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Thesis abstract 

Neratinib, a small-molecule tyrosine kinase inhibitor (TKI) that irreversibly binds to human 

epidermal growth factor receptors 1,2, and 4 (HER1, 2 and 4), was recently approved as an 

adjuvant therapy for patients with HER2-amplified or -overexpressed (HER2-positive) breast 

cancer. However, in clinical practice, more than 90% of patients receiving neratinib experience 

mild-to-severe symptoms of gut toxicity including abdominal pain and diarrhoea. Despite a 

highly prevalent complication in gut health, the underlying biological processes of how 

neratinib causes gut injury, especially in the colon, leading to symptoms of gut toxicity remains 

unclear. Here, using archived colon tissues collected from healthy female Albino Wistar rats 

dosed with neratinib (50 mg/kg) daily for 28 consecutive days, we found that the severity of 

colonic injury, especially degeneration of surface lining colonocytes and infiltration of immune 

cells, was more pronounced in the distal than in the proximal colon. 

 

To better understand biological processes underlying neratinib-induced cell death, we 

leveraged previously published bulk RNA-sequencing and CRISPR-screening datasets of 

neratinib-treated mouse TBCP-1 breast cancer and human glioblastoma SF298 cell line and 

human glioblastoma T895 xenograft. Gene ontology (GO) term and KEGG pathway analyses 

suggested that a type of cell death induced by neratinib was likely context specific. Specifically, 

neratinib stimulates ferritinophagy-mediated ferroptosis in TBCP1 and T895 cells, whereas 

apoptosis in SF298 cells. To identify whether ferroptosis or apoptosis was potentially induced 

by neratinib in the rat colon, we integrated the analyses from immunohistochemical staining  

(Caspase-3 to detect apoptosis, FTH1 and 4HNE to detect ferroptosis) on paraffin-embedded 

rat colons, and RT-qPCR (markers for iron homeostasis: Fth1 and Tfrc; markers for lipid 

peroxidation: Acsl4 and Alox15; and marker for general ROS: Nox1) on cryopreserved rat 

colons. Our findings suggested that ferritinophagy-mediated ferroptosis, but less likely 
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apoptosis, was a potential underlying histopathological feature of colonic injury in rat treated 

with neratinib. We further wanted to ascertain that colonic epithelial cells could undergo 

ferroptosis as a direct consequence of neratinib treatment by utilising SW48 colorectal cancer 

cell line. Although SW48 cells were resistant to neratinib treatment, the observation of vacuoles 

formation at supra-clinical concentration (10 µM) suggests that this cell line could undergo 

autophagy-mediated cell death. Thus, we switched our efforts to utilise the 3-dimensional (3D) 

mouse colonic organoids to circumvent the mutation complexities associated with neratinib 

resistance in SW48 cells. We showed that organoids can be terminally differentiated which 

might potentially be exploited as a model system for future mechanistic investigations. 

 

In a context of neratinib-induced ferroptosis, such as in mouse TBCP1 and human SKBR3 

HER2-positive breast cancer cell lines, by using published LINC-KINOME scan datasets and 

the alignment of published X-ray crystal structures, we proposed that inhibiting kinase activity 

of mitogen-activated protein kinase kinase kinase kinase 3 (MAP4K3) by neratinib might be 

essential for potentiating ferroptosis, but not other TKI, such as lapatinib, which is linked to 

apoptosis. Overall, the findings from this research suggest that a type of cell death, i.e. apoptosis 

or ferroptosis, induced by neratinib may be cell-type specific. Ferroptosis is a potential 

underlying feature of colon injury. Targeting the molecular machinery underlying neratinib-

induced ferroptosis, especially the initiating event of cell death such as perturbed redox 

regulation at specific subcellular compartments, may serve as an exciting platform for future 

supportive therapies and drug discovery to mitigate toxicity while enhancing the efficacy of 

similar or emerging anti-cancer therapeutics.
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Chapter 1: General introduction 

1.1. HER2-positive breast cancer 

Breast cancer is a leading cause of cancer-related mortality and morbidity in Australian women 

and worldwide 2. In 2020, nearly 20,000 newly diagnosed cases and 3,000 women died of breast 

cancer were recorded in Australia 3. Among all types of breast cancer, the aggressive human 

epidermal growth factor (HER2)-positive subtype accounts for 20-30% of all diagnosed cases 

4. In the past century, patients diagnosed with HER2-overexpressing or -amplified (also referred 

to as HER2-positive) breast cancer were usually associated with the poorest prognosis and 

outcome, with a high rate of brain metastasis 5-9. However, this is no longer the case with the 

recent development of HER2-targeted therapies that precisely target HER2-postive cells to 

inhibit the activation of the receptors and their downstream signalling pathways essential for 

cell proliferation and survival 10. 

 

1.2. HER receptors and their downstream signalling pathways 

HER2 receptor belongs to the erythroblastic leukaemia oncogene B (ERBB) receptor family 

that includes three additional members: epidermal growth factor receptor (EGFR; also known 

as HER1 or ERBB1), ERBB-3 (or HER3) and ERBB-4 (or HER4). HER downstream signalling 

pathway is critical for cell proliferation, differentiation, and survival while suppressing cell 

death mechanisms 11. In general, HER receptors are activated upon the binding of known 

cognate ligands such as EGF for HER1 and neuregulin 1 (NRG-1) for HER3 and HER4 to form 

either homodimer or heterodimer complexes. However, the HER2 receptor does not have any 

known cognate ligands and only forms heterodimer complexes with another ligand-bound HER 

receptor 11,12. Following receptor autophosphorylation at multiple intracellular tyrosine kinase 

domains, the phosphorylated tyrosine kinases serve as docking sites for GRB2-SOS and PI3K 

that subsequently potentiates two canonical pathways, RAS-ERK and PI3K-AKT-mTOR, 
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respectively. Under homeostasis or following damaging stimuli such as chemotherapy 

treatment, these two pathways are essential for potentiating cell growth, proliferation, and 

differentiation whilst suppressing cell death mechanisms (Fig. 1) 13. Mutation in HER receptors 

and downstream signalling components are frequently observed in tumorigenesis, leading to 

constitutive activation of this pathway. As such, targeting the HER receptors, especially HER2, 

has attracted considerable attention as novel targeted anti-cancer therapies for solid tumours 

including breast cancer with aberrant HER activity 14. 
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Figure 1: The activation of HER receptors and their downstream signalling pathways. Active HER receptor dimer potentiates two 

canonical RAS-ERK and PI3K-Akt-mTOR pathways that control cell survival, proliferation, differentiation, and death. The binding sites of 

approved targeted HER2 inhibitors, namely trastuzumab and neratinib, are also demonstrated. Figure created with https://www.biorender.com/ 
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1.3. HER2-targeted therapies for HER2-positive breast cancer 

HER2-targeted therapies include monoclonal antibodies, such as trastuzumab, and small-

molecule tyrosine kinase inhibitors (TKI), such as neratinib (also known as HKI-272). 

Trastuzumab, which binds to the extracellular domain of HER2 receptor and prevents the 

formation of HER2 dimer complex, is the gold standard adjuvant therapy in clinical settings 

(Fig. 1) 15. Nevertheless, major drawbacks associated with this therapy include: (1) a high 

incidence of severe-to-life-threatening cardiotoxicities including grade 3-4 congestive heart 

failure and cardiac dysfunctions 16-18; (2) a low therapeutic efficacy and response rate in patients 

with mutated HER2 receptor 19; and (3) a relatively high resistant rate in adjuvant and 

neoadjuvant settings 20-22.  

 

In contrast, orally taken neratinib (also known as HKI-272 or Nerlynx), which was originally 

developed by Pfizer and later optimised by Puma biotechnology, covalently binds to the critical 

cysteine residue of intracellular kinase domain of HER1/2/4 receptors to suppress their 

downstream signalling pathways (Fig. 1) 23,24. Neratinib binds strongly to plasma proteins in 

the circulation and is metabolised by cytochrome P3A4 25. An in vitro assay of more than 110 

different cancer cell lines demonstrated that neratinib is effective against most HER2-positive 

cancer cell lines, including those insensitive to trastuzumab such as SKBR3 and BT474. 

However, cancer cells bearing KRAS mutations, such as HCT-116, HCT-15, and SW-480 

colorectal cancer cell lines, are resistant to neratinib 26. This indicates that neratinib requires 

intact HER signalling pathways to exert its therapeutic efficacy. In a pivotal phase III clinical 

trial, neratinib significantly improved a 2-year survival rate following chemotherapy and 

trastuzumab treatment 27. A further 5-year follow-up study reported that neratinib treatment was 

not commonly associated with long-term toxicity and complications 28.  
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In May 2020, neratinib was approved by the Australian Therapeutics Goods Administration 

(TGA) as an extended adjuvant therapy for patients with HER2-positive breast cancer who have 

previously received trastuzumab therapy 29. In addition to its use as an adjuvant therapy, the 

combination of neratinib and capecitabine was recently approved for adult patients with 

advanced or metastatic HER2-positive breast cancer by the United States Food and Drug 

Administration (US FDA), but not by the ATGA 30. Since then, the therapeutic efficacy of 

neratinib is currently being assessed for the treatment of other types of cancer in ongoing 

clinical trials (Table 1). 
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Table 1: A summary of ongoing clinical trials of neratinib treatment beyond HER2-positive breast cancers. 

 

NCI identifier Phase Type of cancers Treatment regime 

NCT02932280 I and II 

Central nervous system tumour 

Lymphoma 

Leukaemia 

Neratinib 

NCT03457896 II Metastatic KRAS/NRAS/BRAF/PIK3CA wild-type colorectal cancer Neratinib +/- Trastuzumab/Cetuximab 

NCT03919292 I and II 

Colon cancer (RAS-mutated) 

Glioblastoma (RAS-mutation or HER1-mutated at RP2D) 

Ocular melanoma 

Pancreatic cancer (RAS-mutated at RP2D) 

Neratinib + Divalproex sodium 

NCT04502602 I Advanced ovarian cancer Neratinib +/- Niraparib 

NCT05372614 I 
Metastatic malignant solid neoplasm 

Unresectable malignant solid neoplasm 
Neratinib +/- Trastuzumab deruxtecan 

NCT03065387 I 
Advanced/metastatic/refractory malignant solid neoplasm 

HER1/HER2/HER3/HER4 gene amplification/mutation 

Neratinib + Everolimus 

Neratinib + Palbociclib 

Neratinib + Trametinib 

NCT05512182 II Recurrent/advanced gastric cancer Neratinib + Pembrolizumab + Paclitaxel 
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1.4. Neratinib-induced gut toxicity 

Despite therapeutic effectiveness against HER2-positive breast cancers, over 90% of patients 

taking neratinib experienced mild-to-severe symptoms of gut toxicity, such as abdominal pain 

and diarrhoea, which often leads to early dose reduction or termination 31,32. Given that 

escalating dose of neratinib leads to a more severe symptom of gut toxicity observed in our 

preclinical rat models and in clinical trials 33,34, we postulate that inhibition of locally expressed 

HER receptors in the intestinal epithelial cells which subsequent triggers epithelial cell death is 

likely the cause of gut toxicity. This is likely due to the gut epithelium naturally expresses HER 

receptors and is strongly dependent on their downstream signalling pathways for cell survival, 

differentiation, and proliferation 35-38. As such, the disruption of HER signalling perturbs 

intestinal homeostasis leading to intestinal cell death and symptoms of gut toxicity.  

 

In contemporary practice, patients are co-prescribed with loperamide to reduce the incidence 

of TKI-induced diarrhoea 39. Loperamide acts by reducing gut motility and secretion by 

activating the µ-opioid receptors in the muscle wall, thus, reducing diarrhoea 40,41. However, 

data from clinical trials suggests that escalating dose of prophylactic loperamide alone, or in 

combination with other antidiarrhoeic medications only provided modest symptomatic relief 

following neratinib treatment 42,43. Specifically, the diarrhoea incidence in patients co-

prescribed with loperamide alone or in combination with corticosteroid budesonide or bile acid 

sequestrant colestipol was reduced by 17.3%, 15.7%, and 41.6%, respectively. This modest 

relief may be because these prophylactic interventions do not target the underlying cause of 

neratinib-induced gut toxicity, which remains poorly understood and may be dependent on 

uncontrolled intestinal cell death, especially in the colon.
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1.5. The structure of colonic epithelium 

The colonic epithelium, which consists of a single layer of polarised columnar epithelial cells, 

is organised into a crypt structure (Fig.2a). This outermost layer of the colon forms an effective 

semipermeable barrier for absorbing water and electrolytes while preventing other luminal 

contents including bacteria from entering inner mucosa. Located at the bottom of the crypt is a 

population of stem cells expressing leucine-rich repeat-containing G protein-coupled receptor 

5 (LGR5) 44. LGR5-positive stem cells divide into stem and progenitor cells (Fig.2b). Progenitor 

cells, then, enter the transition-amplifying (TA) zone, where the proliferative capacity is greatly 

enhanced, and either self-renew into LGR5-positive stem cell or differentiate into post-mitotic 

cells by entering either absorptive or secretory lineages 44.  

