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Gain of chromosome 21
increases the propensity
for P2RY8::CRLF2 acute
lymphoblastic leukemia via
increased HMGN1 expression

Elyse C. Page1,2,3, Susan L. Heatley1,3, Jacqueline Rehn1,3,
Paul Q. Thomas3,4, David T. Yeung1,3,5,6,7

and Deborah L. White1,2,3,5,8*

1Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical
Research Institute, Adelaide, SA, Australia, 2School of Biological Sciences, Faculty of Sciences,
Engineering, and Technology, University of Adelaide, Adelaide, SA, Australia, 3Adelaide Medical School,
Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, Australia, 4SA Gene Editing
Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide,
SA, Australia, 5Australasian Leukaemia and Lymphoma Group, Melbourne, VIC, Australia, 6Department of
Hematology, Royal Adelaide Hospital and SA Pathology, Adelaide, SA, Australia, 7School of Pharmacy
and Medical Science, University of South Australia, Adelaide, SA, Australia, 8Australian and New Zealand
Children’s Hematology/Oncology Group (ANZCHOG), Clayton, VIC, Australia
Acute lymphoblastic leukemia (ALL) patients with a gain of chromosome 21,

intrachromosomal amplification of chromosome 21 (iAMP21), or Down

syndrome (DS), have increased expression of genes in the DS critical region

(DSCR) of chromosome 21, including the high-mobility group nucleosome-

binding protein 1, HMGN1. Children with DS are predisposed to develop

hematologic malignancies, providing insight into the role of chromosome 21 in

the development of leukemias. A 320-kb deletion in the pseudoautosomal region

of the X/Y chromosome in leukemic cells, resulting in a gene fusion between the

purinergic receptor and cytokine receptor-like factor-2 (P2Y Receptor Family

Member 8 (P2RY8)::CRLF2), is a common feature in ~60% of DS-ALL and ~40%

of iAMP21 patients, suggesting a link between chromosome 21 and P2RY8::CRLF2.

In an Australian cohort of pediatric B-ALL patients with P2RY8::CRLF2 (n = 38),

eight patients harbored gain of chromosome 21 (+21), and two patients had

iAMP21, resulting in a significantly increased HMGN1 expression. An inducible

CRISPR/Cas9 system was used to model P2RY8::CRLF2 and investigate its

cooperation with HMGN1. This model was then used to validate HMGN1 as an

influencing factor for P2RY8::CRLF2 development. Using Cas9 to cleave the DNA

at the pseudoautosomal region without directed repair, cells expressing HMGN1

favored repair, resulting in P2RY8::CRLF2 generation, compared with cells without

HMGN1. CRISPR/Cas9 P2RY8::CRLF2 cells expressing HMGN1 exhibit increased

proliferation, thymic stromal lymphopoietin receptor (TSLPR) expression, and JAK/

STAT signaling, consistent with cells from patients with P2RY8::CRLF2. Our patient

expression data and unique CRISPR/Cas9modeling, when taken together, suggest

that HMGN1 increases the propensity for P2RY8::CRLF2 development. This has

important implications for patients with DS, +21, or iAMP21.
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1 Introduction

Gain of chromosome 21 is the most common whole chromosome

copy number variation (CNV) that occurs in hematological

malignancies (1, 2), with the highest frequency in acute

lymphoblastic leukemia (ALL) at ~15% (3). Children with Down

syndrome (DS) and constitutional trisomy 21 have a 20-fold

increased risk of developing ALL (4), a 150-fold increased risk of

developing acute myeloid leukemia (AML), and are 400–600 times

more likely to develop acute megakaryoblastic leukemia (AMKL) (5,

6). The purinergic receptor and cytokine receptor-like factor-2 (P2Y

Receptor Family Member 8 (P2RY8)::CRLF2) gene fusion has been

identified in ~60% of DS-ALL (+21) patients and ~40% of patients

with intrachromosomal amplification of chromosome 21 (iAMP21),

compared with only 5%–16% of pediatric ALL patients without +21

(7, 8). The genomic basis for the predisposition in DS-ALL has been

investigated (9), but the role of chromosome 21 remains unknown.

