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ABSTRACT
Parameterized analysis provides powerful mechanisms for obtain-

ing fine-grained insights into different types of algorithms. In this

work, we combine this field with evolutionary algorithms and

provide parameterized complexity analysis of evolutionary multi-

objective algorithms for the𝑊 -separator problem, which is a natu-

ral generalization of the vertex cover problem. The goal is to remove

the minimum number of vertices such that each connected com-

ponent in the resulting graph has at most𝑊 vertices. We provide

different multi-objective formulations involving two or three objec-

tives that provably lead to fixed-parameter evolutionary algorithms

with respect to the value of an optimal solution 𝑂𝑃𝑇 and𝑊 . Of

particular interest are kernelizations and the reducible structures

used for them. We show that in expectation the algorithms make

incremental progress in finding such structures and beyond. The

current best known kernelization of the𝑊 -separator uses linear

programming methods and requires a non-trivial post-process to

extract the reducible structures. We provide additional structural

features to show that evolutionary algorithms with appropriate ob-

jectives are also capable of extracting them. Our results show that

evolutionary algorithms with different objectives guide the search

and admit fixed parameterized runtimes to solve or approximate

(even arbitrarily close) the𝑊 -separator problem.
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1 INTRODUCTION
Parameterized analysis of algorithms [5] provides a way of under-

standing the working behaviour of algorithms via their dependence

on important structural parameters for NP-hard problems. This

technique of fine-grained analysis allows for insights into which

parameters make a problem hard. When analyzing heuristic search

methods such as evolutionary algorithms, a parameterized runtime

analysis allows for runtime bounds not just dependent on the given

input size but also in terms of parameters that measure the diffi-

culty of the problem. This is particularly helpful for understanding

heuristic search methods which are usually hard to analyze in a

rigorous way.

The area of runtime analysis has contributed to the theoretical

understanding of evolutionary algorithms and other bio-inspired

algorithms from various perspectives [4, 8, 16]. Parameterized anal-

ysis of evolutionary algorithms has been carried out for several

important combinatorial optimization problems (see [15] for an

overview). The first analysis was for the classical vertex cover prob-

lem [11] which is the prime problem in the area of parameterized

complexity. Following that, problems such as the maximum leaf

spanning problem [10], the Euclidean traveling salesperson prob-

lem [20] and parameterized settings of makespan scheduling [19]

were considered. More recently, both the closest string problem [18]

and jump and repair operators have been analyzed in the parame-

terized setting [2]. A crucial aspect of the parameterized analysis of

evolutionary algorithms (and algorithms in general) is the ability of

the considered approaches to obtain a kernelization for the respec-

tive problems. A kernel here refers to a smaller sub-problem whose

size is polynomially bounded in the size of the given parameter(s).

As the size is bounded, brute-force methods or random sampling

can then be applied to obtain an optimal solution.

A small subset of vertices that disconnect a graph is usually

called a vertex separator. In terms of successful divide-and-conquer

or parallel processing strategies, such separators are one of the

most powerful tools for developing efficient graph algorithms. This

generality and its broad applicability have made the study of sepa-

rators a rich and active field of research, see for example the book
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by Rosenberg and Heath [17], or the line of research initiated by

the seminal work of Lipton and Tarjan [14] on separators in pla-

nar graphs. Numerous different types of separator structures have

emerged over the past couple of decades. In this paper, we address

the problem of decomposing a graph into small pieces - with re-

spect to a parameter𝑊 - by removing the smallest possible set of

vertices. More formally, given a graph 𝐺 = (𝑉 , 𝐸) and a parameter

𝑊 ∈ N, the goal is to remove the minimum number of vertices such

that each connected component in the resulting graph has at most

𝑊 vertices. The problem is called the𝑊 -separator problem — also

known in the literature as the component order connectivity problem
or 𝛼-balanced separator problem, where 𝛼 ∈ (0, 1) and𝑊 = 𝛼 |𝑉 |.
An equivalent view of this problem is to ask for the minimum num-

ber of vertices required to cover or hit every connected subgraph of

size𝑊 + 1. In particular,𝑊 = 1 corresponds to covering all edges,

showing that the𝑊 -separator problem is a natural generalization

of the vertex cover problem.

In this paper, we generalize the results obtained in [11] for the

vertex cover problem to the more general𝑊 -separator problem.

Precisely, we study multi-objective evolutionary algorithms for the

𝑊 -separator problem and show that in expectation they admit fixed

parameter runtimes with respect to the value of an optimal solu-

tion OPT and𝑊 . It is unlikely that such runtimes can be achieved

by considering OPT or𝑊 alone. Indeed,𝑊 = 1 corresponds to

a hard problem, which shows that𝑊 (alone) is not a suitable pa-

rameter. For the parameter OPT, the problem is𝑊 [1]-hard even

when restricted to split graphs [6]. These lower bounds lead to the

study of parameterization by𝑊 + OPT. The best known algorithm

with respect to these parameters finds an optimal solution in time

𝑛𝑂 (1) · 2O(log(𝑊 ) ·OPT) [6]. Unless the exponential time hypoth-

esis fails, the authors prove that this running time is tight up to

constant factors, i.e., there is no algorithm that solves the problem

in time 𝑛O(1) · 2𝑜 (OPT·log(𝑊 ) ) . For kernelizations with respect to

the parameters OPT and𝑊 , the best known polynomial algorithm

achieves a kernel of size 3𝑊 · OPT [3]. A kernel of size 2𝑊 · OPT
is provided in [12] in a runtime of 𝑛O(1) · 2O(𝑊 ) by using linear

programming methods (the runtime is not specified in the paper,

but can be realized as already mentioned in [7] Section 6.4.2). In

particular, for the vertex cover problem (i.e.,𝑊 = 1), they obtain a

2 ·OPT size-kernel implying that they also obtain 2-approximation.

