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A B S T R A C T   

One of the chief advantages of using highly standardised biological models including model organisms is that multiple variables can be precisely controlled so that 
the variable of interest is more easily studied. However, such an approach often obscures effects in sub-populations resulting from natural population heterogeneity. 
Efforts to expand our fundamental understanding of multiple sub-populations are in progress. However, such stratified or personalised approaches require funda-
mental modifications of our usual study designs that should be implemented in Brain, Behavior and Immunity (BBI) research going forward. Here we explore the 
statistical feasibility of asking multiple questions (including incorporating sex) within the same experimental cohort using statistical simulations of real data. We 
illustrate and discuss the large explosion in sample numbers necessary to detect effects with appropriate power for every additional question posed using the same 
data set. This exploration highlights the strong likelihood of type II errors (false negatives) for standard data and type I errors when dealing with complex genomic 
data, where studies are too under-powered to appropriately test these interactions. We show this power may differ for males and females in high throughput data sets 
such as RNA sequencing. We offer a rationale for the use of alternative experimental and statistical strategies based on interdisciplinary insights and discuss the real- 
world implications of increasing the complexities of our experimental designs, and the implications of not attempting to alter our experimental designs going 
forward.   

1. Introduction 

Multifactorial experimental designs are becoming commonplace as 
the complexity of scientific research increases and such important fac-
tors as biological sex are increasingly incorporated. However, in-
vestigators often fail to ensure a study is appropriately powered to 
statistically handle such complex analyses. One of the chief advantages 
of using highly standardised and well-understood animal models is that 
each variable can be precisely controlled so that the variable of interest 
can be studied. Use of model organisms, and rodents in particular, has 
become a cornerstone of contemporary biological practices in part for 
this reason (Ankeny and Leonelli, 2011, 2020). However, this approach 
is increasingly recognised as problematic. Given the cumulative de-
velopments of the past fifty years, we are now well past the ‘low-hanging 
fruit’ stage of biological discovery where it was assumed that a principle 

that applies to one biological organism or system is likely to apply 
generally or to humans in particular. The generally unrecognised limits 
of these models may be one of the many reasons why the bulk of our 
research on complex diseases such as Alzheimer’s and Parkinson’s have 
failed to generate a widely applicable cure. Natural heterogeneity in 
human populations appears to be obscuring potential beneficial effects 
of therapies in subsets of clinical populations. This blind spot is also 
likely to have its analogue at the pre-clinical level, with important im-
plications for how we should conduct BBI-related research from its 
earliest laboratory stages: for instance, a 2015 analysis (Freedman et al., 
2015) showed that more than 50% of preclinical animal studies were not 
reproducible, and estimated that US$28 billion was wasted per annum 
in the United States alone as a result. 

Nowhere is this importance of population heterogeneity more 
evident than when biological sex is considered. As more research is 
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starting to incorporate sex as a variable, it is becoming obvious that 
females are not just “males with ovaries” (Barrientos et al., 2019). Many 
biological processes, from neuroimmune responses (Doust et al., 2021; 
Krukowski et al., 2018; Lynch, 2022) to how cognitive tasks are solved 
(Becegato and Silva, 2022; Bowman et al., 2022), are physiologically 
and mechanistically different between the sexes. Indeed, the immune 
system is critically different between males and females from birth, as 
evidenced by substantial differences in response to vaccination in chil-
dren and neonates, well before major hormonal differences come into 
effect (Flanagan et al., 2017). In 2015, the U.S. National Institutes of 
Health (NIH) officially recognised the extreme paucity of research on 
female animal models and developed “Consideration of Sex as a Bio-
logical Variable” guidelines requiring that all funded grants incorporate 
both females and males into their analysis (where reasonable in the 
context of the disease being studied) or strongly justify not doing so 
(NIH, 2015). In acknowledgement of resource constraints in research, it 
was considered acceptable to meet this requirement using a mixed-sex 
design, pooling females and males into the same analysis without 
using sex as a covariate (NIH, 2015). (See Table 1 for definitions of 
statistical terms that are underlined in the text). However, this strategy 
risks overlooking a real effect when the direction of it is dissimilar be-
tween the sexes. As just one example, immunisation with the measles 
vaccine produces not just dissimilar, but opposite immune tran-
scriptomics patterns (activation versus silencing) in male and female 
children (Noho-Konteh et al., 2016). On the other hand, fully examining 
both females and males in terms of all experimental measures, and 
statistically comparing them to reveal differences, involves immense 
resources, including increasingly complex statistical approaches. 

Even supposing that we appropriately test the impact of biological 
sex on our treatment or mechanism of interest, there are still numerous 
important variables that are missing from our usual considerations in 
neuroimmune research. Age is a key one. As is well illustrated by the 
recent SARS-CoV2 pandemic, children are not merely miniature adults 
when it comes to neuroimmune function (Sominsky et al., 2020): they 
have fundamentally different ACE2 receptor distribution that likely 
makes their responses to SARS-CoV2 exposure very different from that 

of adults (Bunyavanich et al., 2020; Radzikowska et al., 2020). They also 
have very different neuroimmune and hypothalamic–pituitaryadrenal 
(HPA) axis responses to neuroimmune challenge as well as having 
developing brains that may be differentially impacted in the long term 
(Sominsky et al., 2018). In addition, age, which is sometimes errone-
ously represented as a single continuous random variable, can be 
acknowledged to incorporate as many as seven levels which may be 
relevant to differentiate depending on the question of interest: embry-
onic, foetal, neonatal, juvenile, adolescent, young adult (in females 
further including pre- and post-menopausal), and older adult. There are 
other factors such as genetic background, hormones, microbiome, diet, 
and stress present in early and adult environments that influence how 
we respond to challenges, and therefore how effective a treatment might 
be. 

