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Abstract

In this study, the nature and properties of dark matter are explored with the help of neutron

stars. Dark matter is assumed to have a particle nature, and different dark matter candidates

are considered and tested using neutron stars. If neutron stars capture dark matter from the

halo, their properties must change, with various candidates affecting them in different ways.

Based on these changes, the nature of dark matter is studied, and possible directions for future

studies are explored.

In addition to dark matter capture, the recent hypothesis concerning the possible decay of

neutrons into dark matter, as suggested by Fornal and Grinstein, and Strumia, is thoroughly

studied. Constraints on the properties of dark matter have been established, and observable

signals from neutron stars are suggested. Using neutron star cooling, possible decay modes of

dark bosons into Standard Model particles are also investigated.
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neutron decay hypothesis suggested by Fornal and Grinstein within neutron stars, in
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resolved by neutrons decaying into dark matter through the process, n → χχχ, with

χ having a mass one third of that of the neutron. In particular, we examine the

consequences of such a decay mode for the properties of neutron stars. Unlike an

earlier suggested decay mode, in order to satisfy the constraints on neutron star mass

and tidal deformability, there is no need for a strong repulsive force between the dark

matter particles. This study suggests the possibility of having hot dark matter at the
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core of the neutron star and presents a possible mechanism of dark matter cooling,

and examines the possible signal of neutrons decaying in this way inside the neutron

star right after its birth.
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Abstract: The hypothesis that neutrons might decay into dark matter is explored

using neutron stars as a testing ground. It is found that in order to obtain stars

with masses at the upper end of those observed, the dark matter must experience a

relatively strong self-interaction. Conservation of baryon number and energy then

require that the star must undergo some heating, with a decrease in radius, leading to

an increase in speed of rotation over a period of days.

(4) Wasif Husain and Anthony Thomas
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Abstract: We present a study of neutron star models that contain dark matter (DM)

in the core. The DM is assumed to have a particle nature and to be self-interacting.

Using constraints on the mass and radius of neutron stars, we investigate the allowed

properties of either bosonic or fermionic DM particles. For this purpose three

different models of neutron stars are considered, the first involving nucleons only,

the second including hyperons, and the last involving strange matter in the core.

Different EoS are constructed for the various cases of fermionic and bosonic DM.

These EoSs are solved for selected properties of the DM particles and the results are

tested against mass, radius and tidal deformability constraints for neutron stars. The

distribution of energy density of DM and ordinary matter inside the neutron stars

is also presented. It is found that if the DM is fermionic in nature it does not just

sit in the core but it is present everywhere in the star, from the centre to outside the

surface and may even envelop.
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CHAPTER 1

Dark matter

Our universe is full of mysteries such as dark energy, black holes, dark matter, and many more.

Dark matter is a mysterious matter that is non-luminous, non-interacting (or very weakly

interacting) with ordinary matter (except through gravity), and exists in abundance in galaxies

and clusters, giving galaxies the shape they have. In fact, on the scale of galaxies, dark matter

dominates over ordinary matter. The primary evidence of the presence of dark matter comes

from the rotation and shape of galaxies. Some of the galaxies would not have formed if there

were not enough dark matter to bind the stars in them. The term ’dark’ in dark matter does

not mean that the matter is ’dark or black’. In fact, it is called dark matter because it is unseen

and does not interact with light.

Most of the studies that have been done to understand the universe involve the study of the

electromagnetic spectrum present in the universe. It would not be wrong if one says that to

study the universe, we primarily depend on how the light coming out of stars and galaxies

interacts with other objects. But the universe is supposed to be unbiased, so there is no

particular reason why it should have been specifically selected to reveal its mysteries that way.

Naively speaking, on a larger scale, on the scale of galaxies and clusters, the mass required to

keep the galaxies and clusters the way they are increases, but the luminosity, or light, does

not. This led scientists to hypothesize the existence of an invisible and non-interacting form

of matter. That is known as the "missing light problem" or "the dark matter problem". Dark

matter has been inferred to exist based on its gravitational effects on visible matter, but its

composition and properties remain unknown. Dark matter is a different kind of matter that

does not interact with light and therefore remains unseen and unknown.

1
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The nature of dark matter is one of the burning questions in physics. Apart from astrophysics

and cosmology research groups, the search for dark matter is also taking place in particle

physics experiments such as colliders and direct dark matter detection experiments, and

different theoretical dark matter models have been proposed. From the particle physics

point of view, dark matter can be a bunch of new and different particles, but they have to be

electrically neutral. The Standard Model of particle physics does not have a suitable candidate

or mechanism for dark matter, and one must think beyond the Standard Model to discover the

nature of dark matter.

Based on the cosmic microwave background (CMB) measured by WMAP (Bennett et al. 2003;

Spergel et al. 2003) and SDSS collaboration for power spectrum galaxy density fluctuations

(Eisenstein et al. 2005; Tegmark et al. 2004), it has been shown that most of the matter in the

universe is in a form that is not observable. In the universe, baryonic matter accounts for only

4% of total energy, while dark matter contributes approximately 26%, and the rest is dark

energy.

1.1 Historical background

It was theorised almost a century ago that there must be more matter in the universe than

the luminosity would suggest in order to give enough gravitational attraction to galaxies and

clusters to hold them together, otherwise, they would have flown apart. To date, there are

substantial astrophysical and cosmological evidences that suggests the presence of dark matter.

These evidences are based on gravitational effects that are observed, such as the deflection of

light, the gravitational potential of galaxies, and the dynamical effects of clusters and galaxies.

Since the evidence is related to gravity, it has been suggested that our understanding of gravity

might be in error, and one should modify the gravitational equations, but this argument is

weak, because it does not produce the effects at the scales of galaxies and clusters and fails to

explain the anisotropies in the CMB.

Zwicky 1937, argued that there has to be more non-luminous matter present in clusters and

galaxies to keep them in the form they are. This idea built up gradually because the idea
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sounds radical, and it was hard to digest having a matter that is non-luminous and does not

interact with anything but gravity, whose purpose is to just stay in galaxies and bind them like

glue. Later, Kahn and Woltjer 1959 studied the motion of the Andromeda galaxy and argued

that the motion of Andromeda towards us suggests that there must be dark matter in our local

group of galaxies. The presence of enormous halos around galaxies was suggested by Roberts

and Rots 1973 and Rubin et al. 1978. In 1974, two more studies were done by Ostriker et al.

1974 and Einasto et al. 1974 that firmed up the idea of the presence of non-luminous matter

in the galaxies and showed that the masses of stars and the light present in galaxies are not

enough to explain the dynamics of the galaxies.

1.2 Observational evidences of the presence of dark matter

Here, some of the evidences for the presence of dark matter are given below at different

galactic scales that strongly demand the existence of dark matter to explain the physics at

different scales.

1.2.1 Rotational curves

The gravitational effects of spiral galaxies are one of the primary sources of evidence for the

presence of dark matter. Most of the visible matter is contained as a bulge on a disc. Using

Gauss’ theorem, the velocity of the star at the distance R from the centre of the galaxy can be

given as

v =

√
GM

R
, (1.1)

where M is the visible mass inside the sphere (Gaussian surface). As R increases or one

moves away from the centre of the galaxy, the visible matter fades away, therefore total mass

inside the Gaussian surface remains constant. Consequently, the velocity of stars must fall as

v ∝
√

1
R

. In contrast, the velocity of stars away from the centre of the spiral galaxies shows

flat rotational curves, indicating constant velocity. For the constant velocity vc of the outer
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stars of spiral galaxies. The total mass inside the sphere of radius R can be given as

M =
Rv2c
G

, (1.2)

which indicates a continuous increment in the mass of the galaxy far beyond the region where

the visible matter starts to fade away. Consequently, it indicates that there must be more

matter inside the spiral galaxies than the visible matter; otherwise, the shape of the galaxies

would be different than observed. If one assumes a spherically symmetric distribution of

invisible matter, the density needed for producing flat rotation curves can be given by

ρ =
v2c

4πGR2
. (1.3)

The presence of invisible matter is required to hold the galaxies in the shape they are. This

invisible matter is called dark matter. By analyzing the rotation curves of galaxies, astronomers

can estimate the amount of dark matter present in a galaxy and its distribution.

1.2.2 Galaxy clusters

Galaxy clusters contain massive quantities of gases in the intergalactic medium, and they

are huge in size. The gases in the intergalactic medium can accelerate due to gravity, reach

very high velocities, and emit X-rays, which are analysed together with the modeling of the

galaxy clusters and used to calculate the mass of the galaxy clusters. The calculated mass

of the galaxy cluster is compared with the visible mass, which indicates that the calculated

mass is much more than the visible mass, which indicates that there must be a huge amount

of invisible matter or dark matter present in the galaxy cluster. However, this method of

calculating the mass of the galaxy clusters is not considered very reliable because it requires

the approximate modelling of the galaxy clusters.

The method of calculating the mass of galaxy clusters based on gravitational lensing is

considered to be more reliable. The method is based on observing the images of distant

objects and reconstructing the modified path of the light due to the presence of heavy masses

in the path, affecting the geometry of spacetime. The gravitational lensing of the objects

behind a galaxy cluster appears in several distorted images spread across a circle. If DS
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denotes the distance to the source and DL stands for the distance to the galaxy cluster, then

the angular radius, θ, of the circle is given by Einstein 1936

θ =

√
4GM(Ds−DL)

c2DsDL

(1.4)

where M is the mass of the galaxy cluster. Gravitational lensing is used to calculate the mass

of galaxy clusters. Studies have shown that the visible mass contributes to 10-20% of the total

mass of the galaxy clusters, while the majority of the mass is contributed by dark matter or

invisible matter.

1.2.3 Large and cosmological scales

On large scales, dark matter is inferred from its gravitational effects on visible matter, such

as stars and galaxies. Astronomers observe the rotational velocities of stars in galaxies and

find that they are moving too quickly to be explained by visible matter alone. This implies

the presence of additional, unseen matter, which is thought to be dark matter. Similarly,

observations of the cosmic microwave background radiation, the leftover radiation from

the Big Bang, provide evidence for the existence of dark matter through its gravitational

effects on the structure and evolution of the universe. On cosmological scales, dark matter is

also inferred from observations of the large-scale structure of the universe. The distribution

of galaxies and galaxy clusters on the largest scales is consistent with the presence of a

significant amount of dark matter, which provides the gravitational scaffolding for the visible

matter to form galaxies and clusters. Cosmological simulations, which model the growth of

structure in the universe, also require the presence of dark matter to reproduce the observed

distribution of galaxies. Other indirect evidence for dark matter comes from observations of

gravitational lensing, the bending of light by the gravitational field of massive objects. The

gravitational lensing of distant galaxies by intervening dark matter halos can be used to infer

the distribution of dark matter in the universe. Overall, the evidence for the existence of dark

matter on both large and cosmological scales is robust and supported by multiple lines of

observation and analysis. While the nature of dark matter remains a mystery, its presence is

crucial for our understanding of the structure and evolution of the universe.
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Today, much progress has been made, and consequently, the distribution and total amount

of dark matter present in galaxies are far better understood than in the 1970s. Some of the

studies that contribute to the rapid understanding of the presence of dark matter in galaxies

and clusters are cosmic microwave background fluctuations, optical surveys of large areas,

high red-shifts, and sharp X-ray images.

The progress in understanding the role of dark matter is not limited to observational research

only. Over the years, theoretical aspects of dark matter have also been explored. There are

some properties that a good candidate for dark matter has to satisfy, and they are given as

follows:

1.3 The properties of dark matter

Although dark matter is unknown and we know almost nothing about it. Nevertheless,

physicists have been able to infer some of its properties based on its gravitational effects on

visible matter. Following are the properties that a good candidate for dark matter must have

in order to be consistent with the observations.

1.3.1 Abundance

Dark matter makes up about 85% of the total matter in the universe, with the remaining 15%

being ordinary matter. This means that dark matter is much more abundant than ordinary

matter, which is why it has such a profound effect on the large-scale structure of the universe.

The abundance of dark matter can also be inferred from the way in which galaxies form and

evolve. Computer simulations of galaxy formation show that dark matter plays a crucial role

in shaping the distribution of visible matter, as well as in the formation of galaxies themselves.

By comparing these simulations to observations of real galaxies, physicists can estimate

the abundance of dark matter. Moreover, the abundance of dark matter has been inferred

through a variety of indirect methods, including the observation of galaxy clusters, the cosmic

microwave background radiation, and computer simulations of galaxy formation. While its
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exact nature remains a mystery, its abundance is a testament to its importance in shaping the

large-scale structure of the universe.

1.3.2 Electric charge

Due to the fact that dark matter does not interact with light and remains unseen, most of the

physics community agrees with the argument that dark matter must be electrically neutral.

Otherwise, light would be scattered by it. From astrophysical observations and direct dark

matter laboratory experiments, the constraints on heavy millicharged particles are deduced

in McDermott et al. 2011; Kouvaris 2013; Dolgov et al. 2013. If millicharged dark matter

particles coupled strongly with the baryon and photon plasma during the recombination epoch,

then they would act like baryons, and the current cosmic microwave background would be

affected in several ways (McDermott et al. 2011; Kouvaris 2013). Depending on the mass

of the dark matter particle, Kouvaris 2013 suggests a limit on the charge of dark matter that

is qDM ≤ 2.24× 10−4 mDM /TeV)1/2 for mDM >> mp , while direct detection as suggested

by Nobile et al. 2016 gives an upper bound on the charge of dark matter particles as qDM ≤

7.6× 10−4 mDM /TeV)1/2.

1.3.3 Cold

Cold dark matter particles are believed to be non-relativistic, i.e., moving at speeds much

slower than the speed of light, and to have low kinetic energy, which means they are "cold" in

the sense that they have a low temperature. This property of dark matter is inferred from its

effects on the large-scale structure of the universe as well as from observations of the cosmic

microwave background radiation. Numerical simulations of the formation of structures in

the early universe suggest that dark matter particles were non-relativistic at the time when

large-scale structures began to form. This means that the particles were moving much slower

than the speed of light and were governed primarily by gravity rather than other fundamental

forces. This non-relativistic behaviour is consistent with the hypothesis that dark matter

consists of particles that interact weakly with other matter and form large-scale structures
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through gravitational attraction. The non-relativistic nature of dark matter particles has

important implications for their detection and characterization, as well as for the formation

and evolution of galaxies and other astrophysical systems.

Hot dark matter would cause inconsistencies with the observations because hot or relativistic

dark matter particles can travel a large distance before falling into a potential well, which

is also known as the streaming length. However, at the scale of a typical galaxy, the cold

dark matter simulation suggests the presence of several sub-structural dark matter halos.

Apparently, that can lead to too many subhalos. But this problem can be eased if dark matter

is warm and has a mass of approximately 2–3 keV.

1.3.4 Lifetime

Probably one of the most naive observations about dark matter particles is that they are very

long-lived, stable particles. The presence of dark matter is necessary for the gravitational

effects in galaxies and clusters. If their lifetime were shorter than the age of the universe, then

the gravitational effects of dark matter would have been different from the observational find-

ings. The observations of the large-scale structure of the universe and the cosmic microwave

background radiation suggest that dark matter has been present since the early universe and

has remained unchanged for billions of years. However, some theories propose that dark

matter may have a very long but finite lifetime (Audren et al. 2014), which could lead to

detectable signals such as the emission of gamma rays or cosmic rays. They must have a

decay rate that is longer than the age of the universe to be acceptable.

1.3.5 Self-interaction

The self-interacting property of dark matter refers to the possibility that dark matter particles

can interact with each other through a force other than gravity. This is in contrast to the

current understanding that dark matter interacts only through gravity, as it does not interact

with light or the electromagnetic force.
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There is some observational evidence that suggests that dark matter may be self-interacting.

One such piece of evidence comes from the observation of colliding galaxy clusters. When

two galaxy clusters collide, the dark matter in each cluster is expected to pass through

each other due to their lack of electromagnetic interactions. However, simulations of these

collisions have shown that the dark matter in each cluster appears to interact with itself,

causing it to slow down and become more concentrated in the central region of the collision.

The ellipticity of galaxies and the observational findings put a limit on the dark matter self-

interaction, as suggested by Buote et al. 2002; McDaniel et al. 2021 and Randall et al. 2008,

respectively. The dark matter-dark matter self-interaction is constrained by σDM−DM/mDM

< 0.47 cm2/g by Harvey et al. 2015. It is also shown in Tulin and Yu 2018a; Spergel and

Steinhardt 2000 that the velocity dependence in σDM−DM might help solve some small-scale

structural problems of the universe. However, the dark matter self-interaction cross-section

within the limit σDM−DM/mDM < 1 cm2/g is helpful to solve the problem associated with

the number of sub-structures in DM halo numerical simulations.

These observations have led to the development of models of dark matter that include self-

interactions. Such models could help to explain the observed distribution of dark matter in

galaxies and clusters and could have implications for the formation and evolution of these

structures. However, the nature and strength of these self-interacting forces of dark matter

are still unknown, but they could be due to the exchange of a new particle, such as a dark

photon. Ongoing and future observational studies of galaxy clusters, galactic dynamics, and

gravitational lensing will provide further insights into the properties of dark matter and its

interactions with itself and with ordinary matter.

1.3.6 Non-baryonic

One of the most widely accepted explanations for dark matter is that it is non-baryonic in

nature, meaning that it is composed of particles such as neutrons and protons. Baryonic matter

accounts for only a small fraction of the total matter in the universe. One of the main pieces

of evidence for the non-baryonic nature of dark matter comes from studies of the cosmic



10 1 DARK MATTER

microwave background (CMB), the radiation left over from the Big Bang. Measurements

of the CMB show that the amount of baryonic matter in the universe is not sufficient to

account for the observed gravitational effects on the large-scale structure of the universe. The

non-baryonic nature of dark matter particles is widely accepted among physicists as the most

likely explanation for their abundance in the universe. Ongoing experiments and observations

will continue to provide clues to the properties of dark matter particles and help shed light on

this enigmatic substance that makes up the majority of the matter in the universe.

1.4 Dark matter candidates

There are numerous dark matter models that have been proposed over the years since the

presence of dark matter has been suggested in the universe. The list of dark matter candidates

is quite long. Here are some of the most established dark matter candidates covered. Although

some of the dark matter candidates are considered more promising and preferred over the

others, there is no dark matter candidate that qualifies to be the perfect candidate and solves

all the problems associated with dark matter. Some of the promising dark matter candidates

are given as follows:

1.4.1 Weakly Interacting Massive Particles (WIMPs)

As the name suggests, the main features of this dark matter candidate are that it is massive

and interacts very weakly with visible matter. This class of dark matter particles was first

proposed by Steigman and Turner 1985. WIMPs are suggested to have a mass of the order

of 100 GeV and have a weak scale coupling of about 10−2. Having been born out of the

decay of inflation in the early universe, if the WIMPs are in a thermal bath with the other

particles, the Boltzmann equation can be solved at a density that is proportional to the inverse

of the annihilation cross-section of the WIMPs to find the moment when the WIMPs stop

being destroyed or created. This is also known as the "Free Out" epoch of the WIMPs. This

density should remain constant in the future. When the dimensional analysis cross-section is

inserted into the Boltzmann equation of the early universe, the resulting calculation predicts a
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number density of Weakly Interacting Massive Particles (WIMPs) that matches the density

inferred from astrophysical observations. This agreement supports the hypothesis that WIMPs

constitute a significant fraction of dark matter and provides a valuable tool for exploring their

properties and interactions.

1.4.2 Axions

Axions are one of the most promising dark matter candidates. The candidate came from

the solution of the strong CP violation problem, and therefore it not only solves the dark

matter problem but also the strong CP violation problem. In the quantum chromodynamics

(QCD) Lagrangian, there exists a term FF̃ , which has a coefficient θ, which could have any

value but experiments suggest that the value of θ has to be smaller than 10−9, which is a very

strict restriction on the value, also known as fine tuning (Baker et al. 2006). In principle,

there is nothing to stop a coefficient from being extremely small, but when a parameter that

can take any value is exceptionally close to zero, it raises the question, why? Peccei and

Quinn 1977; Weinberg 1978; Wilczek 1978 promoted the coefficient to a dynamic field and

suggested that there is a protective global symmetry. When this symmetry breaks, the term

has to vanish, and therefore the coefficient must be nearly zero. But breaking the suggested

symmetry requires the production of a new particle, and this particle is called ’axion’, which

is a pseudo-Nambu-Goldstone boson. Sikivie 1982; Preskill et al. 1983; Abbott and Sikivie

1983; Dine and Fischler 1983 give the astrophysics aspects of axions in detail, and the possible

production mechanism of axions can be found in (Turner 1990; Raffelt 1990). The axions are

naturally non-interacting or very weakly interacting, and are produced as a result of symmetry

breaking. A cold bunch of axions can cling together gravitationally and guide the evolution

of galaxies, and physicists suspect that axions may have been produced in bulk in the early

universe. Thus, axions could be a good candidate for dark matter. The mass of axions has to

be extremely small. Indeed, studies suggest that the axions could have mass in the order of a

few µeV. It has been suggested by Sikivie 1983; Asztalos et al. 2002 that the axions can be

detected in a magnetic field by axion-photon resonance, but axions have not been observed

yet.



12 1 DARK MATTER

1.4.3 Neutrinos

Neutrinos, a class of particles that interact very weakly with visible matter, have a very

light mass, and they are also considered one of the candidates for dark matter. Fukuda et al.

1998 and Ahmad et al. 2002 did the oscillation experiment of neutrinos, which indicated

that at least two of the neutrinos present in the Standard Model are massive. The tritium

beta decay experiment suggests that mνe ≤ 2.5 MeV with 95% confidence. Bonn et al.

2000 and Lobashev et al. 1999 indicate that the astrophysics density of light neutrinos

(mν ≤ MeV) is supposed to be Ωνh
2 = Σmν/(94.0) eV, while the WMAP shows that

Ωνh
2 < 0.0076 → Σmν ≤ 0.7 eV. The oscillation experiments force the mass of neutrinos

mν ≥ 50 MeV; therefore, 0.0005 < Ωνh
2 < 0.0076, a known constituent of dark matter, would

be non-relativistic today. However, being fermions of this mass window, they cannot be a

significant constituent of galaxies due to Pauli blocking. Although Lee and Weinberg 1977

considers massive neutrinos as dark matter candidates, the neutrinos have to be hot, and they

cannot be abundant in galaxies. This makes them unsuitable for an ideal dark matter candidate

to explain the properties of galaxies.

1.4.4 Sterile neutrino

They are hypothetical particles that are assumed to be interactive only via gravity. They do

not interact via any force described in the Standard Model. The term, ’sterile’ in the name

suggests that they are different ’inert’ neutrinos compared to the neutrinos present in the

Standard Model. They do not take part in electroweak interactions. Sterile neutrinos have

been proposed in different contexts to address different problems (Feng et al. 2003). As a dark

matter candidate, it has been claimed that they may have been created in the early universe in

a variety of ways, and depending on the mechanism of their creation, they can be constrained

by using their effect on the small-scale structure in the universe (Abazajian 2006). It has been

claimed in Abazajian et al. 2001 that the sterile neutrinos may mix with active neutrinos and

that the probability of their decay into photons and active neutrinos is very low. In particular,
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the sterile neutrino inverse-lifetime

τ−1 ∼ G2m5
νθ

2, (1.5)

where θ is the mixing parameter. Forcing the mixing not to exceed the limit θ < 3.3 ×

10−4(10keV
mν

)5, making the lifetime of sterile neutrinos bigger than the age of the universe. The

observations have excluded the Dodelson-Widrow model of sterile neutrinos (Abazajian 2006;

Abazajian et al. 2001).

1.4.5 Dark photons

The light boson with mass mV < 2me is a viable candidate for dark matter. Dark photons can

be stable and may be produced in the early universe via annihilation or scattering processes

such as e+e− → V γ or γe± → V e± where V indicates a dark photon. It may also be

produced by photon-dark photon resonance. An et al. 2015 showed the production of dark

photons via condensate seeded by inflationary perturbations. Dark photons are force carriers

in the dark sector, similar to ordinary photons in the visible sector. The light-dark photons

(scalar or vector) can be constrained with experiments that depend on their wavelike behaviour

or their possible portal with the visible sector.

1.4.6 Neutrons decay into dark matter

Perhaps the newest theory of dark matter is that the neutron might decay into dark matter, as

proposed by Fornal and Grinstein 2018a; Fornal and Grinstein 2020. The neutrons show a

different lifetime when observed by different methods, such as the beam and bottle methods.

Neutrons in a beam have a longer lifetime compared to neutrons in a bottle. In fact, the

difference between the two lifetime measurement methods is always approximately 8 seconds.

To explain this, Fornal and Grinstein 2018a; Fornal and Grinstein 2020 suggest that neutrons

might decay into dark matter in the beam method, making dark matter go undetected (the

method uses the number of protons present after a while), while in the bottle method its effect

is counted (the method uses the number of neutrons remaining after a while). If we consider
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this approach, the neutron decay puzzle seems to get fixed. In this study, this hypothesis has

been tested using neutron stars.

1.4.7 Supersymmetry (SUSY) particles

Supersymmetry is the theory that physicists propose in order to fill the gaps in the Standard

Model. One can call supersymmetry an extension of the Standard Model. It links the bosons

and fermions such that every particle in the Standard Model will have a supersymmetric

partner. The supersymmetric partners will interact through forces similar to Standard Model

particles. Like many theories, Pagels and Primack 1982 proposed that the light supersym-

metric partners of the Standard Model particles are stable, interact weakly, and are neutral

in charge. They could therefore stay in the galaxies without being discovered. Some of

the promising supersymmtric dark matter candidates are neutralinos, gravitinos, and axinos.

They are the supersymmetric partners of neutrinos, gravitons (Feng et al. 2003) and axions

(Bonometto et al. 1989). But none of the SUSY particles have been observed yet.

1.5 Cosmological challenges for dark matter

Despite the overwhelming presence of dark matter in the universe, there are still many open

questions and challenges to understanding dark matter from a cosmological perspective.

Although at the larger scale, at distances bigger than 1 Mpc, the asymmetric cold dark matter

model is good for explaining the observed structural properties of the universe, on the smaller

scale, there are issues that need to be addressed. Some of the literature regarding this can be

found in Zavala and Frenk 2019; Bullock and Boylan-Kolchin 2017. Following are the major

challenges for a dark matter model:

1.5.1 Too big to fail problem

There is a discrepancy between observations of dwarf galaxies and theoretical predictions

based on the standard model of dark matter. According to the theory, dark matter halos in
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which dwarf galaxies form should have a large number of subhalos, or smaller clumps of

dark matter, that host satellite dwarf galaxies. However, observations of dwarf galaxies in

the local group, which includes the Milky Way and Andromeda galaxies, show a deficit

of such satellites compared to the number predicted by the theory. This discrepancy arises

because the predicted subhalos are expected to be massive enough to host galaxies, but most

of them have not been observed to do so. This has led some to suggest that the standard

model of dark matter may not be accurate on small scales and that alternative theories, such

as warm dark matter or self-interacting dark matter, may be needed to explain the observed

properties of dwarf galaxies. One proposed solution to the too big to fail problem is that

the baryonic dark matter in the subhalos may be able to affect the dark matter distribution

and disrupt the formation of satellite galaxies. This could occur through processes such as

supernova explosions or the heating of gas by radiation from stars, which can drive gas out of

the subhalos and alter their density profiles. This would make it more difficult for satellite

galaxies to form in the subhalos, and could potentially resolve the discrepancy between

observations and theory. Overall, the too big to fail problem highlights the need for a better

understanding of the nature of dark matter and the processes that govern the formation and

evolution of galaxies on small scales. It remains an active area of research in astrophysics,

and cosmology. The n-body simulation of the asymmetric cold dark matter at the galactic

scale predicts a higher number of subhalos than are actually found in the galaxy. The masses

of such subhalos are so massive that they may create stars but fail to form them, while the

lower-mass subhalos are able to form the stars. This problem is known as the too big to

fail problem. The solution to this problem is suggested by considering warm dark matter

or self-interacting dark matter (Bullock and Boylan-Kolchin n.d.). There are some weak

constraints on the dark matter mass and self-interaction suggested by different cosmological

simulations. For warm dark matter, the mass of the dark matter particles must be greater than

a few KeV, while the self-interaction cross section of the dark matter particles must be in the

range 0.5–10 cm2/g (Tulin and Yu 2018b).
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1.5.2 Core vs. Cusp problem

The "core vs. cusp" problem in galaxy formation refers to a discrepancy between observations

of the density profiles of dark matter halos and the predictions of the standard model of dark

matter. According to the theory, dark matter halos should have a density profile that rises

steeply towards the center, forming a cusp-like shape. However, observations of some galaxies

suggest that their dark matter halos have a flatter density profile towards the center, forming a

core-like shape. The core vs. cusp problem has important implications for our understanding

of galaxy formation and the nature of dark matter. If the cusp-like density profile is correct, it

would suggest that dark matter interacts very weakly with itself and other matter, and would

support the standard model of dark matter. On the other hand, if the core-like density profile

is correct, it would suggest that dark matter interacts more strongly with itself or with visible

matter and would require modifications to the standard model of dark matter. One proposed

solution to the core vs. cusp problem is the idea that the feedback from baryonic matter, such

as gas and stars, could modify the density profile of dark matter halos. This could occur

through processes such as supernova explosions, which can drive gas out of the central regions

of galaxies and reduce the density of dark matter. Alternatively, interactions between dark

matter particles, such as self-interacting dark matter, could lead to the formation of a core-like

density profile. The core vs. cusp problem remains an active area of research in astrophysics

and cosmology, and there is an ongoing debate over the interpretation of observational data

and the theoretical predictions of different models of dark matter. Further observations of

galaxies and improved simulations of galaxy formation will be necessary to fully understand

this problem and its implications for our understanding of the universe. The density profiles

predicted by n-body simulations indicate a steep rise in the density of dark matter at smaller

radii, while the rotational curves suggest that the density profile remains flat. Indeed, the

asymmetric dark matter simulation indicates density ρ(r) ∝ 1/rγ , where γ must be in the

range 0.8-1.4, as suggested by Navarro et al. 2010, while the rotational curves indicate that

γ must be 0–0.5 for smaller radii. Several solutions to the problem have been proposed,

including the effects of baryonic feedback, which can flatten the core to the density suggested

by the rotational curves.
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1.5.3 Missing satellite problem

The "missing satellite" problem in galaxy formation refers to a discrepancy between the

number of observed satellite galaxies in the local group (the group of galaxies that includes

the Milky Way and Andromeda) and the number predicted by the standard model of dark

matter. According to the theory, dark matter halos should be filled with smaller subhalos,

which in turn should host satellite galaxies. However, observations of the local group suggest

that there are far fewer satellite galaxies than predicted by the standard model of dark

matter. This discrepancy has led to the "missing satellite" problem, which has important

implications for our understanding of galaxy formation and the nature of dark matter. The

n-body simulation of dark matter halos predicts that at the size of the Milky Way galaxy, there

must be thousands of subhalos of dark matter that are massive enough to create galaxies, but

observations found that there are only approximately 100 galaxies orbiting the Milky Way.

This lack of galaxies indicates that there is something wrong with our approach to dark matter

properties on a smaller scale. The missing satellite problem highlights the need for a better

understanding of the nature of dark matter and the processes that govern the formation and

evolution of galaxies on small scales. It remains an active area of research in astrophysics

and cosmology, and further observations and theoretical studies will be necessary to fully

understand this problem and its implications for our understanding of the universe.

1.6 Dark matter probes

Since the presence of dark matter came to our knowledge, there have been numerous attempts

to understand its nature, both experimentally and theoretically.

1.6.1 Experimental efforts to discover dark matter

There are some laboratories, such as accelerators and colliders, built on Earth to detect any

sign of dark matter. The CMS (Compact Muon Solenoid) and ATLAS (A Toroidal LHC

ApparatuS) collaborations at the Large Hadron Collider (LHC) are searching for any sign of
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dark matter during proton-proton collisions. The basic idea behind their work is that the dark

matter particles must have escaped the system, leading to a significant reduction in the total

energy and momentum of the system. The collider experiment targets the dark matter models,

which suggest that dark matter particles may interact with ordinary particles by the exchange

of Z or Higgs bosons, supersymmetric particles, heavy mediators in effective field theories,

etc. The experimental detection includes the detection of any invisible particle produced

through the mediation of a Standard Model boson and the old searches for invisible particles

produced via new particle mediators. Although no signal of dark matter has been detected

yet by the LHC, it has been useful in setting limits on cross-sections, couplings, and masses.

There are several approaches to searching for dark matter, including indirect detection, direct

detection, and collider experiments.

1.6.1.1 Direct dark matter detection

The dark matter density in our solar system is of order 0.4 GeV/cm3 (Catena and Ullio

2010; Nesti and Salucci 2013; Sivertsson et al. 2018) and the dark matter halo is considered

to be relatively non-rotating compared to the rotational disc of the galaxy. Thus, the dark

matter particle will have a relative velocity of approximately 200 km/sec. The rotation of our

Earth around the Sun will lead to several trillion dark matter particles interacting and passing

through Earth each year. The interaction between dark matter particles and the nucleons on

Earth will take place through scattering processes. The basic idea is, if dark matter interacts

with the nucleons, then measuring the recoil energy of the nucleon can help detect the dark

matter particles. There are several detection centers running to search for dark matter particles,

but such searches are still limited by our poor understanding of velocity and the density of

dark matter in our solar system. Aprile et al. 2017 shows the effects of velocity and density

in dark matter detection. Although the sensitivity of detecting dark matter has increased

with every passing generation, but such detection techniques are not suitable for the axions

like particle because they are extremely light and their recoil energy is extremely tiny, but

specific detection experiments can be designed (Graham et al. 2015) for axion like particles

interaction with electromagnetic fields.
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1.6.1.2 Indirect dark matter detection

This method of dark matter detection is based on the idea of detecting the decay products of

dark matter or the possible production of particles by the interaction between dark matter and

nucleons. The main decay products, or annihilation products, are photons, protons, electrons,

and neutrinos. Photons are relatively easy to detect, while neutrinos are very hard to detect.

The indirect detection of dark matter in experiments depends on the type of dark matter one

is expected to detect. This type of dark matter detection method is more suitable in regions

where the dark matter density is higher. Some of the density profiles of dark matter are

presented in Navarro et al. 1996; Merritt et al. 2006; Burkert 1995. If there is a small coupling

between dark matter and Standard Model particles, the interaction or annihilation of dark

matter particles can result in the production of Standard Model particles. The probability

of interaction between dark matter particles depends on their relative velocity and on their

annihilation cross section into Standard Model particles. The study by Aguilar et al. 2016

puts very strong constraints on the dark matter annihilation cross sections.

1.6.1.3 Dark matter search in colliders

The high energy particle colliders are designed to study new physics scenarios by colliding

particles. The Large Hadron Collider (LHC) may be the most prominent collider designed

to study new physics. The basic idea behind the colliders is that the particles at very high

energy collide with each other and generate heavy particles, which decay into new particles.

Colliders, such as the LHC, have been used to search for dark matter particles indirectly by

producing them and observing their interactions with other particles. One approach is to

look for missing energy signatures in the detector. If dark matter particles are produced in a

collision, they would escape undetected and result in an imbalance in the measured energy

and momentum of the collision products. This missing energy could be a potential signature

of dark matter. Another approach is to search for the production of new particles that could be

the constituents of dark matter. For example, some models of dark matter predict the existence

of a particle called a WIMP (weakly interacting massive particle). Colliders can be used to

produce and study the properties of these particles. However, detecting dark matter particles
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in colliders is challenging because they interact weakly with other particles. This means that

the probability of producing dark matter particles is low, and they may escape undetected

even if they are produced. Despite these challenges, colliders continue to be an important

tool in the search for dark matter. New experiments and detectors are being developed to

increase the sensitivity of collider searches for dark matter, and researchers are exploring new

theoretical models that could lead to the production of dark matter particles in colliders.

1.6.2 Theoretical efforts to understand dark matter

There are several theoretical efforts to understand dark matter, such as axions, WIMPs,

supersymmetry particles, extra dimensions, modified gravity, etc., yet its exact nature and

properties remain a mystery. Most of these models have been explained above.

In this study, theoretical models to understand the nature of dark matter have been developed.

Although, because of the non-interacting nature of dark matter with ordinary matter, it is very

hard to explore it. But as we are aware that dark matter interacts with gravity, it may be that

we can study dark matter with the help of objects that are very compact and have the highest

order of gravity. The most compact objects in the universe are black holes, their gravity is

so huge that even light cannot escape them. Since nothing can escape the black holes, they

themselves are a mystery, and physicists do not have a clue about what they are made of. The

next most compact objects after black holes are neutron stars. They are super compact and

have an escape velocity of about 60% of the velocity of light, and they are often called the

astrophysical laboratories of the universe. Luckily, there are some observational constraints

on the properties of neutron stars that can be used for the study of dark matter. Therefore,

neutron stars could be handy in the study of dark matter.

Neutron stars can capture dark matter particles, which may then settle down in the core. Of

course, the capturing of dark matter particles inside the neutron star is a matter of speculation,

but there are some mechanisms suggested by authors such as Busoni 2021; Bell et al. 2019;

Press and Spergel 1985. In this study, we are not concerned with how dark matter is captured,

but we are focusing on whether dark matter is captured inside the neutron stars, how it will
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affect their properties, and how much dark matter should be inside the neutron stars to see

changes in their properties.

