
Automatic Detection and Analysis of
Outdated Documentation in GitHub

Repositories

Wen Siang Tan

A thesis submitted for the degree of
MASTER OF PHILOSOPHY

The University of Adelaide

June 30, 2023

iii

Contents

Abstract ix

Declaration of Authorship xi

Acknowledgements xiii

1 Introduction 1
1.1 Related work . 1

1.1.1 Impact of outdated documentation 1
1.1.2 Code element resolution . 2
1.1.3 Code-documentation inconsistencies 2

1.2 Motivating example . 3
1.3 Contribution . 4

2 Detecting Outdated Code Element References 5
2.1 Approach . 5

2.1.1 Identifying documentation . 5
2.1.2 Extracting code elements . 6
2.1.3 Matching code elements . 8
2.1.4 Extending the analysis . 10

2.2 Research questions . 12
2.3 Results . 12

2.3.1 RQ1: What is the current state of documentation? 13
2.3.2 RQ2: What was the state of documentation during the projects’

history? . 14
2.3.3 RQ3: How is outdated documentation resolved in projects? . . 17
2.3.4 RQ4: How do open source projects respond to issues about

outdated documentation? . 17
2.4 Discussion . 20

3 Automated Tool for Outdated Documentation Detection 21
3.1 Motivation . 21
3.2 Implementation . 22
3.3 Adding to GitHub projects . 24
3.4 Excluding code elements . 24

4 Outdated References in Images 29
4.1 Approach . 29
4.2 Research question . 31
4.3 Results . 31

4.3.1 RQ1: What is the current state of images in documentation? . 31
4.4 Discussion . 32

iv

5 Threats to Validity 33
5.1 Construct validity . 33
5.2 Internal validity . 33
5.3 External validity . 33

6 Conclusions and Future Work 35

Bibliography 37

v

List of Figures

1.1 Code element renamed to DGLOG_GFLAGS_NAMESPACE 3
1.2 Screenshot of the GitHub issue submitted 4

2.1 Overview of the approach . 5
2.2 Project size distributions (GiB) for top1000 and google projects in log

scale . 6
2.3 Top 10 programming languages used in top1000 and google projects . 7
2.4 Linking the current documentation version to (1) repository snapshot

and (2) current repository revision . 9
2.5 Linking each repository revision to a corresponding documentation ver-

sion for repository commits made (1) before and (2) after the current
documentation version . 11

2.6 Analysis status of top1000 and google projects, indicating whether a
repository’s documentation is currently out of date 13

2.7 Percentage of references outdated at the time of analysis on code ele-
ment, document and project levels . 14

2.8 Distribution of duration that code element references have been out-
dated for at the time of analysis in top1000 and google projects 15

2.9 Percentage of references outdated at least once at some point during
its history on code element, document and project levels 15

2.10 Extended analysis status of top1000 and google projects, indicating
whether a repository’s documentation was outdated at some point dur-
ing its history . 16

2.11 Time taken to fix outdated references in documentation for the top1000
and google dataset in log scale . 16

2.12 True positive: data type updated in the documentation 18
2.13 True positive: function name updated in the documentation 18
2.14 False positive: still relevant for users with multiple Python versions . . 19
2.15 False positive: functionality remains in the program logic 19

3.1 Overview of the automated workflow 21
3.2 Files in the example repository for tool demonstration 25
3.3 Pull request showing the incoming changes 26
3.4 Comment on the pull request listing the potentially outdated code el-

ement references . 26
3.5 Updated README file including the new power function and listing

the deleted functions as deprecated . 27

4.1 Example image hosted on GitHub wiki 29
4.2 Analysis status of images in google projects, indicating whether a repos-

itory’s documentation is currently out of date 31
4.3 Code element onDestroy deleted from the source code 32

vii

List of Tables

2.1 What is outdated? . 8
2.2 Number of source code instances for the two code element references

from the motivating example . 9
2.3 Summary of symbolic representation used in the extended analysis . . 10
2.4 Example of symbolic representation . 10
2.5 A small section of the report generated from analysing the vuejs/vue-cli

project (revision 37 to 43 for five code element references) 12
2.6 Types of documentation fixes . 17

4.1 Text extraction comparison between different OCR services 30

ix

University of Adelaide

Abstract

Automatic Detection and Analysis of Outdated Documentation in
GitHub Repositories

by Wen Siang Tan

Outdated documentation is a pervasive problem in software development, preventing
effective use of software, and misleading users and developers alike. We posit that one
possible reason why documentation becomes out of sync so easily is that developers
are unaware of when their source code modifications render the documentation obso-
lete. Ensuring that the documentation is always in sync with the source code takes
considerable effort, especially for large codebases. To address this situation, we pro-
pose an approach that can automatically detect code element references that survive
in the documentation after all source code instances have been deleted. In this work,
we analysed more than 3,000 GitHub projects and found that most projects contain
at least one outdated code element reference at some point in their history. We sub-
mitted GitHub issues to real-world projects containing outdated references detected
by our approach, some of which have already led to documentation fixes. As an initia-
tive toward keeping documentation in software repositories up-to-date, we have made
our implementation available and created a tool for developers to scan their GitHub
projects for outdated code element references. Lastly, we extended our approach to
detect outdated references to code elements in over 2,000 images present in software
documentation.

http://www.adelaide.edu.au

xi

Declaration of Authorship
I certify that this work contains no material which has been accepted for the

award of any other degree or diploma in my name, in any university or other tertiary
institution and, to the best of my knowledge and belief, contains no material previously
published or written by another person, except where due reference has been made in
the text. In addition, I certify that no part of this work will, in the future, be used in
a submission in my name, for any other degree or diploma in any university or other
tertiary institution without the prior approval of the University of Adelaide and where
applicable, any partner institution responsible for the joint-award of this degree.

I acknowledge that copyright of published works contained within this thesis re-
sides with the copyright holder(s) of those works. I also give permission for the digital
version of my thesis to be made available on the web, via the University’s digital
research repository, the Library Search and also through web search engines, unless
permission has been granted by the University to restrict access for a period of time.

I acknowledge the support I have received for my research through the provision
of an Australian Government Research Training Program Scholarship.

Wen Siang Tan

JUNE 2023

xiii

Acknowledgements
I would like to express my deepest thanks to my supervisors, A/Prof Markus Wagner
and Dr Christoph Treude, for their continuous support and guidance. This thesis
would not have been possible without them. I am also extremely grateful to my
friends who have accompanied me through the ups and downs over the course of this
degree. Most importantly, I would like to express my gratitude to my parents for their
relentless love, support and encouragement.

1

Chapter 1

Introduction

Outdated documentation is a common and well-known problem in software develop-
ment (Lee et al., 2019). It hinders the effectiveness of documentation (Forward and
Lethbridge, 2002), prevents developers from using APIs and libraries efficiently (Ud-
din and Robillard, 2015), contributes to software ageing (Parnas, 1994) and confu-
sion (Kajko-Mattsson, 2005), and it demotivates newcomers (Steinmacher, Treude,
and Gerosa, 2018). In a recent study on software documentation issues, Ahgajani et
al. (Aghajani et al., 2019) found that “up-to-dateness problems” account for 39%
of documentation content issues. Previous studies also revealed that more than
two-thirds of participants surveyed believe that their system documentation is out-
dated (Souza, Anquetil, and Oliveira, 2005; Lethbridge, Singer, and Forward, 2003).
Despite these findings, outdated documentation has remained an issue in the software
engineering community due to the efforts needed to ensure that the documentation
is in sync with the source code. Unlike source code, software documentation gets
outdated “silently”, i.e., there are no crashes or error messages to indicate that docu-
mentation is no longer up-to-date.1 In many cases, developers are not aware that the
source code changes they made have rendered the documentation outdated.

1.1 Related work

In this section, we review related work on the impact of outdated documentation,
efforts in the area of code element resolution, and work on detecting inconsistencies
between source code and documentation. Our work is the first to detect outdated
documentation based on references to code elements that are no longer in sync.

1.1.1 Impact of outdated documentation

According to the Open Source Survey (Zlotnick, 2017), “incomplete or outdated doc-
umentation is a pervasive problem, observed by 93% of respondents, yet 60% of con-
tributors say they rarely or never contribute to the documentation.” In Sholler et al.’s
‘Ten simple rules for helping newcomers become contributors to open projects’ (Sholler
et al., 2019), the authors include “Keep knowledge up-to-date and findable” as one of
their rules, arguing that “outdated documentation may lead newcomers to a wrong
understanding of the project, which is also demotivating. While it may be hard to
keep material up-to-date, community members should at least remove or clearly mark
outdated information. Signalling the absence or staleness of material can save new-
comers time and also suggest opportunities for them to make contributions that they
themselves would find useful.”

