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Abstract: Water losses through leakage represent a significant problem for asset management in water distribution systems. The interpre-
tation of fluid transient pressure waves after the generation of a transient event has been previously used as a technique to locate and character-
ize leaks, but existing approaches are often both model-driven and limited to the existing knowledge of the system. The potential of using
artificial neural networks (ANN) and fluid transient waves to detect, locate, and characterize anomalies in water pipelines has recently been
proposed. However, its application in more realistic conditions (e.g., in the presence of background pressure fluctuations) has proven
challenging. To address this, one alternative to enhance the response of any nonlinear system includes the introduction of artificial noise,
a phenomenon known as stochastic resonance. In this paper, the enhanced detection of leaks in pressurized pipelines via the deployment of
stochastic resonance is demonstrated. This paper harnesses this approach by presenting a methodology for the active inspection of pipelines
using convolutional neural networks (CNNs). This methodology finds the optimal artificial noise intensity to be introduced into the training
dataset for a set of CNNs. The methodology has been applied to a real pipeline in a laboratory at the University of Adelaide in which 14
transient experimental tests were conducted. The results indicated that the addition of noise to the transient pressure head training samples
significantly enhances the CNN predictions for the leak location highlighting the existence of an optimum noise intensity to obtain both
accurate and reliable results. When trained with the optimum noise intensity, the CNNs were able to locate leaks with an average error
of 0.59% in terms of the actual location (in a 37.24-m long pipeline), demonstrating the promising potential of developing techniques based
on CNNs to detect leaks and anomalies in water pipelines. DOI: 10.1061/(ASCE)WR.1943-5452.0001504. This work is made available
under the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.

Author keywords: Leak detection; Water pipelines; Fluid transients; Artificial neural networks (ANN); Stochastic resonance; Machine
learning; Water distribution systems; Convolutional neural networks (CNNs).

Introduction

Population growth and urban expansion are a challenge for water
distribution systems (WDSs) because these systems are responsible
for the supply of a vital resource to society. In recent years, major
cities have faced a serious water supply crisis (Ahmadi et al. 2020).
One major challenge in addressing these crises is the detection of

water losses and pipeline repairs, which has received attention con-
sidering that the percentage of water losses can reach values of 35%
in cities such as Kolkata (Mukherjee et al. 2018). Different method-
ologies have been used to estimate, monitor, detect, and pinpoint
the location of leaks as part of water loss management strategies
(Mutikanga et al. 2013). One of these methodologies includes the
use of fluid transients for leak detection that usually involves the
generation of a transient event that travels along the pipeline, al-
lowing its inspection in a way that is similar to the functioning
of radar and sonar techniques (Puust et al. 2010).

Fluid transient-based techniques have proven successful in the
detection, location, and characterization of leaks in pipelines using
the information that can be retrieved from transient pressure data.
However, in most cases, existing techniques are model-driven.
Such model-driven approaches usually require extensive and accu-
rate numerical modeling, a priori estimation of certain pipe param-
eters assuming an intact or original condition, or long processing
times to obtain an estimate of the leak characteristics. These lim-
itations motivate the need for data-driven techniques that can
quickly interpret transient pressure data obtained from a test and lo-
cate leaks accurately. Existing literature indicated that artificial neu-
ral networks (ANNs) can be trained using numerically generated
transient head pressure traces to locate leaks and changes in pipeline
diameters in numerically modeled pipelines (Bohorquez et al. 2020).
This framework demonstrated the potential of using numerical data
to train ANNs; however, a need exists for a methodology to apply
these principles to the active inspection of pipelines under more
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realistic conditions. In addition, Bohorquez et al. (2021) presented a
methodology for the passive inspection of pipelines to detect the
occurrence of bursts. This methodology proved to be successful
in identifying the occurrence, locating and sizing a burst by interpret-
ing the incoming transient pressure signal measured in a pipeline.
Although this methodology has indicated that ANNs can be trained
to detect bursts in laboratory pipelines, no methodology has been
proposed for the active inspection of pipelines experiencing back-
ground pressure fluctuations.

This paper presents a methodology for the active inspection of
pipelines as an important contribution to the development of a gen-
eral technique to exploit convolutional neural networks (CNNs) for
leak detection in pipelines using fluid transients. This methodology
indicates that the performance of CNNs for the detection and lo-
cation of leaks in water pipelines is enhanced via the deployment of
stochastic resonance. In the following, we describe the background
related to transient-based methods for leak detection focusing on
recent applications. A summary of the new methodology for the de-
tection of leaks in pipelines under more realistic conditions using a
set of CNNs trained with different noise intensities is then presented.
This methodology is split into two main stages: model development
and model application. Finally, the proposed methodology is ap-
plied to a series of experimental transient tests conducted in a labo-
ratory setting. The results demonstrate that, by training a group of
CNNs with pressure transient traces with the optimum noise inten-
sity, the accuracy of the leak location predictions can be signifi-
cantly enhanced, thus providing more robust predictions.

Background

Transient-based leak detection techniques have been in develop-
ment for more than two decades (Jönsson and Larson 1992;
Liggett and Chen 1994). Different approaches have been explored
and can be classified into five main groups: reflection-based meth-
ods, damping-based methods, frequency response-based methods,
inverse transient techniques, and signal processing-based methods
(Duan et al. 2020). More recently, frequency response methods
have been combined with enumeration techniques for leak detec-
tion in pipelines with branches and loops by separating the effect of
these known elements on the frequency response of the system and
employing a GA-based optimization to find the leak characteristics
(Duan 2017). This method has proven successful for a numerical
application and has indicated the potential of transient-based meth-
ods for operation in more complex systems. Meniconi et al. (2019)
examined the influence of the pipeline initial flow conditions on
transient pressure traces after the generation of a transient event
for the visual detection of a leak in the pipeline (as an example
of a reflection-based method). This study concluded that, depend-
ing on the location of the transient generator device, the transient
measured signal can be more sensitive to the initial conditions.
If the generator is located close to the water source, the transient
pressure signals obtained are almost indistinguishable. In contrast,
locating the generator close to the end of the pipeline can produce
different transient traces for the same leak in terms of the initial
pressure increase (Meniconi et al. 2019).

Matched-field processing (MFP) has been explored as a fre-
quency domain technique that can obtain satisfactory results even
in noisy environments and has been developed for elastic (Wang
and Ghidaoui 2018) and viscoelastic pipelines (Wang et al. 2019).
The advantages of this method include its robustness under noisy
conditions or uncertainty in the wave speed. It has proven effective
in both numerical and experimental conditions when the noise
has been assumed to be white noise with a zero-mean Gaussian

distribution (Wang et al. 2019). Other recent applications have in-
dicated that frequency-based techniques can detect leaks under
realistic background noise scenarios using the paired impulse re-
sponse function obtained from two measurement points in the sys-
tem (Zeng et al. 2020). Although significant advances have been
achieved in transient-based methods in recent years, most existing
techniques still require testing under perfect conditions (without
any leaks), detailed numerical modeling, significant computer re-
sources, or extensive signal preprocessing. In addition, uncertainty
in the parameters of a pipeline system to create numerical models
and the presence of irregular pipeline anomalies (e.g., extended
and irregular blockages) can make the anomaly detection process
more challenging when applied to water pipelines in the field
(Che et al. 2021).