 

The absorptive lineage gives rise to colonocytes whose primary functions is to absorb water, 

and other selective vitamins and small molecules, to form an effective barrier for mucosal 

protection 45. Whereas the secretory lineage gives rise to colonic deep crypt secretory (DCS), 

goblet and enteroendocrine cells. DCS cells produce essential factors including growth factors 

and antimicrobials to support the stem cells 46,47. Goblet cells produce the mucus layer 

comprised of glycosylated mucins that serves as an effective barrier to further separate the 

lumina contents from the epithelium and is critical to modulate inflammatory response 48,49. 

Enteroendocrine cells produce various hormones, such as serotonin, to regulate the physiology 

of the colon 50-52. Therefore, maintaining the cellular composition and integrity of the colonic 

epithelium is imperative for the homeostasis of colon. 
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Figure 2: Colonic epithelium. a, The organisation of colonic epithelial cells into crypt structure. b, A model of colonic stem cell 

differentiation 1. Figure created by https://www.biorender.com/ 
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1.6. Three-dimensional (3D) colonic organoids 

The 3D colonic organoid, which can be generated from isolated colonic stem cells or induced 

pluripotent stem cells (iPSC), is an in vitro model system that precisely recapitulates the 

heterogenous architecture and functionality of the colonic epithelium 53-57. Due to their 

amenability to various experimental techniques ranging from genetic to pharmacological 

manipulation, an ever-growing list of protocols deviate from the standard organoid culture have 

been developed to generate customised colonic organoid variants for different experimental 

purposes 58. For instance, the use of clustered regularly interspaced short palindromic repeats 

(CRISPR)-cas9 and lentiviral transduction to generate permanent or transient genetically 

engineered organoids for unravelling exciting biological questions ranging from identifying 

rare cell population to illuminating gene functions in different biological processes 59,60.  

 

A standard organoid differentiation requires the inhibition of Wnt signalling pathway by 

withdrawing Wnt ligand with or without the activation of bone morphogenetic protein (BMP) 

signalling pathway 1,58,61. Under these conditions, the differentiation of organoids is non-

directional, such that the organoids can give rise to all differentiation lineages. To enrich 

organoids for a specific cell type of interest, additional pharmacological manipulation of other 

signalling pathways is therefore required. For example, activating Notch signalling pathways 

directs stem cells to differentiate into colonocytes; or suppressing MAPK while adding 

neurogenin-3 (NEUROG3) and neuronal differentiation 1 (NEUROD1) proteins stimulates 

differentiation towards enteroendocrine cells 61-64.  

 

Given that organoids can recapitulate the heterogeneity of colonic epithelium in vitro, this 

model system is suitable for dissecting biomolecular processes of the epithelium. By integrating 

bulk multi-omics approaches, Zhou and colleagues 65 strikingly discovered that chromatin 
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factor special AT-rich sequence-binding protein 2 (SATB2) serves as the safeguard for not only 

colonocyte differentiation but also the identity of colonic epithelium by maintaining the activity 

of transcription factors caudal type homeobox 2 (CDX2) and hepatocyte nuclear factor 4 alpha 

(HNF4A) at the region of colon-specific enhancer. Without SATB2, relocation of CDX2 and 

HNF4A to ileal-specific enhancer triggers the differentiation of organoids with ileal-like 

phenotypes. The organoids can also be dissociated into single cells which is then coupled with 

mass cytometry to delineate the dynamic network of post-translational modification signalling 

pathways for each individual cell types in organoids 66. Finally, the use of high-content 

CRISPR-screening technology, such as Perturb-seq platform, can potentially be exploited to 

predict the functions of uncharacterised genes and their regulatory networks underlying various 

physiological and pathological states of the colonic epithelium 67. Collectively, the 3D colonic 

organoid presents as a promising in vitro model system to bridge the current gaps between in 

vitro cell lines, which lacks cellular heterogeneity, and in vivo animal models, which are 

expensive and ethically challenging 68,69. 

 

1.7. HER signalling in the colonic epithelial cells 

All epithelial cells in the colonic epithelium depend on HER signalling for cell survival, 

proliferation, and differentiation 66,70. HER receptors are strongly expressed in the basolateral 

membrane of the polarised epithelial cells locating adjacent to subepithelial fibroblasts and 

other stromal cells, which are considered as the main source of HER ligands (Fig. 3) 35. For 

example, EGF, a cognate ligand of HER1 is produced by deep-crypt secretory cells and 

CD43+/PDGFRα cells; and NRG-1, a cognate ligand of HER3 and HER4, produced by CD43-

/PDGFRα 71. For a thorough review of HER receptors and ligands, please refer to a recent 

review by Abud et al. 72. 
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Extending beyond the role of modulating intestinal homeostasis under normal condition, 

downstream signalling pathways of HER3 and HER4 receptors are critical for healing 

following intestinal injury. Frey and colleagues observed that a significant increase in HER3 

and HER4 expression following the administration of dextran sulphate sodium (DSS) or tumour 

necrosis factor (TNF) to induce colitis. The upregulation of these HER receptors correlates with 

significantly lower number of cleaved caspase-3, an indicator of apoptotic cell death, and 

suppresses the activation of macrophages to enhance the intestinal resolution of colitis 73,74. 

Furthermore, following the treatment of 5-fluorouracil and irradiation, Abud’s group showed 

that NGR-1, a cognate ligand for HER3 and HER4 receptors produced by subepithelial 

mesenchymal stromal cells, dramatically enhanced the proliferation and differentiation of 

intestinal stem cells in both in vitro organoid and in vivo rodents by stimulating both RAS-ERK 

and PI3K-AKT-mTOR pathways. Together, these results suggest that the expression of HER3 

and HER4 and their downstream signalling are essential for intestinal protection and 

regeneration 75. As neratinib covalently binds to HER1, HER2 and HER4 receptors and 

suppresses their downstream signalling pathways, this may explain why patients experience 

severe symptoms of gut toxicity following neratinib treatment 76,77.  
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Figure 3: The expression gradient of HER receptors in a colonic epithelium. HER1 receptor is primarily enriched in the stem and TA 

compartment, while HER2 and HER3 receptors are highly expressed in differentiated. HER4 receptor is likely present, but its expression 

profile is currently unknown under homeostatic condition 72. Figure created by https://www.biorender.com/ 
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Intriguingly, by exploiting the use of single-cell and spatial transcriptomics, recent studies 

emerged over the past few years uncovered that the epithelium from different regions of the 

colon, i.e. proximal versus distal colon, possess molecular regionalisation that determines 

distinct phenotypes and responses to the same stimulus 78-80. For example, Parigi et al. noted 

that the use of oral administration of DSS as a model of colitis resulted in the distal colon being 

more severely damaged than the proximal colon of treated mice 80. Their spatial transcriptomic 

analysis further showed that gene signatures in JAK-STAT and TNFα pathways contributing 

to inflammation were significantly upregulated in the distal colon but not the proximal colon.  

Collectively, these findings prompted us to wonder if the response to neratinib treatment may 

vary among different regions of the colon and if this may be as the consequence of the spatial 

distribution of HER receptors throughout the entire colon, which unfortunately remains poorly 

understood. 

 

1.8. What is known about the mechanism of neratinib-induced cell death 

Neratinib is an approved small-molecule TKI for patients with HER2-positive breast cancer. 

Neratinib induces cell death by covalently binding to tyrosine kinase domains of HER1/2/4 

receptors and suppressing the canonical RAS-ERK and PI3K-mTOR-AKT pathways 23,24. A 

previous study using in vitro HER2-positive breast cancer cell lines, which did not express 

mutant oestrogen receptor, such as SKBR3, showed that neratinib treatment suppressed the 

activity of nuclear factor-erythroid factor 2-related factor 2 (NRF2), a master regulator of 

antioxidant defence, to then promote oxidative-stress-dependent cell death 81. Oxidative stress 

is a condition of sustained elevation of intracellular reactive oxygen species (ROS) that may 

cause reversible and irreversible damage to biomolecules such as lipids, proteins, and nucleic 

acids 82. ‘ROS’ is an umbrella term describing a collection of oxygen-derived radicals, such as 
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singlet superoxide (O2• −) and hydroxyl radical (•OH), and species, such as hydrogen peroxide 

(H2O2) and lipid peroxide.  

 

Strikingly, a study from Nagpal et al. revealed that rather than apoptosis as induced by other 

TKI, such as lapatinib, neratinib promoted ferroptotic cell death in both human (SKBR3) and 

mouse (TBCP1) HER2-positive breast cancer cell lines 83.  Ferroptosis is a type of regulated 

cell death that arises from perturbed iron and redox homeostasis with excessive lipid 

peroxidation at the phospholipid membrane 84. Using Albino Wistar rats dosed with neratinib 

as a preclinical model system, our previous works demonstrated that neratinib treatment caused 

severe damage to the epithelium of the distal ileum and stimulated strong inflammation with 

no profound apoptosis or crypt ablation detected 85,86. This observation suggests that neratinib 

may perhaps induce a non-apoptotic cell death in the rat intestine. Nonetheless, whether 

neratinib-induced ferroptosis is a potential component of intestinal injury, especially in the 

colon, remains yet to be elucidated.  
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1.9. Hypotheses and aims 

Patients receiving neratinib experience mild-to-severe symptoms of gut toxicity, especially 

diarrhoea. Yet, the precise mechanism of how neratinib induces intestinal injury, especially in 

the colon, remains unclear. As such, the research carried out in this thesis aimed to address this 

gap in knowledge. Current findings in the literature have led us to formulate two hypotheses: 

- Hypothesis 1: The injury induced by neratinib is spatially located and cell-type specific 

in the colon. 

 

- Hypothesis 2: As a consequence of perturbed iron and redox homeostasis, ferroptosis 

is a likely histopathological feature of neratinib-induced colon injury.  

 

To investigate these hypotheses, the presented work was performed to satisfy the following 

aims:  

- Aim 1: To determine the spatially located and histopathological features of neratinib-

induced colon injury. 

 

- Aim 2: To confirm the features of ferroptosis including perturbed iron and ROS 

homeostasis in colonic models of neratinib treatment.
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2.1. Key reagents or resource 
 

Reagents or resource Source Identifier 

XTT Cell Viability Assay Roche 11465015001 

Neratinib Puma Biotechnology Kindly provided 

Foetal Bovine Serum Bovogen SFBS-AU 

PBS (pH 7.2; 1X) Gibco 20012050 

TrypLE™ Select Enzyme (1X), 

[+] phenol red (500.0 mL) 

Gibco 12605-028 

Corning’s Falcon Matrigel 

Basement membrane matrix, 

growth Factor reduced (GFR), 

Phenol red-Free, LDEV-Free, 10 

ml, 1/Pack, 1/Case 

In Vitro Technologies  FAL356231 

Advanced DMEM/F-12 (10 x 

500.0 mL) 

Gibco 12634028 

Antibiotic-Antimycotic (100X; 

100.0 mL) 

Gibco 15240062 

Gentamicin (10 mg/mL; 100.0 

mL) 

Gibco 15710064 

GlutaMAX Supplement Gibco 35050061 

HEPES (1.0 M; 100 mL) Gibco 5630080 

N-2 Supplement (100X; 5.0 mL) Gibco 17502048 
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B-27™ Supplement (50X), 

minus vitamin A (10.0 mL) 

Gibco 12587010 

Animal-Free Recombinant 

Murine EGF (500.0 µg) 

PeproTech AF-315-09 

Animal-Free Recombinant 

Murine Noggin (20.0 µg) 

PeproTech AF-250-38 

iPSC Induction Enhancer, 

Thiazovivin (10.0 mg) 

Merck 420220-10MG 

GSK-3 Inhibitor XVI (5.0 mg) Merck 361559-5MG 

ROCK Inhibitor (Y-27632; 1.0 

mg) 

In vitro Technologies RDS12541 

R-spondin 2 SAHMRI N.A. 

Wnt3a SAHMRI N.A. 

NucleoSpin RNA extraction kit  Macherey-Nagel 740955.50 

2-Mercaptoethanol Sigma-Aldrich M6250 

iScript cDNA Synthesis Kit (100 

x 20 µl reactions) 

BIO-RAD 1708891 

DNA Oligos (PCR primers) Integrated DNA 

technologies 

N.A. 

QuantiTect SYBR® Green PCR 

Kits 

Qiagen 204145 
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2.2. Animal ethics 

This research project involved the use of in vitro colon organoids derived from the distal colon 

of a female C57BL/6 mouse, and in vivo paraffin-embedded and frozen Albino Wistar rat colon. 

The ethics application for the use of mouse colon for organoid generation was previously 

approved by the animal ethics committee at South Australian Health and Medical Research 

Institute (SAM322). Colon organoids are maintained from cryopreserved stocks as a standard 

line in the Gut Cancer Group; and their use for in vitro studies does not require further ethics 

applications and approval. The ethics application for experimental works with healthy female 

rats dosed with either vehicle control (0.5% hydroxypropyl methyl cellulose; HPMC) or 

neratinib (50 mg/kg) were previously approved by The University of Adelaide Animal Ethics 

Committee (M-2019-025). 