It is critical to note that these factors are not separate variables, but 
influence each other, requiring an understanding of the complex net-
works formed by them when designing a study. For example, dietary 
effects on the microbiome that affect immunity and inflammation (with 
likely consequences for neuroimmune interactions) can be specific to 
biological sex, a finding that has given rise to the concept of the 
‘microgenderome’ (Vemuri et al., 2019) and calls to “embrace variation” 
in order to produce greater reproducibility (Witjes et al., 2020). 
Furthermore, when moving into even more complex biological spaces 
such as transcriptomic profiling, the high dimensionality and genetic 
complexity of these types of data sets produces additional confounders. 
These include the technical complexity of library preparation, biological 
and technical variability, and especially read count biases, all of which 
contribute to the reduction of both the sensitivity and precision of high- 
throughput experiments. For instance, since counting errors depend on 
gene expression level, the variation owing to the counting process 
dominates the variance in genes with low counts, whereas for genes with 
high counts, this effect becomes negligible (Wu et al., 2015). Since 
variation in gene expression measurements is driven not just by bio-
logical variation but also variation in sequencing counts, it is increas-
ingly clear that greater attention must be paid to performing power 
assessments in more biologically complex studies. 

So, is the best strategy to set up discovery studies that incorporate 
multiple natural variables (sex, age, diet, and so forth) and run our 
testing in large-cohort analyses from the earliest laboratory stages, using 
both female and male cell lines and organisms? Such an approach could 
reveal personalised responses to treatment or challenges from multi- 
modal response distributions to the same experimental manipulation, 
ultimately giving us insights into what works, when, and for whom. 
However, appropriate experimental design for such a strategy is essen-
tial. Any study that asks too many questions from its data set risks failing 
to reject the null hypothesis if it is under-powered to test for all of the 
questions posed (Norrie, 2020). Without sufficient sample numbers in 
the set, these false negatives may mean that we consistently miss 
important differences and useful clinical effects within subpopulations. 

Conversely, when dealing with more high-throughput data, the 
opposite is true, given that insufficient power in this context leads to 
very high numbers of false positives. The resource and ethical implica-
tions of these issues are considerable, since time, money, and most 
critically animal lives, are wasted on experiments that were never 
capable of revealing an effect, if one exists. Or else they may well be 
revealing effects where none are present. In this article, we examine the 
statistical feasibility of asking multiple questions within the same 
experimental cohort and discuss the ethical implications of this 
approach, as well as the consequences of not attempting it going for-
ward. We use an interdisciplinary approach, combining biomedical 
sciences, statistics, bioinformatics, animal research ethics, and philoso-
phy of the biomedical sciences, to discuss potential solutions to this 
critical problem in the BBI fields. 

Table 1 
Glossary of statistical terms (underlined in the main text).  

Term Definition 

Categorical 
variables 

A variable with a labelled classification rather than a number 
(e.g., no stress / mild stress / strong stress; sex; clusters of ages) 

Continuous 
variable 

Any variable that is measured (e.g., height, weight, 
temperature) 

Coefficient The β’s in the model that describe the relationship between a 
variable and the outcome. 

Covariate A variable to be accounted for in the experiment that is not of 
primary interest. 

Discrete variable Any variable that is counted (e.g., the number of cases of 
COVID-19). 

Full factorial Examining all of the possible combinations of variables in the 
experiment. 

Interaction The combined effect of two or more variables. 
Levels Classifications of a categorical variable (e.g., an experiment 

incorporating no stress, mild stress, and strong stress has three 
levels). 

Noise term Random experimental noise that captures individual 
variability in results. 

Outcome variable The thing that we are trying to predict. 
P-value The probability of seeing results as extreme as the ones 

observed when no true effect exists. 
Parameter Anything to be estimated from the data such as effect size or a 

standard deviation. 
Predictor A variable used to understand the outcome variable. Predictors 

can be covariates, such as age, or variables of interest, such as 
treatment. 

Reference level The comparator group for a categorical variable, determined 
as the first category alphabetically. 

Stratum (plural: 
strata) 

A homogenous subgroup defined by a combination of 
variables under consideration.  

R.A. Ankeny et al.                                                                                                                                                                                                                              



Brain Behavior and Immunity 112 (2023) 163–172

165

2. Methods 

All analysis was performed in R (R-Core-Team, 2022) using R 
(version 4.2.2) Studio (2022.12.0 + 353). We ran simulations using four 
scenarios to investigate the number of samples necessary to reveal an 
effect, should one be present, with a statistical power of 90% for stan-
dard data and 80% for high-throughput data as we increased the number 
of parameters contributing to our data set. To briefly recap the concept 
of statistical power, consider an experiment to detect the effect of two 
treatments on a given outcome. Where a true difference exists, we would 
conclude that there is a difference between the treatments 90% of the 
time if a test has a statistical power of 90%. 