That is, under the assumption that the unique games conjecture is

true, 2𝑊 · OPT is the best kernel we can hope for [9]. Finally, the

best known approximation algorithm also uses linear programming

methods and has a multiplicative gap guarantee of O(log(𝑊 )) to
the optimal solution with a running time of 𝑛O(1) · 2O(𝑊 ) [13].
They also showed that the superpolynomial dependence on𝑊 may

be needed to achieve a polylogarithmic approximation.

Our Contribution: Of particular interest in our work are ker-

nelizations and the reducible structures used for them. We show

that in expectation the algorithms make incremental progress in

finding such structures and beyond. Compared to the vertex cover

problem, kernelization algorithms that are linear in OPT for the

𝑊 -separator problem are more complicated (cf. [3, 12, 21]). The

current best known kernelization of the𝑊 -separator uses linear

programming methods and requires a non-trivial post-process to

extract the reducible structures [12]. The challenge in this paper is

to show that natural objectives combined with simple mutations

are also capable of extracting them. To this end, we add additional

structural features to the reducible structures used in [12]. Essen-

tially, our results show that evolutionary algorithms with different

objectives guide the search and admit fixed parameterized runtimes

to solve or approximate (even arbitrarily close) the𝑊 -separator

problem.

The different runtimes are given in this paper in terms of the num-

ber of iterations, but the tractability with respect to the considered

parameters also applies when we include search point evaluations.

In the following, we roughly describe the runtimes achieved with re-

spect to the search point evaluations for exact and approximate solu-

tions, where all results are given in expectation. We consider simple

and problem-independent evolutionary algorithms in combination

with three different multi-objective fitness functions. The first con-

sists of relatively simple calculations to evaluate the search points

and allows us to achieve a running time of 𝑛O(1) · 2O(OPT2 ·𝑊 2 )

to find an optimal solution. For the second and third fitness func-

tions, stronger objectives are used in the sense of applying linear

programming methods. We prove that with such evaluations the

optimal solution can be found in time 𝑛O(1) · 2O(OPT·𝑊 ) . More-

over, depending on the choice of an Y ∈ [0, 1) we obtain solutions

arbitrary close to an optimal one, where the according algorithm is

tractable with respect to the parameters OPT and𝑊 . As usual, the

larger Y, the worse the gap guarantee, but with better running time,

where Y = 0 corresponds to the above running time in finding an

optimal solution. This result shows that we can hope for a gradual

progress until an optimal solution is reached.

Our results show that in expectation evolutionary algorithms

are asymptotically not far away from the problem-specific ones,

where the evolved algorithms are close to the lower bounds for the

𝑊 -separator problem.

Overview of the paper. The paper is organized as follows: Sec-

tion 2 are the preliminaries and includes the notation, the multi-

objective functions and the algorithms we work with. A runtime

analysis of the considered algorithms for finding exact solutions

for degree-based and LP-based fitness functions are presented in

Sections 3 and 4, respectively. Finally, Section 5 is dedicated to the

analysis of running times for approximations. Moreover, due to

space constraints all omitted proofs can be found in the full version

[1].

2 PRELIMINARIES
In the following paragraphs we present the notation, the multi-

objective functions, and the algorithms we work with.

Graph Terminology. We begin with a brief introduction to the

graph terminology we use in this paper. Let 𝐺 = (𝑉 , 𝐸) be a graph.
For a subgraph 𝐺 ′ = (𝑉 ′, 𝐸′) of 𝐺 we use 𝑉 (𝐺 ′) and 𝐸 (𝐺 ′) to
denote 𝑉 ′ and 𝐸′, respectively. We define the size of a subgraph
𝐺 ′ ⊆ 𝐺 as the number of its vertices, where we denote the size

of 𝐺 by 𝑛. For 𝑣 ∈ 𝑉 we define 𝑁 (𝑣) as its neighborhood, and
𝑑 (𝑣) as the degree of 𝑣 . For a vertex subset 𝑉 ′ ⊆ 𝑉 we define

𝐺 [𝑉 ′] as the induced subgraph of 𝑉 ′, 𝐺 − 𝑉 ′ := 𝐺 [𝑉 \ 𝑉 ′] and
𝑁 (𝑉 ′) := (⋃𝑣∈𝑉 ′ 𝑁 (𝑣)) \𝑉 ′. Finally, in the context of this work,

we also use directed graphs in the sense of flow networks, where
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we move the corresponding terminology to the appendix next to

the proofs.

Parameterized Terminology. We use the standard terminology

for parameterized complexity, which is also used, for example, in

[5, 7]. A parameterized problem is a decision problemwith respect to

certain instance parameters. Let 𝐼 be an instance of a parameterized

problem with an instance parameter 𝑘 , usually given as a pair

(𝐼 , 𝑘). If for each pair (𝐼 , 𝑘) there exists an algorithm that solves

the decision problem in time 𝑓 (𝑘) · |𝐼 |𝑐 , where 𝑓 is a computable

function and 𝑐 is a constant, then the parameterized problem is fixed-
parameter tractable. We say (𝐼 , 𝑘) is a yes-instance if the answer
to the decision problem is positive, otherwise we say (𝐼 , 𝑘) is a
no-instance.