A different group of techniques for leak detection in pipelines
has proposed the use of machine learning algorithms to process the
available information from a particular pipeline system. Some of
these techniques have used surrogate features of the pipeline to
predict the most likely location of a leak (Geem et al. 2007) or the
remaining lifetime of a pipeline (Zangenehmadar and Moselhi
2016). However, more recent techniques have proposed the
combined use of machine learning algorithms and hydraulic
measurements in the pipeline. Romano et al. (2014) used different
self-learning artificial intelligence, statistical analysis, and Baye-
sian inference tools to detect a burst at a DMA level in real water
distribution systems using wavelets for the denoising of the ob-
tained signal before its analysis. Roy (2017) proposed the use of
pressure fluctuations with hybrid dense ANNs to locate leaks by
classifying the status of the system to characterize a normal and
abnormal condition in the pipeline. Mujtaba et al. (2020) intro-
duced the use of adaptive thresholds to detect the occurrence of
leaks in gas pipelines using pressure and mass measurements at the
beginning of the pipeline as inputs for the machine learning model
and the potential mass flows at the end of the pipeline as the output
of the model for comparison with measured data.

Bohorquez et al. (2020) presented a methodology that uses the
transient pressure trace after the generation of a transient event and
convolutional neural networks (CNNs) to determine the location
and size of a leak in a water pipeline. This merging of pressure
transient traces and CNNs has been demonstrated in a numerical
application and has great potential, given that this technique is
data-driven and can provide immediate results for the characteris-
tics of a given anomaly. Nonetheless, challenges can arise when
pipelines under more realistic conditions are analyzed. Background
pressure fluctuations due to system operations, such as changes in
demand or unknown system components, are not reproduced by
numerical models but affect the transient pressure traces.

To date, although no applications using noise to improve ANN
performance have been reported in assessing the condition of
water pipelines, several related strategies have been applied in
other fields. Previous approaches have proposed the introduction
of noise during the training in ANN training samples (Rifai et al.
2011), in activation functions (Ikemoto et al. 2018), in ANN
weights (Goodfellow et al. 2016), or in the direction of update of
ANN weights (Neelakantan et al. 2015). The most popular ap-
proach has been the introduction of noise directly into the ANN
training samples to enhance model robustness and reduce overfit-
ting (Bishop 1995). Rifai et al. (2011) demonstrated that the error
of a multilayer perceptron for document recognition can be reduced
by adding a Gaussian distributed noise in the input layer regardless
of the standard deviation of the noise. Fukami et al. (2020) applied
the same concept to different ANN architectures that were trained
to estimate laminar wakes in a fluid field from limited measure-
ments, demonstrating that the addition of noise in the training
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samples for the analyzed architectures improved the performance
of the ANNs when tested in noisy input measurement environ-
ments. Nonetheless, if the magnitude of the noise deviation was
too large, the ANN performance was compromised.

These past applications demonstrate the potential of the use of
noise during the training of an ANN. However, few studies have iden-
tified the potential of using an organized framework to introduce
noise in the training of an ANN. The phenomenon for which the per-
formance of a nonlinear system (i.e., in this case, an ANN) is opti-
mally enhanced by the addition of a certain noise intensity is known
as stochastic resonance. The concept was proposed for the first time
by Benzi et al. (1981) as a nonlinear cooperative effect in which peri-
odic signals can be greatly amplified by large environmental fluctua-
tions; however, other researchers rapidly extended this to include any
nonperiodic signals (Collins et al. 1995). In a nonlinear system, it can
be indicated that there exists a nonzero value of noise that gives an
optimal response to the system (Harmer et al. 2002). Stochastic res-
onance has been observed and applied in multiple fields (Benzi et al.
1982; Luchinsky et al. 1999; Wang and Santamarina 2002; Cheng
et al. 2020) with only a few applying it to the training of an ANN.

Ikemoto et al. (2018) introduced a noise-modulated neural net-
work as an application of stochastic resonance by perturbing the
threshold units in the activation functions with different noise inten-
sities (described by its standard deviation). Their application in
benchmark artificial problems demonstrated that by adding noise
to the threshold units, the standard deviation of the mean squared
error (MSE) decreased as the standard deviation of the noise in-
creased regardless of the structure of the neural network in terms
of the hidden units. The advantages of using stochastic resonance
in areas related to the development of new technologies, such as sig-
nal processing (Feng et al. 2019) or time series analysis (Falanga
et al. 2020), is an active research area. However, previous applica-
tions using stochastic resonance in ANNs have been limited to ar-
tificial and numerical benchmark problems in computer science, and
no applications have been reported for anomaly detection problems
in real infrastructure, such as the detection of leaks in water pipelines.

Methodology

The methodology presented in this research paper to detect
leaks in pipelines using a set of CNNs is outlined in Fig. 1.

This methodology is divided into two stages: model development
(Stage 1 in Fig. 1) and model application (Stage 2 in Fig. 1). The
leak detection model development stage should be carried out first
and can be repeated regularly to account for new transient pressure
information data collected from the system. The model application
stage comprises the processes required to analyze a transient pres-
sure head trace to determine the location and the size of a leak in the
pipeline.

Leak Detection Model Development (Stage 1)

The first stage of the proposed methodology is the development of
a leak detection model. This stage comprises the training of a set of
CNNs that can locate and size a leak when the analyzed pipeline
experiences background pressure fluctuations. An appropriate
CNN architecture needs to be designed, and transient pressure
head traces are numerically generated for the training of these
CNNs. The five steps presented in Stage 1 in Fig. 1 summarize
the development of the leak detection model. It is important to
highlight that these CNNs do not constitute a metamodel of the
transient flow pressure response to the closure of a valve in a pipe-
line with a leak. These CNNs are trained to identify the transient
pressure wave reflections created by the existence of a leak in the
pipeline.

CNN Architecture Design
The first step in the leak detection model development is the def-
inition of an appropriate ANN architecture. Bohorquez et al. (2020)
concluded that one-dimensional (1D) convolutional networks with
three convolutional layers had the potential to identify leaks in nu-
merically modeled pipelines. However, it has been found that a
more robust architecture is required for the application of this tech-
nique in pipelines under more realistic conditions. The design of
this new architecture considered different alternatives, including
variations from the architecture proposed in Bohorquez et al.
(2020) to a 1D convolutional network with 5 layers and increasing
filters in those layers.

For brevity, the results from this design process are not indicated
here, but the resulting CNN architecture includes (1) four convolu-
tional layers, (2) the use of a leaky rectified linear unit (Leaky
ReLU) as the activation function, (3) 20 filters that increase in the
last convolutional layer, and (4) three dense layers of sizes 14, 6,

Fig. 1. (Color) Model development and application of active leak detection methodology.

© ASCE 04022001-3 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2022, 148(3): 04022001 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
he

 U
ni

ve
rs

ity
 o

f 
A

de
la

id
e 

on
 0

7/
10

/2
3.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



and 2. The resulting number of weights for the 1D convolutional
networks used in this work depends on the size and number of fil-
ters and the downsampling frequency selected in Step 1.3 in Fig. 1.
Eq. (1) presents the total number of weights for a 1D convolutional
network for which the first term represents the weights in the con-
volutional layers (n), and the second term represents the weights in
the dense layers (j)

W ¼
Xn

1

½ððw × h × fn−1Þ þ 1Þ × fn� þ
Xj

1

½ðcj × cj−1Þ þ cj�

ð1Þ

In this equation, w and h are the width and height of the filters;
fn = number of filters in the convolutional layer n; and cj = number
of neurons in the dense layer j. For the first dense layer (i.e., j ¼ 1),
cj−1 depends on the dimensions of the input layer defined by
the downsampling frequency, thus affecting the total number of
weights for the CNN to learn. In general, a larger input layer
provides the CNN with more information regarding the transient
pressure head trace, but the training of the CNN is more difficult
because there are more weights to define.

