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ABSTRACT 
 
This thesis is composed of five distinct chapters that investigate the feasibility of using 
smartphone data to define activity and participation in patients who have suffered critical 
illness. Specifically the thesis investigates the current state of play with regards to outcome 
measurement following critical illness; explores how others have used objective activity data 
to monitor survivors of critical illness;, investigates the ownership of smartphones and the 
data available on these devices amongst Intensive Care Unit (ICU) survivors; demonstrates the 
accuracy of the step data collected by a smartphone; and explores the use of a dedicated 
smartphone app to monitor patient activity and participation. The thesis comprises 6 distinct 
manuscripts. 
 
Survival of critical illness frequently leads to the development of Post Intensive Care Syndrome 
(PICS). PICS is the new or worsening of cognitive, psychological and/or physical function that 
persists following hospital discharge in patients who have suffered critical illness. While PICS 
leads to disability its measurement is challenging, often relying on surveys that lack construct 
validity in survivors of critical illness (Chapter 1.1). Objective measurement of activity 
following critical illness has been investigated using wearable devices, but not smartphones, 
that are becoming ubiquitous in modern day life (Chapter 1.2). 
 
We investigated smartphone ownership amongst ICU survivors and were able to obtain step 
and location data from a minority of these phones using manual techniques (Chapter 2.2). 
These patients were followed up (Chapter 2.3) at 3 and 6 months following ICU discharge. This 
study demonstrates that the step data collected from smartphones appears to be accurate 
when compared to a dedicated wearable device. We were able to show that the location data 
obtained from smartphones could be used to demonstrate elements of physical participation 
such as time spent at home, distance traveled and the extent of travel in activity spaces 
(Chapter 2.4). However, the manual extraction of these data was time consuming, relying on 
the use of obtaining Global Position System (GPS) data from screenshots of patients’ phones. 
In 2015 Google Maps released a function that allowed the download of a single file that 
contained an individual’s whole location history. We explored the availability of this data in 
patients admitted under general medicine (Chapter 3.2). Although the data extraction was 
more efficient and the analysis could be automated, the data were only available on a minority 
of devices. 
 
Due to the inefficiencies associated with smartphone data extraction, we examined the 
smartphone user ability in patients receiving renal dialysis (Chapter 4.2). This demonstrated 
that the majority of smartphone owning patients do have the user ability, or immediate access 
to assistance to install a smartphone app. The development of a custom-built smartphone app 
in collaboration with the Software Engineering department of the University of Adelaide 
allowed the testing of a smartphone app to collect Step and GPS data in patients undergoing 
Cardiothoracic Surgery. The data generated by the app showed great promise in being able to 
monitor patient’s recovery remotely and link this back to the same pre-morbid metrics, 
However, the technical failures of the app provide excellent learning opportunities for future 
studies. 
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CHAPTER 1 - THE MEASUREMENT OF OUTCOMES FOLLOWING CRITICAL ILLNESS 
 
1.1 Thesis Introduction 
 
The measurement of outcomes following critical illness has persistently shown that function 
in survivors remains below that of the general population. However, this assumes the 
survivors have normal function prior to being admitted to intensive care, this is frequently 
not the case. Being able to utilize passively collected datasets to objectively define patient 
function prior to and following critical illness would represent a frame-shift in outcome 
measurement, not just in intensive care literature but across all of healthcare.  
 
It was initially aimed to use smartphone data and the study recovery compared to standard 
outcomes, and explore how best to utilize the passively collected data. However, due to the 
paucity of data a collaboration was established to utilize a smartphone app to collect these 
data and the aims of the PhD altered to accommodate this. 
 
1.1.1 Overarching objective 

To define activity and participation prior to and following ICU admission using data 
derived from the smartphones of ICU survivors. 

 
1.1.2 Specific aims 

To understand how these technologies have been used in ICU survivors to date. 
To explore the data availability on the smartphones of ICU survivors. 
To explore the feasibility of using smartphone data for outcome measurement. 
To describe pre-ICU activity and participation using smartphone derived data. 
To match these pre-morbid ICU data to those obtained during recovery. 

 
1.2 Introduction 
 
Critical illness, requiring organ support and admission to an intensive care unit (ICU), comes 
with a huge physiological insult including dysregulated inflammatory cascades, deranged 
metabolic state, frequent delirium, injuries that come with high risk of long-term disability 
and the use of drugs to enforce bed rest to allow the invasive therapies required. These and 
many other factors contribute to a recognised syndrome in the survivors of critical illness. 
This Post Intensive Care Syndrome (PICS) describes the disability that remains in survivors of 
critical illness. Is has been defined as the new or worsening impairments in physical, 
cognitive or mental health status arising after critical illness and persisting post discharge 
from the acute care setting[1]. Due to the advancements in critical care medicine, there are 
increasing rates of survival[2], and thus increasing numbers of patients suffering from PICS. 
 
Limitations in physical function are common, with reduced exercise capacity[3, 4], reduced 
strength[5, 6] and inability to perform activities of daily living[7, 8]. Cognitive impairment 
has been reported in 25% to 75% of survivors[9-11] and ICU survivors suffer significant levels 
of anxiety[12], depression[13, 14] and Post Traumatic Stress Disorder (PTSD)[15-17]. These 
functional impairments lead to significant disability. The World Health Organisation, in its 
International Classification of Functioning, Disability and Health (ICF) has advocated for the 
use of a common language for functioning, disability and health[18]. The ICF defines 
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disability as an umbrella term for impairments, activity limitations and participation 
restrictions[18]. 
 
Much of the last two decades has been spent trying to reach consensus on a core outcome 
set for survivors of critical illness. Due in part to the heterogenicity of the group, this has not 
yet been achieved. Dale Needham’s group have gone a long way to defining a core outcome 
set in a small subgroup of ICU survivors (Acute Respiratory Distress Syndrome (ARDS)[19]. 
Their extensive body of work is to be commended, however, the core outcome set they have 
developed still lacks tools required to effectively assess several domains in which the 
survivors of ARDS report dysfunction[20] and the outcomes they have suggested for other 
domains[21] lack the construct validity required for the general intensive care 
population[22]. 
 
To drive research and quality improvement it is essential that we are able to capture high 
quality, granular data that measures outcomes meaningful to our patients, in a manner that 
is least disruptive to our patients lives over prolonged periods of time and with minimal cost 
to the healthcare system [23].  
 
With the advent of technologies, such as accelerometry and Global Positioning System’s 
(GPS), and the provision of these in easy to use wearable devices it should be possible to 
measure human movement in high detail to quantify activity and participation and hence 
disability. 
 
 
1.2.1 Objectives 

The objectives of this scoping review were to (i) define the extent wearable devices 
have been used to define recovery following critical illness, (ii) to compare the 
outcomes used with conventional outcomes, (iii) to evaluate usability and (iv) to 
explore gaps in the current literature. 
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Abstract 
 
Objective 
 
Technology may be a cost-effective method to assess functional outcomes in survivors of 
critical illness. The primary objective of this review was to determine the extent to which 
wearable device technology, such as smartphones, pedometry, accelerometry and global 
positioning systems (GPS), have been used to evaluate outcomes in Intensive Care Unit (ICU) 
survivors. 
 
Design 
 
Studies were included if they were performed in patients surviving ICU admission and 
measured outcomes using wearable devices.  
 
Data Sources and Review Method 
 
A scoping review searching CINALH, EMBASE, MEDLINE and PUBMED was performed. 
 
Results 
 
The seven studies identified were published since 2012, and were predominately descriptive 
(n=6) with one randomised controlled trial. All studies described outcomes in cohorts of 
relatively few participants [range: 11–51]. Duration to follow-up was mostly short, at a median 
time of three months post-ICU discharge [range: in-hospital to 27 years]. All studies used 
accelerometers to monitor patient movement; specifically physical activity (n=5), sleep quality 
(n=1), and infant movement (n=1). The accelerometers were bi-axial (n=3), uni-axial (n=2), 
combined uni-axial (n=1) and tri-axial (n=1). Common outcomes evaluated were the number 
of participants walking for < 30 min/day, mean daily step-counts and walking speed.  
 
Conclusions 
While wearable devices have been infrequently used to measure physical activity in survivors 
of critical illness, all identified studies were published recently, suggesting the use of wearable 
devices may be increasing. Thus far, only accelerometry has been reported, and the wide 
variation in methodologies used and the outcomes measured limits synthesis of these data.   
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Introduction 
 
Physical activity and function is frequently impaired in survivors of critical illness [1-11]. While 
functional capacity after critical illness is an important outcome, to date, both researchers and 
clinicians have relied upon labour-intensive techniques, such as the six-minute walk test and 
subjective patient-reported questionnaires, to quantify quality of life (QOL) and physical 
function [1-10]. Given the logistical challenges and expense associated with these methods 
there is a need to be able to accurately, yet efficiently, assess physical recovery in survivors of 
critical illness in a way that is meaningful to patients and clinicians.  
 
Technological advances provide the potential to quantify physical activity in a real-life setting, 
and in a cost-effective manner. It is possible that quantifying mobility, using daily step-counts, 
or measuring how much time individuals spend at home, may provide a holistic and patient-
centric assessment of physical function. 
 
A number of relatively inexpensive and seemingly accurate pedometers and accelerometers 
are now available [12]. A pedometer measures the number of steps taken by an individual and 
an accelerometer responds to acceleration in either one, two or three planes (uni-, bi-, and 
tri-axial accelerometers, respectively). With the use of differing body mounting and 
algorithms, accelerometers can be used to assess sleep, the intensity and duration of activity, 
body position, steps and energy expenditure. They record data continuously, providing a more 
representative measure of activity. Furthermore, ambulatory global positioning system (GPS) 
devices record movement through location data. A smartphone contains a tri-axial 
accelerometer, a gyroscope, a compass, and a barometer, combining these sensors with 
appropriate software applications (apps) and algorithms has the capacity to wirelessly 
transmit live data to researchers and clinicians. Such methodology is increasingly described in 
epidemiological studies, for example McConnell and colleagues recently report using a 
smartphone app to quantify physical activity from more than 20,000 healthy individuals [13]. 
 
Given the recent advances in technology of wearable devices that record physical activity, 
there has been growth in the number of researchers evaluating these devices across different 
healthcare settings. Accelerometers and pedometers have been used to assess physical 
activity in a variety of conditions including chronic obstructive pulmonary disease [14], cystic 
fibrosis [15], multiple sclerosis [16], diabetes [17] and joint replacement preoperative 
assessment [18]. To date, however, no review has summarised the current literature on 
wearable devices in survivors of critical illness. 
   
We conducted a scoping review with the primary objective to evaluate whether wearable 
devices have been used to measure outcomes in survivors of critical illness. For the purpose 
of this review wearable devices included smartphones, pedometry, accelerometry and GPS. 
Our secondary objectives were to compare outcomes evaluated using wearable devices to 
more conventional methodologies and to evaluate usability in study participants. 
 
 
Scoping Review Question 
Have smartphones, pedometry, accelerometry or GPS been used to assess outcomes in 
patients who have survived an ICU admission?  
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Methods 
 
Data sources and searches 
 
On 9 May 2016 we conducted a scoping review of the literature using four online databases 
(CINALH, EMBASE, MEDLINE and PUBMED). The search criteria are provided in Supplementary 
Table 1 (online at cicm.org.au/journal.php). All MeSH terms were expanded for further terms 
and included in the search of all four databases. Reference lists of all retrieved papers were 
reviewed to identify other eligible studies not captured in the primary search.  
 
Eligibility criteria 
 
We included studies that reported outcomes in survivors of critical illness using wearable 
devices. We defined wearable devices as smartphones, pedometers, accelerometers, and GPS 
devices, based on our understanding of current technologies that could be used to assess 
outcomes following critical illness, which we defined as any condition necessitating ICU 
admission regardless of the presenting problem. No date restrictions were applied. We 
excluded studies that did not specify whether they were conducted in ICU survivors, did not 
report on the use of an aforementioned devices, and were not published in English.  
 
Study selection 
 
Duplicate citations were removed and titles and abstracts were independently screened for 
inclusion by two reviewers (SG and LC). If it was not clear from the abstract if the citation could 
be excluded, then the full-text article was obtained. Full-text manuscripts were independently 
evaluated for eligibility. Disagreements were resolved by consensus or consultation with a 
third reviewer (AD).  
 
Data extraction 
 
Two reviewers (SG and LC) independently extracted data from included studies using a 
modified version of a standardised data collection form [19]. Information extracted included 
study characteristics (author, publication year, country, design, sample size), type/s of 
technology used, outcomes from the technology used, conventional outcomes compared to 
wearable devices, and study results. 
 
Quality assessment 
 
Risk of bias for observational studies was assessed using the Newcastle-Ottawa Scale. The 
Newcastle-Ottawa scores studies on three domains relating to the: selection of study groups; 
comparability of groups; and ascertainment of either the exposure or outcome of interest for 
case-control or cohort studies, respectively [20]. 
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Usability of wearable devices 
 
We defined usability as whether the wearable device provided a data point. We measured 
usability as the number of incomplete records, due to either user or device failure, out of the 
total number of participant data points, with a lesser number signifying greater usability. 
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Results 
 
Study selection 
 
Our search returned 1317 references, of which 526 were duplicates. Of the 791 abstracts 
reviewed, 747 did not meet the defined inclusion criteria and were excluded. Forty-four full-
text articles were obtained and assessed for eligibility. Of these, 37 were excluded due to: 
patients were not admitted to ICU (n=10); studies were conducted during ICU admission and 
not in survivors (n=10); duplicate data (n=9), outcomes not reported (n=5) and only published 
in abstract form (n=3). Accordingly, seven studies were included in our review [21-27] (Figure 
1). 
 
Study characteristics 
 
There were five prospective observational cohort studies [22, 23, 25-27], one case control 
study [21], and one randomised controlled trial [24] (Table 1). Three studies were nested 
within larger studies: two within RCTs [23, 27] and one within a longitudinal study [25]. All 
studies were published since 2012. Using the Newcastle-Ottawa Scale the quality of all the 
observational studies were low with the major limitation to these studies being their single 
cohort and/or descriptive nature. 
 
Cohort studied 
 
One study was conducted in neonates who survived ICU admission [24] and one was 
conducted in adults who survived an earlier ICU admission as neonates [21]. The remainder 
were in survivors of adult ICU (Table 1), and included various enrolment criteria such as severe 
sepsis, mechanical ventilation, or ICU length of stay >5 days. All studies described outcomes 
in cohorts of relatively few participants [range; n= 11–51]. Only one study [25] included a 
calculation to determine sample size. The majority of studies evaluated their outcomes within 
three months of ICU discharge, although one measured at 18 months post- ICU, and one at a 
mean of 26 years [21, 25]. Borges et al and Guyer et al were the only investigators to report 
on outcomes at more than one time point [24, 26].  
 
Usability of wearable devices 
 
There were 8/301 records across all studies that failed to complete activity monitoring; four 
in Denehy’s [27] study, three in McNelly’s [25] study, and one in Edbrooke’s [23] study, 
suggesting the devices were usable. 
 
Technology reported 
 
All studies used accelerometers to monitor activity. The bi-axial AMP331 was the most 
commonly used accelerometer, with bi-axial accelerometers being used by three groups of 
investigators [23, 25, 27], uni-axial accelerometers by two groups [22, 24], and combined uni-
axial accelerometers [21] and tri-axial accelerometers were used by one group each [26]. 
 
Outcomes measured 
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Studies evaluated physical activity (n=5) [21, 23, 25-27], sleep quality (n=1) [22], and infant 
movement (n=1) [24]. Reported outcome measures are summarised in Table 1. Several studies 
reported multiple accelerometer outcomes. The physical activity outcomes measured varied 
and included simple assessments of body position [26], walking speed [23, 26], duration in 
dynamic activities [21], distance walked [23, 27], time spent walking [26], time spent inactive 
[26, 27] and steps [23, 25, 27]. Only daily step-count [25, 27], walking speed [23, 26] and 
number of participants walking <30 minutes a day [26, 27] were reported in more than one 
study. 
 
Associations with traditional outcome measures  
 
Two studies reported direct correlations between outcomes measured using wearable devices 
and more ‘traditional’ outcomes, such as global reported QOL measures. There was a modest 
association between the total Physical Activity Scale for the Elderly (PASE) score and mean 
daily step-count (Spearman’s rank coefficient (rho)=0.332 p=0.05) or distance walked 
(rho=0.313 p=0.05) [27]. Stronger correlations were shown between mean daily step-count 
and both the Physical Component Summary score (r2=0.25, p<0.01) and Physical Function 
score (r2=0.51 p<0.01) of the SF-36 and with the Clinical Frailty Scale (CFS) (r2=0.55 p<0.01) 
[25]. McNelly [25] and Denehy [27] both reported that patients with chronic disease who 
survived ICU had reduced step-count compared to those without chronic disease. 
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Discussion 
 
Our scoping review revealed that seven studies have reported on the use of wearable devices 
to measure outcomes in survivors of critical illness. However, as all identified studies were 
published within the last five years it appears that the use of wearable devices may be an 
emerging field of research. The use of wearable devices permits a high degree of ‘usability’ 
with only a small number of failed readings/absent data points. 
 
Our review also revealed that the majority of studies in this field have been exploratory in 
nature, and conducted in small, often single, cohorts of patients, with short-term follow-up. 
Additionally, the quality of study design was modest.  Only one RCT was identified, and three 
studies were nested in other studies. This would be consistent with an emerging field of 
research where exploratory studies frequently do not have the methodological rigor of large-
scale RCTs [28]. 
 
Variety in outcomes reported 
 
While the studies all utilised accelerometry to quantify outcomes, a wide variety of outcomes 
were measured and reported, such as sleep actigraphy [22] and movement assessment [24]. 
The outcome most frequently reported was locomotion. Even with this outcome, there was a 
lack of consensus between investigators on how this should be quantified. While locomotion 
was recorded in four studies [23, 25-27], the only commonly reported outcomes were mean 
daily step-count, distance walked, and the number of participants that walked for <30 
minutes/day. This variation is expected during the initial phases of a methodology but over 
time it is important that consistency in core domains is established [29]. The findings of this 
review highlight the need for the development of core outcome sets for measurement of 
physical activity in ICU survivors using technology. 
 
We were surprised there was no utilisation of GPS data to create life-spaces [30], activity-
spaces [31] or to quantify percentage time spent at home [32], as such measures have been 
used in other populations e.g. after surgery for peripheral vascular disease [33], spinal 
disorders [34], and in those with mental health issues [35]. The activity space is a geographic 
information systems construct that represents the environment an individual interacts with. 
Such measurements may provide an assessment of recovery from critical illness. We were also 
surprised that smartphones, with their associated apps, had not been used in any relevant 
study. 
 
Accelerometer methodologies  
 
Four identified studies reported on locomotion using algorithms to access raw accelerometer 
data to determine step data. Step data are increasingly reported in other healthcare settings 
[36-39]. It has been shown that uni-axial accelerometers are adequate for detecting heal strike 
[40] to calculate physical activity from walking, but this may under-estimate when assessing 
gait in slower walkers, particularly those with a shuffling gait [41]. It does, however, produce 
data that are patient-centered and easily interpreted by clinicians. 
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While using locomotion data may have its advantages, the accelerometer literature suggests 
that using centrally mounted tri-axial accelerometers to count activity frequency and intensity 
would provide the best estimate of total physical activity [40], and raises the suggestion of 
using advanced modelling techniques combining accelerometer outputs to produce estimates 
of activity counts and energy expenditure [42].  
 
Although less patient-focused, the use of total activity counts to estimate energy expenditure, 
taking into account intensity and frequency of all movements, rather than just energy 
expenditure, and hence physical activity, related to walking would, perhaps, provide  a better 
assessment of physical activity. Notwithstanding the limitations of each methodology, the use 
of a single research methodology is ideal. 
 
Relationships between outcomes obtained from wearable devices compared to other 
methodologies 
 
It appears that there are fair associations between outcomes after critical illness measured 
using wearable devices compared with more ‘traditional’ methodologies, such as self-
reported QOL questionnaires. In this review, we found stronger associations between 
subjective measures than between subjective and objective measures, the subjective 
assessment of sleep (Pittsburgh sleep quality index) had stronger correlations with the 
subjective assessments of health-related QOL (EQ-5D and SF-36), than with objective 
actigraphy measures [22], as did the subjective assessments of physical function (SF-36) with 
frailty (CFS) than with daily step-counts [25]. It is important, prior to the widespread 
implementation of step data into critical care research, to establish that measurement of 
physical activity after critical illness is both clinically important and related to functional 
outcomes of importance to patients, their care-givers, and the community. 
 
Usability as an outcome for large trials 
 
Although two studies [21, 22] reported that only a subset of patients used the wearable 
devices due to availability, potentially implying a cost limitation, the cost of follow-up using 
accelerometers has not been explicitly stated in any study. An AMP331 costs $1200 (and is no 
longer produced), a Sensewear accelerometer $120 and an Actiwatch 2 (4 is discontinued) 
$1500. This is likely to be prohibitively expensive for researchers conducting trials involving 
large numbers of patients and/or sites. Fortunately, however, this cost is likely to reduce over 
time. An example of the dynamic nature of the technology landscape is that two of the 
accelerometers used in the identified studies, which were conducted within the last five years, 
have already been discontinued. The rapid evolution of these technologies and dynamic 
pricing structures is evident in that ‘market leaders’ in the commercial space, such as the FitBit 
One ($130) and Flex ($89) are comparatively inexpensive, and have been shown to be accurate 
[12]. Therefore, these dynamic changes may reduce costs however, the rapid evolution in 
makes, models and function could hinder attempts to develop core outcomes and 
methodologies using these technologies. 
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Strengths and limitations 
 
Our review is, to the best of our knowledge, the first to appraise the use of wearable devices 
in ICU survivors. The strengths are: our search technique was relatively comprehensive; we 
evaluated studies for bias and quality and we used a standardised data extraction tool. 
However, we only accessed English language literature and moreover, there may be other 
wearable devices we are not aware of, and were not included in our search terms. Finally, the 
considerable heterogeneity of differing populations, wearable device outcomes, and time-
point to follow-up between studies limits any firm conclusions. 
 
Conclusions 
 
Currently, wearable devices are infrequently used to report outcomes from survivors of 
critical illness. While accelerometry was the only technology reported, there was considerable 
variation as to the type of accelerometer used, the specific outcome reported, and the time 
point that observations were made.  
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Supplemental Table 1: Search terms used in each database. $ corresponds to the appropriate truncation command in each 
database

STRING 1 STRING 2 

Critical care (.mp) Mobile phone$ (.mp) 
Critical$ ill$(.mp) Cell$ phone$ (.mp) 
Intensive care$ (.mp) Smartphone$ (.mp) 
ICU$ (.mp) Smart phone$ (.mp) 
Intensive therapy (.mp) Pedomet$ (.mp) 
ITU$ (.mp) Step count$ (.mp) 
 Acceleromet$ (.mp) 
 Actigraph$ (.mp) 
 GPS (.mp) 
 Global positioning system$ (.mp) 
 Cell$ telephone$(.mp) 
 Life space$ (.mp) 
 Activity space$ (.mp) 
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Lead 
author 

Year Study 
Design 

Cohort studied Number of 
patients 

Wearable Device Time to follow-up Duration of 
observation 

Observations from wearable device Other outcomes Associations 

Solverson 2016 Prospective 
observational 
cohort study 

Adults, >4 day ICU LoS. 
Excluded TBI, 
neurocognitive disorders, 
acute strokes, patients 
living a distance from the 
hospital 

55 (11 sleep 
actigraphy) 

Sleep actigraphy  3 mo post-hospital 
discharge 

3 nights Sleep/Awake cycles 
-Mean total sleep time – 6.15hrs 
- Sleep efficiency 78% 
- Number of awakenings (duration) 11 
(7mins)  
- Sleep onset latency – 12 mins. 

Sleep Quality - PSQI, 
ESS. 
HRQOL; EQ-5D, SF-36. 
Depression/anxiety; 
HADS. 

No association between total sleep 
time, sleep efficiency or sleep 
disruptions and PSQI or PSQI 
component scores. Significant 
association with APACHE II score. 
Total sleep time had no association 
with HADS, ED-5D individual 
domains or MCS or PSC.  

Edbrook 2012 Prospective 
observational 
cohort study  
(nested in 
RCT) 

Adults, sourced from a 
concurrent RCT, able to 
walk >5m without 
assistance 

20 AMP331 biaxial 
accelerometer  

Post-ICU hospital 
ward  

Point in time, in 
hospital 
assessment 

Reported distance walked, steps taken and 
walking speed. 

Direct observation Slight underestimations of walking 
distance (2.79 (walk 1) – 3.11 (walk 2) 
m over a total of 90m)  and walking 
speed (28.87 cm/s) and a slight 
overestimation of step-count (0.92, 
95% CI -3.27 – 5.11) 

Guyer 2012 Randomised 
control trial 

Neonates <32 weeks 
gestational age 

37 Actiwatch mini and 
Actiwatch AW4 

5 and 11 wks post-
term corrected age 

10 days at each 
time point. 

Reduced activity count per 24 hrs in the DL 
group at 5 and 11 wks. No between group 
difference for activity count/night or day. 
Age-effect noted with increased activity 
between 5 and 11 wks 

Sleep and crying 
behavior every 5 mins in 
an auditory diary (3 
days), Weight 

No correlations with wearable devices 
were reported. 