Of particular interest in this work are kernelizations, which can

be roughly described as formalized preprocessings. More formally,

given an instance (𝐼 , 𝑘) of a parameterized problem, a polynomial

algorithm is called a kernelization if it maps any (𝐼 , 𝑘) to an instance
(𝐼 ′, 𝑘′) such that (𝐼 ′, 𝑘′) is a yes-instance if and only if (𝐼 , 𝑘) is a
yes-instance, |𝐼 ′ | ≤ 𝑔(𝑘), and 𝑘′ ≤ 𝑔′ (𝑘) for computable functions

𝑔,𝑔′.
The idea of parameterized complexity can be extended by com-

bining multiple parameters. That is, if we consider an instance 𝐼

with parameters 𝑘1, . . . , 𝑘𝑚 , then we are interested in algorithms

that solve the corresponding decision problem in a runtime of

𝑓 (𝑘1, . . . , 𝑘𝑚) · |𝐼 |𝑐 , where 𝑓 is a computable function and 𝑐 is a

constant. We refer to runtimes that satisfy this type of form as

FPT-times.

Problem Statement and Objectives. First we introduce the𝑊 -
separator problem. Given is a graph 𝐺 = (𝑉 , 𝐸) and two positive

integers 𝑘 and𝑊 . The challenge is to find a vertex subset 𝑉 ′ ⊆ 𝑉 ,
such that 𝑉 ′ has cardinality at most 𝑘 and the removal of 𝑉 ′ in 𝐺
leads to a graph that contains only connected components of size at

most𝑊 . The minimization problem is to find 𝑉 ′ with the smallest

cardinality, where we denote the optimal objective value by OPT.

Note that we can reformulate the problem statement by demanding

that𝑉 ′ intersects with each connected subgraph of𝐺 of size𝑊 + 1.
In the case𝑊 = 1 a separator needs to cover each edge, which

shows that the𝑊 -separator problem is a natural generalization of

the well-known vertex cover problem.

In terms of evolutionary algorithms, a solution to the𝑊 -separator

problem can be represented in a bit sequence of length 𝑛. Each ver-

tex has value zero or one, where one stands for the vertex being

part of the𝑊 -separator. Let {0, 1}𝑛 be our solution space. We work

with multi-objective evolutionary algorithms, which evaluate each

search point 𝑋 ∈ {0, 1}𝑛 using a fitness function 𝑓 : {0, 1}𝑛 → R𝑚

with 𝑚 different objectives. The goal is to minimize each of the

objectives. Denote by 𝑓 𝑖 (𝑋 ) the 𝑖-th objective, evaluated at a search

point 𝑋 . For two search points 𝑋1 and 𝑋2, we say 𝑋1 weakly domi-
nates 𝑋2 if 𝑓

𝑖 (𝑋1) ≤ 𝑓 𝑖 (𝑋2) for every 𝑖 ∈ [𝑚], where [𝑚] is defined
as the set {1, . . . ,𝑚}. In this case, we simply write 𝑓 (𝑋1) ≤ 𝑓 (𝑋2).
If additionally 𝑓 (𝑋1) ≠ 𝑓 (𝑋2), then we say that 𝑋1 dominates 𝑋2.

We distinguish between Pareto-optimal search points𝑋 and vectors

𝑓 (𝑋 ). A Pareto-optimal search point is a search point that is not

evenweakly dominated by any other search point, whereas a Pareto-

optimal vector is not dominated by any other vector. That is, if

𝑓 (𝑋1) is a Pareto-optimal vector, then there can be a vector𝑋2 ≠ 𝑋1

with 𝑓 (𝑋2) = 𝑓 (𝑋2), whereas if𝑋1 is a Pareto-optimal search point,

then there is no search point 𝑋2 ≠ 𝑋1 with 𝑓 (𝑋1) = 𝑓 (𝑋2).
For some fitness functions we investigate, we use a linear pro-

gram to evaluate the search points. Let 𝐺 = (𝑉 , 𝐸) be an instance

of the𝑊 -separator problem and let 𝑦𝑣 ∈ {0, 1} be a variable for
each 𝑣 ∈ 𝑉 . An integer program (IP) that solves the𝑊 -separator

problem can be formulated as follows:

min

∑︁
𝑣∈𝑉

𝑦𝑣∑︁
𝑣∈𝑆

𝑦𝑣 ≥ 1,∀𝑆 ⊆ 𝑉 : |𝑆 | =𝑊 + 1 and 𝐺 [𝑆] is connected.

We will consider the relaxed version of the IP by allowing fractional

solutions and consider the corresponding linear program (LP). That

is, instead of 𝑦𝑣 ∈ {0, 1} we have 𝑦𝑣 ≥ 0 for all 𝑣 ∈ 𝑉 . In the rest of

this paper we will call it the𝑊 -separator LP. We define LP(𝐺 ′) for
a subgraph 𝐺 ′ ⊆ 𝐺 as the objective of the𝑊 -separator LP with 𝐺 ′

as input graph. If we put every connected subgraph of size𝑊 + 1 as
constraint in the LP formulation of the𝑊 -separator, then we end

up with a running time of 𝑛O(𝑊 ) . However, as mentioned already

in Fomin et. al. [7] (Section 6.4.2) finding an optimal solution for

the LP can be sped up to a running time of 2
O(𝑊 )𝑛O(1) . Roughly

speaking, the idea is to use the ellipsoid method with separation

oracles to solve the linear program, where the separation oracle

uses a method called color coding that makes it tractable in𝑊 .

Next, we define few additional terms before we get to the multi-

objective fitness functions. Let 𝑋 ∈ {0, 1}𝑛 be a search point. For

𝑣 ∈ 𝑉 we define 𝑥𝑣 ∈ {0, 1} as the corresponding value in the

bit-string 𝑋 . We denote by 𝑋1 ⊆ 𝑉 the vertices with value one.

