + pd oo — 2dqy — dgqg o —abp = 0.

ch

Also those termes are infinitely little in w o is. Therefore omit-

ting them there rests 3pxx — abp — 2dqy = 0. The like may bee

done in all other equations.

Hence I observe. First y* those termes ever vanish w* are not

multiplyed by o, they being y® propounded equation. Secondly

ch

those termes also vanish in w® o is of more y™ one dimension,

ch

because they are infinitely lesse y™ those in w o is but of one

dimension.

The expression z + po used in Newton’s demonstration is  + £o, or in

velocities results:

or

or

y: 4= (32° — ab) : 2dy

dy dz . o .
i (3z* — ab) : 2dy
dy _ 3z° —ab
de 2y
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Again note that the “d” in the term 2dy is a position through which the body

A moves and is not to be confused with the modern notation for derivative.

To cater for more difficult problems Newton introduced what is now re-
ferred to as the chain rule. He describes the process in the following, taken

from Whiteside [15]:

Note yt if there happen to bee in any Equation either a fraction
or surde quantity ... To find in what proportion the unknowne
quantitys increase or decrease doe thus. 1 Take two letters the one
(as &) to signify y* quantity, y© other (a m) its motion of increase
or decrease: And making an Equation betwizt y¢ letter (€) & y°
quantity signified by it, find thereby (by prop 7 ...) y¢ valor of
y¢ other letter (m). 2 Then substituting y° letter (£) signifying y*
quantity, into its place in y® maine Equation esteeme y* letter (£)
as an unknowne quantity & performe y¢ worke of [y¢] seavanth
proposition; & into y¢ resulting Equation instead of those letters
& & m substitute theire valors. And soe you have y® Equation

required.

Ezample 1. To find p & q y® motions of x & y whose relation is,

yy = z\/aa — xz. first suppose &€ = v/aa — xx or {{+xTr—aa = 0.
& thereby find m y¢ motion of &, viz:

(by prop 7) 2m& + 2px = 0. Or 22 =7 = =2,
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Secondly in y© Equation yy = zv/aa — xx, writing & in stead of
Vaa — zx, the result is yy = &, whereby find y° relation of y©
motions p,q, & w: viz (by prop 7) 2qy = p€ + x.

In w* Equation instead of £ & m writing theire valors, y® result

is, 2qy = pv/aa — xx — \/%. Wer was required.

Following the method described by Newton above, and using p = &,q =y

and m = § , the example used by him can be presented thus:

Let y? = zv/a? — z2. Suppose £ = Va? — z2, then
2 —a?+12°=0.

Applying Proposition 7 we obtain

26E + 25 = 0,
or
Y
T =¢
- —ix
T A — 22
Now,
y? = 2va? — x2
so that

y? = z€.

So, 2y = &£ + € using Proposition 7. Substitute for £ and £ to obtain
2

2ygj=a’c«/a2—x2—L

a? — g2
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as required.

After further rearranging, the ratio of the velocities can be found to be

v a? — 222
i 2x1/2(a? — £2)3/4°

In Proposition 8 Newton presents a method for finding the anti-derivative,
1y, given the velocities £ and ¥, and the relation between z and % He says

that

Prop 8th is y¢ Converse of this 7th Prop. & may bee therefore

Analytically demonstrated by it.

[Proposition| 8 If two Bodys A & B, by their velocitys p & g
describe y° lines x & y. & an Equation bee given expressing y°
relation twizt one of the y° lines x, & y°© ratio ;1—, of their motions

q & p; To find y° other line y.

Could this bee done all problems whatever might bee resolved. But
by y¢ following rules it may bee very often done. (Note y* £m &

+n are logarithmes or numbers signifying y¢ dimensions of x.)

First get y© valor of %. Which if it bee rationall & its Denominator
consist of but one terme: Multiply y* valor of x & divide each
terme of it by y© logarithme of x in y* terme y® quote shall bee y*

valor of y.
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Example

If = az™, multiply by z to get ax=z!.
o s %.}.1
Now divide by the power of x to get “"”% o
That is,
n min
Y= ar .

 m+n
Newton follows Proposition 8 with many examples for the cases when % is

rational, irrational, a surd, or combinations of these. One example he gives

is:

If
q cmn—l
p a4+ bxn’
then
c
— [
y nab 4+ nbz’

where z = bz™ and the symbol [ is read as “the area of”.

To explain how Newton came to derive a solution for y, consider the

following;:
a_y
p
B cz™ !
" a+ bz
Now,
z=bx"



so that
2 =nbx" 4.

So we can write
y__ ¥
z  nbxmlz
cx™ L 1
% 1
a+ bxm nbxn—
c

nb(a + bz")’

That is,

2 nba+nbz’ (3.1)

|2

So we can say

c
=0—-. )
y nba + nbz (3-2)

Equation (3.1) can be written as

dy ¢
dz  nba + nbz’

So it can be seen that equation (3.2) is, in modern notation,

—/ ¢ dz
L= o i T

However, to be more accurate the area under a curve is given by a definite
integral. So, Newton has really produced a method for the inverse of the
chain rule, rather than finding an area.

In the case where the line to be found given the area involved hyperbolic
or circular functions Newton used the binomial series expansion and then

integrated each term. For example if




then by using the binomial series expansion we get

gy a acx ac’z?
< — +
z b b? b3

which upon applying Proposition 8 results in

ar acx® ac’z?

VST T T

Problem 5 of The October 1666 Tract introduces a method for finding
a line given the area. Newton actually uses the Fundamental Theorem of

Calculus to solve the problem, that is

dy
= dr =
/dﬂ Y,

where y is the area.

Prob 5t. To find y¢ nature of y® crooked line whose area is ex-
pressed by any given equation. That is; y® nature of y° area being

gwen to find y© nature of y® crooked line whose area it is.
To assist reading Newton’s following solution consider figure 3.4.

Resol. If y¢ relation of ab = z, & [arealabc = y bee given & y°
relation of ab = =, & bc = q bee required (bc being ordinately

applyed at right angles to ab).

Make de || ab L ad || be = 1. & y™ is Oabed = 2. Now sup-
posing y¢ line cbe by parallel motion from ad to describe y® two

superficies ae = x, & abc = y; The velocity w™ w they increase
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€ [}

Figure 3.4: Given the area under the curve y, Newton finds the
line which determines this area.

will bee, as be to be: yt is, y® motion by w z increaseth being
be = p =1, y© motion by w y increaseth will bee bc = q. Which

therefore may bee found by prop.7th.

Example

Tf
2

or

—4rz® 4+ 99% = 0.
Then from Proposition 7
Y
q= -
i
_ 12rg?
18y
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So, the curve, whose area is 2?“’ rx, is v/rz. In modern notation this

means

2
—3£ m:Z/\/ﬁdx.

The example supplied by Newton does not clearly show the fundamental
theorem of calculus. Consider figure 3.4. The problem states that given the
area, ¥, in terms of z find the curve ¢ = f(z). Also given is ab = z, bc = ¢
and ad = be = 1.

If the area is regarded as being produced by the movement of the vertical
line bc with velocity ‘fi—f = % = 1, then, Newton says, the two areas x and y
will increase as be to be: yt is, y¢ motion by w x increaseth being be = p =
(£) = 1, y* motion by w y increaseth will bee bc = ¢. So, in fact he has
said that the rate of change (with respect to time) of the area, y, is g. That

is

ay _
a7
or
y=q
With £ = p =1 then
]
~ =4,
I
or
dy
dz T
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So, to find the curve (¢) whose area is y, Newton says to use Proposition
7 to find %. In the above example, the area is y = %’” rz and following his
- d
method results in the curve 2 = \/rz.

In modern notation he has used

or

areq = f(curve) dx.

Therefore, Newton has used the Fundamental Theorem of Calculus in
that [ % dz = y where y is the area and % is the curve which produces that

area.

3.2 Fluents and Fluxions

Newton’s first paper introducing the terms fluents and fluxions was written
between 1670 and 1671 and is called De Methodis Serierum et Fluzionum
(Methods of Series and Fluxions). It was published in 1737 and appears
in Volume 3 of Whiteside [15]. Whiteside uses the dot notation for speeds
rather than letters p,q,r etc. The following excerpts taken from Whiteside
highlight the introduction of the terminology used by Newton for quantities
and their resultant speeds. A problem very similar to one used earlier to
demonstrate Proposition 7 is shown, as well as the proof for this method of
solution. Rather than being a repeat of what has been shown earlier the
works from his later paper show how his thoughts have developed in the area

of calculus.
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... to distinguish the quantities which I consider as just perceptibly
but indefinitely growing from others which in any equations are to
be looked on as known and determined are designated by the initial
letters a,b,c and so on, I will hereafter call them fluents and
designate them by the final letters v,z,y, and z. And the speeds
with which they each flow and are increased by their generating
motion (which I might more readily call fluzions or simply speeds)

I will designate by the letters v, z,y and z . ..