Van Der 
Cammen-
van Zijp 

2014 Retrospective 
case control 
study 

Adult survivors of neonatal 
resp distress,(27 with CDH, 
30 without) 

57 (28 activity 
monitoring) 

4 uni-axial 
accelerometers  

Unplanned follow-
up of PICU 
survivors in 
adulthood (Mean 
26.7 years) 

2 days Reduced duration of dynamic activities in 
the CDH group. No difference for mean 
motility and motility during walking. No 
significant differences between groups 

Lung Function - 
Spirometry  
Exercise testing – CPET 
Fatigue – FSS 
HRQOL - LIFE-H 3.0 
and SF36 

No correlations with wearable devices 
were reported 

McNelly 2016 Prospective 
observational 
cohort study 
(nested in 
longitudinal 
outcomes 
study) 

Adult, >48 hrs ventilation, 
>7 d ICU LoS. Excluded;- 
pregnant; lower limb 
amputees; disseminated 
cancer, neuromuscular 
pathology  

30 pts (27 
provided data) 
and 30 age 
and gender 
matched 
controls 

SenseWear bi-axial 
accelerometer, 

18 mo post-ICU 
discharge 

>5 days, including 
one weekend day. 

Daily step-count was half that of healthy 
controls. Pre-existing chronic disease was 
associated with lower step-counts  

HRQOL - SF-36,  
Frailty - CFS 

Steps/d vs SF-36 PF r2=0.51, vs SF36  
PCS r2=0.25, vs CFS r2=0.55. Variation 
in steps vs SF-36 PF r2=0.24 vs CFS – 
r2=0.32.  

Borges 2015 Prospective 
observational 
cohort study 

Adult, severe sepsis or 
septic shock, able to walk 
without assistance pre-
admission, able to complete 
2 assessments at ICU D/C 
Excluded;- previous stroke, 
neurological disease, TBI, 
SAH, SCI,  fractured limbs 
or amputation, terminal 
illness 

72 at hospital 
D/C  
51 at 3mo 
follow-up and 
50 healthy 
controls. 

Dynaport tri-axial 
accelerometer 

Prior to hospital 
discharge and 3 
mo post discharge 

2 consecutive days 
at both time points. 

Septic patients had a lower walking time in 
at both time points compared to healthy 
individuals. Patients were more inactive 
(sitting or lying) on the ward, than at 3-
months. Walking intensity was lower after 
hospital discharge than healthy individuals. 
40% of septic patients walked <30 mins/day 
vs 15% of healthy individuals 

Muscle strength: 
inspiratory muscles - 
MIP, handgrip 
(dominant hand 
dynamometry) and 
quadriceps 
(dynamometry)  
Exercise capacity - 
6MWT 

No associations between accelerometer 
data and any other variable during 
hospital admission or at 3-mo 

Denehy 2012 Prospective 
observational 
cohort study, 
(nested in a 
RCT) 

Adult, >5 d ICU LoS, 
English speaker, live within 
50km, Participation agreed 
by the attending intensivist. 
Excluded neurological, 
spinal or musculoskeletal 
dysfunction. 

49 
accelerometer 
data 
45 PASE data 

AMP 331 
Accelerometer 

2 mo post ICU 
discharge 

7 days Participants took 4,894 (SD – 3,070) 
steps/day, 80% took <7500 and only 6% 
>10,000 steps/day. Only 54% of steps were 
taken in the locomotion category. Median 
distance walked was 1.69km. 90% of their 
time was spent inactive, 3% of the time was 
spent in the locative category. 63% of the 
cohort spent <30 mins/d in the locomotive 
category. 

Lifestyle - PASE 
questionnaire 
Exercise capacity - 
6MWD Manual Muscle 
strength - Timed up and 
go test (TUG) 

Fair correlation between total PASE 
and mean steps/day rho=0.332 and 
mean distance walked rho=0.313 at 
p=0.05. Fair correlation between PASE 
occupation sub-score and daily steps 
rho=0.332. Fair correlation between 
walking <30 mins/day from PASE and 
steps (rho=0.345) and distance 
(rho=0.344). 6MWD and SF-36 PF  
 was associated with walking time and 
steps/da in a univariate analysis, in the 
multi-variant analysis this was 
confounded by the presence of chronic 
disease. 
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Table 1 - Details of the peer reviewed articles included in our scoping review – AA – Age Adjusted, 6MWD – Six-Minute Walk Distance, CDH – Congenital Diaphragmatic Hernia, d – Day, D/C  - 
Discharge, CFS – Clinical Frailty scale, CL – Cycled Light, CPET – Cardo-Pulmonary Exercise Testing, DL – Dim Light, DLCO – Diffusion capacity of the  lung for carbon monoxide,EQ-5D – EurolQol-
5D, ESS – Epworth Sleepiness Scale, FEV1 – Forced expiratory volume in 1 sec, FSS – Fatigue Severity Score, FVC – Forced Vital Capacity, HADS – Hospital Anxiety and Depression Scale, MIP – 
Maximal Inspiratory Pressure, MCS – Mental Composite Score of SF-36, PADL – Physical Activities of Daily Life, PASE – Physical activity scale for the elderly questionnaire, PCS – Physical 
Composite Score of SF-36, PSQI – Pittsburg Sleep Quality Index, SCI – Spinal Cord Injury, SDS – Standard Deviation Scores, SF-36 – Short-Form 36,  TBI – Traumatic Brain Injury, TPDA – Time 
Post-Discharge Adjusted, TUG – Timed Up and Go Test, VA – Alveolar volume, VAT – Ventilatory anaerobic threshold.  
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CINALH  –      121 
EMBASE  –      596 
MEDLINE  –      278 
PUBMED –      322 
 
Total   –      1317 

526 were duplicates 

791 titles and abstracts 
were screened for 
inclusion 

747 were excluded 

44 articles read in full 37 excluded 
10 Not in ICU patients 
10 Not in ICU survivors 
9 Duplicate data 
5 Did not report outcomes 
3 Poster abstracts 7 articles included 

Figure 1 - Flow diagram for selection of studies (ICU - Intensive Care Unit) 
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1.4 Conclusions 
 
1.4.1 Introduction 
 
Despite its growing prevalence the use of accelerometers in the study of ICU recovery is in its 
infancy, with the majority of studies being observational in nature and assessing heterogenous 
outcomes in small numbers of patients. The devices used did have good useability, with little 
missing data. However, the absence of utilisation of GPS data or smartphones does provide 
an opportunity for further exploration in an expanding field of mHealth and digital 
phenotyping. 
 
1.4.2 Contribution of this work to the measurement of physical activity following survival of 
critical illness 
 
This review has demonstrated that although physical functioning is a key outcome in ICU 
survivors there has been a strong reliance on physical testing and surveys with a small minority 
of the literature utilising wearable technologies. The devices appear to be tolerated and 
usable with minimal missing data. The review has highlighted the heterogenicity in the follow-
up period and in the accelerometry outcomes reported. It has demonstrated that while 
smartphones and GPS data have been used in other areas they have not yet been examined 
in survivors of critical illness. 
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1.5 Future Directions 
 
1.5.1 Use of smartphone technology 
 
Utilising the multiple sensors contained within a smartphone would appear to be an 
advantageous approach. Knowing the level of smartphone ownership within the ICU patient 
population will enable the assessment of the feasibility of this approach. Additional patient 
owner devices may contain data about their levels of activity prior to ICU. Exploring the data 
stored within these devices may potentially allow the collection of objective data that pertain 
to patient activity prior to their critical illness. 
 
1.5.2 Use of GPS data 
 
While the use of GPS data has been reported in other populations there has been no uptake 
of this technology to study ICU survivors. Reviewing how this technology has been used and 
potentially applying the constructs used elsewhere in ICU survivors may be of potential 
benefit. 
 
1.5.3 Accuracy of smartphone data 
 
While the accuracy of data from research quality accelerometers can be assured, the accuracy 
of data from a smartphone will need to be validated in free living conditions.  
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CHAPTER 2 – THE FEASIBILITY OF SMARTPHONE USE IN SURVIVORS OF CRITICAL ILLNESS 
AND THE ACCURACY AND USEABILITY OF SMARTPHONE DATA 
 
2.1 Introduction 
 
The sequel following critical illness have been established as Post Intensive Care Syndrome 
(PICS), which is defined as new or worsening impairments in, physical, cognitive or mental 
health status arising after critical illness and persisting post discharge from the acute care 
setting[1]. Measuring the disability PICS causes is a challenge; however, establishing if that 
disability is new or worsening is near impossible, and a huge limitation of any study reporting 
ICU outcome measures. Critical illness and injury affects almost 800 people per 100,000 per 
year in Australia[2], so you would need to prospectively follow tens of thousands of patients 
over several years to enrol a sample large enough to report pre-morbid disability. 
 
Several authors have been able to demonstrate this using large database studies. Iwashyna 
and colleagues used the US veterans dataset to demonstrate the physical and cognitive 
function prior to and following severe sepsis[3]. They demonstrated that there was a burden 
of functional and cognitive impairment prior to an episode of severe sepsis and this was 
exacerbated by the critical illness. More recently Jouan and colleagues have used a French 
medico-administrative database to explore healthcare utilisation prior to and following septic 
shock and/or Acute Respiratory Distress Syndrome (ARDS) requiring 5 days of mechanical 
ventilation[4]. They demonstrated that overall there was a significant increase in healthcare 
utilisation in the year before ICU admission while 28% of the cohort had no prior healthcare 
utilisation. Fourteen percent had greatly elevated and increasing healthcare utilisation. These 
findings are similar to those of Lone and Szakmany and colleagues in Scotland and Wales 
respectively[5, 6]. 
 
Other authors have used subjective assessments to assess quality of life at admission to ICU, 
asking relatives to estimate or asking patients to recall the answers when capacity is regained 
[7-9]. The discordance between relatives and patients, and the reliance of retrospective recall 
in a patient population, with an established, high prevalence of cognitive disfunction has been 
a significant weakness of these methodologies. 
 
Clinicians frequently rely on substitute decision maker estimates of a patient’s level of physical 
activity to determine treatment decisions. The accuracy and agreement between relative and 
patient estimates of physical activity levels has never been established. Smartphones record 
activity data in the form of steps and location data in the form of frequent locations and 
google-map timelines, often storing many years of data. It is possible these data could be 
utilised to objectively assess the levels of activity prior to ICU admission and overcome the 
inherent biases in the subjective recall of patients and relatives. Additionally, these data may 
be able to demonstrate an individual’s disability trajectory at admission. 
  



 

 37 

2.1.1 Objectives 
 
The objectives of this chapter, which comprises three manuscripts, were to; (i) Evaluate the 
relationship and agreement between surrogate and patient estimates of pre-morbid physical 
activity (Chapter 2.2) ; (ii) Test the feasibility of smartphone data extraction to quantify 
physical activity (Chapter 2.2, 2.3 and 2.4); (iii) Compare the subjective estimates of physical 
activity to objective smartphone data (Chapter 2.2); (iv) Determine the accuracy of 
smartphone step counts when compared to a dedicated pedometer (Chapter 2.3); (v) describe 
recovery from critical illness using smartphone derived step counts (Chapter 2.3) and (vi) use 
location data to describe location-based outcomes in ICU survivors (Chapter 2.4). 
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Abstract: 
 
Objective 

Surrogate-decision maker and patient self-reported estimates of the distances walked prior 
to acute illness are subjective and may be imprecise. It may be possible to extract objective 
data from a patient’s smartphone, specifically, step and global position system (GPS) data, to 
quantify physical activity. The study objectives were to (1) assess the agreement between 
surrogate-decision maker and patient self-reported estimates of distance and time walked 
prior to resting and daily step-count and (2) determine the feasibility of extracting premorbid 
physical activity (step and GPS) data from critically ill patients. 

 
Design 

Prospective cohort study 

Setting 

Quaternary ICU 

Patients 

Fifty consecutively admitted adult patients who owned a smartphone, who were ambulatory 
at baseline and remained in ICU for > 48 hours participated. 

Measurements and main results 
 
There was no agreement between patients and surrogates for all premorbid walking metrics 
(mean bias 108% [99% lower to 8,700% higher]; 83% [97% to 2,100%]; and 71% [96% to 
1,080%], for distance, time and steps respectively). Step and/or GPS data were successfully 
extracted from 24/50 (48%; 95% CI 35, 62%) phones. Surrogate-decision makers, but not 
patient self-reported, estimates of steps taken per day correlated with smartphone data 
(surrogates n=13, rho=0.56, p<0.05; patients n=13, rho=0.30, p=0.317). 
 
Conclusion 
 
There was a lack of agreement between surrogate-decision maker and patient self-reported 
subjective estimates of distance walked. Obtaining pre-morbid physical activity data from 
current generation smartphones was feasible in approximately 50% of patients.  
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Introduction 
 

Some critical care clinicians use pre-morbid physical activity when setting treatment goals [1], 
and its wider use and central role of accurate prognostication has been advocated [2]. 
Frequently however critically ill patients are confused, unconscious and/or sedated and 
ventilated: accordingly, clinicians frequently rely on surrogate-decision makers for this 
information. While it is imperative that this information is correct, there is limited information 
to suggest that surrogate-decision maker and patient estimates of physical function prior to 
hospitalization are accurate [3-5].  

An alternative to such subjective reports is to use data recorded on a patient’s smartphone 
prior to hospitalization. Potentially, an individual’s smartphone may provide an objective and 
more precise measurement of pre-morbid physical activity. Smartphones have an inbuilt 
accelerometer and a global positioning system (GPS) that record pedometer and location 
data, even if the owner has not specifically activated the function. Pedometers have been 
used to objectively quantify physical activity after critical illness [6, 7], and in other healthcare 
settings [8-11]. Beyond step data, GPS data also enables the measurement of ‘activity spaces’, 
a concept that has been proposed to measure the mobility of community-dwelling older 
adults [12-14]. In brief, activity spaces require measurement of the spatial area across which 
a person travels over a specific time period and, thereby, allows quantification of movement 
beyond a person’s residence [12, 15]. Because activity spaces quantify the environment that 
with which an individual interacts with, they incorporate both the mobility and social 
interactions of an individual [16] these activity spaces represent a potential objective measure 
of pre-morbid physical activity that could be generated using data stored on a patient’s 
smartphone. Outside of critical care, raw GPS data, percentage time spent at home, or activity 
spaces have been used to quantify physical activity after surgery for peripheral vascular 
disease [17], spinal disorders [18] and in individuals with mental health issues [19]. However, 
quantification of mobility using GPS data has not been previously reported in critically ill 
patients. 

Our objectives of this exploratory study were to:  

1. Evaluate the accuracy of subjective surrogate estimates of patient’s pre-morbid 
physical accuracy when compared to patient self-estimate—our primary objective 
was to determine the accuracy of surrogate estimates of distance walked prior to 
resting.  

2. Test the feasibility of smartphones providing additional supplemental data to 
quantify physical activity; and  

3. Compare subjective estimates of physical activity to objective smartphone data.  
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Materials and methods 

We performed a single-center prospective cohort study. We screened consecutive 
patients admitted to the intensive care unit (ICU) of the Royal Adelaide Hospital between 
December 2015 and July 2016. This is the Hospital’s single ICU and serves all patients, including 
post-operative, medical, and neurological critical care. 

Participants 
 

Patients were eligible to participate if they received at least 48 hours of care in the ICU. We 
excluded patients admitted following an elective procedure, who had long term inability to 
mobilize, were aged <18 years, lived >50 km from the Royal Adelaide Hospital (for ease of 
follow-up), lacked capacity to provide written informed consent, were readmitted to the ICU, 
were anticipated to die within 6-months, or were pregnant. On meeting eligibility criteria, 
patients were approached to enquire about smartphone ownership. 

Protocol 

Our protocol was approved by the Human Research Ethics Committee of the Royal Adelaide 
Hospital and registered with the Australian New Zealand Clinical Trials Registry 
(http://www.anzctr.com.au; ANZCTR12616000427471). Due to privacy concerns, phones 
were only analyzed following written informed consent from each participating patient. 
 
Questionnaires 
 
We created a questionnaire to quantify patients’ use of their smartphone prior to 
hospitalization (Supplementary Table 1). Subjective estimates of physical activity were 
obtained by asking study participants and their surrogates to estimate, prior to 
hospitalization, the distance and time the participant would be able to walk prior to needing 
a rest and the average number of steps they would take each day (Supplementary Figure 1). 
Patients and their surrogates were also asked to score their activity level on a three-point 
scale: active, less active than ideal and sedentary and Functional Independence Measures 
(FIM) were taken from the patient and surrogate [20]. 
 
Step and GPS data 
 
Phones were assessed and, if feasible, step and GPS data extracted. Some smartphone data 
are overwritten after a period of time that varies between phones, generally about two-
months. As smartphones were accessed only after written informed consent, data were over-
written in some participants. Due to the exploratory nature of this study, we regarded 
successful data extraction as data extraction for any physical activity variable in the previous 
28-day period. However, if consent was obtained proximate to admission and it was 
achievable to extract physical activity data from prior to hospitalization, data were extracted 
for the 28-day period prior to admission.  
 
We manually accessed data held in the Health App of phones using iPhone operating system, 
Apple, Inc (iOS), Google Health App or S-Health of phones using Android operating systems, 
or any other pedometer app installed on the phone. To obtain GPS data we used ‘Frequent 
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Locations’ on iOS devices or ‘Timeline’ of Google Maps. Locations were geocoded, with a date 
and time of arrival and departure. 
 
Activity space was evaluated using percentage time spent at home [21] and Minimum Convex 
Polygon activity space [22]. The time spent at home was measured as the total time spent at 
home as a percentage of a 28-day period. Minimum convex polygons were created using 
Daftlogic’s Google Maps Area Calculator Tool (www.daftlogic.com). A polygon is convex if it 
contains all the line segments connecting any pair of its points, or if no internal angels exceed 
180o [22] (Supplementary Figure 2). 
 
Statistical Analysis 
 
Due to an absence of pre-existing data we were unable to perform a formal calculation to 
determine sample size. Rather, we determined, a priori, that 50 participants would provide 
preliminary information about agreement between surrogate-decision maker and patient 
subjective estimates of physical activity, while also providing important information about the 
feasibility of extracting smartphone data. When data were skewed, these were log 
transformed. Data have been reported as mean ± SEM or median [range] as appropriate, with 
point estimates including 95% confidence intervals. Associations between self-reporting and 
surrogate estimates, and smartphone data were analyzed via Pearson and Spearman 
correlations respectively and agreement with Bland-Altman analyses. Bland Altman analyses 
were performed on log transformed data so bias and limits of agreement are presented as the 
ratio of patient to surrogate values. Categorical variables were assessed by Cohen’s Kappa 
coefficient of agreement. Feasibility was assessed using ‘intention to analyze’ such that 
patients who initially consented were included even if subsequently they could not provide 
their phone for analysis. Because we were undertaking an exploratory study, we compared 
demographic data of study participants with those who were excluded because they did not 
own a smartphone. Data were analyzed using SPSS Version 22.0.   
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Results 

84 of 163 (52%) patients in ICU for more than 48 hours and who did not meet any of the 
immediate exclusion criteria, owned a smart phone. 50 patients consented to their 
smartphone being analyzed (Figure 1). Eligible patients who owned a smartphone were 
younger than eligible patients who did not own a smartphone (Supplemental Table 2).  

Demographic data 

Of the 50 consenting participants, 33(66%) were male with a mean age of 52±2 years. The 
mean APACHE III score was 63±5 and median durations of ICU and hospital length of stay were 
6 [2 to 32] and 17 [5 to 123] days respectively. Thirty-two participants received invasive 
mechanical ventilation, for a median of 63 [12 to 635] hours.  

Agreement between subjective estimates 

Subjective estimates of physical activity from patients and their surrogates are in Table 1. Data 
were skewed and were therefore log transformed prior to analysis. At the group level 
surrogates agreed on average regarding distance walked, with a difference of 0 [-17,000 to 
18,000] meters, and a time walked difference of 0 [-460 to 300] minutes, but they under-
estimated daily steps by 1,000 [-14,000 to 20,000] steps compared to patients. While there 
were modest, statistically significant, correlations between estimates of distances walked, 
time walked and daily steps, when evaluating the Bland Altman plots, there appeared little 
agreement between patients and their surrogate-decision makers (Figure 2). The scatter plots 
demonstrated disagreement even at low values. 

On the three-point scale of active, less active than ideal, and sedentary, surrogate-decision 
makers agreed with patient estimates 73% of the time, estimated higher in 12% of cases and 
underestimated 14% of the time (Cohen’s Kappa Coefficient 0.52±0.1; p<0.001, “moderate” 
agreement per Landis-Koch interpretation). There were strong associations between 
Functional Independence Measures from surrogate-decision makers and patients (motor: 
r=0.87, p<0.001; cognitive: r=0.43, p=0.002; and overall:  r=0.84, p<0.001) and these measures 
were relatively consistently reported between surrogate-decision makers and patients, with 
differences of 0 [-28 to 3] in the motor score, 0 [-7 to 5] in the cognitive score and 0 [-27 to 5] 
overall. However, 38 (78%) patients and surrogate-decision makers both scored Functional 
Independence Measures at the maximal score. 

Smartphone data 

Estimated smartphone usage is in Table 2. Forty-five smartphones were analyzed. Analyses 
occurred 11 [2 to 99] days after hospital admission, with 15 smartphones yielding pre-
hospitalization data (13 step and 11 GPS data) and 9 yielding only data post-hospitalization (1 
step and 9 GPS data). According to our pre-specified intention to analyze approach, we 
successfully extracted data from 24/50 (48%; 95% CI 35, 62%) phones. Step data were 
extracted from 14 (28%) and GPS data from 20 (40%) phones with 10 (20%) phones yielded 
both step and GPS data.  

Step data were extracted for 364 patient days. Only two days were recorded as zero steps. 
Prior to hospital admission participants (n=13) took a median of 3,540 [32 to 12,604] steps per 
day. In the period 28-18 days prior to admission participants took a median of 3,539 [28 to 
21,245] steps per day and in the period 10-1 day prior to admission they took 2,960 [2 to 
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15,798] steps per day, yet this was not statistically different (median reduction 376 [-8,734 to 
17,869], p=0.581). 

Extracting pre-hospitalization GPS data was possible from 11 smartphones. While we were 
able to calculate % time spent at home from all 11 smartphones, in 3 smartphones the data 
held in frequent locations pertained to just two locations, such that the calculated convex 
polygon was 0 km2 resulting in reliable activity space data for only 8 patients. The median 
percentage time spent at home was 60 [15 to 91] % and the median convex polygon was 122 
[7 to 45,639] km2. 

Agreement between subjective estimates and smartphone measures 

For the 13 patients for whom we could extract pre-hospitalization smartphone obtained step-
counts, when compared to patient self-reported step-counts, there was a median difference 
of -3,257 [-9,029 to 2,376] steps and no association (rho=0.30, p=0.317) and poor agreement 
between these variables (Figure 3a). When the smartphone data were compared to surrogate-
decision makers estimate of daily step-counts there was a median difference of -3,454 [-
21,558 to 2,376] and a moderate association was apparent, although this association just 
reached the predefined statistical significance and was not adjusted for multiple comparisons 
(rho=0.56, p=0.049), and inspection of the Bland Altman plot showed poor agreement (Figure 
3b).  
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Discussion 

Our overarching objective was to evaluate the accuracy of various methodologies to 
determine the true pre-morbid physical activity of critically ill patients. Our key observation is 
that there is a lack of agreement between patients and their surrogate-decision makers when 
estimating the distance patients walked prior to hospitalization. In particular, the lack of 
precision persisted at lower levels of physical activity. The discordance between patients and 
surrogate-decision makers provides a challenge to discerning the truth about the pre-morbid 
physical activity for individual patients, and we hypothesized that obtaining smartphone data 
may offer an alternative methodology. We found that smartphone ownership was already 
relatively common among patients admitted to an ICU, and objective activity data (either step 
or GPS data) were able to be extracted from the smartphones of approximately 50% of study 
participants who owned a smartphone. 
 
Currently available methods to determine physical activity 
 
At the bedside, clinicians frequently use capacity to walk as a key indicator of pre-morbid 
physical activity [23, 24]. Our results show that the surrogate-decision maker estimates of 
distance walked did not agree with patient self-report. In particular, the relationship did not 
improve even at lower values (Figures 2a, 2c and 2e), and these lower values may well 
influence clinical decision making. We did, however, observe reasonable concordance when 
quantifying physical activity according to an ordinal three-point scale. Whether the loss of 
granular detail that occurs with the use of such a categorical instrument is balanced by greater 
concordance depends on factors specific to each situation, such as patient and surrogate-
decision maker values, healthcare resourcing and the chosen cut-point [25, 26]. Moreover, 
the three-point scale may lack the sensitivity required to detect clinically significant levels of 
activity. Our data are consistent with previous work suggesting that there is considerable 
disagreement between patients and surrogate-decision makers when reporting other 
subjective variables, such as pre-morbid quality of life scores [3, 4, 27]. There are other data 
also suggesting that patients themselves are inaccurate when self-reporting physical activity 
[7, 28, 29]. Based on the correlation between surrogates estimate of step-counts and 
smartphone data it may be that patients themselves, rather than surrogate-decision makers, 
are poor estimators of the truth [3, 4, 27]. 
 
Alternative methods to determine physical activity 
 
Given the lack of reliability of these subjective estimates, we propose that an accurate 
objective methodology to quantify pre-morbid physical activity would be of use to both 
clinicians and researchers [30]. Based on our observations it appears that smartphones are 
owned by over 50% of ICU patients and it is feasible, even now, to extract stored data from 
approximately half of smartphones using relatively simple techniques. We also extracted GPS 
data, which enabled the first attempt to quantify activity spaces from critically ill patients, 
which is, to the best of our knowledge, a novel concept.  
 