We define 𝑢 (𝑋 ) as the set of vertices that are in components of

size at least𝑊 + 1 after the removal of 𝑋1 in 𝐺 . The function 𝑢 (𝑋 )
can be interpreted as the uncovered portion of the graph with re-

spect to the vertices 𝑋1. The fitness functions we work with are the

following:

• 𝑓1 (𝑋 ) :=
(
|𝑋1 |, |𝑢 (𝑋 ) |,−

∑
𝑣∈𝑋1

𝑑 (𝑣)
)
,

• 𝑓2 (𝑋 ) := ( |𝑋1 |, |𝑢 (𝑋 ) |, LP(𝐺 [𝑢 (𝑋 )])),
• 𝑓3 (𝑋 ) := ( |𝑋1 |, LP(𝐺 [𝑢 (𝑋 )])).

As the names suggest, we use one-objective, uncovered-objective,
degree-objective and LP-objective to denote |𝑋1 |, |𝑢 (𝑋 ) |,−

∑
𝑣∈𝑋1

𝑑 (𝑣)
and LP(𝐺 [𝑢 (𝑋 )]) respectively. Note that the fitness 𝑓3 is same as

𝑓2 without the uncovered-objective. Furthermore, we use ∗ to de-

note that an objective can be chosen arbitrarily, for instance in

( |𝑋1 |, ∗,−
∑

𝑣∈𝑋1
𝑑 (𝑣)) the uncovered-objective 𝑢 (𝑋 ) is arbitrarily.

Algorithms. We proceed by presenting the algorithms that we

study. All of them are based on Global Semo (see Algorithm 1),

which maintains a population P ⊆ {0, 1}𝑛 of 𝑛-dimensional bit

strings.

We define the Algorithm Global Semo Alt similarly to the Al-

gorithm Global Semo (see Algorithm 1) with the difference that

the mutation in line 5 is exchanged by Alternative Mutation Op-

erator (see Algorithm 2). The following two lemmas will be useful

throughout the whole paper. Their proofs are similar to some ap-

pearing in [11] and due to space constraints we have moved them

to the full version [1].
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Algorithm 1: Global Semo

1 Choose 𝑋 ∈ {0, 1}𝑛 uniformly at random

2 P ← {𝑋 }
3 while stopping criterion not met do
4 Choose 𝑋 ∈ P unformly at random

5 𝑌 ← flip each bit of 𝑋 independently with probability

1/𝑛
6 If 𝑌 is not dominated by any other search point in P,

include 𝑌 into P and delete all other bit strings 𝑍 ∈ P
which are weakly dominated by 𝑋 from P, i.e., those
with 𝑓 (𝑌 ) ≤ 𝑓 (𝑍 ).

7 end

Algorithm 2: Alternative Mutation Operator

1 Choose 𝑏 ∈ {0, 1, 2} uniformly at random

2 if 𝑏 = 2 and 𝑢 (𝑋 ) ≠ ∅ then
3 𝑌 ← for 𝑣 ∈ 𝑢 (𝑋 ) flip each bit 𝑥𝑣 with probability 1/2
4 else if 𝑏 = 1 and 𝑋1 ≠ ∅ then
5 𝑌 ← for 𝑣 ∈ 𝑋1 flip each bit 𝑥𝑣 with probability 1/2
6 else
7 𝑌 ← flip each bit of 𝑋 independently with probability

1/𝑛
8 end

Lemma 2.1. Let P ≠ ∅ be a population for the fitness functions
𝑓1 and 𝑓2. In the Algorithms Global Semo and Global Semo Alt,
selecting a certain search point 𝑋 ∈ P has probability Ω(1/𝑛2), and
additionally flipping only one single bit in it has probability Ω(1/𝑛3).

Let 0
𝑛
be the search point that contains only zeroes. Note that

once 0
𝑛
is in the population it is Pareto-optimal for all fitness

functions because of the one-objective.

Lemma 2.2. Using the fitness functions 𝑓1 or 𝑓2, the expected num-
ber of iterations of Global Semo or Global Semo Alt until the
population P contains the search point 0𝑛 is O(𝑛3 log𝑛).

The following lemmas are proven analogously to Lemmas 2.1

and 2.2 by observing that the worst-case bounds on the population

size decrease by a factor of 𝑛 when using fitness function 𝑓3 instead

of 𝑓1 or 𝑓2.

Lemma 2.3. Let P ≠ ∅ be a population for the fitness function 𝑓3.
In the Algorithms Global Semo and Global Semo Alt, selecting a
certain search point 𝑋 ∈ P has probability Ω(1/𝑛), and additionally
flipping only one single bit in it has probability Ω(1/𝑛2).

Lemma 2.4. Using the the fitness function 𝑓3, the expected num-
ber of iterations of Global Semo or Global Semo Alt until the
population P contains the search point 0𝑛 is O(𝑛2 log𝑛).

3 ANALYSIS FOR DEGREE-BASED FITNESS
FUNCTION

In this section we investigate the fitness 𝑓1 on Global Semo Alt.
We will prove that the algorithm finds an optimal𝑊 -separator in

expectation in FPT-runtime with the parameters OPT and𝑊 . Recall

that the parameter 𝑘 in the decision variant of the𝑊 -separator asks

for a𝑊 -separator of size at most 𝑘 . A more general variant, known

asweighted component order connectivity problem, was studied in [6]

by Drange et al. They achieve aO(𝑘2𝑊 +𝑊 2𝑘) vertex-kernel, which
also holds for the𝑊 -separator problem.

Theorem 3.1 ([6], Theorem 15). The𝑊 -separator admits a kernel
with at most 𝑘𝑊 (𝑘 +𝑊 ) + 𝑘 vertices, where 𝑘 is the solution size.

Essentially, they use the following reduction rule: as long as there
is a vertex with degree greater than 𝑘 +𝑊 , the vertex is included

in the solution set and may be removed from the instance.