 

 

2.3. Tissue collection 

All tissues were previously collected and described in Secombe et al. paper 87. In brief, rats 

were treated by oral gavage (5 ml/kg) with either HPMC (0.5%) or neratinib (50 mg/kg) every 

day for 28 days consecutively (n = 6/group). Rats were culled by cardiac puncture while under 

4% isoflurane anaesthesia. After colons were dissected and flushed with sterile saline, the 

length of colon was separated into proximal (the first 3 cm), mid and distal thirds (last 3 cm). 

While the mid portion of the colon was snap frozen in liquid nitrogen before storage at -80oC, 

the proximal and distal portions were fixed in 10% neutral buffered formalin for 24 hours. After 

fixation, tissues were processed and paraffin-embedded using standard techniques. 
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2.4. Haematoxylin and eosin (H&E) staining 

Tissue H&E staining was carried out to visualise intestinal pathology and score the injury 

associated with neratinib treatment. Archived paraffin-embedded blocks of proximal and distal 

colon collected from rats dosed with vehicle control or neratinib were cut into 5 μm sections on 

a rotary microtome (Leica, Germany). Tissue sections were first de-waxed in xylene (3x5 min) 

followed by rehydration in a series of graded ethanol concentrations (100% and 90%; 60 s 

each). Sections were then stained in Harris haematoxylin solution (1:10) for 5 min followed by 

eosin for 2 min. Sections were subsequently differentiated in acid-alcohol solution (1% 

concentrated hydrochloric acid in 70% ethanol; 2 quick dips) and Scott’s tap water for 2 min. 

Slides were dehydrated in a series of graded ethanol concentrations (90% and 100%; 30 seconds 

each) followed by clearing in xylene (3x5 min). Tissue slides were cover-slipped and mounted 

in Entellan New mounting media. All slides were scanned using Nanozoomer Digital Slide 

Scanner and viewed using the Nanozoomer Digital Pathology Software (NDP View v2.0, 

Histalim). 

 

2.4.1. Histopathological scoring on H&E slides 

Criteria for assessing histopathological features in rat colon previously established by Howarth 

et al. (1996) were used for histopathological scoring on H&E slides 88. These criteria included 

disruption of surface colonocytes, crypt loss or disruption, disruption of crypt cells, infiltration 

of immune cells, dilation of lymphatics and capillaries, and oedema. Each criterion was scored 

from 0 to 2, whereby 0 was with no apparent morphological changes, 1 was with mild damage, 

and 2 was with severe damage. The histopathology of rat colons was additionally assessed by 

an independent veterinarian pathologist, Associate Professor John Finnie. 
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2.5. Immunohistochemical (IHC) staining 

IHC staining was carried out to visualise (1) the changes of markers of surface colonocytes 

(CA1) and proliferative cells (Ki67) in support for histopathological assessment; and (2) the 

changes of key markers of ferroptosis, namely ferritin heavy chain 1 (FTH1) and lipid peroxide 

(4-hydroxynonenal or 4HNE) (Table 2). Archived paraffin-embedded blocks of proximal and 

distal colon collected from vehicle-control- and neratinib-treated rats were cut into 4μm 

sections on a rotatory microtome (Leica, Germany). Slides were then processed as follows: de-

waxed in xylene/histolene (3x 5 min) followed by rehydration in a series of graded ethanol 

concentrations (100%, 90% and 70%; 1 min each). Thereafter, slides underwent heat-mediated 

antigen retrieval in either citrate (pH 6.5) or Tris/EDTA (pH 9.0) buffer depending on the 

primary antibody used. Refer to table below for a complete list of antibodies including dilution 

and antigen retrieval buffer used in this study. After pre-heating antigen retrieval buffer to 65oC, 

slides were immersed and heated to 97oC for 20 min. Temperature was left to return to 65oC 

before slides were transferred to the Dako Autostainer instrument. Next, endogenous 

peroxidase was blocked using Dako REAL peroxidase blocking solution for 10 min followed 

by blocking non-specific protein using DAKO protein block solution for 30 min. Primary 

antibody diluted in EnVisionTM FLEX Antibody Diluent was applied on tissue sections and 

incubated for 60 min. Primary antibody was then detected using either secondary-HRP labelled 

mouse or rabbit antibody detection system (Dako EnVision+ System-HRP; 30 min) followed 

by the addition of 3,3ʹ-diaminobenzidine (DAB) chromogen (10 min) was added for 

visualization. Sections were counter-stained with Harris haematoxylin solution (1:10) for 5.0 

minutes followed by differentiating in acid-alcohol solution (1% concentrated hydrochloric 

acid in 70% ethanol; 2 quick dips) and Scott’s tap water for 2 min. Slides were dehydrated in 

70%, 90% and 100% ethanol (30 s each) before clearing in xylene (3x5 min). Slides were cover-

slipped and mounted in Entellan New mounting media. All slides were scanned using 



Chapter 2: Methodology 

 
 45 

Nanozoomer Digital Slide Scanner and viewed using the Nanozoomer Digital Pathology 

Software (NDP View v2.0, Histalim). Qualitative description was carried out to describe the 

changes of positive IHC signals of CA1, 4HNE, and FTH1 staining between the neratinib- 

and vehicle-control-treated rats.  

 

2.5.1. Quantification of Caspase-3-stained sections 

Caspase-3-positive cells in 10 randomly selected intact crypts per animal were counted and data 

expressed as the average of positively stained cells per crypt. 

 

2.5.2. Quantification of Ki67-stained sections 

Ki67-positive cells from 10 randomly selected intact demi (or half) crypts per animal were 

counted. Data were expressed as the percentage of average of positively stained cells per crypt 

using the following equation: 

 

%𝐾𝑖67!	𝑐𝑒𝑙𝑙𝑠	𝑝𝑒𝑟	𝑐𝑟𝑦𝑝𝑡 =
(𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐾𝑖67!	𝑐𝑒𝑙𝑙𝑠	𝑝𝑒𝑟	𝑑𝑒𝑚𝑖	𝑐𝑟𝑦𝑝𝑡) × 2

𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑒𝑙𝑙𝑠	𝑝𝑒𝑟	𝑐𝑟𝑦𝑝𝑡 × 100	(%) 
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Table 2: A list of antibodies, and their antigen retrieval buffer and dilution used for IHC 

staining. 

Antibodies Source Identifier Antigen retrieval 

buffer 

Dilution 

Rabbit recombinant Anti-

Carbonic Anhydrase 1 

(CA1) 

Abcam ab267475 Tris/EDTA buffer 1:2,000 

Rabbit recombinant Anti-

Ki67 antibody [SP6] 

Abcam ab16667 Tris/EDTA buffer 1:100 

Rabbit polyclonal anti-

caspase-3 antibody 

Abcam ab4051 Tris/EDTA buffer 1:100 

Rabbit recombinant Anti-

Ferritin (FTH1) antibody 

Abcam ab287968 Tris/EDTA buffer 1:2,000 

Mouse monoclonal anti-4-

hydroxynonenal antibody 

[HNEJ-2] 

Abcam ab48506 Citrate buffer 1:1,500 

 

2.6. Real-time quantitative polymerase chain reaction (RT-qPCR) 

RT-qPCR was utilised to quantify the expression of key markers of ferroptosis in rat colons and 

to determine the differentiation status of mouse colon organoids (Table 3). All primers were 

purchased from Integrated DNA Technologies, Inc. (USA). Total ribonucleic acid (RNA) 

extraction and purification of rat mid colons or Matrigel-containing organoids were carried out 

using NucleoSpin RNA extraction kit following the manufacturer’s instructions. The 

concentration (ng/ μL) and purity of extracted RNA was determined using SynergyTM Mx 

reader (BioTek, USA). 1 μg of RNA was reverse transcribed into cDNA using iScript™ cDNA 

Synthesis Kit using the following sequence – priming at 25oC for 5.0 min, reverse transcription 
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(RT) at 46oC for 20 minutes, and RT deactivation at 95oC for 1.0 minute. RT-qPCR was 

subsequently carried out using the SYBR-Green system on the Rotor-Gene qPCR cycler 

(Qiagen). Amplification mix of RT-qPCR contain 1 μL of cDNA (100 ng/ μL), 5 μL of SYBR 

green dye, 3 μL of nuclease-free water, and 0.5 μL of each forward and reverse primers (50 

pmol/L). All samples were run in triplicate. Raw data was plotted as cycle (x-axis) against 

normalised fluorescent signal (y-axis). Cycling threshold (Ct) value was calculated by Rotor 

Gene 6 analysis software and used for relative quantification reported in fold difference. The 

fold difference in gene expression between groups was determined using ΔΔCt method 

established by Schmittgen and Livak 89. In rat experiments, all genes were normalised to 

Ubiquitin C (Ubc) housekeeping gene. In mouse organoid experiment, all genes were 

normalised to glyceraldehyde 3-phosphate dehydrogenase (Gapdh) housekeeping gene. The 

equation to determine fold change as followed. The melting curve analysis was additionally 

performed to examine the presence of primer-dimers and specificity of PCR product. 

 

𝐹𝑜𝑙𝑑	𝑐ℎ𝑎𝑛𝑔𝑒 = 	2!∆∆#! , 𝑖𝑛	𝑤ℎ𝑖𝑐ℎ	∆∆𝐶$

=	 [(𝐶$ 	𝑔𝑒𝑛𝑒	𝑜𝑓	𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 −	𝐶$ 	ℎ𝑜𝑢𝑠𝑒𝑘𝑒𝑒𝑝𝑖𝑛𝑔	𝑔𝑒𝑛𝑒)	𝑡𝑟𝑒𝑎𝑡𝑒𝑑	𝑔𝑟𝑜𝑢𝑝	

− (𝐶$ 	𝑔𝑒𝑛𝑒	𝑜𝑓	𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 −	𝐶$ 	ℎ𝑜𝑢𝑠𝑒𝑘𝑒𝑒𝑝𝑖𝑛𝑔	𝑔𝑒𝑛𝑒)	𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑜𝑟	𝑔𝑟𝑜𝑢𝑝] 
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Table 3: A list of target mRNA primers used for RT-qPCR. N.A: non-applicable. 

Target mRNA 
 

NCBI reference 
sequence 

 

Forward primer (5’® 3’) 
 

Reverse primer (5’® 3’) 
 

Ubiquitin C (Ubc) - Rattus 

norvegicus 

NM_017314.1 (Ref. 

90) 
TCGTACCTTTCTCACCACAGTATCTAG GAAAACTAAGACACCTCCCCATCA 

Transferrin receptor (Tfrc) - Rattus 

norvegicus 
NM_022712.1 CGGCTACCTGGGCTATTGTA TTCTGACTTGTCCGCCTCTT 

Ferritin heavy chain 1 (Fth1) - Rattus 

norvegicus 
NM_012848.2 ATGATGTGGCCCTGAAGAAC CACACTCCATTGCATTCAGC 

Arachidonate 15-lipoxygenase 

(Alox15) - Rattus norvegicus 
NM_031010.2 CTTCCTTCTGGATGGGATCA ATGGCTATGGGCAAGAGTTG 

Acyl-CoA synthetase long-chain 

family member 4 (Acsl4) - Rattus 

norvegicus 

NM_053623.1 TTGAAGTGAACTGCCGAGTG CACAGAAAATGGCAATGGTG 

NADPH oxidase 1 (Nox1) - Rattus 

norvegicus 
NM_053683.2 GGCAACATGAGAGCTGCATA GCAAGTGTCAACCAGCAAAA 

Glutathione peroxidase 4 (Gpx4) - 

Rattus norvegicus 
NM_001368043.1 TACGAATCCTGGCCTTCCCT CCCTTGGGCTGGACTTTCAT 
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Glyceraldehyde-3-phosphate 

dehydrogenase (Gapdh) - Mus 

musculus 

PMID: 34883119 CCTCGTCCCGTAGACAAAATG TCTCCACTTTGCCACTGCAA 

Carbonic anhydrase 1 (Ca1) - Mus 

musculus 
NM_001083957.1 GCTCCGTGGTCTTCTGTCAA GCTCTGACTGTTCTGCCCTT 

Aquaporin 8 (Aqp8) - Mus musculus NM_001109045.1 GTCCGAATACTGGGCTCCTG CCCCAATCAGCCCTCCAAAT 

Solute carrier family 26, member 3 

(Slc26a3) - Mus musculus 
NM_021353.3 TCCTTCCCACTAGCCACTGT GGAGCAGCTACAACACCCTT 

Chromogranin A (Chga) - Mus 

musculus 
N.A. (Ref. 64) GCAACACAGCAGCTTTGAGGAT GTTAGGCTCTGGAAAGGCCTGA 

Mucin 2 (Muc2) - Mus musculus N.A. (Ref. 64) ACCCCAAGCCCTTCTCCTACTA AGTGGATTGAGAGGTCACAGGC 
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2.7. Cell culture 

Wild-type SW48 colorectal cancer cell line kindly provided by Gut Cancer Group was utilised 

to assess cytotoxicity of neratinib. SW48 cell was cultured in high-glucose advanced 

Dulbecco’s Modified Eagle’s Medium/ Ham's F-12 (ADMEM/F12) supplemented with 

antibiotic-antimycotic (1X), gentamicin (0.1 mg/mL) and 10% foetal bovine serum (FBS). 