2.1. Experiment 1: Basic simulation 

In the first scenario, we considered an experiment exploring the 
treatment effect of a drug B in comparison to the control A. We were 
interested in the effects of biological sex on the outcome, as well as 
whether the treatments had different effects on the outcome depending 
on the sex of the mouse. This experiment is described as a ‘two-variable 
experiment’ as we have two variables, treatment and sex, that may in-
fluence our continuous outcome variable y. An example of this type of 
study would be treating female and male mice with either the control or 
the drug and assessing circulating hormone levels. Treatment (Tx) is a 
categorical variable with two levels A and B (i.e., the control or the 
drug), and sex is a categorical variable with two levels F and M (i.e., 
female and male). See Table 1 for definitions of statistical terms that are 
underlined in the text. 

We simulate from the model 

y = β0 + β1Tx+ β2sex+ β3Tx:sex+ ε , (1) 

where ε is standard normal noise. 
In this model, we have the following relationships: ‘  

- β0 is the mean value of the outcome if a mouse was female and on 
treatment A.  

- β1 is the mean difference in the outcome if a mouse is on treatment B 
compared to treatment A.  

- β2 is the mean difference in the outcome of a male mouse compared 
to a female mouse. Note that we code the relationships alphabeti-
cally, in this case female becomes the reference level and the other – 
male – is the sex represented by β2.  

- β3 is the mean difference in the outcome for treatment B compared to 
treatment A for male mice. 

In our simulations, we considered three scenarios that could occur in 
this type of study:  

- only a treatment effect: to simulate this, we set β1 = 2; β2 = β3 = 0;  
- a treatment and a sex effect, but no interaction effect: we achieved 

this by setting β1 = β2 = 2; β3 = 0; and  
- a treatment effect, a sex effect, and an interaction effect: this was 

achieved by setting: β1 = β2 = β3 = 2. 

The simulations were run with an arbitrarily selected fixed baseline 
effect of β0 = 10. The values for β1, β2, and β3 were chosen to represent 
an effect size of two standard deviations from the mean (in this case, a 
20% difference between the groups). 

Each experiment had a fully factorial design, that is, we assumed 
equal numbers of mice in each possible combination of treatment and 
sex. Thus, we had four possible combinations:  

- female: Treatment A;  
- female: Treatment B;  
- male: Treatment A; and  
- male: Treatment B. 

We refer to the possible combinations as a stratum, so that in this 
case, we have four strata. For example, if we have an experiment that has 
four subjects in each stratum, there is a total of 16 subjects (Table 2). For 
each model, we considered 2 to 15 subjects in each stratum. A value of 2 
is the lowest possible necessary for each stratum to allow us to fit an 
interaction model when needed. For each scenario and strata size, we 
simulated 200 data sets and fit the appropriate linear model (i.e. have 
estimated the values of the parameters in the model). We defined power 
for each coefficient as the proportion of times that the model returned a 
p-value of less than 0.05 in the 200 simulations. 

2.2. Experiment 2: Simulation incorporating experimental data 

To make our simulations applicable to a real data set, we next 
adapted existing published data (Di Natale et al., 2019) with noise added 
and numbers changed, and used the observed values of the coefficients 
in this analysis to provide realistic simulations. The original experiment 
examined whether the effect of chronic stress on ovarian follicle matu-
ration was mediated by acylated ghrelin. We examined ovarian follicle- 
stimulating hormone receptor mRNA in rats that had experienced 
chronic stress (or no stress) and were given acylated ghrelin antagonist, 
D-Lys3 (or saline). The experiment consisted of 25 observations in a full 
factorial experiment with a treatment variable with two levels denoted C 
(control) and D (drug / antagonist) and a covariate with two levels 
denoted c (no stress) and d (stress). 

A linear model of the form: 

y ∼ Tx+ covariate+Tx:covariate (2) 

was fitted using the lm() command in R. The observed coefficients 
were then used to simulate data of strata size 2 to 15 inclusively with 
treatment, covariate, and interaction effects given by the coefficients of 
the linear model. For each strata size, 200 data sets were simulated. 
Linear models of the form Equation (2) were then fitted to each simu-
lated data set and the resultant p-values obtained. These observed p- 
values were used to calculate the power for each strata size. 

2.3. Experiment 3: Simulation with additional parameter values 

To make our simulations applicable to multiple experimental designs 
and explore the complexities of adding additional parameters to an 
analysis, we considered the number of parameters that we would need to 
model data with increasing numbers of variables beyond treatment and 
sex. The parameters need to account for any variable, the base level 
(intercept), any interaction terms, and the noise term. 

The models considered were designed to slowly increase in 
complexity with the following predictors:  

• treatment (e.g., drug): a categorical variable with two levels (i.e., 
control or drug);  

• sex: a categorical variable with three levels (which allows us to 
consider cases where we may want to include more levels, for 
example an unspecified sex);  

• age: a categorical variable with four levels; and  
• weight: a continuous variable. 

We added the variables in the order provided in the above list and 
considered three types of model: 

Table 2 
An explanation of equal number of subjects in each stratum. 
Having four subjects in each stratum makes 16 subjects in the 
total experiment.   