Chromosome 21 harbors over 30 candidate genes that may

contribute to leukemogenesis (10), including the high-mobility

group nucleosome-binding protein 1 (HMGN1) (10). Many genes

in the Down syndrome critical region (DSCR) of chromosome 21

have been implicated in various hematological malignancies due to

their roles in cancer-associated or gene activation pathways (10, 11).

These genes have not yet been linked with the high proportion of DS-

ALL patients with P2RY8::CRLF2. Genes including the dual-

specificity tyrosine phosphorylated and regulated kinase 1A

(DYRK1A), ETS-related gene (ERG), ETS variant transcription

factor 6 (ETV6), EBF transcription factor 1 (EBF1), and RUNX

family transcription factor 1 (RUNX1) have been studied in ALL (12–

18), while manymore have been characterized in the context of AML,

including the GATA-binding factor 1 (GATA1) (2), ubiquitin-specific

peptidase 16 (USP16) (19), chromatin assembly factor 1 (CHAF1B)

(20), and the microRNAs (mir99A and mir125b) (21, 22).

Interest in the potential involvement of HMGN1 in leukemia

development has arisen due to its demethylase activity associated

with enhanced transcriptional activation (11). While ALL patients

with CRLF2 alterations are considered at high risk of treatment

failure, there are no current effective targeted therapies for this

cohort (23). CRISPR/Cas9 facilitates the modeling of individual

patient genomic variants (24) with reduced off-target effects and

higher efficacy than older gene editing technologies (25) and has

been used to model AML fusions (26), but not ALL fusion genes. As

there are no cell lines endogenously expressing P2RY8::CRLF2, it is

necessary to establish a pre-leukemic cell model to investigate

HMGN1 and its effect on P2RY8::CRLF2 fusion generation. We

hypothesize that the expression of HMGN1 prior to a Cas9-induced

DNA break will lead to increased P2RY8::CRLF2 development in

cell lines compared with cells that have low HMGN1 expression.
2 Methods

2.1 Cell lines and maintenance

HEK293T cells (ATCC, Manassas, VA, USA) were maintained

in Dulbecco’s modified Eagle’s medium (MEM) and utilized for
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lentiviral transduction, and Jurkat cells (ATCC, Manassas, VA,

USA), which were maintained in Roswell Park Memorial Institute

(RPMI), were supplemented with 10% fetal calf serum (FCS), 200

mM of L-glutamine (SAFC Biosciences), 5,000 U/mL of penicillin,

and 5,000 µg/mL of streptomycin sulfate.

2.2 Constructing the FgH1tUTG
gRNA vector

The Benchling gRNA design tool (Biology Software, 2019,

https://benchling.com) was used to design gRNAs targeting the

intron following the first non-coding exon of P2RY8 and preceding

the first exon of CRLF2 with 5′ Esp3I restriction sites (Key

Resources Table). The FUCas9Cherry and FgH1tUTG plasmids

were a gift from Marco Herold (Addgene #70182 and #70183) (27).

The FgH1tUTG vector was digested with Esp3I [New England

Biolabs (NEB) #R0734L] and rSAP (NEB #M0371L) for 1 h at

37°C. The complementary gRNAs were phosphorylated at a final

concentration of 10 µM using T4 PNK (NEB #M0201L) and then

diluted 1:125 with nuclease-free water. Moreover, 5 ng/µL of

FgH1tUTG vector was digested with 0.8 pmol of diluted gRNA

and ligated with T4 ligase overnight (NEB #M0204L) at 4°C. The

ligation was transformed overnight into competent DH5a E. coli

(NEB #C2987H) on ampicillin-containing Luria–Bertani agar

plates. Single colonies were isolated and cultured for plasmid

purification using the Qiagen QIAprep spin miniprep kit (#27104).