SW48WT cells were maintained at 37 °C, 5% CO2 and 95% humidity. Cell culture media was 

refreshed every 2-3 days. Cells were split at least twice every week.  

 

IC50 value of neratinib for SW48 cell line (passage number less than 15 in our group) was 

determined by XTT Cell Viability Assay following the manufacturer’s instruction 91. In brief, 

5,000 cells in 100 μL of 10% FBS media were seeded into each well of a clear flat-bottom 96-

well plate incubated at 37°C, 95% humidity and 5% CO2 overnight for cell adherence. Old 

medium was replaced by fresh media spiked with a series of neratinib concentration ranging 

from 0.01 nM to 10,000 µM, or TX-100 (0.1% in DMSO) as positive control. The 96-well plate 

was subsequently incubated at 37°C, 95% humidity and 5% CO2 for 24 and 48 hours. After 

each incubation period, 50μL of XTT mixture was added to each well. The 96-well plate was 

subsequently incubated for 4 hours. The absorbance was measured on SynergyTM Mx reader 

(BioTek, USA) at 490 nm with a reference wavelength at 690 nm. Using GraphPad Prism 9 

software, the graph of percentage of cell viability was plotted against log10[neratinib] in mol/L 

(M). The IC50 value was determined as a concentration of neratinib at which 50% of cell 

viability. Non-linear regression was used to fit a sigmoidal dose-response curve, where x-axis 

represents log10[neratinib] and y-axis is % response compared to DMSO. All experiments were 

performed in triplicates with two independent experiments. 



Chapter 2: Methodology 

 
 51 

2.8. Transmission electron microscopy (TEM) 

All reagents were certified as EM grade. SW48 cells and Matrigel-containing organoids were 

fixed overnight in TEM fixative (4% paraformaldehyde, 1.25% glutaraldehyde, 4% sucrose in 

1X phosphate-buffered saline (PBS), pH 7.2) at 4-8oC. Fixed organoids were washed with 

washing buffer (4% sucrose in 1X PBS; 2x10 min) and post-fixed in 2% osmium tetroxide at 

room temperature for 1 hour. Afterwards, samples were dehydrated in a series of ethanol 

concentrations (70%, 95%, and 100%; 3x15 min each). Subsequently, samples were washed 

with 100% propylene oxide (2x15 min) and incubated in 50% Epon resin in 100% propylene 

oxide for 60 minutes before the overnight embedding in pure Epon resin. On the next days, the 

resin was refreshed and polymerised in an oven at 70oC for at least 48 hours. Resin-embedded 

samples were cut to 70.0 nm thickness on rotatory microtome. For imaging Toluene-blue tissue 

sections, all slides were scanned using Nanozoomer Digital Slide Scanner, and viewed using 

the Nanozoomer Digital Pathology Software (NDP View v2.0, Histalim). For TEM imaging, 

all sections were imaged using FEI Tecnai G2 Spirit TEM instrument. 

 

 

2.9. Mouse colon organoid culture 

Established protocols by Clevers and colleagues were followed for culturing mouse-derived 

colon organoids with some modifications 58,92. The organoid basal media (OBM) was composed 

of advanced DMEM/F12 supplemented with N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic 

acid (HEPES; 10 mM), GlutaMAX (1X), antibiotic-antimycotic (1X) and gentamicin (10 

mg/ml). Complete organoid culture media contained OBM supplemented with conditioned 

Wnt-3a (50% v/v) and R-spondin-2 (20% v/v) media, recombinant murine EGF (50 ng/mL), 

recombinant murine Noggin (100 ng/mL), N2 supplement (1X), B27 supplement (1X), Y-

27632 (10 μM), GSK-3 Inhibitor XVI (3 μM), and iPSC enhancer thiazovivin (3 μM). 
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Conditioned media was produced by Dr. Laura Vrbanac using HEK293T cells either stably 

transfected to express mouse-Wnt-3a or transiently transfected to express R-spondin-2 vectors 

93. 

 

Organoids were derived from the distal region of a healthy female C57BL/6 mouse and 

cryopreserved by Dr. Laura Vrbanac. After frozen mouse colon organoids were rapidly thawed 

in a 37oC water bath, organoids were embedded in a dome-shape Matrigel (50 µL/well; 

Corning; 356231) submerged in complete organoid culture media (500 µL/well) in a 24-well 

plate. Organoid cultures were maintained at 37oC and 5% CO2. Complete organoid media was 

refreshed every 2-3 days and organoids were split at 1-2 times a week. 

 

To split organoids, after old medium was removed, 50 µl of Matrigel domes of organoids was 

dissolved in 1 mL of ice-cold PBS (1X). After leaving on ice for 10 min, the solution was 

centrifuged at 400 g for 5 min at 4oC followed by discarding supernatant. The organoid pellets 

were resuspended in pre-warmed TrypLE Express (+Y-27632, 10 µM) and incubated for 3 min 

in 37oC water bath. After the organoids were sufficiently digested, 500 µl of ice-cold FBS was 

added followed by centrifuging at 400 g for 5 min at 4oC and discarding supernatant. 

Subsequently, Matrigel was added to the pellet and then plated 50 µl of Matrigel domes per 

well for a 24-well plate. Finally, after polymerizing the Matrigel in a 37oC incubator for 30 min, 

pre-warmed 500 µl of treatment-specific organoid media was added. The organoid cultures 

were incubated at 37oC and 5% CO2. 

 

For the induction of differentiation in colon organoids, organoids (15 pieces/µL Matrigel) were 

first cultured in complete organoid culture media. Two days post-plating, complete organoid 

medium was removed, and organoids were cultured in different differentiation cocktails to 
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induce organoid differentiation in comparison to complete medium. Of note, Y-27632, GSK-3 

Inhibitor XVI, and thiazovivin were withdrawn in all differentiation cocktails. We tested two 

main differentiation cocktails, namely BMPhigh and BMPlow, in which BMP is denoted for bone 

morphogenetic protein (Fig. 4).
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Condition Treatment regimes 

Control WENR (Wnt3a + EGF + Noggin + R-spondin-2) 

BMPhigh 
E + BMP2 (EGF + BMP2 (50.0 ng/mL)) 

ER + BMP2 (EGF + R-spondin-2 + BMP2 (50.0 ng/mL)) 

BMPlow 
EN (EGF + Noggin) 

ERN (EGF + R-spondin-2 + Noggin) 

Figure 4: The experimental set up for inducing organoid differentiation with different treatment regimes. 
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2.10. RNA-sequencing analysis 

RNA-sequencing analysis on previously published datasets was carried out to examine which 

biological pathways were significantly enriched following neratinib treatment. Processed count 

tables for protein encoded genes from neratinib-treated mouse breast cancer and human 

glioblastoma cell lines were kindly provided by Dr Normand Pouliot from Olivia Newton-John 

Cancer Research Institute and Dr Colin Tang from Weill Cornell Medicine 94,95. Differential 

gene expression between neratinib and vehicle control groups were performed using DEseq2 

statistical package in R 96. Unless otherwise stated, a master list of differentially expressed (DE) 

genes was generated when the P-adjusted value less than 0.05. Subsequently, two lists of 

significantly upregulated (positive log2FoldChange values) or downregulated (negative 

log2FoldChange values) genes were generated from the master DE gene list with P-adjusted 

values or false discovery rate (FDR) below 0.05. Subsequently, these gene lists were inserted 

into the online database for annotation, visualization, and integrated discovery (DAVID) 

bioinformatic resource website for gene ontology (GO) terms and Kyoto encyclopaedia of 

genes and genomes (KEGG) pathway analyses as previously described 97-99. The computational 

algorithm used to determine statistical significance of individual pathways was detailed in the 

original papers 97,100. Here, GO terms and KEGG pathways were deemed as significantly 

enriched with P values below 0.05. 

 

2.11. CRISPR-screening analysis 

As previously described in Tang et al 95, a pool CRISPR screen was performed on neratinib-

treated SF268 human glioblastoma cell line to identify genes contributing to neratinib 

sensitivity. A count table of differentially expressed single-guided RNA and an output file of 

DrugZ were kindly provided by Dr Colin Tang from Weill Cornell Medicine. Using R script 

publicly available generated by Dr Colin Tang, drugZ rank plot was generated for normalised 
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Z score against sgRNA rank 95. The positive or negative normalised Z score of a gene with FDR 

below 0.05 confers with either neratinib sensitivity or resistance, respectively. 

 

2.12. KINOMEscan search database 

KINOMEscan competition assay, which is comprised of kinase-tagged phage, a compound of 

interest and immobilised ligand, was used to identify the binding affinity of a compound of 

interest to 442 different kinases 101. The results from previous scans were deposited on the 

online National Institutes of Health (NIH) Library of Integrated Network-Based Cellular 

Signatures (LINCS) KINOMEscan dataset (https://lincs.hms.harvard.edu/db/datasets/) 101,102. 

This dataset was then utilised to determine the binding affinity (Kd, nM) and percentage of 

control, where 100% means no inhibitory effect and lower percentage means strong inhibitory 

effect, of neratinib (10μM, ID: 20195 and 2053) and lapatinib (10μM, ID: 20107 and 20155) to 

442 kinases. To be considered as biologically relevant, the Kd value should be lower than the 

highest plasma concentration (Cmax) of neratinib (84.5 ng/mL equivalent to 152.0 nM 103) and 

lapatinib (2.13 μg/mL equivalent to 3.67 μM 104). 

 

2.13. Data analysis and statistics 

Descriptions of sample size and statistical tests were detailed in figure legends. Unless 

otherwise specified, all statistical analyses were carried out using unpaired Student’s t-test in 

GraphPad Prism 9 (version 9.2.0; USA). Statistical values were reported in mean ± standard 

error of the mean (mean ± s.e.m). Statistical significance, which was reported as exact P values, 

was considered as followed – for all histological assessment, RT-qPCR, gene ontology and 

KEGG pathway analyses, P values below 0.05 were deemed significant while for differential 

gene expression and Drug-Z analyses, P-adjusted values, or false discovery rate (FDR) below 

0.05 were deemed significant. In RT-qPCR experiments on frozen rat colons, we excluded two 
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samples in the vehicle-control-treated group (n = 4) and one sample in the neratinib-treated 

group (n = 5) due to poor RNA quality. 



 

Chapter 3: Results 

3.1. Neratinib-induced injury is spatially located and cell-type specific in rat 

colon 

As previously reported, all rats dosed with neratinib (50 mg/kg), which is clinically relevant for 

symptomology in human based on our previously published pilot study 33,  experienced 

common signs of gut toxicity including substantial weight loss and moderate diarrhoea 87. To 

determine the spatial effect of neratinib on the rat colon, we performed histopathological 

assessment, namely histopathological scoring, and measurement of crypt length, using 

haematoxylin and eosin (H&E) and immunohistochemical (IHC) staining on archived proximal 

and distal colon. The six criteria for histopathological scoring included (1) disruption of surface 

colonocytes, (2) crypt loss or disruption, (3) disruption of crypt cells, (4) infiltration of immune 

cells, (5) dilation of lymphatics and capillaries, and (6) oedema.  Overall, we observed that the 

most severe morphological damage was found in the distal colon as reflected by a significantly 

higher histopathological score and increased crypt length following neratinib treatment (Fig. 

5a, b, and c). In contrast, despite a significantly increase in proliferative Ki67-positive cells, the 

proximal colon of neratinib-treated rats only displayed a few, small, focal areas of mild mucosal 

damage without apparent sign of injury in the surface lining colonocytes expressing carbonic 

anhydrase 1 (CA1) (Fig. 5a-e). 

 

The surface epithelium of the distal colon, where CA1-positive colonocytes reside, of rat treated 

with neratinib was severely degenerated following neratinib treatment (Fig. 5a * and d). A 

dramatic increase in the proliferative crypt compartment containing Ki67-positive cells further 

suggested that a compensatory mechanism was in place with an attempt to regenerate the 

injured surface epithelium in the distal colon of rat treated with neratinib (Fig. 5d and e). 
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Inflammatory infiltrate, which was largely comprised of lymphocytes but often with a few 

polymorphonuclear leukocytes, mainly eosinophils, was prominently observed in the lamina 

propria in the distal colon (Fig. 5a, Δ). Together with lymphocyte infiltration in the surface 

epithelium, these histopathological findings were consistent with features of microscopic 

colitis, specifically lymphocytic colitis 105. Our current histopathological data collectively 

substantiated our observations that the injury in the distal colon and its surface lining 

colonocytes appeared to be more severe than in the proximal colon on day 28 of neratinib 

treatment. 
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Figure 5: Histopathological features of neratinib-induced injury in proximal and distal colon. a, Representative images of H&E panels of 

proximal and distal colon proximal and distal colon treated with either vehicle control or neratinib at 20X and 40X magnification. In the distal 

colon of neratinib-treated rat, (*) indicates injured surface lining colonocytes and (Δ) indicates immune infiltrates. Scale bar, 50 µm (20X) and 100 

µm (40X). b, Quantification of histopathological scoring. c, Quantification of crypt length. d, Representative images of IHC (CA1 and Ki67) panels 

of proximal and distal colon at 40X and 20X magnification, respectively, treated with either vehicle control or neratinib. Scale bar, 50 µm (Proximal 

colon) and 100 µm (Distal colon) e, Quantification of the percentage of Ki67-postive cells per crypt. For b, c, and 4, n = 6 rats in each treatment 

group. Unpaired Student’s t-test was used for statistical analysis, where P values below 0.05 were deemed statistical significance. The centre line 

represents the mean, and the error bar represents s.e.m 
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3.2. Is ferritinophagy-mediated ferroptosis or caspase-3-mediated apoptosis 

induced by neratinib? 