A B 

F 4 4 
M 4 4  
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• main effects only;  
• main effects plus two-way interaction terms; and  
• main effects with two-way and three-way interaction terms. 

As an example of a three-way interaction, consider the case where we 
would like to look at the effect of treatment X compared to treatment Z 
for older male mice compared to young female mice. 

2.4. Experiment 4: Simulation incorporating larger data sets 

Because gene dispersion is an important factor when evaluating 
whether a data set is appropriately powered, we analysed various high 
throughput mouse data sets from NCBI (Table 3). All three selected data 
sets originated from RNA sequencing (seq) experiments, since these are 
currently the most common genetic type of analysis. For power calcu-
lations of high throughput RNAseq data, we used count tables from 
moderate sized data sets from mouse, characterized either by treatment 
or sex. We used the PROPER R package designed by (Wu et al., 2015). to 
perform our calculations and visualize the differences. We performed 
100 simulations on each of the three data sets (a total of 300 simula-
tions) to appropriately evaluate power and error rates. In these simu-
lations the concepts of stratified power by gene counts were highlighted. 

3. Results 

3.1. Experiment 1: Basic simulation 

If we ask the question of whether our treatment (e.g., drug) affects 
our variable of interest (e.g., hormone concentrations), we see that 16 
subjects in total, 4 per stratum, is sufficient to give us 90% power to 
detect a difference (Fig. 1A). The treatment-only model and the treat-
ment plus sex model display similar power, so that if we ask whether sex 
affects hormone concentrations, we can also answer this question with 
90% power with 16 subjects (Fig. 1B). However, as soon we want to ask 
the question of whether the effect of our drug treatment on hormone 
concentrations differs by sex, that is, whether there is an interaction 
between sex and treatment (Fig. 1C), it becomes much more costly to 
detect significance in any of our coefficients. We need at least 24 sub-
jects (8 per stratum) to detect the main effects of treatment and sex with 
90% power. Most notably, if we are interested in the interaction between 
the treatment and sex, we need at least 44 subjects (11 per stratum) to 
detect a significant coefficient with 90% power. Notice that this simu-
lation demonstrates how an experiment designed to answer questions 
about the main effects of a treatment is significantly underpowered 
when we wish to consider possible interactions of the treatment with 
other variables. For example, a sample size required for 90% power 
when investigating main effects only returns 75% power in the inter-
action model (Fig. 1C). 

3.2. Experiment 2: Simulation incorporating experimental data 

To examine the statistical power needed for a treatment by sex 
interaction using real data, we used published gene expression data as 

the basis for a simulation to ask whether the effects of a life experience 
(in this case stress) on the expression of a gene of interest (in this case 
Fshr mRNA) would be influenced by changes to a hormonal pathway of 
interest (in this case disruption of the acylated ghrelin system with 
antagonist, D-Lys3; Fig. 2). We found a strong negative interaction effect 
in this experiment. That is, the drug or antagonist (treatment D) gives a 
higher mean mRNA (level of y) when the subjects are not stressed (i.e., 
for covariate level c), but a lower mean mRNA (level of y) when the 
subjects are stressed (i.e., for covariate level d). 

Table 4 provides the observed coefficients from the data set used in 
our simulations. We see that the mean fold change is 1 for treatment C 
with covariate d the effect of treatment D compared to treatment c is 0.5, 
the effect of covariate d compared to covariate c is 0.6, and the effect of 
treatment D with covariate d is − 1. In our simulation we used the 
following values (see the “estimate” column of Table 4): 

β0 = 1; β1 = 0.5; β2 = 0.6; and β3 = − 1 

We next considered what the power would be for each of the co-
efficients in the two-way interaction model for simulations based on the 
coefficients observed in Table 4 for a range of total subject numbers 
(Fig. 3). In this experiment, we found that the power to detect a sig-
nificant interaction term is about 85% with 25 subjects. We also 
observed that to achieve a power of 90% for all terms, we would need at 
least 50 subjects. 

3.3. Experiment 3: Simulation with additional parameter values 

Increasingly the complexity of our experimental questions means 
that our study design must include consideration of multiple parameters 
including factors such as age, and health indices such as body weight. 
Here we illustrate the combinatorial explosion that occurs as we include 
extra predictors (Fig. 4). Note, the more levels that a categorical variable 
has, the greater the rate of combinatorial explosion will be. Observe that 
when we include two- and three-way interactions, we get a huge in-
crease in the number of parameters in the final model. For instance, in a 
design where a treatment effect is observed and the number of param-
eters is three, the parameter number increases to 12 when weight, sex, 
and age are also assessed. For the same study design, the parameter 
number escalates to 42 and then 73 when two-way and three-way in-
teractions are calculated. We should note that this calculation illustrates 
only the parameter number. For an experimental design to yield a valid 
statistical analysis, at least three samples per parameter would be 
required to allow calculation of a standard deviation, thus tripling the 
bare minimum sample number needed (to 120 in the case of this three- 
way interaction). These simulations highlight how sample size must be 
dramatically increased to achieve high power for interactions in com-
plex designs. 