2.3 Lentiviral transduction

Lentivirus was produced by transfecting 5.5 µg of the

FuCas9mCherry vector or FgH1tUTG gRNA vector, with

packaging constructs pMD2.G (2.25 µg), pMDL-PRRE (3.375 µg),

and pRSV-REV (1.575 µg), with 30 µL of lipofectamine added into 1

× 106 HEK293T cells in a T25 culture flask in 5-mL media. Viral

supernatant was harvested 48 h later and passed through a 0.45-µm

filter. Jurkat cells at a concentration of 5 × 105/mL were centrifuged

at 1,800 rpm for 1 h with 30 µg/mL of polybrene in 4 mL of viral

supernatant in a six-well plate (28).
2.4 Flow cytometry cell sorting

Jurkat cells transduced with FuCas9mCherry and FgH1tUTG

were resuspended in 1 mL of RPMI with 2% FCS at a concentration

of 1 × 107 cells. This suspension was sorted on a BD FACSAria™

for GFP and mCherry double-positive cells. Pure populations were

resuspended in 1 mL of RPMI with 2% FCS and sorted into single

cells in a 96-well plate with 100 µL of RPMI with 20% FCS on a BD

FACS Melody™. The clones were subcultured into 1 mL of media

in a 24-well plate 3 weeks after sorting.
2.5 Genome-targeting efficiency assay

Jurkat cells transduced with Cas9 and gRNA vectors (Key

Resources Table) were exposed to 1 µg/mL of doxycycline hyclate
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(Sigma-Aldrich, St. Louis, MO, USA) in milli-Q water for 72 h to

induce the 320-kb deletion. gDNA was isolated from transduced

cells by phenol-chloroform extraction, and the P2RY8::CRLF2

fusion breakpoint was amplified via PCR using the Phusion kit

(NEB, Notting Hill, VIC, Australia). The primer sequences are

outlined in the Key Resources Table. Heteroduplexes were formed

by denaturing the PCR products at 95°C for 5 min and reannealing

the breakpoint amplification PCR product by slowly ramping down

the temperature to room temperature. The reannealed PCR

products were digested with 1 µL of T7 endonuclease I (NEB) for

1 h at 37°C. The resulting products were gel-purified (Qiagen,

Venlo, The Netherlands) and Sanger-sequenced.

2.6 Surface flow cytometry

Transduced Jurkat cells were stained with 5 µL of TSLPR-APC or

isotype control IgG2a (Invitrogen, Carlsbad, CA, USA) for 30 min in

100 µL of RPMI with 10% FCS on ice. Approximately 5 × 106 cells

were washed with 1 mL of RPMI with 10% FCS and resuspended in

200 µL of 1× PBS and read on a BD FACS Fortessa™ analyzer.

2.7 Intracellular flow cytometry

Jurkat cells were fixed with a final concentration of 1.6%

paraformaldehyde for 10 min, washed in 1× PBS, and then

permeabilized with 80% methanol overnight at -80°C (28). The cells

were washed in 1× PBS followed by 1× PBS containing 1% bovine

serum albumin (BSA). All intracellular staining procedures were

carried out in the dark, on ice, for 60 min at room temperature in

1× PBS/1% BSA with the antibodies outlined in the Key Resources

Table. The cells were washed in 1× PBS before reading on a BD

FACSCanto™ analyzer.

2.8 Real-time PCR analysis

RNA was isolated from transduced Jurkat cells using TRIzol®

(Invitrogen), and cDNA was synthesized using Quantitect reverse

transcriptase (Qiagen). SYBR Green reagents (Qiagen) were used

with 10 µM of CRLF2 or HMGN1 primers as outlined in the Key

Resources Table.

2.9 Proliferation assay

Jurkat cells were seeded at 390 cells/mL in duplicate in a 24-well

plate. On days 0, 2, 4, and 6, 20 µL of CellTiter-Glo 2.0® reagent

(Promega, Fitchburg, WI, USA) was added to 20 µL of cell

suspension. Following 30 min of incubation in the dark,

luminescence was measured on a Perkin Elmer Victor X5

luminometer set to luminescence at 0.1 s.

2.10 Development of a patient-derived
xenograft murine model

NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice (The Jackson

Laboratory, Bar Harbor, ME, USA) were treated subcutaneously
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with 0.1 mg of Baytril in 0.9% sodium chloride per 10 g body weight

prior to sublethal gamma irradiation at 200 cGy. Spleen- or bone

marrow (BM)-derived ALL patient (P2RY8::CRLF2 or BCR::ABL1)

blasts (1 × 106 cells) were injected into the tail vein of NSG mice.