To gain insight into the biological processes underlying neratinib-induced cell death, we 

performed comprehensive analyses on differential gene expression, KEGG pathway and GO on 

previously published RNA-sequencing datasets 94,95. These datasets included TBCP-1 cell line 

derived from a mouse HER2-overexpressed breast cancer brain metastasis treated with neratinib 

for 24 hours, and intracranial human EGFR/HER1-mutant TS895 glioblastoma xenograft 

treated with neratinib for 3 hours. KEGG pathway analysis revealed that ferroptotic cell death, 

which is characterised by perturbed iron homeostasis and lipid peroxidation 84, was significantly 

enriched in both model systems (Fig. 6a). Since a previous study by Nagpal and colleagues 

confirmed that ferroptosis was induced by neratinib in HER2-postive human (SKBR3) and 

mouse (TBCP1) breast cancer cell lines 94, we hypothesised that neratinib-induced ferroptosis 

might extend beyond the context of breast cancer.  

 

GO term analyses further uncovered genes involved in autophagy and positive regulation of 

autophagy were identified among all biological processes in the list of significantly upregulated 

genes in both neratinib-treated TBCP1 and TS895 cells (Fig. 6b). Autophagy, which is a process 

mediated by the lysosomal pathway 106, and was previously related to the induction of 

ferroptosis, especially in the form of ferritinophagy 107,108. Ferritinophagy is a process of 

breaking down ferritin, an intracellular iron storage, to release reactive ferrous ion that then 

accelerates lipid peroxidation 109. We therefore asked if ferritinophagy-mediated ferroptosis was 

a likely initiating event of neratinib-induced ferroptosis. Indeed, among all differentially 

expressed genes contributing to ferroptosis identified from KEGG pathway analysis, only genes 

involved in iron transport, such as transferrin receptor (TFRC), divalent metal transporter 1 

(SLC11A2) and ferroportin-1 (SLC40A1), and ferritinophagy, such as nuclear receptor 
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coactivator 4 (NCOA4) and autophagy related 5 (ATG5), were significantly upregulated in 

TS895 cells following a 3-hour neratinib treatment (Fig. 6c). On the other hand, genes involved 

in both iron metabolism, such as ferritin heavy chain 1 (Fth1) and Slc40a1, and lipid 

peroxidation, such as acyl-CoA synthetase long chain family member 4 and 6 (Acsl4/6), were 

significantly upregulated in TBCP-1 following a 24-hour neratinib treatment (Fig. 6a). Together 

with a significant increase in iron uptake previously observed in neratinib-treated TBCP-1 cells 

94, our bulk RNA-sequencing analyses collectively suggested that HER1-mutant TS895 and 

HER2-positive TBCP-1 cancer cells potentially suffered from ferroptotic cell death, which 

appeared to arise from perturbed iron homeostasis through ferritinophagy, following neratinib 

treatment. 

 

However, our re-analyses of published bulk RNA-sequencing and CRISPR-screening datasets 

of neratinib-treated human SF268 glioblastoma cell line suggested that p53-mediated apoptosis, 

but not ferroptosis, was induced following neratinib treatment (Fig. 6d and e). This then 

prompted us to propose that a type of cell death induced by neratinib, i.e. ferroptosis or 

apoptosis, may be cell-type specific. Together with the histopathological assessment from the 

colon of rats dosed with neratinib, these findings motivated us to explore the biological process, 

especially the type of cell death and its triggering event, underlying neratinib-induced colon 

injury.
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Figure 6: Whether apoptosis or ferroptosis is induced following neratinib treatment may be cell-type specific. a, Volcano plot for upregulated 

key markers of ferroptosis analysed from published bulk RNA-sequencing data of TBCP-1 cell line and TS895 xenograft following 24 hours and 

3 hours of neratinib treatment, respectively. b, A table of enriched gene sets in autophagy and positive regulation of autophagy following neratinib 

treatment in TBCP-1 cell line (24 hours) and TS895 xenograft (3 hours). c, Differential gene expression of selected markers for iron transport and 

ferritinophagy in ferroptotic pathway from KEGG pathway analysis in TS895 xenograft. Where P values below 0.05 were considered statistical 

significance. d, A table of enriched gene sets in apoptotic process following neratinib treatment in SF268 cell line (72 hours). e, Gene candidates 

corresponding to neratinib resistant phenotype identified from SF268 CRISPR screen experiment. 
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3.3. Ferritinophagy-mediated ferroptotic cell death is the likely underlying 

histopathological feature of neratinib-induced colon injury 

As our histopathological findings revealed that neratinib stimulated degeneration of surface 

epithelial cells with strong inflammatory infiltrates in the distal colon (Fig. 5a) and our bulk 

RNA-sequencing analysis suggested neratinib could trigger either apoptosis or ferroptosis, this 

prompted us to question which type of cell death was likely induced by neratinib in the rat colon. 

Through IHC staining for Caspase-3, a marker for apoptosis, in the rat distal colon, we did not 

detect a significant change in Caspase-3-positive cells between the vehicle-control- and 

neratinib-treated rats (Fig. 7a and b). This suggested that apoptotic cell death may not be a 

prominent form of cell death in the rat colon following neratinib treatment. 

 

Next, to determine the presence of ferroptosis, key markers of iron homeostasis and lipid 

peroxidation were measured using IHC staining and RT-qPCR. Through IHC staining on 

paraffin-embedded distal colon, a reduction in endogenous FTH1 protein level colocalised with 

the injured surface epithelium was observed (Fig. 7a). We further observed a significant 

upregulation of expression of iron absorption gene, Tfrc, and downregulation of iron storage 

gene, Fth1 (Fig. 7c). Together, these findings may suggest that neratinib perturbed the pool of 

intracellular iron storage leading to an increase in cytosolic reactive ferrous (Fe2+) ion in the rat 

colon.  

 

Moreover, we found a significant upregulation of gene expression of Acsl4, which esterifies 

polyunsaturated fatty acids (PUFA) making them competent for ferroptosis, and arachidonate 

15-lipoxygenase (Alox15), which directly causes lipid peroxidation (Fig. 7d) 110,111. 

Additionally, the gene expression of Nox1, which causes lipid peroxidation by forming a 

complex with membrane-bound dipeptidyl-peptidase-4 (DPP4) in colorectal cancer and 
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mediates gut inflammation, was upregulated (Fig. 7d) 110-113. However, an endogenous 4-

hydroxynonenal (4HNE), a marker of lipid peroxide activity in tissues using HNEJ-2 antibody, 

was not detected. Neratinib also did not alter gene expression of Gpx4, which encodes a lipid 

peroxide scavenger contributing to ferroptotic resistance (Fig. 7d) 114,115. Collectively, the 

current findings support the notion that ferroptosis is the potential underlying histopathological 

features of neratinib-induced colon injury. 
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Figure 7: Ferroptosis is a potential underlying histopathological feature of neratinib-induced injury in the distal colon. a, Representative 

images of IHC-stained (Caspase-3, FTH1, and 4HNE) distal colon treated with either vehicle or neratinib. Scale bar, 100 µm. Arrowhead indicates 

an apoptotic body. b, The quantification of positive Caspase-3 cells per crypt. c, The gene expression levels of markers for iron metabolism (Tfrc 

and Fth1). d, The gene expression levels of markers for lipid peroxidation (Gpx4, Alox15, and Acsl4), superoxide-generating enzyme (Nox1). For 

b, c, and d, n = 4 rats in vehicle-control-treated group, and n=5 in neratinib-treated group. The gene expression levels were determined by RT-

qPCR and were shown relative to Ubc housekeeping gene. Except non-parametric Mann-Whitney test was used for Tfrc, Gpx4, and Acsl4, unpaired 

Student’s t-test was used for statistical analysis, where P values below 0.05 were considered statistical significance. The centre line represents the 

mean, and the error bar represents s.e.m 

 



Chapter 3: Results 
 

 
 71 

3.4. The inhibition of MAP4K3 kinase activity by neratinib may be critical for 

inducing ferroptosis 

Structurally similar to neratinib, lapatinib is a pan-HER-TKI that reversibly binds to the ATP-

binding pocket of HER1 and HER2 receptors (Fig. 8a) 116,117. However, rather than ferroptosis, 

lapatinib promotes apoptotic cell death in human (SKBR3) and mouse (TBCP1) HER2-positive 

breast cancer cell lines 94,118,119. Interestingly, patients receiving neratinib experienced a higher 

incidence of all-grade diarrhoea than with lapatinib, 95% and 65%, respectively 120. Our 

preclinical studies in Albino Wistar rats further showed that neratinib caused a more severe 

grade of diarrhoea than lapatinib did 33,121. These observations suggest that the difference in 

severity of diarrhoea might be due to a different type of cell death induced by neratinib 

compared to lapatinib. 

 

Since both neratinib and lapatinib are second-generation small-molecule TKIs, which target the 

ATP-binding pocket of kinases, we wondered whether modulating the activity of other kinases 

by neratinib might be essential for potentiating ferroptosis. To address this question, the publicly 

available Library of Integrated Network-based Cellular Signatures KINOMEscan (LINCS-

KINOMEscan) was utilised to assess the binding affinity (Kd, nM) and kinase activity (% to the 

control) for a panel of 442 kinases following neratinib (10 μM) and lapatinib (10 μM) treatment. 

To be considered as meaningful binding of a kinase, the cut-off Kd values were determined 

based on the highest concentration of neratinib (152 nM) and lapatinib (3.67 μM) in human 

plasma 104,122. Among all tested kinases, neratinib but not lapatinib strongly bound with a Kd of  

7.7 nM against mitogen-activated protein kinase kinase kinase 3 (MAP4K3, M4K3, or GLK) 

(Fig. 8b). Given that the amino acid sequence of MAP4K3 kinase is conserved in human, mouse, 

and rat (Appendix Fig.1) and the activation of MAP4K signalling promotes apoptosis and 

tumour suppression through c-Jun N-terminal kinase (JNK) and Hippo signalling pathways 123-
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125, we conjectured that the inhibition of MAP4K3 by neratinib, but not lapatinib, might perhaps 

be critical to facilitate a switch from apoptotic to ferroptotic cell death in human and mouse 

breast cancer cell lines in vitro as well as rat colon in vivo (Fig. 8c). 

 

To explore the binding of neratinib and lapatinib to the kinase domain of MAP4K3, we utilised 

a similar approach by Tang et al. 95 to comparatively align the published co-crystal structure of 

both neratinib-bound and lapatinib-bound EGFR kinase with the co-crystal structure of 

aminopyrrolopyrimidine-bound MAP4K3 kinase. Aminopyrrolopyrimidine is a model 

analogue of TKI crizotinib that inhibits MAP4K3 kinase activity by competing at ATP-binding 

pocket 126. The alignment suggested that both lapatinib and neratinib can theoretically fit into 

the ATP-binding pocket of MAP4K3 kinase (Fig. 8d). This appeared contradictory to the 

experimental data in the LINC KINOMEscan datasets, which reported that only neratinib but 

not lapatinib could bind to MAP4K3 kinase. Upon close examination of chemical structures of 

the three inhibitors and their binding conformation inside the ATP-binding pocket of MAP4K3 

kinase, we noticed a difference in key functional moieties of the inhibitors that could potentially 

contribute to variation in binding affinity. Firstly, neratinib and aminopyrrolopyrimidine have 

the pyridine group in common whereas lapatinib contains a meta-fluorobenzyl group inside the 

binding pocket (Fig. 8a). Though the steric hindrance of the fluorine atom is minimal, fluorine 

is a highly electronegative atom resulting in a highly polarised carbon-fluorine (C-F) bond 

which may lead to a poor fit into the binding pocket of MAP4K3 kinase 127. Secondly, in contrast 

to neratinib, which contains a substituted diethylamine group, lapatinib has a sulfone group, a 

polar moiety, that decreases the overall lipophilicity of lapatinib (Fig. 8a). Together, these two 

different substitution patterns likely lead to the obstruction of lapatinib from binding to the ATP-

binding pocket of MAP4K3 kinase. Collectively, these observations are suggestive of why only 

neratinib but not lapatinib can bind to and inhibit MAP4K3 kinase activity.
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Figure 8: The modulation of MAP4K3 by neratinib may be essential for potentiating ferroptosis. a, The chemical structure of neratinib, 

lapatinib, and aminopyrrolopyrimidine. b, A table of Kd values and percentage of control for neratinib and lapatinib to HER1/2/4 and MAP4K3 

kinase reported in the LINCS KINOMEscan dataset. c, The schematics illustrates of how the modulation of MAP4K3 kinase activity by neratinib 

might serve as a switch between apoptosis and ferroptosis. d, The alignment of crystal structures of published co-crystal structure of MAP4K3 

kinase bound with aminopyrrolopyrimidine inhibitor (blue) and either lapatinib (green) or neratinib (pink) bound with EGFR kinase. 
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3.5. Identifying an in vitro model suitable for investigating neratinib-induced 

ferroptosis in colonic epithelial cells 

Having identified ferroptosis as the likely feature underlying neratinib-induced colon injury, we 

wanted to ascertain that ferroptosis was induced by neratinib in colonic epithelial cells and 

further dissect its underlying mechanism of the early event leading to cell death. We initially 

attempted to utilise the human SW48wt colorectal cancer cell line, which has genomically wild-

type for HER but is mutant for Wnt signalling pathways 128-130, as an in vitro model. However, 

the results from XTT cell viability assay showed that the IC50 values of neratinib in SW48wt was 

approximately 9.73 μM following 24 hours and unable to be calculated following 48 hours of 

neratinib treatment. These values were significantly higher than the reported plasma 

concentration of neratinib in human (Cmax = 152 nM) (Fig. 9a) 122. Interestingly, our TEM 

imaging showed extensive vacuoles in the cytosol following the incubation of SW48wt cells with 

neratinib at a concentration of 10 µM for 4, 12 and 24 hours (Fig. 9b). The formation of vacuoles 

suggested the cells treated with neratinib likely underwent autophagy-mediated cell death. 