It is not difficult to see that this vertex must be included in

the solution, since otherwise we would have to take more than

𝑘 vertices from its neighborhood to get a feasible solution. After

using this reduction rule exhaustively each vertex in the reduced

instance has degree at most 𝑘 +𝑊 . Consequently, in the reduced

instance, each vertex of a 𝑊 -separator is connected to at most

𝑘 +𝑊 connected components after its removal, where each of those

components has size at most 𝑊 . A simple calculation provides

finally the vertex-kernel stated in Theorem 3.1.

Now, wemake use of the degree-objective from 𝑓1 to find a search

point that selects those vertices which can be safely added to an

optimal solution according to the reduction rule.

Lemma 3.2. Using the fitness function 𝑓1, the expected number of
iterations of Global Semo Alt where the population P contains a
solution𝑋 in which for all𝑢 ∈ 𝑢 (𝑋 ) and for all 𝑣 ∈ 𝑋1 we have𝑑 (𝑢) ≤
OPT +𝑊 and 𝑑 (𝑣) > OPT +𝑊 is bounded by O(𝑛3 (OPT + log𝑛)).

With Lemma 3.2 in hand we can upper bound the expected

number of iterations that Global Semo Alt takes to find an op-

timal 𝑊 -separator with respect to the fitness 𝑓1. Note that the

uncovered-objective of 𝑓1 ensures that the algorithm Global Semo
Alt converges to a feasible solution and that a search point 𝑋 with

𝑓1 (𝑋 ) = (OPT, 0, ∗) corresponds to an optimal𝑊 -separator.

Theorem 3.3. Using the fitness function 𝑓1, the expected number of
iterations of Global Semo Alt until it finds aminimum𝑊 -separator
in 𝐺 = (𝑉 , 𝐸) is upper bounded by O

(
𝑛3 (OPT + log𝑛) + 𝑛2 · 2𝑞

)
,

where 𝑞 = OPT ·𝑊 (OPT +𝑊 ) + OPT.

4 ANALYSIS FOR LP-BASED FITNESS
FUNCTION

In this section we investigate 𝑓2 on Global Semo Alt. The main

result of this section is the following theorem.

Theorem 4.1. Let 𝐺 = (𝑉 , 𝐸) be an instance of the𝑊 -separator
problem. Using the fitness function 𝑓2, the expected number of itera-
tions of Global Semo Alt until an optimal solution is sampled is
upper bounded by O(𝑛3 (log𝑛 + OPT) + 𝑛2 · 4OPT·𝑊 ).

First we give a brief overview of a reducible structure concern-

ing the𝑊 -separator problem associated with the objectives in the

fitness function 𝑓2. The structure we will use is commonly known

as crown decomposition. Roughly speaking, it is a division of the

set of vertices into three parts consisting of a crown, a head, and a

body, with the head separating the crown from the body. Under cer-

tain conditions concerning the crown and head vertices, which we

will clarify in a moment, it is possible to show that there exists an
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optimal𝑊 -separator which contains the head vertices and reduces

the given instance by removing the crown vertices. Recall that the

parameter 𝑘 in the decision variant of the𝑊 -separator asks for a

𝑊 -separator of size at most 𝑘 . Kumar and Lokshtanov [12] provide

such a reducible structure and state that it is in a graph as long as

the size of it is greater than 2𝑘𝑊 . The structure is called a (strictly)

reducible pair and consists of crown and head vertices.

For an instance 𝐺 = (𝑉 , 𝐸) of the𝑊 -separator problem we say

that 𝑌 = {𝑦𝑣 ∈ R≥0}𝑣∈𝑉 is a fractional𝑊 -separator of 𝐺 if 𝑌 is a

feasible solution according to the LP formulation of the𝑊 -separator

problem. It is not difficult to see that the objective of any optimal

fractional𝑊 -separator is smaller than OPT, i.e., LP(𝐺) ≤ OPT. In

principle, the LP objective is useful for finding a strictly reducible

pair, since the head vertices in an optimal fractional W separator

must have value one. Unfortunately, it is unknown whether each

vertex that has value one in an optimal fractional𝑊 -separator is

part of an optimal solution. This leads to the challenge of filtering

out the right vertices, where the uncovered-objective - and in par-

ticular the structural properties of a strictly reducible pair - come

into play.

Reducible Structure of the𝑾-Separator Problem. In the fol-

lowing, we briefly summarize the definitions and theorems of

[3, 7, 12]. For a vertex set 𝐵 ⊆ 𝑉 , denote by B the partitioning

of 𝐵 according to the connected components of 𝐺 [𝐵].

Definition 4.2 ((strictly) reducible pair). For a graph𝐺 = (𝑉 , 𝐸), a
pair (𝐴, 𝐵) of vertex disjoint subsets of 𝑉 is a reducible pair if the
following conditions are satisfied:

• 𝑁 (𝐵) ⊆ 𝐴.

• The size of each 𝐶 ∈ B is at most𝑊 .

• There is an assignment function 𝑔 : B ×𝐴→ N0, such that

– for all 𝐶 ∈ B and 𝑎 ∈ 𝐴, if 𝑔(𝐶, 𝑎) ≠ 0, then 𝑎 ∈ 𝑁 (𝐶)
– for all 𝑎 ∈ 𝐴 we have

∑
𝐶∈B 𝑔(𝐶, 𝑎) ≥ 2𝑊 − 1,

– for all 𝐶 ∈ B we have

∑
𝑎∈𝐴 𝑔(𝐶, 𝑎) ≤ |𝐶 |.

In addition, if there exists an 𝑎 ∈ 𝐴 such that

∑
𝐶∈B 𝑔(𝐶, 𝑎) ≥ 2𝑊 ,

then (𝐴, 𝐵) is a strictly reducible pair.

Next, we explain roughly the idea behind a reducible pair (𝐴, 𝐵).
The head and crown vertices correspond to 𝐴 and 𝐵, respectively.