1This is a well-known problem in software development, e.g., the documentation of tda-api states
‘TDA might change them at any time, at which point this document will become silently out of date’,
see https://tda-api.readthedocs.io/en/latest/client.html.

https://tda-api.readthedocs.io/en/latest/client.html

2 Chapter 1. Introduction

Outdated software documentation is a form of technical debt (Kruchten, Nord,
and Ozkaya, 2012) often referred to as documentation debt (Aldaeej, 2021). Rios
et al. (Rios et al., 2020) list a number of effects of documentation debt, including
low maintainability, delivery delay, rework, and low external quality, concluding that
documentation debt affects several software development areas but especially require-
ments. With a similar focus on requirements, Mendes et al. (Mendes et al., 2016)
report an extra maintenance effort caused by documentation debt of about 47% of
the total effort estimated for developing a project and an extra cost of about 48% of
the initial cost of the development phase. Compared to other types of technical debt,
Liu et al. (Liu et al., 2021) found that documentation debt is less commonly and more
slowly removed.

Motivated by these findings, the goal of our work is the automated detection of
outdated documentation, based on the intuition that documents can be considered
outdated if they contain references to code elements that used to be part of a project
but are no longer contained in a repository.

1.1.2 Code element resolution

Code element resolution refers to techniques that resolve a general (typically am-
biguous) mention of a potential code element (e.g., a class or a method) to its def-
inition (Robillard et al., 2017). Code element resolution has been employed in the
context of emails (Bacchelli, Lanza, and Robbes, 2010), tutorials (Dagenais and Ro-
billard, 2012), or Stack Overflow (Rigby and Robillard, 2013), to name a few examples,
often with the goal of linking relevant learning resources to code elements. Related
work has also focused on automatically determining the importance of a code element
mentioned in its context (e.g., in tutorial pages (Petrosyan, Robillard, and De Mori,
2015)) or on detecting errors in API documentation (Zhong and Su, 2013).

Supervised machine learning approaches are often used for code element resolution,
usually aiming at a balance of precision and recall. In this work, we rely on an
improved version of the regular expressions used for code element detection by Treude
et al. (Treude, Robillard, and Dagenais, 2014) and then use a very strict filter (exact
match) to find instances of the mentioned code element in the source code. While
this may underestimate the number of actually outdated code element references, we
err on the side of caution to not establish traceability links that we are not confident
about.

1.1.3 Code-documentation inconsistencies

Inconsistencies between source code and its documentation have been the target of
various research efforts over the past years, with a particular focus on source code
comments. Wen et al. (Wen et al., 2019) presented a large-scale empirical study of
code-comment inconsistencies, revealing causes such as deprecation and refactoring.
In one of the first attempts to detect and fix such inconsistencies, Tan et al. (Tan et al.,
2012) presented @tcomment for determining the correctness of Javadoc comments re-
lated to null values and exceptions. DocRef by Zhong and Su (Zhong and Su, 2013)
was designed to detect inconsistencies between source code and API documentation,
based on the use of island parsing to extract code elements and reporting mismatched
code elements as errors. AdDoc by Dagenais and Robillard (Dagenais and Robillard,
2014) is a technique to identify code patterns in documentation using traceability links
that can report new changes that do not conform to the code patterns of existing doc-
umentation. Also aimed at inconsistencies between source code and documentation,

1.2. Motivating example 3

Ratol and Robillard (Ratol and Robillard, 2017) presented Fraco, a tool to detect
source code comments that are fragile with respect to identifier renaming.

Zhou et al. (Zhou et al., 2020) presented DRONE, a framework that can auto-
matically detect defects in Java API documentation and generate meaningful natural
language recommendations. This is achieved through a combination of static pro-
gram analysis, part-of-speech tagging, and constraint solving. Another related work
is FreshDoc, which is an approach proposed by Lee et al. (Lee et al., 2019) to automat-
ically update class, method, and field names in the API documentation. This is done
by extracting code elements with a grammar parser and analysing different versions
of the source code. More recently, Panthaplackel et al. (Panthaplackel et al., 2020)
proposed an approach to automatically update existing comments when the source
code is modified. This is accomplished by tokenising the comments and source code,
and then modifying the comment tokens associated with the changes in source code.

In contrast to these related works, our approach detects outdated references to code
elements in the documentation. To the best of our knowledge, there are currently no
similar contributions for automatically detecting outdated documentation in software
repositories when source code and documentation go out of sync.

1.2 Motivating example

The google/glog project2 is one of the projects we found to contain outdated docu-
mentation. We detected an instance of the code element DGFLAGS_NAMESPACE in the
source code3 when the documentation was last updated. On 1 June 2018, the code
element was renamed to DGLOG_GFLAGS_NAMESPACE in one of the commits4 (Figure 1.1).
However, the documentation5 was not updated to reflect the changes. In the same
project, another code element fPIC was found 21 times in the source code6 when the
documentation was last updated, but the document was not updated when all source
code instances of the code element were deleted in this commit7. We reported the
discrepancies by submitting a GitHub issue8 to the project’s repository (Figure 1.2).
Following our report, the project maintainer fixed the outdated documentation by
deleting the document containing the two outdated references.

Figure 1.1. Code element renamed to DGLOG_GFLAGS_NAMESPACE

2https://github.com/google/glog
3https://github.com/google/glog/blob/921651e97c3892e656287f1cfa923319f0799729/

cmake/DetermineGflagsNamespace.cmake#L36
4https://github.com/google/glog/commit/abce78806c8a93d99cf63a5a44ff09873f46b56f
5https://github.com/google/glog/wiki/Installing-Glog-on-Ubuntu-14.04/

aa4fc07826bca7edf4aae57acd53119e515f9963
6https://github.com/google/glog/blob/921651e97c3892e656287f1cfa923319f0799729/m4/

libtool.m4#L3905
7https://github.com/google/glog/commit/b539557b3692c9c68d4e91d3cc920e8d14490d46
8https://github.com/google/glog/issues/750

https://github.com/google/glog
https://github.com/google/glog/blob/921651e97c3892e656287f1cfa923319f0799729/cmake/DetermineGflagsNamespace.cmake#L36
https://github.com/google/glog/blob/921651e97c3892e656287f1cfa923319f0799729/cmake/DetermineGflagsNamespace.cmake#L36
https://github.com/google/glog/commit/abce78806c8a93d99cf63a5a44ff09873f46b56f
https://github.com/google/glog/wiki/Installing-Glog-on-Ubuntu-14.04/aa4fc07826bca7edf4aae57acd53119e515f9963
https://github.com/google/glog/wiki/Installing-Glog-on-Ubuntu-14.04/aa4fc07826bca7edf4aae57acd53119e515f9963
https://github.com/google/glog/blob/921651e97c3892e656287f1cfa923319f0799729/m4/libtool.m4#L3905
https://github.com/google/glog/blob/921651e97c3892e656287f1cfa923319f0799729/m4/libtool.m4#L3905
https://github.com/google/glog/commit/b539557b3692c9c68d4e91d3cc920e8d14490d46
https://github.com/google/glog/issues/750

4 Chapter 1. Introduction

Figure 1.2. Screenshot of the GitHub issue submitted

Much like this motivating example, source code and documentation often remain
out of sync for some time before getting discovered. Our approach can automatically
detect such discrepancies and enable project maintainers to monitor how source code
and documentation evolve. The next chapter will discuss our approach in detail: (1)
the criteria used to select documentation such as the README file and wiki pages in
the project, (2) the method used to detect code elements such as DGFLAGS_NAMESPACE
and fPIC in the motivating example, (3) the steps needed to match code element
references to actual instances in the source code, and (4) how the approach can be
generalised to study the state of a project over time.

1.3 Contribution

This thesis proposes an automated approach that detects outdated references in
README file and wiki pages of a GitHub project to help developers keep their docu-
mentation up-to-date. Other kinds of outdated documentation are beyond the scope
of the thesis. We focus our analysis on GitHub since it gives us access to the doc-
umentation of a large number of projects in a consistent format. We analysed the
current state and full history of documentation of more than 3,000 GitHub projects
and found that 28.9% of the most popular projects on GitHub currently contain at
least one outdated reference, with 82.3% of the projects being outdated at least once
during the project’s history. These references were typically outdated for years before
they were fixed by project maintainers. To promote change in the software engineer-
ing community, we created a tool using GitHub Action that can automatically scan
for outdated references whenever a new pull request is submitted to the repository.
Finally, as images generally require more effort to continuously keep up-to-date, we
examined over 2,000 unique images in software documentation and found that 14
projects contain outdated code element references in at least one image.