Problem I. Given the relation of the flowing quantities to one

another, to determine the relation of the fluzions

Arrange the equation by which the given relation is expressed ac-
cording to the dimensions of some fluent quantity, say x, and
multiply its terms by any arithmetical progression and then by
%. Carry out this operation separately for each one of the flu-

ent quantities and then put the sum of all the products equal to

nothing, and you have the desired equation.

This algorithm is equivalent to that in proposition 7 stated earlier. Here,
though, Newton uses his new terminology and in the example following dis-
plays an alternative setting out for the solution.

Example. let 23 — az? + azy — y® = 0, then considering the z quantity

first we get

x?’.(?)%) — axz.(2§) + axy.(z;) —43.(0) = 0,
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and then for the y quantity

—y3.(3§) + azy.(Z) — az?.(0) + z*(0) = 0.

< |-

The sum of all the products gives
3¢x? — 2aix + ady — 3yy® + ayz = 0,

which will give the relation between fluxions # and .

So, with = as the independent variable, that is ¢ = 1, we can say

dy 32?2 — 2az + ay
de ~ 3y2—ax

Newton’s proof of this method is similar to his proof of Proposition 7, but
now he uses the terms “fluents”, “fluxions” and “moments” and uses limit

increments resulting in a more detailed outcome.

The moments of the fluent quantities (that is, their indefinitely
small parts, by addition of which they increase during each in-
finitely small period of time) are as their speeds of flow. Where-
fore if the moment of any particular one, say z, be expressed by
the product of its speed & and an infinitely small quantity o (that
is, by Zo), then the moments of the others, v,y,z, will be ez-
pressed by Vo, Yo, z0,.... Now, since the moments (say, o and
yo) of fluent quantities (z and y, say) are the infinitely small ad-
ditions by which those quantities increase during each infinitely
small interval of time, it follows that those quantities x and y
after any infinitely small interval of time will become x 4 To and

y + yo. Consequently, an equation which expresses a relationship
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of fluent quantities without variance at all times will express that
relationship equally between x + o and y + yo as between x and
y; and so x + o and y + yo may be substituted in place of the

latter quantities, x and y, in the said equation.

Let there be given, accordingly, any equation

2 —ar? +axy—1>P=0

and substitute x + Lo in place of x and y+ yo in place of y: there
will emerge

0 = (22 + 35 0 2% + 3% o 1 + 430®) — (az® + 2ad o = + ai®o?)

+ (azy + ad oy + ay o T + aigo?) — (y° + 3y 0y + 357 o y +75Y).

Now by hypothesis x° — az? +azy —y3 = 0, and when these terms
are erased and the rest divided by o there will remain
0 = 32z + 34% o z + 42 o —2aix — ai® o +aiy
+ ayx + ady o —3yy* — 392 oy — 3 0%

But further, since o is supposed to be infinitely small so that it
be able to express moments of quantities, terms which have it as
a factor will be equivalent to nothing in respect of the others. I

therefore cast them out and there remains

3ix? — 202z + aiy + ayz — 3yy* = 0.

As mentioned previously, if ¢ represents time then o = dt and v, z, 7 and

dv dr dy

z are the respective speeds = 76 o

dz
and oo

44



Although this presentation of Proposition 7 and its“proof” are very sim-
ilar to his earlier work in The October 1666 Tract it is much easier to follow
given the new terminology for flowing quantities (luents) and their respective
speeds (fluxions) as well as the introduction of the term “moments”. In mod-
ern notation moments represent the infinitely small increments dv, dz, dy and
dz of the variables v, z,y and z, respectively. By introducing these infinitely
small additions by which those quantities increase during each infinitely small
interval of time Newton has produced a proof using limit increments. Con-
sequently the substitution of z + zo and y + yo into his original equation is

more plausible.
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Chapter 4
Gottfried Leibniz (1646 - 1716)

Leibniz began seriously studying mathematics during 1672 in Paris. He
wanted to create a system of notation and terminology to simplify math-
ematics. His notation made solutions to problems more easily followed and
provided an opportunity for more rigorous proofs in calculus. Edwards [5]
examines two examples of the simplification of problems due to Leibniz no-
tation, one of which is relevant to the approach taken by Leibniz in the
development of calculus.

Examples

1. In Lagrange’s functional notation the rule for the derivative of a com-

posite function is :

If
then

Why this is true is not obvious at first, but using Leibniz notation and setting
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z = f(y) and y = g(z) then
dr _dz dy
dr dy dz’
Now the situation is more readily seen, and there is the opportunity for proof
by considering dz,dy and dz as Az, Ay and Az and using limits.
2. Consider the problem of finding the area of a surface resulting from

rotating y = f(z) about the x axis. An expression for the area can be found

dy 2\ 2
A= [ 2y |14+ | == dx.
dx

Using Leibniz notation we have the following situation, rather than a lengthy

to be

summation of series using a Riemann sum.

Y

Figure 4.1: ds is an infinitesimal length of the curve y = f(z).
dx and dy are infinitesimal lengths representing the horizontal and
vertical components of the right angled triangle.
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Let ds be an infinitesimal segment of the curve y = f(z) shown in fig-

ure 4.1, then

ds = +/(dy)? + (dx)?

dy 2
=dz 1+(%) :

When the segment, ds, is rotated about the z axis in a circle of radius vy,

then the expression for an infinitesimal area is

dA = 2my.ds

dy 2
=27ydxA[1+ | — ] .
dx

Therefore the total area is the sum of all infinitesimal areas, dA. That is,
A= / dA
du\ 2
. /27rydx 1+ (_y) ;
\V dx

In 1714, two years before his death, Leibniz wrote Historia et origo calculi
differentialis (History and Origin of the Differential Calculus). In this paper
he supplies the history of his own development of calculus. He begins his
history by explaining simple number properties which lead him to think of
differences and relationships between numbers within sequences. The mean-
ing and the use Leibniz made of the differences and sums of elements of a
sequence becomes clear in the following sections.

The English translation of the paper mentioned above is presented in J
M Child’s [4] The early mathematical manuscripts of Leibniz. It is this book

to which most of this chapter refers.
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4.1 Sequences and Series

In 1672 Leibniz stated that

... the sum of the consecutive differences equals the difference of

the first and last terms of the original sequence.

That is, if ag, a1, as, . .. ,a, is a sequence and denoting the difference between

consecutive terms to be
di =a; — a;
then the sum of the differences is
di+dy+---+d, =a, — ap.
Leibniz gives the following example:
0, 1, 4, 9, 16, 25

has differences

1, 3, 5 7, 9

so that the sum of the differencesis 1 +3+5+74+9=25—-0 = 25.
Leibniz presented his work to Christiaan Huygens (1629 - 1695) who was a
well known scientist on the continent at the time. Huygens suggested solving

the series

1 1 1 1 1
S oot

17376 10 S CESC (4.1)

To solve the problem Leibniz began with Pascal’s arithmetic triangle:

111 1 1 1
2 3 4 5 6
3 6 10 15 21
4 10 20 35 56
5 15 35 70 126

[
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In the arithmetic triangle the nth element in each row is the sum of the
first n elements in the previous row. Leibniz considered what he called the

harmonic triangle:

{1 1 1 1 1 1
A A A
N
(R y oy oW

f 2 B

5 30 105 °°°

where subsequent rows are formed by taking differences, rather than sums in
the case of the arithmetic triangle. Using his work from 1672;

for a decreasing sequence ai, as, . . ., a, with differences

b =a; — Ait1,
then

b1+b2+---+bn=a1—an+1

which, in the limit, will give the sum of the differences as a;. So, using the
above argument for a decreasing sequence the second row of the harmonic
triangle gives

1+1+1+1+1+ =1 (4.2
2 6 12 20 30 o 2)

That is, the sum of the terms in each row is equal to the first element of the

preceding row.

Note that the nth element of the second row of the harmonic triangle is

1 i 1

n n+l :n(n+1)‘
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This is half of the nth number in the series posed by Huygens in (4.1) viz;

2/n(n+1). So, multiplying (4.2) by 2 gives the solution to Huygen’s problem:

Ll il e ! =2
1 3 6 10 n(n+1)/2 -

Leibniz noticed the inverse relationship between Pascal’s arithmetic tri-
angle and his so called harmonic triangle:

Arithmetic Triangle:

each row consists of sums of the terms in the preceding row (and differences

of terms in the following row).
Harmonic Triangle:
each row consists of differences of the terms in the preceding row.

The notion of an inverse relationship between the operation of taking
differences and that of forming sums of the elements of a sequence, played a

major role in Leibniz’s development of calculus.

4.2 The Characteristic Triangle

Leibniz was familiar with the work of Pascal. Pascal had proven the theorem
stated by Archimedes for measuring the surface of a sphere. He used a
method whereby the surface of the solid, produced by rotation about an
axis, can be reduced to a plane figure. Leibniz made use of this method and

stated that

Portions of a straight line normal to a curve, intercepted between

the curve and an axis, when taken in order and applied at right
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angles to the axis give rise to a figure equivalent to the moment

of the curve about the axis.