That is, we want 𝐴 to be part of our𝑊 -separator, and if that is

the case, then no additional vertex from 𝐵 is required to be in the

solution since the components 𝐶 ∈ B are isolated after removing

𝐴 from 𝐺 with |𝐶 | ≤ 𝑊 . Let 𝐺 = (𝑉 , 𝐸) be a graph. We say that

𝑃1, . . . , 𝑃𝑚 ⊆ 𝑉 is a (𝑊 +1)-packing if for all 𝑖, 𝑗 ∈ [𝑚] with 𝑖 ≠ 𝑗 the

induced subgraph𝐺 [𝑃𝑖 ] is connected, |𝑃𝑖 | ≥𝑊 +1, and 𝑃𝑖 ∩𝑃 𝑗 = ∅.
Note that for a𝑊 -separator 𝑆 ⊆ 𝑉 , it holds that 𝑆 ∩ 𝑃𝑖 ≠ ∅ for all

𝑖 ∈ [𝑚]. Thus, the size of a (𝑊 + 1)-packing is a lower bound on

the number of vertices needed for a𝑊 -separator.

Lemma 4.3 ([12], Lemma 17). Let (𝐴, 𝐵) be a reducible pair in
𝐺 . There is a (𝑊 + 1)-packing 𝑃1, . . . , 𝑃 |𝐴 | in 𝐺 [𝐴 ∪ 𝐵], such that
|𝑃𝑖 ∩𝐴| = 1 for all 𝑖 ∈ [|𝐴|].

Essentially, Lemma 4.3 provides a lower bound of |𝐴| vertices for
a𝑊 -separator in 𝐺 [𝐴 ∪ 𝐵]. On the other hand, 𝐴 is a𝑊 -separator

of 𝐺 [𝐴 ∪ 𝐵] while 𝐴 separates 𝐵 from the rest of the graph. This

properties basically admits the following theorem.

Theorem 4.4 ([12], Lemma 18). Let (𝐺,𝑘) be an instance of the
𝑊 -separator problem, and (𝐴, 𝐵) be a reducible pair in 𝐺 . (𝐺,𝑘) is a
yes-instance if and only if (𝐺 − (𝐴 ∪ 𝐵), 𝑘 − |𝐴|) is a yes-instance.

Finally, we clarify why a strictly reducible pair exists if the size

of𝐺 is larger than 2𝑘𝑊 . To do so, we make use of a lemma derivable

from [3, 12]. A proof is given in the full version [1].

Lemma 4.5. Let𝐺 = (𝐴 ∪ 𝐵, 𝐸) be a graph and𝑊 ∈ N0. Let B be
the connected components given as vertex sets of𝐺 [𝐵], where for each
𝐶 ∈ B we have |𝐶 | ≤𝑊 and no 𝐶 ∈ B is isolated, i.e., 𝑁 (𝐶) ≠ ∅. If
|𝐵 | ≥ (2𝑊 −1) |𝐴| +1, then there exists a non-empty strictly reducible
pair (𝐴′, 𝐵′), where 𝐴′ ⊆ 𝐴 and 𝐵′ ⊆ 𝐵.

We conclude the preliminary section with a lemma that connects

strictly reducible pairs with the size of the graph.

Lemma 4.6 ([7], Lemma 6.14). Let (𝐺,𝑘) be an instance of the
𝑊 -separator problem, such that each component in𝐺 has size at least
𝑊 + 1. If |𝑉 | > 2𝑊𝑘 and (𝐺,𝑘) is a yes-instance, then there exists a
strictly reducible pair (𝐴, 𝐵) in 𝐺 .

Running time analysis. Let (𝐴, 𝐵) be a strictly reducible pair.

We say (𝐴, 𝐵) is a minimal strictly reducible pair if there does not

exist a strictly reducible pair (𝐴′, 𝐵′) with 𝐴′ ⊂ 𝐴 and 𝐵′ ⊆ 𝐵.

Clearly, it can happen that reducible pairs arises after a reduction

is executed. Therefore, we say (𝐴1, 𝐵1), . . . , (𝐴𝑚, 𝐵𝑚) is a sequence
of minimal strictly reducible pairs if for all 𝑖 ∈ [𝑚] the tuple (𝐴𝑖 , 𝐵𝑖 )
is a minimal strictly reducible pair in 𝐺 −⋃𝑖−1

𝑗=1𝐴 𝑗 . Note that the

definition of such a sequence implies that those tuples are pairwise

disjoint, i.e., (𝐴𝑖 ∪ 𝐵𝑖 ) ∩ (𝐴 𝑗 ∪ 𝐵 𝑗 ) = ∅ for all 𝑖, 𝑗 ∈ [𝑚] with
𝑖 ≠ 𝑗 . The proof of Theorem 4.1 can essentially be divided into

three phases:

(1) Let (𝐴1, 𝐵1), . . . , (𝐴𝑚, 𝐵𝑚) be a sequence of minimal strictly

reducible pairs in 𝐺 , such that 𝐺 −⋃𝑖∈[𝑚] 𝐴𝑖 contains no

minimal strictly reducible pair. The first phase is to show

that after a polynomial number of iterations of Global Semo
Alt with fitness 𝑓2, a search point 𝑋 ∈ {0, 1}𝑛 exists in

the population P, such that LP(𝐺) = |𝑋1 | + LP(𝐺 [𝑢 (𝑋 )])
and there is a fractional optimal𝑊 -separator 𝑌 = {𝑦𝑣 ∈
R≥0}𝑣∈𝑢 (𝑋 ) with 𝑦𝑣 < 1 for each 𝑣 ∈ 𝑉 . We will prove

that in this case 𝐺 [𝑢 (𝑋 )] contains no strictly reducible pair,

and that because of the equality relation LP(𝐺) = |𝑋1 | +
LP(𝐺 [𝑢 (𝑋 )]) all the head vertices 𝐴𝑖 for 𝑖 ∈ [𝑚] are in 𝑋1.