Apart from the dark matter capture theory, neutron stars could also prove extremely useful to

test the relatively new hypothesis of neutron decay into dark matter, suggested in Fornal and

Grinstein 2018b; Fornal and Grinstein 2020; Strumia 2022. Before moving any further, it will

be worthwhile to know and understand some of the most promising properties and constraints

on neutron star properties that can be used to study dark matter.



CHAPTER 2

Neutron stars

Neutron stars are very compact objects present in the universe. The extreme conditions inside

the neutron star, such as energy density, pressure, and temperature, make them ideal to test the

physics under extreme conditions that cannot be created in a laboratory. Therefore, neutron

stars are often called astrophysical laboratories.

Neutron stars are special stars that come into existence when an ordinary star of mass in the

range of 8-25 solar masses dies (Beck, D.H. 2019). When an ordinary star within the mass

range given above runs out of fuel, it cannot sustain itself against gravity, and it collapses. As

the core collapses and sends a strong ripple of energy, the outer layers are blown into space in

a supernova remnant. In the collapse of the core, electrons and protons present in the core

interact together and create neutrons, which is why the collapse of the core becomes a very

compact neutron star. The death of an old star leads to the birth of a neutron star. The name

of the star is kept because of the fact that it is mostly made of neutrons. It is suggested that a

typical neutron star is made of up to 90% of neutrons.

Soon after the discovery of the neutron, the presence of neutron stars was proposed by Baade

and Zwicky (Baade and Zwicky 1934). They suggested that a supernova remnant can create

an extremely dense, super-tiny object that is mostly made of neutrons. The size of such

objects should be very small. In fact, the size should be in the range of just a few kilometers.

Being so tiny in size, it is extremely hard to detect such an object. Because of their relatively

small size, the possibility of finding them was ignored for almost three decades until 1967,

when Bell and Hewish (Hewish et al. 1968) discovered the first pulsar named PSR B1919+21.

At that time, pulsars were not recognised as neutron stars, but later, Goldman (Gold 1968)

showed that pulsars are nothing but neutron stars rotating extremely fast.

22
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Pulsars have a very strong magnetic field, and their magnetic poles are not aligned with their

rotational axis. Therefore, when a pulsar rotates, the radiation coming out of it also rotates

with it and sweeps. The rotation of the pulsars is only detected when an observer is in the

line of sight of the radiation. To the far observer, the signal is detected as the turning on

and off of light as a pulse, which is why they are named pulsars. Sometimes they are also

referred to as the light houses of the universe. Based on their pulsating behaviour, pulsars are

placed into different categories, such as ordinary pulsars, millisecond pulsars, binary pulsars,

and gamma-ray pulsars. Ordinary pulsars have periods ranging from a few milliseconds

to several seconds and are typically found in the galactic plane or in supernova remnants.

Millisecond pulsars have much shorter periods, typically around 1–10 milliseconds, and are

thought to be spun up by the accretion of matter from a binary companion. Binary pulsars are

pulsars in orbit around another star, which can be used to test the theory of general relativity

and measure the masses of neutron stars. Gamma-ray pulsars are pulsars detected at high

energies by space-based gamma-ray observatories, such as Fermi and Integral. In addition to

these categories, there are also so-called "anonymous" pulsars that have not been associated

with any known astrophysical object or phenomenon. Despite their diverse observational

properties, all pulsars are believed to be rotating neutron stars. The detailed studies about

pulsars may be found in Graham-Smith 1977; de Groot 1977; Lyne and Graham-Smith 1990.

The extreme conditions of the neutron stars make them very special. Let’s go through the

most important properties of the neutron stars that might help us find the characteristics of

dark matter.

2.1 Gravity

As mentioned earlier, neutron stars are extremely compact. Indeed, their gravity is so huge

that they are second only to black holes when it comes to escape velocity. In other words,

black holes are the only objects in the universe that are more compact than neutron stars. The

neutron stars can have an escape velocity as high as 0.6c (c is the velocity of light). So it

is very hard for particles other than light to escape them. Due to their gravitational power,
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neutron stars might capture some of the dark matter particles so that they stay trapped inside

their core and alter the properties of the neutron star. The consequences of having dark matter

inside the neutron star core are explored later.

2.2 Mass

Most of the neutron stars have a mass of approximately 1.4 M⊙ but Refs. Ter 5I and Ter

5J Ransom et al. 2005, PSR J1903+0327, and PSR J0437-4715 Champion et al. 2008;

Verbiest et al. 2008 all have masses of about 1.7 M⊙ with 95%, confidence limit. The

NICER collaboration recently measured the mass of two pulsars, PSR J0030+0451 and PSR

J0740+6620. In 2019, the NICER collaboration first measured the mass of PSR J0030+0451

and suggested that it is 1.34 ± 0.15 M⊙ (Riley et al. 2019). In 2021, an updated analysis of

the data was released, including additional observations and improved analysis techniques,

resulting in a new measurement of the mass of PSR J0030+0451 to be 1.44 ± 0.15 M⊙

(Riley et al. 2021). Similarly, the mass of PSR J0740+6620 was measured by the NICER

collaboration in 2019 (Miller et al. 2019), suggesting a mass of 2.14 ± 0.10 M⊙. An updated

analysis of the data in 2021 by Miller et al. 2021, including additional observations and

improved analysis techniques, confirmed the previous measurement, resulting in a mass of

2.14 ± 0.10 M⊙ for PSR J0740+6620.

It is worth noting that the PSR J0348+0432 pulsar also has a mass just over 2 M⊙ (Antoniadis

et al. 2013a), which suggests that the upper limit on the mass of neutron stars is still unknown.

Nevertheless, any viable physics model that accounts for high energy densities should predict

the maximum mass of a neutron star to be at least 2 M⊙. The determination of the mass of the

neutron star has great importance because it brings together nuclear physics and gravity under

extreme conditions and gives physicists an opportunity to understand and test their knowledge

at higher densities. The mass of a neutron star is determined by the mass function, which is

based on the Keplerian parameters. (Tamagaki 1993; Shapiro and Teukolsky 1983; Bahcall

1978)

f(Mp,Mc, i) =
(Mc sin(i))

3

(Mp +Mc)2
=
Pbv

3
1

2πG
, (2.1)
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where Pb is the eccentricity projection of the neutron star’s orbital semi-major axis on the line

of sight, x = a1 sin(i), where i represents the inclination of the orbit and longitude of the

periaster (ω0) and time (T0). These parameters are related to the mass of a neutron star (Mp)

and its partner star (Mc) by Kepler’s third law.

2.3 Radius

Compared to other cosmological objects, neutron stars are extremely small. Hence, it is very

hard to directly determine their radius. It took 30 years to discover the first neutron star after

their prediction. The typical size of a neutron star is 10-14 km (Steiner et al. 2013; Lattimer

and Steiner 2014). The radius of a neutron star is measured using the X-ray flux emitted from

the neutron star

r =

√
FD2

σT 2
, (2.2)

R = r

√
1− 2

GM

c2r
, (2.3)

whereR is the radius of the neutron star and ’r’ is the effective radius. T represents the surface

temperature, and M gives the mass of the neutron star. σ is the Stefan-Boltzmann constant,

and F is the X-ray flux radiation of the neutron star. The precision of the measurement of

radius by this method greatly depends on the accuracy of the measurement of the surface

temperature. If the surface temperature is not accurately known, it may mislead the value of

the radius of a neutron star by a huge margin. The authors Steiner et al. 2013 and Lattimer

and Steiner 2014 suggested that the neutron stars can have radii in the range 10.4 km to 12.9

km.

The other method to measure the radii of neutron stars uses gravitational lensing around the

neutron stars. The method of using gravitational lensing is said to be more accurate with

better equipment in the future. It is worth noting that in the surface temperature method, if

the surface temperature of a neutron star is not uniform, it may lead to an error of up to 50%.
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2.4 Spin

Neutron stars are one of the fastest rotating objects in the universe. Neutron stars typically

rotate with angular frequencies of 600–700 rotations per second. This incredible rotational

spin of neutron stars is achieved by the conservation of angular momentum. The progenitor

stars are massive in size and have a low angular frequency, while the neutron star born after the

core collapse of such a massive star, due to conservation of angular momentum, rotates with

much higher angular frequencies. The fastest rotating neutron star found is PSR J1748-2446ad

(Hessels et al. 2006) which rotates at a frequency of 716 Hz. Typically, neutron stars have a

very high magnetic field, of the order of 1012-1015G. Due to the loss of energy (mass) in the

form of electromagnetic radiation, it is expected for neutron stars to spin down over a period

of time. But this is not observed; rather, neutron stars appear to rotate with constant frequency,

and they are often referred to as universal clocks. The general acceptance among physicists is

that neutron stars accrete the mass of their companion stars of lower energy density, which

increases their spin.

Kaaret et al. 2007 claimed that a neutron star of rotating frequency 1122 Hz has been found,

but the observation has not been repeated to confirm the claim and could have errors due

to the burst mechanism of burning material. Anyway, the spin of neutron stars puts a weak

constraint on the equation of state of neutron stars, and both the frequencies 716 Hz and 1122

Hz are well under the Kepler frequency, which is the maximum frequency a neutron star can

have before mass shedding takes place.

2.5 Moment of inertia

The moment of inertia of neutron stars is highly dependent on the stiffness of their equation

of state. The moment of inertia of neutron stars is of the order of 1036 - 1038 kg.m2 Ruderman

1972. The moment of inertia of the Crab nebula, calculated based on its luminosity, is found in

the range 4×1037 - 8×1037 kg.m2 by most authors Baym and Pethick 1975; Trimble and Rees

1970; Borner and Cohen 1973. If the moment of inertia and mass of the neutron star were
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known with more accuracy, then together they could put a strong constraint on the radius of

the neutron star. Recently, in a neutron star binary system, the mass and radius were calculated

for EXO 1745-248, mass = 1.4 M⊙ and radius = 11 km; mass = 1.7 M⊙ and radius = 9 km

and for 4U 1608-52 mass = 1.8 M⊙ and radius = 10 km (details can be found in Lattimer and

Schutz 2005a). Both estimated radii have errors of 1 km. The above measurements are model

dependent rather than the actual measurement of the moment of inertia of PSR J0737-6069A.

The actual, precise measurement of the moment of inertia remains to be made.

2.6 Neutron star binary system and gravitational waves

Gravitational waves are one of the many predictions of Albert Einstein. He suggested that

the presence of compact objects in a binary system may create ripples in the fabric of space-

time, which are known as gravitational waves. The gravitational waves carry important

information about how the internal structure of the compact objects and the gravitational

waves may be affected by the effects of rotations and tides. On August 17, 2017, the LIGO

(Laser Interferometer Gravitational-Wave Observatory) and VIRGO (VIRGO Interferometer

Gravitational-Wave Observatory) collaborations (Abbott et al. 2017a) detected the first gravit-

ational wave signal from the merger of a neutron star binary system. This observation puts

a strong constraint on the equation of state of the neutron stars. The observation indicated

that a neutron star of mass 1.4 M⊙ must have tidal deformability in the range 75–580, and the

radius of neutron stars must be between 10-14 km.

In a binary system, when the neutron stars are far away from each other, they behave like

a point mass, and they orbit each other very slowly. When they come close to each other.

Gravitational waves typically transmit important information about the inside matter of

neutron stars when the distance between them is comparable to the radii of the stars. At this

time, the internal structure of the neutron stars is quite relevant. Each neutron star’s tidal field

induces a mass-quadrupole moment on the neighbouring object.

Tidal deformability, which is determined by the tidal Love number and depends on the

equation of state of the neutron star, is proportional to the induced quadrupole moment in
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relation to the external tidal field. The tidal deformability is given by,

Λ = −Qij/ϵij, (2.4)

and in terms of the tidal Love number

Λ =
2

3
k2

( c2R
GM

)5

, (2.5)

where Λ represents the tidal deformability of the neutron star, k2 gives the second order tidal

Love number, where M stands for the mass and R represents the radius of the neutron star.

2.7 Temperature

The surface temperature is useful to understand the characteristic properties of the neutron

star, and it may also give insights into the constituents of neutron star matter. The surface

temperature of neutron stars is determined by analysing the photons radiating from their

surface. Although neutron stars are not perfectly black bodies yet, their spectra are treated as

black body spectra. The observational data collected is compared with the luminosity of the

neutron star rather than the surface temperature. Because luminosity is directly proportional

to the fourth power of the temperature, even a small uncertainty can make a huge difference

in the luminosity. In terms of surface temperature T , the luminosity L is given by

L = 4πR2σT 4, (2.6)

where σ is the Boltzmann constant and R is the observational distance.

2.8 Neutron star cooling

Neutron stars are very hot at the time of their birth. They may have a temperature of the order

of 1011K. But they cool down rapidly, and their cooling primarily depends on the number

of nucleons participating in the cooling mechanism. The fastest and simplest mechanism
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responsible for neutron star cooling is called the Urca process, which is given as

n→ p+ l + νl, p+ l → n+ νl. (2.7)

The direct Urca process is primarily responsible for neutron star cooling when the neutron

stars have a proton content higher than 10% of the total number of particles inside the neutron

star. But there are other mechanisms that are active at any given fraction of protons and at any

energy density, but the cooling through these mechanisms is very slow. The modified Urca

(Lattimer et al. 1991) process is one such mechanism, given as

N + n→ N + p+ l + νl, N + p+ l → N + n+ νl. (2.8)

There are other slow neutron star cooling processes. Bremsstrahlung and Cooper pair form-

ation are possible, depending on the number of baryons taking part in the process. The

Bremsstrahlung process is given by

N +N → N +N + ν + ν. (2.9)

When the temperature of neutron stars falls below a critical temperature, nucleons form a

Cooper pair, given as

n+ n→ [nn] + ν + ν, p+ p→ +ν + ν. (2.10)

The presence of different kinds of matter inside the neutron stars may alter their cooling

process. The presence of hyperons or strange matter inside the core may produce different

spectra and provide insight into the matter present in the core. A more detailed study has been

provided in Balberg and Barnea 1998; Takatsuka and Tamagaki 1999; Takatsuka et al. 2006;

Nishizaki et al. 2002.

2.9 Core of the neutron star

Neutron stars cover a huge range of energy densities, from the core to the atmosphere. Based

on the energy density, the inside regions of the neutron stars can be classified into different

regions, such as the atmosphere, crust, and core. For the sake of brevity, only specific
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information about the interior of neutron stars is given in this study. The atmosphere is the

outermost part of the neutron star, which is only a few millimetres thick, but in a hot neutron

star, the thickness of the atmosphere could be tens of centimetres. The electromagnetic

radiation spectrum that is created in the atmosphere contains vital data about the surface

temperature, magnetic fields, mass, radius, and chemical composition of the matter. At

the core of the neutron stars, the energy density could reach up to 10 times the normal

nuclear matter density. It is not known with confidence how particles behave at such high

energy densities. The core of the neutron star contributes most of its mass, while the radius

of the neutron star depends on the crust, or low energy density region. Various authors

suggest different matters present at the core of the neutron stars, such as strange quark matter,

hyperons, etc. In this study, we have taken into account the three possible cases to model the

core of the neutron stars, i.e., hyperons, strange matter, and nucleons only. The details of the

models are given in later chapters.

2.9.1 Meson condensation

Bahcall and Wolf 1965 suggested that the core of neutron stars might contain mesons (pions).

Generally, the Bose-Einstein condensation of mesons (pions) in nuclear matter is restricted

by the repulsion among the nucleons. However, excitation of pion like quasi-particles in a

superdense medium, may occur (Sawyer 1972; Scalapino 1972; Migdal 1977) and condense,

with loss of transition invariance. Studies have shown correlations among nucleons and a

possible condensation of pions.

The creation of kaons may take place in the core as

e+N → K− +N + νe, (2.11)

and

n+N → p+K− +N, (2.12)

where N stands for a nucleon, and the presence of nucleons ensures that the process satisfies

conservation of energy and momentum in a highly dense medium. In 1980 (Kaplan and
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Nelson 1988) it was suggested that the Bose condensation of kaons may take place when

densities exceed three times the density of nuclear matter. The process is also explained by

Ramos et al. 2000.

The condensation of mesons is also suggested by Kolomeitsev and Voskresensky 2003 using

strong interactions. The K-meson condensation relies on the presence of hyperons and affects

the properties of the nuclear matter. The first and second order phases of transition depend on

the strength of attractive forces between kaons and nucleons, and the occurrence of any kind

of suggested condensation softens the equating of state at the core at higher energy densities.

2.9.2 Deconfined quarks

Quarks make hadrons, and the degrees of freedom of quarks may have significant effects

on the properties of nuclear matter at higher energy densities. At lower energy, a single

quark is never observed in a free state. Quarks are always bound to other quarks, which is

also called quark confinement. The force among the quarks grows at low energy (Dremin

and Kaidalov 2006). But as the energy density increases, the baryons may decompose into

quarks. The authors Ivanenko and Kurdgelaidze 1965 displayed that at the core of neutron

stars, deconfined quark matter may exist. The properties of non-interacting quark matter

were calculated using quantum chromodynamics (QCD) with perturbation theory, but the

calculations (Collins and Perry 1975; Kurkela et al. 2010) were limited to higher energy

densities >> 1 GeV/fm3, and it is not likely for the chemical potential of particles at the core

of neutron stars to reach this value. Later, some other theories were presented to explore

the properties of compact stars. The authors Blaschke et al. 2009 displayed some phase

transitions at different energy density regions inside the neutron stars.

All known models of neutron stars have some drawbacks, and none of them is perfect. Quark

and baryon phase transition models lack self-consistency, which is very important. The

calculations are done with the use of perturbation theory at relatively low energy densities,

and the calculations indicate phase transitions at energy densities that seem unrealistic.
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2.9.3 Possibility of mixed phases

As the name indicates, in this phase, two more different phases can coexist in the form of

droplets. Iosilevskiy 2010 and Glendenning 1992 have discussed the possible existence

of such phases inside compact objects like neutron stars. Since the structure of matter is

calculated by balancing surface tension (at the edge between droplets), energy density, kinetic

energy of ingredient particles, and electrostatic energy, the existence of such a phase is

theoretically possible under the assumption that the electric charge of one transition phase is

counterbalanced by the other coexisting transition phase.

It was assumed that the short range strong nucleon-nucleon repulsive force may form a solid

core inside the neutron stars (Canuto et al. 1975). Later, it was realised that nucleon-nucleon

interaction takes place through the exchange of vector mesons. The more accurate calculations

suggested that the repulsive short-distance potential does not crystallize the core.



CHAPTER 3

Recipe to model the dark matter inside the neutron stars

In this study, different candidates for dark matter are being explored with the help of neutron

stars. For our purpose, neutron stars can be useful in two ways to study dark matter. First,

neutron stars, being super compact, can capture the dark matter that will remain trapped inside

them. The presence of dark matter must change its properties, which can be tested against

observational constraints. Of course, different properties of the dark matter will affect the

neutron stars differently. The second is that, to solve the puzzle of the lifetime of the neutrons,

it has been proposed that the neutrons might decay into dark matter. If this is the case, then

there must be plenty of neutrons that have decayed inside the neutron star, and neutron stars

must have enough dark matter trapped inside to alter the properties of the neutron star, which

can be tested like the dark matter capture cases. The details of the different dark matter

candidate models have been given in the following chapters. Here, one point is worth noting.

That is, the dark matter capture mechanism is not proposed in this study. It has been assumed

that the dark matter is captured and settles inside the neutron stars, then how it will behave

and what the observable signals of various dark matter candidates could be. The various dark

matter capture mechanisms are proposed in Refs. Bell et al. 2020; Busoni 2021; Busoni 2022;

Press and Spergel 1985; Bell et al. 2019; Bertone and Fairbairn 2008; Li et al. 2012a

To model neutron stars, it is required to have a dark matter equation of state, a model for the

nuclear matter of the neutron stars, and the structural equations for the very compact objects.

Since multiple dark matter candidates are explored in this study, it is therefore required to

have a separate equation of state for each of the dark matter candidates.

The cases of bosonic or fermionic dark matter as well as neutrons decaying into dark matter

have been explored in this study, and the different observable signals have been proposed. An

33
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equation of state is derived for the bosonic dark matter, which is based on the model proposed

in Li et al. 2012b; Li et al. 2012a. For fermionic dark matter, the approach suggested in

Kouvaris and Nielsen 2015 and Mukhopadhyay et al. 2017 are considered. It is assumed that

both of these dark matter candidates have been captured from the dark matter halo and settled

at the core of neutron stars.

Next, an equation of state for neutron decay into dark matter is derived, which is based on the

hypothesis suggested by Fornal and Grinstein 2018a; Fornal and Grinstein 2020, to solve the

neutron decay time anomaly. They suggested that approximately 1% of the time, neutrons

decay into dark matter χ and an extreme light ϕ boson.

An equation of state is also formulated based on the hypothesis suggested by Strumia in

reference Strumia 2021 to solve the neutron’s lifetime puzzle, but unlike the suggestion of

Fornal and Grinstein that neutrons decay into χ and ϕ, Strumia suggested the decay of the

neutron into three dark matter particles, χ. He claimed that this decay mode successfully

satisfies the observable constraints on the maximum mass of the neutron stars and that dark

matter does not have to be self-repulsive, unlike the Fornal and Grinstein hypothesis. Strumia

assumed that dark matter has a fractional baryon number (i.e., 1/3). The details of these dark

matter equations of state are provided in the following chapters.

After having the dark matter equation of state, it is required to model the nuclear matter

inside the neutron stars. As mentioned above, neutron stars have extreme energy densities

and pressure at the core, which is why modelling neutron stars is a difficult task. In fact, it

is a puzzle among physicists to predict physics when the nuclear matter density is several

times the normal nuclear matter density. Different physicists have proposed different theories

at extreme densities. In this study, the equation of state (EoS) based on the quark meson

coupling model has been constructed for modelling the nuclear matter inside the neutron star

because it has shown promising results. To include the effects of nucleon structure, Guichon

proposed the quark-meson coupling model (QMC) (Guichon 1988a) and suggested a new

saturation mechanism for nuclear matter at the quark level. The authors in reference Rikovska

Stone et al. 2007a suggested a methodology based on the QMC model to calculate the EoS of

cold stellar matter in β equilibrium for a non-rotating neutron star. Since it is not known with
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certainty in which form matter exists at the core of a neutron star, equations of state based on

nucleons only, hyperons included, and strange matter Rikovska Stone et al. 2007a are taken

into consideration.

Apart from the equation of state of nuclear matter and dark matter, it is required to have

structural equations. To find the structural equations, TOV (Tolman Oppenheimer Volkoff)

equations are very effective and are considered in this study. Since, in this study, it is assumed

that the dark matter and the nuclear matter do not interact with each other, the TOV equations

have been modified for two non-interacting fluids.

The process of modelling neutron stars containing dark matter inside the core, can be sum-

marized in the following steps:

(1) Supply the equation of state of nuclear matter and dark matter to the pressure

differential equation of the TOV equation and integrate them from the center of the

star towards the surface.

(2) Integrate the mass differential equation of the TOV equation simultaneously with

step (1).

(3) Integrate the tidal deformability equations suggested by Hinderer (Hinderer 2008;

Hinderer et al. 2010) from the center to the surface.

(4) Repeat steps (1), (2), and (3) until reaching the surface. The surface is the region of

the neutron stars, where the pressure and the energy density become zero.

3.1 Observable constraints on the properties of the neutron

stars

Based on observational studies, strict constraints have been imposed on the properties of

neutron stars. A good model of neutron stars must satisfy the observed properties of neutron

stars in order to be considered realistic. Constraints on the properties of the neutron stars are

summarized as follows:
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(1) Almost all the neutron stars that have been discovered to date have radii within the

range of 10–14 km (typically). Moreover, the discovery of gravitational waves by

the collaboration of LIGO and VIRGO (Abbott et al. 2018) indicates that a neutron

star of mass 1.4 M⊙ should have a radius of 10–14 km. So, a realistic neutron star

model must predict the radius in this range.

(2) Most of the neutron stars discovered to date have masses of approximately 1.4 M⊙,

but the discoveries of PSR J1614-2230 of Demorest et al. 2010 and PSR J0348+0432

Antoniadis et al. 2013b with masses of 1.928 M⊙ and 2.01 M⊙ set a lower limit on

the maximum mass of neutron stars. A good model of neutron stars must predict the

maximum mass of a neutron star to be at least 2 M⊙.

(3) Compared to the radius, the moment of inertia is more sensitive to the equation of

state. Lattimer and Schultz in Lattimer and Schutz 2005b showed the moment of

inertia values up to an accuracy of 10%. This results in an accurate measurement

of pressure and radius. The values that are computed must adhere to Lattimer and

Schultz’s research.

(4) The tidal deformability and the Love number should be consistent with the empirical

analysis Abbott et al. 2017b; Abbott et al. 2019 made on data collected from

gravitational wave detection by the LIGO and VIRGO observatories.

Apart from these, there are other observable properties such as the Kepler period, spin, angular

momentum, and compactness, but these properties do not impose a strict constraint on the

equation of state.

As with other authors, this study avoids working with fast spinning neutron stars that are

close to their mass-shedding frequency. The methodology described above only works for

non-spinning or slowly spinning compact stars. The method works only for stars spinning at

frequencies such that RΩ << c, where R is the radius of the neutron star, Ω is the frequency,

and c is the speed of light.



CHAPTER 4

Neutron star matter equation of state

In this chapter, the equation of state (EoS) of nuclear matter inside neutron stars is derived for

densities several times the density of normal nuclear matter. The EoS of nuclear matter inside

neutron stars is an important theoretical quantity that describes the relationship between the

pressure and energy density of the dense matter inside the neutron star. The EoS is particularly

important for understanding the structure and properties of neutron stars, as it governs the

behaviour of the matter under extreme conditions of density and pressure.

At densities several times the density of normal nuclear matter, the behaviour of the nuclear

matter is expected to deviate significantly from the behaviour of normal nuclei. Therefore, to

derive the EoS of nuclear matter under these extreme conditions, the quark meson coupling

model is selected. The details of the model are given in the following sections:

4.1 Equation of state of nuclear matter

For the equation of state of nuclear matter inside the neutron stars, the quark meson coupling

(QMC) model has been adopted. Since it is not known in which form matter exists inside the

neutron star core, where the nuclear matter number densities may increase up to 10 times the

number density of normal matter, for modelling the nuclear matter inside the neutron stars

at such higher densities, three different EoSs have been derived for different types of matter

at the neutron star core. The EoSs considered matter at the core of the neutron are, namely,

nucleons only, hyperons included, and strange matter. As the names indicate, nucleons only

EoS considers only nucleons at higher energy densities, the existence of hyperons or strange

matter is not taken into consideration. For the hyperons included in EoS, it is assumed that
37
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at higher energy densities, the nucleons may transform into hyperons, and hyperons may

populate the core. For the case of strange matter, it has been assumed that at higher energy

densities, the nucleons decompose into quarks, and at the core, deconfined quark matter exists.

The strange matter EoS is taken from Ref. Alcock et al. 1986, which is also considered in

Urbanec et al. 2013.

4.1.1 Quark Meson Coupling model equation of state

The QMC model was proposed by Guichon, who suggested that the structure of the nucleons

might play a significant role in describing the properties of nuclear matter. For determining

the structure of the nucleons, it is important to understand the relevant degrees of freedom of

hadrons. At first glance, the quark meson coupling (QMC) model and quantum hadrodynamics

(QHD) seem to be connected, but in the QHD model, baryons are treated as a point like

particles, and the structure of baryons is ignored. But in contrast, the QMC model treats

baryons as collections of three quarks confined in a very small region based on the MIT bag

model, and these bags of quarks interact with each other through the exchange of mesons.

Inside the bag, quarks are confined as color singlet hadrons, and as the energy density

increases, nucleons begin to overlap. Therefore, the structure of the hadrons is expected to

play a significant role in determining the properties at the higher energy densities. However, a

strict restriction on QMC is that quark bags do not overlap.

By considering baryons as bags of massless quarks that are directly related to exchange

mesons and modify the motion of the quarks, Guichon proposed a new mechanism for nuclear

saturation. The physics of finite nuclei is successfully defined by this model.

The Ref. Guichon et al. 1996 showed that it is possible to find a nuclear Hamiltonian that

is consistent with relativity and might be applied at high energy densities, as demonstrated

by the Ref. Guichon et al. 2006. A general formalisation of nuclear matter with a mixture

of N, Λ, Σ, and Ξ baryons is produced in Ref. Guichon et al. 2006. The QCD simulations

indicated that quarks in the baryons are confined by a Y-shaped string and the color attached

to the quarks. Outside of this region, a typical non-perturbative medium exists where quarks
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FIGURE 4.1: Structure of baryon in different theories (Rikovska Stone et al. 2007b).

from other hadrons can freely flow, changing the structure of the medium. So, the strict

condition of non-overlapping quark bags that restrict quarks from travelling through their

boundaries must be considered an average portrayal of a complex situation. The bag’s size

and boundaries shouldn’t be strictly interpreted in terms of their physical meaning. At higher

energy densities, we may expect the bags to overlap considerably, and the QMC model may

breakdown. Although coupling inside the bag seems unnatural, it is proposed that the more

realistic underlying representation of quarks is just attached to the gluon, and in the rest of

the non-perturbative volume, nothing prevents quarks from feeling the vacuum fluctuations.

To keep the model simple, only σ, ω and ρ mesons are considered.

4.1.1.1 Effective mass and energy

Using the Born-Oppenheimer approximation, Guichon et al. 1996 calculated, for a given

position and velocity of the quark bag, the energy of the bag coupled with σ, ω and ρ, in the

nuclear mean field associated with them. The quantum numbers of the octet baryons are given

in Table 4.1. From the Hamiltonian, classical and canonical quantization give the energy.

This work is an extension of the previous QMC model. In the earlier version of the model, it
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p n Λ Σ− Σ0 Σ+ Ξ− Ξ0

t 1/2 1/2 0 1 1 1 1/2 1/2
m 1/2 -1/2 0 -1 0 1 -1/2 1/2
S 0 0 -1 -1 -1 -1 -2 -2

TABLE 4.1: t is isospin, m is isospin projection, and S is strangeness of octet
members.

was limited to nuclear matter and finite nuclei, and the presence of hyperons was excluded,

whereas in this study, the hyperons are included and the model has been kept limited to

consider the spin 1
2

SU(3) octet (N, Λ, Σ, Ξ) and baryons are specified by |f ≥ |tms > (Table

4.1).

The hypothesis is that strange quarks do not couple with the meson field as a consequence

of the fact that the σ, ω and ρ mesons represent the correlated pion exchanges. This is also

a major part of the explanation of the observed small spin-orbit splitting in Λ hypernuclei,

as the strange quark carries all the spin of the Λ hyperon. It is assumed that the Up (u) and

the Down (d) quarks are massless, and the couplings do not violate isospin symmetry. The

baryon of flavour f at position R⃗ (from the centre of the bag) has the energy in the rest frame

of the σ field, which can be given by

E =
√
P 2 +Mf (σ)2 + gfωω + gρ⃗b.I⃗

t, (4.1)

where Mf (σ) is its effective mass that is the rest frame energy of the quark bag, P⃗ stands for

the momentum of the baryon, and I⃗ t is the isospin operator for the isospin t, defined by

< tms|Σq τ⃗q/2|t′m′s′ >= δ(tt′)δ(ss′)I⃗
tt′

mm′ . (4.2)

Here, the Pauli matrix, τ⃗q is acting on the u (Up) and d (Down) quarks, b represents the third

component of the ρ meson mean field. The flavoured quarks have omega coupling,

gfω = ωωf gω = (1 + s/3)gω, (4.3)

where gω denotes the ω − N coupling constant. The vector mean field, ω, is linear with

the baryon density according to Guichon’s research, which is given in Guichon 1988b. The

scalar mean field, i.e., the σ field, depends on the source term. The quark wave function
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self-consistently adjusts in response to the applied scalar field such that the ω field increases

faster than σ field does, when the energy density increases. The structure of the nucleon

introduces an effect that opposes the scalar field; therefore, the attractive σ does not increase

as fast as the repulsive ω field does. One gets the parameterized mass of the baryon when

solving the quark bag equations using the QMC model. The effective mass of a baryon is as

follows (see Appendix A)

Mf (σ) =Mf − ωσf gσσ +
dω̃σf (gσσ)

2

2
, (4.4)

where d stands for the scalar polarisability and gσ represents the σ-N coupling constant in

the free space. At the hadronic level, an effective Lagrangian can be constructed, and one

may solve the relativistic mean field equations in the usual way Serot and Walecka 1986. The

couplings are controlled by the ω̃σf and ωσf and a first approximation is set to ω̃σf = ωσf = 1 +

s/3. The hyperfine color interaction breaks this relation, and the exact values are given in

Rikovska Stone et al. 2007a.

4.1.1.2 Hamiltonian of the nuclear system

By combining the energies of the baryons and the energy held in the meson fields, the total

energy of the nuclear system is obtained. If the masses of the mesons σ, ω, and ρ are mσ, mω,

and mρ, respectively, then the total energy of the system can be given by

Etotal = Σn
j=1Ebaryon + Emeson (4.5)

Etotal =
√
P 2
f +Mf (σ)2 + gfωω + gρ⃗b.I⃗

t +
1

2

∫
d⃗r[(∇σ)2 +m2

σσ
2]

−1

2

∫
d⃗r[(∇ω)2 +m2

ωω
2]− 1

2

∫
d⃗r[(∇b⃗)2 +m2

ρb⃗
2].

(4.6)

In the hypothesis, meson fields are considered time independent. If σsolution, ωsolution and

ρsolution are the solutions for the σ, ω and ρ meson equations of motion. Therefore, the

Hamiltonian of the nuclear system is as follows

H(Rx, Px) = Et(Rx, Px, σ → σsolution, ω → ωsolution, ρ→ ρsolution) (4.7)
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δE

δσ
=
δE

δω
=
δE

δbα
= 0. (4.8)

The effective mass depends on scalar σ, ω and ρ meson fields. The σ is non-linear, and it

needs to be solved, as Ref. Guichon et al. 2006

σ = σ̄ + δσ (4.9)

where δσ is the small deviation in the σ field and the σ̄ is the nuclear ground state expectation

value in the nuclear system σ̄ =< σ >, whereas ω and ρ are linear and can be solved the

usual way. As shown in references Rikovska Stone et al. 2007b and Guichon et al. 2006 the

Hamiltonian term depending on the σ meson field in terms of the one body kinetic operator

(K(σ̄)) is given by

Hσ =

∫
d⃗r
[
K(σ̄)− σ̄

2
<
∂K

∂σ̄
> +

δσ

2

(∂K
∂σ̄

− <
∂K

∂σ̄
>

)]
, (4.10)

where (K(σ̄)) is the kinetic operator, which depends on the creation (a†k) and annihilation

operators (ak). If k indicates the momentum of a baryon of flavour f , we have

K(σ̄) =
1

2V
Σk,k′,fe

i(k⃗−k⃗′).r⃗(
√
k2 +Mf [σ̄(r⃗)]2 +

√
k′2 +Mf [σ̄(r⃗)]2)(a

†
k⃗f
ak⃗′f ), (4.11)

in the mean field approximation, where the meson field variation has to be zero, δσ(r) = 0.

The self-consistent solution in a uniform system for a constant σ̄(r) field is shown in Guichon

et al. 2006,

σ̄(r) = − 1

m2
σ

<
∂K

∂σ̄
>, (4.12)

The scalar meson field δσ fluctuation is

δσ(r⃗) =

∫
dr⃗

dq⃗

(2π)3
ieq⃗.(r⃗−r⃗

′)

q2 + m̃2
σ

(−∂K(r⃗)

∂σ̄
+ <

∂K(r⃗)

∂σ̄
>), (4.13)

where m̃σ is the effective mass of the σ meson, which is

m̃2
σ = m2

σ+ <
∂2K

∂σ̄2
> (4.14)
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The Hartree-Fock approximation is used to calculate the energy density of nuclear matter.

The one body kinetic operator and Hamiltonian density are

< K(σ̄) >=
2

(2π)3
Σf

∫ kf

0

dk⃗
√
k2 +M2

f (σ̄), (4.15)

< Hσ >

V
=< K(σ̄) > +

1

2m2
σ

(<
∂K

∂σ̄
>)2

1

(2π)6
Σf

∫ kf

0

dk⃗1dk⃗2
1

(k⃗1 − k⃗2)2 + m̃2
σ

× ∂

∂σ̄

√
k21 +M2

σ

∂

∂σ̄

√
k22 +M2

σ .

(4.16)

Now the potentials for ω and ρ meson exchange Fock contributions need to be constructed,

which are

< Vω >

V
=
Gω

2
(Σfω

ω
f nf )

2 −GωΣf (ω
ω
f )

2 1

(2π)6

∫ kf (f)

0

dk⃗1dk⃗2
m2
ω

(k⃗1 − k⃗2)2 +m2
ω

(4.17)

< Vρ >

V
=
Gρ

2
(Σtmsmntms)

2 −GρΣtmm′s
⃗I tmm′

⃗I tm′m

1

(2π)6

∫ kF (tms)

0

dk⃗1∫ kF (tm′s)

0

dk⃗2
m2
ρ

(k⃗1 − k⃗2)2 +m2
ω

,

(4.18)

where Gσ, Gω, and Gρ are

Gσ =
g2σ
m2
σ

, (4.19)

Gω =
g2ω
m2
ω

, (4.20)

Gρ =
g2ρ
m2
ρ

. (4.21)

In the Hartree-Fock approximation, the total energy includes the contribution of the long

range pion exchange in the Fock term only. The authors Serot and Walecka 1986 provides the

expression for the impact of long range pion exchange.