Engraftment and disease progression were monitored by fortnightly

blood sampling from the tail vein and flow cytometric analysis of

hCD45+. The animals were monitored daily and were humanely

killed when they displayed clinical signs of leukemia (e.g., weight

loss, reduced activity, ruffled fur). At the end of the experiment,

cardiac bleeding and complete blood count (CBC) were performed,

and the spleen, liver, and BM were harvested. Flow cytometric

immunophenotyping was performed on peripheral blood and/or

BM (28). All experiments were performed on protocols approved by

the Institutional Animal Ethics Committee.
2.11 mRNA sequencing

mRNA sequencing was performed on the blast cells of pediatric

and adolescent/young adult ALL patients (n = 508) using the

Universal Plus mRNA seq with NuQuant kit as per the

manufacturer’s instructions, with 1 µg of high-quality total RNA,

and sequenced on the Illumina NextSeq 500 platforms (29). A read

depth of 70 million reads was achieved for most samples.

FusionCatcher, SOAPfuse, and JAFFA software were used to

identify fusion transcripts from the mRNA sequencing data.

Variant calling on the mRNA-seq data was based on the Broad

Institute GATK best practices. Gene expression data were generated

from the STAR (v2.7.3a)-aligned BAM file using featureCounts and

normalized with edgeR. Sub-types were assigned according to

identified gene fusions, single nucleotide variants, and gene

expression profiles. Gene deletions were detected by multiplex

ligation-dependent probe amplification (MLPA). Age-matched

ALL patients assessed for in-depth analysis included P2RY8::

CRLF2 (n = 38) and BCR::ABL1 (n = 38). Of the P2RY8::CRLF2

patients, eight harbored +21, two of which were +21c. Four patients

harboring BCR::ABL1 also harbored +21, one of which was +21c

(Supplementary Table S1).
2.12 Multiplex ligation-dependent
probe amplification

SALSA MLPA assays #P202, #P335, and #P327 (MRC Holland,

Amsterdam, The Netherlands) were performed according to the

manufacturer’s instructions using 100 ng of patient DNA and run

on a SeqStudio Genetic Analyzer (Applied Biosystems, Waltham,

MA, USA).
2.13 Quantification and statistical analysis

GraphPad Prism software Version 8.4.0© (GraphPad Software

Inc.) and FlowJo software (FlowJo LLC) were used for the analyses.

Graphs represent the median value or mean with SEM error bars as

indicated in the figure legends. Student’s t-test and Welch’s
frontiersin.org
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ANOVA were used to determine differences between experimental

groups as indicated. Differences were considered statistically

significant when the p-value was <0.05. Experiments were carried

out a minimum of three times (n = 3) unless otherwise stated.
3 Results

We have assessed a cohort of 580 pediatric and adolescent/young

adult B-ALL patients forHMGN1/2 expression levels. The expression

of HMGN1 varied significantly in ALL patients studied (Figure 1A; p

< 0.001). From these samples, an age-matched cohort of P2RY8::

CRLF2 (n = 38) and BCR::ABL1 (n = 38) patients were compared for

chromosome 21 alterations and the impact on HMGN1 expression

(Supplementary Table S1). A +21 cytogenetic aberration was

observed in eight patients with the P2RY8::CRLF2 gene fusion, two

of which were +21c, compared with four patients with +21 who

harbored BCR::ABL1, one of which was +21c. Two patients with

P2RY8::CRLF2 also harbored iAMP21, whereas no iAMP21 was

observed in the BCR::ABL1 cohort. Significantly higher HMGN1

expression was identified in patients harboring P2RY8::CRLF2

compared with the age-matched control BCR::ABL1+ ALL patients

(Figure 1B; p < 0.0001). BCR::ABL1+ patients were chosen as the

control due to their similar gene signature and the number of aged-

matched patients to the P2RY8::CRLF2 group. There was no

difference in the expression of the control genes HMGN2 (p =

0.7881) or JAK2 (p = 0.1171) between the cohort of ALL patients

or specifically between P2RY8::CRLF2 and BCR::ABL1+ patients

(Figures 1C, D, Supplementary Figure S1). Furthermore, 21% (8/

38) of pediatric P2RY8::CRLF2 ALL patients harbored +21 (n =

2 + 21c), resulting in a significantly increased HMGN1 expression,

and 5% (2/38) harbored iAMP21, also with a significantly higher

HMGN1 expression (Figure 1E; p = 0.0075).