Transient Pressure Head Samples Generation
The leak detection model development stage includes training and
testing a set array of CNNs (Step 1.5 in Fig. 1). To train these
CNNs, numerical transient pressure head data or available recorded
transient data can be used. For the application presented in this
paper, numerical transient head pressure traces have been used
for the CNN training. Fig. 2 presents the hydraulic configuration
of the single pipeline that has been used to generate the numerical
transient head pressure traces. The pipeline is supplied by a reser-
voir with an upstream head H0, an internal diameter D, and total
length LT . At the downstream end of the pipeline, there is a side
discharge valve that is initially open with a flow Q0. The transient
pressure head information is obtained from a measurement point
(M) at the same location as the side discharge valve. The specific
characteristics of the pipeline that was analyzed in this paper are
presented in Table 1.

A leak modeled as a circular orifice with a diameterDL could be
present at any point along this pipeline at a distance x from the
upstream reservoir. As part of this step, a range of leak sizes must

be defined for the generation of the training data. This range can be
defined based only on the diameter of the leak, the flow that is
going through the orifice when the leak is active, or previous
knowledge of the system on past detected leaks. For the application
indicated in this paper, the leak size range was defined using the
available orifice diameters in the laboratory associated with the
experimental pipeline apparatus and is presented in the “Results”
section.

Each sample of the CNN input dataset is a transient pressure
head trace including the transient pressure response generated after
the closure of the side discharge valve. A simulation time of at least
2L=a seconds after the valve closure is selected to cover the first set
of transient wave reflections. To form the complete CNNs’ training
and testing dataset, a large number of transient pressure head traces
are required (Bohorquez et al. 2020). A total of 50,000 different
transient pressure head traces were generated using the method
of characteristics (MOC). In ten different rounds, 5,000 locations
along the complete pipeline are randomly sampled from fixed-
length segments, and a random leak size is assigned.

Due to the short separation between different leak locations to
cover the entire length obtaining 5,000 different transient pressure
head traces, the time resolution required to guarantee that the MOC
is computed along the characteristic lines is also very small. There-
fore, the potential size for the training and testing dataset can be
significant. For instance, for a pipeline that is 1,000 m long and
has a wave speed of 1,000 m=s, generating 50,000 different tran-
sient pressure head traces for 2L=a seconds includes 500 million
pressure head values. If these complete traces were used to train the
CNNs, the total required parameters to train one CNN (following
the architecture defined in Step 1.1) would be 454,000 according to
Eq. (1). The potential size of this input dataset and its implications
for the number of training weights indicates that a downsampling
process is necessary.

For the application in a numerically modeled pipeline described
in Bohorquez et al. (2020), the transient pressure head traces were
obtained after modeling the sudden closure of a side discharge
valve. However, a more realistic approach should consider that,
regardless of the closure method (i.e., a mechanical actuator, a
solenoid activated valve, or any other device), the injected transient
wave is not completely sharp. As part of Step 1.2 in the leak de-
tection model development, the closure curve of the side discharge
valve is obtained and incorporated into the MOC modeling. This
can be achieved by running preliminary tests in the analyzed
pipeline to characterize this curve.

Transient Pressure Head Downsampling
As was previously mentioned, the potential size of the input dataset
when using the MOC for the generation of the transient pressure
head traces can be very large considering that all data points along
the transient pressure head trace are required. Therefore, a timewise
downsampling process is conducted in Step 1.3 of Fig. 1. Previous
research indicated that ANNs trained with downsampled data have
improved performance and are more computationally efficient
(Bohorquez et al. 2020). This is partially because ANNs trained
on downsampled data have a smaller size for the input layer for
the ANNs, resulting in fewer weights and, thus, less of a tendency
of overfitting. In addition, the use of downsampled data could
potentially reduce data transfer requirements on applications of
this methodology in the field. Depending on the analyzed pipeline,
Step 1.3 includes the selection of the sampling frequency to which
transient pressure head traces are going to be transformed into. This
selected frequency will influence the final number of weights
on which the CNNs will be trained because the frequency defines
the size of the initial layer in the CNN. This frequency can be

Fig. 2. (Color) Single pipeline with leak system configuration.

Table 1. Pipeline characteristics

Characteristic Units Value

Length of pipe (LT ) m 37.24
Internal diameter of pipe (D) mm 22.14
Wave speed of pipe (a) m/s 1,305
Wall thickness (e) mm 1.63
LT=a time s 0.029
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selected based on the expected pressure sensor sampling frequency
and the dimensions of the analyzed pipeline.

Noise Characteristics Definition and Application
Bohorquez et al. (2020) demonstrated the potential of using ANNs
for leak detection in pipelines using fluid transient pressure waves.
However, the application of this approach to pipelines under more
realistic conditions, such as those containing background pressure
fluctuations, has proven a challenge because the generated numeri-
cal pressure transient head traces cannot replicate these conditions.
To address this issue, this paper introduces the deployment of
stochastic resonance applied to the training of a set of CNNs.
The addition of multiple noise intensities to the transient pressure
head input dataset enhances the robustness and performance of the
trained CNNs when the optimum noise intensity is applied. The
addition of noise in training datasets has been explored in other
numerical applications involving artificial intelligence in different
fields. The addition of a noise distribution to the input of a model
has been found to be translated into a better response of the model
output (Murray and Edwards 1994; Rifai et al. 2011; Fukami et al.
2020). Considering this, Step 1.4 of the leak detection model de-
velopment comprises the definition of the noise distribution and the
selection of noise intensities to be added to the numerical transient
pressure head traces samples (obtained in Step 1.3).

The transient pressure head noise has been characterized by a
Gaussian distribution with zero mean and standard deviation of σ,
similar to the concept presented by Duan (2017). The magnitude of
the standard deviation has been defined with respect to the magni-
tude of the pressure drop in the transient pressure head trace when
the smallest leak (from the range defined in Step 1.2) is present in
the pipeline. To illustrate this, Fig. 3 presents a generic example of
two transient pressure head traces.

The continuous blue line represents the transient pressure head
trace after the closure of a side discharge valve for an intact pipe-
line. The dash-dotted blue line denotes the transient pressure head
trace when a leak is present in the pipeline and for which a transient
event has been generated. The initial pressure head increase after
the closure of the valve is the same in both cases; however, dif-
ferences arise when part of the transient wave reflects from the
leak. The larger the leak present in the pipeline, the larger the
drop in pressure (Bohorquez et al. 2018; Meniconi et al. 2019;

Wang et al. 2019). A second y-axis is included on the right-hand
side of Fig. 3 to present the differences between both transient pres-
sure head traces (red line). This line indicates that a difference Δh
exists during the first 2L=a seconds after the closure of the side
discharge valve.