The use of patient step data after ICU discharge has been recently reported [6, 7]. Survivors 
of critical illness have been shown to have a mean daily step-count of 4,895 at 10-weeks post 
ICU discharge [7] and 5,803 at 18-months post ICU discharge [6] which are 50% less than 
values described for healthy populations [6, 31]. Of interest, these post-ICU step-counts are 
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similar to the pre-morbid daily step-count in our cohort. We believe that an accurate 
instrument to quantify pre-morbid physical activity is a priority as clinicians and researchers 
try and determine the proportions of reduced physical activity observed in survivors that 
represent the burden of critical illness and ICU interventions, and that which is attributable to 
their pre-morbid physical condition [32, 33].  
 
Limitations 
 
We were limited to analyzing phones after obtaining written informed consent. Not only did 
this affect data collection, as GPS and step data were overwritten is some instances, the 
scenario is somewhat artificial, in that clinicians are likely to want information regarding 
physical activity on admission. Another major limitation is that we did not have a true ‘gold 
standard’ as both our subjective (patient and surrogate) estimates and objective 
(smartphone) data may be imprecise. We are reassured however that, at least when carried, 
smartphones accurately quantify steps in the laboratory among healthy young volunteers 
[34] and that 70% of our cohort reported carrying their phone on them >75% of the time. 
Finally, currently smartphone ownership is a limitation to the widespread use of this 
methodology, as those that did not own smartphones were older than the study participants 
(Supplementary Table 2). It is likely however that the proportion of smartphone ownership, 
particularly amongst the elderly, is likely to increase over time, but and as our data are from 
a single center and smartphone ownership may vary between regions this is only 
speculative. 

 
 
Future directions 
 
As smartphone ownership increases [35] we need to consider how the micro-sensors, they 
contain, (Supplementary Table 3) can be used in patient assessment, and how these outcomes 
relate to current measures. However, obtaining pre-morbid data will be dependent upon how 
software providers store the required data, to allow automated extraction, and the ethical 
challenges of accessing this information at presentation, possibly without patient consent. 
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Conclusions 
 
Our data suggest that there is wide disagreement between subjective surrogate-decision 
maker and patient estimates of distance walked prior to hospitalization. The implication of 
our data is that clinicians should be cautious when using subjective estimates of walking and 
physical activity, particularly if this information is used to set treatment goals. However, the 
increasing ubiquity of smartphones, as well as their automatically collected and stored data, 
suggests an evaluation of their potential role as a novel tool to facilitate the collection of 
objective data is warranted.  
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Figure 1 - Consort Diagram 

* 3 phones were in the possession of relatives and couldn’t be accessed and one phone was no longer working. 
 

 
  

423 patients were immediately excluded: 
177 

62 
46 
42 
29 
26 
22 

7 
6 
5 
1 

Lived > 50km away 
Died 
Unable to provide informed consent 
Admission to ICU planned 
Anticipated not to survive 6 months 
Not ambulatory prior to ICU admission 
Readmitted to ICU 
<18 years old 
Discharged from hospital prior to consent 
Inability to mobilise following ICU admission 
Pregnant 

 
 

 

586 patients received > 48 hours of ICU 
care admitted between December 2015 

and July 2016 
 

113 patients were subsequently ineligible 
79 patients didn’t own a smartphone 
34 patients refused consent 

45 phones were analysed 

5 phones were not analysed 
4 phones were unavailable at time of analysis 
1 patient withdrew consent 
 

50 patients consented and were included 
in the intention to treat analysis 

163 patients met all inclusion criteria and 
none of the exclusion criteria 



 

 54 

 
Figure 2 – Scatter and Bland-Altman Plots for meters (a, b) and time (c, d) walked prior to resting, and daily step-count (e, f) 
when estimated by surrogate-decision makers and by patients themselves. The Pearson Correlation Coefficients were 
r=0.31, p=0.028 for distance (a); r=0.28, p=0.049 for time (c); and r=0.40, p=0.004 for steps (e). The levels of agreement 
(mean bias) were 99% lower to 8,700% higher (108%) for distance (b), 97% lower to 2,100% higher (83%) for time walked 
prior to resting (d), and 96% lower to 1,080% higher (71%) for steps (f).   
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Figure 3 – Bland-Altman plots for patient (a) and surrogate-decision maker (b) estimates versus smartphone obtained step-
counts, with limits of agreement (mean bias) -10,631 to 3,637 (-3,497) and -16,214 to 8,526 (-3,844) steps respectively. 

 

Measure  Estimate 
Patient estimates n = 50  
 Distance walked prior to resting (m) 1,400 (35–20,000) 
 Time walked prior to resting (min) 40 (1–720) 
 Mean daily step-count 6,000 (100–20,000) 
Three-point scale (%)  
 Active 27 (55) 
 Less active than ideal 20 (41) 
 Sedentary 2 (4) 
Functional Independence Measure  
 Motor 91 (49–91) 
 Cognitive  35 (30–35) 
 Total  126 (84–126) 
Surrogate-decision-maker estimates n = 49  
 Distance walked prior to resting (m) 2,000 (2–20,000) 
 Time walked prior to resting (min) 30 (1–360) 
 Mean daily step-count 4,500 (5–25,000) 
Three-point scale (%)  
 Active 28 (57) 
 Less active than ideal 15 (31) 
 Sedentary 6 (12) 
Functional Independence Measure  
 Motor 91 (49–91) 
 Cognitive  35 (26–35) 
 Total  126 (84–126) 

Table 1 – Subjective estimates of physical activity 
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Description n (%) 
On their body > 75% of the time 35 (71) 
With them sometimes when at home and always when leaving the home 5 (10) 
Rarely or never having the phone with them when at home but always  
    when leaving the home 

5 (10) 

Rarely carried the phone with them 2 (4) 
Regularly turned off 0 (0) 
Other usage patterns 2 (4) 
No response 1 (2) 

Table 2 – Phone Usage Pattern Described by Study Participants (n = 50) 
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Carried their phone on their body ≥75% of waking hours 

Carried their phone at all times when they left the house but only sometimes when at 

home 

Carried their phone at all times when they left the house but rarely when at home 

Frequently left the phone at home and rarely carried it around home 

The phone was turned off more than it was turned on 

Other 

Supplementary Table 1 – Categories of participant’s phone usage 

 

Question 1 

 When you are well how far can you walk before you need to stop for a rest? 

Prompt:-  Think of a walk you did recently – can you remember where it was 

from and where it finished (how long was it) how many times did 

you stop for a breather? 

Question 2 

 When you are well how long (in time) can you walk prior to needing a rest? 

Prompt:-  Think of a walk you did recently – can you remember how long did 

it take? How many times did you stop for a breather? 

Question 3 

 When you are well, How many steps do you take per day? 

Prompt;-  The Australian average is 6000 steps, do you take more or less than 

average? How much more than average? 

Supplementary Figure 1 
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Owned 

smartphone 

(n = 50) 

Did not own 

smartphone 

(n = 79) 

P value 

between 

groups 

    

Male sex (n (%)) $ 33 (66) 49 (63) .850 

Age (mean (SE)) # 52.2 (2.4) 63.1 (2.0) .001 

APACHE-II score (mean (SE)) # 18.9 (1.2) 18.9 (0.8) .944 

APACHE-III score (mean (SE)) # 62.9 (4.9) 69.1 (2.8) .243 

ICU LOS (median (IQR)) % 5.8 (6.3) 4.5 (4.0) .146 

Hospital LOS (median (IQR)) % 17.0 (17.6) 18.8 (21.7) .420 

ICU mortality (n (%)) $ 1 (2.0) 0 (0.0) .391 

Hospital mortality (n (%)) $ 1 (2.0) 6 (8) .245 

 

Supplementary Table 2 – the differences between owners and non-owners of Smartphones. Differences between groups 

tested using $ Fishers Exact Test, # Independent Samples t-test and % Mann-Whitney test. 

A
C 

B C
C 

Supplementary Figure 2 - Construction of a minimum convex polygon requires that all internal 
angles are less than 180 degrees. In this example, all visited locations are identified with a closed 
circle. In panel A, a minimum convex polygon is calculated from each point using straight lines. 
Panel B would be an invalid polygon because the angle indicated is greater than 180 degrees. 
Panel C would be the correct polygon, and would contain the central location seen in B. 
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Abstract 
 
Background 
 
Physical activity after Intensive Care Unit (ICU) discharge is challenging to measure but could 
inform research and practice. A patient’s smartphone may provide a novel method to quantify 
physical activity.  
 
Objectives 
 
We aimed to evaluate the feasibility and accuracy of using smartphone step-counts in 
survivors of critical illness.  
 
Methods 
 
We performed a prospective observational cohort study in fifty patients who had an ICU 
Length of Stay>48 hours, owned a smartphone, were ambulatory prior to admission and likely 
to attend follow-up at 3 and 6-months after discharge. At follow-up daily step-counts were 
extracted from participants’ smartphones and two FitBit pedometers and exercise capacity 
(6-minute walk test) and quality of life (EQ-5D) were measured.  
 
Results 
 
Thirty-nine (78%) patients returned at 3-months and 33 (66%) at 6-months, median [IQR] 
smartphone step-counts of 3,372[1,688-5,899] and 2,716[1,717-5,994] respectively. There 
was a strong linear relationship, with smartphone approximating 0.71(0.58, 0.84) of FitBit 
step-counts, P<0.0001, R-Squared=0.87. There were weak relationships between step-counts 
and the 6-minute walk test distance. 
 
Conclusion 
 
Although smartphone ownership and data acquisition limit the viability of using extracted 
smartphone steps at this time, mean daily step-counts recorded by smartphone may act as a 
surrogate for a dedicated pedometer; however, the relationship between step-counts and 
other measures of physical recovery remains unclear.   
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Introduction 
 
The quality of survivorship after Intensive Care Unit (ICU) discharge is important to patients 
and there are calls for it to be reported alongside mortality in clinical trials [1]. Quantifying the 
quality of survivorship is challenging; however, the capacity to undertake physical activity is a 
major determinant of this quality [2]. Physical activity is defined as any bodily movement 
produced by skeletal muscles that results in energy expenditure [3, 4]. There is a ‘dose’ 
response, association between physical activity and all-cause mortality [5-7]. The World 
Health Organization’s International Classification of Function places paramount importance 
on activity levels when assessing an individual’s disability [8].   Currently, the assessment of 
physical activity in survivors of critical illness is limited; hitherto the literature is dominated by 
subjective health related quality of life (HRQoL) assessments [9-11], which usually include a 
physical function sub-score, or single point objective assessments of exercise capacity in a 
laboratory or clinical environment [9, 12, 13]. These assessments require considerable 
researcher and patient time and/or patient travel, and are not assessing physical activity per 
se. These requirements increase the expense and limit the feasibility of measuring physical 
activity in clinical trials. 
 
Wearable devices containing accelerometers have the potential to provide a mechanism for 
continuous assessment of physical activity [14-17]. However, currently available wearable 
devices remain too expensive to implement in larger clinical trials. Because current generation 
smartphones have inbuilt accelerometers, it may be feasible to utilise the patient’s 
smartphone to obtain physical activity data in survivors of ICU [18]. It has recently been 
demonstrated it is feasible to extract pre-morbid step-counts from patients’ smartphones on 
admission to ICU [18], although the validity of these data has not been assessed in the ‘real-
world’. In addition, smartphones have not been used to quantify physical activity in ICU 
survivors. 
 
Objectives for our study were: (1) to assess the feasibility of using smartphone step-counts as 
a surrogate for a dedicated pedometer, (2) describe the change in step-counts over time, and 
(3) describe relationships between smartphone step-counts and currently used measures of 
physical activity in a cohort of ICU survivors.  
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Methods 
 
We performed a single centre prospective cohort study, approved by the Human Research 
Ethics Committee of the Royal Adelaide Hospital (HREC/15/CALHN 236) and registered with 
the Australian New Zealand Clinical Trials Registry (http://www.anzctr.com.au; ANZCTR 
12616000427471. We approached patients for consent when they re-gained mental capacity, 
this could have been in ICU or on the ward, extracted data from their smartphones as 
previously described [18], and invited them to return for study visits at 3 and 6 months 
following ICU discharge. We mailed participants both hip and wrist worn pedometers, free of 
charge, with instructions for use (Appendix 1, Supplementary material), to arrive at their home 
address, at least 10 days prior to study visits. Prior to device delivery, synchronisation with 
our lab computer was checked. Participants were also asked to install the Moves app on their 
phone, the Moves app is a validated cross-platform, freely available, pedometer app [19]. At 
each study visit, patient co-morbidities were recorded and scored according to the Functional 
Co-Morbidity Index [20] which scores patients on 0-18 on comorbidities likely to impact on 
physical function. We also extracted step-count data from the participants smartphone and 
pedometers, and physical activity was assessed by 6-minute walk test and EQ-5D 
questionnaire. If extraction of usable data was not achieved from the pedometers, or the 
Moves app hadn’t been installed, patients underwent a second study period. Patients were 
paid an honorarium for attending the follow-up clinic as it was outside of standard care. 
 
Participants 
 
Between December 2015 and July 2016 all patients admitted to the Royal Adelaide Hospital 
ICU were screened. Patients were eligible if they had received at least 48 hours of ICU care 
and owned a smartphone. We excluded patients who were admitted following an elective 
procedure, were non-ambulatory prior to ICU, were aged less than 18 years, lived greater than 
50 km from Royal Adelaide Hospital, lacked capacity to provide written informed consent, 
were readmitted to the ICU, were pregnant, or the treating intensivist anticipated that the 
patient was unlikely to be alive in 6 months.  

Outcomes 
 

Step-counts  
Step-counts from participants’ phones were extracted from pre-installed pedometer 
apps, e.g. the Health app (iOS), S Health or Google Fit (Android) or any equivalent 
pedometer app, collectively defined as ‘Smartphone data’. The S health and the Health 
app have been independently verified as accurate [21, 22], however we are unaware of 
the accuracy of Google-fit data. In addition, we asked participants to install the Moves 
app prior to their 3-month appointment and checked its installation before their 6-
month appointment. We termed this ‘Moves app data’, to provide a measure of 
smartphone step counts on all devices, not just those with a dedicated, pre-installed, 
pedometer app. Data were extracted by visual inspection of the smartphone apps, this 
involved opening the app on the participants phone and manually making a note of the 
daily step counts. Both hip-mounted (Fitbit One) and wrist-mounted (Fitbit Flex) 
pedometers were sent to participants to arrive at least 10 days prior to each study visit. 
These pedometers were chosen as they have been validated against direct observation 
in a laboratory; with Fitbit One previously shown to have the greatest precision and least 
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bias [19], and the Fitbit flex being chosen as a wrist mounted pedometer has been 
shown to have the greatest accuracy in slow walkers [23]. We provided participants with 
detailed instructions for use (Appendix 1, Supplementary material): we instructed them 
to wear the Fitbit One on the right hip and the Fitbit Flex on their wrist, to wear the 
devices continuously during waking hours each day and to charge them overnight. 
Telephone assistance was provided if required. Fitbit devices were synchronized with 
accounts specific to each individual pedometer and data extracted in accordance with 
manufacturer instructions, via visual inspection of the data on a lab computer. If, at the 
clinic visit, we determined an error had led to incomplete data capture, participants 
retained the pedometers and were provided with a sheet to record smartphone and 
Moves app step-counts for the 10-day period following their clinic appointment. As we 
were assessing the validity of the step-counts obtained from phones pre-morbidly 
patients were instructed, by letter and via a phone call, to use their smartphone as they 
would if not participating in the study. We defined, a priori, that recording of greater 
than or equal to 7 days of data would be sufficient and representative, as this would 
include a weekend [24, 25] and only participants meeting this threshold were included 
for analysis. We performed a cost analysis based on retail price (Fitbit one’s - AU$123 
and Fitbit Flex’s - AU$94) for replacement devices when devices were lost or not 
returned. 
 
Exercise Capacity and HRQoL 
At each study visit participants performed a 6-minute walk test in accordance with 
published guidelines [26, 27], with the distance walked recorded and percentage of 
predicted distance calculated [28]. We surveyed HRQoL using The European Quality of 
Life 5 Dimensions (EQ-5D) [29]. 

 
Statistical methods 
 
Proportions are described as n (%) and continuous measures as mean (standard deviation, SD) 
or median [interquartile range, IQR] as indicated. The relationships between smartphone and 
dedicated pedometer step-counts, and six-minute walk test and step-counts were assessed 
by ordinary least squares regression, reported as the coefficient point estimate (95% 
confidence interval, CI) with associated P-value and R Squared statistic. Secondary analysis of 
pooled visit data was performed using general estimating equations (GEE) to adjust for 
repeated measures. Ordinal scale outcomes were assessed by ordinal logistic regression. 
Concordance between dedicated pedometer measures and between smartphone estimates 
were assessed by Lin’s concordance correlation coefficient (ρc) and Bland-Altman 95% limits 
of agreement (95% LOA). Strength of relationships are reported according to Lin [30]. 
  
Because of an absence of pre-existing data, we were unable to perform formal sample size 
calculations. We planned to recruit 50 participants in order to provide preliminary information 
to determine the relationship between smartphone and pedometer obtained step-counts.  No 
adjustment has been made for multiple comparisons and, given the feasibility study nature, 
no imputation made for missing data. All summary measures are referenced to the proportion 
of subjects providing data and comparisons limited to individuals who provided data at both 
time points. Analyses were performed in Stata/MP 14.2 (StataCorp LP, Texas, USA). STROBE 
guidelines for the reporting of observational studies were followed [31]. 
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Results 
 
Of 586 patients who received greater than 48 hours in ICU during the study period we enrolled 
50/84 (69%) eligible participants (Figure 1). At the 3-month visit 2 participants had died, 7 
withdrew consent and 2 were lost to follow-up, with 39 (78%) participants attending the 3 
month visit. By 6 months, a further 2 participants had died, 3 withdrew consent and another 
was lost to follow-up, such that 33/50 (66%) participants completed both study periods. 
Demographics for patients presenting at 3 and 6 months are shown in Table 1 with further 
details in supplementary material table 1. 
 
Step-counts 
 
We were able to extract step-counts from 17 (44%) and 14 (42%) smartphones at 3 and 6 
months respectively. The Moves app provided step-counts for 20 (51%) and 17 (52%) 
individuals at follow-up at 3 and 6 months respectively. Pedometer data were available for 
just over 60% of participants (Table 2). The average daily step-counts at 3 and 6 months for 
each device and the between device concordance are shown in Table 2. None of these 
measures were significantly different between time periods, analysed by GEE and adjusted for 
repeated measures with visit as a categorical variable (Table 2 and Supplementary Figure 1). 
The reasons for failed data extraction are shown in Table 3. 
  
The relationship for pooled 3 and 6-month smartphone step-counts was strong, 196 + 0.71 
(0.58 0.84) times Fitbit One, P<0.0001, R-squared 0.87 n=21.   
 
Sensitivity analysis employing a GEE model to adjust for repeated measures within subject 
produced an almost identical model, 211 + 0.71 (0.60, 0.82), P<0.0001, with adjusted and 
unadjusted model lines of fit shown in Figure 2. The relationship and strength of association 
between smartphone and pedometer estimates of step-counts, as assessed by linear 
regression at each visit, are presented in supplementary Table 2. 
 
Physical function 
 
Distance travelled and percentage predicted distance during the 6-minute walk test, plus the 
motor score, visual-analogue scale and total score for the EQ-5D at 3 and 6 months are 
presented in Table 2. The relationship and strength of association between the 6-minute walk 
test and step-counts by pedometer and smartphone at each visit were modest 
(Supplementary Table 2).  
 
Cost of measuring physical activity 
 
Over the course of the study, a total of 23 (32%) Fitbit devices were lost, unrecoverable or 
malfunctioned, at an approximate cost of AU$2,150 (Table 3), before the postal costs are 
considered. 
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Discussion  
 
Although not currently feasibly to employ within larger scale clinical research, extracted 
smartphone data provided a reliable estimate of step-counts as compared to the hip-worn 
Fitbit One. However, several factors limit the strength of our assertion. 
 
There were logistical issues with data acquisition and retrieval. The proportion of pedometers 
returning sufficient data was approximately 60%, significantly less than the 100% reported by 
Borges and colleagues [32] and the 90% reported by McNelly et al [33]. This may be due to 
the specific device chosen, or the malfunction or failure of the several devices to synchronize 
for data extraction, possibly because the participant had, despite instructions to the contrary, 
attempted to synchronize the devices  with their phone. Despite consultation with the 
manufacturer the cause of the malfunction remains unclear. The option of two study periods, 
does not appear to have increased data acquisition, suggesting the absence of a familiarization 
effect over time. 
 
We were only able to extract data from 42-44% of eligible participants’ smartphones, despite 
relying on a simple visual inspection of the smartphone apps. This was hindered by only Apple 
devices having an automatically activated step-counter in the health app. Moreover, the 
health app had only recently been introduced. Future studies are likely to have increased data 
extraction success.  
 
This amount of missing data would limit the usefulness of wearable technology as the primary 
assessment of physical activity outcome in clinical trials. We could extract these data from 
apps already present on patients’ phones or included with the standard operating system. 
Similar physical activity could also be extracted from smartphones as patients are admitted to 
ICU [18]. However, due to patients who provided baseline data being lost to follow-up, 
immobile or changing their smartphone over the study period, comparing data at baseline 
with 3 and 6 months was only possible in 7/50 (14%) participants. Smartphone data may 
therefore allow follow-up comparison at an individual patient level by the comparison of pre- 
and post-ICU physical activity data. This would be of importance as pre-morbid physical 
activity has been shown to have a significant effect on functional outcomes following critical 
illness [33]. Having this pre-morbid data readily available would assist ICU clinicians in 
communicating  risk to patients and their families. 
 
We believe this is a unique and novel methodology worthy of ongoing study. In terms of 
wearable technology to assess physical activity, there was a significant rate of physical loss 
with the financial cost in this study being approximately AUD $2,150. Such a cost may prove 
prohibitive for larger trials and, conversely, strengthens the rationale to evaluate novel 
methods of data capture, such as patient-owned technology (e.g. smartphone accelerometry). 
 
There was marked variability in performance between “equivalent measures”. The 
concordance between hip and wrist-worn Fitbit devices was poor. This is consistent with 
controlled laboratory experiments where the accuracy and precision of Fitbit One was 
superior to the wrist-worn Fitbit Flex [19], although, wrist worn pedometers have been shown 
to be more accurate in slower walkers [23]. Given our observations of a similar degree of 
systematic bias between measures we suggest that the hip-worn Fitbit One is a better 
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reference measure for clinicians and researchers quantifying post-ICU physical activity with 
pedometers. Similarly, the concordance between the Moves app and smartphone extracted 
data was poor, with Moves variably recording only a fraction of the steps registered on any 
given smartphone. These findings portend the marked differences in model fit and strength 
of association outlined in supplementary Table 2; where the strongest association is seen 
between smartphone data and Fitbit One. A potential way to overcome variability between 
devices is measuring percentage change over time using the same device [33]. 
 
The number of steps recorded, using either pedometer or smartphone, were considerably less 
than in previous studies [25, 33]. This may relate to time to follow-up, McNelly and colleagues 
followed-up their cohort at 18 months post ICU discharge, potentially allowing greater 
recovery. Alternatively, patients in our study may have had worse premorbid function, or 
experienced greater barriers to physical activity [34]. However, the six-minute walk test 
distances are further than those reported by Herridge and colleagues [9] and the reported 
EQ5D scores are greater than those reported from trauma, septic and general ICU patients 
[35, 36]. We observed no significant change in step-counts between study visits. The choice 
of 3 and 6-month intervals was pragmatic in order to assess feasibility, however, may have 
been insufficient to allow adequate recovery, and step-counts may have increased with longer 
periods of observation. The weak association between step-counts and 6-minute walk test 
suggests these metrics relate to different aspects of physical activity and is not entirely 
unexpected. The walk test assesses maximal performance under supervision in a controlled 
environment, whereas step-counts in this study reflect average voluntary activity over a 7-day 
period. In addition, step counts, although more meaningful to clinicians, do not take into 
account intensity and duration of activity and are a poor estimate of energy expenditure 
calculated by accelerometry. 
 
There is limited experience when comparing data obtained from smartphones and 
pedometers to outcomes more commonly measured in the critically ill. However, previous 
studies using pedometers have indicated strong associations between daily step-count and 6-
minute walk test distances in healthy individuals [37], patients with chronic obstructive 
pulmonary disease [38, 39] and patients recovering from stroke [40] and these have been 
confirmed with formal exercise testing [41]. There are also associations between daily step-
counts and global health related quality of life measures, such as the EQ-5D, in patients 
receiving chronic hemodialysis [42] and severe mental illness [43]. 
  
In addition to the issues with data retrieval and device logistics, where we were only able to 
extract step-data from 42-44% of the phones analysed, and approximately 40% of pedometers 
failed to provide analysable data, our study has a number of limitations. At the time the study 
was conducted, only around half of ICU patients owned a smartphone and this significantly 
impacted on patient eligibility. However, as technology develops and those with technology 
integrated into their daily life age, we anticipate this proportion will increase [44]. We did not 
specify how many hours a day would be regarded as a complete pedometer reading, indeed 
this wasn’t possible with the generic Fitbit software or the simple method of smartphone data 
extraction. While this may lead to discrepancies in pedometer obtained step data, we did 
average data over 7 days in order to limit sample variability.  The lack of a single gold standard 
assessment for assessing the level of function and/or activity for a survivor means that any 
comparison with a newer methodology is difficult. 
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The major strength of our study is novelty, in that we are the first to report on the feasibility 
of using smartphone data as an objective metric of physical activity in ICU survivors. While 
logistic difficulties weakened the findings in this paper, these difficulties are, we believe, 
intrinsically important in planning for future studies and lend weight to ongoing research into 
patient-owned technology and related activity measures.  
 