< Vπ >

V
=

1

nB
(
gA
2fπ

)2(Jpp + 4Jpn + Jnn −
24

25
(JΛΣ− + JΛΣ0 + JΛ,Σ+)

+
16

25
(JΣ−Σ0 + 2JΣ−Σ0 + 2JΣ+Σ0 + JΣ+Σ+)

+
1

25
(JΞ−Ξ− + 4JΞ−Ξ0 + JΞ0Ξ0)).

(4.22)
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Here Jff ′ is given by

Jff ′ =
1

(2π)6

∫ kF

0

∫ k′F

0

dp⃗dp⃗′[1− m2
π

(p⃗− p⃗′)2 +m2
π

]. (4.23)

In the above equations, the nucleon’s axial coupling constant is gA = 1.26 and the mass of

the pion is represented by mπ and the pion decay constant is taken as fπ = 93 MeV. The

contact term, Jff , is hard to separate from the short range contributions of heavy mesons,

therefore, they are excluded, and only long ranged pion exchange of the Yukawa type is taken

into consideration. That is the first term in the brackets on the right hand side of Eq.(4.23).

This enforces small changes in the values of parameters Gσ, Gω and Gρ which are addressed

in the following section.

4.1.1.3 Adjusting the parameters

The masses of the mesons and coupling constants (Gω, Gρ and Gσ) need to be fixed. The

radius of the free nucleon does not affect the results much. The radius of the nucleon is set to

be Rn = 0.8 fm, which gives the optimum results as suggested by Thomas 1984. The masses

of mesons such as π, ω and ρ are set to their physical values except for the mass of σ meson.

Due to the large ππ resonance width in the physical region, the mass of σ meson is not well

known. However, mσ = 700 MeV is set because it produces the best results, as indicated

by the authors in Guichon et al. 2006. Anyway, in the case of modelling the neutron stars,

the mass of σ meson is not very important because it mainly affects the nuclear surface. Gω,

Gρ and Gσ are adjusted to reproduce the asymmetry and the binding energy at the saturation

point for the symmetric nuclear matter. First, the contributions of pions are taken as 0. The

coupling constants are adjusted in such a way that they produce the asymmetry energy, as =

30 MeV, and binding energy, E = - 15.865 MeV, of nuclear matter at saturation point, which

is taken to be 0.16 fm−3. The values of these coupling constants are stated in Table 4.2.

Model mσ(MeV ) πn E(MeV ) Gσ(fm
2) Gω(fm

2) Gρ(fm
2) K∞(MeV )

QMC700 700 0 -15.865 11.33 7.27 4.56 340

TABLE 4.2: Final coupling constants after the fixation.
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In the above Table 4.2, the column πn is the number by which the pion contribution is

multiplied. E denotes the binding energy of symmetric nuclear matter, and K∞ represents

incompressibility. The values acceptable for K∞ for the QMC700 model range from 200

MeV to 300 MeV, while the value shown in Table 4.2 for K∞ is clearly above the acceptable

values. For the purpose of fixing that effect of the Fock term is included. This depends weakly

on the density at saturation point, roughly as ρ1/6, and when the contribution of the pions is

included in the Fock term, the incompressibility reduces to 322 MeV.

4.1.2 Neutron star matter

The cold nuclear matter inside the neutron star is expected to be in β equilibrium. In this study,

it is considered that the nuclear matter inside the neutron star is made from octet baryons,

electrons, and negative muons. Any kind of octet baryon, including hyperons, may develop

inside the core through weak interactions among the nuclear matter particles.

The expression for the total energy density is simply the addition of the energy density of

baryons ϵB, energy density of electrons ϵelec, and the energy density of the muon ϵµ.

ϵ = ϵB + ϵelec + ϵµ, (4.24)

at the state of equilibrium, the energy has to be minimal, the baryon number must be conserved,

and the total electric charge must be zero as the nuclear matter at the interior of the neutron

stars is neutral. Therefore, the contribution of the baryonic matter energy density term can be

given by

ϵB =
< Hσ + Vω + Vρ + Vπ >

V
. (4.25)

Here, the terms on the right hand side of the equation (4.25) have been defined above from

the equation (4.16) to (4.22). The pressure due to baryons (PB) is

PB = n2
B

∂

∂nB

( ϵB
nB

)
, (4.26)
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and the expression for the incompressibility modulus (K∞) is

K∞ = 9
∂PB
∂nB

, (4.27)

where nB = Σfnf and the derivative with respect to nB is taken at a constant fraction,

nf
nB

, f = 1, 2, ...8. (4.28)

The energy density of the gas of leptons can be calculated by the Fermi expression

ϵl =
2

(2π)3

∫ kf(l)

0

dk⃗
√
k2 +m2

l , (4.29)

where ml represents the mass of the lepton and the number density of the leptons (nl) is

nl =
k3f (l)

3π2
. (4.30)

Nuclear matter in the neutron star is expected to be neutral. Therefore, at equilibrium, by

using the Lagrangian multiplier method

δ[ϵB(np, ..) + ϵe(ne) + ϵµ(nµ) + λ(Σfnf − nB) + ν(Σfnfqf − (ne + nν))] = 0, (4.31)

where (λ, ν) are Lagrangian multipliers and qf stands for the charge of flavour f . Equation

(4.31) is the deviation of energy using the Lagrangian multipliers, λ and ν.

The chemical potentials of the particles are defined as

µf =
∂ϵB
∂nf

, µl =
∂ϵl
∂nl

=
√
k2f (l) +m2

l . (4.32)

Plugging the chemical potentials of the particles into Equation (4.31) at the equilibrium

condition, one gets

µf + λ+ νqf = 0, (4.33)

µe − ν = 0, (4.34)

µµ − ν = 0, (4.35)

Σfnf − nB = 0, (4.36)

Σfnfqf − (ne + nµ) = 0, (4.37)
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The Lagrangian multipliers µ and ν have to be eliminated in order to solve equations (4.33-

4.37). From the above equations, clearly µµ = µe, which is

kf (µ) = R
√
k2f (e) +m2

e −m2
µ, (4.38)

where R shows the real part. Since mµ > me the electron enters first in the system, and as the

electron density vanishes, the muon density also vanishes rapidly. The method to solve the

system of equations (4.31) - (4.37) is provided by Rikovska Stone et al. 2007a. The relative

densities of the particles are

X = [xi] = [
np
nB

,
nn
nB

,
nλ
nB

, ....,
ne
nB

,
nµ
nB

]. (4.39)

Every element is found by varying ϵ with ρi = xinB. When the solution of X0 is found at

some value of nB, the value of density is increased by an infinitesimally small value, ∆n,

to know if the cut off density of some particle has been reached. If the cut off density has

crossed, that means the new particle has been populated in the system, and it should be taken

into account. To verify if a particle has been populated, the energy density of the particle

must change the sign below and across the cut off value, if it does change the sign, that means

the new particle has been populated. The same procedure is followed for all the particles, and

if the condition is met, that means all such particles have appeared and must be included in

the system of equations. The system of equations is solved numerically by considering the

first approximation of X0 at the density and increasing it by a small value (nB = n0 + δn). If

a certain concentration drops below some value, that is selected to measure the accuracy of

the solution, θ, that means the concerned equation is removed from the system. The authors

Rikovska Stone et al. 2007a selected the accuracy, θ = 10−4 and verified that θ = 10−3 provides

the same results. The system of equations is solved by selecting the initial value nB = 0 for

pure neutron matter. The total energy density at equilibrium is calculated after finding the

solution at equilibrium (X(nB)) for a selected range of baryon densities. The total pressure

(P (nB)) of the system is the sum of the pressures due to leptons and baryons. At equilibrium,

total pressure is

P (nB) = n2
B

d

dnB

ϵ(nB)

nB
. (4.40)
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At the center of the star, where the energy density is several times the nuclear matter energy

density, while in the atmosphere, the energy density is comparable to the energy density

of terrestrial iron. As one moves further towards the center of the neutron star, the region

is supposed to be made of unbound protons, electrons, neutrons, and muons because the

atoms will decompose into their constituent elementary particles. As the energy density

increases further towards the core of the neutron stars as the threshold for the heavier baryons

is reached, they may populate the neutron stars. It has been suggested in various studies

Arnett and Bowers 1977; Pandharipande 1971; Balberg et al. 1999; Wiringa 1993 that if

energy density is high enough, heavier mesons and strange baryons might populate the system.

At the crust, where the baryon number density is expected to be lower than the core when the

baryon number density is 0.75 times the density of nuclear matter, nucleons are arranged on a

lattice along with neutrons and electron gas. Effective interaction (non-relativistic Skyrme,

relativistic mean field) was presented as a method for creating a nucleon-based equation

of state in Akmal et al. 1998 Chabanat et al. 1998 to energy densities corresponding to the

maximum mass of a neutron star.

4.1.2.1 Parameterized equation of State (EoS) of nuclear matter

For convenience, two parameterized EoSs are given below, one for the nucleons only and

the other including hyperons. The parameters of both EoSs are given in Table 4.3. The

N-QMC700 is the equation of state for nucleons only matter, while the F-QMC700 equation

of state includes hyperons at higher energy densities.

P =
N1ϵ

p1

1 + e(ϵ−r)/a
+

N2ϵ
p2

1 + e−(ϵ−r)/a . (4.41)

The parameters work well in the energy density range of 0 to 1300 MeV/fm3.

N1 p1 N2 p2 r a

N-QMC700 0 0 0.008623 1.548 342.4 184.4
F-QMC-700 0.0000002.62 3.197 0.0251 1.286 522.1 113

TABLE 4.3: Table for parameters
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For the strange matter neutron stars the EoS state suggested by Alcock et al. 1986 is taken

into consideration. This strange matter EoS is given by

P =
1

3
(ϵ− 4B). (4.42)

The EoS is based on the MIT bag model (Chodos et al. 1974) of nucleons, and B is the bag

constant, where the value of B is 1014gm/cm3 as suggested by the author. The EoS suggests

the deconfinement of the quark at the core of the neutron stars, where the energy density is

several times the energy density of the nuclear matter. However, this EoS only considers

colour singlet baryons and does not take strange quarks into consideration (Akmal et al. 1998).

This EoS works very poorly in the lower energy density region, which is very important for

calculating the radius of the neutron star. Therefore, in the lower energy density regions,

nucleon only EoS is used in the region below 300 MeV/fm3. As displayed by the authors

Husain and Thomas 2020, the lower energy density regions are very sensitive to the EoS to

determine the properties of the neutron stars. Furthermore, for the sake of better results and

accuracy, the Baym-Bethe-Pethick (BBP) EoS Baym et al. 1971 has been used in the region,

where the energy density is below 100 MeV/fm3.



CHAPTER 5

Bosonic and fermionic dark matter EoS

Since the nature of dark matter is not known and we know that all the particles that exist in

the universe have either an integer spin (bosons) or (a multiple of ) spin 1/2 (fermions), based

on our knowledge of particle physics, it may be assumed that the dark matter particles must

also have a 1/2 or integer spin. Therefore, in this chapter, dark matter has been classified

as fermionic or bosonic. The EoS for bosonic and fermionic dark matter are constructed

separately.

5.1 Bosonic dark matter EoS

On general grounds, we know that all bosons must condense below some critical temper-

ature, and must occupy a single quantum ground state. Below the critical temperature, the

wavelengths of the dark matter particles overlap, and they are related to each other. In this

state, the mean inter-particle distance of the dark matter particles is smaller than the thermal

wavelength of the dark matter particles. If the dark matter particles have mass mχ, scattering

length lχ, and energy density ϵχ then the critical temperature for Bose-Einstein condensation

to occur must be Tcr = 2πlx

m
5/3
χ kB

ϵ
2/3
χ , where kB is Boltzmann’s constant. For constructing the

bosonic dark matter equation of state, the approach suggested by Li et al. 2012a is adopted.

Assuming dark matter consists of a dilute gas of bosonic dark matter particles at an absolute

temperature of 0 ◦K, then the dark matter particles must condense. Since the dark matter

particles are cold and dilute, only binary collisions of the particles will be relevant, and they

can be categorized by using only a single parameter, which is the scattering length of the dark

matter-dark matter particles. The interaction potential of the particles will be VI = θδ(r⃗′ − r⃗)

50
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(effective potential). Here θ is the coupling constant, which can be given in terms of scattering

length, lχ as θ = 4πlχ/mχ (Dalfovo et al. 1999). The Gross-Pitaevskii equation (GP) is used

to describe the ground state properties of dark matter particles. The energy function of the

dark matter particle can be written as (GP equation)

E = Ekinetic + Egravitational + Einteraction, (5.1)

E =

∫
(

1

2mχ

|∇ψ|2)d⃗r − 1

2
m2
χ

∫ ∫
|ψ|2|ψ′|2

|r⃗ − r⃗′|
d⃗rd⃗r′ +

∫
U0

2
|ψ|4r⃗, (5.2)

where ℏ = G = 1, ψ and ψ′ are the condensate wave functions, which are functions of r⃗ and

r⃗′. The value of U0 should be 4πlχ/mχ, as shown by the author Dalfovo et al. 1999. The

condensate dark matter mass density in terms of the condensate wave function will be

ρχ(r⃗) = mχ|ψ(r⃗)|2 = mχρ(r⃗, t). (5.3)

A small change in the energy of the system can be given as

δE = µδN, (5.4)

where N is the total number of dark matter particles, µ stands for the chemical potential of

the particle, and the normalization condition N =
∫
|ψ|2d⃗r is considered in this work. The

equation (5.2) takes the form

− ∇2ψ(r⃗)

2mχ

+mχV (r⃗)ψ(r⃗) + U0|ψ(r⃗)|2|ψ(r⃗)| = µψ(r⃗). (5.5)

Time dependent gravitationally trapped Bose-Einstein condensate dark matter satisfies the GP

equation

i
∂

∂t
ψ(r⃗, t) = −

[ ∇2

2mχ

+mχV (r⃗) + U0|ψ(r⃗, t)|2
]
ψ(r⃗, t). (5.6)

Using the wave function in terms of action, S, as suggested by the authors in Dalfovo et al.

1999; Duine and Stoof 2004; Pethick and Smith 2008 as

ψ(r⃗, t) =
√
ρ(r⃗, t)eiS(r⃗,t), (5.7)
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the decoupled form of equation (5.6) we get

∂ρ

∂t
+∇.(ρχv⃗) = 0, (5.8)

ρχ[
∂v⃗

∂t
+ (v⃗).∇]v⃗ = −∇Pχ − ρχ∇(

V

mχ

)−∇VQ. (5.9)

Finally, the pressure of the dark matter condensate in terms of the scattering length will be

Pχ =
2πℏlχ
m3
χ

ϵ2χ, (5.10)

where the potential, VQ, is taken to be −(ℏ2/2mχ)∇2√ρ
χ
/
√
ρ
χ

and v⃗ is ∇S/mχ. More

details can be found in Li et al. 2012a. The pressure of dark matter is directly proportional

to the self-interaction scattering length of the dark matter. The weakly self-interacting dark

matter may cause the neutron star to collapse quicker.

5.2 Asymmetric fermionic dark matter (AFDM) EoS

If the dark matter is fermionic, then unlike bosonic dark matter, all fermionic dark matter

particles can’t be in the ground state due to Pauli’s exclusion principle. The fermionic dark

matter particles must exert a degeneracy pressure. For the self-interacting dark matter particle,

one must include an extra term in the equation of state for the self-interaction. For the EoS

of self-interacting asymmetric dark matter, the approach suggested in Kouvaris and Nielsen

2015; Mukhopadhyay et al. 2017 is considered. The EoS of the AFDM can be given in simple

terms, as

ϵχ = ϵkin + ϵint, (5.11)

P = Pkin + Pint, (5.12)

where the first term (sub kin) indicates the energy density and pressure of the non-interacting

dark matter, while the second term (sub int) comes from the self-interaction of the dark matter.

The value of ϵkin originates from the kinetic energy of all the fermions occupying different

energy states in the Fermi sea up to the Fermi level. Hence, the energy density of dark matter
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can be given by (ℏ = 1, c = 1)

ϵkin =

∫ pf

0

Enpd
3p =

∫ pf

0

√
p2 +m2

χnpd
3p, (5.13)

where npd3p represents the number of dark matter particles with momentum in the range p⃗

and p⃗+d⃗p. The pressure, which is the force per unit area, can be given as

Pkin =
1

3

∫ pf

0

p2√
(p2 +m2

χ)
npd

3p. (5.14)

The factor 1/3 at the front comes because, on average, approximately 1/3 of the particles are

moving in a particular direction. The number density, nχ is

nχ =

∫ pf

0

npd
3p =

8πp3f
3

, (5.15)

where degeneracy = 2 has been taken because dark matter particles are fermions. For

simplicity, let us set x = (3π2nχ)1/3

mχ
, the dark matter number density becomes

nχ =
x3m3

χ

3π2
, (5.16)

with the help of the above equation of number density, on integration, the pressure given in

equation (5.14) and the energy density given in equation (5.13) become

Pkin = m4
χϕ(x), (5.17)

and

ϵkin = m4
χα(x), (5.18)

where the functions ϕ(x) and α(x) are

ϕ(x) =
1

8π2
(x
√
1 + x2(2x2/3− 1) + log(x+

√
1 + x2)), (5.19)

α(x) =
1

8π2
(x
√
1 + x2(1 + 2x2)− log(x+

√
1 + x2)). (5.20)

For introducing the interaction among the dark matter particles, an approach similar to vector

meson exchange in the hadronic matter is adopted. Let the mass of the dark matter mediator

be mI , this is the particle being exchanged by the dark matter particles and responsible for



54 5 BOSONIC AND FERMIONIC DARK MATTER EOS

the dark matter self-interaction. The Lagrangian for the system can be written as

L = −1

4
F µν
µν +

1

2
m2
IAµA

µ − jµA
µ. (5.21)

The equation of motion

(∂ν∂
ν +m2

I)A
µ = jµ, (5.22)

which has the solution given by Yukawa potential, VY as

VY = g2
e−mIr

4πr
, (5.23)

where g is the coupling constant. To calculate the total energy of the self-interacting system of

particles, the sum of all the pairs of particles is performed, and for simplicity, any correlation

among particle positions is neglected. The potential energy between two particles can be

written as

Vpotential(i,j) = g2
e−mIr

4πr
. (5.24)

The total potential energy of all the pairs of particles is

Etotal =
1

2
n2
χg

2

∫ ∫
e−mIri,j

4πri,j
dΩidΩj, (5.25)

integrating over the system (upper limit infinity) considering one particle at the origin. One

gets

EΩ =
1

2m2
I

n2g2Ω. (5.26)

Now, we have the total interaction energy. The energy density of the dark matter self-

interaction can be found by

ϵint =
EΩ

Ω
=

1

2m2
I

n2g2, (5.27)

using the value of number density given in the equation (5.16). The ϵint can be given as

ϵint =
1

9π4

x6mχ6

m2
I

. (5.28)

Now, the energy density due to the self-interaction of dark matter is known. The pressure due

to dark matter self-interaction can be calculated using the relation

Pint = n2
χ

d

dnχ

(ϵint
nχ

)
, (5.29)
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which is

Pint =
1

9π2

x6m6
χ

m2
I

. (5.30)

Therefore, the final equation of state of self-interacting AFDM is found by plugging the values

from equations (5.18), (5.17), (5.28) and (5.30) into the equations (5.11) and (5.12). One gets

ϵχ = m4
χα(x) +

1

(3π2)2
x6m6

χ

m2
I

, (5.31)

Pχ = m4
χϕ(x) +

1

(3π2)2
x6m6

χ

m2
I

. (5.32)

One needs to use the equations (5.31) and (5.32) together to describe the energy density and

the pressure of the fermionic dark matter EoS. If one wants to construct the EoS of non-

interacting dark matter, then one just needs to remove the second term from both equations

(5.31) and (5.32). Non-interacting fermionic dark matter is just a gas of fermionic dark

matter particles, which obeys the Pauli exclusion principle. Ref. Kouvaris 2012 showed that

fermionic dark matter with an attractive Yukawa self-interaction may form black holes at the

core of old neutron stars, and this puts a constraint on the fermionic dark matter EoS.



CHAPTER 6

Neutrons decay into dark matter EoS

Neutrons are one of the fundamental constituents of matter. Neutrons were discovered almost

a century ago, but the decay of neutrons is still a puzzle, and the precise lifetime of neutrons

is not known. Indeed, different methods of measuring the lifetime of neutrons (the beam

and bottle methods) give different results. In recent years, some theoretical physicists have

proposed the hypothesis of neutron dark decay, in which neutrons can decay into invisible dark

matter particles, in addition to the usual decay products of protons, electrons, and antineutrinos.

This hypothesis is motivated by the possibility that dark matter may interact weakly with

normal matter, and that neutron decay may provide a way to probe these interactions. Before

introducing the hypothesis of neutron’s dark decay, let us first understand how neutrons decay

in the Standard Model (SM) particles.

6.1 Neutrons decay into Standard Model particles

Neutrons decay through two channels that involve the Standard Model particles. The first

neutron decays into a proton, an electron, and an anti-electron neutrino. This type of decay is

commonly known as β decay, and the neutron predominately decays through β decay. The

photon at the final state of the β decay is suggested in Bales et al. 2016 with a branching ration

of order 10−2. The second, neutron decays into a hydrogen atom and an electron anti-neutrino,

which have a branching ratio of order 4×10−6, approximately as suggested in Faber et al.

2009. In all of these decay channels, one of the end products is a proton.
56
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Theoretically, the lifetime (τn) of the neutron can be calculated by using Vud, the first element

of the CKM matrix (Cabibbo-Kobayashi-Maskawa matrix),

τn =
4908.6(1.9)s

(1 + 3λ2)|Vud|2
, (6.1)

where λ is the ratio of the axial-vector and the vector current coefficient in the matrix element

of the neutron decay.

Experimentally, there are two prime methods widely adopted by the physics community to

determine the lifetime of neutrons, the beam method and the bottle method. In the beam

method, a beam of cold neutrons is fired (the number of neutrons fired in the beam is known),

and after a while (after the expected lifetime of neutrons), the number of protons is counted.

Based on the number of protons found after the decay and the lifetime of the neutrons is

determined by

τ beamn = − Nn

dNp/dt
. (6.2)

By the beam method, the lifetime of the neutrons is found to be 888.0 ± 2.0 sec, as shown

in Byrne et al. 1996; Nico et al. 2005; Yue et al. 2013. The other method of measuring the

lifetime of neutrons is the bottle method. In the bottle method, the ultra-cold neutrons are

trapped in a tube, and the total number of neutrons in the tube is known. After a while (after

the expected lifetime of neutrons), the number of neutrons left in the tube is counted again.

Based on these counts, the lifetime of neutrons is determined by

τ bottlen = − Nn

dNn/dt
. (6.3)

The lifetime of the neutrons in the bottle method is found to be 879.4 ± 0.6 sec, as shown

in Serebrov et al. 2005; Pichlmaier et al. 2010; Steyerl et al. 2012; Arzumanov et al. 2015;

Serebrov et al. 2018a. Regardless of the method of measurement, the lifetime of the neutrons

must be equal, and it is expected that the decay rate must be equal, but the lifetime of the

neutrons measured by the different methods has a discrepancy of approximately 4 σ. It is

highly unlikely that the discrepancy is the result of some systematic error. The experiment has

been repeatedly performed by various groups of scientists with the highest accuracy, but the

difference in the lifetime of neutrons in the beam and bottle methods is always approximately
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4σ. This controversy inspired a remarkably precise measurement of the lifetime of neutrons

trapped in a bottle by the UCNτ Collaboration Gonzalez et al. 2021, with the result of

877.75± 0.28stat + 0.22− 0.16syst s. This agrees well with other recent measurements, such

as Ref. Pattie et al. 2018, which reported a neutron lifetime 877.7± 0.7 s and Ref. Serebrov

et al. 2018a, which reported a value of 881.5 ± 0.7 s. That raises a serious suspicion that

there may be some underlying physics that we are unaware of. The results produced by these

different methods can be reconciled if one assumes that neutrons have decay channels other

than protons, which go uncounted in the beam method. The effect of this unknown channel

is counted in the bottle method because, in the bottle experiment, the lifetime of neutrons is

determined by the number of neutrons left after the decay, while in the beam method it is

determined by the number of protons produced. The lifetimes determined by the beam and

bottle methods are connected as

τ beamn =
τ bottlen

Br(n→ p+ something)
. (6.4)

The lifetime of a neutron is τ beamn > τ bottlen . If the 99% neutrons β decay into proton, i.e.,

branching ratio ≈ 0.99, and the remaining 1%, branching ratio ≈ 0.01, decay into some other

particles that go undetected. If one includes the effect of the unknown decay channel, the

discrepancy in the lifetime of the neutrons may be solved.

6.2 Neutrons dark decay channel

For neutrons to decay through dark decay channels, there are some constraints that can be put

on the total mass of the final particles. The stability of nuclei puts a strong constraint on the

mass of the end product of the decay. The total mass of the final particles must respect the

following constraints:

(1) Mf < mn = 939.57 MeV for the decay of the neutron to be kinematically open.

(2) From the stability of stable nuclei, Mf > mn − SBe = 937.906 MeV, where SBe =

1.664 MeV is the binding energy of Be8. Be is selected because it gives the strongest

bound.
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(3) The stability of the protons suggests that Mf > mp −me = 937.77 MeV.

(4) For the stability of the final product and β decay to be forbidden, Mf < mp +me =

938.79 MeV.

In light of the constraint given above, the total mass of the particle after the decay must be in

the narrow range 937.906 MeV < Mf < 938.79 MeV. Any model suggesting the neutron has a

decay channel excluding the proton, as the final product must be in the narrow range of mass.

6.2.1 Fornal and Grinstein hypothesis

A very interesting hypothesis to solve the discrepancy in the lifetime of the neutron, was

suggested by Fornal and Grinstein in Grinstein et al. 2019. The central idea of the hypothesis

is that in addition to the neutron β decay mode, n → p+ e− + ν̄e, neutrons could possibly

decay into dark sector particles (dark matter) with a small branching ratio of approximately

0.01. They suggested that in the beam experiments, the dark matter particles, being very

weakly interactive with the Standard Model particles, would remain undetected, while the

dark sector particles would affect the total decay rate of neutrons in the bottle experiments.

In fact, in the total decay rate, the contribution of the dark sector particles is included. This

hypothesis suggested a substitute model to the idea that the neutrons might be oscillating

into their mirror counterparts, although Serebrov et al. 2008 ruled out this idea of neutrons

oscillating in their mirror counterparts. Some of the other decay modes have been discussed

in Ref. Ivanov et al. 2018.

Fornal and Grinstein suggested the dark fermion, χ is almost degenerate to the neutron.

Precisely, the decay can be represented as

n −−−→ χ+ ϕ , (6.5)

where χ is the dark fermion and ϕ is the dark boson. In fact, the mass of χ must be in the

narrow mass band of 937.9 MeV < mχ < 938.7 MeV (Grinstein et al. 2019 considering ϕ

massless) because of the constraints discussed above. The study by Tang et al. 2018a ruled

out the possibility of ϕ boson being a photon. In addition, ϕ boson must be extremely light,
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almost massless. The author Serebrov et al. 2018b argued that the proposal might be helpful

in solving the experimental inconsistency of the reactor anti-neutrino anomaly.

If such a neutron decay channel exists, then the properties of neutron stars could be very

helpful in testing the hypothesis. The decay mode shown in Equation (6.5) would start

populating a fraction of dark matter particles inside the neutron star as soon as the neutron star

comes into existence. The populated dark matter particles must be in chemical equilibrium

with the nuclear matter inside the neutron star and would remain gravitationally trapped inside

the neutron star. If the dark fermions are non-interacting, the conversion of neutrons, with their

high chemical potential, into dark matter particles is highly energetically favoured. Indeed, as

shown by Motta et al. 2018a; Baym et al. 2018; McKeen et al. 2018, if one considers the

dark fermions to be non-self-interacting, the presence of this decay mode produces neutron

stars of maximum mass close to around 0.7M⊙, while the neutron stars of masses above 2

M⊙ have been observed Özel and Freire 2016; Demorest et al. 2010; Antoniadis et al. 2013b.

If the hypothesis proposed by Fornal-Grinstein is to survive, the dark matter fermions, χ,

must be self-repulsive. Using the observational constraints on the properties of the neutron

stars, the constraints on the properties of the dark matter particles can be determined (Husain

et al. 2022b; Motta et al. 2018b; Grinstein et al. 2019; Baym et al. 2018; Cline and Cornell

2018; Berryman et al. 2022; Strumia 2021; Rajendran and Ramani 2021; Tang et al. 2018b;

Berezhiani et al. 2021). This study will also focus on finding an observational signal for such

a neutron decay channel, apart from just testing the proposed dark decay model. For this

reason, in this study, the baryon number is ensured to be conserved even when some of the

baryons decay into dark fermions, and the consequences of such a decay are drawn.

In Equation (6.5), ϕ, dark boson, which is considered a massless boson, will escape the

neutron star immediately and take away a very small amount of energy. The baryonic dark

matter particle, χ, must have a mass approximately equal to the mass of the neutron. For

the sake of ease of calculation, it is considered degenerate with the neutron. Apart from

nuclear matter, the neutron star also has dark fermions inside it. Therefore, the presence of

dark fermions has changed the chemical composition of neutron star matter. Indeed, the dark

fermions must be in chemical equilibrium with the neutrons. The complete set of equations
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for chemical equilibrium, including β equilibrium equations, are given as (Motta et al. 2018b;

Motta et al. 2018a; Husain et al. 2022b)

µn = µp + µe, (6.6)

np = ne + nµ, (6.7)

µµ = µe, (6.8)

µn = µχ, (6.9)

where µ stands for the chemical potential of each of the particle species. The Hartree term

in the energy density of the system, which must include the energy density of the χ dark

fermion, is given by

ϵH =
1

2
m2
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2
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ωω
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2
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(6.10)

The full Fock term (Motta et al. 2019) is given as
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where M∗
N(σ) represents the effective mass of the nucleon, which can be calculated using

Equation (4.4). kF stands for the Fermi momentum of each fermion in the system. The m̃σ
2

is given as

m̃σ
2 = m2

σ +
1

π2
Σp,n

∫ knF

0

k2dk
∂2

∂σ2

√
M∗

N(σ) + k2. (6.12)

The meson fields are given as

σ(n, p) = − 1

m2
σπ

2

∂M∗
N

∂σ

[
Σp,n

∫ kF

0

k2dk
M∗

N(σ)√
M∗

N(σ) + k2

]
, (6.13)

ω(n, p) =
gω
m2
ω

(n+ p), (6.14)

b(n, p) =
gρ
m2
ρ

(p− n)/2. (6.15)

The pressure (P ) is calculated as

P =

∫
µfnf − ϵ. (6.16)

The number of baryons is given by

Bi = 4π

∫ R

0

r2ni(r)

[1− 2M(r)
r

]1/2
dr, (6.17)

where ni is the number of the baryons and i = n, p, χ . The equation of state used here has a

binding energy per nucleon of -15.8 MeV, the normal nuclear matter density is 0.148 fm−3,

incompressibility of 295 MeV, and a symmetry energy of 30 MeV, the symmetry energy slope

is 52.4 MeV.

6.2.2 Strumia hypothesis - n→ χχχ

Recently, Strumia (Strumia 2022) proposed an alternative model to solve the discrepancy

in the lifetime of the neutron. Interestingly, it was suggested that the neutron might decay

into dark matter, but the decay is different than suggested by Fornal and Grinstein. Strumia

suggested that the dark decay of neutrons might decay into three dark matter particles that are

identical, with each of them having a baryon number of 1/3.



6.2 NEUTRONS DARK DECAY CHANNEL 63

In this decay, the final decay particles are only dark matter particles, and no dark bosons

exist, and each of the dark matter particles is much lighter than the Fornal and Grinstein

suggested dark matter particle. It has also been shown that this decay model eliminates the

requirement for dark matter to be self-interactive (repulsive) in order to satisfy constraints

on the maximum mass of the neutron star (Husain and Thomas 2022), which is contrary

to the model of Fornal and Grinstein. Therefore, this model becomes very interesting to

test using neutron stars. Here, a detailed examination of the consequences of this model of

neutron decay on the properties of the neutron star is carried out. Following Strumia 2022,

the neutron decay can be given as

n→ χ+ χ+ χ. (6.18)

Here, χ is a dark matter particle whose mass must be very close tomn/3 to ensure the stability

of the stable atomic nuclei and baryon number of 1/3. Like the constraints imposed on the

mass of the dark fermions in the Fornal and Grinstein model, Strumia’s dark matter fermions

must also follow similar constraints given as

(1) For the Strumia model to be kinematically open, the mass of the dark matter particle

must be mχ < mn/3 ≈ 313.19 MeV.

(2) For the stability of stable nuclei, the mass of the dark matter particle must be mχ >

(mn − EBe)/3 ≈ 312.63 MeV, because the strongest bound comes from Be8.

(3) For the proton to be stable, it requires that mχ > (mp −me)/3 = 312.59 MeV.

(4) For mχ < (mp+me)/3 ≈ 312.93 MeV, the decay of a Hydrogen atom, H → χχχνe,

would be open.

Like the Fornal and Grinstein model, the Strumia neutron decay also has a narrow range for

the mass of dark matter.

The course of developing the EoS for the Strumia model follows a similar process as for

the Fornal and Grinstein model. Like in the previous case, the presence of dark matter

must change the chemical composition of the neutron star. But unlike the previous case, in

modelling the most massive neutron stars, we must include the hyperons at the highest energy
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densities because it is quite likely for hyperons to develop at the higher energy densities.

µµ = µe, (6.19)

µn = µp + µe, (6.20)

np = ne + nµ, (6.21)

µχ = µn/3. (6.22)

For the sake of simplicity, mχ = mn/3 has been selected in the calculation for modelling the

Strumia’s neutron decay model. In the approach to neutron decay, let us include the equation

of state that allows hyperons at the core of neutron stars. Assuming that the neutron star may

have hyperons at higher energy densities. For the hyperons included in the equation of state,

the hyperons appear as the chemical potential increases as one moves towards the core of the

neutron star. With the equation of state including hyperons, one must have

µχ = µn/3, (6.23)

µn = µp + µe, (6.24)

np = ne + nµ + nΞ− , (6.25)

µµ = µe, (6.26)

µn = µΛ = µΞ0 , (6.27)

µΞ− = µn + µe. (6.28)

It is worth noting that the Σ baryons in the QMC model (Guichon et al. 2008) experience

repulsion, so they do not populate at any energy density of interest. Therefore, they have not

been displayed explicitly. The hyperons start to populate when the energy density is greater

than three times that of the normal nuclear matter energy density. The Λ hyperon appears first,

followed by Ξ−, and at the highest central energy densities, Ξ0 appears. The energy density

(Motta et al. 2019; Husain et al. 2022a) is calculated using the Hartree-Fock method shown

above from equations (6.10 - 6.17). The things that need to be taken care of are: mχ = mn/3

and the baryon number of χ is 1/3.



CHAPTER 7

Structural equations of neutron stars

Due to the super-dense matter inside the neutron stars, the spacetime from the center to

around the neutron star is not flat, but significantly curved. Therefore, in this chapter, the

structural equations based on the general theory of relativity framework are developed, which

are essential together with the EoS to compute the properties of the neutron star.

7.1 Static and spherically symmetric neutron stars

The neutron stars are among the most compact objects in the universe, and the spacetime from

the center to around them is curved. Therefore, if one wants to calculate the properties of a

neutron star, one must consider the physics of curved spacetime using the general theory of

relativity. Moreover, if the neutron star is rotating, then one must include the Lense-Thirring or

frame-dragging effect. Although in this section the structural equations for a static, spherically

symmetric neutron star are presented, this involves solving the Tolman, Oppenheimer, and

Volkoff (TOV) equations (Tolman 1934; Oppenheimer and Volkoff 1939), which are based on

Einstein’s general theory of relativity framework. In simple words, the TOV equation is the

relation between the two forces, the gravitational force, which tries to collapse the compact

star, and the internal pressure of the compact star, which works in an outward direction against

the gravitational force and tries to sustain the star. The pressure varies a lot from the center

to the surface of the neutron star, and at the surface, the pressure vanishes, but at the center,

neutron stars have one of the highest orders of pressure in the universe.

It is worth noticing that the original TOV equations are derived for compact objects containing

only one type of fluid. But in this study, neutron stars contain two different fluids that are
65
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non-interacting, namely, nuclear matter and dark matter. Hence, the TOV equations need to be

modified accordingly so that they can work for compact objects made of two non-interacting

fluids.

For a static, spherically symmetric, non-rotating neutron star, which is considered to be made

of perfect fluids under Einstein’s general theory of relativity framework.