3.4. Experiment 4: Simulation incorporating larger data sets 

To expand our simulations to data sets with very large outputs we 
next assessed two different mouse data sets that were both stratified by 
the number of gene counts (Bottomly et al., 2011; Lee et al., 2023). Both 
data sets clearly show how the number of gene counts greatly influences 
whether the data set will provide sufficient power (Fig. 5). For the lower 
gene counts, even when using 10 samples per group both data sets are 
sitting well below the 80% desired power. The set from Bottomley et al. 
(Bottomly et al., 2011) reaches a power of less than 20% in this case 
(Fig. 5A). For genes that have counts between 10 and 20, Bottomley 
et al.’s data still require a sample size of at least five animals per group to 
marginally achieve the targeted power of 80%. However, for Lee et al.’s 
data set (Lee et al., 2023) only three biological replicates are required to 
achieve the optimal power for genes with this expression level (Fig. 5B). 
Most importantly, this simulation shows that different mouse data sets 
can exhibit extremely variable sequencing and biological replicate 
requirements. 

Table 3 
NCBI accession numbers and data sets used for calculations.  

Author GEO Acc. 
number 

Study type Animal 
numbers 

Reference 

Bottomly 
et al. 

GSE26024 Gene expression 
striatum 

44 (Bottomly 
et al., 2011) 

Lee et al. GSE222450 SN38/PD1 treatment 
in head and neck 
squamous cell 
carcinoma 

12 (Lee et al., 
2023) 

Wang 
et al. 

GSE196121 Brain injury 20 (Wang et al., 
2022)  
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We next expanded our analysis to a data set comparing female and 
male mice (Wang et al., 2022). Notably, our simulations indicate gene 
dispersion may vary considerably between the sexes. In the female 
cohort, a sample size of 7 sufficed to provide the desired statistical 
power of 80% for genes with low average read counts (~10 read counts; 
Fig. 6). In males, however, a sample size of 7 would not provide a power 

of 80% for genes with average read counts lower than 320; a sample size 
of 10 would be required to confidently reach this. These data indicate 
wide variation in the gene dispersion for females versus males and 
further highlight the need for careful study design and power analyses in 
every case. 

4. Discussion 

Interactions between sex and treatment require increased sample 
sizes to maintain power 

In our basic simulation (Experiment 1), we calculated the power cost 
of asking increasingly complex questions using laboratory experimental 
designs. We have shown that if an experimenter is only interested in 
main effects (such as treatment, i.e., control versus drug), there is a 
relatively manageable pattern of power required to detect these effects. 
However, once we begin to investigate interactions between sex and 

Fig. 1. Plot of power against full sample size for the three models: A) treatment only, B) treatment + sex, and C) the interaction model. The horizontal line indicates a 
power of 90%. Each dot represents the proportion of the simulations that gave a significant result for the considered coefficients. 

Fig. 2. Scatterplot of observed response variable (mRNA fold change) for the 
two levels of the covariate (c = non-stressed and d = stressed). The colour 
indicates the treatment level (C/blue = no antagonist [i.e., control]; D/brown 
= antagonist [i.e., drug]). The lines indicate the mean values for each combi-
nation of covariate and treatment. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 4 
Coefficients for the interaction linear model fitted to the experimental data 
simulation data set (Experiment 2).  

Term Estimate Std Error Statistic P-value 

(Intercept) 1.000  0.159  6.294  0.000 
TxB 0.5  0.210  2.545  0.019 
covariateb 0.6  0.225  2.448  0.023 
TxB:covariateb − 1  0.316  − 3.132  0.005  

Fig. 3. Plot of power against total number of subjects for each of the co-
efficients in the two-way interaction model for simulations based on the 
observed coefficients for the experimental data simulation data set (Experiment 
2). The horizontal line is for a power of 90%, while the vertical line is the 25 
subjects included in the original experiment. To achieve a power of 90% for all 
terms (including (A) main effects [T × B] as well as (C) interactions [T × B: 
covariateb]), we would need at least 50 subjects in the study. 
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treatment, we require much larger sample sizes to maintain power. A 
similar pattern is seen in simulations based on observed treatment, co-
variate, and interaction effects from a real experiment (Di Natale et al., 
2019). We note that the incorporation of covariates such as sex or 
experimental conditions results in a large increase in sample size to 
maintain power that also can be observed in high-throughput data sets 
as seen in Experiment 4 (Li et al., 2021). 

Incorporating additional variables dramatically increases the sample 
sizes required to maintain power 

This problem is exacerbated with every variable added. In our 
simulation incorporating additional variables into the data set (Experi-
ment 3), we observe the huge increase in the number of parameters in 
the final model as we add predictors and interaction terms. To allow 
such tests to be performed, we would need at least one subject per 
parameter. For example, in the full three-way interaction model seen in 
Fig. 4, we would need at least 43 subjects. However, we need at least 
three samples per parameter to calculate a standard deviation, and, as 
our power analysis shows us, we would need many more subjects per 
parameter to ensure good estimation of those parameters (i.e., 43 × 5 =
213 subjects). 