This theorem becomes clear when examples of similar triangles are examined
with Leibniz’s diagram illustrated in figure 4.2. He calls the triangle Y1 DY,
the characteristic triangle and considers three cases of similarity. For each
case Leibniz’s notation and results will be presented first, followed by an

analysis using modern notation.

ﬁ U %1 .Z2 Q

X1

X2
z E
H 1%
P
F

Figure 4.2: Leibniz’s diagram showing the characteristic trian-
gle, Y1 DY5, required for cases 1,2 and 3 following this diagram.
Note that the z direction is vertical and the y direction is hori-
zontal.

From figure 4.2 notice that DY, = X1X,, DY, = Z,Z, and Y1Y; is
Y;Y; is part of the tangent T'V. The tangent line, TV, should only touch

the curve once, but is shown in the diagram cutting the curve at Y; and

52



Y,. Leibniz is indicating here that the area between the curve and TV is
meant to be negligible and that triangle Y; DY5 is infinitely small. The axes
are referred to as AX (the z axis) and AZ (the y axis) by Leibniz. Then
X1,X, or X, and Z;,Z,, or Z are positions along the AX and AZ axes,
respectively. Leibniz considered the following three sets of similarity using
the characteristic triangle in each case. Most important to all the following
arguments is that the characteristic triangle Y;.DY} is infinitely small.

Case 1. In triangle Yo X, P, Y5 P is the perpendicular, or normal, to the
curve and X, P is the subnormal to the curve.

Y1 DY, is similar to Y2 X, P, so
PY, xY1D =Y, X5 X YoV
That is,
rectangle area PY5.Y1D = rectangle area Y, X,.Y5Y]. (4.3)

He calls Y5.X,.Y,Y; the moment of the element of the curve about the axis,
and that the moment of the curve about the z axis is equal to the area under
a second curve (the quadratriz) whose y coordinate is the normal, PY;, to

the original curve.

Hence the whole moment of the curve is obtained by forming the

sum of these perpendiculars to the azis.

Leibniz uses the phrase moment of the curve to represent a portion of
the area of the surface formed by the rotation of the curve Y;Y; about the

axis AX. If ds = Y1Ya, dz = V1D and dy = Y2D represent the sides of
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the infinitely small characteristic triangle, and y = X,Y, and n = Y, P then

similar triangles Y; DY, and Y2 X2 P give

ds dx
Y
or
yds =ndx.

So that the whole moment, that is the sum of the infinitesimals, is

/yds=/ndm.

The integral sign was not introduced by Leibniz until 1675, so he ex-
pressed himself in words (as in equation (4.3)). The area of the surface
resulting from the rotation of the original curve about the z axis is found by

multiplying the moment by 27, giving

A= /27ryds.

Case 2. The characteristic triangle Y1 DY5 and triangle THV are similar,

giving

YW£o:VoD=TV :VH
or

VH x 1Yo =TV x Y,D (4.4)
That is,

94



the rectangle contained by the constant length VH and the el-
ement of the curve Y1Ys, is equal to the rectangle contained by
TV and YD, or the element of the coabscissa, Z1Z5. Hence the
plane figure produced by applying the lines TV in order at right
angles to AZ is equal to the rectangle contained by the curve when

straightened out and the constant length HV .

In this case Leibniz has developed a method for rectification of curves.
That is, finding a straight line segment equal in length to a given curve. If
we let t = TV and a be the constant length V H, then the arclength, s, of
the curve can be found by the summation of the elements above in equation

(4.4). That is,
[vamys) = [1vap)

or

/ads: /tdy.

So, finding the length of a line segment (or arclength, s) is equivalent to
finding the area between the y axis and another curve whose z axis is the
tangent to the given curve.

Case 3. Triangles Y, DY, and Y2 X, P are similar, so that
YiD : DY, = Y5 X, : Xy P,
or
XoP x Y1 D = Y2 Xy x DY, (4.5)
That is,
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the sum of the subnormals XoP taken in order and applied to the
axzis, either to Y1D or to X1X,, will be equal to the sum of the
products of the ordinates Yo X, and their elements, Yo D, taken in

order.
Using the modern notation, and with v = X, P equation (4.5) becomes
vdr = ydy.

So that we have

/bvdx:fydy (4.6)

and noting that

v=1y (Z—i) (4.7)

we have the result

fo(&) - fra

Leibniz referred to this method as [reducing] these quadratures [areas] of
figures to an inverse problem of tangents.
He noted that if AZ = ZL, then AZL is a right angled triangle with area
s(azp,
. straight lines that continually increase from zero, when each is
multiplied by its element of increase, form altogether a triangle.
...and thus the figure that is produced by taking the subnormals in

order and applying them perpendicular to the azis will always be

equal to half the square on the ordinate.
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So in equation (4.6) for a curve on an interval of [0, b], passing through (0, 0)
the area of the triangle, with base and height b, is %b2.

The method of reducing an area problem to an inverse tangent problem
requires finding another curve for which the subnormal, v, is the given curve.
To illustrate the method consider an example posed by Edwards [5]. It is
required to find the area under the curve z = z" on the interval 0 < z < a.

So, by Leibniz’s method it is required to find a curve, y, with subnormal

i
/ " dxr =
0

v = z" so that

I

L\Dlr—l\
<
QU
<

o ) (48)

where y is a function of z.

If we try y = bz* then, with the use of v = y.% from equation (4.7),

v =bz* x bkzk !

= Prp2l,
But
v=2x",
S0
" = b2k$2k_1
when

k:%(n—i—l)
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and

1 —1/2
Substituting y = bz* into equation (4.8) results in

/Oa g d = % [{((n + 1)/2)_1/2$(n+1)/2}2]z

an—i—l

n+1

In the Historia et origo, Leibniz summarises the three cases above: Thus,
to find the area of a given figure, another figure is sought such that its sub-
normals are equal to the ordinates of the given figure, and then this second
figure is the quadratriz of the given one; and thus from this extremely ele-
gant consideration we obtain the reduction of areas of surfaces described by
rotation to plane quadratures, as well as the rectification of curves; at the
same time we can reduce these quadratures of figures to an inverse problem
of tangents.

The term “quadrature” refers to the method of finding the area of a figure.
The method involves constructing a second plane figure, of equal area to the
original, and subsequently finding the area of the simpler figure. This second
figure is called the quadratrix and is often a square or rectangle.

In a letter to I’Hopital written twenty years after his initial work in this

area, Leibniz summarises that

use of what I call the characteristic triangle, formed from

the elements of the coordinates and the curve, I thus found as it
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were in the twinkling of an eyelid nearly all the theorems that I

afterward found in the works of Barrow and Gregory.

He continued to write that he did not know the algebra of Descartes, but
given encouragement from Huygens he continued his work and came upon

my differential calculus.

This was as follows. I had for some time previously taken a plea-
sure in finding the sums of series of numbers, and for this I had
made use of the well-known theorem, that, in a series decreasing
to infinity, the first term is equal to the sum of all the differences.
From this I had obtained what I call the “harmonic triangle”,
as opposed to the “arithmetic triangle” of Pascal ... Recognising
from this the great utility of differences and seeing by the [alge-
bra] of M. Descartes the ordinates of the curve could be expressed
numerically, I saw that to find quadratures or the sums of the
ordinates was the same thing as to find an ordinate (that of the
quadratriz), of which the difference is proportional to the given or-
dinate. I also recognised almost immediately that to find tangents
is nothing else but to find differences, and that to find quadratures
is nothing else but to find sums, provided that one supposes that

the differences are incomparably small.

4.3 The Integral Sign

In a manuscript dated 29 October 1675 Leibniz introduces the integral sign

as we know it in modern mathematics. The manuscript is called Analy-
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seos Tetragonisticae pars secunda (Second part of analytical quadrature),
Child [4]. He begins with a similar diagram to that in the last section but
with different labelling as seen in figure 4.3. Initially, he uses omn to rep-
resent the sum of ..., and later introduces the new symbol, f . His working
sometimes shows an overline which indicates that the section of text involved

should be in brackets. See equation (4.9) for instance.

- T

A

i A _""'"--.." I Q
11

; M G

i a,[ L
V a

v P W

! e I -
p

i P

Figure 4.3: Leibniz used this diagram to show his use of the
notation omn. He replaced this notation with the modern integral
sign in his later works.

He states that with WL =1, TB =t, GW = a, BP = p, then

y =omn.l.