Future work should involve the development of instructions to participants to improve data 
acquisition, such as specifying how many hours a day they are expected to wear the device, 
the importance of wearing the device, what to do in the event they forget to wear or loose 
the device and to clarify the reason for not synchronising the devices themselves. In addition, 
automating the extraction process, currently done manually, through the use of digital 
forensics or a specific smartphone app would be essential for this methodology to be widely 
applied.
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Conclusions 
 
While the current proportion of ICU patients owning a smartphone and logistic issues with 
data extraction limit the viability of utilising patient-owned technology at this time, step-
counts recorded from a patient’s smartphone may provide a viable surrogate for dedicated 
pedometer estimates and therefore an objective measure of patient activity.  
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Figure 1.  Consort diagram – Patients who provided partial data for the 3 or 6-month follow-up are included as 
being followed-up. 
 
 
 
 

586 patients received > 48 hours of ICU 
care admitted between December 2015 

and July 2016 

423 patients were excluded: 
 

177 
62 
46 
42 
29 
26 
22 

7 
6 
5 
1 

 
Lived > 50km away 
Died before regaining capacity 
Unable to provide informed consent 
Admission to ICU planned 
Anticipated not to survive 6 months 
Not Ambulatory prior to ICU admission 
Readmitted to ICU 
<18 years old 
Discharged from hospital prior to consent 
Inability to mobilise following ICU admission 
Pregnant 

 

79 patients didn’t own a smartphone 
34 patients refused consent 

39 Patients followed-up at 3 months 

At 3 months 
 2 Died 
 7 Withdrew 
 2 Lost to Follow-up 
  

50 patients consented 

163 patients met all inclusion criteria and 
none of the exclusion criteria 

 

At 6 months 
 2 Died 
 3 Withdrew 
 1 Lost to Follow-up 
  

33 Patients followed-up at 6 months 
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Figure 2.  Scatterplot for smartphone mean daily step counts at 3 months (closed circles) and 6 months (open circles) versus 
hip-worn Fitbit One. Line of model fit by ordinary least squares (dashed line) and adjusted for repeated measures (GEE, solid 
line). Slope coefficient 0.71 (0.58, 0.84), R-squared 0.87, P<0.0001. 
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Demographics 3 months (n=39) 6 Months 
(n=33) 

Male, n (%) 30 (77%) 26 (79%) 
Age (years), median [IQR] 56 [44-65] 55 [39-64] 
APACHE 3J (score), median [IQR]  59 [37-77] 53 [35-75] 
ICU LoS (days), median [IQR] 6 [4-10] 6 [4-9] 
Hospital LoS (days), median [IQR] 18 [12-28] 17 [10-25] 
Trauma, n (%) 10 (26%) 9 (27%) 
Medical, n (%) 27 (69%) 23 (70%) 
Surgical, n (%) 2 (5%) 1 (3%) 
Functional Co-Morbidity Index, median [IQR] 3[1-5] 3 [1-4] 

Phone type   
Apple 15 (38%) 15 (45%) 

Android 24 (62%) 18 (55%) 

Phone Usage   
Carried phone on person >75% of the time 25 (64%) 22 (67%) 

APACHE 3J - Acute Physiology and Chronic Health Evaluation III (version J, at ICU admission) 
Functional Co-Morbidity Index [10], scores patients on 0-18 on comorbidities likely to 
impact on physical function 
LoS – Length of Stay 
6MWT – 6 Minute Walk Test. 
EQ-5D – European Quality of Life Five Dimensions, VAS – visual analogue scale. 

Table 1 - Demographic information at 3 and 6 month visits.  
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Outcome Measures 3 months (n=39) 6 Months (n=33) P-Value1 

Step-Counts (average count over preceding 7 days)  
Smartphone N (%) 17 (44%) 14 (42%)  
 median [IQR] 3,372 [1,688 to 5,899] 2,716 [1,717-5,994] 0.95 
Moves app N (%) 20 (51%) 17 (52%)  
 median [IQR] 2,146 [878-4,983] 1,886 [1,063-3,629] 0.28 
FitBit One N (%) 25 (64%) 21 (64%)  
 median [IQR] 2,790 [1,685-6,677] 3,765 [1,762-6,639] 0.29 
FitBit Flex N (%) 24 (62%) 20 (61%)  

 median [IQR] 3,221 [2,189-6,245] 4,061 [1,606-7,246] 0.12 
6MWT  
 N (%) 28 (72%) 26 (79%)  

Distance 
(m) median [IQR] 479 [441-520] 536 [451-580] 0.004 

% predicted median [IQR] 74 [67-91] % 84 [73-95]% 0.28 
EQ-5D     
 N (%) 39 (100%) 33 (100%)  

Mobility median [IQR] 2 [1-3] 1 [1-2] 0.023 
VAS median [IQR] 60 [50-80] 75 [50-90] 0.10 
Total median [IQR] 10 [6-12] 7 [6-11] 0.07 

Concordance between measure  

Fitbit One – 
Fitbit Flex 

Mean 
difference 
(95% CI) 

-575 (-2684-1533),      
ρc = 0.89 (n=20) 

-981 (-4613, 2651),  
ρc = 0.85 (n=17)  

Moves app - 
Smartphone 

Mean 
difference 
(95% CI) 

-634 (-3593, 2325),    
ρc = 0.79 (n=11) 

-776 (-5457, 3906),  
ρc = 0.65 (n=10)  

6MWT – 6 Minute Walk Test. 
EQ-5D – European Quality of Life Five Dimensions, VAS – visual analogue scale. 
1. Comparison by generalised estimating equations unless specified. 
2. Comparison by ordinal logistic regression, clustered on ID. 

Table 2. Outcome measures at 3 and 6 months  

  



 

 78 

 

Fitbit One and Fitbit Flex n Moves App n 

Used for less than 7 days 14 App didn’t record data for >7 days 10 
Lost pedometers  In post 6 No reason recorded 4 
 During study period 7 App not compatible with phone 2 
Synchronisation errors 12 Phone broken 2 

Device Failure 4 App deleted due to impact on 
phone 2 

Withdrew prior to data extraction 4 Patient died during study period 1 
Patient died during study period 2 Withdrew during study period 1 
Table 3 - Reasons for all failed data capture by pedometers and Moves app. 
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Appendix 1 – Supplementary Information 
 

 3 months 6 Months 
Type of phone   
Apple 15 15 

iPhone not further defined 2 2 
iPhone 3 1 1 
iPhone 4S 1 1 
iPhone 5 4 4 
iPhone 5S 1 1 
iPhone 6 4 4 
iPhone 6S 2 2 

Android 24 18 
HTC  4 4 

ONE 4 4 
Motorola 1 1 

Nexus 6 1 1 
Samsung 16 12 

Galaxy not further defined 4 2 
Galaxy S2 1 1 
Galaxy S3 3 2 
Galaxy S4 2 2 
Galaxy S6 2 2 
Galxay Note 5 3 2 
Note 7 1 1 

Sony 1 1 
Experia 1 1 

Other 2 0 
Smartphone Usage Pattern   
Carried their phone on their body ≥75% of 
waking hours 

25 22 

Carried their phone at all times when they left 
the house but only sometimes when at home 5 4 

Carried their phone at all times when they left 
the house but rarely when at home 5 4 

Frequently left the phone at home and rarely 
carried it around home 1 1 

The phone was turned off more than it was 
turned on 3 2 

Supplementary Table 1 – additional demographic details, Smartphone usage pattern – patients were asked to clarify their 
usage pattern according to the above classification and also had the option to select ‘other’. 
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Supplementary Figure 1 – Average daily step-counts for smartphone data, the Moves app, Fitbit One (hip) and Fitbit Flex 
(wrist) at 3 and 6 months post-discharge. (Outlier values have not been plotted for scaling) 
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Outcome Predictor Constant Coefficient 95% CI P-Value R-
squared 

3 Months       
Smartphone Fitbit One 670 0.61 (0.43, 0.78) <0.001 0.86 
 Fitbit Flex 1284 0.46 (-0.02, 0.93) 0.059 0.38 
Moves app Fitbit One -78 0.58 (0.27, 0.88) 0.001 0.56 
 Fitbit Flex 323 0.51 (0.03, 0.98) 0.038 0.27 
 
6MWT Fitbit One 350 22.3 (6.0, 38.6) 0.01 0.33 
 Smartphone 430 14.1 (-1.2, 29.4) 0.07 0.25 
 
6 Months       
Smartphone Fitbit One -742 0.90 (0.69, 1.11) <0.001 0.92 
 Fitbit Flex -757 0.77 (0.50, 1.03) 0.001 0.92 
Moves app Fitbit One 595 0.40 (0.03, 0.77) 0.036 0.34 
 Fitbit Flex -80 0.41 (0.22, 0.61) 0.001 0.75 
 
6MWT Fitbit One 429 16.5 (4.5, 28.5) 0.01 0.35 
 Smartphone 480 13.8 (0.82, 26.8) 0.04 0.39 

Supplementary Table 2 –  Linear regression between smartphone and pedometer estimates of average daily step-counts and 
the six-minute walk test at 3 and 6 months. 
 
 

n=7 Premorbid 3 months 

Reduction in 
step count at 
3 months 6 months 

Reduction in 
step count at 6 
months 

Mean steps/day 
Median [IQR] 

3840      
[3483 - 4620] 

2748   
[817 - 559] 

1239        
[559 - 3947]  

2487    
[1705-2716] 

1720          
[1242 - 2398] 

Supplementary Table 3 – mean daily pre-morbid smartphone step counts and comparison with corresponding step counts 
at 3 and 6 mont
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Abstract  
 
Background 
 
Disability is common following critical illness, impacting on the quality-of-life of survivors, and 
is difficult to measure. ‘Participation’ can be quantified as involvement in life outside of their 
home requiring movement from their home to other locations. Participation restriction is a 
key element of disability, and, following critical illness, participation may be diminished. It 
may be possible to quantify this change using pre-existing smartphone data.  
 
Objectives 
 
The feasibility of extracting location data from smartphones of survivors of Intensive Care 
Unit (ICU) admission and assessing participation, using location-based outcomes, during 
recovery from critical illness was evaluated. 
 
Methods 
 
Fifty consecutively-admitted, consenting adult survivors of non-elective admission to ICU of 
greater than 48-hour duration, were recruited to a prospective observational cohort study 
where they were followed up at three and six-months following discharge. The feasibility of 
extracting location data from survivors’ smartphones and creating location-derived outcomes 
assessing participation was investigated over three 28-day study periods; pre-ICU admission 
and at three and six-months following discharge. The following were calculated; time spent 
at home; number of destinations visited; linear distance travelled; and two ‘activity-spaces’, 
a minimum convex polygon and standard deviation ellipse.  
 
Results 
 
Results are median [IQR] or n (%). The number of successful extractions were 9/50(18%), 
12/39(31%), 13/33(39%); percentage time spent at home-time was 61[56-68]%, 77[66-87]%, 
67[58-77]%, P=0.16; number of destinations visited were 34[18-64], 38[22-63], 65[46-88], 
P=0.02; linear distance travelled was 367[56-788], 251[114-323], 747[326-933] km over 28 
days, P=0.02, pre-ICU and three-months and six-months following-ICU discharge respectively.  
Activity spaces were successfully created. 
 
Conclusion 
 
Limited smartphone ownership, missing data and time-consuming data extraction limits 
current implementation of mass extraction of location data from patients’ smartphones to 
aid prognostication or measure outcomes. The number of journeys taken and the linear 
distance travelled increased between three and six months, suggesting participation may 
improve over time. 
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Introduction 
 
Disability is frequently present in survivors of critical illness, however disability is challenging 
to accurately and efficiently measure [1-3]. Participation is defined by the World Health 
Organisation (WHO) as involvement in a life situation and participation restriction is a key 
element of disability [4] . Patients who survive critical illness have described being restricted 
by a physical zone of comfort. This physical zone of comfort is relevant as it can impact on 
their quality of life (QoL), but is not readily quantified using current health-related QoL 
measures, such as the SF-36 and EQ-5D[5]. 
 
Global Positioning System (GPS) or location data have been used to measure personal 
participation [6-8]. Diaries have been shown to over-estimate activity [9-10], whilst GPS data 
have been shown to reflect participation reported [11] and GPS data have been shown to be 
more accurate than diary recall [7, 12].  Social capital, which is the networks of relationships 
in society that enable that society to function effectively, is a strong determinant of 
healthcare outcomes [13-15]. Accordingly, whether activity is conducted independently or is 
supported by social capital – i.e. a carer, a relative or a friend – is of less importance than 
being able to participate per se. It has therefore been proposed that the ability of an individual 
to visit out of home locations represents enhanced participation and reduces perception of 
disability [6-8]; and this out of home behaviour is now possible to quantify using GPS data. 
 
For both clinical and research purposes, it would be beneficial to be able to estimate 
participation as an outcome from critical illness [16], and it may be possible to quantify 
participation using novel location-based outcomes. These location-based outcomes are 
defined as summative data relating to patient travel and out-of-home behaviour, which can 
be obtained using time-sequenced geospatial data that relate to the patient’s position. 
 
Objectively measuring participation using location data obtained from patients’ smartphones 
may be possible, offering a methodology to capture distances travelled with greater precision, 
rather than rely on self-recording of patient participation in a travel diary [17-20]. With the 
potential to automate data capture, analysis and reporting, using patients own devices will 
enable more cost-effective research into interventions to improve outcomes [21-22]. It has 
recently been demonstrated it is possible to extract step-data, as a marker of physical activity, 
from the smartphones of survivors of critical illness [23-24]. It may also be possible to use 
location data from a smartphone, analysed by geographic information systems, to generate 
location-based outcome measures [25]. 
 
Data from GPS devices have been evaluated in several non-critically-ill populations [11, 26-
34], including those with cognitive impairment [26, 28, 35], traumatic brain injury [29] 
cerebral palsy [11], amputees [33,34], stroke [31], mental health conditions [36, 37] and 
following spinal surgery [30]. The outcomes reported from these studies using GPS data 
frequently include the number of destinations visited or the number of trips made [11,31,33], 
the linear distance travelled [11] and time spent at or outside the home [11,28,33]. These 
studies have mostly utilised monitoring devices [11, 26-28,31,34,35], with one utilising a 
supplied android device [33] and all have been of an observational nature. These data were 
predominantly used to describe participation, particularly out-of-home behaviour and 
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community mobility. Real-time objective data may possess the granularity to describe patient 
participation automatically and continuously. 
 
Hitherto, Geographic Information Systems (GIS) analysis using individual patient data has 
seldom been used for quantifying healthcare outcomes.  Multiple factors have limited the 
uptake of this methodology, including confidentiality, consent and available technology to 
capture GPS data, with the latter of these perhaps the most significant. A potential 
application, leveraging the increasing use of smartphones [38] and location data [39], would 
be to also build ‘activity spaces’, which are a measure of the geographical area an individual 
covers on a daily basis. Brusilovskiy and colleagues used ‘minimum convex polygons’ - a type 
of activity space - to record participation of individuals with mental health disorders [8], and 
Hirsch and colleagues proposed using several different activity spaces to measure the mobility 
of older adults in the community [40]. Whilst such activity spaces might provide a useful 
outcome metric following critical illness, as they may represent the physical zone of comfort 
that ICU survivors report [5], it is unknown whether it is possible to conduct spatial analysis 
from location data obtained from the smartphones of ICU survivors. 
 
The objective was to examine the feasibility of extracting location data from the smartphones 
of ICU survivors and to use the location data gained to describe participation prior to and 
following critical illness. It was hypothesised that, if extracting location data were feasible, 
survivors would spend more time at home, undertake fewer discrete journeys and travel less 
distance after hospitalisation when compared with participation before ICU admission, and 
that there would be improvement in these participation metrics at six months when 
compared with three months post discharge. 
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Methods 
 
This was a planned follow-up study of a previously published work evaluating the use of 
patient owned technology [23]. Consecutively admitted patients to the Royal Adelaide 
Hospital ICU were screened between December 2015 and July 2016. The Royal Adelaide 
Hospital is a quaternary referral centre and the ICU is a mixed medical and surgical unit with 
approximately 3,500 patient admissions per year. 
 
Participants 
 
To exclude patients with mild disease or who were admitted purely for monitoring, patients 
were eligible to participate if they received at least 48 hours of care in the ICU. Exclusion 
criteria were patients admitted following an elective procedure, those who had long-term 
inability to mobilize, were aged <18 years, lived >50 km from Royal Adelaide Hospital (for ease 
of follow-up), lacked capacity to provide written informed consent, were readmitted to the 
ICU, were anticipated to die within 6-months, or were pregnant. Patients were approached 
to discuss the study when they regained capacity, this was frequently around ICU discharge, 
or on the hospital ward. Screening ceased at hospital discharge. If following regaining of 
capacity, they met eligibility criteria, patients were questioned about smartphone ownership. 
Those patients with a smartphone were then approached to provide informed consent to 
participate. 

Protocol 

Following written informed consent from the patient, participants were surveyed on their 
smartphone usage, location data were extracted and survivors were reviewed in the research 
department at 3 and 6-months after ICU discharge, at which time smartphone data extraction 
was repeated. The study protocol was approved by the Human Research Ethics Committee of 
the Royal Adelaide Hospital (HREC/15/CALHN 236) and registered with the Australian New 
Zealand Clinical Trials Registry (http://www.anzctr.com.au; ANZCTR 12616000427471)  
 
Location data 
 
Location data were manually extracted from the ‘Frequent Locations’ app on iOS devices and 
from Google Maps Timeline. If possible, data were extracted for the 28-day period prior to 
the study time point, i.e. ICU admission or clinic attendance at 3 or 6-months after ICU 
discharge. Due to the nature of critical illness and required interventions there was frequently 
a delay between admission to ICU and capacity of patients to provide written informed 
consent. Accordingly, to determine the feasibility of extracting data (primary outcome) as 
proof-of-concept, baseline (before ICU admission) data were defined as successfully 
extracted for any continuous period of 28-days prior to obtaining patient consent. This 
continuous period of 28-days may have occurred after hospital admission. This pragmatic 
decision was undertaken because for some patients smartphone data prior to their admission 
had been overwritten due to the delay between ICU admission and the capacity to provide 
informed consent. However, data obtained in this manner were not used for any secondary 
outcomes as it frequently pertained to a single location (the hospital). Repeated screenshots 
of the Frequent Locations or Google Maps TimeLine data, for the entire 28-day period, were 
taken, geocoded and stored in Microsoft Excel. Geocoding is the process of taking location 
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data, e.g. an address, and converting it to GPS coordinates to identify a position on the earth’s 
surface [41]. Although extracting any location data were counted as a success for the primary 
outcome, only patients where the location data accounted for >50% of the total 28-day period 
were included in further analysis. Study data were stored on a secure hospital network drive 
and were only associated with a study ID with link to patient identification in written 
documents kept in a secure office. 
 
Location data analysis 
 
Data presented in ‘Frequent Locations’ and ‘Google Maps Timeline’ detail the date and time 
of arrival and departure from a specified location. From these data, several location-based 
outcomes were calculated: 
 

Percentage time spent at home 
The home location is specified in ‘Frequent Locations’ and determined from analysing 
‘Google Maps Timeline’. The total time spent at this location over the whole 28-day 
period (i.e 28 x24 hours) was calculated and presented as a percentage. 
 
Number of journeys made 
Discrete destinations are identified within ‘Frequent Locations’ and ‘Google Maps 
Timeline’. Counting the number of journeys made during the 28-day period was 
possible by ordering the locations visited by time of arrival. 
 
Linear distance travelled 
Using the haversine formula [42, 43] the linear distance between destinations was 
calculated. The total linear distance travelled was then calculated by summing these 
distances over the 28-day period. 
 
Activity spaces 
It was planned to describe two activity spaces, a minimum convex polygon and a 
standard deviation ellipse [44]; these would represent experimental location-based 
outcomes. A minimum convex polygon [8] is a polygon drawn around the outermost 
points visited by the patient, such that no internal angle is greater than 180o (Figure 
1), and is calculated using the convex hull function of ArcMap (V10.3.1 ESRI, California, 
USA). A standard deviation ellipse [44] is the area enclosed by an ellipse centred on 
the mean longitude and latitude, with the direction of its short axis being determined 
by the minimal dispersion and the direction of its long axis by the maximal dispersion. 
It is calculated using the directional distribution function of ArcMap (V10.3.1 ESRI, 
California, USA). 
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Statistical Analysis 
 
Data were analysed descriptively and reported as frequencies and percentages for categorical 
data and median (interquartile ranges) for continuous data. Differences between time 
periods were calculated with the Wilcoxon signed-rank test. A P value < 0.05 was deemed 
statistically significant and adjustments for multiple comparisons were not made. An arbitrary 
target was set of extracting data from ≥ 80% to indicate feasibility. No adjustments were 
made for missing data.  Analyses were performed in Stata/MP 15.1 (StataCorp LP, Texas, 
USA). No formal sample size calculation was undertaken, rather a convenience sample of 50 
patients was selected to assess feasibility. The STROBE guidelines for the reporting of 
observational studies were followed [45]. 
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Results 
 
Five hundred and eighty-six patients were treated in ICU for greater than 48 hrs during the 8-
month data collection window. Of the 163 who met all the inclusion and none of the exclusion 
criteria, 84 (52%) owned a smartphone. Fifty patients provided informed consent to 
participate in the study. The flow of participants is shown in Figure 2. 
 
Demographic details at basline and 3 and 6 months are detailed in Table 1. It was possible to 
extract location data from 19/50 (38%) of phones at baseline, 14/39 (36%) at 3-months and 
15/33 (45%) at 6-months. However, due to the delay in obtaining consent in critically ill 
patients and thereby accessing their phone, complete 28-day data prior to hospital admission 
were only available for 9/19 (47%) patients at baseline with 10 patients only have part of this 
time period recorded.  
 
Two participants lacked data to account for >50% of their activity at both 3 and 6 months.  In 
one instance this was due to human error during the data extraction process. Location-based 
outcomes and the between time-period comparisons are described in Table 2 The number of 
journeys taken and the linear distance travelled increased between 3 and 6 months. 
 
It was possible to create activity spaces from the extracted data, an example of these is shown 
in supplementary figure 1. There was wide variation between participants’ activity spaces 
(Figure 3). On direct observation of the polygons of participants with outlier data (n=3) all had 
interstate travel during this period indicating location data were correctly recorded. 
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Discussion 
 
This feasibility study demonstrates that it is possible to manually extract location data from 
over a third of the smartphones of consenting patients who survive critical illness. The 
findings also suggest that it is possible to use location data to explore useful constructs, for 
example to describe survivor participation in community life during recovery. These data 
could be linked to pre-illness data to describe changes in participation.  
 
While many of the patients' smartphones contained location data, the process of data 
extraction was time consuming. For this process to be feasible for large numbers of 
participants, it requires automation.  In addition, the ‘Frequent Locations’ function was 
lacking data for significant periods of time on some phones, which may reflect the locations 
visited not being recognised as ‘frequent’ or may be a result of the phone being turned off or 
having a flat battery. This led to considerable missing data. 
 
As far as the authors are aware, this is the first-time survivors have been assessed using 
location-based data following critical illness and we have demonstrated that location-based 
smartphone data may be obtained using patient-owned technology. It is anticipated that 
these data may eventually represent a useful outcome to quantify participation, which may 
be important to survivors. Even in other aspects of illness, this is one of the largest cohorts to 
be studied using location-based outcomes, and the only study the authors are aware of to 
use the patient’s own technology [25]. It is believed that the use of location data from a 
survivor’s smartphone to create location-based outcomes has considerable potential to 
describe recovery from critical illness, because location data does not rely on self-reporting 
and recall, which are inaccurate in other settings and may be further impeded by cognitive 
impairment after critical illness [46]. Moreover, current methodologies to quantify outcomes 
after ICU have limitations. Lim and colleagues reported that patients perceive limitations with 
current measures commonly used as ICU outcomes, e.g. the SF-36 and EQ-5D. These 
measures often lack domains needed to comprehensively assess patient-centred outcomes 
[5], such as physical zone of comfort, which theoretically may be estimated by location-based 
outcomes. 
 
Due to small numbers and missing data, it is not possible to make strong inferences from the 
location data obtained. No abrupt change was observed in the location-based outcomes 
between pre-hospital and 3-months after ICU.  A modest reduction was observed at 3-
months, in many of these metrics, which appeared to be improving by the 6-month period.    
 
Raw GPS coordinates were not used, as in previous studies, rather locations held within the 
Frequent Locations and Google Maps Timeline were geocoded, which makes the present 
study data difficult to compare with published data [31]. Outcomes over a 28-day period were 
created, whereas previous studies have used daily, 7-day or 28-day outcomes. It was decided 
to collect data over 28-days as the existing literature provided only scant data, and it was 
believed this would provide a more representative level of activity. However, as 
demonstrated in figure 3, these data are skewed by participants who undertook interstate 
travel. Future studies may benefit from obtaining daily measures and comparing median 
values over a longer period (e.g. 28-days), as the influence of outlying values would be 
reduced. As community mobility was relied on as a measure of participation, although others 
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have made this assertion [17-20], it would benefit from further validation in the ICU survivor 
cohort. 
 
McCluskey and colleagues reported participants took 6.2 (SD 3.4 range 0-14) outings a week 
when followed for a mean of 43 months after a stroke [31], and Hordacre and colleagues 
reported transtibial amputees made a median of 2.3 [IQR – 1.3-2.8] community trips per day 
[34], which is a similar number of journeys to the participants in this study. Wettstein and 
colleagues reported participants visited 4.5 nodes (locations) a day and spent on average 4 
hours out of the hour per day [28], however they excluded days where the participants spent 
all day at home, so the results are not directly comparable to this study.  
 
The location-based outcomes reported are relatively novel and normal values for healthy 
individuals are unknown. Indeed, the linear distance an individual does travel, how much time 
they spend at home, how many journeys they make and their activity space will be influenced 
by many factors beyond their disability or functional limitation, e.g. availability of a car or 
public transport, the landmass on which they live, and socioeconomic class.  These data are 
objective and pertain to activity prior to critical illness, but cannot currently be benchmarked 
against the average normal population. 
 