5

Chapter 2

Detecting Outdated Code Element
References

The content of this chapter has been submitted to Empirical Software Engineering
(EMSE) and is currently under review.1

2.1 Approach

To detect outdated code element references in software repositories, relevant pieces of
documentation need to be identified first. We extract from the documentation a list of
potentially outdated references to code elements and match them to actual instances
in the source code. If a reference remains in the documentation after all instances
have been deleted from the source code, we consider the documentation outdated.
Figure 2.1 shows the overview of the approach, with the rest of this section describing
this process in detail.

Figure 2.1. Overview of the approach

2.1.1 Identifying documentation

GitHub provides two main forms of documentation for project maintainers to docu-
ment their projects. The README file is a convenient way to introduce the project
to users and contributors. In a study by Prana et al. (Prana et al., 2019) to cat-
egorise different types of content found in README files, the authors report that
the majority of the README files from 393 randomly sampled projects contain some
form of introduction or project background. In addition, README files often contain
information for issues that may be encountered while using the project such as setup
guides and API documentation. Project maintainers may also opt to make use of the
wiki section for hosting documentation, which typically describes the project in more
detail. One of the main differences between README and wiki is that the wiki may

1https://arxiv.org/abs/2212.01479

https://arxiv.org/abs/2212.01479

6 Chapter 2. Detecting Outdated Code Element References

contain many pages while README is a single file. As any file types can be stored
in GitHub wiki, only documentation written in file formats recognised by GitHub are
considered in this work.2

We consider two datasets in this work. The first dataset consists of the 1,000 most
popular projects on GitHub, ranked by the number of stars.3 The second dataset con-
sists of all 2,279 GitHub projects from Google.4 Having two datasets allows us to gain
insights into the differences between the state of documentation in popular projects
maintained by the public and those maintained by a specific company. Figures 2.2
and 2.3 show the size distributions and the top programming languages of top1000
and google projects. The list of project names for both datasets can be found in our
online appendix.5

Figure 2.2. Project size distributions (GiB) for top1000 and google
projects in log scale

2.1.2 Extracting code elements

In Section 2.1.1, we identified a list of relevant documents from which we can extract
potential outdated code element references. In this subsection, we outline the steps
needed to extract such references from the documentation. These outdated references
include variables, functions and class names found in the documentation. In this
work, we use regular expressions to extract references to code elements in the doc-
umentation. Unlike parsers that are language-dependent, regular expressions can be
used to extract possible candidates of outdated references in the documentation and
matched to any source code files. We build on the work of Treude et al. (Treude, Ro-
billard, and Dagenais, 2014) to extract code elements from the documentation using
regular expressions, in which the authors have created a list of regular expressions to
detect code elements.6 As an example, one of the regular expressions [A-Z][a-zA-Z]+
?<[A-Z][a-zA-Z]*> in that list is used to detect class templates such as the following:

2https://github.com/github/markup
3https://gitstar-ranking.com/repositories, project names collected on 20 June 2022
4https://github.com/orgs/google/repositories, project names collected on 20 June 2022
5https://zenodo.org/record/7384588
6https://www.cs.mcgill.ca/~swevo/tasknavigator/

https://github.com/github/markup
https://gitstar-ranking.com/repositories
https://github.com/orgs/google/repositories
https://zenodo.org/record/7384588
https://www.cs.mcgill.ca/~swevo/tasknavigator/

2.1. Approach 7

Figure 2.3. Top 10 programming languages used in top1000 and
google projects

• Worker<T>

• ArrayList<String>

• Callback<SimpleResponse>

To help improve the quality of the list of code element references extracted from
the documentation, i.e. code elements that are also found in the source code, we
extracted a list of code elements using the original regular expression list and manually
annotated if the reference is outdated. Each author7 annotated the same 50 randomly
selected code elements8 detected from the google projects to measure the inter-rater
agreement. We achieved a free-marginal kappa of 0.92 when deciding whether the
case is a true positive.

1. We consider a code element reference as not outdated (false positive) if it fits
any of the following criteria:

(a) The source code file and documentation have identical content, e.g. one
of the projects in our dataset contained their entire documentation corpus
twice: once in the wiki and once as .md files in the source code repository.

(b) The code element reference extracted is a common word within the project
(e.g. project name), a capitalised common word (PRIMARY, INACTIVE),
an abbreviation (API, iOS), or a word that is not specific to the project
(Data, User).

(c) The code element reference extracted from the documentation is a URL or
URL alt text.

(d) The source code file is a text file that supposedly documents the project,
e.g., an HTML file.

7Each author of the paper https://arxiv.org/abs/2212.01479
8Previous work have used lesser than 50 data points to measure inter-rater agreement such as

https://link.springer.com/article/10.1007/s10664-021-10058-6

https://arxiv.org/abs/2212.01479
https://link.springer.com/article/10.1007/s10664-021-10058-6

8 Chapter 2. Detecting Outdated Code Element References

(e) The code element matched in the source code is part of a source code
comment.

2. A reference is considered outdated (true positive) if the code element was found
in a previous revision but has since been deleted:

(a) The source code file exists in the current revision but the code element
instance is deleted.

(b) The source code file is deleted in the current revision.

During the manual annotation, we noticed that developers often use backticks (`)
in Markdown to indicate code elements. We also observed that extracting URLs from
the documentation produced many code element references that are not matched to
source code instances in a later stage. With the manual annotation data, we made a
few modifications to the regular expression list:

1. A regular expression to capture text enclosed in backticks is added. Code blocks
(```) are not added as they often contain longer texts that are less likely to be
matched.

2. A regular expression used to detect URLs in the original list is removed, URLs
enclosed in backticks are still extracted.

3. Many regular expression groupings in the original list are modified to extract
only the code element, preventing additional spaces that are not part of the code
element from getting extracted.

The updated regular expression list used in this work can be found in our online
appendix.9

2.1.3 Matching code elements

In the previous step, a list of potentially outdated references was extracted from the
documentation using regular expressions. This subsection will describe the process of
how these references are matched to actual instances in the source code to determine if
they are outdated. In this work, a reference is considered outdated if the code element
was found in both source code and documentation when the documentation was last
updated, but the reference remains in the latest version of the documentation after
all source code instances have been deleted (Table 2.1).

Table 2.1. What is outdated?

Before After

Documentation ✓ ✓

Source code ✓ ✗

To determine if a reference is currently outdated, we compare the number of
instances found in two repository revisions. The first revision is the snapshot of
the repository of when the documentation was last updated, and the second revision
corresponds to the current revision of the repository. An instance is counted if it is a
whole word, case-sensitive, and exact string match of the code element reference. If

9https://zenodo.org/record/7384588

https://zenodo.org/record/7384588

2.1. Approach 9

the number of source code instances goes from a positive integer (i.e. at least one code
element instance was found in the source code when the documentation was updated)
to a zero (i.e. all source code instances have been deleted in the current revision), we
flag the reference as outdated. Going back to the motivating example, the two code
element references flagged as outdated have the following number of instances found
in the snapshot and the current repository revision (Table 2.2).

Table 2.2. Number of source code instances for the two code element
references from the motivating example

Code element Repository snapshot Current revision

DGFLAGS_NAMESPACE 1 0
fPIC 21 0

Linking references

On GitHub, a project’s source code and wiki are stored separately in different Git
repositories. We can get the snapshot of a project by interleaving the commit histories
of both Git repositories: given a particular version of the documentation that is under
investigation, we retrieve the most recent source code repository revision that was
committed prior (Figure 2.4). In cases where the documentation is updated after
the current repository revision, the snapshot refers to the current repository revision;
this means that the number of instances found in both revisions are the same and
the reference will not be flagged as outdated. This process is repeated for each code
element reference extracted from the documentation to determine if the reference is
currently outdated. Note that, as each page in the documentation may be updated
at different times, code element references extracted from different pages may have a
different repository snapshot.

Figure 2.4. Linking the current documentation version to (1) repos-
itory snapshot and (2) current repository revision

File references

A code element reference may be incorrectly flagged as outdated when documentation
references a file in the source code because file paths are often not explicitly written
in the source code. To avoid flagging these cases as outdated, each variant of the file
path that is an exact match of a code element reference is treated as an additional
source code instance. In our implementation, a file path is considered a variant if
it is a component of the file path including an optional slash at the beginning. For

10 Chapter 2. Detecting Outdated Code Element References

example, if the source code contains a file named path/to/file.py, all of the following
variants are added to the list of code elements:

• /path/to/file.py

• path/to/file.py

• /to/file.py

• to/file.py

• /file.py

• file.py

2.1.4 Extending the analysis

The approach outlined in the previous subsections can be generalised to analyse the
state of documentation throughout a project’s entire history. To help describe the
state of a reference to code element C at the time of revision R and in document D,
we designed a symbolic representation for the extended analysis:

• . (dot) In revision R of the source code, document D did not exist.