In other words the total length, y, can be written as the sum of infinitesimally

small lengths (.
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From similar triangles GW L and LBP,

.

a omnl’
That is,

omn.l
p= Ad.
a
So,
omn.l
omn.p = omn. A, (4.9)

If AQ = QL, then AQL is a right angled triangle, and from the previous
section it was shown that it will have area %(AQ)z. So applying Leibniz’s

Case 3 to this situation with p = v, | = dy, a = dxr and y = omn.[ results in

1, omn.l

omnp =y =—F

Therefore, substituting for omn.p in equation (4.9)

2

omn.l
2

= omn.omn.l. (4.10)

Q| =~

In modern notation ! = dy and a = dz = 1 so that equation (4.10)

becomes

or



In this manuscript Leibniz also states that
omn.zl = z.omn.l — omn.omn.l,

where | is taken to be a term of a progression [of differences], and x is the
number which expresses the position or order of the | corresponding to .
So, in other words, he is referring to a sequence of differences of ordinates.

Using integral notation the above equation becomes

/Qdyzx/dy—//dy
—ay~ [yda.

He introduces the integral sign later in the manuscript:

It will be useful to write [ for omn, so that
/l = omn.l, or the sum of the l’s.

Thus

/22/7g¥ (4.11)

and

Ja==[1- [t (4.12)

The use of these two equations may be seen when appropriate substi-
tutions are made. For instance, when | = dz in equation (4.11) the result
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that is,

2
% :./xdx.

With [ = z dz in equation (4.12) Leibniz would obtain

[asdo=s [sda~ [[sas

which becomes

2 2
/xzdx:m.%—/%dx.

So, upon rearrangement

3 3
5/.’1)2(137:%_

and therefore

/x2 dz = %x3.
4.4 Later Manuscripts

There is some contention as to the correct date on a manuscript in which
Leibniz introduces the notation dz. The manuscript, dated 11 November,
1675 (or 1673) uses dz, but he still considers it to be a constant equal to
one. In a manuscript dated 1 November 1675 he introduced the difference
notation ¥ to represent the modern dy, and in the manuscript mentioned
previously he attempts to find an expression for d(%) and d(v). It was not

until 11 July 1677 that he obtained

d(zy) = 2 dy + y dz.
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In an undated manuscript, thought to be a revised version of the 11 July
1677 manuscript, Leibniz states The fundamental principle of the calculus
and provides proofs of the fundamental rules of differentiation. He also con-
siders the integral as the sum of rectangles, by setting up the following as

shown in figure 4.4.

Figure 4.4: Leibniz’s diagram to assist his argument for stating
that [dy =y and for finding the area under a curve.

Let CC be a line, of which the axis is AB, and let BC' be ordinates
perpendicular to this azis, these being called y, and let AB be the
abscissae cut off along the axis, these being called x.

Leibniz calls C'D the differences of the abscissae and labels Cy Dy, Cy Dy, CsDs,
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etc. as dz. Similarly, the lines D1Cy, D2C3, D3Cy etc. are the differences of
ordinates which Leibniz calls dy. These distances, dz and dy, are taken to be
infinitely small and are two sides of his characteristic triangle. He considers
the straight lines C1C5, CoCs, C3Cy ete. to be elements of the curve or a
side of the infinite-angled polygon that stands for the curve. These lines are
extended to the AB axis to Ty, Ty, T3 etc., respectively, to produce tangents.

Then, he says
T,B; : BiC, = C1 Dy : D1C%,
or using that in general T1B;, T,B,, or T3 B3 are called ¢,
t:y=dz:dy.

In modern notation we would write

dy _y
dr t

Considering the triangle T1B,C; in figure 4.4 it can be seen that —g—% =

results in finding the ratio of the sides y = B;C; and t = Ty B, hence the

tangent slope may be obtained. That is, % is calculated. Similarly for

triangles T5B2C, etc. Leibniz suminarises:

Thus to find the differences of series [dz and dy] is to find the

tangents.
Next he considers the sums of differences:

Moreover, differences are the opposite of sums; thus B4Cy s the

sum of all the differences such as D3C4, DoCs, etc. as far as A,
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even if they are infinite in number. This fact I represent thus,

Jdy=y.

He illustrates here very clearly how [dy = y as well as the relationship
between sums and differences.

For the entire curve, CC, he says:

Also I represent the area of a figure by the sum of all the rectangles
contained by the ordinates and the differences of the abscissae,
i.e., by the sum B1Di + ByDs + B3D3+ etc. For the narrow
triangles C1D1Co, CoDyCy, elc., since they are infinitely small
compared with the said rectangles, may be omitted without risk;
and thus I represent in my calculus the area of the figure by [ ydz,
or the sum of the rectangles contained by each y and the dx that

corresponds to it.

The diagonals By Dy, BoD,, B3Dj etc., referred to in the above text rep-
resent the notation for the areas of rectangles B;C| by Cy Dy, BoCs by CoD5
etc. So it can be seen that the sum () of the rectangles (y x dz) can be
represented by f y dx. Provided that the triangles C; D;Cs, Co D5C3, etc. are
infinitely small, this is the area under the curve.

Also in this undated manuscript Leibniz supplies a statement on the fun-

damental principle of his calculus:
The fundamental principle of the calculus

Differences and sums are the inverses of one another, that is to

say, the sum of the differences of a series is a term of the series,
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and the difference of the sums of a series is a term of the series;
and I enunciate the former thus, [dx = x, and the latter thus,
d [z =z Thus, let the differences of a series, the series itself,

and the sums of the series, be, let us say,

Diffs. 1 2 3 4 5 ... dzx
Series 0 1 3 6 10 15 .. T
Sums 0 1 4 10 20 25 . f x

Then the terms of the series are the sums of the differences, or
r = [dz; thus, 3 =1+2,6=1+2+3, etc; on the other
hand, the differences of the sums of the series are the terms of
the series, or d [ = z; thus, 3 s the difference between 1 and
4, 6 between 4 and 10. Also, da = 0, if it is given that a 1s a

constant quantity, since a —a = 0.

He then supplies information on rules for addition, subtraction, multipli-

cation and division type problems. For instance, he says
T+y—v= /dac—i—dy—dv

and

jm=‘/x+/y—/v,

and states that This is evident at sight, if you take three series, set out their
sums and their differences, and take them together correspondingly as above.

For multiplication he states the modern product rule
d(zy) =z dy +ydz

and supplies the following proof:
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dzy is the same thing as the difference between two successive
zy’s; let one of these be zy, and the other = + dz into y + dy;

then we have

dzy ==z +dx.y+dy —zy (4.13)

=z dy + ydz + dz dy;

the omission of the quantity dz dy, which is infinitely small n
comparison with the rest, for it is supposed that dz and dy are

infinitely small, will leave x dy +y dz.

In equation (4.13) he has just written the difference of successive terms (z +
dz)(y + dy) and zy with the overlines representing brackets.

Similarly, he found the quotient rule by considering the difference between
successive terms. He states the rule

d¥ = zdy —ydz
r T

and for the proof he writes
gy_ytay _y
r z+4+dr =«
rzdy —ydx

rzr +xdx
rxdy —ydx

X

The term z dz on the denominator may be omitted due to it being infinitely
small in comparison with xx.
Leibniz shows in this manuscript that, in general, for any positive inte-

ger7 e’
dz¢ = e.xt=tdz,
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by using
dzvy = zy dv + zvdy + vy dz. (4.14)
For instance, let
dz® = daxvy
where
r=v=y and dzr=dv=dy,

then, from equation (4.14)

dz® = 32%dz.
Hence also
1 hd
d 5= —"pr
X rias
For, if - = ¢, then e = —h, and 2*7! = .

r=—r—

He continues by considering fractions ( The same thing will do for fractions)

and irrationals:

dvzh = dz"", (where by h : v I mean %, or h divided by ),
or dz°® (taking e equal to %), or e.x=1dx, by what has been said
above, or (by substituting once more h:r fore, and h—r : 7 for

e—1) %.xﬁ__’"”.dx; and thus finally we get the value of d v/ z".
He finally states the converse for the last three derivatives:
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Moreover, conversely, we have

1 1
— = —=,
e e— l.ze1
/VT zhdz = ihv' phtrir
r

These are the elementary principles of the differential and sum-
matory [integral] calculus, by means of which highly complicated
formulas can be dealt with, not only for a fraction or an irrational
quantity, or anything else; but also an indefinite quantity, such
as x or y, or any other thing expressing generally the terms of

any series, may enter into it.
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Chapter 5

Alternative Approaches in the
Teaching of Calculus

The conventional way of introducing calculus in the senior years of Australian
high schools is to begin with limits in conjunction with investigating slopes of
chords through curves. One of the points the chord goes through is considered
to move closer to the other fixed point until a tangent line is produced. The
slopes of the chords may be calculated by using the gradient formula learnt
and practiced in earlier years. Using this approach the slope of the tangent
is approximated. Terms such as “tends towards”, “approaches” and “in the
limit” are introduced as the chord gradually becomes the tangent line at the
fixed point. It is advisable to illustrate the above geometrically.

The derivative is defined eventually as

f(z+h) — f(z)
) :

f'(z) = lim (5.1)

This requires knowledge of limit notation and at least a good intuitive idea
of what a limit is. Many students are not comfortable with the concept of
the limit being an operator, and are confused by the use of the word “of” in

the term “the limit of”. The word “of” has, for many of their school years,
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been synonymous with “product”.