To investigate the latency of patient blasts harboring P2RY8::

C R L F 2 a n d h i g h HMGN1 e x p r e s s i o n , NOD .C g -

PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice were engrafted with blasts

from two ALL patients with P2RY8::CRLF2 and high HMGN1

expression (+21). The patient-derived xenograft (PDX) mice

succumbed to their leukemia at a median of 76 and 78 days

(Figure 1F; p = 0.0207 and p = 0.0295, respectively, compared

with the BCR::ABL1 control with a median survival of 278 days). In

addition to P2RY8::CRLF2, patient 1 also harbored an activating

JAK2 p.F694L mutation, and patient 2 harbored additional lesions

including deletions of CDKN2A/B and IKZF1 exons 4–6 and a

KRAS p.G12S mutation; however, both patient samples engrafted

into NSG mice at the same rate.

To further explore the increased HMGN1 expression and

decreased survival in PDX mice, a cell model endogenously

expressing P2RY8::CRLF2 was created with CRISPR/Cas9 to

delete 320 kb in the pseudoautosomal region (PAR1) of the X/Y

chromosome (Figure 2A, Supplementary Figure S2). Prior to the

induction of P2RY8 and CRLF2 gRNAs, HMGN1 was

overexpressed (1.5-fold) in control Cas9-only expressing cells to

represent a trisomic level of expression (Figure 2B; p = 0.019).

Cells with or without HMGN1 expression were subjected to the

same gRNAs/Cas9 without directed repair to determine the favored
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repair outcome after a DNA break, using TSLPR surface expression

as a first readout of successful P2RY8::CRLF2 fusion creation.

HMGN1-expressing cells favored P2RY8::CRLF2 generation as

demonstrated by upregulated TSLPR on the cell surface from

0.28% in P2RY8::CRLF2 cells to 0.49% in cells expressing P2RY8::

CRLF2 + HMGN1 (Figure 2C; p = 0.034). This finding suggests that

a higher HMGN1 expression increases the likelihood of P2RY8::

CRLF2 development after a DNA break compared with cells that do

not express HMGN1-favoring repair for WT CRLF2. Upon

induction of Cas9 cleavage at P2RY8 intron 1 and the 5′ UTR of

CRLF2, cells with and without HMGN1 expression demonstrated

TSLPR surface expression; however, P2RY8::CRLF2 + HMGN1

clones had a significantly higher TSLPR expression (MFI: 47,247

± 1,489; compared with P2RY8::CRLF2 MFI: 30,049 ± 3,301; p =

0.009; Figure 2D). The breakpoint PCR of genomic DNA confirmed

the presence of the P2RY8::CRLF2 fusion in a polyclonal pool and

single-cell clones of CRISPR/Cas9-edited TSLPR+ cells, consistent

with the independent development of P2RY8: :CRLF2

(Supplementary Figure S2).

HMGN1 may assist in the repair of the double-strand DNA

breaks to promote P2RY8::CRLF2 formation. To confirm this in

vitro, Cas9 gene editing activity was quantified with or without

HMGN1 expression using a T7-endonuclease assay. The P2RY8::

CRLF2 line resulted in only one isoform after T7-endonuclease

digestion, whereas the co-expressing P2RY8::CRLF2 + HMGN1 line

resulted in increased gene editing with three bands present in the

population (Figure 3A). Sequencing of these isoforms revealed the

canonical breakpoint, intron retention, and partial CRLF2 exon

1 deletion.

Consistent with increased P2RY8::CRLF2 generation in the

+HMGN1 line, an increase in CRLF2 mRNA expression was also

identified via qRT-PCR. P2RY8::CRLF2 cells had higher CRLF2

expression [relative quantification (RQ): 3.4 × 105 ± 1.9 × 105]

compared with the control cells (RQ: 47 ± 10). Importantly, a

significant increase in CRLF2 expression was observed in P2RY8::

CRLF2 + HMGN1 cells (RQ: 1.2 × 106 ± 1.3 × 105; p < 0.001;

Figure 3B). The P2RY8::CRLF2 cell pool grew at a seven-fold higher

rate than the Cas9 control cells (Figure 3C; p < 0.001). This was also

observed in the single-cell clones (#1: p = 0.005; #2: p = 0.015;

Supplementary Figure S3A). Interestingly, no difference in

proliferation was observed between P2RY8::CRLF2 populations

with or without HMGN1 expression despite the increase in

CRLF2 expression, suggesting that the role of HMGN1 is

epigenetic rather than a direct effect on cell proliferation.