That is, there is an optimal𝑊 -separator which contains a

subset of 𝑋1.

(2) The second phase is to filter

⋃
𝑖=1𝐴𝑖 from |𝑋1 | so that we

obtain a search point 𝑋 ′ that selects only those as 1-bits.

Once an 𝑋 as described in Phase 1 is guaranteed to be in

the population, the algorithm Global Semo Alt takes in

expectation FPT-time to reach𝑋 ′. Finally, it is important that

𝑋 ′ remains in the population oncewe have found it.We show

this by taking advantage of the structural properties of a

reducible pair in combination with the uncovered-objective.

(3) For the last phase, we know by Lemma 4.6 already that𝑢 (𝑋 ′)
has size at most 2 · OPT ·𝑊 . Once we ensure that 𝑋 ′ is in
P and stays there, we prove that Global Semo Alt finds in

expectation an optimal solution in FPT-time.

In phase 1, we essentially make use of the LP objective. To prove

that it works successfully, we will show the following two lemmas.
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Lemma 4.7. Using the fitness function 𝑓2, the expected number of
iterations of Global Semo Alt where the population P contains
a search point 𝑋 ∈ {0, 1}𝑛 such that LP(𝐺) = LP(𝐺 [𝑢 (𝑋 )]) + |𝑋1 |
and there is an optimal fractional𝑊 -separator {𝑦𝑣 ∈ R≥0}𝑣∈𝑢 (𝑋 )
of 𝐺 [𝑢 (𝑋 )] with 𝑦𝑣 < 1 for every 𝑣 ∈ 𝑢 (𝑋 ) is upper bounded by
O(𝑛3 (log𝑛 + OPT)). Moreover, once P contains such a search point
at any iteration, the same holds for all future iterations.

Lemma 4.8. Let (𝐴1, 𝐵1), . . . , (𝐴𝑚, 𝐵𝑚) be a sequence of minimal
strictly reducible pairs in 𝐺 , such that 𝐺 −⋃𝑖=1𝐴𝑖 contains no min-
imal strictly reducible pair. Let 𝑋 ∈ {0, 1}𝑛 be a sample, such that
there is a an optimal fractional𝑊 -separator {𝑦𝑣 ∈ R≥0}𝑣∈𝑢 (𝑋 ) of
𝐺 [𝑢 (𝑋 )] with 𝑦𝑣 < 1 for each 𝑣 ∈ 𝑢 (𝑋 ). If |𝑋1 | + LP(𝐺 [𝑢 (𝑋 )]) =
LP(𝐺), then 𝐴𝑖 ⊆ 𝑋1 and 𝐵𝑖 ∩ 𝑋1 = ∅ for all 𝑖 ∈ [𝑚].

We guide the rest of this section by using 𝑋 ∈ {0, 1}𝑛 to denote

a search point and (𝐴1, 𝐵1), . . . , (𝐴𝑚, 𝐵𝑚) as a sequence of minimal

strictly reducible pairs, where𝐴all :=
⋃𝑚

𝑖=1𝐴𝑖 and 𝐵all :=
⋃𝑚

𝑖=1 𝐵𝑖 .

For the Algorithm Global Semo Alt it is unlikely to jump from

a uniformly random search point immediately to a search point

satisfying Lemma 4.8. To guarantee a stepwise progress, we want

that under the condition LP(𝐺) = LP(𝐺 [𝑢 (𝑋 )]) + |𝑋1 | at each time

𝐴all ⊊ 𝑋1 there exists a vertex of 𝑣 ∈ 𝐴all \ 𝑋1 in an optimal

fractional𝑊 -separator of𝐺 [𝑢 (𝑋 )] which must have value one. For

this purpose, the characterization of minimal strictly reducible pairs

by optimal fractional𝑊 -separators is useful.

Lemma 4.9 ([7], Corollary 6.19 and Lemma 6.20). Let 𝐺 =

(𝑉 , 𝐸) be an instance of the 𝑊 -separator problem and let {𝑦𝑣 ∈
R≥0}𝑣∈𝑉 be an optimal fractional𝑊 -separator of𝐺 . If𝐺 contains a
minimal strictly reducible pair (𝐴, 𝐵), then 𝑦𝑣 = 1 for all 𝑣 ∈ 𝐴 and
𝑦𝑢 = 0 for all 𝑢 ∈ 𝐵.

From Lemma 4.9 we can derive that if (𝐴all ∪ 𝐵all) ∩ 𝑋1 = ∅,
such a vertex 𝑣 must exist, but the question is what happens if the

intersection is not empty. In particular, we want to avoid vertices

of 𝐵all being in 𝑋1, since reducible pairs in 𝐺 may then no longer

exist in 𝐺 [𝑢 (𝑋 )]. We start with the proof of Lemma 4.7 and show

later how it is related to a sequence of minimal strictly reducible

pairs. The first lemma is a simple but useful observation.

Lemma 4.10. For every 𝑋 ∈ {0, 1}𝑛 it holds that LP(𝐺) ≤ |𝑋1 | +
LP(𝐺 [𝑢 (𝑋 )]).

If Lemma 4.10 is true, it is not difficult to derive that if we have

that it holds with equality for a search point 𝑋 , then 𝑓2 (𝑋 ) is a
Pareto-optimal vector of the fitness function 𝑓2, as given below as

a corollary.