Before the first principles definition of the derivative is introduced a large
amount of work on limits must be covered. All the limit rules must be
encountered and lengthy algebraic manipulation within limit problems must
be mastered if a complete formal treatment is given. So, initially, the idea
of a chord becoming a tangent in the limit is introduced, then limits and
applicable rules are introduced and practiced, and finally the two are put
together to introduce the derivative function, f'(z), as in equation (5.1).
Many problems are set to find the derivative of a function as a function
of a variable, z, say. As well, problems are set which enable the slope of
the tangent to be found by calculating the derivative at a point on a curve.
Then the rules of differentiation are explained, sometimes using the limit
definition in equation (5.1) for the proofs. Alternative notation such as % is

also introduced and problems can now be considered using a general formula

such as:
if f(z) =2" then f'(z) =na™' forneR.

Later, the product and quotient rules are introduced, usually by the first
principles method.

To enhance the understanding of the derivative, there are software pack-
ages available. One of these is ANUgraph. This may be used to display the
changing chord approaching the tangent line with more accuracy than on a
whiteboard or blackboard. Obviously the diagrams are not static either. An-
other approach to assist with the understanding is to consider displacement-

time graphs with their corresponding velocity-time graphs. Here, discus-
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sions can take place regarding rates of change. For instance, from a curved
distance-time graph questions may be posed about the speed: when was it
greatest, least, constant? A velocity-time graph may then be drawn by find-
ing approximations for the slopes (of the tangents) at set points along the
original curve, and plotting the resultant slopes against time. Discussions
from this type of activity will enhance the understanding of the concept of
slopes of tangents as well as the ability to interpret graphs.

This technique for introducing calculus is usually followed by considering,
graphically, other functions and their resultant gradient or derivative func-
tions. Here, again, the use of computers can enhance the graphical picture
and lead into f—(mh_fm for the slope of the tangent for small h. Investiga-
tions then lead the student to discover a relationship between the original

function and the derivative or derived function.

After studying the development of calculus by Newton and Leibniz it
becomes apparent that there are alternative methods available for teaching
calculus. Newton and Leibniz were criticised for not being rigorous in their
proofs: Newton for dismissing the little zero, or o, as being negligible and
Leibniz for neglecting multiples of differences such as dzdy. However, it is
possible to produce a course in introductory calculus using mostly Leibniz’s
methods as a basis with Newton’s study of the motion of objects to highlight
rates of change. In the following sections, the work of Newton and Leibniz is
discussed along with its suitability for inclusion in an introductory calculus
course. In the final section a course structure is discussed as well as some

ideas for investigative work for talented students. Since the majority of the
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course suggested uses the methods of Leibniz, his work is discussed initially

in the next four sections.

5.1 Leibniz’s Differences

Leibniz’s approach to calculus is quite different to the moving bodies in
Newton’s work. Leibniz, in his own history of calculus, says that it was his
experimenting with number series which labelled the beginnings of his work
in calculus. His terminology and notation are very easy to follow and the use
of a simple number series in his explanation for the fundamental principle of
the calculus in section 4.4 on page 66 highlights the simplicity of his initial
approach. His methods are also well within the grasp of students new to
calculus. He says, for a series 0 1 3 6 10 15... the differences are 1 2 3 4 5...
and are called dz. These are obviously obtained by the differences between
consecutive terms of the original series. The sums are 0 1 4 10 20 25... and
are labelled [z, indicating that the sum of the first n elements of the series
gives the nth term of the sums row. For instance, 0+ 143 +6 = 10, the 4th
number of the sums row. Experimenting with series would be the first step to
introducing calculus by Leibniz’s methods. Students may be given the series
row and from that calculate the sums and differences row. Using Leibniz’s
set up (as on page 66) could be a way for students to find the relationship
between the series, differences and sums as Leibniz himself did. That is, the
inverse relationship between differences and sums. Consider the following:
Example

Given the series 0 1 4 9 16 25... set the problem out in the style of Leibniz:
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Diftss 1 3 5 7 9 ... dx
Seriecs 0 1 4 9 16 25 s T
Sums 0 1 5 14 30 55 o iz

Suggest that students try to obtain the original series by considering only
the differences, and also try to obtain the series by considering only the sums.
Hopefully they will find, as did Leibniz, that the sum of the differences is a
term of the series. Hence, the notation f dz for the “sum of the differences”
equals the series, z. That is, [dz = x. Also, “the difference of the sums”,
d [ x, equals the series, z. That is, d [z = =.

This simple technique is a way of introducing the notation for calculus. It
is far less cumbersome than delving straight into limit theory and derivatives.
Beyond high school mathematics, the more correct notation, ), for the sum

should be explained.

5.2 Leibniz’s Tangents and Z—Z

In the Historia et Origo Leibniz explains his use of the characteristic triangle
in finding the areas of solids of revolutions (in section 4.2 described on pages
51 - 56). For simplicity, consider the characteristic triangle as a right angled
triangle with the hypotenuse as the length of an element of the curve or
a side of the infinite-angled polygon that stands for the curve. In Leibniz’s
diagram the vertical length is the difference in the x coordinates, labelled dz
and the horizontal length is the difference in y coordinates, labelled dy. For
the characteristic triangle all these lengths must be infinitely small. To assist
the understanding of what “infinitely small” means one could use a phrase

by Leibniz: the two points on the curve are understood to be a distance apart
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that is less than any given length. To develop the concept of tangent and the

relationship to Z—Z consider the following diagram:

Y

__\ 04

&}

C
Dy !

i P
N
B, Bs B, B A& x

Figure 5.1: This diagram is essentially figure 4.4 shown on page
64. Here, the axes are represented as we would use them today.

Here, the characteristic triangle is C;D;C; and has sides C1 D, = dx,
D,Cy = dy and C,C3 = ds. The line through C;C; meets the z axis at T3
and since C;C, is an infinitely small length, consider 71C} as the tangent to
the curve at C;. T} B; is a length along the z direction, labelled ¢;, and B;C}
is a length along the y direction, labelled y,. Using similar triangles C,C2D;

and T1C, B; students should have no problem showing that

dy _ %

at C.
dx tl !

Now that this ratio is found the slope of the tangent has consequently

been found, since it is the ratio of the y step and z step which gives the
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slope. That is, the slope of the tangent is really the slope of the hypotenuse
of an infinitesimal triangle, which is %g. Now, to match modern day usage
and notation, denote % as the slope of the tangent or alternatively call %
the derivative (of the curve).

It is important to illustrate the derivative as an indication of how the
curve is changing. One method is to compare other similar triangles to the
characteristic triangle. For instance, if T1 By = t1, T5Bs = t9, B1C, = y; and

B202 = Y2, then at Cg

dy _ B:C v

de BT, to
Comparing the derivatives at C; and C, will show that the curvature must
be changing.

For the moment, before derivatives are calculated from a curve, observa-
tion will need to be used to stress the rate of change. The use of software
such as ANUgraph would be useful in lessons to display that with a greater
derivative, the greater the rate of change and hence the steeper the curve,
for instance. Negative cases also need to be considered. Starting with simple

parabolae, for example y = z?

, one can illustrate the rate of change of the
curve by drawing tangents (for z > 0 at first) and assigning values for % at
various points along the curve. This way, the students can see the value of
% changing and the resulting change in the curve - becoming more steep as
the derivative becomes greater. The same may be done for z < 0. Here the
discussion is about the derivative becoming more negative (or the absolute

value becoming greater) at values of  becoming more negative, and the con-

sequent change to the slope of the curve and the tangent. Next, discussions
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regarding a zero slope, or a flat tangent, and where this takes place on curves
take place.

At this stage, if this method of introducing calculus is used, students do
not know how to differentiate functions, but have knowledge of the termi-
nology dz, dy, %, slope of the tangent and derivative. They will also be able
to judge what is happening to simple curves given values of the derivative at
points on the curve. The problem now, is how to introduce differentiation.
Leibniz uses differences between elements of a series to develop some rules of
differentiation. To assist the proofs offered by Leibniz for the development
of these rules found on pages 67-69 in section 4.4, consider the following
explanation:

If a series has a member of the type = then the next member will be
2 + dz. Similarly, if the series has general term zy then the next term will
be (z + dz)(y + dy). So, if we considered the differences row and series row

we would have

Diffs., (d(xy)) ... (z+dz)(y+dy)—zy
Series, (xy) ce. TY (z + dz)(y + dy)

Now (z + dz)(y + dy) — zy is the general term for d(zy). In other words
d(zy) =2y +zdy +ydz +dxdy — vy
=zdy +ydz + dx dy.
But the term dz dy may be neglected since it is infinitely small in comparison
with the rest, for it is supposed that dz and dy are infinitely small.
So we have
d(zy) = z dy + y dz. (5.2)
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Now if y = z, then using equation (5.2)

d(z?) = zdz + zdx

=2z dzx. (56.3)

Leibniz also obtains
d(zyv) = zydv +zvdy + vy dz (5.4)

which may be proved in a similar way to equation (5.2). Here if we let

2 =y = v then as found earlier from equation (5.4),
d(z®) = 32% dzx .