There are potential ethical issues with the use of location data, and these pose challenges to 
this type of research [47]. These data may identify the patient’s home address and their 
behaviour patterns. Patients provided written informed consent for the data extraction. 
Following research best practices will alleviate many of the privacy concerns of location 
data, and patients provided written informed consent for data extraction. However, if these 
data were held in a data repository, they would need to be randomly manipulated to allow 
for them not to identify home address details. It is established that participants do have 
concerns over sharing their location data, and that participation is strongly influenced by 
the incentive provided [48].  By ensuring good practice guidelines are followed studies such 
as this shouldn’t erode patients trust in this kind of technology [47]. 
 
There are limitations to the present study. Data that had already been processed by Apple 
and Google were relied upon; each use proprietary algorithms that are almost certainly 
different. For example, ‘Frequent Locations’ doesn’t record time spent traveling and may not 
have recorded data from locations the algorithm didn’t deem were ‘frequent’, although in 
some instances locations that were only visited once were recorded. The effect of these 
differences on the outcomes generated is unknown. It is possible to develop other tools for 
assessing locations, or clusters, from GPS data [8]; however, how these relate to the data 
obtained from Frequent Locations or Google Maps Timeline is not known. Even when data 
were able to be extracted, in some participants there remained missing data, which may be 
due to inconsistent mobile phone use. As such, participants may have made more journeys 
or travelled further than has been reported, although smartphone GPS data appears more 
complete than a GPS enabled watch [49]. Finally, use of GPS data involves a value judgement 
that a greater number of journeys and distances travelled is a measure of participation and 
happiness of survivors of critical illness. It should be recognised that without corroborating 
evidence of greater participation, e.g. accurate diary entry of participation or return work, 
assumptions about participation are extrapolated from evidence in other fields [6-8].    
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While extracting data manually from participants phones may not be feasible it is conceivable 
that, using a custom-built smartphone app [50], anonymous location data could be sent from 
survivors to clinicians. This is appealing as studies report that many survivors do not have the 
time, inclination or resources to attend in-person follow up clinics [51-53], and these 
technologies need to fit seamlessly into existing care [54]. Such an approach could allow a 
cost-effective methodology for collecting highly granular data about participation. For 
research purposes, it would be appealing to quantify the effect of ICU interventions on the 
delta participation (difference between pre-ICU and 3 to 6 months after) [16, 55, 56]. To 
accurately collect pre-morbid data, GPS data would need to be recorded and stored as 
standard health outcomes as part of Google Fit or Apple Health Kit as step data currently is 
[57]. Further research assessing the acceptance of this technology and the meaningfulness of 
the outcomes to participants is warranted. 
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Conclusion 
 
This is the first attempt to use location-based outcomes using GPS-derived data to quantify 
participation in survivors of critical illness, which is a novel concept. Location data were 
present on only a third of patient’s smartphones. Combined with the lack of easy and 
automated extraction process, it is not currently feasible to use GPS data obtained from 
proprietary mobile phone software for assessing patient participation. The number of 
journeys taken and the linear distance travelled were observed increased between 3 and 6 
months, which suggests participation increases over time.  
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Figure 1 – Construction of a minimum convex polygon requires that all internal angles are less 
than 180 degrees. In this example, all visited locations are identified with a closed circle. In panel 
A, a minimum convex polygon is calculated from each point using straight lines. Panel B would 
be an invalid polygon because the angle indicated is greater than 180 degrees. Panel C would be 
the correct polygon, and would contain the central location seen in B. 
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586 patients received > 48 hours of ICU 
care admitted between December 2015 

and July 2016 

423 patients were excluded: 
 

177 
62 
46 
42 
29 
26 
22 

7 
6 
5 
1 

 
Lived > 50km away 
Died before regaining capacity 
Unable to provide informed consent 
Admission to ICU planned 
Anticipated not to survive 6 months 
Not Ambulatory prior to ICU admission 
Readmitted to ICU 
<18 years old 
Discharged from hospital prior to consent 
Inability to mobilise following ICU admission 
Pregnant 

 
 

 

79 no smartphone 
34 decline to participate 

At 3 months 
 2 Died 
 7 Withdrew 
 2 Lost to Follow-up 
  
 

163 patients met all inclusion criteria and 
none of the exclusion criteria 

 

At 6 months 
 2 Died 
 3 Withdrew 
 1 Lost to Follow-up 
  
 

33 Patients followed-up at 6 months 

39 Patients followed-up at 3 months 

50 patients consented 

Location data extracted from 14 phones 
Data analysed for 12 phones 
  
 

Location data extracted from 15 phones 
Data analysed for 13 phones 
  
 

Location data extracted from 19 phones 
Data analysed for 9 phones 
  
 

Figure 2 – Study participants through the study 
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Demographics Baseline 
(n=50) 

3 months 
(n=39) 

6 Months 
(n=33) 

Male, n (%) 33 (66%) 30 (77%) 26 (79%) 
Age (years), median [IQR] 55 [39-64] 56 [44-65] 55 [39-64] 
APACHE 3J (score), median [IQR]  54 [39-74.5] 59 [37-77] 53 [35-75] 
ICU LoS (days), median [IQR] 6 [4-10] 6 [4-10] 6 [4-9] 
Hospital LoS (days), median [IQR] 17 [10-26] 18 [12-28] 17 [10-25] 
Trauma, n (%) 12 (24%) 10 (26%) 9 (27%) 
Medical, n (%) 36 (72%) 27 (69%) 23 (70%) 
Surgical, n (%) 2 (4%) 2 (5%) 1 (3%) 
Functional Co-Morbidity Index, median [IQR] N/A 3[1-5] 3 [1-4] 
Phone type  
Apple 20 (40%)* 15 (38%) 15 (45%) 

Android 25 (50%)* 24 (62%) 18 (55%) 

Phone Usage  
Carried phone on person >75% of the time 35 (70%) 25 (64%) 22 (67%) 

 
Table 1 - Demographic details at baseline and at 3 and 6 month visits. Acute Physiology and Chronic Health Evaluation 
(APACHE), Intensive Care Unit (ICU) Length of Stay (LoS), * Data extraction wasn’t attempted from 5 phones due to staff 
availability. 
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Outcome Baseline (n=9) 3 Months 
(n=12) 

6 Months 
(n=13) 

P Value 3-6 
months (n=8) 

% time spent at 
home 

61 [56 – 68] 77 [66 – 87] 67 [58 – 77] P=0.16# 

Number of 
journeys made  

34 [ 18 – 64] 38 [22-63] 65 [46 – 88] P=0.02# 

Linear distance 
traveled (km) 

367 [ 56 – 788] 251 [114 – 
323] 

747 [326 – 933] P=0.02# 

Minimum convex 
polygon (km2) 

23 [7 – 571] 148 [78 – 517] 186 [68 – 863] P=0.39# 

Standard deviation 
ellipse (km2) 

21 [4 – 190] 64 [ 39 – 146] 156 [29 – 333] P=0.39# 

Table 2 - Location-based outcomes at baseline, 3 and 6 months. Results are median [IQR]. # Wilcoxon Signed-Rank Test. P 
Value calculations are based on the number of patients with comparative data at 3 and 6 months. 
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Figure 3 - Scatter plot of standard deviation ellipse and minimum convex polygon (A) All data; and (B) with 
outlying values removed showing baseline data and data obtained at the 3 and 6 month clinic visits. 
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A          B 
Supplementary figure 1 – Examples of a (A) Minimum Convex Polygon and (B) Standard Deviation Ellipse activity 
space 
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2.5 Conclusions 
 
2.5.1 Introduction 
 
This chapter concurs with the existing literature that demonstrates the discourse between 
patients and their surrogates estimates of pre-morbid assessments. With regards to activity 
levels (Chapter 2.2) this raises important clinical concerns, as clinicians frequently rely on 
these data to inform treatment plans. However, in the absence of an agreed gold standard, 
the surrogates appeared to be the better estimators of premorbid activity, when compared 
to smartphone data, with patients tending to over-estimate their activity levels. Smartphone 
ownership was relatively prevalent in the ICU population, and it was possible to extract either 
step or GPS data from nearly 50% of the phones analysed during patients ICU stay. 
 
The step counts obtained from a smartphones do appear to be a suitable substitute for a 
dedicated pedometer in a free living environment. Additionally, it was possible to manually 
extract location data from a third of the smartphones examined and use these data to 
generate useful constructs that may describe patient participation. 
 
2.5.2 Contribution of the work described to the measurement of pre-morbid activity 
 
The measurement of pre-morbid function, and the relationship with subsequent outcomes is 
of vital importance to ICU research. This is incredibly hard to achieve, as measuring pre-
morbid function frequently relies on subjective recall. We have established that there appear 
to be significant inaccuracies in the subjective recall of patients and their surrogates. 
Therefore, being able to measure pre-morbid function objectively and retrospectively, is 
important, as it will enable a comparison with function during and following recovery. We 
have demonstrated that the passively collected and stored data held in various smartphones 
datasets may be able to perform this function.  
 
2.5.3 Contribution of the work described to the measurement of outcomes I critically ill 
adults 
 
The work performed by the ICU research community has focused on designing or validating 
specific tools that address the domains that are limited in ICU survivors. However, in their 
International Classification of Function, the World Health Organisation (WHO) advocated for 
a common language in the assessment of disability focusing on activity and participation. In 
utilising patients own devices there is the potential to collate data relating to activity and 
physical participation. Many devices owned by patients passively collect pedometry and 
location data.  It may be possible to use pedometry and location data to define outcomes, 
such as time spent active or time spent out of the home. Outcomes such as these are 
objective, can be passively collated and possibly wirelessly transmitted to clinicians or 
researchers. They are also important to patients. The use of smartphone technology in this 
regard represents a novel methodology that could be applied to ICU outcomes research. 
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2.5.4 Contribution of the work described to the use of smartphones to measure healthcare 
outcomes 
 
Mobile Health (mHealth) is a growing field and the digital phenotype an increasingly used 
term. Being able to use passively collected data to monitor patients via their smartphone is 
an unobtrusive research methodology. We have demonstrated that smartphones are able to 
collect both step and GPS data. In using activity spaces, distance travelled and number of 
steps per day we have used these data to utilise outcomes that can allow for inter-individual 
comparison. 
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2.6 Future Directions 
 
2.6.1 The automation of data extraction 
 
This chapter has demonstrated that the data present on phones is difficult to extract, 
requiring physical photos of the phone to be taken. For step data, this enables the daily step 
counts to be transcribed into a spreadsheet, however, the data held in the pedometer apps 
is at a far higher resolution. The data held in databases included the time the individual 
started walking, the time they stopped, the number of steps taken and in some devices the 
distance walked. Manually extracting this data is simply not feasibly as it represents hundreds 
to thousands of lines of data per day. The manual extraction of GPS data required the 
screenshots to have each individual datapoint geocoded manually to find its GPS position. 
This was incredibly time consuming and would not represent a long-term solution. Being able 
to access the databases on the phones where these data are stored will be necessary. This 
was attempted using a collaboration with digital forensic scientists, however, they were 
unable to extract the required data. Automatic data extraction would allow for the full 
automation of analysis making the whole process faster and easily assessable. This is a hurdle 
that would certainly be worth further investigation. 
 
2.6.2 The assessment of the accuracy of Smartphone GPS data 
 
The accuracy of the smartphone data we are extracting has not been studied. The data from 
both frequent locations (iOS) and GoogleMaps Timeline are not in the format of GPS 
positions, but rather an image of position on a map, researchers time is then spent finding 
the GPS data for analysis of these data in Geographic Information System software. The way 
that both Apple and Google determine which locations they display on the map is currently 
unknown, especially with regard Apple’s frequent locations. What Apple determines a 
‘frequent’ location is unknown, this could have huge implications for the distance a 
participant travels or the size of their activity spaces. If these databases were able to be 
automatically extracted and only provide details of the specific locations knowing how these 
data compare to a GPS tracker would allow comparison of these data with other such studies. 
There is additionally limited data on the accuracy of smartphone GPS data and no evidence 
regarding the use of smartphone data to determine time spent at home or activity spaces. 
Comparing the outcomes generated using frequent locations, GoogleMaps timeline or other 
GPS data with the outcomes generated through a dedicated GPS transponder would warrant 
further investigation. 
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CHAPTER 3 – AUTOMATION OF GLOBAL POSITIONING SYSTEM DATA EXTRACTION 
 
3.1 Introduction 
 
Chapter 2 demonstrated that highly granular and passively collected datasets are contained 
in smartphones and are potentially of use in determining the activity and participation of 
individuals in the community. These datasets may be able to define outcomes that are 
meaningful to patients. Combined with healthcare data these datasets may add value to 
existing predictive models[1]. For these potentials to be realised the extraction and analysis 
of these data requires automation. 
 
While in the previous chapter it was demonstrated that Global Positioning System (GPS) data 
is present on the phones of ICU survivors, the extraction of these data was a slow manual 
process. Being able to automate some, if not all, of this process would be a significant 
improvement in the methodology. Both Apple and Android are becoming increasingly 
defensive of the GPS databases held on their devices. While there is no way to access the 
‘Frequent Locations’ database on iOS devices, Google have enabled greater transparency by 
allowing the end user the ability to view and more recently download the data held in Google 
Maps[2, 3]. 
 
Being able to test the availability of these data in ICU survivors would be ideal, however, the 
recruitment for such a study would require daily screening, waiting for patients to be able to 
provide consent following extubation and thus, take several months of recruitment. 
Therefore, performing this feasibility study in a General Medical population with daily 
admissions of 15 – 40 patients would increase the recruitment potential in a similar 
population. 
  
3.1.1 Objectives 
 
The objectives of this chapter were to establish the availability of Google Maps Timeline 
(GMT) data and the feasibility of data extraction from the smartphones of patients admitted 
under the General Medicine Unit. We aimed to assess the proportion of patients with 
smartphones, the number of phones with GMT data available, and the completeness of the 
GMT data in the 180 days prior to admission.  
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Abstract 
 
Objective 
 
Subclinical deterioration may be present prior to hospital admission which may present as a 
reduction in activity. GoogleMaps can store personal Global Positioning System (GPS) data 
using GoogleMaps Timeline (GMT). This study aimed to assess whether these data can 
provide a record of patient activity prior to a hospital admission. 
 
Methods 
 
A feasibility study was conducted in patients admitted under the General Medical unit at the 
Royal Adelaide Hospital to assess the availability of GMT data on patient phones, the 
feasibility of data extraction and the quantification of change in activity over the 180 days 
prior to hospital admission. Following consent, demographic details were recorded and 
extraction of GMT data attempted. GMT data were used to calculate daily distance travelled 
and two activity spaces in the 180 days preceding admission. 
 
Results 
 
Fifty-three patients consented, four withdrew and 49 completed the study. Of these, 35 (71%) 
owned a smartphone and GMT data were present on 10 (29%) phones. Data could not be 
extracted from two phones, and four contained no data for the preceding 6 months. Valid 
data were extracted from four phones. Distance travelled and activity spaces were 
determined for 531 (73%) days in the 6 months prior to admission. While significant variation 
and potential errors were observed in these data, a potential subclinical deterioration in one 
of the participants was detected. 
 
Conclusion 
 
GMT data from smartphones of General Medical inpatients are difficult to extract and was of 
poor quality. Further exploration of activity-related data to predict hospital admission is 
required. 
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Key Question Summary 
 
1. What is known about the topic? 
 
Subclinical deterioration may precede a hospital admission. Extracting highly granular data 
from passively collected datasets may indicate activity changes as a manifestation of 
subclinical deterioration. It has recently been shown that 80% of student owned smartphones 
contain ‘GoogleMaps Timeline’ (GMT) data, and these show a second by second record of the 
participants GPS track. 
 
2. What does this paper add? 
 
We have demonstrated that in a cohort of General Medical patients the level of smartphone 
ownership is lower than that seen in the Australian general public (88%), GMT data on the 
smartphones of patients admitted to a general medical unit are limited, and variably 
complete. We discovered potential inaccuracies in these data. We used the GPS data 
extracted to generate outcomes that might reflect altered activity patterns and signify 
subclinical deterioration. To collect enough data for a meaningful analysis we would need to 
approach >50,000 patients. 
 
3. What are the implications for practitioners? 
 
Activity-based, non-health related passively collected datasets potentially hold useful 
information to predict subclinical deterioration. However, the methodology to do this 
efficiently is not currently feasible and requires further investigation. 
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Introduction 
 
Admission avoidance is a key goal of every healthcare system globally [1] with a hospital 
admission associated with worsening functional [2] and cognitive capacity [3] for patients and 
significant healthcare expense [4]. An ageing population will place greater pressure on 
healthcare, such that hospital avoidance will become increasingly important [5]. While not all 
admissions are avoidable [6, 7], an admission may follow a period of subclinical deterioration 
that leads to an admission-triggering event such as a fall or delirium [2, 8]. Certain 
characteristics may help identify those patients at risk of hospital admission over a set period 
of time, for example 28 days [9, 10] or 1 or 2 years [11, 12]. However, it is unknown which 
patients may be at greatest risk of hospital admission on any particular given day [10, 13]. 
This is a limiting factor for targeted pre-hospital intervention. 
 
In other populations, there has been an exponential growth in the use of the ‘digital 
phenotype’ [14]. The digital phenotype refers to an individual footprint produced from the 
analysis of information collected by digital devices such as smartphones [14, 15]. These data 
are often collected passively in the background, incidental to the primary role of the digital 
device. The digital phenotype has a potential role in healthcare; for example, it has been 
shown to strongly correlate with disease severity in serious mental health conditions [15, 16], 
and with cognitive impairment [17-19]. Location data derived from a smartphone contribute 
to the digital phenotype, and can be used to describe how much an individual interacts with 
their local community. 
 
Data on an individual’s location are collected on a continuous basis through a number of 
different platforms. For example, Google has been tracking their users’ location through 
Google Location History on Android devices since 2012 and with GoogleMaps Timeline (GMT) 
across Android and Apple iOS platforms since 2015. These data are usually collected in an opt-
out fashion, and so are often stored without the user’s knowledge. GoogleMaps, with over a 
billion monthly users [20], is a potentially rich data source for healthcare research and 
perhaps clinical use. It is feasible to download an individual’s location history data from free-
living individuals, such as from student phones [21]. It has been shown that Cystic Fibrosis 
[22] and Chronic Obstructive Airways [23] disease state correlates closely with activity. It is 
unknown, but conceivable, that these data may detect the subclinical deterioration that 
occurs prior to a hospital admission. Agarwal and colleagues showed that geotagged internet 
searches accurately predicted future patient healthcare utilisation events [24]. Several 
methods have been proposed to analyse these data, such as distance travelled and activity 
spaces (the geographical area an individual interacts with on a daily basis) [25]. Detecting 
changes in activity space and distance travelled prior to hospital admission may allow for 
detection of subclinical deterioration, which may thereby present an opportunity for targeted 
intervention, attenuating acute decline and avoiding hospitalisation. 
 
This study aimed to assess the feasibility of extracting GMT data from the phones of patients 
admitted under the General Medicine unit at the Royal Adelaide Hospital (RAH). In addition, 
we aimed to use the extracted data to describe location-based outcomes, such as distance 
travelled and activity spaces for the six months prior to hospital admission, investigate a 
meaningful difference in step and GPS data prior to admission and to describe the relationship 
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between these location-based outcomes and the number of readmissions over 180 days 
following hospital discharge.  
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Methods 
 
This was a feasibility study of a convenience sample of patients admitted under the General 
Medicine unit at the RAH between May 2019 and Feb 2020. Patients were deemed eligible if 
they were aged ≥18 years, able to provide written informed consent and able to answer the 
initial questionnaire. Patients were screened on days when a member of the medical student 
team was available and eligible patients approached for consent by a medical student team. 
 
The study received ethical approval from the CALHN Human Research Ethics Committee 
(approval ID - HREC/18/CALHN/801) and all patients provided written informed consent. 
 
Comparative data were taken from the lead authors smartphone. 
 
Demographic data 
 
Following consent, patient demographic details (age, gender, years of education, smartphone 
ownership, and mobility), a Clinical Frailty Scale and the Charlson Comorbidity Index were 
recorded. For patients who owned a smartphone, data extraction from GMT was attempted. 
If GMT data were available, data completeness over the 180 days prior to admission was 
assessed. 
 
The number of public Emergency Department presentations and public hospital readmissions 
in the 180 days following hospital discharge from the index admission were extracted from 
the South Australian healthcare administrative dataset. 
 
Outcomes 
 

GMT data handling 
The GMT data were extracted as a JavaScript Object Notation (json) file before being 
converted to a Python Pandas DataFrame for calculation of distance travelled, minimum 
convex polygon and standard deviation ellipse activity spaces using ArcGIS (ESRI, 
California, USA) Python libraries. The feasibility of data extraction was defined as being 
able to extract any data from the phone during the 180 days prior to patient admission. 
 
GPS outcomes 

Distance travelled 
The total distance travelled between individual GPS positions was calculated using 
the Haversine formula [26, 27] in a Pandas DataFrame. 
 
Minimum convex polygon 
A minimum convex polygon (MCP) [25] is an activity space consisting of a polygon 
that bounds the outermost points of travel such that no internal angle of the 
polygon is greater than 180 degrees. It is calculated using Python script derived 
from the convex hull function in ArcGIS (ESRI, California, USA) (Figure 1). 
 
Standard deviation ellipse 
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A standard deviation ellipse (SDE) [28] is an activity space consisting of an ellipse 
where the short axis is formed by the minimum standard deviation and its long 
axis by the maximum standard deviation in longitude and latitude. It is calculated 
using a Python script derived from the direction distribution function in ArcGIS 
(ESRI, California, USA) (Figure 1). 

 
Clinical Frailty Scale 
The Clinical Frailty Scale is a nine-point scale [29] (ranging from 1 to 9) that describes an 
individual’s level of frailty. It has been extensively validated and shows good inter-rater 
reliability. The Clinical Frailty Scale comes with a visual and descriptive scale and was 
assessed by the medical student team. 

 
Statistical analyses 
 
Summary statistics are n (%), median [interquartile range], or mean (SD) depending on 
distribution. GPS data extraction from json were performed in Python, GPS analysis was 
performed in ARCMap (ESRI California USA) and summary statistics were collated in Excel 
(Microsoft Washington). Between group analysis was performed in Python using Mann 
Whitney U rank test from the SciPy library.  
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Results 
 
Six hundred and sixty three patients were admitted under General Medicine on days the 
research team were available. A total of 426 patients were approached for consent, of whom 
373 were excluded as they were unable to provide written informed consent. Fifty-three 
patients consented, of which four withdrew during the initial questioning. A total of 49 
patients completed the study (Figure 2). 
 
Smartphone ownership and GMT data extraction 
 
Patient demographics and pre-morbid function are detailed in Table 1. Of the 49 patients who 
completed the study, 35 (71%) owned a smartphone. GMT data were available on 10/35 
(29%) phones, however, data were only successfully downloaded from 8/35 (23%) phones, 
and only contained data relating to the preceding six months for 4/35 (11%) patients. Of the 
10 phones that had GMT data available 60% (n=6) were iPhones and, of the four phones with 
usable data, 3 (75%) were iPhones. 
 
GPS data description 
 
The four patients with eligible data contributed a total of 89,715 GPS positions in the six 
months preceding their hospital admission. GMT data was available for 180, 177, 119 and 55 
days for the 180 days prior to hospital admission. GPS summary results are presented in Table 
2.  
 
These data were highly variable, from activity spaces that reached across the globe to days 
when patients did not leave their home (Figure 3). One patient simultaneously (within hours) 
had data from Europe and South Australia. On further investigation we discovered that the 
data was also linked to another device used by a family member who had travelled to Europe.  
Due to the small number of patients included, the large variation in data and the discovery of 
potential errors in the data source, further assessment of a change over time was not feasible; 
neither was the aim to assess the relationship with healthcare utilisation. 
 
GPS data case study 
 
Data from one individual is presented to demonstrate the difficulties encountered. Plotting 
the change in Minimum Convex Polygon and Standard Deviation Ellipse over the 180 days 
prior to admission is distorted by large positive ‘outlier’ values (Figure 4A) that related to 
interstate travel between Adelaide and Melbourne (Figure 4D). The largest of these was 121 
days prior to admission. With these outliers removed, a reduction in activity space that 
commenced around 66 days prior to admission was observed (Figure 4B). These stepwise 
changes were not as obvious in a healthy adult (Figure 4C). The median MCP area was 50 [25-
97.5] km2 prior to day 66, and 20 [9.25-27] km2 (p<0.0001) after day 66. The median SDE was 
39 [ 22.5 – 67.5] km2 prior and 19 [6.25-23.75] km2 following day 66 (p<0.0001). 
 
The 49 patients in this study had 1 [0-2] further public hospital admission and 1 [0-2] 
presentation to an Emergency Department in the six months following their index admission. 
Assessing the relationship between pre-morbid GPS data and days free from hospital at day 
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180, and investigating a meaningful difference in step and GPS data prior to admission was 
not possible due to the small number of patients with GMT data. 
 
 
  



 

 122 

Discussion 
 
This study showed that, despite a relatively high level of smartphone ownership in our target 
population, GMT data were infrequently available and difficult to extract. Available data were 
challenging to download and frequently out of date, with GPS data from the six months prior 
to admission being available for just 4/49 (8%) of the cohort. However, when present and 
extracted, these data did appear complete.  
 