• - (dash) In revision R of the source code, document D existed and it did not
contain any references to C.

• 0 In revision R of the source code, document D existed and contained at least
one reference to C and the source code did not contain any instances of C.

• N In revision R of the source code, document D existed and contained at least
one reference to C and the source code contained an instance of C N times.

Table 2.3. Summary of symbolic representation used in the extended
analysis

Document existed
in revision R

Document has at
least one reference

Number of source
code instances

. (dot) ✗

- (dash) ✓ ✗

0 ✓ ✓ 0
N ✓ ✓ N

The symbolic representation can be summarised in Table 2.3. As an example, the
first 50 revisions of the code element renderFiles(‘./files’) in the README file
from the vuejs/vue-cli project10 have the following symbolic representation:

Table 2.4. Example of symbolic representation

. - - - - - - - - - - - - - - - - - - 3 3 3 3 3 3 3 0 0 0 0 - - - - - - - -

10https://github.com/vuejs/vue-cli

https://github.com/vuejs/vue-cli

2.1. Approach 11

• In the first 13 revisions, there is a dot (.) indicating that the README file did
not yet exist.

• From revisions 14 to 31, there is a dash (-) indicating that the reference to the
code element did not exist in the documentation (i.e., could not possibly be
outdated).

• From revisions 32 to 38, there is a three (3) indicating that the reference to the
code element existed in the documentation and was matched to three instances
in the source code.

• From revisions 39 to 42, there is a zero (0) indicating that the reference to
the code element existed in the documentation, but was no longer found in the
source code (i.e., documentation was outdated).

• From revision 43 onward, there is a dash (-) again, indicating that the refer-
ence to the code element does not exist in the documentation anymore (i.e.,
documentation is no longer outdated).

Extending the linking process

To analyse the state of documentation throughout a project’s history, we link each
repository revision in the main branch to the next version of the documentation. Con-
sistent with the method in Section 2.1.3, the current version of the documentation is
linked to the same repository revisions. Figure 2.5 shows the links between repository
revisions and their corresponding documentation versions.

Figure 2.5. Linking each repository revision to a corresponding doc-
umentation version for repository commits made (1) before and (2)

after the current documentation version

Flagging as outdated

Consider a scenario where the symbolic representation of a particular code element in
seven consecutive revisions is 2 0 0 . 0 0 0. Two source code instances were found
in the first revision and subsequently removed. The documentation was accidentally
deleted in the fourth revision (indicated by the dot) and then restored (back to zero).
Following the definition of outdated in Section 2.1.3 (positive integer followed imme-
diately by a zero) will fail to flag this code element as outdated. Even though no
source code instances are found in the latest revision, the reference still remains in
the documentation. Using the symbolic representation, we can more accurately de-
fine ‘outdated’ in the extended analysis. A code element is considered outdated if a
positive integer is somewhere in front of a zero, even if it is not directly before the
zero.

12 Chapter 2. Detecting Outdated Code Element References

Creating a report

To make observing the trend of a code element throughout the project’s history easier,
we can record the number of code element instances found in each revision of the repos-
itory in a tabular form, grouped by their names and the documents from which they
were extracted. Table 2.5 shows a small section of the report from the vuejs/vue-cli
project. We can see that three instances of the code element renderFiles(‘./files’)
were found in revisions 37 and 38 followed by four zeros, which indicates that the code
element reference was outdated from revisions 39 to 42. This was fixed in revision 43
when the outdated reference was deleted.

Table 2.5. A small section of the report generated from analysing the
vuejs/vue-cli project (revision 37 to 43 for five code element references)

code element R37 R38 R39 R40 R41 R42 R43

projectOptions - - - - - - 7
render(‘./template’) - - - - - - 3
renderFiles(‘./files’) 3 3 0 0 0 0 -
vue 198 205 205 205 205 210 210
vue-cli-service 14 14 14 14 14 15 15

2.2 Research questions

RQ1: What is the current state of documentation? Our first research ques-
tion investigates the current state of documentation in open-source projects on code
element, document and project levels. This includes the number of code element
references that are currently outdated and the duration for which they have been
outdated.
RQ2: What was the state of documentation during the projects’ history?
This research question aims to further explore the state of documentation by analysing
the entire history of open-source projects. Similar to RQ1, we investigate the number
of code element references that were outdated at some point in the project’s history
and the duration for which the outdated references typically survived in the docu-
mentation before getting fixed.
RQ3: How is outdated documentation resolved in projects? After investi-
gating the state of documentation in RQ1 and RQ2, we ask RQ3 to gain insights on
how outdated documentation is typically fixed in real-world open-source projects by
comparing the number of outdated references resolved by updating the source code,
deleting the outdated code element reference, or by deleting the documentation.
RQ4: How do open source projects respond to issues about outdated doc-
umentation? Our final research question examines how open-source project main-
tainers respond to our approach by creating GitHub issues highlighting the potentially
outdated code element references detected in their projects.

2.3 Results

This section will discuss the research questions raised in the previous section: (1)
the current state of documentation, (2) the state of documentation over time, (3)

2.3. Results 13

how outdated documentation is commonly fixed, (4) and the responses of open source
projects to our approach.

We ran our analysis on projects in the two datasets introduced in Section 2.1.1.
When cloning the repositories, one project11 failed due to a large number of files. In
the top1000 dataset, the analyses of 8 projects were terminated after failing to finish
in a day. Among the 991 successfully analysed projects, 265 projects contained at
least one outdated reference in their current version, 653 projects did not contain
any outdated references and the documentation of 73 projects did not contain any
matches to any code element in the source code. In addition, 90.4% (896/991) of the
top1000 projects contained a README.md file and 60.0% (595/991) had at least one
wiki page at the time of analysis. In the google dataset, the analysis of 1 project12

was terminated after three days, leaving 2277 projects. The documentation of 101
projects was found to contain at least one outdated reference to a code element, the
documentation of 1778 projects was up-to-date and the documentation of 398 projects
did not contain code element references that were matched to the source code. 88.7%
(2019/2277) projects used a README.md file and 13.0% (297/2277) used the wiki.
Figure 2.6 shows the breakdown of the projects’ statuses.

Figure 2.6. Analysis status of top1000 and google projects, indicat-
ing whether a repository’s documentation is currently out of date

2.3.1 RQ1: What is the current state of documentation?

To investigate the current state of documentation in open-source projects, we scanned
projects using the approach described in Section 2.1 and counted the number of
projects for which the documentation contained at least one outdated code element
reference (see Figure 2.6). The same process is repeated at the document level to
calculate the percentage of outdated documents. In addition, we can calculate the
duration each code element reference is outdated for using the project’s commit his-
tory.

In the top1000 dataset, 3.9% (7910/201852) of the code element references de-
tected are currently outdated. We found that 19.2% (1880/9784) of the documents

11https://github.com/google/material-design-icons
12https://github.com/google/swiftshader

https://github.com/google/material-design-icons
https://github.com/google/swiftshader

14 Chapter 2. Detecting Outdated Code Element References

contain at least one outdated reference to a code element, and 28.9% (265/918)
of the projects contain at least one outdated document. In the google dataset,
2.7% (1283/48078) code element references, 9.7% (287/2947) documents, and 5.4%
(101/1879) projects are currently outdated (Figure 2.7). On average, the references
are currently outdated for 4.7 years for projects in the top1000 dataset and 4.2 years
for the google dataset (Figure 2.8).

RQ1 Summary Documentation of 28.9% top1000 projects and 5.4% google
projects were out of date at the time of analysis, with the references outdated
for 4.7 and 4.2 years on average respectively.

Figure 2.7. Percentage of references outdated at the time of analysis
on code element, document and project levels

2.3.2 RQ2: What was the state of documentation during the
projects’ history?

To study how documentation evolves, we analysed the entire history of 800 projects
from the top1000 dataset. 82.3% (658/800) of the projects, 40.7% (2878/7071) of the
documents, and 12.3% (23588/191849) of the code element references are found to be
outdated at some point in history. In addition, 1.3% (2431/191849) of the code ele-
ment references were outdated once again at some point in time after they were fixed.
In addition, we analysed the full history of 1907 google projects. 29.7% (567/1907)
projects, 30.6% (925/3018) documents and 7.1% (4176/58805) code elements were
outdated sometime during the project’s history (Figure 2.9). 0.4% (210/58805) code
element references were outdated again at least once after they were fixed. Note that
the number of analysed projects for the extended analysis is different from the normal
analysis (Figure 2.10).