Students experimenting with these two equations, (5.4) and (5.2), to find

simple derivatives of the type z*, will see a pattern emerge. That is,
d(z*) = kz*"'dz  for keR. (6.5)
If we let y = z* then using equation (5.5)
dy = kax*"'dx,
which may be written in the form

Y _ k-1
Ir kx

Keeping in mind that dy is the difference of y values and dz is the difference
of z values, then for a curve y = z¥, the ratio % is an indication of the rate
of change of the curve due to the differences of y and z. And since y and z

are connected by the relationship y = z* the rate of change or derivative is
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determined by that relationship. That is, the slopes of tangents to the curve
y = z* are determined by % = kz*~! at any point along the curve.

If the cases for &k being only positive and an integer have been considered,
k negative, as a fraction and an irrational should also be encountered using
the general rule in equation (5.5).

The quotient rule as we know it today may be introduced using the same

technique as for the product rule (equation (5.2)). That is, consider the

general term of a series to be ¥ then the next term would be utdu o that

v+du
(u) u+du U
d{ — | = —_—
v v+dv v

B udv —vdu
4 odv

The term v dv may be omitted due to it being infinitely small compared to
v?. For a curve of the type y = ¥ the derivative, or slope of the tangent, at
any point of the curve will be given by

udv — vdu

For example, if v = x? and v = 3 + 2z, then du = 2z dz and dv = 2dxz, so
that

= z2.2dz — (3 + 2z).2x dx
. 3+ 22)2 ’

or

dy —2z°—6x

de =~ (3+2x)?°
Students who become conversant with this sort of algebraic substitution
will be able to cope with composite function derivatives and the chain rule,

later in calculus, with relative ease.
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5.3 Leibniz’s Areas and Integration

To consider Leibniz’s approach for finding the area under curves, figure 5.1
is required again. It is repeated here as figure 5.2, without tangent lines, for

ease of reference.

Y

\ o

.D2 \
C
D, !
B, By B, B A\ z

Figure 5.2: This diagram is essentially figure 5.1 shown on page
76. The following text shows how to find the area under the
curve, using Leibniz’s technique of summing the rectangles under
the curve.

Leibniz begins by stating that the sum of the lengths Cy D3, CsDy, Cy Dy, . . .
etc. to A equals the length B4,Cy. The lengths CyDs, C5D,, CoDy, . .. etc.
are differences in y values, dy. So, recalling that he uses | to represent the
sum, he says that [dy = y, the length of CyBs. These lengths, dy, are
infinitely small. It is easily seen from figure 5.2 that the length CyB, is this
sum of dys. He then says that since the triangles C4D3Cs, C3D2Cy, Co D Cy

etc. are infinitely small compared to the rectangles underneath them, the
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area under the curve may be found by summing all the rectangles B,Cy %
C1D1+ByCyx CoDy+. .. etc. Each length B C), B2Csy, B3Cs, B4Cy etc. may
be represented by [ dy = y. So the total area is the sum of the rectangles,
y % dz, where dz is the lengths Cy; Dy, C2Ds, . .. etc. That is, the area under
the curve is [ ydz.

Having covered Leibniz’s use and meaning of sums and differences this
method of finding the area is easily explainable and is a way of introducing
areas and integration to students. To find the integral of a function, consider
the inverse relationship between sums and differences shown earlier by Leib-
niz. That is, [dz = z and d [z = z by using Leibniz’s rows of differences
(dz), scries (z) and sums ([ z). Hence, if we consider the series with general

term z* with difference
d(z*) = kz*1 dz,

then the converse is

/ d(z*) = o,

so that
/kmk_l dz = zF.
If we let p =k — 1, then kz*~! = (p+ 1)zP and we have

1
2P dr = ——2P™,  for peR, —1.
/ | peR, p#

The terms “integral” and “integration” may be introduced here to replace
g g P

the phrase “finding the sum of” and to match modern terminology.
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5.4 Using Leibniz in the Classroom

Since modern notation is that of Leibniz, his ideas are easier to teach. The
approach taken by Leibniz in his study of series and consequent development
of the inverse relationship between differences and sums is very logical and
easy to follow. His method introduces the necessary notation very simply and
offers a unique method of introducing calculus. Considering the values on
the z and y axes, corresponding to the curve, as a pair of related series leads
nicely to his dz and dy of the characteristic triangle, and the consequent ratio
% for the tangent line at any point. The geometric picture becomes clear
with this explanation as well as highlighting the concept of related series on
the axes. Recognising that the axes represent a pair of related series is not
stressed in school mathematics. Using Leibniz’s approach students would see
the relationship and understand the relevance of series work encountered in
their earlier years.

The concept of “infinitely small”, when teaching a course based on Leib-
niz’s methods, would need to be covered. Diagrammatically, students can
see that the characteristic triangle is small. Consider figure 5.2. Suggest
students try to fit in as many rectangles between the line C4By and A as
they can. They will soon see that it is possible to draw more lines simply by
reducing the thickness of their pen or pencil.

His explanation for finding the area under a curve, modified in section 5.3,
is very clear and suitable for inclusion in an introductory course in calculus.

Leibniz’s style of writing is very easy to follow. His ideas and explanations

are logical and fluent and his original manuscripts are readable, especially
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once he begins using notation currently used today.

5.5 Newton’s Differentiation.

In section 3.1 it was shown that Newton’s ideas are based on the movement of
objects as functions of time. He looked at points travelling different distances
along straight lines in the same period of time. Proposition 7, shown on page
28, states how to find the ratio of the speeds, # and g, of two objects x and
y. In summary, his method for a function f(z,y) = 0, where z and y are
functions of time, is to multiply the  term by the power of that term as well

as % Similarly for any terms in y. For example, if f(z,y) = y? — 23 = 0 then

2y.y2 — 3£.x3 =0,
Y x

so that
20y —3t.22 =0

and the ratio of velocities is
y_ 32
T

Introducing calculus using Newton’s approach by finding the ratio of
speeds of objects is not acceptable. Students need to have studied the forma-
tion of curves or loci produced by two moving objects. For instance a curve
with functional notation f(z,y) = 0, can be thought of as the horizontal
motion, z, by an object coinciding with vertical motion, y. Loci problems
are usually encountered in the earlier high school years (Years 8 and 9) and

to treat the z and y axes as lines along which an object moves, over a certain
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period of time, should not be an impossible task. It would also be advan-
tageous if students had studied horizontal and vertical velocity vectors in a
mathematics or physics course. The reasons become clear by considering the
following example. In the example, notation and terminology is introduced
for the novice student.

Example

Consider the relationship between two moving bodies to be y = 2> where

y and z are both functions of time, t. That is, y = y(¢) and x = z(t). The

distance

speed of an object is given by .77,

so the speed of one object would be

Y= éty and the other z = %, where A is read to be “change in”. Drawing

the locus f(z,y) =y — > = 0 results in the diagram shown in figure 5.3.

Figure 5.3: The locus of y —z? = 0, where y and z are functions
of time. The tangent line shown at point P is the vector sum of
y and .

At any point, P, on the curve there is a velocity in the horizontal and
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vertical directions, labelled £ and y respectively. The tangent line, defined
as the line which touches the curve once, is the resultant vector sum of Z and
7 and has a slope or gradient of %ﬁ% which is, % The slope of the tangent
may be approximated by:

Consider Az = 1 - the size between x = 3 and z = 4 in figure 5.3. Then

the corresponding Ay would be given by

Ay = 4% — 32

=1,
So, the slope of the tangent is

Y=v.

T

Note that if modern methods for finding the derivative at x = 3 are used,
the slope of the tangent is 6, not 7. The use of a large value for Az results
in an obvious inaccuracy.

Now, rather than being faced with this sort of calculation at any point P
on the curve, Newton’s later version of Proposition 7 in section 3.2 beginning
on page 42 (and proof beginning on 43) may be used.

First, introduce the term “moment” to be the very small distance moved
by z, say, over a very small period of time. This small increment in time is
denoted o to use Newton’s original notation. By using the original notation
of a well known mathematician within his development of calculus, students
could well be inspired and interested. Newton called z and y fluents and
expressed the moment of z and of y as £o and yo, respectively. It can be

seen that the moments are infinitely small changes in the respective distances
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of z and y by showing students that

. changeindistance

kl

time
SO

) , changein distance
zo = time X

time

that is,

o = change in distance.

Using Newton’s proof of Proposition 7 we can now find a general formula
for the ratio % rather than finding values at specific points on the curve. It
is also more accurate, since the increments o and yo are infinitely smaller
than the Az and Ay used at the beginning of the example.