High throughput genomic data from female mice is less dispersive 
than male data sets, influencing the number of samples required to 

achieve the desired power of analysis 
Further complications arise when using complex genomic data sets 

to simulate required sample size (Experiment 4). Aside from the classical 
biological variability issues inherent in all data sets, high-throughput 
data sets also contain technical variabilities and considerable read 
count variability. Read counts are typically characterised by unequal 
variabilities (Law et al., 2014) and emerge primarily as a consequence of 
gene dispersion (Yoon and Nam, 2017). Count data applied to multiple 
types of functional genomics applications is usually modelled with a 
Poisson distribution where the mean and variance of read count are 
equivalent. However, RNAseq read count data are typically charac-
terised by overdispersion, meaning that they notoriously exhibit vari-
ance of gene counts that are much larger than the mean. Therefore, the 
negative binomial distribution has become the popular choice for 
modelling RNAseq data, since it can capture gene dispersion where the 
variance of counts typically increases with the mean (Robinson and 
Smyth, 2008). Many different R-based procedures have been published 
that could be helpful with sample size calculations to reveal the required 
experimental power. For example, sample sizeRNAseq (Bi and Liu, 
2016) is an extension from the data packages that originated from 
microarrays, while others provide the source code to simulate power 
calculations for either single or multiple genes and for sample size cal-
culations in the presence of confounding covariates (Li et al., 2021). 
More recent studies have shown that negative binomial mixed models 
when estimated using the maximum likelihood test could be used for 
longitudinal data (Tsonaka et al., 2020). 

Unfortunately, the majority of these R packages are lacking on many 
different fronts. For instance, covariates often are accounted for, but the 
modelling does not allow for tailoring gene dispersion values to personal 
data sets, instead relying on simulated or standardised data sets built 
into the package. Admittedly, it is incredibly difficult to design packages 
or provide source code for data simulation that can account for the many 
biological heterogeneities found in complex genomic data sets. For 
instance, it is important to consider that differentially expressed genes 
may reflect changes in the transcriptome that are disease-induced rather 
than disease-causing (Porcu et al., 2021); common genetic patterns may 
exist regardless of disease (Crow et al., 2019). Studies have shown that 
numerous genes are characterised by dominant isoforms which account 
for far more of the total expression of a particular gene than any of the 
remaining isoforms (Law et al., 2014). Finally, a study from Cote et al. 
(Cote et al., 2022) suggests that the choice of covariate adjustment can 
have considerable effects on the structure and accuracy of the resulting 
co-expression gene network. It is notable then that our results show that 
high throughput data from female mice is less dispersive than male data 

Fig. 4. Plot of the number of parameters needed for each considered model. 
The x-axis gives the predictors considered in each model, while the colour in-
dicates the type of interactions considered in the model. 1 indicates the inter-
cept. Note how parameter number (and therefore necessary sample size) is 
dramatically increased when considering interactions in complex designs. 

Fig. 5. Gene count stratification and experimental power. Mouse data sets from A) Bottomley et al. (Bottomly et al., 2011) and B) Lee et al. (Lee et al., 2023) that 
have been stratified by gene counts. The X-axes show average gene counts, while the Y-axes show the experimental power reached. Lower gene counts may not allow 
the achievement of appropriate power thresholds (80%) in any of the data sets. SS: sample size. 
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sets and therefore requires lower samples size for each group compared 
to the male counterpart. This is interesting and in line with previous 
findings in which extensive meta-analysis showed that male gene 
expression proves to be on average slightly more variable than female 
gene expression (Itoh and Arnold, 2015). Although the results in this 
study came from extensive analysis of microarray probes, the authors 
have investigated over 5 million of these. Together with our data these 
findings strongly suggest that although small, this variability can in-
fluence the number of samples required to achieve the desired power of 
analysis. 

Multifactorial analyses have substantial statistical implications that 
need to be understood 

Our findings together with the considerations discussed above 
illustrate the substantial statistical complexity of asking multiple ques-
tions of the same data set while appropriately integrating the complex 
biological background driving and underlying the data sets. They 
highlight how a type II error (false negative) is very likely to result from 
highly complex studies that are not appropriately powered, and that 
type I errors (false positive) become an even bigger problem when 
dealing with data sets where thousands of genes will be compared to 
each other. They also reinforce the fact that power calculations them-
selves are complex, and that a sophisticated understanding of the 
mathematics and biology behind these calculations is required, rather 
than simply using R packages off the shelf. So, what does this mean for 
our studies? Clearly there are strong ethical implications associated with 
including large numbers of animals within a study, particularly when 
end-points are terminal or painful. But there are also ethical implications 
associated with not doing this, as key effects could go unnoticed due to 
underpowered studies. 

The ethics and practices of “reduction”: Is reduction the most ethical 
strategy? 

From the practical standpoint of obtaining approval for research 
involving non-human animals, many jurisdictions approve studies 
locally via an institutionally based animal ethics committee focused on 
humane care and use of animals for scientific purposes and tend to do so 
in accordance with the principles of the 3Rs (articulated originally by 
Russell and Burch in 1959 and subsequently modified and reinter-
preted). The 3Rs - replacement, reduction, and refinement - are taken to 
be fundamental to the activities performed by investigators and animal 
carers as well as ethics committees and research institutions, but are not 
always easy to evaluate or implement. There are tensions associated 
with reduction in relation to the findings from the simulations detailed 

above, since incorporating consideration of multiple natural variables 
into animal-based studies and the associated requirements of increasing 
sample size can be viewed as potentially at odds with the goal of 
reduction. 