In addition to calculating the percentage of outdated documentation across
project, document and code element levels, we calculated the duration of which out-
dated references survive in the documentation before getting fixed by project main-
tainers. Figure 2.11 contains only outdated code elements references that project

2.3. Results 15

Figure 2.8. Distribution of duration that code element references
have been outdated for at the time of analysis in top1000 and google

projects

Figure 2.9. Percentage of references outdated at least once at some
point during its history on code element, document and project levels

16 Chapter 2. Detecting Outdated Code Element References

Figure 2.10. Extended analysis status of top1000 and google
projects, indicating whether a repository’s documentation was out-

dated at some point during its history

maintainers have already fixed with a timestamp difference greater than zero.13 The
probability of surviving is calculated by the percentage of outdated code element ref-
erences that were still present in the documentation after the duration indicated by
the x-axis has passed. For example, outdated references have around 55% chance of
surviving in top1000 projects and 45% in google projects after a month.

Figure 2.11. Time taken to fix outdated references in documentation
for the top1000 and google dataset in log scale

13The babel/babel project had 7 negative timestamp differences caused by reverting README.md
to an earlier version.

2.3. Results 17

RQ2 Summary Documentation of 82.3% top1000 projects and 29.7% google
projects were outdated at some point in history, with 1.3% and 0.4% references
outdated once again respectively after they were fixed.

2.3.3 RQ3: How is outdated documentation resolved in projects?

There are three ways in which an outdated document can be resolved:

1. Source code is changed to reintroduce code element instances referenced by the
documentation, making the documentation in sync again.

2. Documentation containing the outdated reference is updated to remove the out-
dated reference.

3. Documentation containing the outdated reference is deleted, thereby removing
the outdated reference.

The three cases can be represented using the symbolic representation introduced
in Section 2.1.4:

Table 2.6. Types of documentation fixes

Before After

Documentation delete 0 . (dot)
Documentation update 0 - (dash)
Source code change 0 N

Using the reports generated, we can study how the documentation was typically
fixed throughout the project’s history. For the top1000 projects, we found that 73.6%
(17368/23588) outdated references to code elements were resolved throughout the
projects’ histories, with 47.6% (8271/17368) fixed by changing the source code, 39.1%
(6783/17368) by updating the documentation, and 13.3% (2314/17368) by deleting
the documentation. For google projects, 55.5% (2319/4176) code element references
were fixed by project maintainers. 50.2% (1164/2319) were fixed by code changes,
43.3% (1004/2319) by updating the documentation, and 6.5% (151/2319) by deleting
the documentation.

RQ3 Summary Project maintainers most commonly resolve outdated docu-
mentation by changing the source code, followed by updating and deleting the
document to remove the outdated reference.

2.3.4 RQ4: How do open source projects respond to issues about
outdated documentation?

To examine the usefulness of our approach in real-world projects, we submitted
GitHub issues to projects containing outdated references detected by our approach.
In contrast to pull requests, creating an issue allows project maintainers to decide
whether to delete the outdated reference in the documentation or update the doc-
umentation to reflect the changes made in the source code. Based on the manual
annotation in Section 2.1.2, we filtered projects from the google dataset with at least

18 Chapter 2. Detecting Outdated Code Element References

one true positive and further narrowed them down to 15 actively maintained projects
that have had new commits within the past year.

In the issues, we listed the outdated references with links to the documentation
and an instance of the code element found in the source code. At the time of writing,
4 projects have responded positively, while the other 4 reported the issues as false
positives. 7 projects have not yet responded to our GitHub issues. Across the 15
projects, we reported 19 instances of outdated documentation, 5 of which have been
fixed by project maintainers. The following subsections will discuss two true positives
and two false positives.

True positives

The cctz project was one of the projects that responded positively to our GitHub
issue.14 In one of the commits, the code element instance int64_t was removed
entirely from the source code but the reference to the code element remained in the
documentation. The project maintainer responded to our GitHub issue and updated
the documentation to reflect the changes in the source code (Figure 2.12). In the hs-
portray project, the function prettyShow was renamed to showPortrayal in the source
code, but the README file was not updated (Figure 2.13). We alerted the developers
of this discrepancy, and the issue was fixed subsequently.15

Figure 2.12. True positive: data type updated in the documentation

Figure 2.13. True positive: function name updated in the documen-
tation

14https://github.com/google/cctz/issues/210
15https://github.com/google/hs-portray/issues/7

https://github.com/google/cctz/issues/210
https://github.com/google/hs-portray/issues/7

2.3. Results 19

False positives

In one of the projects (Figure 2.14), a CMake flag was removed from the source code
but the reference was not updated in the documentation. The project maintainers
responded that the flag is no longer required in the source code but the documentation
is still relevant for users that have installed multiple Python versions to configure the
installation directory correctly.16 A false positive was reported in another project
(Figure 2.15) where the code element instance text_out was deleted from the source
code. Although the code element reference is not explicitly written in the source
code, the functionality remains in the program logic which results in the code element
reference getting falsely flagged as outdated.17

RQ4 Summary Several project maintainers responded positively to our
GitHub issues and resolved the outdated references by updating or deleting
the corresponding documents.

Figure 2.14. False positive: still relevant for users with multiple
Python versions

Figure 2.15. False positive: functionality remains in the program
logic

16https://github.com/google/clif/issues/52
17https://github.com/google/gnostic/issues/273

https://github.com/google/clif/issues/52
https://github.com/google/gnostic/issues/273

20 Chapter 2. Detecting Outdated Code Element References

2.4 Discussion

In this section, we will discuss our findings and the interesting differences between the
two datasets used in this work. We investigated the current state of documentation
in open-source software repositories and found that, on average, the top1000 projects
contain more outdated references than google projects at the time of analysis. The
references have also been outdated longer in the top1000 projects (4.7 years) compared
to google projects (4.2 years). In the top1000 dataset, 28.9% of the projects were found
to contain at least one outdated code element reference in contrast to 5.4% of the google
projects. We hypothesise that this is because google projects are generally smaller in
size (median of 31.7 MiB for top1000 projects and 1.47 MiB for google projects), and
hence easier for project maintainers to keep their documentation up-to-date.

In RQ2, we reviewed the full history of 800 top1000 projects and 1907 google
projects. We found that 12.3% and 7.1% of the references to code elements detected
respectively were outdated at some point in history, with the proportion higher on
document and project levels. We investigated the sudden drops in survival probability
for google projects (Figure 2.11) and discovered that the biggest drop around the
one month mark was caused by project maintainers deleting18 and restoring19 large
amount of source code files.

Next in RQ3, we looked into how open-source project maintainers usually resolve
their outdated documentation. In our findings, approximately half of the fixes were
attributed to source code changes. This is because the action of mass deleting and
restoring source code files was interpreted as a fix caused by source code changes. We
can also observe in various reports that the number of code element instances found
in the source code suddenly drops to 0 and back to the original count.

Finally in RQ4, we examined the usefulness of our approach in real-world projects
by alerting developers from 15 different Google projects of potential outdated ref-
erences in their documentation where several project maintainers have responded
positively to our GitHub issues. By using the implementation available in our on-
line appendix, developers can scan for code element references that are potentially
outdated in their GitHub project’s documentation.

Although the content of this thesis is centred around detecting outdated code ele-
ment references in documentation hosted on GitHub, our approach can be generalised
to other version control platforms. In the next chapter of the thesis, we will present
our publicly available tool that developers can utilise to scan for outdated references
in their documentation.

18https://github.com/google/j2objc/commit/f9ff221f9eb8aacaecf057e3e9a1ca7c4e8a5beb
19https://github.com/google/j2objc/commit/592382e0bf314134fac9bfee862dacca50fccdb1

https://github.com/google/j2objc/commit/f9ff221f9eb8aacaecf057e3e9a1ca7c4e8a5beb
https://github.com/google/j2objc/commit/592382e0bf314134fac9bfee862dacca50fccdb1

21

Chapter 3

Automated Tool for Outdated
Documentation Detection

3.1 Motivation

Although documentation gets outdated without warnings, developers can take steps
to keep their documentation up-to-date by checking if the documentation needs to
be updated whenever changes are made to the source code. The implementation of
our approach in Chapter 2 called DOCER (Detecting Outdated Code Element Refer-
ences) available in our online appendix1 allows developers to avoid manually checking
whether the source code modifications they made will lead to outdated documenta-
tion. Running the script extracts code element references from the documentation
and reports the number of code element instances found in the source code. The
generated report includes additional information such as URLs to the source code,
commit timestamps and SHAs to help developers investigate why a reference was
flagged as outdated. However, running the script whenever new changes are proposed
may be mundane and repetitive. To simplify this process further, we created a work-
flow that is automatically triggered when a pull request is submitted to the repository.
Figure 3.1 shows the automated steps carried out by the workflow.