In figure 5.3, consider a point @) on the curve a very small distance from
P. The point @ would have the coordinates (z + %o,y + yo) and since @
lies on the curve f(z,y) = 0 these coordinates must satisfy this equation.

Substitute the coordinates of @ into y — 22 = 0 to obtain
y+yo—(ac+a':o)2 =0.
That is,
y —x% — 2z o +9o —3%* = 0.
This equation simplifies further due to y — z* =0 :
yo—2xio—i2?=0.
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Newton says that the period of time, o, is infinitely small, so when comparing
terms with factor o? or higher ordered, these terms may be neglected. So,

the above equation is reduced to

yo—2zxzo=0,
or
Z:/—O =2z
o
leading to the ratio
y:x=2x:1
or
2 e s
z

After exposure to functions f(z,y) = 0, of the same type, and use of the

previous method, a pattern should be observed by the students in that, if
y==xa
then
— = nx

y n—1
i

The terms “derivative” and “differentiation” need to be introduced. That
is, the ratio of velocities, %, is the derivative and the process of differentiation

is the process in which the derivative of a function at any point on the curve is
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found. Newton’s notation for the derivative shows the ratio of velocities and
since this gives the slope of the tangent anywhere on the curve it also gives
an indication of how the curve is changing. In this sense, then, the concept
of rate of change is introduced to students. This is a valuable inclusion to a
calculus course as it is very easy for students to lose sight of the meaning of
derivative.

If the methods of Newton are followed for more complicated differentia-
tion problems, his version of the modern chain rule is shown by example on
pages 33 - 35. For the sake of clarity, consider a simpler example:

If y = (2% —4)3, Newton would let u, say, be z* — 4, so that y = u®. Now,

using Proposition 7 we have,
U = 22T
and
U = 3ua.
So, substituting for v and % gives
y = 3(x% — 4)>.2z%

and the ratio of velocities, or derivative, is

<.

Z = 6x(z® — 4)%

5.6 Newton’s Anti-differentiation

Newton uses the converse of Proposition 7 to find a curve given the ratio of

component velocities (see section 3.1 on page 35 for Prop.8). That is, given
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% in terms of x, say, find the curve y. He says to multiply by z, and then

divide by the power of the resulting z. So that, for instance, if

] _
- = ’I’Lil?n 1 i
T
then
nz™ ! x !
y s
n
=z".

Before simplification the denominator, n, is the resulting power of x on the
numerator. This method is essentially the same as current methods in the
classroom, and can be used to gain familiarity with simple anti-derivative
problems.

The relationship between areas and tangents using Newton’s version of
the fundamental theorem of calculus is described on pages 38 - 41. He con-
siders an area, y, being formed by the movement of a line ¢ = be (see figure
3.4 on page 39) and shows that for a given area the curve, ¢ = f(x), which
produces that area is, ¢ = % His reasoning is that the rate of increase of the
area will be in ratio to the movement of the line, bc. From figure 3.4 it can
be seen that the rate of increase of the area, y, is determined by the rate of

incease of area x, multiplied by the height, ¢. So that we have
9t =17

or, as Newton says,

SRS
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Notice that Newton uses ¢ to mean the height bc as well as the curve f, or
f(z). So, for example, if an area is given as y = 42, then the curve, ¢ = %,

is found by applying Proposition 7 to the area. That is,

g =4323%
T
= 12422
and
Y 1922,

x

That is, given the area is y = 423, the curve which gives that area is ¢ = 1222
Newton’s approach for finding the curve whose area is given may be used
to highlight the reciprocal relationship between integration and differentia-

tion. The Fundamental Theorem of Calculus states that

dy
/de—y

where y is the area and % is the curve. Once integral notation is known
to students, using Newton’s diagram in figure 3.4 would be a useful way

to display the reciprocal relationship within the Fundamental Theorem of

zn-'f-l

Calculus. For instance, given a curve with y coordinate 17,

the slope of

the curve will be z", by using Proposition 7. A curve with y coordinate z™

m'n,-+-l

has an area beneath it as 7,

also by Proposition 7. Since, if

xn+1

y:n-i—l

is the given area, then



Conversely, if

is the curve, then by Proposition 7 the slope of the curve will be

dy -
= =",
dz

So that, with Leibniz’s notation, we have

dy
J/IE;'dx =Y,

or

mn+1
/ " dx = for the above example.
n+1

5.7 Using Newton in the Classroom

The main advantage in using Newton’s methods in a calculus course is that
the concept of rate of change is constantly present. The notation % indicates
this. The difficulties arise when we try to convert his methods into modern
mathematical language. Since the z and y he uses are functions of time, then
2 = ‘2—’: and §y = %% and his increment of time, o, is dt in modern notation.
Showing students that % = % early in a calculus course is not advisable.
The meaning would be too difficult for students to grasp at the beginning of
a course. Newton often used £ = 1 which is another reason why explaining
his work is difficult.

Using Newton’s method of differentiating, or finding the ratio of velocities,

by introducing moments of fluent quantities requires an understanding of the
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physics of objects in motion. However, his method of substituting z+ Zo and
y + 9o into an equation is useful for students to experience. Not only do they
experience an original method by a famous mathematician, but they also
see the reasoning behind infinitely small increments of time being negligible
when its dimensions are greater than one. This is also an ideal opportunity
to consider the meaning of “infinitely small” and why terms containing o
with dimensions greater than one may be neglected.

Another problem is how to introduce the modern integral notation under
Newton’s calculus. The integral sign, [, was introduced by Leibniz to repre-
sent the sum, but Newton did not consider area as the sum of rectangles of
infinitesimal width, as did Leibniz. He did, however, use the symbol [ mean-
ing “the area of”, and used Proposition 8, the anti-differentiation technique,
to find the area under a curve (see pages 35 - 37). His lack of explanation
for why the process of anti-differentiation results in the area under a curve
would lead to many problems in the classroom.

Newton’s method for finding the curve, given the area under the curve,
may be used to explain the reciprocal relationship between integration and
differentiation as stated in the Fundamental Theorem of Calculus. As men-
tioned in the previous section Newton’s figure 3.4 and his explanation (with
modern interpretation) show how the movement of a line ¢ produces an area,
y. If Leibniz’s integral notation is known to students, Newton’s problem

could provide an explanation for why

dy
/ﬁdx—y

where % is the curve and y is the (given) area. The example given in the
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wn-{-l
n+1

previous section where the area is y = and the curve is 2™, compared

mn+1
n+1

to a curve y = with slope % = z" shows the reciprocal relationship
between integration and differentiation.

Newton’s style of writing is difficult to follow. Often his propositions
are statements of the type “Do it this way”, and only upon reading his
examples and proofs are the ideas understood. His original manuscripts
offer interesting material for students very capable in mathematics. Offering
these students the opportunity to study Proposition 7 and proof, for example,
within an extension programme would be of value. They would discover how

Newton thought about problems and his style of solution. Extension work

of this type is presented in the final section of this chapter.

5.8 An Alternative Course in Introductory
Calculus

In this section an outline for a course in introductory calculus is presented, as
well as some ideas for extending talented students. The works of Leibniz are
mainly used, with Newton’s work supplementing topics on rates of change
and as an alternative notation for the derivative. The following is suggested
for a course in calculus:

1. As does Leibniz, first consider series to introduce the notation and to
instil the concept of differences and sums and their relationship.

2. Apply related series to a set of axes resulting in the use of a character-
istic triangle to find the slope of the tangent. Use problems and discussions
to enhance the concept of change to the curve in relation to the values of %

at various stages on the curve.
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3. Use differences of general terms of series to generate the product rule
and d(zyv) = zy dv+zv dy+vy dz. From these rules derive the generalisation

that d(z*) = kz*! dz.

4. Generate the quotient rule by using general terms (%) and <1;ij:j)

5. Introduce the idea of finding area by finding sums by using Leibniz’s
sum of rectangles of length y and width dx, with the infinitely small charac-
teristic triangles under the curve being negligible.

6. Introduce the concept of integration as the converse of differentiation
by using the inverse relationship between the sums and differences of the

terms of a series. That is, use [dz = z and d [z = =z to develop, for

instance,

1
k _ k+1
/x dx_lc+1x '

7. Discuss the fact that if a curve does not pass through the origin a con-
stant of integration needs to be introduced. (Leibniz says in his fundamental
principle of the calculus on page 66 that da = 0 if a is constant, since the
difference in that type of series results in @ — a = 0. That is, da = 0.)

8. To enhance the understanding of rate of change, consider the set of
axes as functions of time z(t),y(t) and the resulting curve as a locus of
f(z,y) = 0. Discuss the meaning of %‘5 = % % ysing velocity vectors.
(Provided the definition of velocity is known to students and ‘;—3; and ‘fi—f are
explained in that context). Use Newton’s vector sum of § and & to obtain %
Discuss "mi in relation to rates of change.