The stress-energy tensor for such a system can be given as

Tαβ =


−ϵnucl − ϵDM 0 0 0

0 Pnucl + PDM 0 0

0 0 Pnucl + PDM 0

0 0 0 Pnucl + PDM


where Tαβ is the total energy density tensor of the compact star given by Tαβ = Tαβnucl + TαβDM .

Here, Tαβnucl is the stress energy tensor for nuclear matter, and TαβDM is the stress energy tensor

for the dark matter contained inside the compact star. For ease of calculation, the natural units,

G = c = 1, have been set.

The line element for a non-rotating spherically symmetric neutron star can be given by

ds2 = −e2Φ(r)dt2 + e2Λ(r)dr2 + r2dθ2 + r2 sin2 θdϕ2, (7.1)

where Φ(r) and Λ(r) are the metric functions that depend on the radial distances, and the

covariant form of the metric functions are

gtt = −e2Φ(r), grr = e2Λ(r), gθθ = r2, gϕϕ = r2 sin2 θ. (7.2)

The line element given by equation (7.1) can be written as

ds2 = gµνdx
µdxν . (7.3)

Here, the method to determine the relationship between the energy density and the pressure is

given briefly. Einstein’s mixed tensor is given as

Gµ
ν = Rµ

ν −
1

2
δµνR = 8π(T µν DM + T µν nucl). (7.4)
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In the physical sense, the equation given above is the relation between the distribution of

energy and matter (both dark matter and nuclear matter), contained in the energy momentum

tensor, and the curvature of spacetime. The stress energy tensor, T µν , is given by

T µν nucl = (ϵnucl + Pnucl)
dxµ

dτ

dxν
dτ

∣∣∣
nucl

+ δµνPnucl, (7.5)

T tt nucl = −ϵnucl, T ii nucl = Pnucl. (7.6)

Similarly, the stress energy tensor for dark matter

T µν DM = (ϵDM + PDM)
dxµ

dτ

dxν
dτ

∣∣∣
DM

+ δµνPDM , (7.7)

T tt DM = −ϵDM , T ii DM = PDM , (7.8)

where xµ is the four velocity of the fluid. The tensor divergence of the left hand sides in the

above given equations vanishes identically. The four derivative of the stress-energy tensor is

established by applying the rule of covariant differentiation, as

T µν;µ
∣∣
nucl

=
∂T µν
∂xµ

+ ΓµκµT
κ
ν − ΓκνµT

µ
κ

∣∣
nucl

= 0, (7.9)

T µν;µ
∣∣
DM

=
∂T µν
∂xµ

+ ΓµκµT
κ
ν − ΓκνµT

µ
κ

∣∣
DM

= 0. (7.10)

The non-vanishing Christoffel symbols for the line element, i.e. equation (7.1), are

Γrtt = e2Φ−2ΛΦ′, Γttr = Φ′, Γrrr = Λ′,

Γθrθ = 1/r, Γϕrϕ = 1/r, Γrθθ = −re−2Λ,

Γϕθϕ = cot θ, Γrϕϕ =
−r sin2 θ

e2Λ
, Γθϕϕ = − sin θ. cos θ,

(7.11)

where ′ are derivatives of the quantity with respect to r. Namely, Λ′ and Φ′ are the derivatives

of Λ and Φ that are dΦ
dr

and dΛ
dr

. In flat spacetime or in a local inertial reference frame, the

covariant derivatives of the stress energy vanish

T µν;µ
∣∣
nucl

=
∂

∂xµ
T µν

∣∣
nucl

= 0, (7.12)

T µν;µ
∣∣
DM

=
∂

∂xµ
T µν

∣∣
DM

= 0. (7.13)
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For the line element stated above, the covariant derivative of the stress energy tensor given in

equations (7.9) and (7.10) reduce to

T µν;µ
∣∣
nucl

= (ϵnucl + Pnucl)Φ
′ + P ′

nucl, (7.14)

T µν;µ
∣∣
DM

= (ϵDM + PDM)Φ′ + P ′
DM , (7.15)

which implies that the mixed energy momentum tensor, the middle term of equation (7.4), for

the given spacetime metric can be calculated using the expressions below (see Appendix B)

Rt
t = [−1

4
Φ′2 +

1

4
Φ′Λ′ − 1

2
Φ′′ − 1

r
Φ′]e−Λ,

Rr
r = [−1

4
Φ′2 +

1

4
Φ′Λ′ − 1

2
Φ′′ − 1

r
Λ′]e−Λ,

Rϕ
ϕ = Rθ

θ = − 1

r2
e−Λ[1− 1

2
rΛ′ +

1

2
rΦ′] +

1

r2
.

(7.16)

The Ricci scalar is given by

R =
1

r2e2Λ
[2Φ′Λ′r2 − 2Φ′′r2 − 2(Φ′)2r2 − 4rΦ′ + 4rΛ′ + 2e2Λ − 2]. (7.17)

Therefore, Einstein’s curvature tensor is calculated as

Gt
t = Rt

t −
1

2
R = e−2Λ(

1

r2
− 2

Λ′

r
)− 1

r2
, (7.18)

Gr
r = Rr

r −
1

2
R = e−2Λ(

2Φ′

r
+

1

r2
)− 1

r2
, (7.19)

Gθ
θ = Rθ

θ −
1

2
R = e−2Λ(Φ′′ − Φ′Λ′ + Φ′2 +

Φ′ − Λ′

r
), (7.20)

Gϕ
ϕ = Gθ

θ. (7.21)

Since the neutron star is static, the following relations are used.

dr

dτ
=
dθ

dτ
=
dϕ

dτ
= 0, (7.22)

and
dt

dτ
= e−Φ. (7.23)



7.1 STATIC AND SPHERICALLY SYMMETRIC NEUTRON STARS 69

Using equations (7.18-7.21), with equation (7.6), and equation (7.8), one finds the general

relativistic equation at µ = ν = t

e−2Λ(
1

r2
− 2

Λ′

r
)− 1

r2
= −8π(ϵnucl + ϵDM), (7.24)

at µ = ν = r

e−2Λ(
2Φ′

r
+

1

r2
)− 1

r2
= 8π(Pnucl + PDM), (7.25)

at µ = ν = θ

e−2Λ(Φ′′ − Φ′Λ′ + Φ′2 +
Φ′ − Λ′

r
) = 8π(Pnucl + PDM). (7.26)

Simplifying equation (7.24) for the purpose of solving for e2Λ,

e−2Λ2Λ′r − e−2Λ + 1 = 8π(ϵnucl + ϵDM)r2. (7.27)

Rearranging the left hand side and noticing that it is the derivative form of the function

− d

dr
(e−2Λr − r) = 2(4π(ϵnucl + ϵDM)r2), (7.28)

and the total mass of the neutron star enclosed within the sphere of radius ’r’ can be determined

by

m(r) = 4π

∫ r

0

dr.r2(ϵnucl + ϵDM), (7.29)

which is the sum of the mass of the dark matter and the mass of the nuclear matter inside the

radius, r

m(r) = mnucl(r) +mDM(r). (7.30)

The contribution of the mass of dark matter and the mass of nuclear matter can be given as

mDM(r) = 4π

∫ r

0

dr.r2ϵDM(r), (7.31)

mnucl(r) = 4π

∫ r

0

dr.r2ϵnucl(r). (7.32)

Integration of equation (7.28) yields,

e−2Λ = 1− 2m(r)

r
. (7.33)
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Here, m(r) is the total mass, including the mass of the nuclear matter and the dark matter

inside the radius r. Eliminating e−2Λ from equation (7.25) by plugging its value from equation

(7.33),

8π(Pnucl + PDM) =
−2m

r3
+ 2(1− 2m

r
)
Φ′

r
, (7.34)

which leads to the differential function in Φ′ as

Φ′ =
4πr3(Pnucl + PDM) +m

r2(1− 2m
r
)

. (7.35)

At the surface of the neutron star

Φ =
1

2
log(1− 2M

R
), (7.36)

where M and R represent the total mass and radius of the neutron star, respectively. Finally,

from the expressions given in Appendix B, the differential equation involving the pressure

gradient, radius, and density of the neutron star is found as given below

dP

dr

∣∣∣
nucl

= −(ϵnucl + Pnucl)(m+ 4πr3(Pnucl + PDM))

r2(1− 2m
r
)

, (7.37)

dP

dr

∣∣∣
DM

= −(ϵDM + PDM)(m+ 4πr3(Pnucl + PDM))

r2(1− 2m
r
)

. (7.38)

The above equations are important relations among radius, pressure, and energy density

because when the equation of state is plugged with these equations, they give insight into how

pressure varies from the core to the surface with changes in energy density. The established

relation is one of the essential equations needed to calculate the properties of the neutron

star. The structural equations of the single fluid compact star are known as TOV equations.

Since, in this study, two non-interacting fluids are considered inside the neutron stars, the

TOV equations are called ’modified TOV equations’ or ’the two fluid TOV equations’. These

equations must be integrated under the boundary conditions, which are that the energy density

and pressure vanish at the surface of the neutron star. Therefore, at the surface of the neutron

star, one must get P = 0, ϵ = 0, when R = Radius.

In a general sense, both in classical mechanics and the general theory of relativity framework,

the outward working pressure of the mass shell counters the gravitational force that acts



7.1 STATIC AND SPHERICALLY SYMMETRIC NEUTRON STARS 71

inwards towards the center of the compact star and tries to collapse the star. But it is worth

noticing that in the classical mechanics framework, there is no limit on how massive neutron

stars can be. Based on classical mechanics theory, neutron stars can be as massive as one

wants them to be, having P << ϵ, P << m << r, results in dP/dr = ϵm/r2. Whereas, in

the general relativistic framework, neutron stars can’t be arbitrarily massive, as the neutron

stars become more massive at a certain point, the gravitational force overcomes the internal

pressure of the compact stars, and they collapse under their own gravity and form black holes.

To determine the properties of neutron stars, we need a nuclear equation of state and a dark

matter equation of state, which have been calculated in the earlier sections, that are the

input to the structural equations (modified TOV equations). These equations are numerically

integrated from the center to the surface. The steps to integrate take place as

(1) First, choose the central energy densities of the neutron star for the nuclear matter

and the dark matter (ϵnucl and ϵDM ) and calculate the pressure at the center from the

corresponding equations of state for both fluids, respectively. These values serve as

input to the modified TOV equations.

(2) Determine the mass (m = mnucl +mDM ) of the shell by the equation (7.30).

(3) Plugging the values found above in the pressure gradient and (dP/dr) is determined

at an infinitesimal small distance (dr) by the modified TOV equations.

(4) Find the pressure (P ) for the next step by using the Euler integration method (one

can choose any integration method).

(5) Determine the pressures (Pnucl and PDM ). Using these values of the pressures,

calculate the energy densities of the nuclear matter and the dark matter by inverting

the respective equations of state. After finding the energy densities of both fluids,

calculate the mass for the shell of thickness dr.

(6) Repeat these steps until we reach P = 0, ϵ = 0, which are the boundary conditions.

At that point, mass (M ) is the total mass, and radius (R) is the total radius of the

neutron star.
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The results of two fluid TOV equations are comparable to one fluid TOV equation as given

in Motta et al. 2018b; Motta et al. 2018a, and there is no major difference between the

two approaches (it may be because the dark matter contribution to the neutron star mass is

small compared to nuclear matter). Therefore, for the rest of the calculations, one fluid TOV

equation is adopted for the sake of ease of calculation.

7.2 Moment of inertia

The moment of inertia of the neutron star is calculated by using the equation

I =
J

Ω
, (7.39)

where J is the angular moment of the neutron star and Ω is the rotational velocity. It is worth

noticing that rotating neutron stars can be slightly heavier than non-rotating ones because

they have an additional centrifugal force that counterbalances the gravitational attraction. The

shape of a neutron star also deforms due to rotation, specifically, at the equator, they have

a bulge and their radii stretch, whereas at the poles, they tend to flatten a little. Therefore,

rotating neutron stars are not perfectly spherical in shape, instead, they have an oval shape.

This deformation of shape makes calculations a bit harder for the rotating neutron stars

because it changes the spacetime structure from the center to the surface of the neutron

star. This suggests that the line element of a spinning neutron star is dependent on the star’s

rotational speed. Consequently, the metric tensor must include an additional non-diagonal

term (gtϕ) to account for the general relativistic effect of the local inertial frame dragging.

While the local inertial frame is dragged along the direction of rotation, which is controlled

by the properties of a neutron star, such as rotational velocity and mass, this additional term

imposes a self-consistent condition on the stellar structure of the neutron stars.

For slowly rotating neutron stars, Hartle and Thorne have provided a methodology to solve

the structural equations in Refs. Hartle and Thorne 1968; Hartle 1967. Their methodology

works fine for the neutron stars, which have a rotating velocity much smaller than their mass

shedding velocity. Therefore, the same methodology is considered in this study. The structural
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FIGURE 7.1: The curved spacetime around a rotating neutron star with the
rotating velocity Ω in general relativity framework and position dependent
local frame dragging angular velocity ω(r, θ, ϕ).

equations are solved step by step using the general relativistic framework by introducing

perturbative metric. That involves

(1) Solve the TOV equations for a neutron star, assuming it is non-rotating.

(2) Now introduce the rotational perturbation expressions for determining the rotational

velocity of the neutron star.

(3) Determine the angular moment of the neutron star using the expression given in

equation (7.69).

(4) Use the expression given in equation (7.39).

(5) If one is interested, one can solve the quadrupole perturbation function to determine

the shape of the star, and solving mono-pole equations to determine the extra mass a

neutron star can have due to its rotation.

The first step, which is the methodology for the non-rotating neutron stars (TOV equations),

has been provided above. The methodology for the second step is provided here.
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7.2.1 Rotational pertubation

As the neutron stars rotate, their energy density and pressure get perturbed. Therefore, the

perturbed line element for the axially symmetric rotating neutron star can be given by

ds2 = −e2ν(r,θ,Ω)(dt)2+e2ψ(r,θ,Ω)(dϕ−ω(r, θ,Ω)dt)2+e2µ(r,θ,Ω)(dθ)2+e2λ(r,θ,Ω)(dr)2+O(Ω3),

(7.40)

where θ and r are polar coordinates and ν, µ, λ, and ψ are the perturbed metric functions.

The neutron star’s uniform rotational velocity is represented by Ω and ω is the rotation speed

of the local inertial frame of reference dragged along the direction of rotational of the neutron

star. The dragging velocity, ω, depends on the polar coordinates r, θ. The velocity of local

dragging of the inertial frame of reference depends on the mass and the energy density of the

neutron star, which vary with Ω. Moreover, ω must be given as a function of Ω. Therefore,

the relative angular velocity, ω̄, which can be given as,

ω̄ = Ω− ω(r, θ,Ω). (7.41)

Above equation (7.41) is useful when one wants to find the rotational flow of the fluid inside

the neutron stars.

Since the neutron stars are expected to be axially symmetric and stationary, and they are

assumed not to be radiating any rotational energy in the form of gravitational radiation.

Otherwise, we would have a time dependent moment of inertia, which means the star could

not remain in equilibrium over time. Therefore, the metric function must be independent of

time and azimuthal angle (ϕ). Let us expand the metric functions in terms of second order of

Ω as

e2ν(r,θ,Ω) = e2Φ(r)[1 + 2(h0(r,Ω)) + h2(r,Ω)P2(cos θ)], (7.42)

e2ψ(r,θ,Ω) = r2 sin2 θ[1 + 2(ν2(r,Ω))− h2(r,Ω)P2(cos θ)], (7.43)

e2µ(r,θ,Ω) = r2[1 + 2(ν2(r,Ω))− h2(r,Ω)P2(cos θ)], (7.44)

e2λ(r,θ,Ω) = e2Λ(r)[1 +
2

r

m0(r,Ω) +m2(r,Ω)P2(cos θ)

1− 2m(r)/r
], (7.45)
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where the second order terms are defined as

h(r, θ,Ω) = h0(r,Ω) + h2(r,Ω)P2(cos θ) + ... (7.46)

ν(r, θ,Ω) = ν0(r,Ω) + ν2(r,Ω)P2(cos θ) + ... (7.47)

m(r, θ,Ω) = m0(r,Ω) +m2(r,Ω)P2(cos θ,Ω). (7.48)

Assuming that due to the rotational perturbation of the neutron star, the change in pressure is

∆P , the change in energy density is ∆ϵ and the change in baryon number density is ∆ρ. Let

∆T denotes the change in stress-energy tensor. Therefore, the new stress-energy tensor is

Tµν = T 0
µν +∆Tµν . (7.49)

Here T 0
µν is the stress-energy for a non-rotating neutron star

T 0
µν = (ϵ+ P )uµuν + Pgµν , (7.50)

∆Tµν = (∆ϵ+∆P )uµuν +∆Pgµν . (7.51)

Here, ϵ is the energy density, P is the pressure, and ρ is the baryon number density (using one

fluid concept), which are measured in the co-moving local inertial frame. uν is the four fluid

velocity of the fluid, given by uνuν = −1.

Individually, the changes in the interested physical quantities can be given as

∆P = (ϵ+ P )(p0 + p2P2(cosθ)), (7.52)

∆ϵ = ∆P
∂ϵ

∂P
, (7.53)

∆ρ = ∆P
∂ρ

∂P
, (7.54)

where p0 and p2 are the monopole and quadrupole pressure perturbation functions, respectively.

The monopole equations need to be solved if one is interested in calculating the extra mass a

neutron star can have due to its rotation, and P2(cos θ) is the Legendre polynomial function,

given by

P2(z) =
3z2 − 1

2
. (7.55)
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Now let us move on to finding the rotational equations that need to be solved under Hartle’s

framework. The frame dragging function (ω(r, θ)) is determined by Einstein’s field equations

Gt
ϕ = Rt

ϕ = 8πT tϕ, (7.56)

T tϕ = (ϵ+ P )ωr2 sin2 θe−2ν , (7.57)

(See Appendix B)

1

r4
∂

∂r
(r4e(ν+λ)

∂ω

∂r
) +

eλ−ν

r2 sin3 θ

∂

∂θ

(
sin3 θ

∂ω

∂θ

)
− 16π(ϵ+ P )ωeλ−ν = 0, (7.58)

where the following functions are set as

∂λ

∂θ
=
∂ν

∂θ
=
∂ν

∂θ
= 0. (7.59)

Assuming

j(r) = e−(Φ+Λ) = e−Φ(r)
√

1− γ(r), (7.60)

where γ(r) is given by

γ(r) = 1− 2m(r)

r
. (7.61)

To determine the coefficient of ω as a function of the unperturbed metric function, differenti-

ating equation (7.60) with respect to r gives

dj(r)

dr
= −4πr

[ϵ(r) + P (r)]√
1− γ(r)

eΦ(r), (7.62)

where equation (7.35) is used and dΦ/dr is plugged as follows

dΦ

dr
= − 1

ϵ(r) + P (r)

dP (r)

dr
. (7.63)

Now, following algebraic manipulation in equation (7.58) and converting it into the form as

1

r4
∂

∂r
(r4j

∂ω

∂r
) +

4

r

dj

dr
ω +

eλ−ν

r2 sin3 θ

∂

∂θ

(
sin3 θ

∂ω

∂θ

)
= 0. (7.64)

Expanding ω in vector spherical harmonics

ω(r, θ) = Σ∞
l=1ωl(r)

(
− 1

sin θ

dPl
∂θ

)
, (7.65)
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ωl(r) satisfies

1

r4
∂

∂r

(
r4j(r)

d

dr
ω̄(r)

)
+
(4
r

d

dr
j(r)− eλ−ν

l(l + 1)− 2

r2

)
ω̄l(r) = 0. (7.66)

For l = 1 and r < R, this yields

d

dr
(r4j(r)

dωl(r)

dr
) + 4r3

dj(r)

dr
ω(r) = 0. (7.67)

The equation (7.67) is the equation we aimed to drive. The integration of this equation right

from the center to the surface of the neutron star following the boundary conditions given as

(1) ω̄ must be regular at the center of the neutron when r = 0.

(2) The function dω̄
dr

moves to 0 when r = 0.

For numerical calculations, one must select an arbitrary value for ω at the center of the neutron

star and integrate towards the surface, where P = 0, and ϵ = 0. Outside the neutron star, ω is

given by

ω(r,Ω) = Ω− 2

r3
J(Ω), (7.68)

Here, J(Ω) represents the angular momentum of the neutron star, which can be found using

the expression

J(Ω) =
R4

6

(dω
dr

)
R
. (7.69)

where R is the radius of the neutron star. Once dω/dr is calculated, the angular momentum

can be determined, and the moment of inertia can be found by using the expression given in

the equation (7.39).

7.3 Tidal Love number and tidal deformability

Tidal deformability and tidal Love numbers are important quantities of the neutron star to

know because they are related to the internal structure of the neutron star, and the discovery

of gravitational waves using the neutron star binary system has put a very strict constraint

on the tidal deformability of the neutron star. To calculate the tidal deformability and the

tidal Love number, the method suggested in Refs. Hinderer 2008; Hinderer et al. 2010;



78 7 STRUCTURAL EQUATIONS OF NEUTRON STARS

Flanagan and Hinderer 2008 is considered. If a spherically symmetric static neutron star

is placed in an external tidal quadrupole field, given by ϵij , and in response to the external

quadrupole field, the neutron star develops a tidal quadrupole moment, given by Qij , then the

tidal deformability, λ, can be given as

Qij = −λϵij. (7.70)

The tidal Love number and tidal deformability are connected as

λ =
2

3
k2R

5, (7.71)

where k2 is the tidal Love number.

The developed quadrupole moment due to the presence of an external tidal field is the

coefficient of the asymptotic expansion of the total metric at a large distance from the star

− (
1 + gtt

2
) = −m

r
− 3Qij

2r3
ninj + ...+

ϵij
2
r2ninj + ..., (7.72)

where ni = xi/r and Qij & ϵij are symmetric and traceless. Following Ref. Hinderer et al.

2010 to calculate the tidal Love number using the Regge-Wheeler gauge, as suggested in

Regge and Wheeler 1957, the perturbation metric of a spherically symmetric star in a tidal

field in Regge Wheeler gauge (Regge and Wheeler 1957; Hinderer 2008) can be written as

ds2 = −e2Φ(r)[1 +H(r)Y20(θ, ϕ)]dt
2 + e2Λ(r)[1−H(r)Y20(θ, ϕ)]dr

2

+r2[1−K(r)Y20(θ, ϕ)](dθ
2 + sin2 θdϕ2),

(7.73)

where H and Y20 are the factors originated from the Regge-Wheeler gauge transformation

and K and H share the relationship

dK

dr
=
dH

dr
+ 2H

dΦ′

dr
. (7.74)

The tidal deformation of the neutron star will be symmetric around the axis that connects the

two neutron stars, which is also the axis of spherical harmonic decomposition. Therefore, the

azimuthal number, m, is set to zero in the equation (7.73)

Let δϵ and δp be the changes in the energy density and pressure. Introducing the perturbation
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in stress-energy tensor components as

δT 0
0 = −δϵ(r)Y20(θ, ϕ),

δT ii = δp(r)Y20(θ, ϕ).
(7.75)

The function H(r) is the solution of the differential equation[
− 6e2Λ

r2
−2(Φ′)2+2Φ′′+

3

r
Λ′+

7

r
Φ′−2Φ′Λ′+

f

r
(Φ′+Λ′)

]
H+

[2
r
+Φ′−Λ′

]
H ′+H ′′ = 0,

(7.76)

where f = δϵ/δp when the change in the fluid flow is slow, f is

f =
dϵ

dp
. (7.77)

The stress-energy tensor of the perfect fluid is

T µν;µ = (ϵ+ P )Φ′ + P ′, (7.78)

using the equations (7.30), (7.31), (7.32), (7.36), in the equation (7.76), gives two first order

differential equations
dH

dr
= β, (7.79)

dβ

dr
= 2(1− 2

m

r
)−1H[−2π(5ϵ+ 9p+ (ϵ+ p)f) +

3

r2
+ 2(1− 2

m

r
)−1(

m

r2
+ 4πrp)2]

+2
β

r
(1− 2

m

r
)−1[−1 +

m

r
+ 2πr2(ϵ− p)].

(7.80)

The equations (7.79) and (7.80) are to be integrated from just outside the center of the neutron

star to the surface with the ordinary TOV equations (differential equations of the pressure and

the mass). The behaviour of function H near the center can be given as an expansion in terms

of infinitesimal distance from the center: H(r) = a0r2. Therefore, β function can be given as

β(r) = 2a0r, having r infinity small, such as r→ 0, where a0 is an arbitrary expansion factor

that can have any selected value. The selected value of a0 does not affect the value of the tidal

Love number or tidal deformability because it cancels out at the end expression. Outside the

neutron star, the general solution of H(r) can be given in terms of the second order Legendre
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function, for the large value of r

H = C1Q
2
2(r/M − 1) + C2P

2
2 (r/M − 1), (7.81)

and the values of C1 and C2 can be found by comparing its asymptotic expansion with

equation (7.72) using equation (7.70) in terms of λ

C1 =
15

8M3
λϵ, C2 =

M2ϵ

3
. (7.82)

Plugging the values of C1 and C2 in equation (7.81) gives the exterior solution. To solve

for λ, at the surface where r = R (radius), one has to match the interior solution (equation

(7.76)) with the exterior solution (equation (7.81)) and their first derivatives. For simplicity,

assuming, C =M/R and y = Rβ(R)/H(R), the equation for the tidal Love number takes

the form

k2 =
8C5

5
(1− 2C)2[2 + 2C(y − 1)− y]× [2C(6− 3y + 3C(5y − 8))+

4C3(13− 11y + C(3y − 2) + 2C2(1 + y)) + 3(1− 2C)2(2− y + 2C(y − 1))

× log(1− 2C)]−1.

(7.83)

Using the above expression, the tidal Love number can be calculated, and once the tidal Love

number is known, the tidal deformability (λ) can be determined by using the expression given

in equation (7.71).



CHAPTER 8

Results

In this chapter, the consequences of dark matter on the properties of neutron stars are presented.

In section 8.1, the consequences of fermionic and bosonic dark matter are presented when the

neutron stars capture dark matter from their surroundings. In sections 8.2, the consequences

of neutrons decaying into dark matter are presented.

8.1 Dark matter captured inside neutron stars

For modelling the neutron star matter, three different equations of state are considered, namely,

N-QMC700 represents nucleons only, F-QMC700 allows the development of hyperons at

higher energy densities, and the strange matter equation of state represents deconfined quarks

at the core of the neutron stars. Figure 8.1 shows the pressure and energy density of nuclear

matter inside the neutron stars. The equation of state based on nucleons only at the core of

neutron stars is the stiffest. The presence of hyperons or strange matter at the higher energy

densities at the core of the neutron stars makes the equation of state softer, but the strange

matter equation of state is stiffer than the equation of state based on hyperons at the higher

energy densities.

For the case of dark matter captured inside the neutron star, the mass of the dark matter

particle is considered to be mχ = 1 GeV regardless of the nature of dark matter, whether it

is fermionic or bosonic dark matter, which is similar to what is considered in Refs. Li et al.

2012b; Kouvaris 2012; Ellis et al. 2018; Mukhopadhyay et al. 2017. As shown above, the

equation of state of self-interaction bosonic dark matter involves scattering length, which is

considered to be lχ = 1 fm. The equation of state of self-interacting fermionic dark matter
81
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FIGURE 8.1: The relationship between energy and pressure is depicted for
selected models of nuclear matter in neutron stars.

involves the mass of the dark photon (or self-interacting exchange particle), which is selected

to be mI = 100 MeV. In the following figures, the contribution of mass by the nuclear matter

is kept fixed, and the contribution of dark matter is increased inside the neutron star. The plots

displayed in Figs. 8.2 and 8.3 are constructed assuming that the neutron star contains only

nucleons at the core. Figure 8.2 is constructed using the N-QMC700 equation of state with

bosonic dark matter, and Figure 8.3 is constructed for the N-QMC700 equation of state with

fermionic dark matter. Figs. 8.2 and 8.3 show the relation between the radius and the mass of

the neutron stars at different % contributions of bosonic and fermionic dark matter to the total

mass of the neutron stars.

The total mass and radius of the neutron star reduce when they capture more dark matter

inside them. As discussed above, the observational constraint for the total (maximum) neutron



8.1 DARK MATTER CAPTURED INSIDE NEUTRON STARS 83

FIGURE 8.2: Total mass (given in solar masses) against the radius of the
neutron stars, which contain nucleons only at the core. The bosonic dark
matter is captured from the surroundings, and the plot is given for different %
contributions of bosonic dark matter mass to the total mass of the neutron star,
where mχ = 1 GeV and lχ = 1 fm.

star mass suggests that a neutron star should have a maximum mass of at least two solar

masses. As shown in Figure 8.2, the constraint on the maximum mass is satisfied if the

bosonic dark matter contribution to the total mass of the neutron star is less than 15%. As

shown in Figure 8.3, when the fermionic dark matter contribution is less than 10% of the total

mass of the neutron star, its maximum mass remains above 2 solar masses, and as the dark

matter mass increases more than that, the maximum mass of the neutron star falls below 2

solar masses. Moreover, there is a significant difference in the radii of bosonic and fermionic

dark matter neutron stars, when dark matter contribution is 15% of the total neutron star mass.
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FIGURE 8.3: Total mass (given in solar masses) is plotted against the radius
of neutron stars with nucleons only at the core, where fermionic dark matter is
captured from the surroundings. The plot shows different % contributions of
fermionic dark matter mass to the total mass of the neutron star, where mI =
100 MeV and mχ = 1 GeV.

The neutron stars with N-QMC700 and bosonic dark matter at the core are relatively heavier

and bigger in size than their fermionic counterparts.

Figures 8.4 and 8.5 depict the effects of dark matter on neutron stars containing hyperons at

higher energy densities of nuclear matter. Specifically, Figure 8.5 shows the total mass vs.

radius for bosonic dark matter captured at the core of F-QMC700, while Figure 8.4 represents

fermionic dark matter. Both figures (8.4 and 8.5) reveal that the presence of dark matter

causes the neutron stars to become smaller in size and less massive. The neutron stars with

hyperons at the core have a maximum mass smaller than 2 solar masses when the dark matter

contribution to the total neutron star mass reaches 5%. The radii of hyperons included neutron
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stars with bosonic and fermionic dark matter at the core, are significantly different for the

same percentage of dark matter mass inside the core.

In general, fermionic dark matter neutron stars are smaller compared to bosonic dark matter

neutron stars when they have the same % contribution of dark matter mass due to the larger

effective mass of fermionic particles. While the presence of hyperons at the core does make

the neutron stars lighter compared to the nucleons only equation of state. It also makes

the equation of state softer, which does not allow the neutron stars to reach higher masses.

However, the capture of dark matter makes the neutron stars collapse faster and prevents them

from reaching masses of 2 solar masses.

FIGURE 8.4: Total mass (given in solar masses) against the radius of the
neutron stars, which contain hyperons with fermionic dark matter at the core.
The plot is given for different % contributions of fermionic dark matter mass
to the total mass of the neutron star, where mI = 100 MeV and mχ = 1 GeV.
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FIGURE 8.5: Total mass (given in solar masses) against the radius of the
neutron stars, which contain hyperons with bosonic dark matter at the core.
The plot is given for different % contributions of bosonic dark matter mass to
the total mass of the neutron star, where lχ = 1 fm and mχ = 1 GeV.

Figures 8.6 and 8.7 are constructed to display the relationship between the mass and the

radius for neutron stars containing deconfined quark matter at the core, also called strange

matter at the core with dark matter. Figure 8.6 represents the strange matter equation of state

with bosonic dark matter, and Figure 8.7 displays the results for a strange matter equation

of state with fermionic dark matter at the core. Strange matter stars are slightly heavier than

F-QMC700 neutron stars when they do not have dark matter trapped inside them. Without

dark matter, they produce neutron stars of maximum mass close to 2 M⊙. However, similar

to F-QMC700 neutron stars, strange matter equation of state neutron stars with dark matter

have a maximum mass of less than 2 M⊙ when dark matter particles contribute just 5% of

the total mass of the neutron stars. The behaviour of fermionic and bosonic dark matter with
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strange matter equation of state neutron star is similar in terms of the impact on the mass and

radius of the neutron star. Both types of dark matter cause a reduction in the maximum mass

that the neutron star can have, with the presence of dark matter resulting in neutron stars with

maximum masses less than 2 M⊙. Additionally, the neutron stars become slightly smaller

in size when dark matter is present. There is no significant difference in the total mass and

radius of strange matter neutron stars when they have a same % of dark matter compared to

F-QMC700 neutron stars.

From the mass vs. radius plots, it is evident that the contribution of 5% of the mass by dark

matter is enough to make significant changes in the properties of the neutron stars.

FIGURE 8.6: Total mass (given in solar masses) against the radius of the
neutron stars, which contain strange matter with bosonic dark matter at the
core. The plot is given for different % contributions of bosonic dark matter
mass to the total mass of the neutron star, where lχ = 1 fm and mχ = 1 GeV.
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FIGURE 8.7: Total mass (given in solar masses) against the radius of the
neutron stars, which contain strange matter with fermionic dark matter at the
core. The plot is given for different % contributions of fermionic dark matter
mass to the total mass of the neutron star, where mI = 100 MeV and mχ = 1 GeV.

Figures 8.8 to 8.13 are given to show the distribution of dark matter and the nuclear matter

inside the neutron star. We can obtain some insight (Nelson et al. 2019) into the structure of

neutron stars containing dark matter, which contributes 5% of the total mass. These figures

(8.8 to 8.13) display the distribution of energy densities of dark matter and nuclear matter

inside the neutron star, from the center to the surface. Figures 8.8, 8.9, and 8.10 show the

distribution of energy density of the nuclear matter and the fermionic dark matter inside the

neutron stars with the F-QMC700 equation of state, the N-QMC700 equation of state, and the

strange matter equation of state, from the center towards the surface. Figures 8.11, 8.12, and

8.13 display the distribution of energy density of the bosonic dark matter inside the neutron

stars for the N-QMC700 equation of state, F-QMC700 equation of state, and strange matter
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equation of state energy density, respectively. The distribution of the energy density of dark

matter suggests that bosonic dark matter remains inside the neutron star, irrespective of the

nuclear matter the neutron stars contain at the core (hyperons, nucleons, or strange matter).

Whereas, the distribution of fermionic dark matter is very different inside the neutron stars; in

fact, fermionic dark matter envelops the neutron stars, irrespective of the nuclear matter the

neutron stars contain at the core (hyperons, nucleons, or strange matter). The bosonic dark

matter condenses and remains trapped inside the surface of the neutron star within a radius of

a few kilometers. Whereas, fermionic dark matter covers the whole neutron star, right from

the center of the neutron star to outside its surface. The pressure of fermionic dark matter

does not vanish before that of nuclear matter pressure, as shown in Figs. 8.8, 8.9, and 8.10.

For instance, the distances from the centre of the neutron star to the points where fermionic

dark matter vanishes are: N-QMC700 has a radius of 220.3 km, F-QMC700 has a radius of

223.47 km, and strange matter has the largest radius of 225.9 km. A similar phenomenon

that forms a dark matter halo around the neutron star is reported in Ref. Nelson et al. 2019.

Compared to bosonic dark matter, fermionic dark matter requires a smaller energy density at

the center to contribute 5% of the total mass of the neutron star.

Figures 8.14 to 8.19 have been produced to show the tidal deformability of neutron stars

containing dark matter inside the core, against the mass of the neutron stars. Figures 8.14

to 8.16 display the tidal deformability of neutron stars against their radius with condensed

bosonic dark matter at the core. Figures 8.17, 8.18, and 8.19 show the tidal deformability of

neutron stars containing fermionic dark matter inside them. As the dark matter contribution

inside the neutron star increases, its tidal deformability decreases, because the neutron star

becomes smaller in size and they tend to become more compact, which can also be seen in

mass vs. radius plots. The equation of state based on the QMC model shows that neutron

stars have higher tidal deformability, while the strange matter neutron stars show lower values

of tidal deformability when they do not have dark matter inside them, while QMC700 and

strange matter equations of state satisfy the tidal deformability constraint if they contain

a certain amount of dark matter inside them. The dark matter contribution to neutron star

mass that satisfy the tidal deformability constraint is as follows. For a neutron star of mass

1.4 M⊙, having a dark matter mass between 5% to 18% (Husain and Thomas 2021b) of the



90 8 RESULTS

FIGURE 8.8: Distribution of fermionic dark matter and hadronic matter energy
density (MeV/fm3) inside the neutron star (from the center towards the surface),
which contains hyperons (F-QMC700) at the core. The dark matter mass
contribution is 5% of the total mass of the neutron star.

total mass satisfies the tidal deformability constraint imposed by gravitational wave detection

Abbott et al. 2017b; Abbott et al. 2019. As shown in Figure 8.15, for neutron stars with

F-QMC700 and bosonic dark matter the tidal deformability decreases with increasing dark

matter content inside the neutron star. The bosonic dark matter contribution between 5%

to 15% for a neutron star of 1.4 M⊙ satisfies the tidal deformability constraint. Figure 8.16

shows a neutron star having strange matter at the core with bosonic dark matter. The tidal

deformability constraint is followed by a neutron star of mass 1.4 M⊙ only when the bosonic

dark matter mass contribution to the total mass is less than 5%.
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FIGURE 8.9: Distribution of fermionic dark matter and nuclear matter energy
density (MeV/fm3) inside the neutron star (from the center towards the surface),
which contains nucleons only (N-QMC700) at the core, and the dark matter
mass contribution is 5% of the total mass of the neutron star.