Figure 3.1. Overview of the automated workflow

1https://zenodo.org/record/7384588

https://zenodo.org/record/7384588

22 Chapter 3. Automated Tool for Outdated Documentation Detection

3.2 Implementation

GitHub Action2 is a feature on GitHub that allows developers to automate workflows
based on events, commonly used for building a pipeline for Continuous Integration
and Continuous Delivery (CI/CD). We created the tool using GitHub Action because
it provides developers a convenient way to integrate the tool with existing GitHub
projects. Developers can also configure their projects to automatically run the tool
to scan for outdated code element references whenever there is a new pull request.

The workflow is defined by a YAML file3 containing a series of actions that gets
executed when the workflow is triggered. At the start of the YAML file, we list the
name of the workflow, the events that will trigger the workflow, followed by the name
of the GitHub-hosted runner4 to use. In our case, the workflow is named DOCER,
triggered only by pull requests and specified to run on the latest Long Term Support
(LTS) version of Ubuntu.

name: DOCER

on: pull_request

jobs:
run:

runs-on: ubuntu-latest
steps:

The rest of the file defines the steps to execute in the workflow. Three repositories
are cloned on the runner (repositories containing the source code, wiki pages, and
scripts for the analysis) using a GitHub action named checkout.5

- name: Checkout repository
uses: actions/checkout@v3
with:

repository: ${{ github.repository }}
ref: ${{ github.event.pull_request.head.sha }}
path: repo
fetch-depth: 0

- name: Checkout wiki
continue-on-error: true
uses: actions/checkout@v3
with:

repository: ${{ github.repository }}.wiki
path: wiki

- name: Checkout tool
uses: actions/checkout@v3
with:

2https://github.com/features/actions
3https://yaml.org/
4https://docs.github.com/en/actions/using-github-hosted-runners/

about-github-hosted-runners
5https://github.com/actions/checkout

https://github.com/features/actions
https://yaml.org/
https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners
https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners
https://github.com/actions/checkout

3.2. Implementation 23

repository: wesleytanws/DOCER_tool
path: tool

After cloning the repositories, the runner has all the files required to scan for
outdated references. The workflow then commences the analysis, installs the necessary
Python packages, generates the report and stores it in an environment variable.

- name: Run tool
run: |

bash tool/analysis.sh

pip install pandas
pip install numpy

echo 'report<<EOF' >> $GITHUB_ENV
python tool/report.py ${{ github.repository }} \

${{ github.run_id }} >> $GITHUB_ENV
echo 'EOF' >> $GITHUB_ENV

In the case where merging the pull request may result in outdated documentation,
the workflow uses a GitHub action named github-script6 to post a comment on the
pull request listing the potentially outdated references.

- name: Comment on pull request
if: ${{ env.report }}
uses: actions/github-script@v6
env:

report: ${{ env.report }}
with:

script: |
github.rest.issues.createComment({

issue_number: context.issue.number,
owner: context.repo.owner,
repo: context.repo.repo,
body: process.env.report

})

Depending on the number of modifications in the pull request, it may be difficult
to figure out why a code element reference has been flagged as potentially outdated.
This final step uploads the report and summary files to GitHub using a GitHub action
named upload-artifact7, allowing developers to view the full report.

- name: Upload artifact
if: ${{ env.report }}
uses: actions/upload-artifact@v3
with:

name: report
path: |

output/report.csv

6https://github.com/actions/github-script
7https://github.com/actions/upload-artifact

https://github.com/actions/github-script
https://github.com/actions/upload-artifact

24 Chapter 3. Automated Tool for Outdated Documentation Detection

output/summary.csv
output/summary.md

The repository including the workflow introduced above and source code for the
tool named DOCER_tool is publicly available on GitHub.8

3.3 Adding to GitHub projects

To demonstrate how the GitHub Action tool works, we will integrate the tool with an
example repository with three files (Figure 3.2):

• README.md documents the functions defined in arithmetic.py

• arithmetic.py defines the arithmetic functions

• main.py calls the functions defined in arithmetic.py

Integrating the tool to a repository is as convenient as copying the YAML file
defining the workflow9 to the .github/workflows folder. Suppose a pull request as
shown in Figure 3.3 is submitted to the repository.

Looking at the the pull request submitted, two files in the repository have been
modified. In arithmetic.py, the subtract and divide functions were removed and a
new power function was added. Similarly, the main.py file was modified to remove
the subtract function and the chained multiply functions were refactored into a power
function. Notice that the tool reports that continuing to merge the pull request may
result in two outdated references in the documentation (Figure 3.4). This is because
the divide and subtract functions were deleted from the source code but the README
file was not updated to mention the changes.

To keep the documentation up-to-date, we can simply remove the two outdated
references in the README file. Better still, we can document the new function and
mention that the two functions are now deprecated as shown in Figure 3.5.

3.4 Excluding code elements

One useful feature that we added to the tool is the ability to exclude certain code ele-
ments from the report, which allows developers to stop keeping track of code elements
that have been determined to be false positives. Developers can add a list of code
elements separated by newlines in a file named .DOCER_exclude located at the root of
the repository. Code elements in the exclude list will be ignored by the tool when
scanning for outdated references. The next chapter will discuss how the approach can
be extended to detect outdated references in images that may be more prone to being
outdated.

8https://github.com/wesleytanws/DOCER_tool/tree/v1.0.0
9https://github.com/wesleytanws/DOCER_tool/blob/v1.0.0/DOCER.yml

https://github.com/wesleytanws/DOCER_tool/tree/v1.0.0
https://github.com/wesleytanws/DOCER_tool/blob/v1.0.0/DOCER.yml

3.4. Excluding code elements 25

Figure 3.2. Files in the example repository for tool demonstration

26 Chapter 3. Automated Tool for Outdated Documentation Detection

Figure 3.3. Pull request showing the incoming changes

Figure 3.4. Comment on the pull request listing the potentially
outdated code element references

3.4. Excluding code elements 27

Figure 3.5. Updated README file including the new power function
and listing the deleted functions as deprecated

29

Chapter 4

Outdated References in Images

4.1 Approach

References in images may be more prone to being outdated as they generally require
more effort to continuously keep up-to-date. Similar to our approach in Chapter 2,
we extract code elements from the documentation and match them to the source
code, but with texts extracted from images. To get a collection of images that are in
README and wiki pages, we used a markdown parser and a HTML parser to extract
image links from the documents.

As our approach relies on text matching, we use Optical Character Recognition
(OCR) to extract texts from images to detect potentially outdated references. We ex-
perimented with various OCR services and found that among the services that provide
an API, OCRSpace1 extracted most keywords and contained least noise. Table 4.1
shows the comparison between the texts extracted by different OCR services using an
example image (Figure 4.1) hosted on GitHub wiki.2

Figure 4.1. Example image hosted on GitHub wiki

1https://ocr.space/ocrapi
2https://github.com/google/agera/wiki/Observables-and-updatables/

ca03cd96fa90986fbe555c91d5fd426175fa3793

https://ocr.space/ocrapi
https://github.com/google/agera/wiki/Observables-and-updatables/ca03cd96fa90986fbe555c91d5fd426175fa3793
https://github.com/google/agera/wiki/Observables-and-updatables/ca03cd96fa90986fbe555c91d5fd426175fa3793

30 Chapter 4. Outdated References in Images

Table 4.1. Text extraction comparison between different OCR ser-
vices

ocr.space newocr.com convertio.co/ocr

UpdatableActivity UpdatableActivity UpdatableActivity
onCreate onCreate - onCreate
onStart <init> onStart
onStop Observable onStop
onDestroy a onDestroy
<init> 2 <init>
Observable onStart . 3 Observable
addUpdatable(this) addUpdatable(this) a. addllpdatable(this)
update() $$ ___ii————_ update()
update() 2 removellpdatable(this)
removeUpdatable(this) update() 2 /Activity is no longer re-

tained by the Observ-
able after removellpdat-
able; available to GC

Activity is no longer re-
tained

a > 0

by the Observable after oO 0
removeUpdatable; © © H—’
available to GC . ® 03
o > — "O
o update() 33 Q_
0 $yY—_ w =3

<5 O
Qo 03
=> 2J
@ ” -Q
— o B
onStop * < 03 "O Q_ =3
removeUpdatable(this) c 0
O 0
® _C
onDestroy Activity is no
longer retained 3S

03

by the Observable after & 0
removeUpdatable; "O
available to GC c

0

4.2. Research question 31

4.2 Research question

RQ1: What is the current state of images in documentation? This research
question investigates the current state of images in documentation. This includes
the number of code element references found in images that are currently outdated
and the duration for which they have been outdated on code element, document and
project levels.