Considering this, if the selected noise intensity has a standard
deviation larger than this difference, the CNNs are expected to not
perform well in identifying small leaks. In this case, the noise added
to the transient pressure head trace hides the transient wave reflec-
tions from the leak. A total of n noise intensities are selected in
Step 1.4, and the standard deviation for each intensity is defined
in Eq. (2) as a proportion of Δh where ki is the multiplier for noise
intensity i ∈ f1; : : : ; ng and ki is a percentage of Δh

σi ¼ ki ×Δh ð2Þ
The selection of the number of noise intensities n depends on

the computational resources available because each additional
noise intensity represents more CNNs to be trained (as is explained
in Step 1.5). The array of multiplier values ½k1; : : : ; kn� depends on
the analyzed pipeline and the expected leak sizes to be present;
however, if large values of ki are selected, the ability of the CNN
to identify certain leak sizes is expected to decrease.

Once the number of noise intensities and the array of standard
deviations σi have been defined, multiple random transient pressure
head traces are created. In this paper, five transient pressure head
traces are created for each of the samples of the input dataset ob-
tained from Step 1.3 by adding the noise to the original transient
pressure head trace. This allows the CNNs to be exposed to differ-
ent transient pressure head traces that correspond to the same leak
location and size but with different values for the pressure noise.
Thus, the input dataset for each noise intensity has 250,000 differ-
ent transient pressure head samples.

Leak Detection CNNs’ Training and Testing
The last step of the leak detection model development (Step 1.5 in
Fig. 1) is the training and testing of a set of CNNs with the archi-
tecture defined in Step 1.1 using the nþ 1 input datasets obtained
from Step 1.4 (including the original dataset without any noise in
the samples). A diagram presenting the set of CNNs to be trained is
indicated in Fig. 4. Each leak detection CNN receives as input one
transient pressure head trace and should be able to predict the cor-
rect location and size of the leak only based on this information.

This diagram indicates that for each noise intensity (σn) includ-
ing a no-noise scenario (σ0), m leak detection CNNs are trained
using its corresponding dataset. Considering that the training of
those CNNs is conducted using Stochastic Gradient Descent algo-
rithms, a different final set of weights is obtained every time a CNN
is trained. Similar to applying genetic algorithms starting from dif-
ferent random number seeds, training m leak detection CNNs can
assist in testing the consistency of the CNN predictions. A good set
of CNNs should provide very similar results when testing with the
same data despite having different CNN weights. The number of
possible CNNs to train for each noise intensity depends on the
availability of computational resources.

Each input dataset is then randomly divided into two groups of
equal size: a training and a testing dataset. For the training process,
smaller groups of data are selected one at a time to find values for
the CNN weights and then validated with the rest of the training
data. This is known as batch training, which allows the CNN to
learn from smaller groups of data to avoid overfitting (Nakama
2009). Considering that the separation of the input dataset into a
training and a testing dataset is random and that batches for each
training trial are different for each CNN, the resulting weights are
different.
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Fig. 3. (Color) Pressure head difference between transient pressure
head trace for intact pipeline and pipeline with smallest leak.
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Once the training process is complete, the CNNs are tested with
transient pressure head traces that have not been exposed to. These
predictions are then compared with the real location and sizes of the
testing samples. A CNN that has been successfully trained should
present with a similar distribution of errors in the training and test-
ing stages.

Leak Detection Model Application (Stage 2)

The second stage of the methodology presented in this paper is the
leak detection model application (Stage 2 in Fig. 1). This stage in-
cludes a number of different steps that are necessary to process real
measured transient pressure head data from a valve closure test in a
pipeline with a leak to obtain a prediction of its location and size.
A six-step process is described in Stage 2 in Fig. 1, which is divided
into two substages: preprocessing and analysis. This section ex-
plains how each step might be carried out for any analyzed pipeline
when the results from multiple valve closure tests are available.
However, the same procedure could be conducted if only one test
result is available.

Generator Pressure Fluctuation Reduction
The first part of the leak detection model application refers to
the preprocessing of the tests that have been conducted. In this
preprocessing stage, the first step corresponds to the reduction
of pressure fluctuations caused by the transient generator device
in the recorded transient pressure head signal (Step 2.1 in Fig. 1).
Preliminary applications of the leak detection model, not indicated
in the paper for brevity, demonstrated that the performance of the
set of CNNs was not satisfactory for different transient tests under
the same conditions. To understand the reasons for this apparent
inconsistency in the leak detection model predictions, a vulnerable
region detection analysis was conducted.

Vulnerable region detection analysis has been previously used
in computer science to evaluate the performance of a classifier ma-
chine learning model to small perturbations in different regions of
an image. This type of analysis indicated that deep neural networks
are vulnerable to changes around the object of interest (Shu and
Zhu 2019). Vulnerable region detection analysis is closely related

to the study of adversarial examples for deep neural networks for
which imperceptible perturbations (localized or distributed in the
image) can disrupt the predictions of the models (Szegedy et al.
2013; Akhtar and Mian 2018).

For the CNNs developed in this paper, this analysis included
the successive testing of the CNNs with perturbed transient pres-
sure head traces. These traces were obtained by applying dif-
ferent magnitudes of perturbation to each point along the original
transient pressure head trace. Fig. 5 presents the distribution of the
predicted leak location error (at the top of Fig. 5) after successively
applying a single 0.1 m perturbation in turn along a transient pres-
sure head trace measured in the laboratory (indicated at the bottom
of Fig. 5). The distribution of errors was obtained after testing the
perturbed samples with five CNNs trained with the same noise
intensity.

Fig. 4. (Color) Leak detection set of CNNs. Each group of CNNs is trained with samples with different noise intensities.
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Fig. 5. (Color) Leak location error with application of 0.1 m perturba-
tion at only one point along laboratory transient pressure head trace.

© ASCE 04022001-6 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2022, 148(3): 04022001 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
he

 U
ni

ve
rs

ity
 o

f 
A

de
la

id
e 

on
 0

7/
10

/2
3.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



This figure indicates that perturbations at the first 60 points of
the transient pressure head trace induce a considerably larger error
in the distribution of the leak location predictions. These 60 points
correspond to the steady-state pressure head before the valve clo-
sure. When the perturbation is applied after the valve closure, the
CNN predictions are more consistent, although errors are present.
This analysis demonstrated that features in the steady-state segment
of a laboratory transient pressure head trace induce errors in the
CNN performance. Thus, a more in-depth analysis of measured
transient pressure head traces has been conducted.

Fig. 6(a) presents an example of a transient pressure head trace
obtained in the laboratory (with characteristics presented in Table 1
and equivalent to the system presented in Fig. 2). In this figure, two
segments of this trace are enlarged, preserving the same scale. Sub-
plot (i) in Fig. 6(a) indicates the background pressure fluctuations
before the valve closure, and subplot (ii) indicates the background
pressure fluctuations after the dissipation of the transient event
created by the valve closure. Clear differences in these pressure
fluctuations are visible before and after the transient event. The
background pressure fluctuations before the transient event are
more prominent in magnitude, which is the result of the interaction
that the transient generator (open valve) has with the pipeline itself
that adds to the interaction that the leak orifice has with the pipe-
line. The background pressure fluctuations induced by the transient
generator have been reported by Gong et al. (2018), for which leaks
were simulated in real pipelines with the opening of a standpipe
connected to an air valve or a fire hydrant. More recently, Brunone
et al. (2021) analyzed the influence of transient pressure fluctua-
tions at different locations along a pipeline before the introduction
of a pressure wave in the minimum detectable reflected pressure
wave due to the presence of a leak. Assessing the existing transient
pressure fluctuations was indicated to be important to guarantee a
successful leak detection outcome.