Figure 8.17, 8.18, and 8.19 are plotted for fermionic dark matter with N-QMC700, F-QMC700,

and strange matter equations of state, respectively. Figure 8.17 suggests that for a neutron

star of mass 1.4 M⊙, the constraint on tidal deformability is only satisfied when fermionic

dark matter contribution to the total mass is between 5% and 10% while for bosonic dark

matter cases, it is satisfied up to 18%. Figure 8.18 indicates that for a neutron star of mass 1.4

M⊙, the constraint on tidal deformability is satisfied when fermionic dark matter contribution

to the total mass is between 5% and 10%, while for bosonic dark matter it is satisfied up to

15%. As suggested in Figure 8.19, a neutron star of mass 1.4 M⊙, the constraint on tidal

deformability is only followed when fermionic dark matter contribution to the total mass is

less than 5%. The properties of neutron stars are quite different with bosonic and fermionic
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FIGURE 8.10: Distribution of fermionic dark matter and strange matter en-
ergy density (MeV/fm3) inside the neutron star (from the center towards the
surface), which contains deconfined quarks at the core. The dark matter mass
contribution is 5% of the total mass of the neutron star.

dark matter, particularly the distribution of dark matter energy density, which in turn affects

other properties of the neutron star, such as its total mass and radius.

In next section, the effects of neutron decay have been explored. The consequences of the

decay on the properties of the neutron stars are tested against the observational constraints.

In this study, a strong focus is kept on the total baryon number and conservation of energy.

There are two hypothesis that are given above, namely, the Fornal and Grinstein hypothesis,

and the Strumia hypothesis for neutron decay, that are taken into consideration.
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FIGURE 8.11: Distribution of bosonic dark matter and nuclear matter energy
density inside the neutron star (from the center towards the surface), which
contains nucleons only (N-QMC700) at the core. The dark matter mass
contribution is 5% of the total mass of the neutron star.

8.2 Consequences of the Fornal and Grinstein hypothesis of

neutron decay into dark matter

The equation of state of neutrons decaying into dark matter according to the Fornal and

Grinstein hypothesis given above is integrated with the nuclear matter equation of state and

two fluid structural equations, and the properties of the neutron stars are calculated as follows:
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FIGURE 8.12: Distribution of bosonic dark matter and nuclear matter energy
density inside the neutron star (from the center towards the surface), which
contains hyperons (F-QMC700) at the core. The dark matter mass contribution
is 5% of the total mass of the neutron star.

8.2.1 Mass and tidal deformability of the neutron star and the

population of dark matter

Figure 8.20 displays the relationship between pressure and the energy density of matter inside

the neutron star. Before neutrons decay into dark matter, the equation of state is stiff and

produces neutron stars with a maximum mass above 2 M⊙. As neutrons decay into dark matter,

following the Fornal and Grinstein hypothesis, the pressure reduces significantly when dark

matter is assumed to be non-self-interacting and produces neutron stars of maximum mass of

0.7 M⊙. To produce heavier neutron stars, the equation of state must be stiff. Therefore, dark

matter self interaction is introduced and increased until it produces the neutron star of 2 M⊙.
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FIGURE 8.13: Distribution of bosonic dark matter and strange matter energy
density inside the neutron star (from the center towards the surface), which
contains deconfined quarks at the core. The dark matter mass contribution is
5% of the total mass of the neutron star.

The self-interaction of dark matter is considered similar to the neutron-ω coupling, which is

given by G, which is defined as

G =
( gint
mint

)2
, (8.1)

where gint is the coupling constant and mint is the mass of the interchange particle. Figure

8.21 is plotted to display the relation between the mass and the radius of neutron stars. From

Figure 8.21, it is evident that as the neutrons decay into dark matter, if the dark matter is

non-self-interacting (G = 0 fm2), the maximum mass of the neutron star falls from 2.23 M⊙

to 0.7 M⊙, which is consistent with what is shown in Ref. Motta et al. 2018b. Therefore,

the dark matter repulsive self-interaction must be strong to sustain the neutron star against

gravity and produce a neutron star of maximum mass of at least 2 M⊙. Indeed, as shown in
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FIGURE 8.14: Tidal deformability against the mass (given in solar masses)
of the neutron star, which contains nucleons only matter (N-QMC700) and
different amounts of bosonic dark matter mass contribution to the total mass
of the neutron stars.

Fig. 8.21, to get a neutron star of 2 M⊙, the dark matter self-repulsion must have a strength of

at least G = 26 fm2, which agrees with the findings proposed in Ref. Cline and Cornell 2018.

Figure 8.22 shows the tidal deformability of a neutron star against its mass. The discovery of

gravitational waves (Abbott et al. 2017b; Abbott et al. 2019; Bramante et al. 2018) from the

binary neutron star merger GW170817 puts a constraint on the tidal deformability that is the

first analysis Abbott et al. 2017b shows that a neutron star of mass 1.4 M⊙ must have tidal

deformability in the range, 70 ≤ Λ ≤ 580, at 90% confidence level. Fig. 8.22 shows that this

constraint on tidal deformability is satisfied when neutrons decay into dark matter inside the

neutron stars.



8.2 CONSEQUENCES OF THE FORNAL AND GRINSTEIN HYPOTHESIS OF NEUTRON DECAY INTO DARK MATTER 97

FIGURE 8.15: Tidal deformability against the mass (given in solar masses) of
the neutron star, which contains hyperons (F-QMC700) and different amounts
of bosonic dark matter mass contribution to the total mass of the neutron stars.

In the process of neutron decay, described in Eq. (6.5), it is not expected that the energetics

permit the baryonic matter to be lost or emitted from the neutron star. Therefore, we expect

that in the process of neutron decay into dark matter, the total number of baryons inside the

neutron star must remain constant. The total energy of the system must not increase, but some

of the energy is expected to be lost via ϕ bosons that will leave the neutron star immediately.

Figures 8.23 and 8.24 display the population of different kinds of baryons against the different

self-repulsive strengths of dark matter. Figure 8.23 is given for a heavier neutron star, which

contains 2.4 × 1057 baryons while Figure 8.24 is plotted for a lighter neutron star, which

contains only 2.4 × 1057 baryons inside it. As shown in both figures (8.23 and 8.24), the

population of dark matter particles reduces significantly with the increment of dark matter

self-repulsion. As indicated in Figure 8.21 for the sake of satisfying the constraint on the
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FIGURE 8.16: Tidal deformability against the mass (given in solar masses)
of the neutron star, which contains strange matter and different amounts of
bosonic dark matter mass contribution to the total mass of the neutron stars.

maximum mass of the neutron stars, the dark matter must be strongly self-interacting with G

≥ 26 fm2, so we are only interested in the dark matter self interaction, G ≥ 26 fm2, and at

those values of dark matter self-interaction, the population of dark matter inside the neutron

stars is much smaller compared to the number of protons and neutrons they contain.

8.2.2 Conservation of baryon number

In this section, focus is kept on the conservation of baryons, total energy, and momentum.

During the process of neutron decay, the total energy-momentum, and the number of baryons

must be conserved. Therefore, Figure 8.25 is plotted to show the number of particles (baryons)
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FIGURE 8.17: Tidal deformability against the mass (given in solar masses)
of the neutron star, which contains nucleons only (N-QMC700) and different
amounts of fermionic dark matter mass contribution to the total mass of the
neutron stars.

inside the neutron star of mass 1.8 M⊙ as a function of the strength of the dark matter self-

repulsion. This naively suggests that the number of baryons inside the neutron star will not be

conserved, which agrees with the study given in Baym et al. 2018. The plot in Figure 8.25

indicates that if decay takes place inside the neutron star, keeping the mass of the star fixed,

the number of particles (baryons) inside the neutron star must increase, which is not possible,

and as remarked earlier, we expect that the total number of baryons must be conserved. It is

shown in Fig. 8.25 that for lower strength of dark matter self-interactions, the increment in the

number of particles (baryons) is sharp. As mentioned above, we are interested in the strength

of dark matter self-repulsion only in the region where G ≥ 26 fm2. It is found that at G = 26
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FIGURE 8.18: Tidal deformability against the mass (given in solar masses) of
the neutron star, which contains hyperons (F-QMC700) and different amounts
of fermionic dark matter mass contribution to the total mass of the neutron stars.

fm2, the total number of baryons inside the neutron star after the decay is approximately 2.5

× 1055, or 1% more than the initial number, where the mass of the neutron star is held fixed.

To explore this phenomenon, further plots are presented in Figs. 8.26 and 8.27, where the

mass of the neutron star is plotted against the strength of self-repulsion of the dark matter.

The total number of particles (baryons) inside the neutron star is kept fixed at 2.4 × 1057 in

one plot and 2 × 1057 baryons in the other plot, respectively. In both figures, the mass of

the neutron star is smaller than the mass of the neutron star before the decay. Indeed, the

plots indicate that as the process of neutron decay takes place for a fixed total number of

baryons, the mass of the neutron star reduces rapidly when the strength of the dark matter

self-interaction is smaller than 26 fm2. Both the figures (8.26 and 8.27), indicate that at G
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FIGURE 8.19: Tidal deformability against the mass (given in solar masses)
of the neutron star, which contains strange matter and different amounts of
fermionic dark matter mass contribution to the total mass of the neutron stars.

= 26 fm2 the change in the mass of the neutron star is approximately 0.002 M⊙ or 0.14%,

which is quite large. Figure 8.28 displays the mass of the neutron star before and after the

neutron decay, at G = 26 fm2, for the fixed number of baryons inside the neutron star. The

plot clearly shows the difference in mass of the neutron star after the neutron decay, while

the number of baryons remains fixed. Clearly, this cannot happen unless we either heat the

neutron star, emit this amount of energy, or do both.

8.2.3 Change in temperature of the neutron star

It is worth exploring the consequences for the star when all of the required decrease in mass

is not carried by ϕ bosons. Neutron stars cool down very quickly. In fact, the nuclear matter
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FIGURE 8.20: Equation of state for neutrons decaying into dark matter inside
a neutron star according to the Fornal and Grinstein hypothesis.

of the neutron stars cools down before reaching the temperature of 1 MeV within the order of

seconds. The cooling process and time scale of cooling the nuclear matter are much shorter

than the time scale of neutron decay into dark matter (of the order 105 seconds). Thus, we

may treat the neutrons as a degenerate Fermi gas while considering the effect of dark matter

on the properties of the neutron star having a finite temperature. We expect the temperature

of dark matter to be significantly higher than that of nuclear matter. Generally, we expect

objects to expand when heated, and if the neutron star heats up during the decay, then we

naively expect it to expand, which must lead to a reduction in its rotational speed. The plot

shown in Fig. 8.21 for a neutron star of fixed mass at a temperature of 0 ◦K, indicates that the

radius of the neutron star is expected to reduce after the neutron decays into dark matter, or

that the neutron stars have smaller radii after the decay than before. Therefore, it is a matter
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FIGURE 8.21: Total mass (given in solar masses) against the radius of the
neutron star at T = 0 ◦K, before and after the neutrons decay into dark matter
at different dark matter self-interaction (G) strengths.

of investigation whether the neutron star expands or shrinks due to neutron decay into dark

matter. To resolve the question, we compare the neutron star radius at T = 0◦K before the

neutron decay for a neutron star that contains nucleons only, against the radius of a neutron

star that contains nucleons and dark matter after the neutron decay with the same total number

of baryons and the dark matter is heated by the energy equivalent of 0.001 M⊙ (assuming

energy equivalent to the rest of the mass is carried by ϕ bosons), which is a conservative upper

limit (corresponding to the 1.4 M⊙ case).
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FIGURE 8.22: Tidal deformability versus mass (given in solar masses) of
the neutron star at different dark matter self-interactions (G). The dark, bold
vertical line gives the range of values acceptable for tidal deformability for a
neutron star of 1.4 M⊙.

NS Mass T (MeV) R (km) I (kg.m2)
1 1.4 M⊙ (Nuclear matter before decay) 0 12.25 1.62 × 1038

2 1.4 M⊙ (Nuclear matter + DM after decay) 0 11.60 1.38× 1038

TABLE 8.1: The properties of the neutron star are given at T = 0◦K before
and after the neutrons decay into dark matter, where T is the temperature, M
is the mass of the neutron star, R stands for the radius, and I represents the
moment of inertia of the neutron star.

Table 8.1 is given for the properties of the neutron stars at temperature 0◦K before and after

the neutron decay into dark matter and the total number of baryons remain conserved. From

Table 8.1, it is evident that there is a significant change in the radius and moment of inertia of

the neutron star after the decay at 0◦K. While Table 8.2 is presented for the properties of the
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FIGURE 8.23: The population of baryons against the dark matter self-
interaction G for a neutron star of a fixed total number of baryons at 2.4
× 1057.

NS Mass T (MeV) ∆ M (M⊙ ) ∆ R (m) % ∆ R ∆ I (kg.m2) % ∆ I
1.4 M⊙ 0.25 (Nuclear matter) 0.001 450 (decrease) 3.673% 0.1653× 1038 10.21%
1.4 M⊙ 2 (DM) 0.001 620 (decrease) 5.06 % 2.28 × 1037 14.11 %

TABLE 8.2: The properties of the neutron star associated with a rise in its
temperature. Here, T is the rise in temperature following the decay, ∆M stands
for the equivalent changes in mass associated with the decay, ∆R is the change
in radius, and ∆I gives the change in moment of inertia due to the change in
temperature. The radius of the neutron star after the decay is smaller compared
to the radius of the neutron star before the decay. The changes in the values
are given with respect to the first entry in Table 8.1.

neutron star at a certain temperature of nuclear matter and dark matter having a total number

of baryons conserved. For a neutron star of mass 1.4 M⊙, if only nuclear matter heats up,

it will require a rise of 0.25 MeV in temperature corresponding to an energy equivalent of
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FIGURE 8.24: The population of baryons against the dark matter self-
interaction G for a neutron star of a fixed total number of baryons at 1.6
× 1057.

0.001 M⊙. This rise in temperature leads to a reduction in the radius of the neutron star by

450 meters, or approximately 3.673 % . On the other hand, if only dark matter heats up by the

same amount of energy, it requires a rise of 2 MeV in temperature, which leads to a reduction

in the radius of the neutron star by approximately 5.061 %. The reduction of radii in both

cases, whether dark matter heats up or nuclear matter heats up, leads to a significant decrease

in the radius and the moment of inertia of the neutron star, which must cause the neutron star

to spin up. The decrease in moment of inertia corresponding to the reduction in radius by 450

m corresponding to the case where the nuclear matter is heated to 0.25 MeV, is 0.1653 kg.m2

×1038 or 10.2103%, while the reduction in the moment of inertia is 0.2277×1038 kg.m2 or

14.067 % when the radius decreases by 620 m, with the dark matter heated to 2 MeV. Thus,
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FIGURE 8.25: For a neutron star of fixed mass 1.8 M⊙, the plot is given
for the total number of baryons inside the neutron star before and after the
neutrons decay into dark matter versus different dark matter self-interaction
strengths (G).

it is evident that the radius of the neutron star reduces after the neutrons decay into dark

matter, even though the process involves the neutron star heating up. It seems surprising at

first glance, but to understand the shrinking of the neutron star point, one may consider three

cases. In the first case, let us consider a neutron star, which contains nucleons only before the

neutron decays at the temperature T = 0◦K. In the second case, let us consider the neutron

star, which contains nucleons and dark matter after decay, but the temperature of the neutron

star is T = 0◦K. In the third case, the neutron star contains nucleons and dark matter at some

non-zero temperature, T . If one compares cases 2 and 3, then the neutron star radius clearly

expands as the neutron star heats up. However, case 2 is not possible because it violates

energy-momentum conservation. Therefore, one must compare cases 1 and 3. From Figure



108 8 RESULTS

FIGURE 8.26: The mass (given in solar masses) of the neutron star is plotted
against the dark matter self-interaction strength (G in fm2) when the total
number of baryons inside the neutron star is fixed at 2.4 × 1057.

8.21 the radius of the neutron stars shrinks a lot following the neutrons decay. Ultimately, the

temperature required to provide the necessary mass is not enough to outweigh the reduction

in the radius of the neutron star caused by the conversion of neutrons to dark matter at T =

0◦K. This is why the final radius (after the decay) is smaller than the radius before the decay,

even though the neutron star heats up.

8.3 Consequence of neutron decay: Strumia hypothesis

In this section, the effects of Strumia’s hypothesis that neutrons decay into three identical

dark matter particles inside neutron stars are explored. Figure 8.29 shows the equations of
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FIGURE 8.27: The mass (given in solar masses) of the neutron star is plotted
against the dark matter self-interaction strength (G in fm2) when the total
number of baryons inside the neutron star is fixed at 2 × 1057.

state of a neutron star following Strumia’s hypothesis of neutrons decaying into dark matter.

There are two equations of state considered. The equations of state are derived for nucleons

only, and hyperons included at the higher energy densities of the nuclear matter at the core of

the neutron stars. Figure 8.29 clearly shows that if neutrons decay into three identical dark

matter particles, as suggested by Strumia, the equations of state after the neutrons decay get

softer a little yet remain quite stiff. The equation of state that includes hyperons remains

almost identical after the neutrons decay into dark matter, while the equation of state that

only includes nucleons gets softer. Figure 8.30 shows the relation between mass and radius of

neutron stars at a temperature T = 0◦K. Here, two equations of state are presented before the

neutron decays into dark matter. One is based on nucleons only, and the other equation of
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FIGURE 8.28: The mass (given in solar masses) of the neutron star is plotted
against the total number of baryons before and after the neutron decay, where
dark matter interaction strength is G = 26 fm2.

state allows the development of hyperons at higher energy densities. As shown in Fig. 8.30

both the equations of state predict neutron stars of maximum mass of close to 2 M⊙ before

the neutrons decay into dark matter, although the hyperons included equation of state is softer

compared to the nucleons only equation of state because in that equation of state, as the energy

density increases, the high momentum nucleons get replaced by the low momentum hyperons,

which is why the nucleons only equation of state predicts a neutron star of maximum mass of

2.25 M⊙ while hyperons included equation of state gives neutron stars of maximum mass

close to 2 M⊙ only. After the neutrons decay into dark matter, the mass of the neutron star

decreases, but even after the neutrons decay, both equations of state are stiff enough to predict

neutron stars with a maximum mass close to 2 M⊙. Therefore, the Strumia hypothesis of
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neutrons decaying into three identical dark matter particles does not require the dark matter

particles to be self-interactive at all in order to produce the neutron stars of 2 M⊙. The radius

of the neutron stars shrinks after the neutrons decay into dark matter for both equations of

state, but remains well within the observational values of the radius. Fig. 8.31 presents the

FIGURE 8.29: Relationship between pressure and energy density of matter
inside the neutron star following Strumia’s hypothesis of neutrons decaying
into dark matter.

tidal deformability against the mass of the neutron star. The bold dark vertical line represents

the range of values of tidal deformability that a neutron star of mass 1.4 M⊙ should have in

order to be consistent with the finding of gravitational waves observational as indicated in

Abbott et al. 2017b; Abbott et al. 2019; Bramante et al. 2018. As it can be seen in Fig. 8.31,

that the value of the tidal deformability of the neutron star produced by nucleons only and

hyperons included in the equation of state follows the constraint on the tidal deformability
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FIGURE 8.30: Total mass (given in solar masses) vs. radius of the neutron
stars for nucleons only and hyperons included equation of state at T = 0 ◦K,
before and after the neutrons decay into dark matter.

before and after the neutrons decay into dark matter. Therefore, Strumia’s hypothesis that

neutrons decay into dark matter survives. Figure 8.32 shows the relationship between the

mass and the moment of inertia of the neutron stars produced by nucleons only and hyperons

included in the equation of state. As shown in Figure 8.32, the moment of inertia of the

neutron star decreases after the neutrons decay into dark matter, which is consistent with

the finding in Fig. 8.30, which suggests that the radius of the neutron star of the same mass

decreases following the neutrons decay into dark matter. The reduction of the moment of

inertia should lead to an increment in the spin of the neutron star, which may play a vital role

in detecting the observational signal of the neutron decay hypothesis.
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FIGURE 8.31: Tidal deformability against the mass (given in solar masses)
of the neutron star before and after neutrons decay into dark matter for the
nucleons only and hyperons included in the equation of states.

Figure 8.33 shows the distribution of energy density of the nuclear matter and the dark matter

inside the neutron star from the centre to the surface. Although, the plot is given for the

nucleons only equation of state, the plot for the hyperons equation of state is essentially

identical. Be it the nucleons only equation of state or the hyperons included equation of state,

the degenerated dark matter remains inside the neutron star and does not shield the surface,

and the dark matter remains inside the core.

Figure 8.34 displays the relative population of dark matter inside the neutron stars, and Figure

8.35 gives the contribution of the dark matter mass to the total mass of the neutron stars. The

Figures 8.34 and 8.35 suggest that the fraction of conversion from neutrons to dark matter

particles inside the lighter neutron stars is quite small. The lighter neutron star does not
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FIGURE 8.32: The moment of inertia versus the mass (given in solar masses)
of the neutron star for nucleons only and hyperons included in the equation of
state is given at T = 0◦K before the neutrons decay into dark matter.

contain much dark matter, although the population of dark matter particles increases rapidly

in heavier neutron stars. In the neutron star of maximum mass produced by nucleons only and

hyperons included in the equation of state, dark matter can have mass as much as 4% of the

total mass of the neutron star. The total number of dark matter particles is about 12% of the

total number of particles. The 12% contribution of dark matter particles to the total number

of particles is enough to generate enough repulsion to sustain it against gravity and satisfy the

constraints on maximum mass and tidal deformability of the neutron star.

During the decay of neutrons into dark matter, it is expected that the total energy and the

total baryon number inside the neutron star must remain conserved. Therefore, to explore the

neutron decay hypothesis further, the properties of the neutron star of mass 1.8 M⊙ are given
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FIGURE 8.33: The distribution of nuclear matter and the dark matter energy
density inside the neutron star from the centre to the surface.

in Table 8.3 which displays that, be it nucleons only or hyperons included in the equation of

state, if the total baryon number is kept fixed, then after the decay, the neutron star mass is

lighter than before the decay, by approximately 0.007 M⊙. Since neutron stars are extremely

compact objects with an escape velocity comparable to the velocity of light. Virtually, nothing

but light can escape from the neutron star. Therefore, following the neutron decay into dark

matter, there is no known mechanism that suggests that particles can have enough velocity

to escape the neutron star. The problem can be solved by having dark matter that is not

completely degenerate but is effectively at a finite temperature. The energy equivalent to

the difference in the mass of the neutron star before and after the decay, i.e., 0.007 M⊙

may be used to heat up the dark matter inside the neutron star. Here, the properties of the

neutron stars produced by both equations of state are given, with hot dark matter having a heat
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FIGURE 8.34: The population of dark matter particles against the total number
of baryons inside the neutron star for nucleons only and hyperons included in
the equation of state.

energy equivalent to 0.007 M⊙ as given in Table 8.4. Table 8.4 suggests that, for nucleons

only equation of state the dark matter inside the neutron must heat up to a temperature of

approximately 6.5 MeV, whereas for hyperons included equation of state, the dark matter

must heat up to a temperature of approximately 6 MeV. As given in Table 8.4, the radius of

the neutron star is almost unchanged with hot dark matter at the temperatures given above,

and the moment of inertia of the neutron star having hot dark matter at the temperature of 6

MeV or 6.5 MeV remains almost unchanged as of the moment of inertia at 0◦K. Therefore,

the heating of dark matter inside the neutron stars produced by the Strumia hypothesis does

not change the effective radius. The radius remains the same as the radius of a neutron star

with dark matter at a temperature 0◦K. However, the decay of neutrons into dark matter
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FIGURE 8.35: The contribution of the dark matter mass (given in solar masses)
is given against the total mass (given in solar masses) of the neutron star, with
nucleons only and hyperons included in the equation of state.

NS Mass T (MeV) R (km) I (kg.m2)
1 1.8 M⊙ (Nucleon only EoS before decay) 0 12.25 2.25 × 1038

2 1.793644 M⊙ (Nucleon only EoS + DM after decay) 0 11.96 2.12 × 1038

3 1.8 M⊙ (Hyperons included EoS before decay) 0 12.20 2.24 × 1038

4 1.793577 M⊙ (Hyperons included EoS + DM after decay) 0 11.96 2.11 × 1038

TABLE 8.3: The properties of a 1.8 M⊙ neutron star containing 2.4445 ×1057

total baryon number at 0◦K before and after the neutrons decay. Here, T is the
temperature, M is the mass, R is the radius, and I is the moment of inertia of
the neutron star.

shrinks the radius of the neutron star, which is significant and effectively reduces the moment

of inertia by approximately 5.75%. As a result, the neutron star must spin up during the decay.
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M⊙ T (MeV) of DM R (km) I (kg.m2)
1.8 M⊙ (Nucleon only EoS before decay) 0 12.25 2.25 × 1038

1.7936 M⊙ (Nucleon only EoS + DM after decay) 6.5 11.96 2.124 × 1038

1.8 M⊙ (Hyperons included EoS before decay) 0 12.20 2.24 × 1038

1.7935 M⊙ (Hyperons included EoS + DM after decay) 6 11.96 2.115 × 1038

TABLE 8.4: The properties of a 1.8 M⊙ neutron star containing 2.4445 ×1057

total baryon numbers with dark matter heated by the energy equivalent to the
0.007 M⊙.

8.4 Fornal and Grinstein hypothesis with heavier ϕ boson

As shown above, the decay of neutrons into dark matter does not necessarily result in the

massless ϕ bosons. In fact, for stable nuclei to remain stable, the masses of mχ and mϕ must

satisfy the condition 937.906 MeV < mχ+mϕ < 938.79. Most of the studies have selected the

mass of ϕ boson very close to zero, which makes the calculation easier, and one does not have

to bother about ϕ boson because, being massless, it escapes the neutron star immediately. In

this section on Fornal and Grinstein decay, it is assumed that the ϕ boson is not massless but

has a mass of 1 MeV and will not escape the neutron star but remain trapped inside it like χ

fermions. Since ϕ’s are bosons, if they remain inside the neutron stars, they must condensate.

Hence, a neutron star must have nuclear matter, χ fermions, and ϕ bosons inside it.

Below the critical temperature, the ϕ bosons must condense. Since the mass of the ϕ bosons

is very small, their contribution is far too small to make any significant changes in the existing

properties of the neutron stars even after their condensation. Therefore, for the sake of ease of

calculation, the condensation of the ϕ bosons has not been considered. Since the ϕ bosons are

present in the neutron star, the chemical composition of the neutron star has changed, and the

following chemical equilibrium conditions must hold true:

µn = µχ +mϕ µn = µp + µe µµ = µe np = ne + nµ (8.2)

where mϕ is the mass of the ϕ boson, which is 1 MeV, and mχ is selected to be 937.79 MeV.

Following these conditions, the equation of state constructed using the Fornal and Grinstein
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hypothesis has been solved, and the following results have been produced. Figure 8.36 shows

the equation of state of the neutron star when neutrons decay into dark matter according to

the Fornal and Grinstein hypothesis, and one of the decay products, mϕ has a mass of 1 MeV

and remains trapped inside the neutron star. Since the mass of the ϕ boson is very small, it

does not affect the equation of state much, and the Figure 8.36 remains almost similar to the

Figure 8.20, which has been calculated for a massless ϕ boson. The dark matter has to be

self-interacting with a self-interaction strength of at least G = 26 fm2 to produce a neutron

star of 2 M⊙. Figure 8.37 is the relationship between the mass and radius of the neutron star,

which contains dark fermions and dark bosons. Similar to section 8.2, the vector repulsion of

dark fermions is increased until the maximum mass of the neutron star is produced to be 2

M⊙. The result is very similar to the earlier one, where ϕ is assumed to be massless because

the mass contribution of the ϕ boson is about 1/106 M⊙ which is insignificant to impact the

properties of the neutron star such as mass and radius. It is evident from Figure 8.37 that the

mass and the radius of neutron stars decrease following the neutron decay hypothesis, even

when the bosons are considered to be heavy. The constraint on the maximum mass of the

neutron star is satisfied when the dark fermions vector interaction strength is G = 26 fm2. In

the plot shown in Figure 8.38 the tidal deformability of the neutron decreases after the neutron

decays into dark matter. Similar to mass and radius, tidal deformability also remains almost

unchanged with the presence of the 1 MeV ϕ boson. mϕ = 1 MeV and G = 26 fm2 satisfy

the constraint on tidal deformability. The moment of inertia of the neutron star is presented

against its mass. Having a heavier dark boson ϕ also suggests that the moment of inertia

decreases after the neutron decay. We are only interested when G≥ 26 fm2. Therefore, at G =

26 fm2 the change in moment of inertia is significant after the neutron decay into dark matter,

which indicates that neutron star must spin up following the neutron decay. But compared to

the case of massless ϕ bosons, the moment of inertia remains unchanged when mϕ = 1 MeV.

Although the contribution of ϕ bosons with mϕ = 1 MeV, to the total mass of the neutron star

is very small to change the properties of the neutron star compared to the case of a massless ϕ

boson. But if ϕ bosons decay into photons, they may play a significant role in neutron star

heating. Most of the studies show that neutron stars cool down rapidly following the standard

Urca process. After a million years, the neutron stars have a luminosity of order 1031.5 erg/sec.
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FIGURE 8.36: Relationship between pressure and energy density of matter
following the Fornal and Grinstein hypothesis when mϕ = 1 MeV.

So, if ϕ bosons decay into photons, then after a million years they must not contribute to

luminosity ≥ 1031.5 erg/sec. Based on the luminosity after 106 years, the lifetime of the dark

ϕ bosons is calculated to be 1.85 × 1011 years.

8.5 Decay modes of ϕ bosons

The decay products of the neutron, the χ and ϕ are BSM particles (beyond Standard Model

particles) that can originate from some UV-complete theory or be considered within some

low-energy effective theory. The physics of their existence remain unknown, but we can

still constrain them from various sources. The massive fermion, χ, is an ideal dark matter

candidate and can make up the bulk or all of the observed relic density today. The other
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FIGURE 8.37: Mass (given in solar masses) vs. radius plot for neutron stars
with dark fermions and dark bosons inside the core with different χ-χ interactions.

product of decay, the boson, can originate from a BSM source. On general grounds and

experimental considerations, the possibility that the boson is a photon has been ruled out. Here,

some possibilities of ϕ bosons to couple the Standard Model particles have been considered,

as have constraints based on the findings in the previous section.

8.5.1 Scalars and pseudoscalars

In the last few years, light scalar and pseudo-scalar particles have emerged as leading new

physics candidates that can be constrained from a variety of sources. While the primary

motivation is derived from axions, simplified models with light scalars or pseudo-scalars have

triggered a lot of attention. Here, we assess their viability given our findings above.
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FIGURE 8.38: Tidal deformability against the mass (given in solar masses) of
the neutron star before and after the neutron decays into dark matter. The bold,
black, vertical line indicates the acceptable range of values for tidal deformability.

The first bosonic candidate is a scalar coupled to the electromagnetic field strength,

Lint =
Cs
Λ
ϕFµνF

µν +
mf

Λ
ϕf̄f + · · · (8.3)

where ϕ is the scalar field, Fµν the electromagnetic field strength, and f is the Dirac spinor

for the leptons. The overall normalization Cs

Λ
is model dependent, while ml is the mass of the

lepton. The linear couplings can be generated by the scalar coupling to Higgs as ϕH†H . A

quadratic coupling can also be generated if ϕ carries a Z2 symmetry,

L =
Cq
Λ2
q

ϕ2FµνF
µν +

∑
f

mf

Λ2
q

ϕ2f̄f + · · · (8.4)

In both cases, the dots indicate any other couplings that may be induced.
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FIGURE 8.39: Moment of inertia of the neutron star against its mass (given
in solar masses) when mϕ = 1 MeV remains trapped inside the core.

Couplings to the neutron can be obtained by integrating out, for example, heavy fermions

yielding dimension 6 operators, such that the effective neutron coupling can be written as,

L ∈ Lkin + λeffnχϕ . (8.5)

The linear (and quadratic) couplings induce a shift in the electromagnetic couplings that can

be constrained by a variety of sources. A summary of these can be found in Ref. Antypas

et al. 2022.

The next possibility is that of a pseudoscalar that couples like an axion (like particle) to

photons, and derivatively to electrons,

Lint =
Csγ
Λ
ϕFµνF̃

µν +
Cf
2Λ

(∂µϕ)f̄γ
µγ5f + · · · . (8.6)
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For axion-like particles in Equation 8.6, the effective ALP coupling to leptons generates a

coupling,
Cf
2Λ

(∂µϕ)f̄γ
µγ5f = −Cfmf

Λ
if̄γµγ5f + · · · (8.7)

where the dots indicate terms proportional to FF̃ . The decay widths of charged fermions are

given by,

Γ(a→ ff̄) =
m2
fma|C2

f |
4πΛ2

√
1−

4m2
f

m2
a

. (8.8)

Analogous to scalars the effective ALP coupling to neutrons can be written as,

L ∈ Lkin + λeffnχγ
5ϕ . (8.9)

A comprehensive account of UV complete models and their phenomenological consequences

is left for future work. In principle, since the bosons in our case are heavy, the most general

Lagrangian will contain interaction terms involving not only photons and leptons but hadrons

as well.

The decay widths for pseudoscalars to diphotons are given by,

Γ(a→ γγ) =
|C2

γ |
4πΛ2

m3
a . (8.10)

The lifetime is

τ(a→ γγ) = 1/Γ(a→ γγ × f) (8.11)

where f is the conversion factor from GeV−1 to seconds. From the estimates derived above,

for a boson mass of 1 MeV, a lifetime of τ ≥≃ 1011 years, and if this is only decay channel

relevant, the effective coupling, geff = Cγ/Λ ≤ 10−17. Note that a lifetime of 1011 years is

about 1018 seconds. The lifetime of the universe is about 1018 seconds, and therefore this

boson is cosmologically stable and should add to the total relic density of the universe. For

scalars and pseudoscalars, one of the strongest constraints at this mass originates from the

consideration that photons produced during ALP decays when the universe is transparent

should not exceed the total extragalactic background light (EBL) Cadamuro and Redondo

2012. For pseudoscalar ALPs, this limits lifetimes to τ ≥ 1023 seconds, such that the effective

ALP coupling is restricted to geff ≤ 10−19. Furthermore, X-rays produced from ALP decays
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in galaxies must not exceed the known backgrounds. This limits τ ≥ 1025 seconds, leading to

an effective coupling geff ≤ 10−20 Cadamuro and Redondo 2012.

8.5.2 Spin-1

While the decay to a photon has been ruled out, a possible solution is that the spin-1 boson

can be a dark (kinetically) mixed photon. The massless part of the most general theory of two

U(1)a,b Abelian gauge bosons can be written as,

L = −1

4
FaµνF

µν
a − 1

4
FbµνF

µν
b − ε

2
FaµνF

µν
b (8.12)

The masses of these can be obtained via a Stuckelberg mechanism or via spontaneously

broken gauge symmetry

Lm =
1

2
M2

aA
a
µA

aµ +
1

2
M2

bA
b
µA

bµ +MaMbA
a
µA

µ
b (8.13)

Consider a hypercharge mixing with the usual photon,

L =
ϵ

2 cos θW
F̃

′

µνB
µν . (8.14)

Then, the effective Lagrangian becomes,

L ∈ eϵJµA
′

µ + e′ϵ tan θWJ
′

µZµ + e′J
′

µA
′

µ , (8.15)

where J ′
µ and e′ are the dark sector current and the dark photon coupling to the dark sector.

Once the Z boson is integrated out, we can see that the coupling of the dark photon to SM

fermions is proportional to eϵ, i.e., millicharged dark photons, which are constrained from

various sources. The effective coupling to neutrons can be written as,

L ∈ eϵ(nσµνχF
′

µν) . (8.16)

Below the two electron threshold, the constraints on dark photons originate from stellar

cooling bounds and from the Xenon-1T experiments Caputo et al. 2021; Aprile et al. 2022.

The constraints on the kinetic mixing parameter is ϵ ≤ 10−13 for mA′ ≃ 1 MeV.
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Conclusion

The presence of dark matter inside neutron stars has serious implications. With the existence

of dark matter inside the neutron star, whether it is captured from the surroundings or comes

from neutron decay, the properties of the neutron star change significantly.

9.1 Dark matter capture

In section 8.1, the effects of different dark matter candidates (bosonic and fermionic dark

matter) on the properties of neutron stars are presented when the neutron stars capture the dark

matter particles from their surroundings. The comparative study has been conducted using

three models of neutron stars with dark matter having a mass of mχ = 1 GeV for fermionic

and bosonic dark matter, both (assuming lχ= 1 fm for bosonic dark matter and mass mI = 100

MeV for fermionic dark matter). The available models suggested by Li et al. 2012b; Bell et al.