The number of patients with valid data was significantly less than for the study that prompted 
this investigation [21]. Ruktanonchai and colleagues found that 85% of Android devices had 
extractable GMT data. While they focused on Android devices, given this was historically 
where these data were available, we believe our study is the first to extract data from both 
Android and iOS devices. We have demonstrated that the granularity of data extracted is 
consistent with that of previous reports [21]. However, the ability for location data to be 
collected simultaneously from different devices means future studies should consider 
excluding patients who have GoogleMaps running on multiple devices, especially if these 
devices are not always in their possession, in order to increase data accuracy. 
 
While this is the first time GMT data have been extracted from the phones of patients 
admitted to a General Medicine unit and from iPhones, we were unable to collect sufficient 
data to assess their value at predicting hospital admission. Only 29% of phones had data 
present and only 11% had data pertaining to the 180 days prior to admission. This might have 
been a failure of data extraction as patients were not always aware of their password, making 
the login process difficult. Additionally, there appeared to be variation over time on the 
location of the data within the patients’ Google accounts. Therefore, the training provided to 
the medical students, responsible for extracting the data, may have become outdated over 
the study duration. However, to extract data from 4 phones we approached 663 patients. To 
scale this up to a level required to perform any meaningful analysis (for example, meaningful 
data from 500 patients), you would need to approach >50,000 patients for consent. This is 
not feasible with the current methodology. 
 
This is the first study to attempt to extract location data prior to hospital admission in a 
General Medical population. Our group have previously attempted this in ICU patients [30]. 
However, data were manually extracted from screenshots and GMT data were not so widely 
available in the general population at the time. We demonstrated that four patients lacked 
recent GMT data. This may have been due to changes in privacy settings made by the 
individuals or by upgrades to operating systems. Despite the limitations, as younger 
generations age and smartphone user ability increases in hospitalised patient populations, 
these data may become more readily available [31, 32]. Although there did appear to be a 
high level of smartphone ownership, this is probably biased by excluding patients who were 
unable to provide written informed consent, as the average patient age (67 [51-80] years) 
was significantly younger than our normal patient population.  
 
We were able to demonstrate a clear reduction in SDE and MCP in the pre-admission period 
with a reduction in SDE and MCP from day 66 prior to admission. This same stepwise 
reduction was not present when compared to an individual who did not suffer a hospital 
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admission (the lead author). This makes GPS a potential target for patient monitoring in the 
community although far more investigation would be required. 
 
We demonstrated that using smartphone data to predict hospital admissions using the 
current methodology is not a feasible solution, due to the configuration and data availability 
on patient phones. Future studies could consider using a designated phone application to 
collect GPS data in large cohorts of patients to enable a retrospective assessment of how 
these data change prior to a hospital admission. This may enable the detection of subclinical 
deterioration, encouraging interventions aimed at arresting the decline and preventing 
hospital admission. 
 
In conclusion, it was not feasible to extract GMT data from an adequate number of the 
smartphones of patients admitted under the General Medicine unit. The use of GPS data to 
predict hospital admissions requires further investigation. 
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Demographics n=49 

Age (years) 67 [51-80] 
Gender, Male 26 (53%)  

Years of education 13 [10-15] 
Smartphone owner 35 (71%) 

Smartphone Details n=35 
iPhone 19 (54%) 

Android 16 (46%) 
Mobility n=49 

Uses a mobility aid 20 (41%) 
Drives 26 (53%) 

Access to a driver 43 (88%) 
Use public transport 21 (43%) 

Taxi/hospital transport only 6 (12%) 
Frailty and comorbidities n=49 

Clinical Frailty Scale 4 [2-5] 
Charlson Comorbidity Index 1 [0-2] 

Table 1 - Demographic details and baseline functional status 
of patients that completed the study, results are median 
[IQR] and n (%) as appropriate 

 

 

 
Measure (per day) Patient 1 Patient 2 Patient 3 Patient 4 
Distance travelled (km) 21.8 [10-39.7] 35.6 [23.3-53.9] 22.2 [5.7-35.2] 0.4 [0.3-18.1] 
SDE (km2) 7.2 [1.5-24.4] 25.1 [16.8-51.7] 15.9 [4.6-56.0] 0 [0-4] 
MCP (km2) 14.2 [4.5-36.4] 33.1 [18.3-70.7] 16.9 [2-55.6] 0 [0-11.7] 
Table 2 - GPS outcomes of patients that provided GPS data, results are median [IQR]. MCP – Minimum Convex Polygon, SDE – 
Standard Deviation Ellipse 
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Figure 1 - Construction of a minimum convex polygon requires that all internal angles are less than 180 degrees. In this 
example, all visited locations are identified with a closed circle. In panel A, a minimum convex polygon is calculated from 
each point using straight lines. Panel B would be an invalid polygon because the angle indicated is greater than 180 
degrees. Panel C would be the correct polygon and would contain the central location seen in B. Panel D represents the 
standard deviation ellipse for the same GPS positions. 
 
 

 
Figure 2 - Consort diagram 
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Figure 3 - Demonstration of the vast difference in Minimum Convex Polygon activity spaces; (A) demonstrates travel from 
Australia to Europe, where as (B) demonstrates an activity space limited to a block (this polygon has been shifted to conceal 
the location of the patients address). These activity spaces were from the same individual. 
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Figure 4 - Panel A shows a plot of Minimum Convex Polygon (MCP) and Standard Deviation Ellipse (SDE) against time for one 
of the participants, Panel B has outlier values removed. Panel C shows the lead authors MCP and SDE for 180 days and Panel 
D shows the activity (SDE and MCP) of the selected participant on day 121 (day with the largest activity spaces). 
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3.3 Conclusions 
 
3.3.1 Introduction 
 
Being able to automate the process of data extraction would have been a huge step forward 
in the methodology. We had hoped, as had been previously demonstrated [3], to extract 
GPS data from a significant number of participants and use this to describe a change in 
function prior to hospital admission. Unfortunately, the low number of patients who had 
valid GMT data means this methodology is not feasible.  Indeed, the number of participants 
with valid GPS data was less than is demonstrated in Chapter 2. To get enough data, for any 
future meaningful analysis, more than 50,000 patients would need to be approached for 
consent, and this is not feasible. 
 
One patient did show some evidence of a reduction in distance traveled and activity spaces 
prior to admission, but this was not measurable at a group level due to large variation 
within and between individuals. This demonstrates that there may be benefit of using these 
data to monitor patients in the community, and is worthy of further study. 
 
3.3.2 Contribution of this work to mHealth 
 
As far as we are aware, this is the first study that has extracted GMT data from iPhones. This 
development has emerged from the addition of the timeline function to the iOS Google 
Maps Timeline App. Despite this expansion of function, it hasn’t been widely taken up by 
patients admitted under General Medicine. This is also the first study to extract this data in 
patients, with the only previous studies[3, 4] being conducted in healthy individuals. 
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3.4 Future Directions 
 
3.4.1 The use of a dedicated smartphone app for data collection  
 
One way of potentially collecting these data would be through the use of a dedicated 
smartphone app. The app would be able to report step and GPS data to a cloud server on a 
regular basis to enable the automated reporting of patient outcomes. The benefits of this 
approach would be that in designing the app we would be able to determine the algorithms 
used to report the GPS data, and to conduct the analysis. It would be easier to compare 
these outcomes with those of traditional GPS transponders. Being able to have a continuous 
dataset would represent a paradigm shift from the current methodology. 
 
3.4.2 Data availability in other population 
 
Due to the focus of this body of work being around the use of smartphone data to define 
outcomes prior to and following critical illness we have focused on patient populations that 
have the same age range as an adult ICU population. These older populations reduce the 
number of smartphone owning patients[5-7], and therefore the availability of smartphone 
data. Being able to explore the availability of these data in younger patient cohorts may 
provide for greater data yields and be of greater use to researchers. Exploring these data in 
the obstetric population may be of use given the uptake of mHealth in these populations [8, 
9]. 
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CHAPTER 4 – THE USE OF A SMARTPHONE APP TO QUANTIFY ACTIVITY AND 
PARTICIPATION PRIOR TO AND FOLLOWING CRITICAL ILLNESS 
 
4.1 Introduction 
 
In the preceding chapters we describe a lack of success in the manual and automated 
extraction of the highly granular, passively collected step and GPS data held in smartphone 
databases. However, we have demonstrated that there is potential utility in using these 
data in describing patient activity and participation. 
 
One way to collect these data could be through the utilization of a custom-built smartphone 
app. Smartphone apps have been used in a variety of different fields to collect patient data 
including step and GPS data. However, the feasibility of our patient cohort to utilize a 
smartphone app may be limited by smartphone ownership and user ability. 
 
We utilized a collaboration with the University of Adelaide’s Software Engineering 
Department to develop the Health Tracker App. The app was designed to store a GPS 
position every minute and to extract step data from GoogleFit (Android) and Health (iOS) 
databases. The app reported the data to a secure cloud database when the phone had a 
WiFi connection, to minimize participant data usage. The app was tested by the department 
prior to deployment.  
 
 
4.1.1 Objectives 
 
The objectives of this chapter were to describe the smartphone ownership and user ability 
in a cohort of patients at higher risk of admission to critical care and to assess the feasibility 
of smartphone app use in patients who would undergo elective admission to ICU. We aimed 
to report on the ability of dialysis patients to install a smartphone app with and without 
assistance and to assess the ability of the Health Tracker App to collect step and GPS data 
prior to and following cardiothoracic surgery.  
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Abstract 
 
Objective 
 
Most of the Australian population now own a Smartphone (88%). These may help improve 
interactions with patients requiring complex care for chronic disease. Mobile technology can 
aid collection of clinical and research information, provide patients with information, collect 
patient experience measures or facilitate passively collected datasets to define or even 
predict outcomes. To assess the feasibility of developing smartphone-related programs in a 
chronic dialysis population we evaluated ownership and user ability in a South Australian 
cohort. 
 
Methods 
 
Multi-site point prevalence study of all patients undergoing dialysis with the Central Northern 
Adelaide Renal and Transplant Service (CNARTS) dialysis centers and home dialysis. 
 
Results 
 
Responses were received from 400 (75%) eligible patients. Smartphones were owned by 236 
(59%). Of these, 91% carried their phone with them >75% of the time they left the house and 
62% could install an app without assistance. Of the remaining 38% of patients, 78% would be 
able to install an app with assistance and only 9% would be totally unable to install an app.  
 
Conclusions 
 
In conclusion, smartphone ownership in patients receiving dialysis in South Australia is less 
than in the general population. At the current time this is a limitation for using smartphones 
in a research capacity in this population. 
  



 

 139 

Key Question Summary 
 
 
1. What is known about the topic? 
 

Smartphone ownership is increasing in the general population. Smartphones provide a 
useful way to interact with patients and collect data that may be useful in monitoring their 
outcomes. While smartphone ownership in the dialysis population in the United States of 
America is known, the same data for Australia is unknown  

 
2. What does this paper add? 
 

We have explored smartphone ownership and user ability in the South Australian Dialysis 
population. We have found that 59% of our dialysis patients own smartphones and that 
amongst users there is good user ability. However, the penetration of smartphone 
ownership into this population is considerably lower than that of a similar population in 
the United States of America.  

 
3. What are the implications for practitioners? 
 

Practitioners need to be careful when implementing smartphone based mobile health 
interventions or relying on smartphone ownership for patient interaction i.e. embedding 
a URL into an SMS message or using QR codes. A large number of patients would not have 
the capacity to use such methods. Further work needs to be done to develop digital 
technology capability in people with chronic disease so the benefits can be leveraged for 
patient care improvement. 
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Introduction 
 
There is increasing ownership of smartphones globally and in Australia [1,2]. Smartphones 
bring with them the potential for many communication applications, a multitude of sensors 
and the ability to interact with outside sources such as responding to surveys. These data 
have been shown to be accurate [3,4] and smartphones can transmit clinically relevant 
information to the treating team. This presents an opportunity to use patient-owned devices 
to communicate with patients [5] and provide them information [6], collect feedback on 
patient experience [7], collect data on and improve patient outcomes [8] and remotely 
monitor patient movement and function [9].  
 
Chronic dialysis is a life-saving therapy for kidney failure. In Australia, over 130,000 people 
receive regular dialysis therapy [10]. These patients have a high burden of symptoms and 
research programs are evolving to leverage mobile phone technology to evaluate and address 
this symptom burden [11,12].  
 
The passively collected datasets that a smartphone generates include highly granular location 
and step data. These datasets have the potential to provide a significant insight into a 
patient’s community behaviour. Smartphone collected data may be used to monitor patients 
for deterioration in the community, to record and potentially predict patient-centered 
outcomes such as time spent active or time spent out of the home. If these more granular 
data were collected from those transitioning to dialysis, they have the potential to be used to 
inform clinicians and patients about possible functional outcomes before these eventuate.  
 
Smartphones have been used to assist in dietary management in dialysis patients [13] and 
smartphone ownership has been assessed in an American dialysis population [14]. However, 
there is no data on the prevalence of smartphone ownership within the dialysis population in 
Australia and the ability of this population to install an application (app) on their phone has 
never been assessed. For future smartphone-based research to be successful, it is essential 
these questions are answered. 
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Methods 
 
To better understand the pattern of smartphone ownership and user ability, we performed a 
simple multisite point-prevalence study of all patients receiving dialysis in the Central 
Northern Adelaide Renal and Transplant Service (CNARTS). CNARTS is a renal service based in 
metropolitan Adelaide that oversees dialysis care through 4 metropolitan and 11 country 
satellite haemodialysis facilities, with an average of >600 chronic haemodialysis and 
peritoneal dialysis patients per annum. During a one-week period, in October 2019, patients 
receiving dialysis in CNARTS hemodialysis centers and at home supervised by the CNARTS 
home dialysis unit were asked the following questions: 
 

Do you own a smartphone? 
If yes, do you carry it with you for more than 75% of the time when you leave your 
house? 
Could you install an app on your phone without assistance? 
If you could not install an app yourself, could you do so with assistance? 

 
Staff approached patients at each dialysis shift over the course of the week, to eventually 
cover all potential patients. Home therapy patients were contacted via telephone as part of 
routine monitoring. Dialysis nurses were provided with a simple data collection tool and 
provided with a training video about the study and delivering the survey. Ethics approval was 
obtained from the Central Adelaide Local Health Network Human Research Ethic Committee 
(HREC Application - 11619), with a waiver of consent approved.  
 
Results are n (%), mean (SD) and between group comparisons were performed in SPSS (v23, 
IBM, Armonk, New York USA) using chi squared statistic and a student T-test as appropriate. 
Missing data was noted and denominators adjusted accordingly. Missing data will be reported 
for transparency but no adjustment made. 
 
  



 

 142 

Results 
 
All CNARTS dialysis units were invited to participate (15 units, n=609 patients receiving dialysis 
at that time). Four regional units that dialysed a total of 72 patients did not participate. Eleven 
units participated in the study. We received responses from 400 of 537 eligible patients 
(response rate=75%). This included 7 regional units (n=92 patients), 4 metropolitan units (n= 
226 patients) and home dialysis (home HD or PD) n= 82 patients (Figure 1). 
 
Demographics of the included cohort are shown in Table 1. Smartphone owners were more 
likely to be younger (age 56 (15) vs 69 (12) p<0.001) and utilize home dialysis; there was no 
significant difference in gender. Of those surveyed, regarding question 1, do you own a 
smartphone? 236 (59%) owned a smartphone. For the further questions;- 
 

2) if yes, do you carry it with you for more than 75% of the time when you leave your 
house? 
3) Could you install an app on your phone without assistance? 
4) If you could not install an app yourself, could you do so with assistance? 
 

there were missing data. Of those who owned a smartphone 204/234 (91%) carried their 
phone with them >75% of the time they left the house and 136/221 (62%) confirmed they 
would be able to install an app without assistance. Of the 85 patients who were unable to 
install an app without assistance 69/85 (78%) would be able to install an app with assistance 
and only 19/221 (9%) would be totally unable to install an app on their phone (Figure 2).  
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Discussion 
 
This brief survey reveals that smartphone uptake is not universal in dialysis cohorts. The 
prevalence of smartphone ownership in South Australian patients is marginally higher than 
that found in ICU survivors [15] and higher that that found in general medical inpatients 
(unpublished data), but less than the 88% of the general Australian population [2], and less 
than 81% in a recently reported study in a dialysis population in the United States of America 
[14]. The consistent finding with the previous work is that younger patients are more likely to 
be smartphone owners. This suggests that smartphone ownership will rise as these 
populations age, although the lack of smartphone ownership and user ability could represent 
a functional limitation.  
 
The 22% difference in smartphone ownership between the dialysis population in the US and 
Australia is surprising and unexpected as smartphone penetration in the two countries is 
similar [14].  This could reflect differences in population demographics, ease of access to 
smartphones, different pricing systems and other market drivers. 
 
With the current 59% smartphone ownership in this Australian dialysis population it would 
not be feasible to use patient owned devices and a smartphone app as a research tool to 
determine outcomes in all dialysis patients. Additionally, we would need to be cautious 
whether patients, specifically those who don’t own a smartphone or who are unable to install 
an app without assistance, can reliably interact with an app to provide survey responses;  
although this may be overcome with training and the provision of devices with a tested user 
interface. As the population ages smartphone ownership is likely to increase in these patient 
populations so could well represent a technology of the future. 
 
There may be further limitations to the use of smartphones in research if patients have 
significant privacy concerns regarding the provision of data to third parties. In addition, if the 
apps utilized phone data to interact with the researchers then this would be a significant 
concern for many participants who have limited data allowances. Being able to convert apps 
into different languages is an additional hurdle, as well as for use in patients with significant 
co-morbidities common in the renal failure population such as macular degeneration (~2%) 
who might struggle with the use of smartphones or be more reliant on caregivers. However, 
if apps are co-designed with patients and with digital assistance offered in-clinic (e.g. peer 
support) these apps have the potential to overcome significant language and health literacy 
barriers seen in these populations. 
 
The limited smartphone ownership also has implications for relying on smartphones for 
interacting with patients, such as requesting feedback by embedding a URL into a SMS 
message, or using QR codes, as it would not be possible for 41% of this population to respond 
to such a message. However, using an app that functions in the background to monitor patient 
function would be feasible in the 54% of the dialysis population who own a smartphone and 
are able to install an app with or without assistance. Due to the wealth of data a smartphone 
app could provide, it may be feasible to better measure outcomes in smartphone owners and 
use this data to better inform future patients. 
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There are limitations to our study. We used the term ‘smartphone’ which may not be familiar 
to all patients. However, they had the opportunity to clarify directly with the nurse conducting 
the survey. We were unable to capture data from the whole SA dialysis population. Despite 
providing easy to use data capture forms and video education for nursing staff, some units 
did not return survey data (this is the 4 regional units who are recorded as not participating). 
Further, in order to reduce the data collection burden for nurses given the cohort size, we 
kept the survey very simple to address the key question.  
Consequently, we did not collect extended demographic data (ethnicity, postcode for 
socioeconomic status measures, comorbidities, English as a second language, education level) 
and other potential confounders.  
 
Conclusion 
 
In conclusion, smartphone ownership in patients receiving dialysis in South Australia is lower 
than in the general population. Among owners, smartphones were carried with the patient 
almost all the time, over 60% of patients had fully independent application use and very few 
had no ability to load an app even with assistance. Therefore, if smartphones are used in 
research, providing a phone and assistance in loading applications would facilitate the use of 
smartphone for collection of data to better inform clinical practice and consumer choice. 
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Figure 1 – Recruitment flowchart 
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Figure 2 - Consort diagram 

CNANTS 
(n=609) 

4 Metropolitan 
Dialysis Units 

Home 
Dialysis  

4 did not 
participate 

(n=72) 

7 did 
participate  

4 did 
participate  

537 dialysis patients were surveyed  

11 Regional 
Dialysis Units 

400 dialysis patients responded  



 

 147 

 
 
 
Demographics Total Smartphone 

Owners 
Non-Smartphone 
Owners 

Age (mean (SD)) years 61.8 (15) 56 (15) 69 (12) 
Male (n (%)) 233 (58%) 144 (61%) 89 (54%) 

Mode of dialysis 
(n (%)) 

HD 318 (80%) 175 (74%) 143 (61) 
PD 63 (16%) 43 (18%) 20 (9%) 
HHD 19 (5%) 18 (8%) 1 (0.4%) 

Table 1 – Demographics. HD - Haemodialysis, HHD - Home Haemodialysis, PD - Peritoneal Dialysis 
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Abstract 
 
Background 
 
Step and location data extracted from a patient’s smartphone may be used to measure 
activity and participation. We aimed to assess the feasibility of using a custom-built 
smartphone app to report step and GPS data prior to and following cardiothoracic surgery. 
 
Methods 
 
Consecutive smartphone owning patients scheduled for elective cardiothoracic surgery at 
least 7 days later subsequently downloaded a smartphone app, which remained active for 90 
days after surgery. Accelerometry and global positioning data were recorded to provide step 
and location data. Feasibility was determined as the extraction of complete data for more 
than 30% of days monitored. 
 
Results 
 
Sixty-two patients were approached and 10 (17%) declined to participate. The app was 
successfully installed and activated on the smartphone of 41/52 (78%) participants. Complete 
step data were accessed for 197 of 1913 (10%) pre-operative days and 359 of 3690 (10%) 
postoperative days. Complete GPS data were obtained for 67 of 1913 (4%) pre-operative days 
and 173 of 3690 (5%) postoperative days. Activity was less during the postoperative period 
when compared to preoperative: mean daily step count decreased by 1,260 (95% Confidence 
Interval (CI) 582 to 1,939) steps, distance walked decreased by 431 metres (95% CI 120 to 
743) and time spent active decreased by 51 mins (95% CI, 17 to 85). Participation was also 
reduced during the postoperative period: total distance travelled decreased by 35,191 metre 
(95% CI -68,988 to -1,395), the total distance travelled between locations decreased by 7,675 
metre (95% CI -10,088 to -5,262). 
 
Conclusion 
 
Technical issues resulting in data loss currently limit the feasibility of this technology to 
reliably assess patient activity in the perioperative period. Based on the limited data available, 
patients had not returned to pre-operative levels of activity and participation by day 90 after 
cardiac surgery.   
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Background 
 
Death after elective cardiac surgery is rare [1,2] and, therefore, mortality may not be the most 
sensitive outcome to drive quality improvement in service delivery or research in this field. 
Cardiac registries are key drivers for quality improvement and benchmarking [3,4]; however, 
the outcomes they use are derived from easily collected data, such as length of ICU or hospital 
stay or readmission rate. Whilst these outcomes quantify cost effectiveness of care provided, 
they are not truly patient centered [4,5]. 
 
Disability free survival is an outcome that is important to patients having cardiac surgery [6]. 
Disability can be quantified by measuring an individual’s level of activity and participation [7]. 
Activity and participation can be subjectively measured using questionnaires but these 
require patient and clinician time, and only offer a point in time assessment [8-12]. 
Accelerometers and pedometers offer an accurate, objective and continuous assessment of 
activity [13-15]. In addition, Global Positioning System (GPS) data may provide an estimate of 
participation [16, 17]. A capacity to quantify activity and participation post-operatively 
relative to pre-operative baseline values would enhance inferences obtained from studies 
that did not use randomization or studied smaller cohorts of patients [18]. 
 
It may be possible to measure pre- and post-operative activity and participation using patient 
owned smartphones. Using patient smartphones would provide an efficient and economical 
method to obtain these data. Smartphone step data have been shown to be accurate [19] 
and a suitable surrogate for a dedicated pedometer in a real world setting [15]. GPS data have 
been used to describe pre-morbid participation [20] and to measure recovery following 
critical illness [21]. Using the patients’ own devices and measuring within individual change 
over time using absolute values overcomes some of the concerns regarding the accuracy of 
different devices.  
 
We aimed to assess the feasibility of using patient owned smartphones to monitor activity 
and participation prior to and following elective cardiothoracic surgery. Our secondary aims 
were to report activity and participation levels for 90-days post operatively and to report 
patient satisfaction with the process.  
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Methods 
 
We screened consecutive patients who attended the pre-operative cardiothoracic clinic at 
the Royal Adelaide Hospital. 
 
Patients were eligible if they had cardiothoracic surgery planned that required cardiac bypass, 
surgery scheduled ≥ 7 days from screening, were ≥18 years of age, owned a smartphone and 
had access to a Wi-Fi network at home. Patients were excluded if they were unable to 
comprehend English or were not ambulatory at baseline. 
 
We approached patients who met all inclusion and none of the exclusion criteria for written 
informed consent.  
 
Following consent, demographic details were recorded and the European System for Cardiac 
Operative Risk Evaluation (EuroSCORE) II calculated [22].  
 
The pre-operative period commenced when the app was installed on the participant’s 
smartphone and lasted until the day prior to the operation. The post-operative period 
commenced on the day of the operation and lasted until day 90 post op. 
 
We developed The Clinical Health Tracker app as a cross platform smartphone app that 
wirelessly reports step and GPS data securely and anonymously to a cloud database. The app 
collects data from the relevant phone databases continuously but only transmits data when 
connected to Wi-Fi. Health questionnaires were incorporated into the app. The app uses the 
Googlefit and HealthKit Application Programming Interfaces (APIs) to report step data and 
reports a GPS position every 5 minutes.  
 
When installed, the app requires activation with a unique identifier. Once the unique 
identifier is entered on a participant’s phone, the app connects to a cloud database to verify 
the unique ID. The check demonstrates that the app was able to connect to the cloud-based 
database while in clinic. In the clinic, we set up a local Wi-Fi network to enable participants to 
download and activate the app without affecting the participants’ data usage. To reduce the 
impact on mobile data use, all further uploads of the data were programed to be Wi-Fi 
dependent. 
 
Patients were provided with written information about the function of the app and it was 
installed on their smartphone. The app remained on their phone for 90 days. Patients were 
sent monthly text message reminders to complete a Life Space Assessment. After 90 days 
they completed a satisfaction survey and the app was deleted from their smartphone. 
 