In the original treatise by Russell and Burch (1959), the control of 
variation by making animals more standardised was central to reduction 
efforts that sought to use fewer animals while still obtaining comparable 
levels of information or obtaining more information from the same 
number of animals. Sound experimental design and robust statistical 
analysis, combined with the increasingly widespread availability of 
standardised animal strains, led researchers to use a reduced number of 
animals to achieve their scientific aims. The drive to control variation 
between individuals through standardisation became central to 
biomedical experimentation in the 20th century, giving rise to the 
thousands of inbred, almost genetically homogenous rodent strains 
commonly used in biomedical research today (Rader, 2004). 

These forms of standardisation led to use of animals with a narrow 
range of characteristics such as age and sex, and together with tight 
control over husbandry and protocols to standardise the environment 
within which experiments are performed, were utilised to maximize 
sensitivity (i.e., internal validity) while minimising the numbers of an-
imals used. However, efforts to reduce variation within experiments 
may limit the inferences that can be made to other laboratories with 
different experimental conditions, as well as producing misleading re-
sults (Richter et al., 2010; Richter et al., 2009) and contributing to the 
so-called ‘reproducibility crisis’ (Baker, 2015). Results may be limited as 
they relate to highly standardised mice strains in their local context, 
which cannot be replicated precisely across laboratories, leading to a 
form of limited external validity. Some argue that these failings can be 
rectified by applying processes of standardisation more rigorously and 
publishing details of protocols. 

External validity is much more difficult to assess or achieve than 
internal validity. In the case of biomedical research, external validity is 
also critical for efficient translation from laboratory settings to the clinic 
and requires solid evidence about underlying similarities between the 
organisms used for research and those onto which they are being pro-
jected, and the relevance of these similarities to the functions or pro-
cesses under study (Ankeny and Leonelli, 2011, 2020). Genetic 
approaches to similarity dominated in the second half of the 20th cen-
tury, together with assumptions that conservation of genotype ensured 
effective translation. However, we are increasingly aware that other 
factors such as phenotypic plasticity (the degree to which living 

Fig. 6. Gene count stratification and experimental power for females and males. Mouse data sets from A) females and B) males from Wang et al. (Wang et al., 2022) 
that have been stratified by gene counts. The X-axes show average gene counts, while the Y-axes show the experimental power reached. In females, appropriate 
power thresholds (80%) were reached with a sample size of 7 for the lower gene counts (~10) but for males a sample size of 10 is needed. SS: sample size. 
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organisms are highly responsive to their environment) operate even 
within organismal types and highly standardised environments, with 
phenotypes in control mice found to fluctuate unexpectedly between 
batches in the same laboratory (Karp et al., 2014). 

4.1. Changing our approach to experimental design 

The evidence presented here points to the need to make experimental 
conditions in BBI research much more heterogeneous and to track a 
greater number of potentially relevant factors to ensure effective 
translation of results to our highly heterogenous human population. To 
do so will require shifting away from various long-held institutional and 
disciplinary norms about animal experimentation to make it acceptable, 
and even necessary, to use more animals where clearly required. This 
shift will need to be accompanied by appropriate funding to accom-
modate these changes. 

Assuming the merit of our proposal based on the evidence provided, 
what are the barriers for researchers and others involved in animal 
ethics to adopting heterogenisation strategies? The first is surely 
educative. Any laboratory animal science textbook describes the pri-
mary goal of animal research management as standardisation. Adoption 
of alternate experimental and methodological strategies requires 
considerable shifts in underlying assumptions and understandings, and 
will only succeed with focused training, ongoing research, and clear 
demonstration of benefit. More training for biologists in design and 
analysis will be necessary as has been noted by other authors (Weiss-
gerber et al., 2016). This training must include more attention to the 
framing of research questions to permit robust answers with particular 
sample sizes, as well as greater understanding of the trade-offs associ-
ated with power inherent in particular types of study design (see e.g. 
(Lazic et al., 2018)). 

Ethics committees must participate in this transition: even those 
committee members who are scientists rarely have advanced training in 
statistics, and few jurisdictions mandate that a statistician should be 
involved in ethics committee deliberations. Increased use of more 
diverse and complex forms of study design, and the need to balance 
oversimplified imperatives to reduce experimental animal numbers with 
methodological requirements to increase their numbers, will require 
refined guidelines and additional training. We propose that inclusion of 
a biostatistician or bioinformatician should be mandatory for ethics 
review processes, as it would offer an agile solution to the current 
knowledge gap present in most ethics committees and related bodies. As 
experimental scientists are able to gather more and more complex data, 
and as issues related to population heterogeneity continue to be 
acknowledged and incorporated into study design, this inclusion be-
comes more of an imperative. In turn, these requirements will make 
increased training in these fields necessary. 