4.3 Results

4.3.1 RQ1: What is the current state of images in documentation?

To analyse the current state of images in documentation, we used 2279 projects from
the same google dataset introduced in Section 2.1.1 and extracted images from the
most recent version of README.md and wiki pages at the time of analysis. We
were not able to clone one project3 as there were too many files in the repository
history. 1542 projects did not contain any image references, while the remaining 736
projects contained at least one image reference in their documentation. From the
documentation of 736 projects, we extracted a total 2119 image references. There
were 2098 unique images: 1726 unique images extracted from README and 372
from wiki pages. Figure 4.2 shows the breakdown of google projects’ statuses.

Figure 4.2. Analysis status of images in google projects, indicating
whether a repository’s documentation is currently out of date

We ran the analysis on all 736 projects that contained at least one image reference
for a day. Due to the time constraint, two projects45 did not finish the analysis on time.
402 projects contained at least one reference to code element and 332 projects did not
contain any references. Altogether, the 402 projects contained 435 documents with
3186 matched references to the source code. We found that 1.9% (14/736) projects,
3.4% (15/435) documents and 1.1% (35/3186) code element references extracted from
images were outdated at the time of analysis. With the projects’ commit histories,
we calculated that the code element references were outdated for a median duration
of 2.2 years.

RQ1 Summary 1.9% (14/736) projects, 3.4% (15/435) documents and 1.1%
(35/3186) code element references extracted from images belonging to 736
google projects were found to be outdated for a median duration of 2.2 years.

3https://github.com/google/material-design-icons
4https://github.com/google/wikiloop-doublecheck
5https://github.com/google/wmt-mqm-human-evaluation

https://github.com/google/material-design-icons
https://github.com/google/wikiloop-doublecheck
https://github.com/google/wmt-mqm-human-evaluation

32 Chapter 4. Outdated References in Images

4.4 Discussion

The google/agera6 project is one of the 14 projects that was detected by our approach
that contains outdated references in an image. One of the wiki pages7 in the project
contained the example image used to compare the text extraction between the various
OCR services (Figure 4.1). Using OCR, we extracted the code element reference
onDestroy from the image. When the documentation was last updated, the source
code contained the code element onDestroy twice.8 However when the source code
instances were deleted in this commit9 (Figure 4.3), the image was not updated to
remove the code element reference. This could potentially be confusing for users of
the project as the image now references a function that has been deleted from the
source code. Using our approach, we were able to identify that the image contains an
outdated code element reference and the image should be updated to avoid confusion.

Figure 4.3. Code element onDestroy deleted from the source code

Although 2119 images were considered in the analysis, only 35 out of 3186 code
element references were found to be outdated. This low number may be attributed to
a few factors. Firstly, many images in the README file included repository badges
which often only contain a word. Secondly, images often contain English words in-
stead of code elements which are less likely to be matched to the source code. Text
incorrectly extracted by the OCR also contribute to the low number of matched code
element references as the approach look for an exact match in the source code. The
next chapter will discuss the threats to validity of our approach.

6https://github.com/google/agera/
7https://github.com/google/agera/wiki/Observables-and-updatables/

ca03cd96fa90986fbe555c91d5fd426175fa3793
8https://github.com/google/agera/blob/3570c4167388fcd7b70bfb25e098b96cefca6db7/

testapp/src/main/java/com/google/android/agera/testapp/NotesActivity.java#L182
9https://github.com/google/agera/commit/4711c2fff23254389b8486cb81c60dfb918f6d2c#

diff-bf04f1c6a2813c126d1d793240e2ada18a5ab20ae297815f47625a9681fb0a0bL182

https://github.com/google/agera/
https://github.com/google/agera/wiki/Observables-and-updatables/ca03cd96fa90986fbe555c91d5fd426175fa3793
https://github.com/google/agera/wiki/Observables-and-updatables/ca03cd96fa90986fbe555c91d5fd426175fa3793
https://github.com/google/agera/blob/3570c4167388fcd7b70bfb25e098b96cefca6db7/testapp/src/main/java/com/google/android/agera/testapp/NotesActivity.java#L182
https://github.com/google/agera/blob/3570c4167388fcd7b70bfb25e098b96cefca6db7/testapp/src/main/java/com/google/android/agera/testapp/NotesActivity.java#L182
https://github.com/google/agera/commit/4711c2fff23254389b8486cb81c60dfb918f6d2c#diff-bf04f1c6a2813c126d1d793240e2ada18a5ab20ae297815f47625a9681fb0a0bL182
https://github.com/google/agera/commit/4711c2fff23254389b8486cb81c60dfb918f6d2c#diff-bf04f1c6a2813c126d1d793240e2ada18a5ab20ae297815f47625a9681fb0a0bL182

33

Chapter 5

Threats to Validity

5.1 Construct validity

In this work, our approach has identified many documents that are potentially out-
dated in software repositories but it does not detect all kinds of outdated documenta-
tion. As our approach relies on regular expressions for text extraction and matching,
other forms of documentation containing outdated information such as videos cannot
be easily detected. Even though regular expressions allows us to easily extract code
element references, they may sometimes lead to references being falsely categorised
as outdated, e.g. deleting the final instance of a code element that is part of a source
code comment.

A project’s change log may occasionally be incorrectly flagged as outdated as it
may contain references to code elements that are no longer in the source code. How-
ever, these references should not be considered outdated as they only serve as a notice
for users that the referenced class or function has been deprecated. In addition, our
approach also cannot detect outdated relationships between the repository and docu-
mentation if the code elements are still present in the source code, i.e. documentation
could be considered outdated even if all code element references are matched. These
false positives are difficult to eliminate and require project maintainers to verify indi-
vidually.

5.2 Internal validity

The manual annotation conducted in Section 2.1.2 to improve the quality of the code
element references extracted by regular expressions may introduce bias. To minimise
bias when determining if a reference was outdated, the annotation process was done
separately by three annotators. We also ensured that our inter-rater agreement was
high so that the annotations were reliable.

5.3 External validity

While the findings are based on the analysis of over 3,000 projects, we cannot claim
that the findings can be generalised to other GitHub repositories that are not in the
datasets considered, i.e. the top 1,000 most popular GitHub repositories and those
owned by Google. We also cannot make claims of the generalisability of our findings
for projects hosted on other version control platforms.

35

Chapter 6

Conclusions and Future Work

In this thesis, we proposed an approach that can automatically detect outdated refer-
ences to code elements caused by removing all source code instances. We investigated
the current state of documentation in software repositories, extended the approach to
analyse the state of documentation throughout projects’ history, explored how out-
dated documentation is resolved in open source projects, and with the results, we
alerted Google developers of potentially outdated code element references in their
projects. In addition, we created a publicly available tool that enables developers
to scan for outdated references and used OCR to detect images containing outdated
references in software documentation.

In detail, we found that the majority of the most popular projects on GitHub con-
tained at least one outdated reference to a code element at some point during their
history and these outdated references usually survived in the documentation for years
before they were fixed. By analysing the full history of projects, we discovered that
outdated references are more likely fixed by updating the source code or document
than deleting the entire document. Moreover, our GitHub issues have led to instances
of outdated documentation getting fixed in real-world projects. To assist developers
with discovering outdated documentation in their projects, we created a GitHub Ac-
tion tool that can automatically scan for outdated code element references whenever a
pull request is submitted to a repository. Finally, we were able to use OCR to extract
text from images to detect outdated references in real-world projects.

One of the potential directions for future work is to investigate how traceability
links can be established for renamed code elements. Our approach currently only
detects if a code element reference is outdated by performing an exact match to find
source code instances, but it does not know what the code element has been renamed
to. Being able to automatically establish links means that the tool can automatically
suggest how to update the documentation. Other future work may come in the form
of small improvements to the current approach. Currently, deleting the final code
element instance that is part of a source code comment may lead to falsely flagged
references. Applying customised sets of regular expressions for files written in different
programming languages may be one such improvement to help with more accurate
matches in the source code, e.g. avoiding matching code elements that are part of a
source code comment. Another small useful extension to the tool could be a feature
where the project developer can reply to the tool’s comment for code elements they
do not want to keep track of. The tool will then automatically add the code elements
to the project’s exclude list. Finally, more investigations on outdated references in
images, e.g. extending the analysis to the top1000 dataset, will help the software
engineering community better understand the state of images in documentation.