A background pressure fluctuation reduction step has been in-
cluded to reduce the background pressure fluctuations caused by
the combined effect of the transient generator and the leak to
only the fluctuations due to the presence of the leak. To accomplish
this, the distribution of pressure fluctuations needs to be studied in
greater detail. Fig. 6(b) presents the distribution of the pressure
head for the segments of the complete transient trace highlighted
in Fig. 6(a). Step 2.1 in the proposed methodology includes fitting
both pressure head series to a probabilistic distribution (in this case,
a normal distribution), which in the examples presented indicate a
reasonable agreement. The distribution of the pressure head after

the transient test normally has a larger mean value because the total
flow in the pipeline reduces. The parameters of the normal distri-
bution for the background pressure fluctuation before the transient
generator closure are denoted with the subscript b, and the fluctua-
tions corresponding to the pressure after the transient generator
closure are denoted with the subscript a.

The procedure for Step 2.1 consists of transforming the back-
ground pressure fluctuations before the transient event to have a
similar distribution to the pressure fluctuations after the generator
closure. Based on the parameters of the distributions obtained, a
new probability function can be defined as a normal distribution
with mean μb and standard deviation σa. Therefore, the new normal
distribution preserves the mean value of the background pressure
fluctuations before the transient test, but its standard deviation is
modified to match the background pressure fluctuations after the
transient test. For any pressure value from the measured transient
pressure head trace before the transient event (ht), a Z-score (Zb) is
computed using μb and σb. With this value, a modified value for the
pressure (h 0

t ) is found using Eq. (3). This is then repeated for each
value of pressure before the generator closure to obtain a transient
pressure head trace with reduced background pressure fluctuations

h 0
t ¼ Zb × σa þ μb ð3Þ

Transient Pressure Head Traces Shifting and Trimming
Once the background pressure fluctuations induced by the transient
generator have been reduced, the transient pressure head traces are
shifted and trimmed at Step 2.2 (Fig. 1). This is conducted to match
the conditions used to generate the numerical transient pressure
head samples in Step 1.2 of the model development stage. Vertical
shifting of the transient pressure head traces obtained from mea-
surements might also be required if the conducted tests had a differ-
ent initial pressure. This shifting includes the computation of the
difference between the mean pressure before the transient event
and the steady-state pressure used in training the CNNs and the
transformation of the transient pressure head traces by adding or
subtracting this difference. If the steady-state pressure of the tran-
sient tests is significantly different, some variation in the transient
response of the system can be expected, as reported by Meniconi
et al. (2019). Trimming the time extent of the transient pressure
head traces includes the selection of the length of interest from
the complete trace. The specific length to trim the traces depends
on the selected characteristics in Step 1.2; however, in general,
the objective is to include some pressure information before the
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Fig. 6. (Color) Background pressure fluctuation analysis: (a) background pressure head fluctuation: (i) before transient event and (ii) after transient
event; and (b) distribution of pressure head before and after transient event.
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transient event and at least 2L=a seconds after the valve closure to
cover the complete length of the pipeline.

Transient Pressure Head Traces Downsampling
To capture the reflections from anomalies such as leaks, high-
frequency pressure transducers are required for realistic applica-
tions (Nguyen et al. 2018; Zeng et al. 2020). In addition, this
sampling frequency depends on the pipeline dimensions and
material. Step 2.3 in Fig. 1 includes the downsampling of the mea-
sured transient pressure head traces to the frequency selected in
Step 1.3. This downsampling is necessary to match the measured
transient pressure head trace with the input layer of the CNNs (as
presented in Fig. 4). This downsampling process has been applied
in different fields because signature recognition can be carried out
using different interpolation methods including linear, polynomial,
or spline interpolation (Martinez-Diaz et al. 2007).

Leak Detection CNNs’ Application
The reduction in background pressure fluctuations, the shifting,
trimming, and downsampling of the measured transient pressure
head traces complete the preprocessing stage. A second stage com-
prises the following three steps: analysis of the measured transient
pressure head traces using the available CNNs (Step 2.4 in Fig. 1),
selection of a final prediction for the leak location and size (Step 2.5
in Fig. 1), and a verification process (Step 2.6 in Fig. 1).

The leak detection CNNs application step includes the analysis
of all the recorded and preprocessed transient pressure head traces
using the CNNs trained in Step 1.5. Therefore, multiple leak loca-
tion and size predictions are obtained from this step depending on
the number of noise intensities (n) selected in Step 1.4, the number
of CNNs trained per noise intensity (m), and the number of avail-
able transient tests results (q). For each transient test (q), a box
whisker plot can be created that summarizes the distribution of
the predicted leak locations. This distribution is created from the
results of m leak detection CNNs for each noise intensity (n)
and the CNNs trained with transient pressure head samples without
any added noise. The analysis of the transient tests through CNNs
trained with different noise intensities constitutes the application
of stochastic resonance. Therefore, an optimum noise intensity
is expected to be identified and a final prediction selected in the
following step of the methodology.

Leak Location Prediction Selection
According to Harmer et al. (2002), the addition of some noise to a
nonlinear system can enhance its response. However, there is a
point at which the addition of too much noise prevents further im-
provement. As previously mentioned, this phenomenon is known
as stochastic resonance. One of the objectives of this paper is to
demonstrate the application of this concept to the use of CNNs
to detect leaks in pipelines under more realistic conditions, such
as background pressure fluctuations. The selection of a leak loca-
tion (and size) prediction is included as a separate step in Fig. 1
(Step 2.5) because it involves the analysis of the distribution of
predictions obtained in Step 2.4.

The first part of this analysis is related to the scatter of the leak
location predictions for the CNNs (m) of a particular noise intensity
(n). If stochastic resonance is relevant, the predictions of the leak
location in CNNs trained with larger noise intensities are expected
to be more consistent and closer to the real location of the leak until
the optimum noise intensity is reached. To test this, box whisker
plots can be created using the predictions from the available tran-
sient tests to evaluate the effect of adding noise to the training sam-
ples of the CNNs.

In contrast, CNNs trained with noise intensities that are too large
are expected to not perform well on the training because the

reflections from small leaks are combined with the added Gaussian
noise, and the overall performance of the CNNs decreases. To mea-
sure this, for each group of CNNs corresponding to each noise in-
tensity (n) including the CNNs trained without any noise, the root
mean squared error (RMSE) is computed for both the CNN training
and testing datasets. If the resulting RMSE for a particular noise
intensity exceeds a predefined threshold or the training and testing
RMSE are considerably different, this noise intensity is considered
too large.

By analyzing the scatter of the leak location predictions and the
CNN RMSE for training and testing, one group of CNNs (m)
trained with the optimum noise intensity (nopt) can be selected.
Using these CNNs, a final prediction for the location and size of
the leak in the pipeline using them × q available predictions can be
obtained by computing the median leak location for each transient
test available and then analyzing the distribution of those predic-
tions. If for each transient test, the median location predictions are
clustered around one possible location, only that prediction will be
assessed in the verification process. However, if two or more clus-
ters are identified, the multiple leak location predictions are used in
the last step of the methodology.