To determine the effect of HMGN1 on cell signaling, the

phosphorylation (p) levels of STAT5, AKT, and ERK were

assessed. Interestingly, a stepwise increase in phosphorylation of

all three proteins was observed between the Cas9 control cells (MFI

of pSTAT5: 373 ± 7.4; pAKT: 1,258 ± 5; pERK: 1,011 ± 52), the

P2RY8::CRLF2 cells (MFI of pSTAT5: 1,910 ± 10.2; pAKT: 1,727 ±

13.5; pERK: 1,946 ± 6.3), and the P2RY8::CRLF2 + HMGN1 cells

(MFI of pSTAT5: 2,359 ± 1; pAKT: 2,339.6 ± 6.3; pERK: 2,478 ±

47.5; Figures 3D–F; all p < 0.001). This signaling profile is consistent

with the reported phenotype of P2RY8::CRLF2 patients.

As HMGN1 is a demethylase, the acetylation of H3K9 and

trimethylation of H3K27 were assessed. No change in gene
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activation was identified (Figure 3G); however, a stepwise decrease

in H3K27me3 was identified from Cas9 control cells (Figure 3H;

H3K27me3 MFI: 2.2 ± 0.04) to P2RY8::CRLF2 cells (H3K27me3

MFI: 1.6 ± 0.03; p < 0.001), with a further reduction in P2RY8::

CRLF2 + HMGN1 cells (H3K27me3 MFI: 1 ± 0.07; p = 0.03). This

reduction in H3K27me3 may indicate that previously silenced genes

have become active in this line.

Assessment of pSTAT5-mediated transcriptional activation

indicated higher expression levels of BCL2, CDKN1, and

particularly MCL1 and MYC in cells co-expressing HMGN1 and

P2RY8::CRLF2 compared with Cas9 control cells (Figure 3I). This

finding suggests the potential leukemic survival mechanisms in ALL

patients with an increased expression of HMGN1 and the P2RY8::

CRLF2 fusion.
Frontiers in Oncology 05
4 Discussion

We have evaluated an Australian cohort of pediatric/adolescent

B-ALL patients and identified a significantly higher HMGN1

expression in P2RY8::CRLF2 ALL patients compared with a

control subgroup. In particular, a significantly higher HMGN1

expression was observed in P2RY8::CRLF2 patients with +21 or

iAMP21. In a PDX model of two separate patients with P2RY8::

CRLF2 and high HMGN1 expression, the mice succumbed to the

disease at the same rate, indicating an aggressive disease burden

despite the additional lesions in each patient’s blasts. This was

compared with the engraftment of blasts from a patient with BCR::

ABL1 which had a latency 3.6 times slower than the P2RY8::CRLF2

blasts. To test the hypothesis that HMGN1 is an influencing factor
D

A B

E F

C

FIGURE 1

Acute lymphoblastic leukemia (ALL) cohort analysis of high-mobility group nucleosome-binding protein 1 (HMGN1) expression. (A, C) Gene
expression analysis of HMGN1 or HMGN2 divided into distinct ALL subtypes. (B, D) HMGN1 or HMGN2 RNA expression data from 38 age-matched
pediatric and adolescent/young adult patients in the purinergic receptor and cytokine receptor-like factor-2 (P2RY8::CRLF2) and BCR::ABL1 control
cohorts. Welch’s ANOVA was used to determine significance. (E) HMGN1 expression of P2RY8::CRLF2 patients divided into normal chromosome 21,
+ 21, or intrachromosomal amplification of chromosome 21 (iAMP21) groups. (F) Kaplan–Meier curve of sub-lethally irradiated NOD.Cg-
PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice engrafted with P2RY8::CRLF2 or BCR::ABL1 leukemia patient cells, analyzed using a log-rank test.
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for P2RY8::CRLF2 development, a cell line in a state before P2RY8::

CRLF2 development was required.