Our study was approved by the Central Adelaide Local Health Network’s HREC 
(HREC/18/CALHN/307) and registered (ACTRN12618000867291). 
 
Outcomes 
 

Feasibility 
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We aimed to assess the feasibility using the consent rate and the app successfully 
activating and sending complete data for each calendar day. Although there was no 
consensus on what constitutes a complete data-set for GPS data [23], accelerometer 
studies measuring activity have reported between 6 – 24hrs/day of recording as 
complete data, with wear time having minimal impact beyond 6 hours [24]. Complete 
data was therefore determined, a priori, as >8 hours of step and/or GPS data per 24-
hour period. We calculated the number of days of complete data, the number of days 
with incomplete data and the number of days with absent data for both step and GPS 
data. We defined, a priori, feasibility as being able to report complete data for >30% of 
the days studied.  
 
Smartphone outcomes 

Step outcomes 
We report the daily step count, distance walked, time spent active and walking 
speed. The step outcomes from the app are derived from the Google Fit and iOS 
HealthKit API’s. These report the date and time activity commenced, the number 
of steps taken, the distance walked and the date and time activity ceased. Daily 
step count and distance walked were summed step count and distance for all 
activity bouts within a 24-hour period. The time spent active was the total time 
spent walking, i.e. the summed difference between the activity conclusion and 
commencement. The walking speed was the average walking speed of all the 
bouts of activity – with speed the distance walked within a bout of activity divided 
by the duration of activity. 
  
GPS outcomes 
GPS data were extracted, and the number of GPS points assessed for data 
completeness. GPS data were used to calculate a standard deviation ellipse 
activity space, minimum convex polygon activity space and total distance traveled 
using methods described below. To overcome the issues associated with GPS 
epoch in calculating distance traveled [25] we also calculated the distance 
between locations. We defined a location as a cluster of GPS points within a 
diameter of 100 meters for 15 minutes or longer. 
 
Standard deviation ellipse activity space 
A standard deviation ellipse was centered on the mean longitude and latitude, 
with the angle and length of the maximal standard deviation represented as the 
long axis, and the angle and length of the minimal standard deviation represented 
by the short axis [26]. 
 
Minimum convex polygon activity space 
A minimum convex polygon [16] was drawn around the furthest extent of travel, 
such that no internal angle was greater than 1800. 
 
Linear Distance Traveled 
Distance between individual GPS positions were calculated using the haversine 
formula [27, 28]. 
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Distance travelled between locations 
Location was determined using the Spatio-Temporal Density-Based Spatial 
Clustering of Applications with Noise (ST-DBSCAN) tool [16]. As above, a location 
was defined as a cluster of 3 or more GPS points, within a 100m radius, within a 
15-minute, or greater time-period, with a GPS epoch of 5 minutes. The 
coordinates of the cluster center were calculated and the clusters ordered in time 
sequence. The Haversine [27, 28] formula was then used to calculate the distance 
between locations.  
 
GPS outcomes were calculated using Python script obtained from open-source 
GitHub libraries (supplementary material includes source code). The code used 
for minimum convex polygon and standard deviation ellipse were assessed for 
equivalence with convex hull function and directional distribution function of 
ArcMap (V10.3.1 ESRI, California, USA) respectively. 

 
Life Space Assessment 
The Life Space Assessment [29] is a tool to assess movement pattern and was defined 
as distance extending from the location where the person sleeps. The Life Space 
Assessment has been shown to correlate with an individual’s level of function, as 
assessed by independent activities of daily living (iADLs) and activities of daily living 
(ADLs) [30]. It assesses the extent of movement, the frequency of the movement and 
the need for assistance in the movement across five domains from bedroom, to home, 
to neighbourhood, to town, and beyond. The Life Space Assessment is a composite 
score with a maximum of 120. 
 
Satisfaction 
Patients were asked to evaluate their level of satisfaction with the process of using this 
smartphone app and to describe their recovery on a scale of 0-100, with 0 being poor 
and 100 being excellent. They were asked if they would be happy to use an app to 
monitor their recovery following surgery using a 5-point Likert scale; not at all, some 
aspects, most aspects, almost all aspects and yes, certainly (supplementary material) 

 
Statistics 
 
Descriptive statistics are reported as median [IQR], mean (SD) and n (%) as appropriate. A 
formal power calculation was not performed; rather, prior to commencing the study 50 
patients was considered sufficient to assess feasibility. Generalised Estimating Equation (GEE) 
models with an exchangeable correlation structure were fitted to evaluate the change over 
time (from pre- to post-op) of the step count and GPS outcomes. GEE models were used to 
account for correlation within clusters due to repeated measurements and to take advantage 
of all available observations. No imputation was made for missing data.  Summative GPS data 
were calculated via the script available at (https://github.com/sluckyy/Clinical-Health-
tracker). Data manipulation were performed using Python and analyses using Stata v15 
(College Station, TX, USA). 
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Results  
 
Between July 2018 and May 2019 179 patients were screened with 62 patients meeting all 
inclusion and no exclusion criteria (Figure 1). Ten (17%) patients declined to participate. 
Between November 2018 and January 2019, the android app would not load onto devices or 
connect to the cloud database. During this time patients (n=10) who owned an android phone 
were excluded. One patient withdrew after enrolment but prior to surgery. Due to technical 
issues the app could not be installed on the smartphone of 7 participants (n=4 iPhone and 
n=3 Android) and for 3 participants the app could not be activated once installed (n=3 
Android). Therefore 41 (78%) consented patients had the app installed and activated (figure 
1). Patient demographic details, phone details and pre-operative phone usage details are 
shown in table 1. 
 
ICU and hospital length of stay were 2 [2 to 3.5] and 7 [6 to 9] days respectively. Within our 
sample population no patient died in hospital or by 90 days. 
 
In the 41 patients who completed the study and for whom the app was successfully installed, 
data were filtered to include and analyse only days with complete data (i.e. > 8 hours). Coding 
of <8 hours was considered incomplete; an absence of data for that day was considered as no 
data. The mean value was calculated from the days of complete data prior to and following 
surgery.  
 
Pre-operative step outcomes 
 
Patients were monitored for a total of 1,913 pre-operative days and we obtained pre-surgery 
complete step data for 197 (10%) days, incomplete (£ 8 hrs) data for 12 days and no data for 
1,704 (89%) days. Pre-operative step data were recorded by the app in 21/41 (51%) patients. 
Patients took 2,242 [1,576 to 2,714] steps/day, mobilised 816 [666 to 1,196] metres/day, 
spent 83 [54 to 99] minutes active and mobilised at a speed of 0.51 [0.32 to 0.86] km/hr.  
 
Pre-operative GPS outcomes 
 
We obtained pre-surgery complete GPS data for 68 (4%) of the 1,913 pre-operative days and 
incomplete data for 58 days. Twenty-two (53%) patients provided pre-operative GPS data. 
The standard deviation ellipse activity space was 13.9 [4.2 to 150.4] km2, minimum convex 
polygon activity space was 34 [14.3 to 277.3] km2, total distance travelled was 29,189 [19,603 
to 66,498] m and total distance travelled between locations was 2,097 [56 to 15,048] m/hr 
per day. 
 
Post-operative step outcomes 
 
Patients were monitored for a total of 3,690 postoperative days and we obtained complete 
step data for 359(10%) days and incomplete (£ 8 hrs) data for 38 days from 11 (27%) patients 
and no data for 3293 (89%) days. The median number of steps per day was 578 [400 to 1,610], 
covering 298 [158 to 1,036] metres, with 43 [18 to 54] minutes spent active and mobilising at 
median speed of 1.19 [0.69 to 3.61] km/hr.   
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Post-operative GPS outcomes 
 
We obtained complete GPS data post-surgery for 176 (5%) days and incomplete for 125 days 
from 16 (39%) patients. The standard deviation ellipse activity space was 0.1 [0 to 7.7] km2, 
minimum convex polygon activity space was 0.6 [0 to 28] km2, total distance travelled was 
9,919 [1,595 to 13,392] metres and total distance travelled between locations was 244 [0 to 
5,060] metres per day. 
 
Pre and post operative comparisons 
 
The GEE models comparing the pre- and post-operative means for each of the outcomes are 
shown in Table 2. When comparing post-operative to pre-operative values we observed a 
statistically significant reduction for all step count outcomes and for total distance travelled 
and total distance travelled between locations but an acceleration in walking speed. 
 
While using GEE models increased the number of observations used in the models, there were 
insufficient observations to allow for adjustment for potential confounders without 
overfitting the models. 
 
Data acquisition 
 
There was lesser data acquisition rate for android than for iOS (complete step and GPS data 
for all pre and post-operative days studied: iOS 471/4244 (11.1%) vs. android 329/5746 (5.7%) 
p<0.0001. No patients provided complete data and 19/41 (46%) patients provided zero data, 
with intermittent data transferred for all other patients. Due to the missing data, the 
performance of the apps were assessed over time by assessing the first 90 days of data sent 
by the app (this would include pre- and postoperative assessment). The attrition of patients 
with complete step and GPS data was more pronounced as the study progressed as 
demonstrated in Figure 2.  
 
Life-Space Assessment 
 
Eighteen patients completed the Life Space Assessment at any stage of the study with 12 
completing it only once. In total there were 17 pre-surgery responses and 9 post-surgery 
responses. The Life Space Assessment was 90 [84 to 101] pre-surgery and 89 [70 to 93] post-
surgery.  
 
Patient Satisfaction 
 
We attempted to contact all 51 patients who consented to the study and did not withdraw. 
Of the 43 patients who completed the survey, satisfaction with the process of using a 
smartphone to report step and GPS data was 82.5 [79.6 to 95.5] out of 100. When asked 
“Would you be happy to use the app to monitor your recovery?” the majority of patients were 
happy with at least most aspects 40/43 (93%) (Table 3). 
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Discussion 
 
We assessed the feasibility of using patient owned smartphones to measure activity and 
participation prior to and following cardiothoracic surgery. We obtained partial step data for 
209 patient days preoperatively and 397 patient days postoperatively from 21 and 11 
participants respectively and partial GPS data for 126 patient days preoperatively and 301 
days postoperatively from 22 and 16 individuals respectively. Despite recording a 
considerable amount of novel pre- and postoperative data, due to data loss we did not meet 
our predefined threshold for feasibility.  
 
Within the limitations of missing data, it appeared that patients were taking fewer steps, were 
less active and covered less distance in the postoperative phase (up to day 90) when 
compared to preoperative activity. The signal of reduced activity in the postoperative phase 
may represent the normal recovery process, with improvement occurring subsequent to 90 
days [31], or may be due to attrition of data over time (figure 2b). Data attrition would bias 
results with less data available in the later phases of the postoperative phase.  We also 
observed that patients were accepting of the technology, with only 17% refusal of consent 
and high satisfaction levels, which may indicate patients’ willingness to engage in processes 
that assist in reporting patient centered outcomes and using technology to enable remote 
assessment. This is certainly echoed in the literature. Rens and colleagues demonstrated that 
71% of those approached were willing to use an Apple Watch and iOS app to monitor recovery 
following cardiovascular procedures [32]. Panda et al. demonstrated that 57% of patients 
were willing to install an accelerometer app to monitor recovery following cancer surgery 
[33]. This acceptance may be more pronounced since the COVID pandemic, as being remotely 
monitored may be more attractive to patients than attending hospital clinics, and user ability 
may have increased [34]. Collecting data from other sources during recovery e.g cardiac 
rehabilitation may have been beneficial. 
 
The feasibility of the technique was impacted by technological failure. The app on both 
Android and iPhone devices suffered from significant data loss. The cause of this is unclear 
but is most likely due to multiple factors. While the app was successfully activated for 41 
participants and we only included patients who had a home Wi-Fi network, it is possible that 
some of our participants did not have a connection set up between their phone and home 
Wi-Fi network or had an unreliable connection. This situation would result in a failure to 
upload any data, and may have contributed to incomplete data upload. However, this method 
has been successfully used by others, Panda and colleagues used the Beiwe app to collect 
accelerometer data, the data were stored locally with the smartphone application utilizing 
WIFI to attempt a data upload every hour, to reduce participants data costs. [33]. The failure 
to upload any data may have been a result of a coding failure to use the Apple and Google 
API’s correctly to collect step and GPS data, this may have occurred in certain environments 
(phone and operating system combinations) thus explaining why these coding errors resulted 
in some devices working while others did not. Where there is no other study, to the authors 
awareness, that utilises step and GPS in the perioperative assessment other groups have 
successfully used apps to collect these data in patients with bipolar [35], schizophrenia [36], 
and during COVID-19 lockdown [37]. 
 



 

 159 

During our study, Apple upgraded the operating system (iOS 12) and with the new operating 
system introduced new features to automatically terminate apps running in the background; 
this upgrade might have also contributed to the loss of data and the attrition of app data 
overtime. However, this attrition of participants has been reported on other m-Health 
studies, with Miloh et al demonstrating a 37% attrition in a study using SMS messages to 
improve immunosuppression adherence in pediatric liver transplant recipients[38], Mundi et 
al demonstrated a 33% withdrawal rate using a smartphone app to prepare patients for 
bariatric surgery [39] and Semple and colleagues showed that utilisation of a smartphone app 
to complete a recovery questionnaire and take photos of the surgical site was significantly 
higher in the first 14 days than during days 15-30 of their 30 day study. Future studies may 
benefit from: 

• more extensive testing prior to implementation 
• use of personalized messages 
• sending notifications at times where users are more likely to respond [40].  

 
The current study is also a single center study, and smartphone ownership and user ability 
may vary by location [41]. This could certainly affect the feasibility of the technique presented 
in this report. 
 
The following strategies could be implemented to reduce the risk of data loss in future studies 
implementing smart phone collection of activity data: 

• extensive testing in a multitude of different environments; 
• use of the participants data connection rather than relying on a Wi-Fi connection; 
• ongoing software support to ensure the apps remain updated; 
• regular app check-in to keep the app running in the background and; 
• a regular check on the cloud database to ensure ongoing data upload, with a push 

notification to the participants phone if the data upload ceases. 
• Detailed descriptions and ongoing support for participants 

 
Whilst we could not establish feasibility in this study, the capacity to do so could improve the 
current surgical risk prediction and improve risk stratification for high-risk patients. We 
observed patients were willing to consent to this process and they reported satisfaction with 
its use. Being able to monitor patients during recovery may also enable the detection of early 
deterioration. Finally, with sufficient data it may be possible to predict disability free survival 
using variables such as time spent active or time spent outside of the home: such information 
would improve shared decision making before surgery. 
 
Conclusion 
 
We found that it is currently not feasible to assess patients throughout the preoperative and 
post cardiac surgery phases using our purpose built app. Feasibility was limited by substantial 
data loss. We have identified several technical reasons for the failure of the app which can be 
addressed in future studies. Within the limitation of the data we had available, we observed 
that by day 90 patients had not reached pre-operative levels of activity and participation as 
determined by step count and distance travelled. 
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179 patients screened  

117 Patients were excluded: - 
   48 – no smartphone 
   34 – < 7days to procedure 
   10 – Android device$ 
   9 – Non-English speakers 
   6 – No home Wi-Fi 
   10 – Otherδ 
 

62 patients were 
approached for consent 

52 patients consented 

10 patients refused consent 

11 patients did not complete the study 
       7 – phone would not load app 
       3 – app loaded but wouldn’t activate 
       1 – withdrew consent 

41 patients completed the 
study 

Figure 1 - Consort diagram  

$ During the period of technical issues with the android app 10 patients presented to clinic with 
android phones and were excluded.  

δ Other includes two patients with alternative operating system (not iOS or android), one patient 
had an intellectual disability and one patient was non-ambulatory with 6 patients were missed in 
clinic. 
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Patient demographics (n=41) 
 Age, years, med [IQR]  61 [53 to 67] 
 Male, n (%) 23 (56) 
 Weight, kg, mean (SD) 89 (21.3) 
 Height, cm, mean (SD) 169 (8.8) 
 EuroSCORE II RoD % [IQR] 1.0 [0.7 to 1.5] 
 APACHE II score, median [IQR] 13 [12 to 15] 
 ANZROD % [IQR] 0.3 [0.2 to 0.7] 
Smartphone details  
 Android 25 (61%) 
 iPhone 16 (39%) 
 Carried >75% of the time 40 (98%) 
 Shared use 1 (2%) 
Surgery details  
 CABG 17 (41%) 
 Valve 19 (46%) 
 CABG and valve 5 (12%) 
 Bypass time, min, med [IQR] 84 [62 to 123] 
 Cross clamp time, min, med [IQR] 67 [38 to 93] 

Table 1 – Patient demographic, smartphone, surgery and hospital outcome details. APACHE – Acute Physiology and 
Chronic Health Evaluation; ANZROD- Australia and New Zealand Risk of Death; EuroSCORE II - European System for Cardiac 
Operative Risk Evaluation II;  CABG - Coronary Artery Bypass Grafting; RoD – Risk of Death 
 
 
 

Step count outcomes Mean difference (95% CI) P-value 
Daily step count -1260.44 (-1939.29, -581.60) <0.001 
Distance walked (m) -431.05 (-742.53, -119.57) 0.007 
Time spent active (mins) -51 (-85, -17) 0.004 
Walking speed (km/hr/day) 0.61 (0.04, 1.22) 0.039 
GPS outcomes   
Standard Deviation Ellipse activity space (km2) -346.25 (-962.28, 269.78) 0.271 
Minimum Convex Polygon activity space (km2) -416.17 (-1087.02, 254.68) 0.224 
Total distance travelled (m) -35191.49 (-68988.35, -1394.62) 0.041 
Total distance travelled between locations (m) -7674.81 (-10088.02, -5261.60) <0.001 

Table 2 – Differences between pre-operative and post-operative step and GPS outcomes. 
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Table 3 - Would you be happy to use the app to monitor your recovery? 

N (%) Response  
1 (2) Not at all  
2 (5) Some aspects  
3 (7) Most aspects  
3 (7) Almost all aspects  

34 (83) Yes certainly  
 
 
 

0

5

10

15

0 10 20 30 40 50 60 70 80 90

Attrition of incomplete app 
data over time 

Number of patinets with incomplete step data

Number of patinets with incomplete GPS data

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Attrition of app data over time 

Number of patinets with GPS data Number of patinets with step data

N
um

be
r o

f P
at

ie
nt

s 

 

Day 

0

5

10

15

20

0 10 20 30 40 50 60 70 80 90

Attrition of complete app data 
over time 

Number of patinets with complete step data

Number of patinets with complete GPS data

N
um

be
r o

f P
at

ie
nt

s 

 

Day 

 

Day 

N
um

be
r o

f P
at

ie
nt

s 

 

Figure 2 – Attrition of app data over time, number of patients with data on the corresponding 
day following recruitment – (A) incomplete data, (B) complete data and (C) total data. 
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Supplementary material 
 
Satisfaction survey 
 
 
Would you be happy to use the app to monitor your recovery? 
Not at all Some aspects  Most Aspects  Almost all aspects Yes certainly 

 
     
 
Overall how would you rate the experience of using the smartphone app to report your 
step and GPS data to the doctors looking after you? Where 0 = poor and 100 = excellent 
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4.4 Conclusions 
 
4.4.1 Introduction 
 
We have shown that 52% of a South Australian dialysis population would be unable to install 
a smartphone app onto a device they own (59% ownership, 9% unable to install an app). This 
will limit the ability of a smartphone app use in broader research in this population. However, 
it would be feasible to explore the passive collection of smartphone data in dialysis dependent 
smartphone users, as the outcomes produced could, for example, be used to better inform 
patients with chronic renal failure about the effect on lifestyle of different dialysis options. 
 
The use of a dedicated smartphone app for the collection of step and GPS data in patients 
undergoing cardiothoracic surgery showed that patients were accepting of this technology, 
although this study was conducted prior to the COVID pandemic and privacy concerns have 
increased since several unsuccessful COVID tracing apps harnessed individuals’ location data 
[1]. However, these concerns appear to be reduced in more elderly populations [2]. The 
patients in the study detailed in this chapter showed high levels of satisfaction with the app. 
However, the app we designed did not function as intended, on occasion did not load, or was 
unable to activate. There was significant (~90%) data loss. This was attributed to a multitude 
of factors, such as a failure of the patient to connect their phone to their home Wi Fi, 
incompatibility of the app following operating system upgrades, the app stopping running in 
the background of the phone and no check with the cloud database to ensure the data was 
being captured. 
 
It would have been beneficial to conduct the point prevalence study in Cardiothoracic 
patients, however; to collect the same level of data would have taken over a year, whereas 
in dialysis patients it could take a week. With hindsight having the same population would 
have assisted in the investigation of some of the issues suffered with the app failure. 
 
4.4.2 Contribution of this work to smartphone user ability  
 
It has been demonstrated that elderly smartphone users are slower when using a smartphone 
app [3] and have poorer performance in touch screen puzzles [4] despite previous use of 
touchscreen devices [5]. 
 
It has been demonstrated the in-ability to install a smartphone app reduced the usefulness of 
a COVID tracking app from 85% to 81.3% [2], however the ability to install a smartphone app 
is rarely considered a barrier in the literature of smartphone app use in elderly populations 
[6]. While assistance may overcome this, this is a barrier that will need proactive 
consideration when embracing this technology. 
 
4.4.3 Contribution of this work to digital app design 
 
While our feasibility study did not collect the required level of data, we were able to draw 
some important learnings from this failure. We should have used more robust testing in real 
world environments, not relied on Wi-Fi connections (instead utilizing patient data), 
scheduled regular check-ins to keep the app running in the foreground, have IT support 
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available to deal with app changes to overcome the issues raised by operating system 
upgrades and checks of the cloud database to ensure that the data stream was complete. 
 
4.4.4 Contribution of this work to smartphone app acceptance 
 
The use of a smartphone app to capture passively collected data is not a novel concept, 
however participants willingness to take part in the study detailed in this chapter appears 
higher than existing studies suggest. Couper and colleagues showed consent rates between 
6% and 67% in their review [7]; 39% [8] of a household panel would be willing to use an app 
that shared GPS location data. Similarly only 20% of participants surveyed in Revilla’s work 
would consent to share GPS data [9]. The in person contact with the participant by an 
intensive care doctor may have improved the trust to allow the app install. However, while 
the consent might have appeared higher, participants may have felt obligated to partake and 
subsequently uninstalled the app so no data was received. 
 
4.4.5 Contribution of this work to outcomes for cardiothoracic patients 
 
Location based outcomes have never been described for patients recovering from 
cardiothoracic surgery, and as far as we are aware this is the first time that step outcomes 
have been described prior to and during the recovery following cardiothoracic surgery. 
Accelerometers have been used rarely in studies of cardiothoracic patients[10]. Smartphones 
have been used in studies monitoring patients with Left Ventricular Assist Devices[11] but 
relied on active involvement of the patient in data collection (surveys and photos) rather than 
passively collected data. However, the authors make the argument that this is the first step 
towards remote monitoring. 
 
4.5 Future Directions 
 
4.5.1 Further App Development 
 
Working with collaborators to develop another app and ensuring ongoing support is a costly 
option, however, partnering with app developers with a similar app and extending the use 
spectrum of their app may be a possibility. Taking the learnings from our study and from the 
literature where having human support reduces drop out and non-use attrition [12, 13] and 
ensuring the app is of benefit to consumers [14] would be key improvements. Any app 
developed or used would benefit from extensive piloting prior to implementation in a trail 
setting. 
 
4.5.2 Elective surgery 
 
There are several populations that could potentially be targeted. For instance, younger 
populations, with higher smartphone use and user ability such as obstetric [15] and cystic 
fibrosis [16] sufferers. However, the uptake of the app in an elective surgical population does 
suggest that there is the possibility to use a similar process in all elective surgical patients, not 
just those who will require an ICU admission. Surgical risk scores focus on health data. The 
potential to be able to incorporate community activity data is likely to increase the power of 
these scores [17-20]. Utilising an app which monitors activity and GPS location prior to their 
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operation, enables the addition of survey data while also monitoring post-operative activity 
and GPS data would develop a data set that over time could be used to predict individual 
patient recovery. The app could also be used to record actual recovery and highlight possible 
post-op deterioration.  
 
4.5.3 Integration of passively created datasets with health data 
 
The power of passively collected datasets has been well demonstrated with Cambridge 
Analytica being able to use such data to influence US elections and Britain’s departure from 
the European Union [21, 22]. The ability to integrate these datasets within healthcare and use 
data to determine healthcare outcomes remains an attractive possibility [23, 24]. We know 
that the majority of preventable mortality is attributable to social determinants of health [25-
30], yet as healthcare providers we do little to integrate data that might discern some of these 
factors, allowing us to provide more targeted heath interventions, better predictions of 
outcome [23] and improved information sharing with our patients. We must do this without 
eroding trust in the healthcare sector for sharing this kind of data [21]. 
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CHAPTER 5 – DISCUSSION 
 
5.1 - Introduction 
 
While the individual papers, and chapters have their own discussions and future directions 
this concluding discussion is intended as a summary of the findings, the limitations and 
strengths of the thesis as a whole and a final comment on future directions. 
 