Nonetheless, as the IC50 value of neratinib was significantly higher than human Cmax value, we 

concluded that SW48wt cell line was potentially resistant to neratinib treatment and was deemed 

unsuitable for subsequent mechanistic investigations. 
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Figure 9: The effect of neratinib treatment on SW48 cell line. a, IC50 values of neratinib following 24 and 48 hours of drug treatment (n = 2). 

The centre line represents the mean, and the error bar represents s.e.m. b, Representative of TEM images of SW48 cell following 4, 12 and 48 

hours of neratinib treatment (10 µM). Scale bar 4 µm for vehicle control (0.1% DMSO) and 2 µm for 4, 12, and 24 hrs. 
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To overcome the mutation complexities associated with colorectal cancer cell lines, we sought 

to utilise the in vitro wild-type three-dimensional colonic organoid as an alternative model 

system for subsequent mechanistic investigation. The colonic organoid, which can be grown 

from isolated intestinal stem cells, recapitulates the complex structure of the intestinal 

epithelium with physiological relevance 53,58. The colonic organoid can also be 

pharmacologically manipulated to differentiate into a specific lineage of interest, such as 

absorptive colonocytes, critical for dissecting the mechanism of neratinib-induced cell death 62. 

Since the above histopathological assessment demonstrated the distal colon and its 

differentiated surface colonocytes was the major target of neratinib treatment in rats, we 

conducted a pilot study to stimulate colonic organoids derived from the distal region of a female 

C57BL/6 mouse colon under BMPlow (EN and ENR) and BMPhigh (E+BMP2 and ER+BMP2) 

differentiation media to identify the best condition for terminal colonocyte differentiation 

essential for subsequent mechanistic studies 61,131. 

 

Over the course of a 3-day differentiation period, consistent with previous reports in small 

intestinal organoids 61,131, colonic organoids grown in BMPhigh and BMPlow differentiation 

regimes generated compact organoid with thickened and folded epithelial walls in appearance 

compared to those grown in the complete WENR media (Fig. 10a). Interestingly, colon 

organoids grown in BMPhigh media appeared to form a more substantial budding structure than 

those in BMPlow media. To determine if the differentiation was successful, we validated the 

expression of key markers of differentiated colonocytes (Ca1, Aqp8, and Slc6a3), goblet cells 

(Muc2) and enteroendocrine cells (Chga) using RT-qPCR. Compared to complete WENR 

conditions, organoids in both BMPhigh and BMPlow differentiation conditions appeared to 

express markers of differentiated epithelial cells noted above (Fig. 10b). This result suggested 

that BMPhigh and BMPlow conditions, in principle, can trigger organoid differentiation towards 
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all lineages consistent with previous studies 58,62. Our current result from this pilot study 

suggested that differentiated colonic organoids might be a suitable model system to further 

delineate the underlying mechanism of cell death induced by neratinib in differentiated colon 

epithelial cells. 
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Figure 10: The effects of BMP-on and BMP-off differentiation regimes on female mouse distal colon organoid: a, Representative bright-

field (top panel) and toluene-blue-stained (bottom panel) images of mouse colon organoid in WENR medium or after 3 days in BMPlow (EN and 

ERN) and BMPhigh (E+BMP2 and ER+BMP2) differentiation media. Scale bar, 100 px is equivalent to 100 µm. The experiment was independently 

repeated three times. b, The expression levels of markers for colonocytes (Ca1, Slc26a3, and Aqp8), goblet cells (Muc2), and enteroendocrine cells 

(Chga) were determined by RT-qPCR and were shown relative to WENR control in log2FoldChange. Sample size represents n = 1 biological 

experiment.



 

Chapter 4: General discussion, limitations, 

and future direction 

Neratinib, a small-molecule pan-HER-TKI, is an adjuvant targeted therapy for patients with 

HER2-positive breast cancer 132. In contemporary practice, over 90% of patients receiving 

neratinib experienced mild-to-severe diarrhoea, which often leads to early dose reduction or 

discontinuation 32. Yet, the underlying biological processes leading to neratinib-induced gut 

toxicity, especially in the colon, remain incomplete. In the present work, we used a previously 

established clinically relevant in vivo Albino Wistar rat model to investigate gut toxicity 

following neratinib treatment, in which healthy female rats were orally dosed with neratinib (50 

mg/kg) daily for 28 consecutive days 33,87. Overall, our study shows that the injury is spatially 

located with predominating injury in the distal colon. In particular, the degeneration and 

morphological changes of CA1-positive colonocytes lining the surface epithelium are more 

pronounced in the distal colon than in the proximal colon. Ferritinophagy-mediated ferroptosis 

is a potential histopathological feature of neratinib-induced gut toxicity. Finally, we propose 

that the inhibition of MAP4K3 kinase activity and its downstream signalling pathway may be 

essential for inducing ferroptosis in a context of neratinib treatment, but not other TKI such as 

lapatinib, which promotes apoptosis (Fig. 11). 



Chapter 4: General discussion, limitations, and future direction 
 

 
 82 

 

Figure 11: A schematic of proposed mechanism of how ferroptosis is induced by neratinib. 
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4.1.  Molecular regionalisation may underlie the spatially located 

neratinib-induced injury in the rat colon 

The spatial difference in the severity of injury observed in the proximal and distal colon could 

be explained on the basis of molecular regionalisation of the colon. Using cutting-edge spatial 

transcriptomics, a recent study led by Villablanca’s team revealed that the difference in the 

morphology of the proximal and distal colon was governed by molecular regionalisation of gene 

expression 80. They further showed that the severity of DSS-induced injury varying between 

different regions of the colon was likely due to this pattern. As the morphology of the proximal 

and distal colon of the rat are distinct as observed in representative H&E-stained sections (Fig. 

5a), we hypothesised that similar to the mouse colon, there might exist the pattern of molecular 

regionalisation that potentially implicated the distal colon as the major site of injury following 

neratinib treatment. For example, factors may contribute to the severity of the injury following 

neratinib treatment include the different distribution of HER receptors and upregulation of key 

inflammatory pathways such as JAK-STAT and TNFα pathways between the proximal and 

distal colon.  

 

On the other hand, since all rats were culled on day 28 of neratinib treatment and a dramatic 

increase in proliferative Ki67-positive cells in both proximal and distal colon of rats treated with 

neratinib (Fig. 5e), we cannot exclude the possibility that we might have missed the earlier 

timepoint, where the mucosal damage may occur in both proximal and distal colon. The 

proximal colon may possess an intrinsic adaptive mechanism that leads to a more rapid healing 

rate and a less severely injured phenotypes than the distal colon on day 28 of neratinib treatment. 

Though the current study does not provide the precise explanation for why the injury in the 

distal colon appears to be more severe than in the proximal colon, it sheds light on potential 

consequence of the pathology following neratinib treatment.  
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4.2.  Ferritinophagy-mediated ferroptosis may be the underlying feature 

of neratinib-induced colon injury 

Further investigations in rat colon tissues and the integration of published bulk RNA-sequencing 

analyses revealed that ferritinophagy-mediated ferroptosis may be the underlying feature of not 

only colon injury, especially in the surface lining colonocytes, but also cell death in the HER2-

positive TBCP-1 breast cancer cell line and HER1-mutant TS895 glioblastoma xenografts. 

However, there are several limitations associated with the current rat models that prevent a 

conclusive determination that ferroptosis is the causality of neratinib-induced colon injury. 

Firstly, in IHC staining experiments on rat colon, a positive signal of endogenous 4-

hydroxynonenal (4HNE), a marker for detecting lipid peroxide in tissues using HNEJ-2 

antibody, was not detected. This could be due to non-specificity of HNEJ-2 antibody to lipid 

peroxide, which was previously deemed unsuitable for detecting lipid peroxidation underlying 

ferroptosis, or at least this antibody is not suitable for detecting lipid peroxide in rat colon tissues 

84,133. We suggest that the use of HNEJ-1 or anti-malondialdehyde (MDA) antibodies would be 

more favourable for IHC staining to detect lipid peroxidation 84,134. 

 

Secondly, a change in Gpx4 gene expression was additionally not observed in the neratinib-

treated group. Previous studies found that transcriptional regulation of Gpx4 did not seem to 

correlate with ferroptosis vulnerability, but rather mRNA translation and post-translational 

regulation of Gpx4, which leads to insufficient level or dysfunctional GPX4 enzymatic activity, 

is implicated in susceptibility to ferroptosis 114,135-137. In the TBCP-1 breast cancer cell line, 

neratinib significantly depletes intracellular glutathione, which is essential for the formation and 

enzymatic function of GPX4 138. We suggest that the amount and enzymatic activity of GPX4 

might have also been impeded in rat colon following neratinib treatment. To validate the 

contribution of GPX4, we will determine the presence of GPX4 protein using IHC staining and 
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measure the reduced/oxidised ratio of glutathione using calorimetric test in the rat colon in a 

future study.  

 

Finally, the degeneration, or at least changes in the morphology, of surface lining CA1-positive 

colonocytes and changes in the expression of several markers of ferroptosis following a single 

endpoint of neratinib treatment are not sufficient to claim that ferroptosis is induced in 

colonocytes as a direct consequence of neratinib treatment. For example, the degeneration of 

surface lining epithelial cells could be due to the improper differentiation of stem/progenitor 

cells that prevents CA1-positive colonocytes to adopt mature phenotypes, such as expressing 

carcinoembryonic antigen-related cell adhesion molecule 7 (CEACAM7). 

 

Furthermore, following neratinib treatment, there was a dramatic increase in the infiltration of 

lymphocytes in the lamina propria and intraepithelial of the distal colon that suggested a 

diagnosis of lymphocytic colitis. A common feature of lymphocytic colitis is the infiltration of 

CD8+ lymphocytes. Active immune cells, such as CD8+ lymphocytes, are able to stimulate 

ferroptotic cell death. Two recent studies from Wang et al. 139 and Liao et al. 140 reported that 

ferroptosis could be induced by active CD8+ T cells. Mechanistically, following the release of 

interferon gamma (IFNγ) from active CD8+ T cells and interaction with cognate receptors on 

melanoma and colon cancer cells, the downstream signalling of IFNγ robustly induces 

ferroptotic cell death by stimulating the uptake of arachidonic acid and upregulation of ACSL4 

while suppressing the expression of SLC7A11, which encodes for system Xc- essential for 

cysteine uptake 139,140. As such, based on the current data collected from a single endpoint on 

day 28 of neratinib treatment, it is possible that ferroptosis is an indirect consequence of 

neratinib-activated immune cells, such as CD8+ T cells, leading to epithelial cell death. 
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Future studies require an earlier timepoint of neratinib-treated rats and IHC staining for 

CEACAM7, a specific marker of mature colonocytes 141 and markers of TH17-related T cells 

and CD8+ lymphocytes associated with noted microscopic colitis 105,142. Similar to previous 

studies done in confirming the presence of ferroptosis in mouse model of DSS-induced colitis, 

to ascertain if ferroptosis is induced and dependent to ferritinophagy in rat colon, we will co-

treat neratinib with liproxstatin-1, a potent spiroquinoxalinamine radical trap of lipid peroxide 

134,135, and deferoxamine (DFO) or deferiprone, an iron chelator scavenging reactive ferrous 

iron, to the rats 143,144. If liprostatin-1 and DFO/deferiprone can substantially mitigate colon 

injury and signs of gut toxicity in rats treated with neratinib, then ferroptosis is confirmed as the 

underlying feature of neratinib-induced colon injury. To further confirm if the death of colonic 

epithelial cells is a direct consequence of neratinib and ferroptosis is the underlying mechanism, 

an in vitro model system of colonic epithelial cells treated with neratinib is therefore required. 