Leak Detection Verification
The last step of the application stage considers the use of a numeri-
cal transient model of the analyzed pipeline to verify whether the
predicted leak characteristics match the measured trace to a reason-
able degree of accuracy (Step 2.6 in Fig. 1). This does not represent
a verification of the complete methodology but a confirmation step
including potential refinement of the CNN predictions for a particu-
lar pipeline. Using the same MOC numerical model used in Step
1.2 of the model development, new transient pressure head traces
can be obtained using the predicted leak characteristics (size and
location) obtained in Step 2.5. These numerically generated traces
are then compared with the pressure head measured to assess its
similarity using the normalized root mean squared error (NRMSE).
Differences are expected between these transient pressure head
traces due to different elements present in the pipeline that are
not included in the numerical model. In addition, the fact that
the final prediction is obtained from a distribution of predictions
can also cause differences between these pressure head traces.
However, a threshold can be defined to decide whether the CNNs’
predictions are accurate enough and a final prediction has been
reached.

Preliminary analysis indicated that cases in which the CNNs’
predictions are not within the defined threshold are due to a dis-
crepancy in the predicted leak size in a manner similar to what
was reported by Bohorquez et al. (2021) for the detection of bursts.
Thus, a potential leak size correction has been considered in this
methodology through the generation of additional numerical tran-
sient pressure head traces covering the range of possible leak sizes
to find the one that produced a trace with the lowest NRMSE.

Results

The proposed methodology for leak detection in pipelines as pre-
viously described has been applied to a series of tests conducted in
the Robin Hydraulics Laboratory of The University of Adelaide.
The objective was to demonstrate the feasibility of using CNNs
to detect the location and size of leaks in pipelines under more real-
istic conditions. This section outlines the characteristics of the
analyzed pipeline and the transient tests. A description of the ap-
plication of the methodology for both stages following the steps
presented in Fig. 1 is then provided.
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Laboratory Tests

The pipeline in the laboratory has the configuration indicated in
Fig. 2. The pipeline is connected at both ends to pressurized tanks.
An inline valve was closed at the downstream end of the pipeline to
allow flow only through a solenoid valve installed right before the
end of the pipeline. The characteristics of the pipeline are provided
in Table 1. A circular orifice of size 2.2 mm was installed 28.52 m
downstream of the source tank to simulate a leak.

The transient event to detect the leak is generated by the fast
closure of the solenoid valve with a closure time of 5 ms. The
pressure was measured with a PDCR 810 pressure transducer
(Druck, Leicester, UK) with a 10-kHz sampling rate. A total of
14 transient tests were conducted with the same configuration
under similar initial conditions. The pressure head traces measured
for the 14 tests at the downstream end of the pipeline are presented
in Fig. 7, and each line represents a different test. The initial pres-
sure head at the end of the pipeline was set to between 20.0 and
23.9 m. The pressure head was measured from 0.2 s before the
valve closure and for a total of 3 s (although Fig. 7 indicates
the pressure changes only until 1 s).

Using the results from these 14 laboratory tests and the known
characteristics of the pipeline, the CNN leak location methodology
presented in Fig. 1 was applied to this system. Multiple tests were
analyzed to study the robustness of the leak location predictions to
small differences in testing conditions, such as the initial pressure
and background pressure fluctuations.

Model Development

First, a leak detection model was developed for the pipeline de-
scribed in Table 1 following the steps described in Stage 1 of Fig. 1.
The 1D convolutional neural networks created followed the archi-
tecture previously described with four convolutional layers, 20 fil-
ters, and three dense layers (Step 1.1). A total of 50,000 numerical
transient pressure head traces were generated with a MOC numeri-
cal model. Ten different leaks were modeled at random locations
within each 7.45-mm interval along the pipeline. Each of these 10
transient pressure head traces had a different randomly selected
diameter varying between 0.4 and 3.5 mm. The total simulation
time was set as 0.09 s, which corresponds to 3.15L=a seconds,
L=a seconds before the closure of the valve, and 2.15L=a seconds
after to account for the effects of the valve closure curve in the
computed pressure head. To obtain different transient head pressure
traces, the time resolution of the MOC numerical model needed to

be at least 0.006 ms. Therefore, the total size of the CNNs’ input
dataset before the downsampling process is 788 million transient
pressure head values (Step 1.2), and each trace has almost 16,000
head values.

According to Step 1.3 in Fig. 1, the obtained input dataset was
then downsampled to a selected downsampling frequency of 5 kHz.
This frequency was selected considering the dimensions of the
pipeline and the potential number of weights to train in the resulting
CNNs. A smaller downsampling frequency creates a very small
CNN that cannot learn enough information from the transient
pressure head traces. Smaller downsampling frequencies can be
selected for larger pipelines with larger L=a characteristics. The
resulting number of weights for the leak detection CNNs following
Eq. (1) is 13,868.

After the downsampling process, the input dataset contains
8.55 million transient pressure head values for the 50,000 traces.
This dataset was used in Step 1.4 to create additional CNN input
datasets with the addition of noise in the transient pressure head
traces. Following the definition of noise intensity previously pre-
sented, the smallest leak drop [Δh in Eq. (2)] corresponding to the
smallest leak considered was 0.1238 m. Six different noise inten-
sities were considered in this step, and the selected values of ki and
the derived standard deviations (σi) are presented in Table 2. These
noise intensities were selected considering that the objective was to
obtain CNNs with the ability to find leaks across the complete de-
fined leak size range without significantly decreasing performance
with the addition of noise. Important to note is that the values for
the noise intensities to be considered are independent of the back-
ground noise present in the analyzed pipeline and are defined only
based on the definition provided in Eq. (2).

The information presented in Table 2 was used to generate six
additional input datasets. Each dataset contains a total of 250,000
transient pressure head traces given that five traces were created for
each for the original numerical traces. Five CNNs were created for
each defined noise intensity and five CNNs using the original train-
ing dataset, with no noise included. Each group of five CNNs have
the same architecture but different resulting weights considering
that Stochastic Gradient Descent algorithms were used in its train-
ing. As was previously explained, using these training algorithms
is similar to applying Genetic Algorithms using different random
number seeds. The resulting set of 35 CNNs were trained and tested
simultaneously using graphics processing units (GPUs) on the Uni-
versity of Adelaide’s High Performance Computer (HPC), Phoenix.
The training process was conducted for a maximum of 24 h or less
if the desired threshold of accuracy was achieved.

Figs. 8(a–g) present the percentage exceedance associated
with the absolute average error in the location of leaks. This plot
summarizes the results of the training and testing of seven of the 35
CNNs, where each plot corresponds to a different noise intensity
CNN. Only one plot per noise intensity is included because the
distribution of the errors obtained during training and testing
was consistent across the five CNNs.
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Fig. 7. (Color) Laboratory transient pressure head traces. Each series
represents a different test with a different initial pressure.

Table 2. Selected standard deviation for gaussian noise distribution

Standard deviation
multiplier, ki (%)

Resulting standard
deviation, σi (mm)

5 6.19
10 12.4
25 31.0
50 61.9
100 123.8
150 185.6

© ASCE 04022001-9 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2022, 148(3): 04022001 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
he

 U
ni

ve
rs

ity
 o

f 
A

de
la

id
e 

on
 0

7/
10

/2
3.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Two series are included in each of the plots of Fig. 8. The blue
solid line corresponds to the distribution of the absolute average
leak location error for the samples used for the CNN training.
The pink dotted line presents the leak location error for the samples
used during the CNN testing. The percentage exceedance can be
interpreted as the proportion of the total trained or tested samples
for which the average leak location surpassed a certain error size.
An average error in the predictions is presented because, in some
cases, two or more traces with the same leak location and size were
used for either the training or the testing.