2020; Kouvaris and Tinyakov 2010 that explain the capture of dark matter inside a neutron

star indicate that neutron stars take billions of years or maybe more to accumulate dark matter

mass that contributes 5% of the total mass. Figs. 8.2 and 8.3 show that if the neutron stars are

produced by the nucleons only equation of state (N-QMC700), they can accumulate up to

15% mass of the total mass of the neutron star if the dark matter is bosonic and 10% mass of

the total mass of the neutron star if the dark matter is fermionic, and still produce massive

neutron stars of 2 M⊙. The fermionic dark matter tends to collapse the neutron star faster than

the bosonic dark matter.

Figs. 8.4 and 8.5 show the effect of fermionic and bosonic dark matter on the neutron stars

produced by F-QMC700, containing hyperons at the core. The maximum mass of a neutron
126
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star produced by F-QMC700 is close to 2 M⊙. The accumulation of dark matter inside

the neutron star drops the maximum mass of the neutron star below 2 M⊙. Even the 5%

contribution of the dark matter mass to the total mass is large enough that the neutron stars

cannot be massive enough to have a mass of 2 M⊙. Therefore, the neutron stars must have a

dark matter mass contribution smaller than 5% of the total mass of the neutron star. Figures

8.6 and 8.7 suggest that if the neutron stars contain strange matter at higher energy densities,

they can produce neutron stars with a maximum mass of 2 M⊙ and the accumulation of the

dark matter drops the maximum mass of the neutron star close to 2 M⊙ when the dark matter

mass contribution is 5% of the total mass of the neutron star. The radius of the neutron star

remains in the range of 9 to 13 km for all the cases explored of dark matter accumulation.

Therefore, having 5% of the mass contributed by dark matter to the total mass of the neutron

star seems to be enough to make significant changes in the properties of the neutron star.

Having 5% or less dark matter mass in the core seems like a good and realistic approximation

to see the changes in the neutron star’s properties. The mass and radius analysis suggest that

the presence of dark matter inside the neutron star reduces the maximum mass and radius

of the neutron star. For the same contribution of dark matter mass to the total mass of the

neutron star, the bosonic dark matter neutron stars are bigger and heavier compared to the

fermionic dark matter neutron stars.

For all the cases considered, Figs. 8.8 to 8.13 show the distribution of the energy density of

nuclear matter and dark matter inside the neutron stars (Nelson et al. 2019), which contain

5% dark matter mass to the total neutron star mass. In general, these figures suggest that

regardless of the nuclear matter inside the neutron stars, the bosonic dark matter captured by

the neutron star remains trapped inside the neutron star, while the captured fermionic dark

matter covers the neutron star from the center to the surface, and in fact, fermionic dark matter

envelops the neutron star. From Figures 8.14 to 8.19, the analysis of the constraint on tidal

deformability indicates that, in general, neutron stars can contain a greater amount of bosonic

dark matter compared to fermionic dark matter (Husain and Thomas 2021a). The fermionic

dark matter mass contribution can be at most 10% of the total neutron star mass for nucleons

only equation of state (N-QMC700) and hyperons included equation of state (F-QMC700),
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while it can be 18% for bosonic dark matter with N-QMC700. Tidal deformability of the

strange matter equation of state of the neutron star suggests that the dark matter contribution

to the total mass of the neutron star cannot be greater than 5% regardless of whether dark

matter is fermionic or bosonic in nature.

.

9.2 Fornal and Grinstein hypothesis

Apart from the effects of captured dark matter inside the neutron stars on its properties.

In section 8.2, Fornal and Grinstein’s hypothesis of neutrons decaying into χ (dark matter

fermion) and ϕ (dark boson) is explored. Figure 8.20 shows that the presence of dark matter

soften the equation of state and it has been displayed in Figure 8.21 that the dark matter has

to be self-repulsive with vector coupling strength G ≥ 26 fm2 in order to produce the neutron

stars of mass above 2 M⊙ and to be consistent with the observations. Figure 8.22 shows that,

at this coupling strength, the constraint on the tidal deformability, which is derived from the

gravitational wave observation of GW170817, is also satisfied. As the coupling strength of

the dark matter increases, the population of dark matter inside the neutron star decreases, as

shown in Figs. 8.23 and 8.24. Therefore, when G ≥ 26 fm2 the population of dark matter

inside the neutron star is relatively low, the relative population of dark matter particles is less

than 5% even in heavier stars, with masses of order 1.8 M⊙. Even though the amount of

dark matter populated inside the neutron star is low, it is enough to make significant changes

in the properties of the neutron star. Figs. 8.25, 8.26 and 8.27 demonstrate that it is not

possible to conserve the number of baryons while keeping the total mass fixed inside the

neutron star. Instead, the figures indicate that to keep the total number of baryons and total

energy conserved, the neutron star must heat up during the decay process. The nuclear matter

inside the neutron star will cool down by the standard mechanism, but the cooling of dark

matter will take much longer. The primary mechanism of dark matter cooling will involve

the collision of two dark matter particles, producing two neutrons, which will be partially

Pauli blocked because of the rapid cooling of the nuclear matter. This mechanism will be
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considerably slower than the rate of neutron decay to dark matter, but it will cool down the

neutron star, eventually.

Table 8.3 shows that the decay of neutrons to dark matter causes a significant reduction in

the radius of the neutron star, which leads to a reduction in the moment of inertia. Therefore,

the rate of rotation of the star must change; in fact, the neutron stars must spin up during the

decay. The dark matter populated inside the neutron star must be at a finite temperature and

will cool down very slowly. Given the mechanism for the decay, the time scale for the neutron

star to spin-up should be about 100,000 seconds. The neutron star spinning up and heating

may provide signals of the neutron decay inside the neutron star.

Moreover, in section 8.4, the Fornal and Grinstein hypothesis is extended, and the ϕ boson is

considered to have a mass of 1 MeV, with the ϕ bosons remaining trapped inside the neutron

star. From Figures 8.36 to 8.39, it is clear that the presence of ϕ bosons of mass 1 MeV

does not affect the properties of neutron stars. The properties of the neutron star remain very

similar to those of the massless ϕ boson. Additionally, different scenarios for ϕ bosons to

decay into Standard Model particles are considered, and based on the heating of the neutron

stars, constraints on the couplings of ϕ bosons with Standard Model particles are deduced.

9.3 Strumia hypothesis

Similar to the Fornal and Grinstein hypothesis, the Strumia hypothesis leads to changes in

neutron star properties. Figure 8.29 demonstrates that the equation of state following Strumia’s

hypothesis of neutron decay remains quite stiff. Figure 8.30 indicates that the neutrons decay

into three identical dark matter particles, where dark matter particles are non-self-repulsive,

which is consistent with the neutron star maximum mass constraint, regardless of the nuclear

matter inside the neutron star, be it nucleons only or hyperons at the core. The Strumia’s decay

hypothesis suggests that the dark matter particles do not need to be necessarily self-interacting

in order to produce neutron stars of above 2 M⊙. Figure 8.31 suggests that the neutrons decay

into three identical dark matter particles, which is also consistent with the constraint on the

tidal deformability of the neutron star. It is evident from Figure 8.32 that the moment of
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inertia of the neutron star decreases, followed by the neutron decay into dark matter similar

to the Fornal and Grinstein decays. Following Strumia’s decay hypothesis, it suggests that

neutron stars must spin up during the decay. Figure 8.33 illustrates that the populated dark

matter remains trapped inside the neutron star.

As illustrated by Figs. 8.34 and 8.35 that the population of dark matter is very low in lighter

neutron stars but increases rapidly in heavier neutron stars, which suggests that heavier

neutron stars with a considerable population of dark matter are ideal for studying this mode

of neutron decay. Similar to Fornal and Grinstein decay, it is not possible to conserve the

total number of baryons and keep the mass of the neutron star fixed. From the conservation

of total baryon number and total energy, Tables 8.3 and 8.4 show that if neutrons decay

into three identical dark matter particles inside a neutron star, then the neutron star must

heat up by 6 MeV (nucleons only at the core) and 6.5 MeV (hyperons included at the core),

approximately, depending on the nuclear matter considered at the core of the neutron star.

The nuclear matter will cool down by the Urca process, while the dark matter will cool down

by dark matter-dark matter collisions, the mechanism suggested above in Fornal and Grinstein

section. As suggested in Tables 8.3 and 8.4, compared to the neutron star properties at 0◦K

the heating of dark matter does not lead to a significant change in the radius or moment of

inertia of the neutron star. Although, there is a significant change in the radius and the moment

of inertia of the neutron star before and after the decay. Therefore, the Strumia hypothesis of

neutron decay also leads to heating and spinning up the neutron star.

9.4 Future outlook

As shown above, the results of fermionic dark matter capture indicate that the fermionic dark

matter envelops the neutron star while the bosonic dark matter remains inside the core. In

the future, it will be interesting to look for the gravitational lensing effects around neutron

stars can provide valuable information about the nature of the dark matter enveloping the

neutron star. The gravitational lensing effects are influenced by the mass and distribution

of the dark matter around the neutron star. Therefore, by measuring these effects, scientists
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can infer the properties of the dark matter, such as its mass, density, and distribution. It is

also possible that different types of dark matter, such as fermionic or bosonic, could produce

different gravitational lensing effects, allowing scientists to distinguish between different dark

matter models.

The observation of a supernova that results in a newly born neutron star will be interesting

in the future. Indeed, the observation of a supernova resulting in a newly born neutron

star that exhibits heating or spinning-up within 100,000 seconds after its birth would be a

significant breakthrough in particle physics. This would provide strong evidence for the decay

of neutrons into dark matter, as predicted by Fornal and Grinstein, and Strumia’s hypothesis.

Furthermore, it would open up new avenues for research and investigation into the properties

of dark matter and its interactions with normal matter. The detection of such signals would

also have implications for our understanding of the evolution and dynamics of supernovae

and neutron stars, which are important astrophysical objects with a wide range of applications

in various fields of physics.

In addition to the signals mentioned earlier, it would be worthwhile to calculate the frequency

and amplitude of the gravitational signal for a binary system of neutron stars when the neutron

stars are relatively close to each other and the distance between them is just a few times the

radius of the neutron stars and they contain dark matter inside. At this point, the internal

structure of the neutron stars becomes important, the tidal effects on nuclear matter and dark

matter will be different, and the gravitational wave signal is expected to change dramatically

if the neutron stars contain dark matter inside. The calculated values can be compared with

observational constraints and findings.
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Nuclear theory

The mass of baryons in the bag model

The mass of baryon of flavour f , containing quarks (nud, ns) is given by

Mf =
nudΩ(mud) + nsΩ(ms)

R
− Z0

R
+∆EM(f) + (4/3)πBR3, (9.1)

where B is the bag constant, R is the radius of the bag, and Ω(m) (quark mode) is calculated

using the boundary condition

sinx

x
+

cosx− sinx
x

Ω +mR
= 0, x =

√
Ω2 − (mR)2, (9.2)

where Ω2 − (mR)2 < 0 in the presence of a scalar field. But the equation remains valid by

analytical continuation. The radius of the bag is set to be constant for every baryon, regardless

of its flavour. Therefore, using the stability condition δMf

δR
= 0. The masses of Up and the

Down quarks are considered to be 0, and the zero point parameter. Z0, is considered to be the

same for all particles.

DeGrand et al. 1975 determined the Hyperfine color interaction for color singlet baryon

∆EM = Σj
iEijσ⃗i.σ⃗j, i < j, (9.3)

where σi stands for the Pauli matrix and Eij is calculated in terms of magnetic moment µi as

Eij = 8gc
µi(R)µj(R)Iij

R3
(9.4)

µi(R) =
4RΩ(mi) + 2R2mj − 3R

12Ω(mi)(Ω(mi)− 1) + 6Rmi

(9.5)

132
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where gc is the color coupling constant. It is noted that quark mass dependence produces a

non-trivial flavour dependence of the coupling to the nuclear scalar field. The expression for

the overlapping integral Iij is:

Iij = 1 +
−3yiyj − 4xixj sin

2 xi sin
2 xj + xixjKij

2(xi sin
2 xj − (3/2)yi)(xj sin

2 xj − (3/2)yj)
(9.6)

Kij = 2xiSi(2xi) + 2xjSj(2xj)− (xi + xj)Si(2xi + 2xj)− (xi − xj)Si(2xi − 2xj) (9.7)

yi = xi − sinxi cosxi, xi =
√
Ω(mi)2 − (Rmi)2 (9.8)

Effective mass of the baryon

In the presence of constant scalar field over the volume of baryon, the variations of the field

induces the spin-orbit interaction, that is neglected in uniform matter consideration. Let the

strange quark does not interact with the scalar field.

mud → mud − gqσσ,ms → ms (9.9)

where σ represents the scalar field and gqσ shown the coupling constant of σ to Up (u) and

Down (d) quarks. Then mass of baryon of flavour f as a function of σ depends on Rfree
N . In a

medium

Mf →Mf (mu,d − gqσ, R
free
N ). (9.10)

Simply a fit of Mf (σ,R
free
N ) −Mf (0, R

free
N ) is made in powers of mu,d − gqσσ, with also

coefficients also fitted as polynomials in Rfree
N .

σ −N coupling is defined as

gσ =
∂MN(σ,R

free
N )

∂σ
|σ=0 = −gqσ

∂MN(σ,R
free
N )

∂m
|m=0, (9.11)

which allows us to eliminate gqσ in favour of gσ. And following expression is formed

Mf (σ,R
free
N )−Mf (0, R

free
N ) = P

(1)
f (Rfree

N )gσσ + P
(2)
f (Rfree

N )(gσσ)
2 + ....... (9.12)

where by construction

P
(1)
N (Rfree

N ) = −1, (9.13)
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if the mass is approximately

Mf =
NuΩ(mud) +NsΩ(ms)

Rfree
N

, (9.14)

P 1
ΛΣ = −2/3, P 1

Ξ = −1/3. (9.15)

Following Kolomeitsev and Voskresensky 2003, Mf (σ) becomes

Mf (σ) =Mf − ωσf gσσ + (d/2)ω̃σf (gσσ)
2, (9.16)

where d is scalar polarisability, values of ωσf & ω̃σf are given in Table 9.1 and the selected

value of RN(free) is 0.8 fm.

N Λ Σ Ξ

d(fm) 0.15 0.15 0.15 0.15
ωσf 1 0.703 0.614 0.353
ω̃σf 1 0.68 0.673 0.371

TABLE 9.1: Values of d, ωσf , and ω̃σf for different baryons.
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Structural equations

Christoffel symbols and Ricci scalar

ΓλtκΓ
κ
λt = (Γttt)

2 + 2ΓttiΓ
i
tt + ΓitjΓ

j
it = 2(Φ′)2e2ν−2Λ,

ΓλrκΓ
κ
λr = (Γtrt)

2 + 2ΓtriΓ
i
tr + ΓirjΓ

j
ir = (Φ′)2 + (Λ′)2 +

2

r2
,

ΓλθκΓ
κ
λθ = (Γtθt)

2 + 2ΓtθiΓ
i
tθ + ΓiθjΓ

j
iθ = −2e−2λ + cot2 θ,

ΓλϕκΓ
κ
λϕ = (Γtϕt)

2 + 2ΓtϕiΓ
i
tϕ + ΓiϕjΓ

j
iϕ = −2(sin2 θe−2Λ + cos2 θ),

(9.17)

Rt
rtr = −Φ′′ − (Φ′)2 + Φ′Λ′,

Rt
θtθ = rΦ′e−2Λ,

Rt
ϕtϕ = rΦ′ sin2 θe−2Λ,

Rr
ttr = [−Φ′′ − (Φ′)2 + Φ′Λ′]e2Φ−2Λ,

Rr
θrθ = rΛ′e−2Λ,

Rr
ϕrϕ = rΛ′ sin2 θe−2Λ,

Rθ
ttθ = −Φ′re2(Φ−Λ),

Rθ
rrθ = −Λ′

r
,

Rθ
ϕθϕ = sin2 θ(1− e−2Λ),

Rϕ
ttϕ = −Φ′re2(Φ−Λ),

Rϕ
rrϕ =

Λ′

r
,

Rϕ
θθϕ = −1 + e−2Λ,

(9.18)
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Ricci tensors are given by

Rtt = [−Φ′Λ′ + Φ′′ + (Φ′)2 + 2
Φ′

r
]e2(Φ−Λ),

Rrr = −Φ′′ − Φ′2 + Φ′Λ′ +
2Λ′

r
,

Rθθ = [−rΦ′ + rΛ′ + e2Λ − 1]e−2Λ,

Rϕϕ = − sin2 θ[rΦ′ − rΛ′ − e2Λ + 1]e−2Λ.

(9.19)

Individual components of mixed Ricci tensors are calculated by the relation

Rµ
ν = gµλRλν , (9.20)

and Ricci scalar is obtained from the relation,

R = gµνRµν , (9.21)

Relation between Φ and P

T µν;µ = 0 = (ϵ+ P )uσ;µu
µ + P,σ +P,µ u

µuσ, (9.22)

where σ is the dummy index. One notices that P,r is non-zero and non-trivial component is

(ϵ+ P )ur;µu
µ + P,r= 0, (9.23)

and

ur;µ =
∂ur
∂xµ

− Γλrµuλ = −Γλrµuλ, (9.24)

which gives the desired relation

dP

dr
= (ϵ+ P )Γλrµuλu

µ = −(ϵ+ P )
dΦ

dr
. (9.25)
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Equations of rotating neutron stars

Mixed tensor Rt
ϕ is calculated (Rt

ϕ = Rϕνg
νt) as,

Rt
ϕ = (−1/2)[e2ν(r,θ)

∂2

∂r2
ω(r, θ) + e2λ(r,θ)

∂2

∂θ2
ω(r, θ) + (

∂

∂θ
λ(r, θ))× e2λ(r,θ)

∂

∂θ
ω(r, θ)

+ (
∂

∂r
µ(r, θ))e2µ(r,θ)

∂

∂r
ω(r, θ) + 3(

∂

∂θ
ψ(r, θ))e2λ(r,θ)

∂

∂θ
ω(r, θ)

− (
∂

∂r
λ(r, θ))e2µ(r,θ) × ∂

∂r
ω(r, θ)− (

∂

∂r
ω(r, θ))e2µ(r,θ)

∂

∂r
ν(r, θ)

− (
∂

∂θ
ω(r, θ))× e2λ(r,θ)

∂

∂θ
ν(r, θ) + 3(

∂

∂r
ψ(r, θ))e2µ(r,θ)

∂

∂r
ω(r, θ)

− (
∂

∂θ
µ(r, θ))e2λ(r,θ)ω(r, θ)]× e2ψ(r,θ)−2ν(r,θ)−2λ(r,θ)−2µ(r,θ)

(9.26)

T tϕ = − e2ψ(r,θ)[ϵ+ P ][Ω− ω(r, θ)]

−e2ν(r,θ) + [Ω− ω(r, θ)]2e2ψ(r,θ)
, (9.27)

e2ψ → r2 sin2 θ, (9.28)

T tϕ =
r2 sin2 θ[ϵ+ P ]ωe−2ν

1− ω2e2ψ−2ν
, (9.29)

T tϕ = r2 sin2 θ[ϵ+ P ]ω̄e−2ν +O(Ω2), (9.30)

we have
∂λ

∂θ
=
∂ν

∂θ
=
∂µ

∂θ
= 0, (9.31)

consequently,

Rt
ϕ = −1

2
[e2µ

∂2ω

∂r2
+ e2λ

∂2ω

∂θ2
+
∂µ

∂r
e2µ

∂ω

∂r
− ∂λ

∂r
e2µ

∂ω

∂r
− ∂ν

∂r
e2µ

∂ω

∂r

+3
∂ψ

∂r
e2µ

∂ω

∂r
]e2ψ−2ν−2λ−2µ

(9.32)

Rt
ϕ = −1

2
[
∂2ω

∂r2
+ e2λ−2µ∂

2ω

∂θ2
+
∂µ

∂r

∂ω

∂r
− ∂λ

∂r

∂ω

∂r
− ∂ν

∂r

∂ω

∂r

+3
∂ψ

∂r

∂ω

∂r
]e2ψ−2ν−2λ

(9.33)

Rt
ϕ = 8πT tϕ, (9.34)

−1

2
[
∂2ω

∂r2
+ e2λ−2µ∂

2ω

∂θ2
+
∂µ

∂r

∂ω

∂r
− ∂λ

∂r

∂ω

∂r
− ∂ν

∂r

∂ω

∂r
+ 3

∂ψ

∂r

∂ω

∂r
]e2ψ−2ν−2λ

= 8πr2 sin2 θ[ϵ+ P ]ωe−2ν

(9.35)



Bibliography

Abazajian, Kevork (Mar. 2006). ‘Linear cosmological structure limits on warm dark matter’.

In: Phys. Rev. D 73 (6), p. 063513. DOI: 10.1103/PhysRevD.73.063513. URL:

https://link.aps.org/doi/10.1103/PhysRevD.73.063513.

Abazajian, Kevork, George M. Fuller and Wallace H. Tucker (2001). ‘Direct Detection of

Warm Dark Matter in the X-Ray’. In: The Astrophysical Journal 562, pp. 593–604.

Abbott, B. P. et al. (2017a). ‘GW170817: Observation of Gravitational Waves from a Bin-

ary Neutron Star Inspiral’. In: Phys. Rev. Lett. 119.16, p. 161101. DOI: 10.1103/

PhysRevLett.119.161101. arXiv: 1710.05832 [gr-qc].

— (2018). ‘GW170817: Measurements of neutron star radii and equation of state’. In: Phys.

Rev. Lett. 121.16, p. 161101. DOI: 10.1103/PhysRevLett.121.161101. arXiv:

1805.11581 [gr-qc].

Abbott, B. P. et al. (Oct. 2017b). ‘GW170817: Observation of Gravitational Waves from

a Binary Neutron Star Inspiral’. In: Physical Review Letters 119.16. ISSN: 1079-7114.

DOI: 10.1103/physrevlett.119.161101. URL: http://dx.doi.org/10.

1103/PhysRevLett.119.161101.

Abbott, B. P. et al. (Sept. 2019). ‘GWTC-1: A Gravitational-Wave Transient Catalog of Com-

pact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing

Runs’. In: Physical Review X 9.3. ISSN: 2160-3308. DOI: 10.1103/physrevx.9.

031040. URL: http://dx.doi.org/10.1103/PhysRevX.9.031040.

Abbott, L.F. and P. Sikivie (1983). ‘A cosmological bound on the invisible axion’. In: Physics

Letters B 120.1, pp. 133–136. ISSN: 0370-2693. DOI: https://doi.org/10.1016/

0370-2693(83)90638-X.

Aguilar, M. et al. (Aug. 2016). ‘Antiproton Flux, Antiproton-to-Proton Flux Ratio, and

Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the

138

https://doi.org/10.1103/PhysRevD.73.063513
https://link.aps.org/doi/10.1103/PhysRevD.73.063513
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://arxiv.org/abs/1710.05832
https://doi.org/10.1103/PhysRevLett.121.161101
https://arxiv.org/abs/1805.11581
https://doi.org/10.1103/physrevlett.119.161101
http://dx.doi.org/10.1103/PhysRevLett.119.161101
http://dx.doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/physrevx.9.031040
https://doi.org/10.1103/physrevx.9.031040
http://dx.doi.org/10.1103/PhysRevX.9.031040
https://doi.org/https://doi.org/10.1016/0370-2693(83)90638-X
https://doi.org/https://doi.org/10.1016/0370-2693(83)90638-X


BIBLIOGRAPHY 139

Alpha Magnetic Spectrometer on the International Space Station’. In: Phys. Rev. Lett.

117 (9), p. 091103. DOI: 10.1103/PhysRevLett.117.091103. URL: https:

//link.aps.org/doi/10.1103/PhysRevLett.117.091103.

Ahmad, Q. R. et al. (June 2002). ‘Direct Evidence for Neutrino Flavor Transformation from

Neutral-Current Interactions in the Sudbury Neutrino Observatory’. In: Phys. Rev. Lett.

89 (1), p. 011301. DOI: 10.1103/PhysRevLett.89.011301. URL: https:

//link.aps.org/doi/10.1103/PhysRevLett.89.011301.

Akmal, A., V. R. Pandharipande and D. G. Ravenhall (Sept. 1998). ‘Equation of state of

nucleon matter and neutron star structure’. In: Phys. Rev. C 58 (3), pp. 1804–1828. DOI:

10.1103/PhysRevC.58.1804. URL: https://link.aps.org/doi/10.

1103/PhysRevC.58.1804.

Alcock, Charles, Edward Farhi and Angela Olinto (Nov. 1986). ‘Strange Stars’. In: apj 310,

p. 261. DOI: 10.1086/164679.

An, Haipeng et al. (July 2015). ‘Direct detection constraints on dark photon dark matter’. In:

Physics Letters B 747, pp. 331–338. DOI: 10.1016/j.physletb.2015.06.018.

URL: https://doi.org/10.1016%5C%2Fj.physletb.2015.06.018.

Antoniadis, John et al. (Apr. 2013a). ‘A Massive Pulsar in a Compact Relativistic Binary’.

In: Science 340.6131. DOI: 10.1126/science.1233232. URL: https://doi.

org/10.1126%2Fscience.1233232.

Antoniadis, John et al. (Apr. 2013b). ‘A Massive Pulsar in a Compact Relativistic Binary’. In:

Science 340.6131, p. 448. DOI: 10.1126/science.1233232. arXiv: 1304.6875

[astro-ph.HE].

Antypas, D. et al. (Mar. 2022). ‘New Horizons: Scalar and Vector Ultralight Dark Matter’. In:

arXiv: 2203.14915 [hep-ex].

Aprile, E. et al. (Oct. 2017). ‘First Dark Matter Search Results from the XENON1T Experi-

ment’. In: Phys. Rev. Lett. 119 (18), p. 181301. DOI: 10.1103/PhysRevLett.119.

181301. URL: https://link.aps.org/doi/10.1103/PhysRevLett.119.

181301.

Aprile, E. et al. (July 2022). ‘Emission of single and few electrons in XENON1T and limits

on light dark matter’. In: Phys. Rev. D 106 (2), p. 022001. DOI: 10.1103/PhysRevD.

https://doi.org/10.1103/PhysRevLett.117.091103
https://link.aps.org/doi/10.1103/PhysRevLett.117.091103
https://link.aps.org/doi/10.1103/PhysRevLett.117.091103
https://doi.org/10.1103/PhysRevLett.89.011301
https://link.aps.org/doi/10.1103/PhysRevLett.89.011301
https://link.aps.org/doi/10.1103/PhysRevLett.89.011301
https://doi.org/10.1103/PhysRevC.58.1804
https://link.aps.org/doi/10.1103/PhysRevC.58.1804
https://link.aps.org/doi/10.1103/PhysRevC.58.1804
https://doi.org/10.1086/164679
https://doi.org/10.1016/j.physletb.2015.06.018
https://doi.org/10.1016%5C%2Fj.physletb.2015.06.018
https://doi.org/10.1126/science.1233232
https://doi.org/10.1126%2Fscience.1233232
https://doi.org/10.1126%2Fscience.1233232
https://doi.org/10.1126/science.1233232
https://arxiv.org/abs/1304.6875
https://arxiv.org/abs/1304.6875
https://arxiv.org/abs/2203.14915
https://doi.org/10.1103/PhysRevLett.119.181301
https://doi.org/10.1103/PhysRevLett.119.181301
https://link.aps.org/doi/10.1103/PhysRevLett.119.181301
https://link.aps.org/doi/10.1103/PhysRevLett.119.181301
https://doi.org/10.1103/PhysRevD.106.022001


140 BIBLIOGRAPHY

106.022001. URL: https://link.aps.org/doi/10.1103/PhysRevD.

106.022001.

Arnett, W. David and Richard L. Bowers (Apr. 1977). ‘A Microscopic Interpretation of

Neutron Star Structure’. In: apjs 33, p. 415. DOI: 10.1086/190434.

Arzumanov, S. et al. (2015). ‘A measurement of the neutron lifetime using the method of

storage of ultracold neutrons and detection of inelastically up-scattered neutrons’. In:

Physics Letters B 745, pp. 79–89. ISSN: 0370-2693. DOI: https://doi.org/10.

1016/j.physletb.2015.04.021.

Asztalos, S. J. et al. (May 2002). ‘Experimental Constraints on the Axion Dark Matter Halo

Density’. In: The Astrophysical Journal 571.1, pp. L27–L30. DOI: 10.1086/341130.

URL: https://doi.org/10.1086/341130.

Audren, Benjamin et al. (Dec. 2014). ‘Strongest model-independent bound on the lifetime of

Dark Matter’. In: Journal of Cosmology and Astroparticle Physics 2014.12, pp. 028–028.

DOI: 10.1088/1475-7516/2014/12/028. URL: https://doi.org/10.

1088/1475-7516/2014/12/028.

Baade, W. and F. Zwicky (July 1934). ‘Remarks on Super-Novae and Cosmic Rays’. In:

Phys. Rev. 46 (1), pp. 76–77. DOI: 10.1103/PhysRev.46.76.2. URL: https:

//link.aps.org/doi/10.1103/PhysRev.46.76.2.

Bahcall, J. N. (Jan. 1978). ‘Masses of neutron stars and black holes in X-ray binaries.’ In:

araa 16, pp. 241–264. DOI: 10.1146/annurev.aa.16.090178.001325.

Bahcall, John N. and Richard A. Wolf (Dec. 1965). ‘Neutron Stars. II. Neutrino-Cooling

and Observability’. In: Phys. Rev. 140 (5B), B1452–B1466. DOI: 10.1103/PhysRev.

140.B1452. URL: https://link.aps.org/doi/10.1103/PhysRev.140.

B1452.

Baker, C. A. et al. (Sept. 2006). ‘Improved Experimental Limit on the Electric Dipole Moment

of the Neutron’. In: Phys. Rev. Lett. 97 (13), p. 131801. DOI: 10.1103/PhysRevLett.

97.131801. URL: https://link.aps.org/doi/10.1103/PhysRevLett.

97.131801.

https://doi.org/10.1103/PhysRevD.106.022001
https://doi.org/10.1103/PhysRevD.106.022001
https://link.aps.org/doi/10.1103/PhysRevD.106.022001
https://link.aps.org/doi/10.1103/PhysRevD.106.022001
https://doi.org/10.1086/190434
https://doi.org/https://doi.org/10.1016/j.physletb.2015.04.021
https://doi.org/https://doi.org/10.1016/j.physletb.2015.04.021
https://doi.org/10.1086/341130
https://doi.org/10.1086/341130
https://doi.org/10.1088/1475-7516/2014/12/028
https://doi.org/10.1088/1475-7516/2014/12/028
https://doi.org/10.1088/1475-7516/2014/12/028
https://doi.org/10.1103/PhysRev.46.76.2
https://link.aps.org/doi/10.1103/PhysRev.46.76.2
https://link.aps.org/doi/10.1103/PhysRev.46.76.2
https://doi.org/10.1146/annurev.aa.16.090178.001325
https://doi.org/10.1103/PhysRev.140.B1452
https://doi.org/10.1103/PhysRev.140.B1452
https://link.aps.org/doi/10.1103/PhysRev.140.B1452
https://link.aps.org/doi/10.1103/PhysRev.140.B1452
https://doi.org/10.1103/PhysRevLett.97.131801
https://doi.org/10.1103/PhysRevLett.97.131801
https://link.aps.org/doi/10.1103/PhysRevLett.97.131801
https://link.aps.org/doi/10.1103/PhysRevLett.97.131801


BIBLIOGRAPHY 141

Balberg, Shmuel and Nir Barnea (Jan. 1998). ‘S-wave pairing of Λhyperonsindensematter’.

In: Phys. Rev. C 57 (1), pp. 409–416. DOI: 10.1103/PhysRevC.57.409. URL:

https://link.aps.org/doi/10.1103/PhysRevC.57.409.

Balberg, Shmuel, Itamar Lichtenstadt and Gregory B. Cook (Apr. 1999). ‘Roles of Hyperons

in Neutron Stars’. In: The Astrophysical Journal Supplement Series 121.2, pp. 515–531.

DOI: 10.1086/313196. URL: https://doi.org/10.1086/313196.

Bales, M. J. et al. (June 2016). ‘Precision Measurement of the Radiative β Decay of the Free

Neutron’. In: Phys. Rev. Lett. 116 (24), p. 242501. DOI: 10.1103/PhysRevLett.

116.242501. URL: https://link.aps.org/doi/10.1103/PhysRevLett.

116.242501.

Baym, G and C Pethick (1975). ‘Neutron Stars’. In: Annual Review of Nuclear Science

25.1, pp. 27–77. DOI: 10.1146/annurev.ns.25.120175.000331. eprint:

https://doi.org/10.1146/annurev.ns.25.120175.000331. URL:

https://doi.org/10.1146/annurev.ns.25.120175.000331.

Baym, Gordon, Hans A. Bethe and Christopher J Pethick (1971). ‘Neutron star matter’. In:

Nuclear Physics A 175.2, pp. 225–271. ISSN: 0375-9474. DOI: https://doi.org/

10.1016/0375-9474(71)90281-8.

Baym, Gordon et al. (Aug. 2018). ‘Testing Dark Decays of Baryons in Neutron Stars’. In: Phys.

Rev. Lett. 121 (6), p. 061801. DOI: 10.1103/PhysRevLett.121.061801. URL:

https://link.aps.org/doi/10.1103/PhysRevLett.121.061801.

Beck, D.H. (2019). ‘Neutron decay, dark matter and neutron stars’. In: EPJ Web Conf. 219,

p. 05006. DOI: 10.1051/epjconf/201921905006. URL: https://doi.org/

10.1051/epjconf/201921905006.

Bell, Nicole F., Giorgio Busoni and Sandra Robles (June 2019). ‘Capture of leptophilic dark

matter in neutron stars’. In: Journal of Cosmology and Astroparticle Physics 2019.06,

pp. 054–054. DOI: 10.1088/1475-7516/2019/06/054. URL: https://doi.

org/10.1088%5C%2F1475-7516%5C%2F2019%5C%2F06%5C%2F054.

Bell, Nicole F. et al. (2020). Nucleon Structure and Strong Interactions in Dark Matter

Capture in Neutron Stars. arXiv: 2012.08918 [hep-ph].

https://doi.org/10.1103/PhysRevC.57.409
https://link.aps.org/doi/10.1103/PhysRevC.57.409
https://doi.org/10.1086/313196
https://doi.org/10.1086/313196
https://doi.org/10.1103/PhysRevLett.116.242501
https://doi.org/10.1103/PhysRevLett.116.242501
https://link.aps.org/doi/10.1103/PhysRevLett.116.242501
https://link.aps.org/doi/10.1103/PhysRevLett.116.242501
https://doi.org/10.1146/annurev.ns.25.120175.000331
https://doi.org/10.1146/annurev.ns.25.120175.000331
https://doi.org/10.1146/annurev.ns.25.120175.000331
https://doi.org/https://doi.org/10.1016/0375-9474(71)90281-8
https://doi.org/https://doi.org/10.1016/0375-9474(71)90281-8
https://doi.org/10.1103/PhysRevLett.121.061801
https://link.aps.org/doi/10.1103/PhysRevLett.121.061801
https://doi.org/10.1051/epjconf/201921905006
https://doi.org/10.1051/epjconf/201921905006
https://doi.org/10.1051/epjconf/201921905006
https://doi.org/10.1088/1475-7516/2019/06/054
https://doi.org/10.1088%5C%2F1475-7516%5C%2F2019%5C%2F06%5C%2F054
https://doi.org/10.1088%5C%2F1475-7516%5C%2F2019%5C%2F06%5C%2F054
https://arxiv.org/abs/2012.08918


142 BIBLIOGRAPHY

Bennett, C. L. et al. (Sept. 2003). ‘First-Year <i<Wilkinson Microwave Anisotropy Probe</i<

( <si<WMAP</i< ) Observations: Preliminary Maps and Basic Results’. In: The Astro-

physical Journal Supplement Series 148.1, pp. 1–27. DOI: 10.1086/377253. URL:

https://doi.org/10.1086/377253.

Berezhiani, Zurab et al. (Nov. 2021). ‘Neutron-mirror neutron mixing and neutron stars’.

In: The European Physical Journal C 81.11. ISSN: 1434-6052. DOI: 10.1140/epjc/

s10052-021-09806-1. URL: http://dx.doi.org/10.1140/epjc/

s10052-021-09806-1.

Berryman, Jeffrey M., Susan Gardner and Mohammadreza Zakeri (Jan. 2022). ‘Neutron

Stars with Baryon Number Violation, Probing Dark Sectors’. In: arXiv: 2201.02637

[hep-ph].

Bertone, Gianfranco and Malcolm Fairbairn (Feb. 2008). ‘Compact stars as dark matter

probes’. In: Phys. Rev. D 77 (4), p. 043515. DOI: 10.1103/PhysRevD.77.043515.

URL: https://link.aps.org/doi/10.1103/PhysRevD.77.043515.

Blaschke, D. et al. (Dec. 2009). ‘Sequential deconfinement of quark flavors in neutron stars’.

In: Phys. Rev. C 80 (6), p. 065807. DOI: 10.1103/PhysRevC.80.065807. URL:

https://link.aps.org/doi/10.1103/PhysRevC.80.065807.