Modeling loss-of-function tumor suppressors or gain-of-

function oncogenes is fundamental to studying cancer, and

CRISPR/Cas9 technology has streamlined this process with high

efficiency. Recurrent chromosomal alterations and novel gene

fusions have been and continue to be identified in ALL patients

(30). To understand the implications of these alterations, they need

to be modeled using in vitro and in vivo systems. Subsequently,

mechanistic assays and drug panels can be used to identify

therapeutic candidates to rationally target the leukemic cells

harboring these lesions. The current modeling of ALL gene

fusions involves cloning, which can be complex with repetitive

sequences or very large transcripts. CRISPR/Cas9 presents a

solution to overcome these difficulties and has been used to create

chromosomal alterations found in other diseases (24, 26, 31) but has

not been previously attempted in ALL. We have utilized this

technology to generate an inducible endogenous cell model of

P2RY8::CRLF2 that can be employed to determine co-occurring

factors in leukemogenesis.

The P2RY8::CRLF2 fusion alone is not sufficient for leukemic

transformation and frequently co-occurs with mutations in Janus
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kinase 2 (JAK2) (7). P2RY8::CRLF2 is increased in DS-ALL patients

with a frequency of ~60% (8); however, these patients do not harbor

JAK mutations as frequently as non-DS-ALL patients (32).

Therefore, the “double hit” is likely to occur first on chromosome

21 and remains to be identified. We have previously demonstrated

that a frameshift mutation in NF1 can cooperate with P2RY8::

CRLF2 as a mechanism of leukemic relapse (33). Therefore, patients

with P2RY8::CRLF2 who do not harbor a JAK or Ras pathway

mutation need to be carefully assessed to determine the cooperating

lesions for leukemic transformation. Previous reports have

demonstrated that increased HMGN1 expression results in a B-

cell progenitor phenotype due to its role in lineage determination

(11) and may cooperate with P2RY8::CRLF2.

The CRISPR/Cas9 model generated here allowed a pre-

leukemic state to be modeled. Increasing the HMGN1 expression

before inducing P2RY8 and CRLF2 gRNAs favored fusion

development. A potential mechanism via increased DNA double-

strand break repair was demonstrated. Consistent with this role of

DNA repair, previous reports have identified that the loss of

HMGN1 leads to an impaired DNA damage response (34).

Therefore, in a trisomy 21 cell with increased HMGN1, an

increased chance of repairing double-strand breaks to create
A

B C D

FIGURE 2

Generating CRISPR/Cas9-edited purinergic receptor and cytokine receptor-like factor-2 (P2RY8::CRLF2)-expressing cells and evaluation of
functional changes. (A) Schematic display of gRNAs, designed using Benchling, targeting the intron after the first non-coding exon of P2RY8 and the
5′ untranslated region (UTR) of CRLF2 to create the P2RY8::CRLF2 breakpoint found in patients. (B) Using qRT-PCR to measure high-mobility group
nucleosome-binding protein 1 (HMGN1) mRNA expression in Jurkat CRISPR/Cas9 cell lines before gRNA transduction. Relative quantification (RQ)
values were determined using the housekeeping actin expression and normalized to the parental Cas9 control cells. Student’s t-test was used
between the HMGN1 line compared with control Cas9 cells to determine significance. (C) Jurkat P2RY8::CRLF2 cells with or without HMGN1
expression were stained with thymic stromal lymphopoietin receptor (TSLPR) for flow cytometry after 3 days of gRNA induction to assess the
efficiency of P2RY8::CRLF2 generation and favored repair outcomes. (D) TSLPR expression of single-cell clones of Jurkat CRISPR/Cas9-edited
P2RY8::CRLF2 cells measured by flow cytometry.
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P2RY8::CRLF2 is likely. This finding indicates that HMGN1

expression may increase the susceptibility of P2RY8::

CRLF2 development.

The P2RY8::CRLF2 and HMGN1 co-expressing cells

demonstrated increased proliferation and TSLPR expression and

had the most clinically relevant trends in cell signaling compared

with previous reports of CRLF2 patient cell signaling (35).