Important to observe is that the maximum percentage indicated
in the figure is 10% (y-axis). This means that 90% of the time that
these CNNs are used with numerical transient pressure head traces,
the absolute average leak location error obtained is smaller than the
minimum absolute average error visible in these plots. In addition,
the x-axes in Figs. 8(a–e) are presented at the same scale to facilitate
its analysis.

As the standard deviation for the Gaussian distributed noise in-
creases, the absolute average leak location error also increases due
to the noise added to the training and testing samples. This figure
also makes it evident that the CNNs trained and tested with

transient pressure head traces without any noise performed better
than the rest. However, for all of the considered noise intensities,
90% of the time, the absolute average leak location error is 0.12 m
or smaller, which points to a successful result from the training of
these CNNs.

Model Application

With the successful training and testing of the leak detection CNNs,
the model development stage is completed. The leak detection
model application stage is now applied to identify the leak present
in a real pipeline in a laboratory setting (Stage 2 in Fig. 1). The
preprocessing of the obtained transient pressure head traces (Steps
2.1–2.3 in Fig. 1) started with a reduction of the background
pressure fluctuations due to the flow through the solenoid valve
installed at the end of the pipeline. Following the process described
in Step 2.1, two 0.2-s segments were analyzed in each of the 14
measured pressure head traces before the solenoid valve closure
and at the end of the 3-s recorded signal. Two normal distributions
were obtained from the pressure fluctuations before and after the
solenoid valve closure for each transient test. Average standard
deviations before and after the transient test of 0.0392 m and
0.0097 m, respectively, were obtained. An example of the resulting
transient pressure head traces after the background pressure fluc-
tuation reduction step is presented in Fig. 9.

This figure indicates that the background pressure fluctuation
reduction process does not dramatically change the transient pres-
sure head traces because no differences are evident when a 20-m
scale is used for the y-axis. However, when a different scale is
analyzed (in the red subplot), clear differences in the pressure
fluctuations are noticeable after the transformation of the pressure
before the transient events. This step allows for a reduction in the
background transient pressure head fluctuations and an improved
application of the leak detection CNNs.

The resulting transient pressure head traces were further trans-
formed to complete the preprocessing described in Fig. 1. First, the
14 measured transient pressure head traces were shifted to be
aligned to one initial average steady-state pressure head. As indi-
cated in Fig. 7, the initial pressure head of each test was slightly
different within a 3.9 m range. All traces were aligned to an average
steady-state pressure head of 21.16 m. This value corresponds to
the initial pressure head considered for the generation of the
numerical transient pressure head traces in Step 1.2. The resulting
shifted traces were also trimmed to select only the segments of the
transient pressure head of interest corresponding to L=a seconds
before the closure of the solenoid valve and 2.15L=a seconds after
this closure. The resulting transient pressure head traces are pre-
sented in Fig. 10.
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Fig. 8. (Color) Percentage exceedance for absolute average leak
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Important to observe is that because each transient test had a
different steady-state pressure head, the initial pressure head in-
crease after the solenoid valve closure is also different in every test.
This difference is due to the small differences in the resulting flow
in the pipeline given different initial pressures, in a similar manner
as reported by Meniconi et al. (2019). However, the transient pres-
sure head traces were not further transformed to test the leak de-
tection CNNs’ performance to predict accurate leak locations under
these conditions. The last step of the preprocessing stage included
the downsampling of the measured transient pressure head traces to
a 5-kHz frequency to match the traces to the dimensions of the in-
put for the leak detection CNNs.

The second part of the leak detection model application in-
volved an analysis of the transient pressure head traces (Steps
2.4–2.6 in Fig. 1). All of the preprocessed transient pressure head
traces were analyzed using a total of 35 trained CNNs in Step 1.5
(five CNNs per noise intensity level including the CNNs trained
with samples without any noise). The distribution of leak locations
predictions is indicated in Fig. 11. A seven-color scale was used in
this figure to illustrate the distribution of leak location predictions

on each noise intensity defined in Step 1.4 and the CNNs trained
with samples without any noise. In addition, Fig. 11 presents an
indication of the end of the pipeline (37.24 m) and in light blue
the location of the leak in the pipeline (at 28.05 m).

This figure indicates the very large range of the leak location
predictions when the CNNs were trained without any noise in
the transient pressure head traces. Except for two outliers in the
predictions for traces #13 and #14, none of the leak location pre-
dictions are within the physical limits of the pipeline. Therefore,
these predictions are not visible in the figure. This result demon-
strates the challenges of applying ANNs for the detection of
anomalies in pipelines under more realistic conditions (Bohorquez
et al. 2020). Because these CNNs were trained with theoretical
numerical samples with perfect data, the predictions when the an-
alyzed transient pressure head traces have background pressure
fluctuations become illogical for the leak location.

Fig. 11 also presents the significant influence that the addition of
noise in the numerical transient pressure head traces for the CNNs’
training has in the resulting distribution of leak location predictions.
The addition of a Gaussian distributed noise with a standard
deviation of 6.2 mm (σ1) has a significant effect on the resulting
leak location predictions. Most of these predictions can now be
found within the physical limits of the pipeline (orange series in
Fig. 11). Important to note is that a background pressure fluctuation
with a standard deviation of 6.2 mm is smaller in magnitude than
the real background pressure fluctuations observed in this pipeline.
However, its introduction in the CNN training dataset has proven to
be highly effective in improving the obtained leak location predic-
tions. This finding aligns with previous authors’ findings that state
that the addition of noise can benefit ANN performance (Fukami
et al. 2020).

Despite the clear advantages of applying Gaussian distributed
noise, the results presented in Fig. 11 also demonstrate that the ad-
dition of noise with a very small standard deviation is not enough
for a satisfactory prediction of the leak location. This highlights the
importance of deploying stochastic resonance to determine the op-
timum noise intensity that should be introduced in the ANN train-
ing samples (Harmer et al. 2002). Fig. 11 demonstrates that, as the
noise intensity (σi) increases, the distribution of the leak locations
is more compact, and the predictions are generally closer to the real
leak location. Predictions from CNNs trained with noise intensities
σ2 and σ3 (Table 2) are within the length of the pipeline but vary
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Fig. 10. (Color) Transient pressure head traces (measured at the down-
stream end of the pipeline) to process through leak detection CNN
(each series corresponds to a laboratory test).
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considerably between the different transient tests conducted. Leak
location prediction errors obtained from the last three noise inten-
sities (σ4−6) range between 2 and 3.8 m, with a couple of predic-
tions outside the physical length of the pipelines for σ4.

Although most of the transient tests allow for a similar distri-
bution of predictions for a particular noise intensity, transient tests
#1 and #12 resulted in more scattered leak location predictions.
Leak location predictions for transient test #1 are less satisfactory
because this test had a more prominent difference in the steady-
state pressure head. Thus, the difference in the resulting initial pres-
sure head increase after the closure of the solenoid valve is more
prominent, as is observed in Fig. 10. In contrast, even though tran-
sient test #12 does not present with any particular differences rel-
ative to the other transient tests, it produced less consistent results
for all of the noise intensities. These results point out that additional
background noise might have existed during this test. Considering
this, conducting multiple tests in a range of similar initial condi-
tions provides more information that the CNNs can process instan-
taneously and allows for a more confident prediction of the leak
location. If only one test in the pipeline is used, the risk of consid-
ering an incorrect prediction as true information about an existing
leak would exist.