9. Discuss more difficult problems involving methods of differentiation,

integration, finding areas and applications to rate of change problems.
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This course outline uses Leibniz’s style and explanations for the concepts
of differentiation and integration, but Newton’s bodies in motion and rate of
change approach is important too. Newton’s approach for finding areas and
anti-differentiation are unnecessarily complicated compared to Leibniz’s area
under the curve, using sums of rectangles, and his integration represented as
the converse of differences. From the students’ points of view, seeing the
original works of Leibniz and setting their work out in a similar fashion at
some stages, may be inspiring. For instance, it was suggested earlier to set
out three rows; Differences, Series, Sums in the style of Leibniz to generate
the relationship between differences and sums, and also to the original series.
Showing students the actual translated manuscripts to let them attempt to
decipher sections would also be an interesting exercise. Care would need to
be taken on the choice of excerpts to ensure there were no mistakes and an
easily understood section is represented.

Extension work for mathematically talented students can be found in
both Leibniz and Newtons’ works. This extension work can be written to
suit the investigation style of assessment currently required at the senior level
in South Australian schools. The following is an outline of extension work
possible for students to undertake:

1. From section 4.2 beginning on page 51 is the introduction of Leibniz’s
characteristic triangle and his use of it to

(a) find the area of a solid by finding another plane figure (Case 1 pp
53-54),

(b) find the length of a curve (Case 2 pp 54-55) and

(c) reduce an area problem to an inverse tangent problem (Case 3 pp
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55-56).

Using the work presented on these pages teachers could set the problem
for students to obtain the three similar triangle results themselves and then
study the interpretation, in modern notation, of the work presented in that
section.

2. Using figure 4.3 supply students with the information that y = omn.l,
and that by using the appropriate similar triangles the relationship ﬁ =P
Use the text on pages 61 - 63 to formulate an investigation on Leibniz’s use
of overlines and the introduction of the integral sign.

3. Using figure 4.4 on page 64 and Leibniz’s explanation for the diagram,
set an investigation with the text on pages 64 - 66 such that students interpret
Leibniz’s explanations for finding the area under a curve in modern notation.

4. Set problems to find the converse of a difference with the expectation
that this will lead to Leibniz’s integrals on page 70.

5. Give students a copy of Newton’s Proposition 7 and example using
i and 9 notation (from page 41). Set various problems to find the ratio L.
Give students a copy of the demonstration by Newton of Proposition 7 (on
pages 43 - 44). Set problems in which students demonstrate the ratios found
previously.

6. Provide a simplified version of Newton’s chain rule (see pages 33 and
89). Set problems of this style for students to solve.

7. Provide a copy of Proposition 8 (on page 35) by Newton. Students
interpret and attempt various examples following his method.

8. The information on pages 38 - 41 shows Newton’s use of The Funda-

mental Theorem of Calculus. Formulate an investigation such that students
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analyse Newton’s Problem 5 and interpret it in modern notation. This would
be very difficult for students unless they had a sound understanding of cal-
culus. It would therefore represent a good test of their understanding of the

calculus.
As can be seen from this section, the original works of Leibniz and Newton

present possibilities for a new approach to the introduction of calculus, as

well as new supplementary material for extension or investigative work.
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ERRATA

page 2 Sentence beginning with “The theory of limits ...”
replace with
“Having taught for thirteen years, it has been my experience that the
theory of limits always seems to present difficulties to students.”

page 71 Sentence beginning with “Many students are not ...”
replace with
“Tt, has been my experience that many students are not comfortable
with the concept of the limit being an operator, and are confused by
the use of the word “of” in the term “the limit of”.”

page 80 Replace the last three equations with the following equations

J vdu — udv
Y = ——————,
J 1’02

dy = (3 +22).2zdx — z*.2dz |

(34 2z)2
dy 6z + 212
dr  (3+2z)%’

page 83 Sentence beginning with “Since modern notation ...”
replace with
“Since modern notation is that of Leibniz, his ideas, in my opinion, are
easier to teach.”

page 83 Sentence beginning with “Using Leibniz’s approach ...”
replace with
“Using Leibniz’s approach I suggest that students would see the rela-
tionship and understand the relevance of series work encountered in
their earlier years.”

page 84 Sentence beginning with “Introducing calculus ...”
replace with
“T would advise against introducing calculus using Newton’s approach
by finding the ratio of speeds of objects. This method would result in
having to explain the chain rule at a very early stage.”



The following is to be included at the end of Chapter 4.
4.5 Newton, Leibniz and Modern Calculus

In this section a comparison of the work of Leibniz and Newton, and their
influence on modern teaching techniques, is presented.
From Chapter 3 one can see that Newton’s approach in his development

of calculus is to compare velocities of objects to produce a ratio % or ¥, where

= %’ti and £ = ‘fi—f in modern notation. So, the notation 2—: does not refer

to the slope of the tangent line to a curve, but to the ratio, —‘% ‘fi—f,
moving objects. This ratio, to Newton, indicates the rate of change to the
system over a period of time. The concept of rate of change is not usually

encountered at the beginning of a calculus course, and the ratio

of two

y dy jdx
& dt/ dt
_dy
 dx

would be a difficult way of introducing calculus in my opinion.

Newton’s propositions outlining the process of differentiation and anti-
differentiation are basically algorithms. In modern calculus we introduce the
concept of the derivative as the slope of the tangent at a point on the curve,
and use limit notation to establish

f’(x):limf(x—i_h)_f(x) )

h—0 h

Newton and Leibniz used the “idea” of limits but did not have the concept
of real number properties to explain their ideas. Their approach was based
on geometric arguments as opposed to the numerical and algebraic approach
taken in modern calculus. The algorithms presented by Newton as Propo-
sitions 7 and 8 are used in the teaching of calculus today once the “First
Principles” approach, in the above equation, has been covered.

It is interesting to note that the notation of Leibniz for the derivative, or
slope of the tangent (%), and the integral ([) allow modern calculus to be
more easily followed. For instance, we avoid using Newton’s symbol, O, to
denote the area under the curve, and his method for finding a curve given
the area is not a technique used today.

Comparing Newton and Leibniz’s approaches for finding the area under a
curve we see that Leibniz’s approach is more recognisable in the modern style
of teaching calculus. We use Leibniz’s integral sign and a similar method of



summing areas of rectangles under a curve. Newton’s method is to reverse
the chain rule (that is, undertake anti-differentiation) and use the symbol,
0, to denote the area under the curve.

The usual approach to introducing calculus today does not use Leibniz’s
series method to develop the dx notation for the differences of consecutive
members of the series, nor the integral sign, [, for the sum of terms. Leib-
niz’s characteristic triangle technique introduces the terminology % for the
slope of the tangent which is an obvious part of any calculus course. The
characteristic triangle, although new to basic calculus, is not an uncommon
method for solving problems involving similarity.

The modern approach to teaching calculus sees the use of limit theory.
The work of Newton and Leibniz was made more rigorous by later mathe-
maticians such as Cauchy. Cauchy defined the derivative as

dy _ lim Ly
dr  Az—0 Az’

hence the notation % is not seen as a ratio, but the interpretation of Leibniz’s
%;i is that it is a fraction. However, I feel there is an opportunity to produce
an alternative course in introductory calculus using mainly Leibniz’s work.
His method of introducing the currently used notation via his series approach,
and his development of some simple concepts of calculus may well be able
to be taught at the Year 11 level. The following Year 12 course could then
introduce limit theory to establish a firm grounding in modern calculus. We
undertake this style of teaching in other areas in the curriculum. For instance,
initially only the square root of positive numbers is presented to students,
with the square root of negative numbers being introduced in Year 12. Prior
to the Year 12 course, students see the square root of a negative number as
giving no solution. In fact, it should be said that there is no real solution, so
that there is room to introduce the concept of complex numbers.

In the next chapter an alternative course for introducing calculus is pre-
sented. Within this chapter there are discussions on the works of both New-
ton and Leibniz in calculus with the view of including both their works in
the alternative course. The resulting course would present interesting, new
and more motivating material for students.



On page 98, add the following after the last paragraph

The object of this thesis is to present an outline for a new course in
introductory calculus. To verify that this proposed alternative method for
teaching calculus is an improvement on the current methods used in schools
it needs to be trialled within schools along with the appropriate empirical
research material in place.!

IThe material in this thesis has been personally presented, in part, to groups of mathe-
matics teachers attending workshops held by the Mathematical Association of South Aus-
tralia in February 1997. The seminar consisted of an alternative method for introducing
calculus, possibly at the Year 11 level. It involved using Leibniz’s fundamental principles
of calculus statement, as found on page 66, to introduce the notation dz for the difference
of consecutive terms in a series, and f for the sum of terms in a series. It was also shown
how to establish [ dz = z and d [ = . Leibniz’s use of the characteristic triangle to
develop the tangent to a curve and the consequent % notation was illustrated, as well as
the method for finding the area under a curve, as shown on pages 64-66. The seminars,
in my opinion, were well received, and some teachers seemed interested in trialling parts
of this thesis with Year 11 students.