 

4.3.  Resistance of SW48 colorectal cancer cell line to neratinib may be due 

to aberrant Wnt signalling pathway and wild-type TP53 

Our study demonstrates that the human SW48 colorectal cancer cell line, which bears 

hyperactivating mutation in HER1 and wild-type TP53 gene but intact HER and mutant Wnt 

signalling pathways, is not suitable for further mechanistic investigation of neratinib-induced 

ferroptosis 128-130,145. We suggested the aberrant Wnt signalling pathway and wild-type TP53 

status of SW48 cell line may be the causal of neratinib resistance. First, the resistant 

phenomenon of SW48 cell line to neratinib could be due to aberrant Wnt signalling pathway. 

As previously reported in a context of BRAFV600E colorectal cancers treated with BRAF ± HER1 

targeted therapy, the aberrant Wnt signalling pathway can activate intrinsic HER1-independent 

compensatory mechanisms independently from canonical HER-ERK signalling that leads to the 

resistance of targeted BRAF ± EGFR inhibition 146.  
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Second, TP53wt status in SW48 colorectal cancer cell line might suppress the potentiation of 

ferroptosis by abolishing lethal lipid peroxidation at the plasma membrane. Nagpal and 

colleagues recently reported that similar to erastin, neratinib-induced ferroptosis was dependent 

on the inhibition of cystine/glutamate antiporter (system Xc-) encoded by SLC7A11/SLC3A2 

gene 138,143. Intriguingly, Xie et al. previously reported that colorectal cancer cell lines with 

TP53wt gene, namely HCT116 and SW48, but not TP53mut gene, namely Caco2 and DLD1, 

completely abolished erastin-induced ferroptosis 113. Of note, all the colorectal cancer cell lines 

used in Xie et al.’s study bear genetic mutation in CNTBB1 and/or APC leading to the 

consecutive activation of Wnt signalling pathway 128-130,145,147.  Mechanistically, TP53wt protein 

forms a complex with dipeptidyl-peptidase-4 (DPP4) in the cytosol that transcriptionally 

stabilises the gene expression of SLC7A11. On the contrary, in TP53mut cell lines, DPP4 

translocates to the plasma membrane and forms a complex with NOX1. The active DPP4-NOX1 

complex triggers excessive lipid peroxidation resulting in the loss of plasma membrane integrity 

and inducing ferroptosis 113. Hence, lethal lipid peroxidation at the plasma membrane induced 

by neratinib may be driven by NOX1-DPP4 complex and TP53wt status may lead to the 

resistance observed in SW48 colorectal cancer cell line. Collectively, despite intact HER 

signalling pathway, the resistance to neratinib-induced ferroptosis of colorectal cancer cell lines 

may depend on both the aberrant Wnt signalling arisen from CNTBB1 and/or APC mutations 

and wild-type TP53. 

 

However, it should be noted that ferroptosis can be induced in cells bearing wild-type TP53 and 

intact Wnt signalling, such as HT1080 fibrosarcoma cell line 114,143,148-150. Given that colonic 

epithelial cells express wild-type TP53 and intact Wnt signalling pathway, we argue that 

ferroptosis may also be induced in the colon following neratinib treatment. Collectively, an 

alternative in vitro model system, which can recapitulate the physiologically relevant phenotype 



Chapter 4: General discussion, limitations, and future direction 
 

 
 88 

of differentiated colonic epithelial cells and is amendable to a wide range of experimental 

methods, to immortal colorectal cancer cell lines is needed. 

 

4.4.  3D organoids may be a suitable in vitro model for future mechanistic 

investigations  

As an alternative to SW48 colorectal cancer cell line, differentiated 3D colonic organoids 

appeared to be a more suitable in vitro model system for subsequent studies with neratinib. The 

colonic organoids were chosen because they can be derived from isolated colonic stem cells and 

self-organise into a 3D tissue-like structure that recapitulates the complex structure and 

functions of the colonic epithelium in vivo 53,151. Here, we suggest that the 3D colon organoids 

would be suitable for (1) determining if ferroptosis is induced by neratinib and which 

differentiating lineage and cell population were affected by neratinib treatment; and (2) 

dissecting the mechanisms underlying the early event of neratinib-induced cell death by 

integrating genetic and pharmacological manipulation, imaging, and -omics techniques.  

 

So far, we tested two different differentiation conditions, namely BMPhigh and BMPlow, to 

identify which was the best conditions for stimulating terminally differentiated mouse colon 

organoids. We found that both BMP conditions promoted the differentiation of colon organoids 

towards goblet cells (Muc2), enteroendocrine cells (Chga), and terminally differentiated 

colonocytes (Ca1, Aqp8, and Slc26a3). However, due to small sample size (n = 1), we cannot 

confidently conclude at this stage which phenotype, such as mature versus immature, and which 

differententiation lineages were more favourably enriched under BMPhigh and BMPlow 

conditions as previously reported by Clevers’ group in small intestinal organoid 61,131. As such, 

future research will need to increase the sample size (n = 3) to address the outstanding questions 

on BMPlow- and BMPhigh-driven organoid differentiation. 
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To probe ferroptosis, we additionally consider modifying the composition of the current 

organoid culture media, specifically B27 supplement. Though B-27 supplement contains 

transferrin, which is essential for ferroptosis 152, it also contains several anti-ferroptotic 

compounds such as a-tocopherol, catalase, SOD, glutathione, and selenite 153. Hence, B27 

supplement may hinder the induction of ferroptosis by neratinib in colonic organoids as 

previously observed in cortical organoids 154. Therefore, it is essential for future studies to be 

cautious about the potential anti-ferroptotic effect of B27 supplement, and perhaps to consider 

culturing organoids in a condition of B27-depletion with or without FBS supplement, which has 

been proven essential for ferroptotic progression 152, for a few days before treating the organoids 

with neratinib and other known ferroptotic inducers such as erastin or RSL3, which serve as the 

control for ferroptotic induction. To further confirm that ferroptosis can be induced by neratinib 

in colonic organoids, similar to the approach discussed in section 5.2, we will co-treat the 

organoid with neratinib and liproxstatin-1 and DFO. Only if liproxstatin-1 and DFO can 

substantially rescue cell death, we can then confidently conclude that the colonic epithelial cells 

can undergo ferroptosis following neratinib treatment. 

 

In addition, we proposed that the inhibition of MAP4K3 kinase activity by neratinib but not 

lapatinib might be essential for ferroptotic induction. Future studies should exploit the use of X-

ray crystallography to explore how neratinib but not lapatinib binds to the active ATP-binding 

pocket of MAP4K3 kinase and to determine any additional allosteric binding sites that might be 

important for modulating kinase activity as outlined in the context of RSL3-bound GPX4 by 

Stockwell’s group 136. The use of in vitro 3D colonic organoids can be integrated to validate of 

the activity of MAP4K3 kinase and its downstream signalling pathway leading to apoptosis. 

Here, we suggest performing immunoblotting experiments similar to Lam et al. 123 to determine 
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the presence of phospho-MAP4K3, phospho-JNK, phospho-cJun and cleaved caspase-3 

following a titration of a series concentration of neratinib and lapatinib.  

 

Furthermore, emerging evidence from recent literatures has demonstrated that the distinct 

subcellular partition of chemically related inhibitors correlates with distinct therapeutic 

outcomes. As a proof of concept, using fluorescent confocal microscopy, Fryman and 

colleagues revealed that the partitioning of closely related heat shock proteins 70 (Hsp70) 

inhibitors to mitochondria, ER or vesicles can exert either anti-cancer or anti-viral therapeutic 

outcomes 155. We therefore hypothesise that neratinib and lapatinib may localise at distinct 

subcellular compartments that may be essential to fuel ferroptosis and apoptosis, respectively. 

 

4.5.  Limitations of the current study 

Though our current rat study suggests that ferroptosis is a potential underlying feature of 

neratinib-induced colonic injury, there are several technical limitations associated with the 

current models and analyses which in our opinion are essential to be address in future studies. 

An earlier timepoint of neratinib treatment in the rat model is needed (1) to fully understand the 

difference in response to neratinib treatment in proximal versus distal colon and to conclude 

that apoptosis is not induced by neratinib; (2) to determine if mature colonocyte is a major 

target of neratinib treatment; and (3) to determine whether the death of colonic epithelial cell is 

due to either the direct or indirect consequence of neratinib treatment.  

 

Besides the use of in vitro SW48 as a model system, we also attempted to use LIM1215 

colorectal cancer cell line, which expresses intact HER but mutant Wnt signalling pathway 

156,157. The viability of LIM1215 was determined by MTT cell viability assay in collaboration 

with Professor Ross Bathgate and Dr. Brad Hoare from the Florey Institute of Neuroscience 
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and Mental Health. Our results demonstrated that culturing LIM1215 cell lines in RMPI-1640 

media was not suitable for testing neratinib because of neratinib resistance and extensive cell 

death in the negative control (DMSO-treated) group (Fig. 12a and b).  

 

Culturing conditions of in vitro colonic organoids derived from both human and mouse as a 

model system as an alternative to colorectal cancer cell lines should be further optimised. These 

optimisations include identifying appropriate culturing condition for both undifferentiated and 

differentiated models critical for probing neratinib-induced ferroptosis. Finally, the initiating 

event of how neratinib induces ferroptosis remains unclear, in which we postulate is due to 

perturbed redox regulation at specific subcellular compartment, such as mitochondria or 

endoplasmic reticulum (ER).
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Figure 12: The response of LIM1215 colorectal cancer cell line to neratinib treatment.  a, Mitochondrial metabolic activity of Lim1215 

measured by MTT assay and plotted against the absorbance optical density (O.D.) value. b, IC50 values of neratinib for LIM1215 after 24, 48, and 

72 hours of neratinib treatment. For a, and b, data are presented from n = 2  biologically independent experiments. The centre line represents the 

mean, and the error bar represents s.e.m. 
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4.6.  Future direction – Towards understanding the spatiotemporal dynamics of 

ROS at specific subcellular compartments – a mini-review 

 
4.6.1. Pleiotropic role of ROS in mediating intestinal health and injury 

The biological functions of ROS are pleiotropic in intestinal epithelial cells. The study of the 

precise spatiotemporal regulation of ROS at specific compartments of the cell is a fast-evolving 

field. To date, ample evidence has uncovered a more complex physiological-relevant functions 

of ROS in intestinal homeostasis by mediating various signalling and metabolic pathways, gene 

expression and cell cycle 158-161. For example, ROS generated from NAPDH oxidase (NOX) 

enzymes located at the plasma membrane (PM) control the activity of the gut bacteria 162,163 

and potentiate HER signalling pathway 164. Mitochondrial ROS, which are mainly the by-

product metabolites of complex I and II from the electron transport chain 165-167, have emerged 

as signalling mediators critical for orchestrating the normal functions of intestinal stem cells. 

In active intestinal stem cells, mitochondrial H2O2 activates p38-MAPK signalling pathway and 

oxidises cyclin dependent kinases (CDK) which thereby drive the proliferation and 

differentiation of stem cells 168-170.  

 

However, sustained elevation or reduction of intracellular ROS level, which are referred to as 

oxidative and reductive stress, respectively, can cause both reversible and irreversible damage 

to biomolecules, such as lipids, proteins, and nucleic acids 82,171. Unless the physiological 

concentration of ROS is restored, dysfunctional biomolecules can potentially impede critical 

signalling and metabolic pathways while inducing cell cycle arrest and growth inhibition and 

activating death-accelerating mechanisms 82,172,173. For example, uncontrolled peroxidation of 

polyunsaturated fat (PUFA) at the endoplasmic reticulum (ER), PM, and mitochondrial 

membrane following the treatment of ferroptosis inducers such as dihydroorotate 

dehydrogenase (DHODH) inhibitor brequinar, FINO2, and erastin, leads to lethal membrane 
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permeabilization – the hallmark of ferroptotic cell death 143,174,175. On the other hand, the 

treatment of chemotherapy, such as cisplatin, or peroxiredoxin (PRDX) inhibitor, such as 

ainsliadimer A, results in the rapid accumulation of mitochondrial H2O2 and permeabilization 

of the mitochondrial outer membrane that subsequently releases cytochrome c and activates a 

cascade of caspase leading to apoptosis 176-180. This evidence collectively suggests that a type 

of cell death triggered by aberrant ROS signalling is context-specific that strongly depends on 

the type of stimulus, specific ROS species, and their corresponding subcellular compartments. 

 

As ROS can be both essential and lethal to the cell, the production, activity, and degradation of 

ROS must be precisely regulated and compartmentalised to specific subcellular compartments, 

such as PM or mitochondria, critical for driving cellular physiology. To compartmentalise and 

neutralise ROS, an intricate antioxidant defence system has evolved ranging from small 

molecules, such as vitamins and coenzyme Q (CoQ or ubiquinone), to large biomolecules, such 

as thiol-containing enzymes namely PRDX and glutathione peroxidases (GPX). Following the 

neutralisation of ROS, the thiol-containing enzymes can be regenerated from their oxidised 

state by their counterpart reductase enzymes, which requires the NADP+/NADPH system 181,182. 