We also concur with those (e.g., (Cheleuitte-Nieves, 2019)) who 
argue that achieving reproducible and reliable preclinical research re-
sults should be viewed as a joint responsibility of various participants in 
animal research practices, including not only researchers and animal 
care technicians but also those involved in ethics reviews, journal pub-
lication, and grant funding. It will be necessary to monitor and manage a 
wider range of factors during study design and execution, and to 
document and report on these factors. The PREPARE (Planning Research 
and Experimental Procedures on Animals: Recommendations for 
Excellence: (Smith et al., 2018) and ARRIVE (Animal Research: 
Reporting of In Vivo Experiments: (Percie du Sert et al., 2020) guidelines 
provide useful advice on how to manage and report on intrinsic and 
extrinsic factors in the processes of animal experimentation in order to 
improve reproducibility and reliability. We encourage greater attention 
in such guidelines to more detailed reporting of the power calculations 
and other statistics associated with study design and execution. 

The recent shift toward inclusion of both biological sexes in experi-
mental animal studies presents clear challenges to researchers, ethics 
committee members, and others involved in animal experimentation 

and ethics. This concept appears to have been embraced by many, 
following increasing support from large funding bodies such as the NIH 
(Garcia-Sifuentes and Maney, 2021). However, in the authors’ personal 
experience, there often appears to be a (likely erroneous) assumption 
that this requirement necessitates a simple doubling in animal numbers, 
which many seem willing to accept. This observation leads us to wonder 
whether they would understand the detailed statistical justifications for 
a tripling or quadrupling of numbers if needed to achieve statistical 
power, and change the status quo based on this, or be able to gauge 
proposed study methods in terms of power? 

Most importantly, not to recognise the implications of the power 
requirements as detailed here for BBI research and beyond would be 
unethical and create potential harms for humans in clinical settings, 
particularly those who deviate from the standard norms associated with 
the ‘standardised’ biology that has been largely assumed to date. 
Although there has been some attention over the last two to three de-
cades to injustices created by solely using young, white men as research 
subjects and excluding women of reproductive age and others altogether 
particularly from pharmaceutical testing (Barrientos et al., 2019; Rav-
indran et al., 2020), there has been limited focus on the earliest stages of 
preclinical research such as those explored here. 

4.2. Considerations for study design and reporting existing underpowered 
data 

It is therefore increasingly clear that we must not only pay much 
more attention to whether our data sets are appropriately powered, but 
also to understanding the underlying biology associated with experi-
ments in order to design research questions and studies that maximise 
outcomes for humans while reducing unnecessary harms to non-human 
animals. In their published policy on inclusion of sex as a biological 
variable, the NIH (NIH, 2015) published four “C” factors to incorporate 
into study design and we believe these are also useful when considering 
multifactorial analysis (Fig. 7). These are “consider”, “collect”, “char-
acterise”, and “communicate”. For our purposes, “consider” refers to 
appropriate planning of the questions we really want to ask in our study 
design. “Collect” refers to the acquisition of all relevant and accessible 
samples and data, including from multiple sexes and ages insofar as it is 
sensible and feasible within resource allocation. Strong study design and 
data collection can allow for future studies and collaborations without 
the sacrifice of repeated full cohorts of animals. “Characterise” refers to 
the reporting of characteristics of individual data points where possible. 
For instance, even if a study is too underpowered to test sex effects, 
reporting the data points in different colours or symbols can allow other 
researchers to determine if a future, fully powered, investigation into sex 
differences might be worth pursuing. “Communicate” stresses that full 
reporting of statistical power and data characteristics will help frame the 
data and interpretations in the right context and help the reader 
appreciate the probable strength of any conclusions. 

To this list, we add “calculate”, “collaborate”, and “compensate”. 
“Calculate” refers to the need to run power calculations and simulations 
of the sort presented here before a study commences. “Collaborate” may 
allow us the resources to run experiments that are appropriately pow-
ered to incorporate multifactorial designs in the pooling of financial and 
personnel resources. Finally, via “compensate”, we recommend 
choosing non-standard sex, ages, or other backgrounds when designing 
a study when resources allow for restricted choices. In addition to 
certain advantages in choosing females over males, such as the reduced 
gene dispersion in females as shown here, this strategy will help even out 
the publication record over time and contribute to a balanced under-
standing of physiology on an organism-wide basis. 
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Fig. 7. Considerations for study design and reporting. 
As outlined by the NIH with respect to inclusion of sex 
as a biological variable (NIH, 2015), we advocate that 
when incorporating multifactorial designs one should 
consider, collect, characterise, and communicate 
one’s strategy. Consider design before commencing 
experimentation. Collect data on crucial parameters 
such as sex wherever possible. Characterise data – 
even if the study is underpowered, merely illustrating 
the data points may encourage other groups to pursue 
the finding in more detail. Communicate all findings, 
including those that are underpowered (with due 
discussion of the data limitations). In addition to the 
NIH considerations, we also suggest to calculate the 
sample sizes needed to achieve the desired power 
before commencing experimentation, including 
running appropriate simulations as we have done 
here. Collaborate, with the idea that multiple groups 
may be better resourced to include appropriate sam-
ple sizes in return for investigation of different ques-
tions in the same subjects. Collaborating with 
biomedical statisticians and bioinformaticians will 

also allow for better study design and interpretation and will reduce the production and output of unsalvageable data. And compensate, in that if all other con-
siderations are equal and the resources only allow for limited targeted questions, choosing to study females or non-standard ages may balance the body of literature 
and may also lead to more promising findings than choosing to study young-adult males (again). Top panels adapted from NIH recommendations (NIH, 2015). 
Figure created with BioRender.com; Toronto, Canada.   
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