A perfect distribution of leak location predictions implies that
all CNNs trained for a particular noise intensity predict the correct
leak location. However, given that each CNN has a different set
of resulting weights after the training process, this result is very
difficult to accomplish. Therefore, the effectiveness of CNNs
should be measured by their ability to produce consistent predic-
tions with a reasonable degree of accuracy for field applications of
this technique.

To further analyze the results obtained from the leak detection
CNNs, Fig. 12(a) presents the distribution of the absolute median
error in the predicted leak location for each group of CNNs trained
with different noise intensities. The median leak location prediction
of each transient test in Fig. 11 was extracted, and the error between
this prediction and the real leak location was computed. The
distribution presented in blue in this box plot is obtained from
the 14 median leak location errors. This distribution is presented
as an absolute value to demonstrate the applicability of stochastic
resonance, as was previously reported (Ikemoto et al. 2018).

The absolute median error in the leak location for the CNNs
trained without any noise [i.e., noise standard deviation of zero
in Fig. 12(a)] is not visible in the scale of the plot because almost
all of the predictions are outside the length of the pipeline. Simi-
larly, this plot demonstrates that the addition of a very small noise
distribution in the training samples (σ1 ¼ 6.2 mm) drastically im-
proves the performance of the CNNs. The resulting distribution of
absolute mean location errors oscillates between 1 and 8 m. How-
ever, an 8 m error is still not acceptable for the location of a leak in a
37.24-m long pipeline (which represents a 21.48% error). As the
noise standard deviation increases, the distribution of the absolute
median error clearly narrows, in concordance with the concept of
stochastic resonance. Absolute mean location errors vary between
0.02 and 1.09 m (0.05%–2.93% error) for the largest noise standard
deviation considered.

An analysis of only the distribution of the absolute median lo-
cation errors in Fig. 12(a) indicates that selecting the predictions of
the CNNs trained with the largest noise intensity seems logical.
However, the optimum noise intensity should be selected also
by consideration of the performance of the CNNs during training
and testing. Fig. 12(a) presents on the right-hand y-axis the distri-
bution of the RMSE for the training (in light green) and the testing
(in black) of the CNNs for each noise intensity (indicated in
Table 2). The RMSE was computed using the leak location error

of each of the 125,000 samples used for the training or testing of the
CNNs (or 25,000 for the case of the CNNs trained without any
noise). A satisfactory CNN training process will have low RMSE
values and similar RMSE magnitudes in both the training and the
testing.

Fig. 12(b) presents error plots of the RMSE (in circles) and the
complete range of errors for the leak location prediction (whiskers).
These figures indicate that CNNs trained with samples with large
noise intensities result in larger values of RMSE and significantly
larger ranges of possible leak location errors. Both of these metrics
are considerably larger for the last two sets of CNNs (correspond-
ing to σ5 ¼ 123.8 mm and σ6 ¼ 185.7 mm) with significantly dif-
ferent results for the training and testing of these CNNs. These
results point to a certain level of overfitting in these CNNs that
is also visible in Figs. 8(f and g).

Although these results were presented as part of the model de-
velopment stage (Step 1.5 in Fig. 1), they are relevant in the model
application stage for the leak location prediction selection step. The
final leak location prediction should be a robust prediction (in terms
of consistency among the conducted tests) and be the product of a
reliable set of CNNs. For this reason, it can be concluded that the
optimum noise intensity for this application of the proposed leak
detection model is obtained when the noise has a Gaussian noise
distribution with a standard deviation of 61.9 mm (σ4). The median
leak location prediction for this group of CNNs was 28.74 m, and
the median predicted leak size was 2.32 mm. These predictions re-
present a 0.58% error in the location of the leak and a 5.52% error
in the size of the leak. Important to state is that the obtained value
for the optimal noise intensity characterized by the standard
deviation of a Gaussian noise distribution is unique for this pipeline
and this set of experimental tests.
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range during training and testing using numerical samples.
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The last step of the model application consists of verifying the
accuracy of the obtained prediction. This step comprises the gener-
ation of a numerical transient pressure head trace with the character-
istics of the final prediction obtained in the previous step and its
comparison with the measured transient pressure head traces. This
comparison is presented in Fig. 13 using test #18 as an example.

A reasonable match between these two traces is observed in this
figure, demonstrating the successful prediction of the location and
size of the leak using a set of CNNs. The NRMSE was computed
between these two transient pressure head traces to obtain a value
of 2.06%, demonstrating again the accuracy of the methodology
proposed.

Conclusions

This paper proposed a new, comprehensive technique for the loca-
tion and characterization of leaks in pipelines using fluid transients
and CNNs. This methodology has proven successful when applied
to pipelines under more realistic conditions in the presence of back-
ground pressure fluctuations. A full methodology divided into two
stages (model development and model application) was presented.
The model development stage includes the design and training of
CNNs capable of identifying leaks in transient pressure head traces
with different noise intensities. The model application stage de-
scribes the preprocessing and analysis steps for any pressure tran-
sient measurements obtained from a transient event caused by the
closure of a valve in a pipeline.

This technique was applied to a laboratory pipeline for which 14
transient events were generated with the closure of a side discharge
solenoid valve. One circular orifice was installed in the pipeline to
simulate a leak. A leak detection model with 35 different CNNs
was developed for this pipeline for which six different noise inten-
sities were considered with standard deviations between 6.2 and
185.7 mm. The application of the leak detection model to the avail-
able transient tests demonstrated the significant importance of the
addition of noise in the performance of the CNNs for predicting the
location of a leak in the pipeline. For CNNs trained using numerical
transient pressure head traces with no noise added, the distribution
of the leak locations was beyond the actual extremities of the pipe-
line in most cases. However, as the noise intensity increases, the

distribution of the leak location predictions narrows around the real
leak location (as indicated in Fig. 11).

The results obtained in this paper demonstrate that the deploy-
ment of stochastic resonance assists in detecting leaks in water
pipelines. The addition of noise in the training samples of a CNN
significantly improved its performance—to the point that con-
sistent and accurate predictions can be obtained. To select the
optimum noise intensity for the presented laboratory application,
a combined analysis of the distribution of the predicted leak
locations and the RMSE of the training and testing of the CNNs
was conducted. The results from that analysis indicated that the
optimum noise intensity for the analyzed pipeline and the set of
experimental tests was found when the standard deviation was
61.9 mm. The final leak prediction was determined for the
laboratory pipeline only 0.74 m from the real leak location. This
prediction corresponds to an error of 0.59% with a very accurate
prediction of the leak size.

The results obtained in this paper demonstrate that the use of
CNNs trained with numerical samples with the addition of noise is
a promising technique for leak detection in pipelines under more
realistic conditions. Although expected differences are evident
between the available numerical model and the measured transient
tests, an accurate prediction of the location and size of the
leak was obtained. The deployment of stochastic resonance im-
proves the performance of CNNs in locating anomalies in these
pipelines not by replicating the existing background noise but by
enhancing the response of the CNNs when the optimum noise
intensity is added. The specific value of optimum noise intensity
is case-dependent, but this methodology can be expected to be
applied to different pipelines with an appropriate range of noise
intensities.

This paper represents an important contribution to the develop-
ment of a fully automated technique for leak detection in pipelines
using transient waves and artificial intelligence algorithms. How-
ever, more research is needed to analyze the performance of this
technique when tests are conducted under different base conditions
when the pipeline experiences significant background pressure
fluctuations such as demand consumption, and in more complex
systems such as pipeline looped networks. For these applications,
a combination of more robust existing transient-based techniques
and CNNs might be necessary.
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