For instance, GPX4, CoQ10, and vitamin K act in parallel to scavenge lipid peroxides, protect 

the PUFA from being peroxidised at the membrane, and thus prevent ferroptotic cell death 

114,183-185. Mitochondrial ROS are primarily controlled by mitochondrial membrane potential 186 

and PRDX enzymes 180,187. E3 ligase Culin-2-Fem-1-homolog-B (CUL2FEM1B) and its target 

folliculin-interacting protein 1 (FNIP1) is a newly discovered core machinery of reductive 

stress response by regulating mitochondrial ROS 188,189. Under homeostatic and oxidative stress 

condition, brain-expressed X-linked (BEX) proteins bind to and inhibits CUL2FEM1B complex 

and release free FNIP1. FNIP1 plays a critical role in removing damaged mitochondria via 

mitophagy to prevent excessive mitochondrial ROS production 188,190. However, under 
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reductive stress, to restore physiological levels of mitochondrial ROS via oxidative 

phosphorylation, the CUL2FEM1B complex detects and binds to the conserved cysteine residues 

of FNIP1 through zinc ions. FNIP1 is subsequently ubiquitylated and degraded via a 

proteasome-dependent mechanism 188,189. Together, the tight regulation of ROS at their 

corresponding subcellular compartments is pivotal to the health of intestinal epithelial cells, 

whereas perturbation to the precision of spatiotemporal redox regulation, such as by 

chemotherapy or targeted cancer therapy, may trigger intestinal cell death that implicating 

intestinal injury.  

 

Emerging in the current literature is that rather than functioning autonomously, the cell forms 

an intricate interconnected network of communication among different subcellular 

compartments to adapt with internal and external challenges 191,192. Despite current knowledge 

of the significance of ROS for cellular homeostasis and injury, biological questions central to 

ROS as the mediator for intercompartmental communication remains incomplete. Specifically, 

in the present work, we proposed that aberrant redox signalling is a potential initiating event of 

neratinib-induced ferroptosis, but which ROS species, as well as where and how ROS are 

initiated and propagated following neratinib treatment remains unclear. 

 

Recent studies in the field of ferroptosis discovered that almost all ferroptotic inducers, at least 

in cancerous cell lines in vitro, first trigger the lipid peroxidation at specific compartments of 

the cell. For example, brequinar and FINO2 trigger extensive lipid peroxidation at the inner 

membrane of the mitochondria and ER, respectively 174,175. Subsequently, lipid peroxide is 

rapidly spread to the PM where lipid peroxide exerts its lethality to the cell 99,193. Aligning with 

this observation, we herein conjecture that neratinib may first perturb redox regulation of at 

specific subcellular compartment, such as ER and/or mitochondria, which then rapidly 
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propagates and triggers a massive lipid peroxidation at the PM leading to ferroptosis. Yet, the 

underlying mechanism of how lipid peroxide is spread from the internal subcellular 

compartments to the plasma membrane remains unclear. It is plausible that the spread of lipid 

peroxide is carried out by vesicular transport, such as peroxisome 194, or direct membrane 

contact sites, e.g. mitochondria-PM and ER-PM. Consequently, investigating how the 

dynamics of ROS are spatially and temporally modulated in their native form following a 

perturbation, such as neratinib treatment, necessitates the integration of cutting-edge 

technologies, namely organoids, light-sheet microscopy (LSM), and fluorescent probe/sensors. 

We previously discussed the utility of 3D organoids as an in vitro model system for studying 

physiological and disease states of the colonic epithelium in section 1.6. Here, we will discuss 

the utility of LSM and the next-generation fluorescent probes/sensors for illuminating the 

spatiotemporal dynamics of specific ROS species at a specific compartment of the cell in the 

3D intestinal organoids.  

 

4.6.2. Imaging strategies for illuminating the spatiotemporal dynamics of ROS 

4.6.2.1. Light-sheet microscopy (LSM) 

Imaging-based fluorescent technologies that provide single-cell resolution for visualising and 

constructing the 3D dynamic structure of thick samples such as organoids are blossoming. We 

argue that the key criteria for the choice of microscopy suitable for studying ROS dynamics 

should be associated with low level of unwanted phototoxicity and photobleaching that may 

potentially obscure the ROS read-outs. One such candidate is the state-of-the-art light-sheet 

microscope (LSM). LSM, which utilises ultra-thin single illuminating plane, has revolutionised 

the field of microscopy for imaging thick objects including whole tissues, animals, and 

organoids in live-cell 3D imaging 195-198. While the whole object is illuminated in the 

conventional wide-field and confocal fluorescent microscopes, only a section of the sample 
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corresponding to the plane of light is illuminated at any given time in LSM. As the result, LSM 

allows fast in-depth tissue-penetration volumetric scanning while reducing out-of-focus light 

scattering to enhance signal-to-noise ratio 199,200. As the illuminating plane is restricted to the 

region of the light sheet, the exposure time is significantly reduced resulting in reducing the 

exciting time for a fluorophore and thus reducing photobleaching and phototoxicity for 

continuous live-cell imaging in an extended period of time. Therefore, the use of LSM could 

potentially be applicable for illuminating the spatiotemporal ROS dynamics in organoids. 

 

Subcellular resolution of images can be greatly enhanced by integrating the LSM with other 

cutting-edge microscopic technologies. Firstly, by incorporating the adaptive objective, which 

correct wavefront distortion travelling through different environment causing blurry images 201, 

to the lattice LSM, Betzig and colleagues successfully constructed high-resolution 3D videos 

of the dynamics of mitochondria throughout different stages of the zebrafish embryogenesis 196. 

Notably, they observed that during mitosis, the mitochondria are re-organised to near the 

plasma membrane demonstrated the direct contact between the mitochondria and plasma 

membrane may be essential for cell division. Secondly, super-resolution imaging technologies, 

which significantly improve the imaging resolution of subcellular compartments by breaking 

the diffraction limit imposed by the characteristic of light wave 202, can also be integrated into 

the LSM. For instance, incorporating structured illumination microscopy (SIM) and single-

molecule stochastic optical reconstruction microscopy (STORM) to the 3-dimensional 

interferometric lattice light-sheet (3D-iLLS) microscope allows the investigators to visualise 

and study the precise expression patterns of receptors at the plasma membrane and illuminate 

dynamics of microtubules and mitochondria at subcellular level 203-205.  
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4.6.2.2. Fluorescent probes and sensors 

The use of fluorescent probes and sensors is considered as a direct method for visualising and 

quantifying ROS in a cellular system. Previous reviews have summarised and provided expert 

recommendation for the choice of different types of probes/sensors, including small-molecule 

probes and genetically encoded sensors, for detecting various different ROS species in vitro 

and in vivo 206,207. Here, we exclusively focus on the design of probes/sensors suitable for 

illuminating specific ROS species at subcellular compartments of interest with an example of 

H2O2. We recommend that this type of fluorescent probes/sensors should have at least three 

main desired characteristics – (1) not perturbing the normal cellular system; (2) demonstrating 

ROS species sensitivity and selectivity; and (3) only targeting specific subcellular 

compartments of interest. 

 

4.6.2.2.1. Genetically encoded sensors (GES) 

The use of genetically encoded sensors (GES) has long been regarded as the most sensitive 

approach for spatiotemporal visualisation and quantification of subcellular H2O2 206-208. 

However, no current GES for O2.- and lipid peroxide is available. The advantage of GES is that 

it can be stably or transiently expressed in cell lines and intestinal organoids using genetically 

engineered approaches, namely lentiviral gene transduction 209. In general, the sensors from the 

HyPer and roGFP series contains a mutant H2O2-sensitive thiol and a site-specific domain in a 

fluorescent protein (e.g., green, or red fluorescent proteins) to direct the sensor to specific 

subcellular compartments of interest such as mitochondria or cytoplasmic microtubules 

68,210,211. For instance, in HEK293 and HeLa cells, the use of HyPer7 sensors revealed that under 

normal condition, mitochondrial H2O2 accumulates at membrane and is compartmentalised by 

cytosolic PRDXs and thioredoxin reductase (TXNRD), and that perturbed this antioxidant 

system leads to an increase in both mitochondrial and cytosolic ROS 187,211. 
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4.6.2.2.2. Small-molecule fluorescent probes 

Though the use of current commercially available or in-house small-molecule probes can 

demonstrate ROS species selectivity such as boronate probes for H2O2 212,213 and dual ROS 

species, such as .-OH and hypochlorous acid (HClO) 214 or H2O2 and nitric oxide (NO) 215. 

However, due to the lack of spatial resolution, these probes can be problematic in illuminating 

the precise subcellular localisation of a specific ROS species of interest 206,207. To circumvent 

current challenges, innovative technologies, such as nucleic acids and nanoparticles as delivery 

system, for precisely targeting specific subcellular compartments have attracted considerable 

attentions and have been discussed in great detailed elsewhere 216. Here, we exclusively focus 

on tethered conjugates that can direct the small-molecule probes to specific compartments of 

the cell, thus, achieving the spatial single-cell resolution.  

 

The first approach is to use the luciferin-based bioluminescent system. A previous study from 

Chang’s group demonstrated that co-injecting peroxy caged luciferin-2 (PCL-2) and z-Ile-Glu-

ThrAsp-d-Cys (IETDC) into the mice can simultaneously detect H2O2 and caspase-8 activity 

following lipopolysaccharides (LPS) treatment 217. Mechanistically, PCL-2 reacts with H2O2 to 

release 6-hydroxy-2-cyanobenzothiazole (HCBT). HCBT subsequently reacts with D-cysteine, 

which is the product from the interaction between IETDC and active caspase 8, to produce 

firefly luciferin bioluminescent signal. By using the similar principle, one could theoretically 

target ROS species at specific subcellular compartments to achieve spatial imaging resolution.  

 

The second approach is to directly tag additional moiety to the fluorescent probe to direct the 

probe to a specific subcellular compartment. For example, the use of dihydrotetrazine-

diacylphospholipid and a TCO-modified dye (TCO-Dye) for targeting the plasma membrane 

218 or triphenylphosphonium lipophilic cation moiety of the MitoNeoD probe for targeting 
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mitochondrial O2•− 219. Furthermore, the similar principle to photoswitchable BGAG12,400  probe, 

which precisely targets metabotropic glutamate receptor (mGluR) and modulate the binding of 

glutamate to mGluR developed by Gutzeit et al. 220, could also be exploited for illuminating the 

dynamics of ROS of a targeted protein. In brief, BGAG12,400 contains two key functional 

moieties – (1) the SNAP-tag direct to direct the probe to specific protein of target 221,222, such 

as mGluR; and (2) the photoswitchable moiety, azobenzene-400, tethered with glutamate 

(hereafter referred to as A400-Glu) to control the binding of glutamate to the mGluR. Inspired 

by BGAG12,400 probe, we can theoretically replace the A400-Glu moiety with the ROS-selective 

moiety and SNAP-tag to other known protein expressed at a specific subcellular compartment 

such as NOX enzymes at the plasma membrane. Hence, this type of probe may potentially be 

the direct approach for not only visualising the spatial dynamics but also quantifying the amount 

of specific ROS species and a targeted protein of interest at a particular subcellular 

compartment of interest.  
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4.7.  Concluding remarks 

The overarching goal of this thesis was to better understand the biological processes underlying 

neratinib-induced gut injury, especially in the colon. The research carried out in this thesis 

suggests ferritinophagy-mediated ferroptosis as a potential underlying histopathological feature 

of not only neratinib-induced colon injury in an in vivo rat model, but also in in vitro HER2-

positive mouse TCBP-1 breast cancer cells and xenografted HER1-mutant human TS895 

glioblastoma cells. However, neratinib-induced ferroptosis is context specific. In the context of 

neratinib-induced ferroptosis, we propose that the modulation of MAP4K3 signalling by 

neratinib, but not by lapatinib, may serve as a critical switch from apoptotic to ferroptotic cell 

death. For future mechanistic investigation in the colon, we recommend the use of differentiated 

colon organoids as a model system rather than cell lines because the organoids precisely 

recapitulate the complex structure and functions of the in vivo colonic epithelium. Altogether, 

we hope that our study will inspire future research to offer a thorough understanding of the 

molecular mechanism underlying neratinib-induced ferroptosis in the colon, especially 

perturbed redox regulation at a specific subcellular compartment as the initiating event of cell 

death. We believe that the integration of cutting-edge technologies, namely 3D organoids, 

LSM, fluorescent probes/sensors, and multi-omics, will provide a holistic profile of 

compartmental-specific regulation of ROS and its underlying biological processes following 

neratinib treatment. A thorough understanding of this early event of neratinib-induced cell death 

may serve as an exciting new platform for future supportive therapies and discovery of redox 

compartmental-specific therapies to mitigate gut toxicity while enhancing the efficacy of 

similar or emerging anti-cancer therapeutics.
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Appendix 

 

 

Appendix figure 1: Result for the alignment sequences of human, mouse, and rat MAP4K3 

kinase (aa 16-273) using the Alignment function in https://www.uniprot.org/. The sequence 

from 16th to 273rd amino acid in human MAP4K3 encodes for the kinase domain. An * (asterisk) 

is denoted for fully conserved residue; an : (colon) is denoted for highly conserved residue; a 

blank space ( ) is denoted for not conserved sequence. 
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