Therefore, using CRISPR/Cas9, a role for HMGN1 in cooperation

with P2RY8::CRLF2 was demonstrated. Interestingly, P2RY8::

CRLF2 + HMGN1 cells had increased expression of BCL2,

CDKN1A, MCL1, and MYC. Furthermore, a global decrease in
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H3K27me3 was associated with an increase in transcriptional

activation, consistent with previous reports (11). Increased MYC

expression has been previously demonstrated in HMGN1-

overexpressing cells (11) and trisomy 21 B-ALL cells (36). BCL2

and MCL1 are anti-apoptotic and novel targets in ALL that warrant

further investigation in DS-ALL patients.

The P2RY8::CRLF2 gene fusion is prevalent in DS, +21, and

iAMP21 ALL patients. Here we demonstrate that P2RY8::CRLF2 is

associated with a high expression ofHMGN1 (chr21) in ALL patient

cells. Using CRISPR/Cas9 in an in vitromodel, we demonstrate that

forced high expression of HMGN1 alters the DSB repair
D

A B

E F

G IH

C

FIGURE 3

Assessing the effect of high-mobility group nucleosome-binding protein 1 (HMGN1) expression on CRISPR/Cas9-edited purinergic receptor and
cytokine receptor-like factor-2 (P2RY8::CRLF2) cells. (A) T7 endonuclease gene editing analysis identifies additional P2RY8::CRLF2 breakpoint PCR
products present in HMGN1-expressing cells. (B) Using qRT-PCR to measure CRLF2 mRNA expression in Jurkat CRISPR/Cas9-edited P2RY8::CRLF2
cell lines. Relative quantification (RQ) values were determined using the housekeeping actin expression and normalized to the parental Cas9 control
cells. (C) The fold change in the proliferation of Jurkat CRISPR/Cass9-edited P2RY8::CRLF2 cells was measured over a period of 6 days.
Phosphorylation levels of STAT5 (D), AKT (E), ERK (F), or H3K9ac (G) and H3K27me3 (H) of CRISPR/Cas9-edited P2RY8::CRLF2 cells with or without
high HMGN1 expression measured by flow cytometry. (I) Measuring the expression of genes downstream of STAT5 by qRT-PCR in Jurkat CRISPR/
Cas9-edited P2RY8::CRLF2 cell lines. RQ values were determined using the housekeeping actin expression and normalized to the parental Cas9
control cells. The graphs represent the mean of biological replicates of n = 3 with SEM error bars, and a Student’s t-test was used between each
P2RY8::CRLF2 cell line compared with control Cas9 cells to determine significance (**p < 0.01).
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mechanism, favoring PAR1 deletion and the subsequent formation

of the P2RY8::CRLF2 gene fusion (7), with associated higher

expression of STAT5 target genes. Furthermore, this was achieved

by the first reported CRISPR/Cas9 320-kb deletion resulting in a

clinically relevant fusion gene found in ALL. Importantly, this

model will be valuable to advance the ALL field by investigating

leukemia-initiating events as the inducible gRNAs allow

recapitulation of a pre-leukemic state. Understanding the role of

HMGN1 in the disproportionate number of DS–ALL patients who

are diagnosed with P2RY8::CRLF2 ALL has the potential to lead to

novel therapeutic interventions in this high-risk group of patients

where effective therapeutic options are currently limited.

The limitations of this study include the use of viral vectors to

deliver the Cas9 machinery into the cell of interest rather than a

transient expression system. This was necessary to overcome the

low efficiency of transfection in leukemic cells; however, we

recognize that this could potentially lead to the disruption of

oncogenes at any given locus. Additionally, the Cas9 system has

been reported to sporadically induce large deletions in a

chromosome (37). In this case, it was a large deletion that was

directed by the Cas9 machinery to result in the P2RY8::CRLF2 gene

fusion but this does not infer that other deletions did not occur.

RNA sequencing could be utilized to determine if any other

chromosomal regions were disrupted. To validate the specificity

of HMGN1 susceptibility to P2RY8::CRLF2, this study could be

repeated to model another gene fusion with the same approach,

such as ETV6::RUNX1 which is present in ~10% of DS–ALL

patients (38).
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