5.2 - Summary of findings 
 
There has been considerable research undertaken in this field since this PhD was embarked 
on in late 2016. The first use of digital phenotype in the literature was 2015 [1] and the use 
of ‘mHealth’ has more than tripled during this time in PubMed. However, Chapter 1.2 of this 
thesis demonstrates that in the field of critical care the use of these technologies are in their 
infancy, with only a few, mainly, exploratory studies using accelerometery and pedometry 
and none using Global Positioning System (GPS) data [2]. Little has changed, in the critical 
care literature.  A repeat of the literature search was undertaken for this discussion with 
limited additions to the literature observed. Six further studies were discovered. 
Accelerometers tend to be the predominate device, measuring steps and physical activity in 
relatively small [3-6], experimental studies, although there is some evidence of main stream 
uptake with a hip worn accelerometer being used in a sub-study of Targeted Temperature 
Management 2 (TTM2) [7]. The expansion of the wearable market has brought with it the 
first study of  smartwatches in ICU survivors [8] and geolocation has been used in ICU 
survivors for the novel function of alerting treating teams of the arrival of Ventricular Assist 
Device patients to the emergency department [9].  Supplementary Figure 1 details the 
literature review and supplementary table 1 details the additional six studies.  
 
Chapter 2.2 confirmed that subjective recall of survivors of critical illness and their relatives 
should not be relied upon as accurate, with patient/relative recall tending to overestimate 
patient physical activity levels, compared to smartphone estimates. Finding a gold standard, 
for the reliable measurement of pre-morbid physical activity is important for ICU outcome 
research [10]. Utilisation of passively collected data, e.g. step and GPS data, from 
smartphones or other devices could potentially allow critical care physicians to collate pre-
morbid activity and physical participation retrospectively. This would allow researchers to 
confirm or dispel the adage that survivors of critical illness never return to their baseline 
level of function [11]. This would represent a significant shift in critical illness research 
methodology.  
 
Despite the potential importance of step and GPS data, this data was not present on the 
phones of some ICU survivors (52%; Chapter 2.2) and General Medicine inpatients (71%; 
Chapter 3.2). Further, although Chapters 2.3 and 2.4 demonstrated step and GPS data can 
be used to generate outcomes that represent the activity and physical participation of ICU 
survivors, there was a reliance on manual extraction of data. The automated extraction of 
location data from iOS (Frequent/Significant locations) was not possible despite the use of 
digital forensics (not presented as part of this thesis). However; in Chapter 3.2 Google Maps 
Timeline (GMT) did allow for the extraction of a data file detailing historic location data. This 
had the potential to progress the automation of this previously manual process. Further, it 
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was possible to use the step and GPS data extracted to create outcome measures that 
would relate to an individuals daily activity and physical participation, such as daily steps, 
time spent active, time spent at home and activity spaces [12, 13]. This would, in theory, tie 
these measures to that of disability in accordance with the World Health Organisations 
International Classification of Function [14]. 
 
Despite the potential benefits of GMT data, Chapter 3.2 highlighted the difficulty in 
extracting this data in General Medical inpatients although it was the first time GMT had 
been extracted from iOS devices, the availability of these data was incredibly limited. Data 
were only successfully extracted from 4 (8%) and only 10 (29%) phones contained GMT 
data. Obtaining these data retrospectively did not pass the threshold required to prove 
feasibility and with minimal evidence to support the use of these data as outcome measures 
it was decided to prospectively collect these data utilising a smartphone app built by the 
Software Engineering Department of Adelaide University. 
 
Chapter 4.2 showed that in a significantly co-morbid population there was a level of 
smartphone ownership (59%) and user ability, with only 9% of smartphone users being 
unable to install an app, to suggest it would be feasible to use a smartphone app to collect 
step and GPS data. However, despite the adequate level of smartphone use Chapter 4.3, 
involving the testing of an app developed with the Software Engineering Department of the 
University of Adelaide in patients undergoing Cardiothoracic surgery, demonstrated 
significant failures in data capture. The following strategies were suggested to reduce the 
risk of data loss in similar future studies:- 

• extensive testing of the app in a multitude of different environments; 
• use of the participants data connection rather than relying on a Wi-Fi connection; 
• ongoing software support to ensure the apps remain updated; 
• regular app check-in to ensure the app remains running in the background and; 
• a regular check on the cloud database to ensure ongoing data upload, with a push 

notification to the participants phone if the data upload ceases. 
Such remote passive monitoring of apps has been very successful in monitoring mental 
health patients [15, 16]. 
 
We have deliberately utilised a description of physical participation. How this related to 
participation is not known. For example, an individual could be house bound yet still 
contribute to meetings, take part in hobbies, shop online and play games with friends. This 
level of participation would not be captured with a GPS device. Being able to compare 
physical participation with participation captured by diary would be of benefit from a 
validation perspective. The utilisation of cookie data to track web-interaction may aid the 
use of participation measurement while relying solely on passively collected datasets. 
 
It is important to consider some general themes that have persisted across the different 
studies of this program of research. The first of these themes is Smartphone ownership and 
user ability. In all the populations described smartphone ownership has fallen significantly 
below the level of the general population. While there will be a generational element to 
this, with older patients lacking the education to develop the skills to utilize smartphone 
function, over time this would be expected to change as those with the education and skills. 
There will also be a functional element with patients with cognitive decline lacking the recall 
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to be able to interact with a smart device and a poverty element will exist where affording a 
device will not be feasible. In Australia there is an important cultural element to consider, in 
that Aboriginal populations use smartphones as community commodities, and they are 
shared between different members of the greater family. 
 
As we move to a health system that will be increasingly automated by mHealth, we need to 
be cognizant that certain populations do not, or cannot interact with mobile devices and do 
not have an online presence. These are often some of the most vulnerable who will be 
further disadvantaged by some of the mHealth initiatives. 
 
There have been technical challenges caused by the fast-moving nature of the surrounding 
hardware and software that the devices interact with. This makes keeping apps and 
protocols up to date with the most recent developments a significant challenge and 
highlights the need for successful collaborations between software engineers and health 
professionals. 
 
The concerns over data privacy have certainly increased during the life-time of this PhD. This 
has come from very public data breaches, poor governance over data usage and increased 
awareness of the power that these data hold. We need to better engage with the public and 
industry to truly understand how best these data can be used to benefit the individual. 
 
5.3 - Strengths 
 
This thesis has demonstrated that highly granular data can be passively collected from 
patient smartphones. This is a novel approach to outcome measurement in critical care. 
Using these highly granular data to integrate information relating to social determinants of 
health, activity and participation into the healthcare data set would, in theory, be an 
attractive proposition as it would passively automate outcome measurement while also 
providing improved data for outcome prediction. This would lead to improved shared 
decision making and expectation management for patients. However, collecting these data 
in the quantities required has been, and will remain, a significant challenge, as both Apple 
and Google have significantly restricted the access to location data in future app design. 
Despite these challenges these technologies have been successfully deployed in mental 
health where patients with bipolar affective disorder show a reduction in activities when 
depressed and an increase in activities when manic [15], and there is promising use of a 
digital phenotype in schizophrenia [16] where social media interactions strongly corelate 
with disease state. Using an ‘internet of things’ approach, where an array of devices with 
different sensors digitally interact, wearable sensors have shown a reduction in daily steps 
and an increase in sleep following COVID 19 vaccination [17, 18].  
 
 
5.4 - Limitations 
 
Using GPS transponders in Chapter 2.4 would have enabled the validation of the 
smartphone GPS data something that has been assumed throughout the thesis. Although 
there is data to support their accuracy [19, 20] it has not been confirmed in ICU survivors. 
This would have allowed the direct comparison of data gathered from frequent/significant 
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locations, data generated from a proprietary Apple algorithm with that of a GPS 
transponder. Nonetheless, given studies have confirmed the accuracy of smartphone GPS 
data [19, 20] this limitation should not have impacted on the outcomes of the current 
research or have a major impact on future studies that rely on smartphone apps. 
 
For ease of recruitment the automation of data extraction (Chapter 3.2) was attempted in 
general medical patients. However, general medical patients are generally older than ICU 
survivors. Although smartphone ownership was similar between the ICU and General 
medicine cohorts it has been shown that the level of GMT data was significantly less than 
that of students[21],  suggesting the level of data availability may be something that 
diminishes with age as the usage profile of the phone and apps change. Therefore, 
translation of the data to ICU survivors is difficult and further studies are needed, 
specifically in ICU survivors, for confirmation. 
 
In Chapter 4.2, again for ease of recruitment, the ability of a renal patient population to 
install an app was surveyed. Considering cardiothoracic surgery patients were the eventual 
target population, it would have been preferable to assess this specifically in this cohort of 
patients, especially considering, with hindsight, this was one of the potential limitations of 
the cardiothoracic study. Additionally, it would have been beneficial to ask if they knew if 
their smartphone connected to their home Wi-Fi network, as this would have better 
informed the app design. 
 
The biggest limitation of this thesis relates to the loss of data suffered in the final study. 
There are learning points that have been taken from this which will enable improved app 
design and testing in the future. Notably, the testing for the app was limited by time 
pressures; which should be a significant warning for future researchers in this area. 
However, recently both Apple and Google have significantly limited access to smartphone 
users location data to the extent that no app can be released that simply collects location 
data without providing immediate and obvious benefit to the end user.  
 
The design of the app would have benefited from co-design methodology and qualitative 
studies with ICU survivors and their families may have improved engagement and hence 
opportunities for data extraction. This may assist with the ongoing development of 
subjective outcomes while there is ongoing development in the passively collected objective 
data field. This is a huge missed opportunity and one that potentially undermines the trust 
placed in researchers by the patients who take part in such studies. 
 
 
5.5 - Future directions 
 
Using these data to better predict outcomes would be an attractive proposition. Using these 
data in a peri-operative setting to provide individualised recovery prediction and monitoring 
would certainly improve shared decision making. In addition, utilisation in younger patient 
populations, such as the obstetric population where smartphone usage and ability would be 
greater, could be beneficial. This would be supported by the significant difference in GMT 
data availability between General medical inpatients and students [21].  
 



 

 176 

The increasing availability of wearable data in the form of smartwatches presents an 
exciting opportunity. One in 4 smartphones is now paired to a wearable device, providing 
more accurate accelerometery data, along with waveform level data relating to heart rate 
and oxygen saturations. The addition of weight, sleep data, nutrition data and medication 
history into the standard health apps will provide a greater level of data that can potentially 
be utilised in the measurement of healthcare outcomes. Finding ways to integrate these 
data into national health datasets will drastically improve the future research opportunities. 
However; the increasingly stringent data protection laws have already led to restrictions on 
location data being used for research, this may extend to other data in years to come. The 
software development kits developed by Google, Apple and Microsoft do enable developers 
greater automated access to many of the databases on a smartphone ensuring there is a 
wealth of passively collected data available. The Android (Google) developer platform has 
introduced Health Connect and iOS (Apple) has introduced the Health Kit to allow 
developers access to health data. 
 
However, the greatest challenge to researchers and app developers must be the privacy 
concerns of using this type of data. The Cambridge Analytica scandal [22, 23] has brought 
this to the forefront, with further concerns raised during the roll out of COVID19 apps and 
the major data leaks from industries, including Optus [24] and MediBank [25], in Australia. 
This, along with the unsuccessful application of technology, as demonstrated in this thesis, 
will undermine the confidence of the public to allow access to their data. Therefore, future 
applications must provide value to the end user from the start, they must empower the 
public to be custodians of their own data, be totally transparent about the data usage and 
ensure robust security. 
 
There is certainly scope for improving how clinicians engage patients with this kind of 
technology and how the technology engages with the patients and clinician. In their 
systematic review of improving adherence to mHealth Apps, Jakob et al demonstrated that 
personalization or tailoring to the individual needs of the user, push notifications acting as 
reminders, user-friendly and technically stable app design, and personal support to the 
digital intervention were the factors that drove adherence across all domains with 
gamification driving adherence across several domains [26]. It is also important to engage 
with users to continually improve the app and ensure a co-design process is in place. Putting 
these principles into practice would certainly aid future studies 
 
 
 
5.6 – Conclusions 
 
While the use of a smartphone app does hold promise for the passive collection of step and 
GPS data to better inform patient care, using this data to retrospectively measure the 
activity and participation of a patient admitted as an emergency to ICU is not currently 
possible. Therefore, the objective measurement of activity and physical participation to 
define disability and function will remain a panacea of ICU research. 
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Ovid   –      665 
PUBMED –      2754 
 
Total   –      3419 

557 were duplicates 

2862 titles and abstracts 
were screened for 
inclusion 

2797 were excluded 

65 articles read in full 59 excluded 
25 Not in ICU survivors 
23 Did not report outcomes 
7 Not in ICU patients 
2 In initial scoping review 
2 Included in this thesis 6 articles included 

Supplementary Figure 1 – Consort diagram of repeat scoping review filtered for all studies published 
since 2016 
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Lead 
author 

Yr Study Design Cohort 
studied 

Number 
of 

patients 

Wearable 
Device 

Time to 
follow-up 

Duration of 
observation 

Observations from 
wearable device 

Other outcomes Associations 

Gandotra 2021 Prospective 
observational 
study 

Previously 
independent 
adults aged 
55 or older, 
undergoing 
mechanical 
ventilation 
for up to 7 
days 

22 Tractivity; 
Kineteks 
Corporation 
(accelerometer
) 

3 days prior 
to ICU 
discharge, 
prior to 
hospital 
discharge,  
the first 3 
days at 
home and 
days 4-6 
post 
discharge 

Continuous 
till 1 week 
post 
discharge 

Mean daily step count Short Physical Performance Battery Correlation between steps and 
Short Physical Performance Battery 
scores were poor at ICU and 
hospital discharge; moderate 
correlations immediately upon 
return home. 

Kim 2021 Prospective 
observational 
study 

ICU survivors, 
aged 55 years 
and older 

12 Fitbit Charge 
HR 

4 weeks 4 weeks Step count, physical 
activity, sleep, and heart 
rate (HR). 

Clinical Frailty scale Daily step count was strongly 
correlated with the CFS at 4-week 
follow-up 

Capin 2022 Pilot 
randomised 
feasibility 
study. 

Discharged 
home 
following 
hospitalisatio
n with 
COVID-19  

44 (7 
admitted 
to ICU) 

Fitbit activity 
monitors 

6 and 12 
weeks post 
hospital 
discharge 

12 weeks Step counts Moca-Blind, MRC Dyspnea Scale, 
Balance Confidence Scale, Three-Item 
Loneliness Scale, PROMIS Short Form 
General Self-Efficacy, PROMIS Short 
Form Self-Efficacy for Managing Chronic 
Conditions, PROMIS Scale Global Health 
Measure, CFS, PHQ8, The four-stage 
balance test, 30s chair stand test, TUG 

Step counts increased by week 6, 
and plateaued after week 6 to 
week 12 

Estrup 2022 Prospective 
cohort study 

ICU patients 44 Micro Sleep 
Watch a wrist 
worn 
accelerometer 

Discharge 
and 3 
months 

3 months Mean activity counts per 
day; mean activity per 
hour during daytime, 
mean difference 
between day and night; 
max activity in 1 hr on 
day 2;  total activity 
count on day 2; and 
daytime activity on day 
2. 

CPAx, Short Form Health Survey (SF 36), 
Hospital Anxiety and Depression Scale, 
Repeatable Battery for the Assessment 
of Neuropsychological Status (RBANS), 
mortality in hospital and within 90 days, 
and use of opioids at 3 months 

Weak correlations between activity 
measures and CPAx at discharge, 
weak associations between CPAx 
and activity measures at 3 months 
and weak correlations between the 
diffences in activity and the change 
in CPAx between discharge and 3 
months. 

Hunter 2021 Prospective, 
multicentre 
observational 
trial 

Moderate or 
severe lung 
injury 
resulting 
from 
confirmed 
COVID-19 

50 Fitbit Charge 3 1 year 1 year Step counts and daily 
resting heart rates 

 Steps increased from 4359 per day 
in the first to 7914 at 1 year. Fitbit 
was felt to drive recovery. 

Defilippis 2019 A prospective 
feasibility 
study 

Ventricular 
Assist device 
patients 

21 Patients own 
smartphone 
with Position 
health installed 

Ongoing Ongoing Attendance at ED Nil Nil 

Supplementary table 1 - CFS - Clinical Frailty Scale, CPAx - Chelsea Critical Care Physical Assessment Tool, MRC - Medical Research Council, MoCA - Montreal Cognitive 
Assessment, PHQ8 - Patient Health Questionnaire 8, PROMIS - Patient Reported Outcomes Measurement and Information System, TUG - Timed Up and Go Test 
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Appendix A – Presentations at regional, national and international meetings 
(primary Author unless otherwise stated) 
 
Invited National Presentations 
 
Royal Australian College of Physicians ASM            Adelaide, 1st Dec 2018 
The use of objective data to automate the measurement of patient centred outcomes 
 
 
Invited regional Presentations 
 
South Australian Association of Internal Medicine           Adelaide, August 2018 
Smartphone data as a patient outcome 
 
SA ACCCN Hot Topic Evening              Adelaide, March 2019 
Survive and Thrive Peer Support Group 
 
 
International Conferences – Selected for Oral Presentation 
 
SCCM Congress  Best Medical Free Paper  San Antonio, Feb 2018 
Global position system derived values to describe outcomes after critical illness: an 
exploratory observational study 
 
ANZICS ASM  Matt Spence Medal Presentation        Gold Coast, Oct 2017 
Smartphone step-counts reliably and consistently estimate step-counts from a dedicated 
pedometer 
 
ANZICS ASM  Best Medical Free Paper    Gold Coast, Oct 2017 
Global position system derived values to describe outcomes after critical illness: an 
exploratory observational study 
 
ANZICS ASM  Matt Spence Medal Presentation         Perth, Oct 2016 
A Comparison of Subjective And Objective Reporting Of Patient Physical Activity Prior To 
Critical Illness 
 
Regional Meetings – Selected for Oral Presentation 
 
ANZICS Tub Worthley Travelling Scholarship Trainees           Adelaide    2016 
The accuracy of surrogate reporting of patient physical activity prior to critical illness 
 
ANZICS Tub Worthley Travelling Scholarship Trainees         Adelaide       2017 
The assessment of physical activity before and after critical illness 
 
ANZICS Tub Worthley Travelling Scholarship Trainees            Adelaide       2018 
Global position system derived values to describe outcomes after critical illness: an 
exploratory observational study 
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International Conference – Poster Presentation 
 
ICS, State of the Art Meeting London 2016 
Wide Disagreement Between Alternative Assessments of Physical Function: 
Patients Subjective Reports, Surrogate Reports, and Smart-Phone Data. 

Intensive Care World Congress                                 Melbourne                        2019  
Lost in Relocation: Less than optimal medical handover of patients discharged 
from intensive care. (secondary author) 

National Conference – Poster Presentations 
 
ANZICS ASM      Adelaide             2018 
Long-term mortality of long-stay ICU patients at the Royal Adelaide Hospital, (secondary 
author) 
 
Regional Meeting – Posters Presentations 
 
Florey HDR annual conference   Adelaide            2017 
The use of step and GPS outcomes to assess recover following critical illness 
 
Florey HDR annual conference   Adelaide            2018 
Development of a clinical tool to assess activity and participation. 
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Appendix B – Prizes awarded and nominations during candidature 
 
2017 Tub Worthley Traveling Scholarship ANZICS 
Prize for best presentation at the SA ANZICS Tub Worthley Traveling Scholarship Dinner 
 
2018 Adelaide Medical School Prize 
Prize for best poster presentation at the 2018 Annual Florey Postgraduate Research 
Conference. 
 
2019 ANZICS CTG Novice Investigator Rapid Fire Presentation Winner 
A three-minute presentation at the 2019 Noosa meeting of the CTG, novice investigator 
session. 
 
2019 SA Health Awards – Nominee 
Survive and Thrive – a peer support group for ICU survivors and relatives 
 
2021 SA Health Clinical Educator of the Year  
Award for junior doctor nominated best clinical educator in SA health 
 
2022 NALHN Partnering excellence award – Finalist  
NALHN – Flinders Medical Student Placement Program 
 
2022 NALHN Sustainability excellence award – Finalist 
2022 SA Health award – Nominee 
2023 SA Premiers Award - Nominee 
Australian Medical Council – NALHN Work-Place Based Assessment Program 
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Appendix C - Grants and scholarships awarded during candidature 
 
2016 Royal Adelaide Hospital Research Committee, A.R Clarkson Scholarship 
The development of objective measures of function prior to and following critical illness. 
Award value $240,000 over 3 years stipend support 
 
2016 Royal Adelaide Hospital Research Committee, Clinical Project Grant Award.  
The feasibility and validity of obtaining pre-illness activity data in critically ill patients using 
'smart-phone' technology: a validation study. Grant MyIP: 7527 Award MyIP: 2114 Award 
Value: $49,990 
 
2018 Royal Adelaide Hospital Research Committee, Clinical Project Grant Award.  
An open-source smartphone application to monitor patients prior to and following elective 
coronary artery bypass grafting: A prospective cohort study (The SMART-HEART Study). 
Grant MyIP: 9768 Award Value: $16,800 
 
2018 Society Of Critical Care Medicine THRIVE Grant  
The feasibility of establishing a peer support group for ICU survivors at the Royal Adelaide 
Hospital. Award Value $US 1,000 
 
2021 Rural Workforce Grant  
The placement of 2 interns in Port Pire with education support from NALHN, community 
engagement and whole system simulation education. Award Value $182,000 
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Appendix D – Other publications completed during candidature 
 
Patients retrieved to intensive care via a dedicated retrieval service do not have increased 
hospital mortality compared with propensity-matched controls. Maclure P.T, Gluck S, 
Finnis M.E, Pearce A. Australian Intensive Care. 2018;46(2):202-206. 
 
Prediction of general medical admission length of stay with natural language processing 
and deep learning: a pilot study. Bacchi S, Gluck S, Tan Y, Chim I.C, Cheng J, Gilbert T, Menon 
D.K, Jannes J, Kleinig T, Koblar S. Internal and Emergency Medicine. 2020 (Online ahead of 
print) 
 
Evaluation of coagulation status using viscoelastic testing in Intensive Care patients with 
COVID-19: An observational point prevalence cohort study. Colett L.W, Gluck S, Strickland 
R.M, Reddi B.J, Australian Critical Care. 2020 
 
Patient reported outcomes after critical illness: a randomised controlled trial of online 
versus paper surveys. Wong H.Z, Brusseleers M, Hall K, Maiden M.J, Chapple L.S, Chapman 
M.J, Hogdson C.L, Gluck S. Australian Critical Care. 2021 Online ahead of print 
 
Mixed-data deep learning in repeated predictions of general medicine length of stay: a 
derivation study. Bacchi S, Gluck S, Tan Y, Chim I, Cheng J, Gilbert T, Jannes J, Kleinig T, Koblar 
S. Intern Emerg Med. 2021 Online ahead of print 
 
Daily estimates of individual discharge likelihood with deep learning natural language 
processing in general medicine: a prospective and external validation study Bacchi S, 
Gilbert T, Gluck S, Cheng J, Tan Y, Chim I, Jannes J, Kleinig TJ, Koblar S. Internal and 
Emergency Medicine; Online ahead of print DOI: 10.1007/s11739-021-02816-7 
 
Improving the accuracy of stroke clinical coding with open-source software and natural 
language processing Bacchi S, Gluck S, Koblar S, Jannes J, Kleinig T. Journal of Clinical 
Neuroscience. 2021 94:233-236. 
 
Mixed-data deep learning in repeated predictions of general medicine length of stay: a 
derivation study. S Bacchi, S Gluck, Y Tan, I Chim, J Cheng, T Gilbert, J Jannes, T Kleinig. 
Internal and Emergency Medicine 16 (6), 1613-1617 
 
Muscle Protein Synthesis Following Protein Administration in Critical Illness. LS Chapple, 
IWK Kouw, MJ Summers, LM Weinel, S Gluck, E Raith. American journal of respiratory and 
critical care medicine. E-pub ahead of print 
 
Gender and linguistic disparities in resuscitation orders: a multicentre retrospective 
cohort study. S Bacchi, AK Gupta, JG Kovoor, CD Ovenden, MS To, M Jiang, R Goh, S Gluck 
Internal medicine journal 52 (10), 1847-1848 
 
Automated information extraction from free-text medical documents for stroke key 
performance indicators: a pilot study. S Bacchi, S Gluck, S Koblar, J Jannes, T Kleinig. 
Internal Medicine Journal 52 (2), 315-317 
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Pre-hospital emergency anaesthesia in trauma patients: An observational study from a 
state-wide Australian pre-hospital and retrieval service P Maclure, S Gluck, K Kerin, L Boyle, 
D Ellis. Emergency Medicine Australasia. E-pub ahead of print 
 
Antibiotic Prescribing Practices Differ between Patients with Penicillin Intolerance and 
Penicillin Allergy Labels. Jiang M, Bacchi S, Lam L, Inglis JM, Gluck S, Smith W, Gilbert T. Int 
Arch Allergy Immunol. 2022 Nov 11:1-5.  
 
Lost in relocation: longitudinal surveys evaluating the effectiveness of ICU to ward 
handover after the introduction of an electronic patient record. Westaway S, Webber T, 
Gluck S, Sundararajan K. Hosp Pract. 2022 Oct;50(4):267-272.  
 
Why do we evaluate 30-day readmissions in General Medicine? A historical perspective 
and contemporary data. James J, Tan S, Stretton S, Kovoor J G, Gupta A K, Gluck S, Gilbert T, 
Sharma Y, Bacchi S, Internal Medicine Journal (In press) 
 
Perioperative Direct Oral Anticoagulant Assays: A Multicentre Cohort Study. Stretton S, 
Bacchi S, Kovoor J G, Booth A, Gluck S, Vanlint A, Afzal M, Overden C, Gupta A K<  Mahajan R, 
Edwards S, Brennan Y, Boey J, Reddi B, Maddern G, Boyd M. Hospital Practice (In Press)  
 
Low risk cefalexin allergies are associated with inpatient prescribing of second-line non-
beta lactam antibiotics. Jiang M, Stephen Bacchi B, Lam L,  Lam A, Inglis J M, Gilbert T, Gluck 
S, Shakib S, Yuson C, Smith W. Allergo Journal International (In press) 