We hope that this research will be a step toward keeping documentation in software
repositories up-to-date.

37

Bibliography

Aghajani, Emad, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez,
Laura Moreno, Gabriele Bavota, and Michele Lanza (2019). “Software documenta-
tion issues unveiled”. In: Proceedings of the International Conference on Software
Engineering, pp. 1199–1210.

Aldaeej, Abdullah (2021). “Towards Effective Technical Debt Decision Making in Soft-
ware Startups: A Multiple Case Study of Web and Mobile App Startups”. PhD
thesis. University of Maryland, Baltimore County.

Bacchelli, Alberto, Michele Lanza, and Romain Robbes (2010). “Linking e-mails and
source code artifacts”. In: Proceedings of the 32nd ACM/IEEE International Con-
ference on Software Engineering-Volume 1, pp. 375–384.

Dagenais, Barthélémy and Martin P Robillard (2012). “Recovering traceability links
between an API and its learning resources”. In: 2012 34th International Conference
on Software Engineering (ICSE). IEEE, pp. 47–57.

Dagenais, Barthélémy and Martin P Robillard (2014). “Using traceability links to
recommend adaptive changes for documentation evolution”. In: IEEE Transactions
on Software Engineering 40.11, pp. 1126–1146.

Forward, Andrew and Timothy C Lethbridge (2002). “The relevance of software doc-
umentation, tools and technologies: a survey”. In: Proceedings of the Symposium
on Document Engineering, pp. 26–33.

Kajko-Mattsson, Mira (2005). “A survey of documentation practice within corrective
maintenance”. In: Empirical Software Engineering 10.1, pp. 31–55.

Kruchten, Philippe, Robert L Nord, and Ipek Ozkaya (2012). “Technical debt: From
metaphor to theory and practice”. In: IEEE Software 29.6, pp. 18–21.

Lee, Seonah, Rongxin Wu, Shing-Chi Cheung, and Sungwon Kang (2019). “Automatic
detection and update suggestion for outdated API names in documentation”. In:
IEEE Transactions on Software Engineering.

Lethbridge, Timothy C, Janice Singer, and Andrew Forward (2003). “How software
engineers use documentation: The state of the practice”. In: IEEE Software 20.6,
pp. 35–39.

Liu, Jiakun, Qiao Huang, Xin Xia, Emad Shihab, David Lo, and Shanping Li (2021).
“An exploratory study on the introduction and removal of different types of tech-
nical debt in deep learning frameworks”. In: Empirical Software Engineering 26.2,
pp. 1–36.

Mendes, Thiago Souto, Mário André de F. Farias, Manoel Mendonça, Henrique Frota
Soares, Marcos Kalinowski, and Rodrigo Oliveira Spínola (2016). “Impacts of agile
requirements documentation debt on software projects: a retrospective study”. In:
Proceedings of the 31st Annual ACM Symposium on Applied Computing, pp. 1290–
1295.

Panthaplackel, Sheena, Pengyu Nie, Milos Gligoric, Junyi Jessy Li, and Raymond J
Mooney (2020). “Learning to Update Natural Language Comments Based on Code
Changes”. In: arXiv preprint arXiv:2004.12169.

Parnas, David Lorge (1994). “Software aging”. In: Proceedings of International Con-
ference on Software Engineering, pp. 279–287.

38 Bibliography

Petrosyan, Gayane, Martin P Robillard, and Renato De Mori (2015). “Discovering in-
formation explaining API types using text classification”. In: 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering. Vol. 1. IEEE,
pp. 869–879.

Prana, Gede Artha Azriadi, Christoph Treude, Ferdian Thung, Thushari Atapattu,
and David Lo (2019). “Categorizing the content of github readme files”. In: Em-
pirical Software Engineering 24.3, pp. 1296–1327.

Ratol, Inderjot Kaur and Martin P Robillard (2017). “Detecting fragile comments”. In:
Proceedings of the International Conference on Automated Software Engineering,
pp. 112–122.

Rigby, Peter C and Martin P Robillard (2013). “Discovering essential code elements
in informal documentation”. In: 2013 35th International Conference on Software
Engineering (ICSE). IEEE, pp. 832–841.

Rios, Nicolli, Leonardo Mendes, Cristina Cerdeiral, Ana Patrícia F Magalhães, Boris
Perez, Darío Correal, Hernán Astudillo, Carolyn Seaman, Clemente Izurieta, Glei-
son Santos, et al. (2020). “Hearing the voice of software practitioners on causes,
effects, and practices to deal with documentation debt”. In: International Work-
ing Conference on Requirements Engineering: Foundation for Software Quality.
Springer, pp. 55–70.

Robillard, Martin P, Andrian Marcus, Christoph Treude, Gabriele Bavota, Oscar Cha-
parro, Neil Ernst, Marco Aurélio Gerosa, Michael Godfrey, Michele Lanza, Mario
Linares-Vásquez, et al. (2017). “On-demand developer documentation”. In: 2017
IEEE International Conference on Software Maintenance and Evolution (ICSME).
IEEE, pp. 479–483.

Sholler, Dan, Igor Steinmacher, Denae Ford, Mara Averick, Mike Hoye, and Greg
Wilson (2019). “Ten simple rules for helping newcomers become contributors to
open projects”. In: PLoS computational biology 15.9, e1007296.

Souza, Sergio Cozzetti B de, Nicolas Anquetil, and Káthia M de Oliveira (2005). “A
study of the documentation essential to software maintenance”. In: Proceedings
of the International Conference on Design of Communication: Documenting &
Designing for Pervasive Information, pp. 68–75.

Steinmacher, Igor, Christoph Treude, and Marco Aurélio Gerosa (2018). “Let me in:
Guidelines for the successful onboarding of newcomers to open source projects”.
In: IEEE Software 36.4, pp. 41–49.

Tan, Shin Hwei, Darko Marinov, Lin Tan, and Gary T Leavens (2012). “@tcomment:
Testing Javadoc comments to detect comment-code inconsistencies”. In: Proceed-
ings of the International Conference on Software Testing, Verification and Valida-
tion, pp. 260–269.

Treude, Christoph, Martin P Robillard, and Barthélémy Dagenais (2014). “Extracting
development tasks to navigate software documentation”. In: IEEE Transactions on
Software Engineering 41.6, pp. 565–581.

Uddin, Gias and Martin P Robillard (2015). “How API documentation fails”. In: IEEE
Software 32.4, pp. 68–75.

Wen, Fengcai, Csaba Nagy, Gabriele Bavota, and Michele Lanza (2019). “A large-
scale empirical study on code-comment inconsistencies”. In: Proceedings of the
International Conference on Program Comprehension, pp. 53–64.

Zhong, Hao and Zhendong Su (2013). “Detecting API documentation errors”. In: Pro-
ceedings of the International Conference on Object Oriented Programming Systems
Languages & Applications, pp. 803–816.

Bibliography 39

Zhou, Yu, Changzhi Wang, Xin Yan, Taolue Chen, Sebastiano Panichella, and Harald
C Gall (2020). “Automatic detection and repair recommendation of directive de-
fects in Java API documentation”. In: IEEE Transactions on Software Engineering
46.9, pp. 1004–1023.

Zlotnick, Frances (June 2017). GitHub Open Source Survey 2017. doi: 10.5281/
zenodo.806811. url: https://doi.org/10.5281/zenodo.806811.

https://doi.org/10.5281/zenodo.806811
https://doi.org/10.5281/zenodo.806811
https://doi.org/10.5281/zenodo.806811

	Abstract
	Declaration of Authorship
	Acknowledgements
	Introduction
	Related work
	Impact of outdated documentation
	Code element resolution
	Code-documentation inconsistencies

	Motivating example
	Contribution

	Detecting Outdated Code Element References
	Approach
	Identifying documentation
	Extracting code elements
	Matching code elements
	Extending the analysis

	Research questions
	Results
	RQ1: What is the current state of documentation?
	RQ2: What was the state of documentation during the projects' history?
	RQ3: How is outdated documentation resolved in projects?
	RQ4: How do open source projects respond to issues about outdated documentation?

	Discussion

	Automated Tool for Outdated Documentation Detection
	Motivation
	Implementation
	Adding to GitHub projects
	Excluding code elements

	Outdated References in Images
	Approach
	Research question
	Results
	RQ1: What is the current state of images in documentation?

	Discussion

	Threats to Validity
	Construct validity
	Internal validity
	External validity

	Conclusions and Future Work
	Bibliography