Bonn, J et al. (2000). ‘Results of the Mainz neutrino mass experiment’. In: Nuclear Physics B -

Proceedings Supplements 87.1. Proceedings of the Sixth International Workshop on Topics

in Astroparticle and Underground Physics, pp. 271–274. ISSN: 0920-5632. DOI: https:

//doi.org/10.1016/S0920-5632(00)00677-0. URL: https://www.

sciencedirect.com/science/article/pii/S0920563200006770.

Bonometto, S.A., F. Gabbiani and A. Masiero (1989). ‘A monochromatic axino dominated

universe’. In: Physics Letters B 222.3, pp. 433–437. ISSN: 0370-2693. DOI: https:

//doi.org/10.1016/0370-2693(89)90339-0.

Borner, Gerhard and Jeffrey M. Cohen (Nov. 1973). ‘Rotating Neutron Star Models and

Pulsars’. In: apj 185, pp. 959–974. DOI: 10.1086/152470.

Bramante, Joseph, Tim Linden and Yu-Dai Tsai (Mar. 2018). ‘Searching for dark matter

with neutron star mergers and quiet kilonovae’. In: Phys. Rev. D 97 (5), p. 055016. DOI:

https://doi.org/10.1086/377253
https://doi.org/10.1086/377253
https://doi.org/10.1140/epjc/s10052-021-09806-1
https://doi.org/10.1140/epjc/s10052-021-09806-1
http://dx.doi.org/10.1140/epjc/s10052-021-09806-1
http://dx.doi.org/10.1140/epjc/s10052-021-09806-1
https://arxiv.org/abs/2201.02637
https://arxiv.org/abs/2201.02637
https://doi.org/10.1103/PhysRevD.77.043515
https://link.aps.org/doi/10.1103/PhysRevD.77.043515
https://doi.org/10.1103/PhysRevC.80.065807
https://link.aps.org/doi/10.1103/PhysRevC.80.065807
https://doi.org/https://doi.org/10.1016/S0920-5632(00)00677-0
https://doi.org/https://doi.org/10.1016/S0920-5632(00)00677-0
https://www.sciencedirect.com/science/article/pii/S0920563200006770
https://www.sciencedirect.com/science/article/pii/S0920563200006770
https://doi.org/https://doi.org/10.1016/0370-2693(89)90339-0
https://doi.org/https://doi.org/10.1016/0370-2693(89)90339-0
https://doi.org/10.1086/152470


BIBLIOGRAPHY 143

10.1103/PhysRevD.97.055016. URL: https://link.aps.org/doi/10.

1103/PhysRevD.97.055016.

Bullock, James S. and Michael Boylan-Kolchin (2017). ‘Small-Scale Challenges to the Λ

CDM Paradigm’. In: Annual Review of Astronomy and Astrophysics 55.1, pp. 343–387.

DOI: 10.1146/annurev-astro-091916-055313. eprint: https://doi.

org/10.1146/annurev-astro-091916-055313. URL: https://doi.

org/10.1146/annurev-astro-091916-055313.

— (n.d.). ‘Small-Scale Challenges to the ΛCDM Paradigm’. In: ().

Buote, David A. et al. (Sept. 2002). ‘<i<Chandra</i<Evidence of a Flattened, Triaxial Dark

Matter Halo in the Elliptical Galaxy NGC 720’. In: The Astrophysical Journal 577.1,

pp. 183–196. DOI: 10.1086/342158. URL: https://doi.org/10.1086/

342158.

Burkert, A. (July 1995). ‘The Structure of Dark Matter Halos in Dwarf Galaxies’. In: The

Astrophysical Journal 447.1, p. L25. DOI: 10.1086/309560. URL: https://dx.

doi.org/10.1086/309560.

Busoni, Giorgio (Dec. 2021). ‘Capture of Dark Matter in Neutron Stars’. In: arXiv: 2201.

00048 [hep-ph].

— (2022). ‘Capture of DM in Compact Stars’. In: PoS PANIC2021, p. 046. DOI: 10.22323/

1.380.0046.

Byrne, J. et al. (Jan. 1996). ‘A revised value for the neutron lifetime measured using a Penning

trap’. In: Europhysics Letters 33.3, p. 187. DOI: 10.1209/epl/i1996-00319-x.

URL: https://dx.doi.org/10.1209/epl/i1996-00319-x.

Cadamuro, Davide and Javier Redondo (2012). ‘Cosmological bounds on pseudo Nambu-

Goldstone bosons’. In: JCAP 02, p. 032. DOI: 10.1088/1475-7516/2012/02/032.

arXiv: 1110.2895 [hep-ph].

Canuto, V., B. Datta and J. Lodenquai (Apr. 1975). ‘Structure of Neutron Star Cores’. In: apss

34.1, pp. 223–229. DOI: 10.1007/BF00646762.

Caputo, Andrea et al. (May 2021). ‘Dark photon limits: a cookbook’. In: arXiv: 2105.04565

[hep-ph].

https://doi.org/10.1103/PhysRevD.97.055016
https://link.aps.org/doi/10.1103/PhysRevD.97.055016
https://link.aps.org/doi/10.1103/PhysRevD.97.055016
https://doi.org/10.1146/annurev-astro-091916-055313
https://doi.org/10.1146/annurev-astro-091916-055313
https://doi.org/10.1146/annurev-astro-091916-055313
https://doi.org/10.1146/annurev-astro-091916-055313
https://doi.org/10.1146/annurev-astro-091916-055313
https://doi.org/10.1086/342158
https://doi.org/10.1086/342158
https://doi.org/10.1086/342158
https://doi.org/10.1086/309560
https://dx.doi.org/10.1086/309560
https://dx.doi.org/10.1086/309560
https://arxiv.org/abs/2201.00048
https://arxiv.org/abs/2201.00048
https://doi.org/10.22323/1.380.0046
https://doi.org/10.22323/1.380.0046
https://doi.org/10.1209/epl/i1996-00319-x
https://dx.doi.org/10.1209/epl/i1996-00319-x
https://doi.org/10.1088/1475-7516/2012/02/032
https://arxiv.org/abs/1110.2895
https://doi.org/10.1007/BF00646762
https://arxiv.org/abs/2105.04565
https://arxiv.org/abs/2105.04565


144 BIBLIOGRAPHY

Catena, Riccardo and Piero Ullio (Aug. 2010). ‘A novel determination of the local dark

matter density’. In: Journal of Cosmology and Astroparticle Physics 2010.08, p. 004.

DOI: 10.1088/1475-7516/2010/08/004. URL: https://dx.doi.org/10.

1088/1475-7516/2010/08/004.

Chabanat, E. et al. (1998). ‘A Skyrme parametrization from subnuclear to neutron star

densities. 2. Nuclei far from stablities’. In: Nucl. Phys. A 635. [Erratum: Nucl.Phys.A 643,

441–441 (1998)], pp. 231–256. DOI: 10.1016/S0375-9474(98)00180-8.

Champion, David J. et al. (June 2008). ‘An Eccentric Binary Millisecond Pulsar in the Galactic

Plane’. In: Science 320.5881, p. 1309. DOI: 10.1126/science.1157580. arXiv:

0805.2396 [astro-ph].

Chodos, A. et al. (Oct. 1974). ‘Baryon structure in the bag theory’. In: Phys. Rev. D 10 (8),

pp. 2599–2604. DOI: 10.1103/PhysRevD.10.2599. URL: https://link.aps.

org/doi/10.1103/PhysRevD.10.2599.

Cline, James M. and Jonathan M. Cornell (2018). ‘Dark decay of the neutron’. In: JHEP 07,

p. 081. DOI: 10.1007/JHEP07(2018)081. arXiv: 1803.04961 [hep-ph].

Collins, J. C. and M. J. Perry (May 1975). ‘Superdense Matter: Neutrons or Asymptot-

ically Free Quarks?’ In: Phys. Rev. Lett. 34 (21), pp. 1353–1356. DOI: 10.1103/

PhysRevLett.34.1353. URL: https://link.aps.org/doi/10.1103/

PhysRevLett.34.1353.

Dalfovo, Franco et al. (1999). ‘Theory of Bose-Einstein condensation in trapped gases’. In:

Rev. Mod. Phys. 71, pp. 463–512. DOI: 10.1103/RevModPhys.71.463. arXiv:

cond-mat/9806038.

de Groot, M. (Sept. 1977). ‘BOOKS (with comments): “Pulsars”, by R. N. Manchester and J.

H. Taylor’. In: Irish Astronomical Journal 13, p. 142.

DeGrand, T. et al. (Oct. 1975). ‘Masses and other parameters of the light hadrons’. In:

Phys. Rev. D 12 (7), pp. 2060–2076. DOI: 10.1103/PhysRevD.12.2060. URL:

https://link.aps.org/doi/10.1103/PhysRevD.12.2060.

Demorest, P. B. et al. (Oct. 2010). ‘A two-solar-mass neutron star measured using Shapiro

delay’. In: nat 467.7319, pp. 1081–1083. DOI: 10.1038/nature09466. arXiv:

1010.5788 [astro-ph.HE].

https://doi.org/10.1088/1475-7516/2010/08/004
https://dx.doi.org/10.1088/1475-7516/2010/08/004
https://dx.doi.org/10.1088/1475-7516/2010/08/004
https://doi.org/10.1016/S0375-9474(98)00180-8
https://doi.org/10.1126/science.1157580
https://arxiv.org/abs/0805.2396
https://doi.org/10.1103/PhysRevD.10.2599
https://link.aps.org/doi/10.1103/PhysRevD.10.2599
https://link.aps.org/doi/10.1103/PhysRevD.10.2599
https://doi.org/10.1007/JHEP07(2018)081
https://arxiv.org/abs/1803.04961
https://doi.org/10.1103/PhysRevLett.34.1353
https://doi.org/10.1103/PhysRevLett.34.1353
https://link.aps.org/doi/10.1103/PhysRevLett.34.1353
https://link.aps.org/doi/10.1103/PhysRevLett.34.1353
https://doi.org/10.1103/RevModPhys.71.463
https://arxiv.org/abs/cond-mat/9806038
https://doi.org/10.1103/PhysRevD.12.2060
https://link.aps.org/doi/10.1103/PhysRevD.12.2060
https://doi.org/10.1038/nature09466
https://arxiv.org/abs/1010.5788


BIBLIOGRAPHY 145

Dine, Michael and Willy Fischler (1983). ‘The not-so-harmless axion’. In: Physics Letters B

120.1, pp. 137–141. ISSN: 0370-2693. DOI: https://doi.org/10.1016/0370-

2693(83)90639-1.

Dolgov, A. D. et al. (Dec. 2013). ‘Constraints on millicharged particles from Planck data’.

In: Phys. Rev. D 88 (11), p. 117701. DOI: 10.1103/PhysRevD.88.117701. URL:

https://link.aps.org/doi/10.1103/PhysRevD.88.117701.

Dremin, Igor M. and Aleksei B. Kaidalov (2006). In: Physics-Uspekhi 49.3, p. 263. DOI: 10.

1070/pu2006v049n03abeh005873. URL: https://doi.org/10.1070/

pu2006v049n03abeh005873.

Duine, R.A. and H.T.C. Stoof (2004). ‘Atom–molecule coherence in Bose gases’. In: Physics

Reports 396.3, pp. 115–195. ISSN: 0370-1573. DOI: https://doi.org/10.1016/

j.physrep.2004.03.003.

Einasto, Jaan, Ants Kaasik and Enn Saar (July 1974). ‘Dynamic evidence on massive coronas

of galaxies’. In: nat 250.5464, pp. 309–310. DOI: 10.1038/250309a0.

Einstein, Albert (1936). ‘Lens-Like Action of a Star by the Deviation of Light in the Gravita-

tional Field’. In: Science 84.2188, pp. 506–507. DOI: 10.1126/science.84.2188.

506. eprint: https://www.science.org/doi/pdf/10.1126/science.

84.2188.506. URL: https://www.science.org/doi/abs/10.1126/

science.84.2188.506.

Eisenstein, Daniel J. et al. (Nov. 2005). ‘Detection of the Baryon Acoustic Peak in the Large-

Scale Correlation Function of SDSS Luminous Red Galaxies’. In: The Astrophysical

Journal 633.2, pp. 560–574. DOI: 10.1086/466512. URL: https://doi.org/

10.1086/466512.

Ellis, John et al. (June 2018). ‘Dark matter effects on neutron star properties’. In: Physical

Review D 97.12. ISSN: 2470-0029. DOI: 10.1103/physrevd.97.123007. URL:

http://dx.doi.org/10.1103/PhysRevD.97.123007.

Faber, M. et al. (Sept. 2009). ‘Continuum-state and bound-state β−-decay rates of the neutron’.

In: Phys. Rev. C 80 (3), p. 035503. DOI: 10.1103/PhysRevC.80.035503. URL:

https://link.aps.org/doi/10.1103/PhysRevC.80.035503.

https://doi.org/https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1103/PhysRevD.88.117701
https://link.aps.org/doi/10.1103/PhysRevD.88.117701
https://doi.org/10.1070/pu2006v049n03abeh005873
https://doi.org/10.1070/pu2006v049n03abeh005873
https://doi.org/10.1070/pu2006v049n03abeh005873
https://doi.org/10.1070/pu2006v049n03abeh005873
https://doi.org/https://doi.org/10.1016/j.physrep.2004.03.003
https://doi.org/https://doi.org/10.1016/j.physrep.2004.03.003
https://doi.org/10.1038/250309a0
https://doi.org/10.1126/science.84.2188.506
https://doi.org/10.1126/science.84.2188.506
https://www.science.org/doi/pdf/10.1126/science.84.2188.506
https://www.science.org/doi/pdf/10.1126/science.84.2188.506
https://www.science.org/doi/abs/10.1126/science.84.2188.506
https://www.science.org/doi/abs/10.1126/science.84.2188.506
https://doi.org/10.1086/466512
https://doi.org/10.1086/466512
https://doi.org/10.1086/466512
https://doi.org/10.1103/physrevd.97.123007
http://dx.doi.org/10.1103/PhysRevD.97.123007
https://doi.org/10.1103/PhysRevC.80.035503
https://link.aps.org/doi/10.1103/PhysRevC.80.035503


146 BIBLIOGRAPHY

Feng, Jonathan L., Arvind Rajaraman and Fumihiro Takayama (July 2003). ‘Superweakly

Interacting Massive Particles’. In: Phys. Rev. Lett. 91 (1), p. 011302. DOI: 10.1103/

PhysRevLett.91.011302. URL: https://link.aps.org/doi/10.1103/

PhysRevLett.91.011302.

Flanagan, Éanna É. and Tanja Hinderer (Jan. 2008). ‘Constraining neutron-star tidal Love

numbers with gravitational-wave detectors’. In: prd 77.2, 021502, p. 021502. DOI: 10.

1103/PhysRevD.77.021502. arXiv: 0709.1915 [astro-ph].

Fornal, Bartosz and Benjamín Grinstein (2020). ‘Neutron’s dark secret’. In: Modern Physics

Letters A 35.31, p. 2030019. DOI: 10.1142/S0217732320300190. eprint: https:

//doi.org/10.1142/S0217732320300190. URL: https://doi.org/10.

1142/S0217732320300190.

Fornal, Bartosz and Benjamın Grinstein (May 2018a). ‘Dark Matter Interpretation of the

Neutron Decay Anomaly’. In: Phys. Rev. Lett. 120 (19), p. 191801. DOI: 10.1103/

PhysRevLett.120.191801. URL: https://link.aps.org/doi/10.

1103/PhysRevLett.120.191801.

— (May 2018b). ‘Dark Matter Interpretation of the Neutron Decay Anomaly’. In: Phys.

Rev. Lett. 120 (19), p. 191801. DOI: 10.1103/PhysRevLett.120.191801. URL:

https://link.aps.org/doi/10.1103/PhysRevLett.120.191801.

Fukuda, Y. et al. (Aug. 1998). ‘Evidence for Oscillation of Atmospheric Neutrinos’. In: Phys.

Rev. Lett. 81 (8), pp. 1562–1567. DOI: 10.1103/PhysRevLett.81.1562. URL:

https://link.aps.org/doi/10.1103/PhysRevLett.81.1562.

Glendenning, Norman K. (Aug. 1992). ‘First-order phase transitions with more than one

conserved charge: Consequences for neutron stars’. In: Phys. Rev. D 46 (4), pp. 1274–

1287. DOI: 10.1103/PhysRevD.46.1274. URL: https://link.aps.org/

doi/10.1103/PhysRevD.46.1274.

Gold, T. (May 1968). ‘Rotating Neutron Stars as the Origin of the Pulsating Radio Sources’.

In: nat 218.5143, pp. 731–732. DOI: 10.1038/218731a0.

Gonzalez, F. M. et al. (2021). ‘Improved Neutron Lifetime Measurement with UCNτ ’. In:

Phys. Rev. Lett. 127.16, p. 162501. DOI: 10.1103/PhysRevLett.127.162501.

arXiv: 2106.10375 [nucl-ex].

https://doi.org/10.1103/PhysRevLett.91.011302
https://doi.org/10.1103/PhysRevLett.91.011302
https://link.aps.org/doi/10.1103/PhysRevLett.91.011302
https://link.aps.org/doi/10.1103/PhysRevLett.91.011302
https://doi.org/10.1103/PhysRevD.77.021502
https://doi.org/10.1103/PhysRevD.77.021502
https://arxiv.org/abs/0709.1915
https://doi.org/10.1142/S0217732320300190
https://doi.org/10.1142/S0217732320300190
https://doi.org/10.1142/S0217732320300190
https://doi.org/10.1142/S0217732320300190
https://doi.org/10.1142/S0217732320300190
https://doi.org/10.1103/PhysRevLett.120.191801
https://doi.org/10.1103/PhysRevLett.120.191801
https://link.aps.org/doi/10.1103/PhysRevLett.120.191801
https://link.aps.org/doi/10.1103/PhysRevLett.120.191801
https://doi.org/10.1103/PhysRevLett.120.191801
https://link.aps.org/doi/10.1103/PhysRevLett.120.191801
https://doi.org/10.1103/PhysRevLett.81.1562
https://link.aps.org/doi/10.1103/PhysRevLett.81.1562
https://doi.org/10.1103/PhysRevD.46.1274
https://link.aps.org/doi/10.1103/PhysRevD.46.1274
https://link.aps.org/doi/10.1103/PhysRevD.46.1274
https://doi.org/10.1038/218731a0
https://doi.org/10.1103/PhysRevLett.127.162501
https://arxiv.org/abs/2106.10375


BIBLIOGRAPHY 147

Graham, Peter W. et al. (2015). ‘Experimental Searches for the Axion and Axion-Like

Particles’. In: Annual Review of Nuclear and Particle Science 65.1, pp. 485–514. DOI:

10.1146/annurev-nucl-102014-022120. eprint: https://doi.org/

10.1146/annurev-nucl-102014-022120. URL: https://doi.org/10.

1146/annurev-nucl-102014-022120.

Graham-Smith, Francis (1977). Pulsars / F. G. Smith. English. Cambridge University Press

Cambridge ; New York, xii, 239 pages : ISBN: 0521212413.

Grinstein, Benjamın, Chris Kouvaris and Niklas Grønlund Nielsen (2019). ‘Neutron Star

Stability in Light of the Neutron Decay Anomaly’. In: Phys. Rev. Lett. 123.9, p. 091601.

DOI: 10.1103/PhysRevLett.123.091601. arXiv: 1811.06546 [hep-ph].

Guichon, P.A.M. (1988a). ‘A possible quark mechanism for the saturation of nuclear matter’.

In: Physics Letters B 200.3, pp. 235–240. ISSN: 0370-2693. DOI: https://doi.org/

10.1016/0370-2693(88)90762-9.

Guichon, P.A.M. et al. (June 2006). ‘Physical origin of density dependent forces of Skyrme

type within the quark meson coupling model’. In: Nuclear Physics A 772.1-2, pp. 1–19.

DOI: 10.1016/j.nuclphysa.2006.04.002. URL: https://doi.org/10.

1016%2Fj.nuclphysa.2006.04.002.

Guichon, Pierre A. M. (1988b). ‘A Possible Quark Mechanism for the Saturation of Nuclear

Matter’. In: Phys. Lett. B 200, pp. 235–240. DOI: 10.1016/0370-2693(88)90762-

9.

Guichon, Pierre A. M., Anthony W. Thomas and Kazuo Tsushima (2008). ‘Binding of

hypernuclei in the latest quark-meson coupling model’. In: Nucl. Phys. A 814, pp. 66–73.

DOI: 10.1016/j.nuclphysa.2008.10.001. arXiv: 0712.1925 [nucl-th].

Guichon, Pierre A. M. et al. (1996). ‘The Role of nucleon structure in finite nuclei’. In:

Nucl. Phys. A 601, pp. 349–379. DOI: 10.1016/0375-9474(96)00033-4. arXiv:

nucl-th/9509034.

Hartle, James B. (Dec. 1967). ‘Slowly Rotating Relativistic Stars. I. Equations of Structure’.

In: apj 150, p. 1005. DOI: 10.1086/149400.

https://doi.org/10.1146/annurev-nucl-102014-022120
https://doi.org/10.1146/annurev-nucl-102014-022120
https://doi.org/10.1146/annurev-nucl-102014-022120
https://doi.org/10.1146/annurev-nucl-102014-022120
https://doi.org/10.1146/annurev-nucl-102014-022120
https://doi.org/10.1103/PhysRevLett.123.091601
https://arxiv.org/abs/1811.06546
https://doi.org/https://doi.org/10.1016/0370-2693(88)90762-9
https://doi.org/https://doi.org/10.1016/0370-2693(88)90762-9
https://doi.org/10.1016/j.nuclphysa.2006.04.002
https://doi.org/10.1016%2Fj.nuclphysa.2006.04.002
https://doi.org/10.1016%2Fj.nuclphysa.2006.04.002
https://doi.org/10.1016/0370-2693(88)90762-9
https://doi.org/10.1016/0370-2693(88)90762-9
https://doi.org/10.1016/j.nuclphysa.2008.10.001
https://arxiv.org/abs/0712.1925
https://doi.org/10.1016/0375-9474(96)00033-4
https://arxiv.org/abs/nucl-th/9509034
https://doi.org/10.1086/149400


148 BIBLIOGRAPHY

Hartle, James B. and Kip S. Thorne (Sept. 1968). ‘Slowly Rotating Relativistic Stars. II.

Models for Neutron Stars and Supermassive Stars’. In: apj 153, p. 807. DOI: 10.1086/

149707.

Harvey, David et al. (2015). ‘The non-gravitational interactions of dark matter in colliding

galaxy clusters’. In: Science 347, pp. 1462–1465. DOI: 10.1126/science.1261381.

arXiv: 1503.07675 [astro-ph.CO].

Hessels, Jason W. T. et al. (Mar. 2006). ‘A Radio Pulsar Spinning at 716 Hz’. In: Science

311.5769, pp. 1901–1904. DOI: 10.1126/science.1123430. arXiv: astro-

ph/0601337 [astro-ph].

Hewish, A. et al. (Feb. 1968). ‘Observation of a Rapidly Pulsating Radio Source’. In: nat

217.5130, pp. 709–713. DOI: 10.1038/217709a0.

Hinderer, Tanja (Apr. 2008). ‘Tidal Love Numbers of Neutron Stars’. In: The Astrophysical

Journal 677.2, pp. 1216–1220. ISSN: 1538-4357. DOI: 10.1086/533487. URL: http:

//dx.doi.org/10.1086/533487.

Hinderer, Tanja et al. (June 2010). ‘Tidal deformability of neutron stars with realistic equations

of state and their gravitational wave signatures in binary inspiral’. In: Physical Review

D 81.12. ISSN: 1550-2368. DOI: 10.1103/physrevd.81.123016. URL: http:

//dx.doi.org/10.1103/PhysRevD.81.123016.

Husain, Wasif, Theo F. Motta and Anthony W. Thomas (Mar. 2022a). ‘Consequences of

neutron decay inside neutron stars’. In: arXiv: 2203.02758 [hep-ph].

— (Oct. 2022b). ‘Consequences of neutron decay inside neutron stars’. In: Journal of Cosmo-

logy and Astroparticle Physics 2022.10, p. 028. DOI: 10.1088/1475-7516/2022/

10/028. URL: https://doi.org/10.1088%2F1475-7516%2F2022%2F10%

2F028.

Husain, Wasif and Anthony W Thomas (Nov. 2022). ‘Novel neutron decay mode inside

neutron stars’. In: Journal of Physics G: Nuclear and Particle Physics 50.1, p. 015202.

DOI: 10.1088/1361-6471/aca1d5. URL: https://doi.org/10.1088%

2F1361-6471%2Faca1d5.

— (Dec. 2020). ‘Significance of lower energy density region of neutron star and universalities

among neutron star properties’. In: Journal of Physics: Conference Series 1643, p. 012066.

https://doi.org/10.1086/149707
https://doi.org/10.1086/149707
https://doi.org/10.1126/science.1261381
https://arxiv.org/abs/1503.07675
https://doi.org/10.1126/science.1123430
https://arxiv.org/abs/astro-ph/0601337
https://arxiv.org/abs/astro-ph/0601337
https://doi.org/10.1038/217709a0
https://doi.org/10.1086/533487
http://dx.doi.org/10.1086/533487
http://dx.doi.org/10.1086/533487
https://doi.org/10.1103/physrevd.81.123016
http://dx.doi.org/10.1103/PhysRevD.81.123016
http://dx.doi.org/10.1103/PhysRevD.81.123016
https://arxiv.org/abs/2203.02758
https://doi.org/10.1088/1475-7516/2022/10/028
https://doi.org/10.1088/1475-7516/2022/10/028
https://doi.org/10.1088%2F1475-7516%2F2022%2F10%2F028
https://doi.org/10.1088%2F1475-7516%2F2022%2F10%2F028
https://doi.org/10.1088/1361-6471/aca1d5
https://doi.org/10.1088%2F1361-6471%2Faca1d5
https://doi.org/10.1088%2F1361-6471%2Faca1d5


BIBLIOGRAPHY 149

DOI: 10.1088/1742-6596/1643/1/012066. URL: https://doi.org/10.

1088/1742-6596/1643/1/012066.

— (2021a). ‘Hybrid Stars with Hyperons and Strange Quark Matter’. In: AIP Conf. Proc.

2319.1. Ed. by Teck-Yong Tou et al., p. 080001. DOI: 10.1063/5.0036994. arXiv:

2010.06750 [hep-ph].

— (Oct. 2021b). ‘Possible nature of dark matter’. In: Journal of Cosmology and Astroparticle

Physics 2021.10, p. 086. ISSN: 1475-7516. DOI: 10.1088/1475-7516/2021/10/

086. URL: http://dx.doi.org/10.1088/1475-7516/2021/10/086.

Iosilevskiy, Igor (2010). ‘Non-congruent Phase Transitions in Cosmic Matter and in the

Laboratory’. In: DOI: 10.48550/ARXIV.1005.4186. URL: https://arxiv.

org/abs/1005.4186.

Ivanenko, D. D. and D. F. Kurdgelaidze (1965). ‘Hypothesis concerning quark stars’. In:

Astrophysics 1, pp. 251–252. DOI: 10.1007/BF01042830.

Ivanov, A. N. et al. (June 2018). ‘Neutron Dark Matter Decays’. In: arXiv: 1806.10107

[hep-ph].

Kaaret, P. et al. (Feb. 2007). ‘Evidence of 1122 Hz X-Ray Burst Oscillations from the Neutron

Star X-Ray Transient XTE J1739-285’. In: The Astrophysical Journal 657.2, pp. L97–

L100. DOI: 10.1086/513270. URL: https://doi.org/10.1086/513270.

Kahn, F. D. and L. Woltjer (Nov. 1959). ‘Intergalactic Matter and the Galaxy.’ In: apj 130,

p. 705. DOI: 10.1086/146762.

Kaplan, D. B. and A. E. Nelson (1988). ‘Kaon Condensation in Dense Matter’. In: Nucl. Phys.

A 479. Ed. by J. Speth, p. 273c. DOI: 10.1016/0375-9474(88)90442-3.

Kolomeitsev, Evgeni E. and Dmitri N. Voskresensky (July 2003). ‘Negative kaons in dense ba-

ryonic matter’. In: Physical Review C 68.1. DOI: 10.1103/physrevc.68.015803.

URL: https://doi.org/10.1103%2Fphysrevc.68.015803.

Kouvaris, Chris (May 2012). ‘Limits on Self-Interacting Dark Matter from Neutron Stars’.

In: Physical Review Letters 108.19. ISSN: 1079-7114. DOI: 10.1103/physrevlett.

108.191301. URL: http://dx.doi.org/10.1103/PhysRevLett.108.

191301.

https://doi.org/10.1088/1742-6596/1643/1/012066
https://doi.org/10.1088/1742-6596/1643/1/012066
https://doi.org/10.1088/1742-6596/1643/1/012066
https://doi.org/10.1063/5.0036994
https://arxiv.org/abs/2010.06750
https://doi.org/10.1088/1475-7516/2021/10/086
https://doi.org/10.1088/1475-7516/2021/10/086
http://dx.doi.org/10.1088/1475-7516/2021/10/086
https://doi.org/10.48550/ARXIV.1005.4186
https://arxiv.org/abs/1005.4186
https://arxiv.org/abs/1005.4186
https://doi.org/10.1007/BF01042830
https://arxiv.org/abs/1806.10107
https://arxiv.org/abs/1806.10107
https://doi.org/10.1086/513270
https://doi.org/10.1086/513270
https://doi.org/10.1086/146762
https://doi.org/10.1016/0375-9474(88)90442-3
https://doi.org/10.1103/physrevc.68.015803
https://doi.org/10.1103%2Fphysrevc.68.015803
https://doi.org/10.1103/physrevlett.108.191301
https://doi.org/10.1103/physrevlett.108.191301
http://dx.doi.org/10.1103/PhysRevLett.108.191301
http://dx.doi.org/10.1103/PhysRevLett.108.191301


150 BIBLIOGRAPHY

Kouvaris, Chris (July 2013). ‘Composite millicharged dark matter’. In: Physical Review D

88.1. DOI: 10.1103/physrevd.88.015001. URL: https://doi.org/10.

1103%5C%2Fphysrevd.88.015001.

Kouvaris, Chris and Niklas Grønlund Nielsen (Sept. 2015). ‘Asymmetric dark matter stars’. In:

Physical Review D 92.6. ISSN: 1550-2368. DOI: 10.1103/physrevd.92.063526.

URL: http://dx.doi.org/10.1103/PhysRevD.92.063526.

Kouvaris, Chris and Peter Tinyakov (Sept. 2010). ‘Can neutron stars constrain dark matter?’

In: Phys. Rev. D 82 (6), p. 063531. DOI: 10.1103/PhysRevD.82.063531. URL:

https://link.aps.org/doi/10.1103/PhysRevD.82.063531.

Kurkela, Aleksi, Paul Romatschke and Aleksi Vuorinen (May 2010). ‘Cold quark matter’.

In: Phys. Rev. D 81 (10), p. 105021. DOI: 10.1103/PhysRevD.81.105021. URL:

https://link.aps.org/doi/10.1103/PhysRevD.81.105021.

Lattimer, James M. and Bernard F. Schutz (Aug. 2005a). ‘Constraining the Equation of State

with Moment of Inertia Measurements’. In: apj 629.2, pp. 979–984. DOI: 10.1086/

431543. arXiv: astro-ph/0411470 [astro-ph].

— (Aug. 2005b). ‘Constraining the Equation of State with Moment of Inertia Measurements’.

In: The Astrophysical Journal 629.2, pp. 979–984. DOI: 10.1086/431543. URL:

https://doi.org/10.1086/431543.

Lattimer, James M. and Andrew W. Steiner (Apr. 2014). ‘Neutron Star Masses and Radii from

Quiescent Low-mass X-Ray Binaries’. In: apj 784.2, 123, p. 123. DOI: 10.1088/0004-

637X/784/2/123. arXiv: 1305.3242 [astro-ph.HE].

Lattimer, James M. et al. (May 1991). ‘Direct URCA process in neutron stars’. In: Phys.

Rev. Lett. 66 (21), pp. 2701–2704. DOI: 10.1103/PhysRevLett.66.2701. URL:

https://link.aps.org/doi/10.1103/PhysRevLett.66.2701.

Lee, Benjamin W. and Steven Weinberg (July 1977). ‘Cosmological Lower Bound on

Heavy-Neutrino Masses’. In: Phys. Rev. Lett. 39 (4), pp. 165–168. DOI: 10.1103/

PhysRevLett.39.165. URL: https://link.aps.org/doi/10.1103/

PhysRevLett.39.165.

Li, X.Y, T Harko and K.S Cheng (June 2012a). ‘Condensate dark matter stars’. In: Journal

of Cosmology and Astroparticle Physics 2012.06, pp. 001–001. DOI: 10.1088/1475-

https://doi.org/10.1103/physrevd.88.015001
https://doi.org/10.1103%5C%2Fphysrevd.88.015001
https://doi.org/10.1103%5C%2Fphysrevd.88.015001
https://doi.org/10.1103/physrevd.92.063526
http://dx.doi.org/10.1103/PhysRevD.92.063526
https://doi.org/10.1103/PhysRevD.82.063531
https://link.aps.org/doi/10.1103/PhysRevD.82.063531
https://doi.org/10.1103/PhysRevD.81.105021
https://link.aps.org/doi/10.1103/PhysRevD.81.105021
https://doi.org/10.1086/431543
https://doi.org/10.1086/431543
https://arxiv.org/abs/astro-ph/0411470
https://doi.org/10.1086/431543
https://doi.org/10.1086/431543
https://doi.org/10.1088/0004-637X/784/2/123
https://doi.org/10.1088/0004-637X/784/2/123
https://arxiv.org/abs/1305.3242
https://doi.org/10.1103/PhysRevLett.66.2701
https://link.aps.org/doi/10.1103/PhysRevLett.66.2701
https://doi.org/10.1103/PhysRevLett.39.165
https://doi.org/10.1103/PhysRevLett.39.165
https://link.aps.org/doi/10.1103/PhysRevLett.39.165
https://link.aps.org/doi/10.1103/PhysRevLett.39.165
https://doi.org/10.1088/1475-7516/2012/06/001


BIBLIOGRAPHY 151

7516/2012/06/001. URL: https://doi.org/10.1088/1475-7516/

2012/06/001.

Li, X.Y, F.Y Wang and K.S Cheng (Oct. 2012b). ‘Gravitational effects of condensate dark

matter on compact stellar objects’. In: Journal of Cosmology and Astroparticle Physics

2012.10, pp. 031–031. ISSN: 1475-7516. DOI: 10.1088/1475-7516/2012/10/

031. URL: http://dx.doi.org/10.1088/1475-7516/2012/10/031.

Lobashev, V. M. et al. (Aug. 1999). ‘Direct search for mass of neutrino and anomaly in the

tritium beta-spectrum’. In: Physics Letters B 460.1-2, pp. 227–235. DOI: 10.1016/

S0370-2693(99)00781-9.

Lyne, A. G. and Francis Graham-Smith (1990). Pulsar astronomy / A.G. Lyne, F. Graham-

Smith. English. Cambridge University Press Cambridge [England] ; New York, xiv, 274 p.

: ISBN: 0521326818.

McDaniel, A., T. Jeltema and S. Profumo (May 2021). ‘X-ray shapes of elliptical galaxies and

implications for self-interacting dark matter’. In: Journal of Cosmology and Astroparticle

Physics 2021.05, p. 020. DOI: 10.1088/1475-7516/2021/05/020. URL: https:

//doi.org/10.1088/1475-7516/2021/05/020.

McDermott, Samuel D., Hai-Bo Yu and Kathryn M. Zurek (Mar. 2011). ‘Turning off the lights:

How dark is dark matter?’ In: Physical Review D 83.6. DOI: 10.1103/physrevd.83.

063509. URL: https://doi.org/10.1103%2Fphysrevd.83.063509.

McKeen, David et al. (2018). ‘Neutron stars exclude light dark baryons’. In: Phys. Rev.

Lett. 121.6, p. 061802. DOI: 10.1103/PhysRevLett.121.061802. arXiv: 1802.

08244 [hep-ph].

Merritt, David et al. (Nov. 2006). ‘Empirical Models for Dark Matter Halos. I. Nonparametric

Construction of Density Profiles and Comparison with Parametric Models’. In: The

Astronomical Journal 132.6, p. 2685. DOI: 10.1086/508988. URL: https://dx.

doi.org/10.1086/508988.

Migdal, A B (Nov. 1977). ‘Vacuum polarization in strong fields and pion condensation’. In: So-

viet Physics Uspekhi 20.11, pp. 879–898. DOI: 10.1070/pu1977v020n11abeh005471.

URL: https://doi.org/10.1070/pu1977v020n11abeh005471.

https://doi.org/10.1088/1475-7516/2012/06/001
https://doi.org/10.1088/1475-7516/2012/06/001
https://doi.org/10.1088/1475-7516/2012/06/001
https://doi.org/10.1088/1475-7516/2012/06/001
https://doi.org/10.1088/1475-7516/2012/10/031
https://doi.org/10.1088/1475-7516/2012/10/031
http://dx.doi.org/10.1088/1475-7516/2012/10/031
https://doi.org/10.1016/S0370-2693(99)00781-9
https://doi.org/10.1016/S0370-2693(99)00781-9
https://doi.org/10.1088/1475-7516/2021/05/020
https://doi.org/10.1088/1475-7516/2021/05/020
https://doi.org/10.1088/1475-7516/2021/05/020
https://doi.org/10.1103/physrevd.83.063509
https://doi.org/10.1103/physrevd.83.063509
https://doi.org/10.1103%2Fphysrevd.83.063509
https://doi.org/10.1103/PhysRevLett.121.061802
https://arxiv.org/abs/1802.08244
https://arxiv.org/abs/1802.08244
https://doi.org/10.1086/508988
https://dx.doi.org/10.1086/508988
https://dx.doi.org/10.1086/508988
https://doi.org/10.1070/pu1977v020n11abeh005471
https://doi.org/10.1070/pu1977v020n11abeh005471


152 BIBLIOGRAPHY

Miller, M. C. et al. (Dec. 2019). ‘PSR J0030+0451 Mass and Radius from NICER Data

and Implications for the Properties of Neutron Star Matter’. In: 887.1, L24, p. L24. DOI:

10.3847/2041-8213/ab50c5. arXiv: 1912.05705 [astro-ph.HE].

Miller, M. C. et al. (Sept. 2021). ‘The Radius of PSR J07406620 from NICER and XMM-

Newton Data’. In: The Astrophysical Journal Letters 918.2, p. L28. DOI: 10.3847/

2041-8213/ac089b. URL: https://doi.org/10.3847%5C%2F2041-

8213%2Fac089b.

Motta, T. F., P. A. M. Guichon and A. W. Thomas (2018a). ‘Implications of Neutron Star

Properties for the Existence of Light Dark Matter’. In: J. Phys. G 45.5, 05LT01. DOI:

10.1088/1361-6471/aab689. arXiv: 1802.08427 [nucl-th].

— (2018b). ‘Neutron to Dark Matter Decay in Neutron Stars’. In: Int. J. Mod. Phys. A 33.31.

Ed. by Harald Fritzsch, p. 1844020. DOI: 10.1142/S0217751X18440207. arXiv:

1806.00903 [nucl-th].

Motta, T. F. et al. (2019). ‘Isovector Effects in Neutron Stars, Radii and the GW170817

Constraint’. In: Astrophys. J. 878.2, p. 159. DOI: 10.3847/1538-4357/ab218e.

arXiv: 1904.03794 [nucl-th].

Mukhopadhyay, Somnath et al. (July 2017). ‘Compact bifluid hybrid stars: hadronic matter

mixed with self-interacting fermionic asymmetric dark matter’. In: The European Physical

Journal C 77.7. ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-017-5006-3.

URL: http://dx.doi.org/10.1140/epjc/s10052-017-5006-3.

Navarro, Julio F., Carlos S. Frenk and Simon D. M. White (May 1996). ‘The Structure

of Cold Dark Matter Halos’. In: apj 462, p. 563. DOI: 10.1086/177173. arXiv:

astro-ph/9508025 [astro-ph].

Navarro, Julio F. et al. (Feb. 2010). ‘The diversity and similarity of simulated cold dark matter

haloes’. In: mnras 402.1, pp. 21–34. DOI: 10.1111/j.1365-2966.2009.15878.

x. arXiv: 0810.1522 [astro-ph].

Nelson, Ann, Sanjay Reddy and Dake Zhou (2019). ‘Dark halos around neutron stars and

gravitational waves’. In: JCAP 07, p. 012. DOI: 10.1088/1475-7516/2019/07/

012. arXiv: 1803.03266 [hep-ph].

https://doi.org/10.3847/2041-8213/ab50c5
https://arxiv.org/abs/1912.05705
https://doi.org/10.3847/2041-8213/ac089b
https://doi.org/10.3847/2041-8213/ac089b
https://doi.org/10.3847%5C%2F2041-8213%2Fac089b
https://doi.org/10.3847%5C%2F2041-8213%2Fac089b
https://doi.org/10.1088/1361-6471/aab689
https://arxiv.org/abs/1802.08427
https://doi.org/10.1142/S0217751X18440207
https://arxiv.org/abs/1806.00903
https://doi.org/10.3847/1538-4357/ab218e
https://arxiv.org/abs/1904.03794
https://doi.org/10.1140/epjc/s10052-017-5006-3
http://dx.doi.org/10.1140/epjc/s10052-017-5006-3
https://doi.org/10.1086/177173
https://arxiv.org/abs/astro-ph/9508025
https://doi.org/10.1111/j.1365-2966.2009.15878.x
https://doi.org/10.1111/j.1365-2966.2009.15878.x
https://arxiv.org/abs/0810.1522
https://doi.org/10.1088/1475-7516/2019/07/012
https://doi.org/10.1088/1475-7516/2019/07/012
https://arxiv.org/abs/1803.03266


BIBLIOGRAPHY 153

Nesti, Fabrizio and Paolo Salucci (July 2013). ‘The Dark Matter halo of the Milky Way,

AD 2013’. In: Journal of Cosmology and Astroparticle Physics 2013.07, p. 016. DOI:

10.1088/1475-7516/2013/07/016. URL: https://dx.doi.org/10.

1088/1475-7516/2013/07/016.

Nico, J. S. et al. (May 2005). ‘Measurement of the neutron lifetime by counting trapped

protons in a cold neutron beam’. In: Phys. Rev. C 71 (5), p. 055502. DOI: 10.1103/

PhysRevC.71.055502. URL: https://link.aps.org/doi/10.1103/

PhysRevC.71.055502.

Nishizaki, Shigeru, Yasuo Yamamoto and Tatsuyuki Takatsuka (Oct. 2002). ‘Hyperon-Mixed

Neutron Star Matter and Neutron Stars*)’. In: Progress of Theoretical Physics 108.4,

pp. 703–718. ISSN: 0033-068X. DOI: 10.1143/PTP.108.703. eprint: https:

//academic.oup.com/ptp/article-pdf/108/4/703/5414579/108-4-

703.pdf. URL: https://doi.org/10.1143/PTP.108.703.

Nobile, Eugenio Del, Marco Nardecchia and Paolo Panci (Apr. 2016). ‘Millicharge or decay:

a critical take on Minimal Dark Matter’. In: Journal of Cosmology and Astroparticle

Physics 2016.04, pp. 048–048. DOI: 10.1088/1475-7516/2016/04/048. URL:

https://doi.org/10.1088%5C%2F1475-7516%5C%2F2016%5C%2F04%

5C%2F048.

Oppenheimer, J. R. and G. M. Volkoff (Feb. 1939). ‘On Massive Neutron Cores’. In: Phys.

Rev. 55 (4), pp. 374–381. DOI: 10.1103/PhysRev.55.374. URL: https://link.

aps.org/doi/10.1103/PhysRev.55.374.

Ostriker, J. P., P. J. E. Peebles and A. Yahil (Oct. 1974). ‘The Size and Mass of Galaxies, and

the Mass of the Universe’. In: apjl 193, p. L1. DOI: 10.1086/181617.

Özel, Feryal and Paulo Freire (2016). ‘Masses, Radii, and the Equation of State of Neutron

Stars’. In: Ann. Rev. Astron. Astrophys. 54, pp. 401–440. DOI: 10.1146/annurev-

astro-081915-023322. arXiv: 1603.02698 [astro-ph.HE].

Pagels, Heinz and Joel R. Primack (Jan. 1982). ‘Supersymmetry, Cosmology, and New

Physics at Teraelectronvolt Energies’. In: Phys. Rev. Lett. 48 (4), pp. 223–226. DOI:

10.1103/PhysRevLett.48.223. URL: https://link.aps.org/doi/10.

1103/PhysRevLett.48.223.

https://doi.org/10.1088/1475-7516/2013/07/016
https://dx.doi.org/10.1088/1475-7516/2013/07/016
https://dx.doi.org/10.1088/1475-7516/2013/07/016
https://doi.org/10.1103/PhysRevC.71.055502
https://doi.org/10.1103/PhysRevC.71.055502
https://link.aps.org/doi/10.1103/PhysRevC.71.055502
https://link.aps.org/doi/10.1103/PhysRevC.71.055502
https://doi.org/10.1143/PTP.108.703
https://academic.oup.com/ptp/article-pdf/108/4/703/5414579/108-4-703.pdf
https://academic.oup.com/ptp/article-pdf/108/4/703/5414579/108-4-703.pdf
https://academic.oup.com/ptp/article-pdf/108/4/703/5414579/108-4-703.pdf
https://doi.org/10.1143/PTP.108.703
https://doi.org/10.1088/1475-7516/2016/04/048
https://doi.org/10.1088%5C%2F1475-7516%5C%2F2016%5C%2F04%5C%2F048
https://doi.org/10.1088%5C%2F1475-7516%5C%2F2016%5C%2F04%5C%2F048
https://doi.org/10.1103/PhysRev.55.374
https://link.aps.org/doi/10.1103/PhysRev.55.374
https://link.aps.org/doi/10.1103/PhysRev.55.374
https://doi.org/10.1086/181617
https://doi.org/10.1146/annurev-astro-081915-023322
https://doi.org/10.1146/annurev-astro-081915-023322
https://arxiv.org/abs/1603.02698
https://doi.org/10.1103/PhysRevLett.48.223
https://link.aps.org/doi/10.1103/PhysRevLett.48.223
https://link.aps.org/doi/10.1103/PhysRevLett.48.223


154 BIBLIOGRAPHY

Pandharipande, V R (Jan. 1971). ‘HYPERONIC MATTER.’ In: Nucl. Phys. A178: No. 1,

123-44(1971). DOI: 10.1016/0375-9474(71)90193-X. URL: https://www.

osti.gov/biblio/4679056.

Pattie, R. W. et al. (2018). ‘Measurement of the neutron lifetime using a magneto-gravitational

trap and in situ detection’. In: Science 360.6389, pp. 627–632. DOI: 10.1126/science.

aan8895. eprint: https : / / www . science . org / doi / pdf / 10 . 1126 /

science.aan8895. URL: https://www.science.org/doi/abs/10.

1126/science.aan8895.

Peccei, R. D. and Helen R. Quinn (June 1977). ‘CP Conservation in the Presence of Pseudo-

particles’. In: Phys. Rev. Lett. 38 (25), pp. 1440–1443. DOI: 10.1103/PhysRevLett.

38.1440. URL: https://link.aps.org/doi/10.1103/PhysRevLett.

38.1440.

Pethick, C. J. and H. Smith (2008). Bose–Einstein Condensation in Dilute Gases. 2nd ed.

Cambridge University Press. DOI: 10.1017/CBO9780511802850.

Pichlmaier, A. et al. (2010). ‘Neutron lifetime measurement with the UCN trap-in-trap

MAMBO II’. In: Physics Letters B 693.3, pp. 221–226. ISSN: 0370-2693. DOI: https:

//doi.org/10.1016/j.physletb.2010.08.032.

Preskill, John, Mark B. Wise and Frank Wilczek (1983). ‘Cosmology of the invisible axion’.

In: Physics Letters B 120.1, pp. 127–132. ISSN: 0370-2693. DOI: https://doi.org/

10.1016/0370-2693(83)90637-8.

Press, W. H. and D. N. Spergel (Sept. 1985). ‘Capture by the sun of a galactic population

of weakly interacting, massive particles’. In: apj 296, pp. 679–684. DOI: 10.1086/

163485.

Raffelt, Georg G. (Dec. 1990). ‘Astrophysical methods to constrain axions and other novel

particle phenomena’. In: physrep 198.1-2, pp. 1–113. DOI: 10.1016/0370-1573(90)

90054-6.

Rajendran, Surjeet and Harikrishnan Ramani (Feb. 2021). ‘Composite solution to the neutron

lifetime anomaly’. In: Physical Review D 103.3. ISSN: 2470-0029. DOI: 10.1103/

physrevd.103.035014. URL: http://dx.doi.org/10.1103/PhysRevD.

103.035014.

https://doi.org/10.1016/0375-9474(71)90193-X
https://www.osti.gov/biblio/4679056
https://www.osti.gov/biblio/4679056
https://doi.org/10.1126/science.aan8895
https://doi.org/10.1126/science.aan8895
https://www.science.org/doi/pdf/10.1126/science.aan8895
https://www.science.org/doi/pdf/10.1126/science.aan8895
https://www.science.org/doi/abs/10.1126/science.aan8895
https://www.science.org/doi/abs/10.1126/science.aan8895
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://link.aps.org/doi/10.1103/PhysRevLett.38.1440
https://link.aps.org/doi/10.1103/PhysRevLett.38.1440
https://doi.org/10.1017/CBO9780511802850
https://doi.org/https://doi.org/10.1016/j.physletb.2010.08.032
https://doi.org/https://doi.org/10.1016/j.physletb.2010.08.032
https://doi.org/https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1086/163485
https://doi.org/10.1086/163485
https://doi.org/10.1016/0370-1573(90)90054-6
https://doi.org/10.1016/0370-1573(90)90054-6
https://doi.org/10.1103/physrevd.103.035014
https://doi.org/10.1103/physrevd.103.035014
http://dx.doi.org/10.1103/PhysRevD.103.035014
http://dx.doi.org/10.1103/PhysRevD.103.035014


BIBLIOGRAPHY 155

Ramos, Angels, Jurgen Schaffner-Bielich and Jochen Wambach (2000). ‘Kaon Condensation

in Neutron Stars’. In: DOI: 10.48550/ARXIV.NUCL-TH/0011003. URL: https:

//arxiv.org/abs/nucl-th/0011003.

Randall, Scott W. et al. (June 2008). ‘Constraints on the Self-Interaction Cross Section of Dark

Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657-56’. In: apj

679.2, pp. 1173–1180. DOI: 10.1086/587859. arXiv: 0704.0261 [astro-ph].

Ransom, Scott M. et al. (Feb. 2005). ‘Twenty-One Millisecond Pulsars in Terzan 5 Using the

Green Bank Telescope’. In: Science 307.5711, pp. 892–896. DOI: 10.1126/science.

1108632. arXiv: astro-ph/0501230 [astro-ph].

Regge, Tullio and John A. Wheeler (1957). ‘Stability of a Schwarzschild singularity’. In:

Phys. Rev. 108, pp. 1063–1069. DOI: 10.1103/PhysRev.108.1063.

Rikovska Stone, J. et al. (2007a). ‘Cold uniform matter and neutron stars in the quark–meson-

coupling model’. In: Nuclear Physics A 792.3, pp. 341–369. ISSN: 0375-9474. DOI:

https://doi.org/10.1016/j.nuclphysa.2007.05.011.

— (2007b). ‘Cold uniform matter and neutron stars in the quark–meson-coupling model’. In:

Nuclear Physics A 792.3, pp. 341–369. ISSN: 0375-9474. DOI: https://doi.org/

10.1016/j.nuclphysa.2007.05.011.

Riley, T. E. et al. (Dec. 2019). ‘A iNICER/i View of PSR J00300451: Millisecond Pulsar

Parameter Estimation’. In: The Astrophysical Journal 887.1, p. L21. DOI: 10.3847/

2041-8213/ab481c. URL: https://doi.org/10.3847%2F2041-8213%

2Fab481c.

Riley, Thomas E. et al. (Sept. 2021). ‘A NICER View of the Massive Pulsar PSR J07406620

Informed by Radio Timing and XMM-Newton Spectroscopy’. In: The Astrophysical

Journal Letters 918.2, p. L27. DOI: 10.3847/2041-8213/ac0a81. URL: https:

//doi.org/10.3847%2F2041-8213%2Fac0a81.

Roberts, M. S. and A. H. Rots (Aug. 1973). ‘Comparison of Rotation Curves of Different

Galaxy Types’. In: aap 26, pp. 483–485.

Rubin, V. C., Jr. Ford W. K. and N. Thonnard (Nov. 1978). ‘Extended rotation curves of

high-luminosity spiral galaxies. IV. Systematic dynamical properties, Sa -> Sc.’ In: apjl

225, pp. L107–L111. DOI: 10.1086/182804.

https://doi.org/10.48550/ARXIV.NUCL-TH/0011003
https://arxiv.org/abs/nucl-th/0011003
https://arxiv.org/abs/nucl-th/0011003
https://doi.org/10.1086/587859
https://arxiv.org/abs/0704.0261
https://doi.org/10.1126/science.1108632
https://doi.org/10.1126/science.1108632
https://arxiv.org/abs/astro-ph/0501230
https://doi.org/10.1103/PhysRev.108.1063
https://doi.org/https://doi.org/10.1016/j.nuclphysa.2007.05.011
https://doi.org/https://doi.org/10.1016/j.nuclphysa.2007.05.011
https://doi.org/https://doi.org/10.1016/j.nuclphysa.2007.05.011
https://doi.org/10.3847/2041-8213/ab481c
https://doi.org/10.3847/2041-8213/ab481c
https://doi.org/10.3847%2F2041-8213%2Fab481c
https://doi.org/10.3847%2F2041-8213%2Fab481c
https://doi.org/10.3847/2041-8213/ac0a81
https://doi.org/10.3847%2F2041-8213%2Fac0a81
https://doi.org/10.3847%2F2041-8213%2Fac0a81
https://doi.org/10.1086/182804


156 BIBLIOGRAPHY

Ruderman, M. (Jan. 1972). ‘Pulsars: Structure and Dynamics’. In: araa 10, p. 427. DOI:

10.1146/annurev.aa.10.090172.002235.

Sawyer, R. F. (Aug. 1972). ‘Condensed π− Phase in Neutron-Star Matter’. In: Phys. Rev.

Lett. 29 (6), pp. 382–385. DOI: 10.1103/PhysRevLett.29.382. URL: https:

//link.aps.org/doi/10.1103/PhysRevLett.29.382.

Scalapino, D. J. (Aug. 1972). ‘π− Condensate in Dense Nuclear Matter’. In: Phys. Rev.

Lett. 29 (6), pp. 386–388. DOI: 10.1103/PhysRevLett.29.386. URL: https:

//link.aps.org/doi/10.1103/PhysRevLett.29.386.

Serebrov, A. et al. (2005). ‘Measurement of the neutron lifetime using a gravitational trap

and a low-temperature Fomblin coating’. In: Physics Letters B 605.1, pp. 72–78. ISSN:

0370-2693. DOI: https://doi.org/10.1016/j.physletb.2004.11.013.

Serebrov, A. P. et al. (2008). ‘Experimental search for neutron: Mirror neutron oscillations

using storage of ultracold neutrons’. In: Phys. Lett. B 663, pp. 181–185. DOI: 10.1016/

j.physletb.2008.04.014. arXiv: 0706.3600 [nucl-ex].

Serebrov, A. P. et al. (May 2018a). ‘Neutron lifetime measurements with a large gravita-

tional trap for ultracold neutrons’. In: Phys. Rev. C 97 (5), p. 055503. DOI: 10.1103/

PhysRevC.97.055503. URL: https://link.aps.org/doi/10.1103/

PhysRevC.97.055503.

Serebrov, A. P. et al. (Feb. 2018b). ‘Neutron lifetime, dark matter and search for sterile

neutrino’. In: arXiv: 1802.06277 [nucl-ex].

Serot, Brian D. and John Dirk Walecka (1986). ‘The Relativistic Nuclear Many Body Problem’.

In: Adv. Nucl. Phys. 16, pp. 1–327.

Shapiro, Stuart L. and Saul A. Teukolsky (1983). Black holes, white dwarfs, and neutron stars

: the physics of compact objects.

Sikivie, P. (Apr. 1982). ‘Axions, Domain Walls, and the Early Universe’. In: Phys. Rev. Lett.

48 (17), pp. 1156–1159. DOI: 10.1103/PhysRevLett.48.1156. URL: https:

//link.aps.org/doi/10.1103/PhysRevLett.48.1156.

— (Oct. 1983). ‘Experimental Tests of the "Invisible" Axion’. In: Phys. Rev. Lett. 51 (16),

pp. 1415–1417. DOI: 10.1103/PhysRevLett.51.1415. URL: https://link.

aps.org/doi/10.1103/PhysRevLett.51.1415.

https://doi.org/10.1146/annurev.aa.10.090172.002235
https://doi.org/10.1103/PhysRevLett.29.382
https://link.aps.org/doi/10.1103/PhysRevLett.29.382
https://link.aps.org/doi/10.1103/PhysRevLett.29.382
https://doi.org/10.1103/PhysRevLett.29.386
https://link.aps.org/doi/10.1103/PhysRevLett.29.386
https://link.aps.org/doi/10.1103/PhysRevLett.29.386
https://doi.org/https://doi.org/10.1016/j.physletb.2004.11.013
https://doi.org/10.1016/j.physletb.2008.04.014
https://doi.org/10.1016/j.physletb.2008.04.014
https://arxiv.org/abs/0706.3600
https://doi.org/10.1103/PhysRevC.97.055503
https://doi.org/10.1103/PhysRevC.97.055503
https://link.aps.org/doi/10.1103/PhysRevC.97.055503
https://link.aps.org/doi/10.1103/PhysRevC.97.055503
https://arxiv.org/abs/1802.06277
https://doi.org/10.1103/PhysRevLett.48.1156
https://link.aps.org/doi/10.1103/PhysRevLett.48.1156
https://link.aps.org/doi/10.1103/PhysRevLett.48.1156
https://doi.org/10.1103/PhysRevLett.51.1415
https://link.aps.org/doi/10.1103/PhysRevLett.51.1415
https://link.aps.org/doi/10.1103/PhysRevLett.51.1415


BIBLIOGRAPHY 157

Sivertsson, S et al. (Apr. 2018). ‘The localdark matter density from SDSS-SEGUE G-dwarfs’.

In: Monthly Notices of the Royal Astronomical Society 478.2, pp. 1677–1693. ISSN:

0035-8711. DOI: 10.1093/mnras/sty977. eprint: https://academic.oup.

com/mnras/article-pdf/478/2/1677/25059992/sty977.pdf. URL:

https://doi.org/10.1093/mnras/sty977.

Spergel, D. N. et al. (Sept. 2003). ‘First-Year <i<Wilkinson Microwave Anisotropy Probe</i<

( <i<WMAP</i< ) Observations: Determination of Cosmological Parameters’. In: The

Astrophysical Journal Supplement Series 148.1, pp. 175–194. DOI: 10.1086/377226.

URL: https://doi.org/10.1086/377226.

Spergel, David N. and Paul J. Steinhardt (2000). ‘Observational evidence for selfinter-

acting cold dark matter’. In: Phys. Rev. Lett. 84, pp. 3760–3763. DOI: 10.1103/

PhysRevLett.84.3760. arXiv: astro-ph/9909386.

Steigman, Gary and Michael S. Turner (1985). ‘Cosmological Constraints on the Properties

of Weakly Interacting Massive Particles’. In: Nucl. Phys. B 253, pp. 375–386. DOI:

10.1016/0550-3213(85)90537-1.

Steiner, Andrew W., James M. Lattimer and Edward F. Brown (Mar. 2013). ‘The Neutron

Star Mass-Radius Relation and the Equation of State of Dense Matter’. In: apjl 765.1, L5,

p. L5. DOI: 10.1088/2041-8205/765/1/L5. arXiv: 1205.6871 [nucl-th].

Steyerl, A. et al. (June 2012). ‘Quasielastic scattering in the interaction of ultracold neutrons

with a liquid wall and application in a reanalysis of the Mambo I neutron-lifetime experi-

ment’. In: Phys. Rev. C 85 (6), p. 065503. DOI: 10.1103/PhysRevC.85.065503.

URL: https://link.aps.org/doi/10.1103/PhysRevC.85.065503.

Strumia, Alessandro (Dec. 2021). ‘Dark Matter interpretation of the neutron decay anomaly’.

In: arXiv: 2112.09111 [hep-ph].

— (Feb. 2022). ‘Dark Matter interpretation of the neutron decay anomaly’. In: Journal of

High Energy Physics 2022.2. DOI: 10.1007/jhep02(2022)067. URL: https:

//doi.org/10.1007%5C%2Fjhep02%5C%282022%5C%29067.

Takatsuka, T. and R. Tamagaki (1999). ‘Superfluidity of Lambda-hyperons admixed in

neutron star cores’. In: Prog. Theor. Phys. 102, pp. 1043–1048. DOI: 10.1143/PTP.

102.1043.

https://doi.org/10.1093/mnras/sty977
https://academic.oup.com/mnras/article-pdf/478/2/1677/25059992/sty977.pdf
https://academic.oup.com/mnras/article-pdf/478/2/1677/25059992/sty977.pdf
https://doi.org/10.1093/mnras/sty977
https://doi.org/10.1086/377226
https://doi.org/10.1086/377226
https://doi.org/10.1103/PhysRevLett.84.3760
https://doi.org/10.1103/PhysRevLett.84.3760
https://arxiv.org/abs/astro-ph/9909386
https://doi.org/10.1016/0550-3213(85)90537-1
https://doi.org/10.1088/2041-8205/765/1/L5
https://arxiv.org/abs/1205.6871
https://doi.org/10.1103/PhysRevC.85.065503
https://link.aps.org/doi/10.1103/PhysRevC.85.065503
https://arxiv.org/abs/2112.09111
https://doi.org/10.1007/jhep02(2022)067
https://doi.org/10.1007%5C%2Fjhep02%5C%282022%5C%29067
https://doi.org/10.1007%5C%2Fjhep02%5C%282022%5C%29067
https://doi.org/10.1143/PTP.102.1043
https://doi.org/10.1143/PTP.102.1043


158 BIBLIOGRAPHY

Takatsuka, Tatsuyuki et al. (2006). ‘Occurrence of hyperon superfluidity in neutron star

cores’. In: Prog. Theor. Phys. 115, pp. 355–379. DOI: 10.1143/PTP.115.355. arXiv:

nucl-th/0601043.

Tamagaki, Ryozo (Mar. 1993). ‘Overview’. In: Progress of Theoretical Physics Supplement

112, pp. 1–25. ISSN: 0375-9687. DOI: 10.1143/PTPS.112.1. eprint: https://

academic.oup.com/ptps/article-pdf/doi/10.1143/PTPS.112.1/

38836198/112-1.pdf. URL: https://doi.org/10.1143/PTPS.112.1.

Tang, Z. et al. (2018a). ‘Search for the Neutron Decay n→ X+γ where X is a dark matter

particle’. In: Phys. Rev. Lett. 121.2, p. 022505. DOI: 10.1103/PhysRevLett.121.

022505. arXiv: 1802.01595 [nucl-ex].

Tang, Z. et al. (July 2018b). ‘Search for the Neutron Decay n → χ+γ , Where χ is a

Dark Matter Particle’. In: Physical Review Letters 121.2. ISSN: 1079-7114. DOI: 10.

1103/physrevlett.121.022505. URL: http://dx.doi.org/10.1103/

PhysRevLett.121.022505.

Tegmark, Max et al. (May 2004). ‘Cosmological parameters from SDSS and WMAP’. In:

Phys. Rev. D 69 (10), p. 103501. DOI: 10.1103/PhysRevD.69.103501. URL:

https://link.aps.org/doi/10.1103/PhysRevD.69.103501.

Thomas, A. W. (1984). ‘Chiral Symmetry and the BAG Model: A New Starting Point for

Nuclear Physics’. In: Advances in Nuclear Physics: Volume 13. Ed. by J. W. Negele

and Erich Vogt. Boston, MA: Springer US, pp. 1–137. ISBN: 978-1-4613-9892-9. DOI:

10.1007/978-1-4613-9892-9_1. URL: https://doi.org/10.1007/

978-1-4613-9892-9_1.

Tolman, Richard C. (1934). ‘Effect of Inhomogeneity on Cosmological Models’. In: Pro-

ceedings of the National Academy of Sciences 20.3, pp. 169–176. ISSN: 0027-8424. DOI:

10.1073/pnas.20.3.169. eprint: https://www.pnas.org/content/20/

3/169.full.pdf. URL: https://www.pnas.org/content/20/3/169.

Trimble, V. and M. Rees (Jan. 1970). ‘The Expansion Energy of the Crab Nebula’. In: aplett

5, p. 93.

Tulin, Sean and Hai-Bo Yu (2018a). ‘Dark matter self-interactions and small scale structure’.

In: Physics Reports 730. Dark matter self-interactions and small scale structure, pp. 1–57.

https://doi.org/10.1143/PTP.115.355
https://arxiv.org/abs/nucl-th/0601043
https://doi.org/10.1143/PTPS.112.1
https://academic.oup.com/ptps/article-pdf/doi/10.1143/PTPS.112.1/38836198/112-1.pdf
https://academic.oup.com/ptps/article-pdf/doi/10.1143/PTPS.112.1/38836198/112-1.pdf
https://academic.oup.com/ptps/article-pdf/doi/10.1143/PTPS.112.1/38836198/112-1.pdf
https://doi.org/10.1143/PTPS.112.1
https://doi.org/10.1103/PhysRevLett.121.022505
https://doi.org/10.1103/PhysRevLett.121.022505
https://arxiv.org/abs/1802.01595
https://doi.org/10.1103/physrevlett.121.022505
https://doi.org/10.1103/physrevlett.121.022505
http://dx.doi.org/10.1103/PhysRevLett.121.022505
http://dx.doi.org/10.1103/PhysRevLett.121.022505
https://doi.org/10.1103/PhysRevD.69.103501
https://link.aps.org/doi/10.1103/PhysRevD.69.103501
https://doi.org/10.1007/978-1-4613-9892-9_1
https://doi.org/10.1007/978-1-4613-9892-9_1
https://doi.org/10.1007/978-1-4613-9892-9_1
https://doi.org/10.1073/pnas.20.3.169
https://www.pnas.org/content/20/3/169.full.pdf
https://www.pnas.org/content/20/3/169.full.pdf
https://www.pnas.org/content/20/3/169


BIBLIOGRAPHY 159

ISSN: 0370-1573. DOI: https://doi.org/10.1016/j.physrep.2017.11.

004.

— (Feb. 2018b). ‘Dark matter self-interactions and small scale structure’. In: Physics Reports

730, pp. 1–57. DOI: 10.1016/j.physrep.2017.11.004. URL: https://doi.

org/10.1016%5C%2Fj.physrep.2017.11.004.

Turner, Michael S. (1990). ‘Windows on the Axion’. In: Phys. Rept. 197, pp. 67–97. DOI:

10.1016/0370-1573(90)90172-X.

Urbanec, M., J. C. Miller and Z. Stuchlık (Aug. 2013). ‘Quadrupole moments of rotating

neutron stars and strange stars’. In: mnras 433.3, pp. 1903–1909. DOI: 10.1093/

mnras/stt858. arXiv: 1301.5925 [astro-ph.SR].

Verbiest, J. P. W. et al. (May 2008). ‘Precision Timing of PSR J0437-4715: An Accurate Pulsar

Distance, a High Pulsar Mass, and a Limit on the Variation of Newton’s Gravitational

Constant’. In: apj 679.1, pp. 675–680. DOI: 10.1086/529576. arXiv: 0801.2589

[astro-ph].

Weinberg, Steven (Jan. 1978). ‘A New Light Boson?’ In: Phys. Rev. Lett. 40 (4), pp. 223–226.

DOI: 10.1103/PhysRevLett.40.223. URL: https://link.aps.org/doi/

10.1103/PhysRevLett.40.223.

Wilczek, F. (Jan. 1978). ‘Problem of Strong P and T Invariance in the Presence of Instantons’.

In: Phys. Rev. Lett. 40 (5), pp. 279–282. DOI: 10.1103/PhysRevLett.40.279.

URL: https://link.aps.org/doi/10.1103/PhysRevLett.40.279.

Wiringa, R. B. (Jan. 1993). ‘From deuterons to neutron stars: variations in nuclear many-body

theory’. In: Rev. Mod. Phys. 65 (1), pp. 231–242. DOI: 10.1103/RevModPhys.65.

231. URL: https://link.aps.org/doi/10.1103/RevModPhys.65.231.

Yue, A. T. et al. (Nov. 2013). ‘Improved Determination of the Neutron Lifetime’. In: Phys.

Rev. Lett. 111 (22), p. 222501. DOI: 10.1103/PhysRevLett.111.222501. URL:

https://link.aps.org/doi/10.1103/PhysRevLett.111.222501.

Zavala, Jesús and Carlos S. Frenk (2019). ‘Dark Matter Haloes and Subhaloes’. In: Galaxies

7.4. ISSN: 2075-4434. DOI: 10.3390/galaxies7040081. URL: https://www.

mdpi.com/2075-4434/7/4/81.

https://doi.org/https://doi.org/10.1016/j.physrep.2017.11.004
https://doi.org/https://doi.org/10.1016/j.physrep.2017.11.004
https://doi.org/10.1016/j.physrep.2017.11.004
https://doi.org/10.1016%5C%2Fj.physrep.2017.11.004
https://doi.org/10.1016%5C%2Fj.physrep.2017.11.004
https://doi.org/10.1016/0370-1573(90)90172-X
https://doi.org/10.1093/mnras/stt858
https://doi.org/10.1093/mnras/stt858
https://arxiv.org/abs/1301.5925
https://doi.org/10.1086/529576
https://arxiv.org/abs/0801.2589
https://arxiv.org/abs/0801.2589
https://doi.org/10.1103/PhysRevLett.40.223
https://link.aps.org/doi/10.1103/PhysRevLett.40.223
https://link.aps.org/doi/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.279
https://link.aps.org/doi/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/RevModPhys.65.231
https://doi.org/10.1103/RevModPhys.65.231
https://link.aps.org/doi/10.1103/RevModPhys.65.231
https://doi.org/10.1103/PhysRevLett.111.222501
https://link.aps.org/doi/10.1103/PhysRevLett.111.222501
https://doi.org/10.3390/galaxies7040081
https://www.mdpi.com/2075-4434/7/4/81
https://www.mdpi.com/2075-4434/7/4/81


160 BIBLIOGRAPHY

Zwicky, F. (Oct. 1937). ‘On the Masses of Nebulae and of Clusters of Nebulae’. In: apj 86,

p. 217. DOI: 10.1086/143864.

https://doi.org/10.1086/143864

	Abstract
	Declaration
	Research publications
	Acknowledgements
	List of Figures
	List of Tables
	Chapter 1. Dark matter
	1.1. Historical background
	1.2. Observational evidences of the presence of dark matter
	1.2.1. Rotational curves
	1.2.2. Galaxy clusters
	1.2.3. Large and cosmological scales

	1.3. The properties of dark matter
	1.3.1. Abundance
	1.3.2. Electric charge
	1.3.3. Cold
	1.3.4. Lifetime
	1.3.5. Self-interaction
	1.3.6. Non-baryonic

	1.4. Dark matter candidates
	1.4.1. Weakly Interacting Massive Particles (WIMPs)
	1.4.2. Axions
	1.4.3. Neutrinos
	1.4.4. Sterile neutrino
	1.4.5. Dark photons
	1.4.6. Neutrons decay into dark matter
	1.4.7. Supersymmetry (SUSY) particles

	1.5. Cosmological challenges for dark matter
	1.5.1. Too big to fail problem
	1.5.2. Core vs. Cusp problem
	1.5.3. Missing satellite problem

	1.6. Dark matter probes
	1.6.1. Experimental efforts to discover dark matter
	1.6.2. Theoretical efforts to understand dark matter


	Chapter 2. Neutron stars
	2.1. Gravity
	2.2. Mass
	2.3. Radius
	2.4. Spin
	2.5. Moment of inertia
	2.6. Neutron star binary system and gravitational waves
	2.7. Temperature
	2.8. Neutron star cooling
	2.9. Core of the neutron star
	2.9.1. Meson condensation
	2.9.2. Deconfined quarks
	2.9.3. Possibility of mixed phases


	Chapter 3. Recipe to model the dark matter inside the neutron stars
	3.1. Observable constraints on the properties of the neutron stars

	Chapter 4. Neutron star matter equation of state
	4.1. Equation of state of nuclear matter
	4.1.1. Quark Meson Coupling model equation of state
	4.1.2. Neutron star matter


	Chapter 5. Bosonic and fermionic dark matter EoS
	5.1. Bosonic dark matter EoS
	5.2. Asymmetric fermionic dark matter (AFDM) EoS

	Chapter 6. Neutrons decay into dark matter EoS
	6.1. Neutrons decay into Standard Model particles
	6.2. Neutrons dark decay channel
	6.2.1. Fornal and Grinstein hypothesis
	6.2.2. Strumia hypothesis - n 


	Chapter 7. Structural equations of neutron stars
	7.1. Static and spherically symmetric neutron stars
	7.2. Moment of inertia
	7.2.1. Rotational pertubation

	7.3. Tidal Love number and tidal deformability

	Chapter 8. Results
	8.1. Dark matter captured inside neutron stars
	8.2. Consequences of the Fornal and Grinstein hypothesis of neutron decay into dark matter
	8.2.1. Mass and tidal deformability of the neutron star and the population of dark matter
	8.2.2. Conservation of baryon number
	8.2.3. Change in temperature of the neutron star

	8.3. Consequence of neutron decay: Strumia hypothesis
	8.4. Fornal and Grinstein hypothesis with heavier  boson
	8.5. Decay modes of  bosons
	8.5.1. Scalars and pseudoscalars
	8.5.2. Spin-1


	Chapter 9. Conclusion
	9.1. Dark matter capture
	9.2. Fornal and Grinstein hypothesis
	9.3. Strumia hypothesis
	9.4. Future outlook

	Appendix A
	Nuclear theory
	The mass of baryons in the bag model


	Appendix B
	Structural equations
	Christoffel symbols and Ricci scalar

	Relation between  and P
	Equations of rotating neutron stars

	Bibliography