Corollary 4.11. If a search point 𝑋 ∈ {0, 1}𝑛 satisfy |𝑋1 | +
LP(𝐺 [𝑢 (𝑋 )]) = LP(𝐺), then the vector ( |𝑋1 |, ∗, LP(𝐺 [𝑢 (𝑋 )]) is a
Pareto-optimal vector of the fitness function 𝑓2.

The next lemma ensures that removing vertices with value one

in an optimal fractional𝑊 -separator does not affect the objective

of a fractional𝑊 -separator of the remaining graph.

Lemma 4.12 ([7], Corollary 6.17). Let𝐺 = (𝑉 , 𝐸) be an instance
of the𝑊 -separator problem and let {𝑦𝑣 ∈ R≥0}𝑣∈𝑉 be an optimal
fractional𝑊 -separator of 𝐺 . Let 𝑉 ′ ⊆ 𝑉 (𝐺), such that 𝑦𝑣 = 1 for all
𝑣 ∈ 𝑉 ′. Then, {𝑦𝑣 | 𝑣 ∈ 𝑉 \𝑉 ′} is an optimal fractional𝑊 -separator
of 𝐺 −𝑉 ′, i.e., ∑𝑣∈𝑉 \𝑉 ′ 𝑦𝑣 = LP(𝐺 −𝑉 ′).

Corollary 4.11 and Lemma 4.12 allow incremental progress in the

set of 1-bits with respect to search points 𝑋 ∈ P that satisfy |𝑋1 | +
LP(𝐺 [𝑢 (𝑋 )]) = LP(𝐺) without backstepping. With this ingredient

we can prove Lemma 4.7 (see full version [1] for a proof). Since 𝑓3
has one less objective than 𝑓2, one can derive the following lemma.

Lemma 4.13. Using the fitness function 𝑓3, the expected number
of iterations of Global Semo Alt where the population P contains
no search point 𝑋 ∈ {0, 1}𝑛 such that LP(𝐺) = LP(𝐺 [𝑢 (𝑋 )]) + |𝑋1 |
and there is an optimal fractional𝑊 -separator {𝑦𝑣 ∈ R≥0}𝑣∈𝑢 (𝑋 )
of 𝐺 [𝑢 (𝑋 )] with 𝑦𝑣 < 1 for every 𝑣 ∈ 𝑢 (𝑋 ) is upper bounded by
O(𝑛2 (log𝑛 + OPT)).

Our next goal is to prove Lemma 4.8. To identify the head vertices

𝐴all with respect to an optimal fractional𝑊 -separator, we want to

ensure that the selection of the vertices of 𝐵all are distinguishable

so that it cannot come to a conflict with Lemma 4.7. To do this,

we will make use of the LP-objective and show that for a search

point 𝑋 with 𝑋1 ∩𝐵all ≠ ∅ we have LP(𝐺) < LP(𝐺 [𝑢 (𝑋 )]) + |𝑋1 |.
Let (𝐴, 𝐵) be a minimal strictly reducible pair in 𝐺 . The essential

idea is to use (𝑊 + 1)-packings in 𝐺 [𝐴 ∪ 𝐵], since they provide

lower bounds for𝑊 -separators. From Lemma 4.3 one can deduce

that 𝐺 [𝐴 ∪ 𝐵] contains a maximum (𝑊 + 1)-packing Q of size |𝐴|,
since every vertex of 𝐴 is contained exactly in one element of Q.
Inspired by ideas on how to find crown decompositions in weighted

bipartite graphs from [3, 12], we prove that removing vertices from

𝐵 only partially affects the size of the (𝑊 + 1)-packing in𝐺 [𝐴∪𝐵],
as stated in the following lemma.

Lemma 4.14. Let (𝐴, 𝐵) be a minimal strictly reducible pair in
𝐺 = (𝑉 , 𝐸) and let 𝑆 ⊂ 𝐴 ∪ 𝐵 with |𝑆 | ≤ |𝐴|. If 𝑆 ∩ 𝐵 ≠ ∅, then
𝐺 [(𝐴 ∪ 𝐵)] − 𝑆 contains a packing of size |𝐴| − |𝑆 | + 1.

In contrast, note that removing vertices 𝑆 ⊆ 𝐴 from 𝐺 [𝐴 ∪ 𝐵]
would decrease the size of a (𝑊 +1)-packing by |𝑆 |, i.e., a maximum

(𝑊 + 1)-packing in 𝐺 [𝐴 ∪ 𝐵] − 𝑆 has size |𝐴| − |𝑆 |. We moved the

proof of Lemma 4.14 to the full version [1], since it is more technical

and too long given the space constraints. Essentially, we make use

of the following two lemmas and properties of network flows. In

particular, these lemmas describe the new properties we have found

for minimal strictly reducible pairs and may be of independent

interest.

Lemma 4.15. Let (𝐴, 𝐵) be a minimal strictly reducible pair in
𝐺 with parameter 𝑊 . Then, for every 𝑎∗ ∈ 𝐴 there is an assign-
ment function 𝑔 : B × 𝐴 → N0 like in Definition 4.2 that satis-
fies

∑
𝐶∈B 𝑔(𝐶, 𝑎∗) ≥ 2𝑊 and

∑
𝐶∈B 𝑔(𝐶, 𝑎) ≥ 2𝑊 − 1 for every

𝑎 ∈ 𝐴 \ {𝑎∗}.

Concerning Lemma 4.15, we remark that the new feature to

before is that the particular vertex (in the lemma 𝑎∗) can be chosen

arbitrarily.

Lemma 4.16. Let (𝐴, 𝐵) be a minimal strictly reducible pair in
𝐺 with parameter𝑊 . Then, for every 𝐴′ ⊆ 𝐴 we have |𝑉 (B𝐴′ ) | ≥
|𝐴′ | (2𝑊 − 1) + 1.

To conclude the Phase 1 we need to prove Lemma 4.8. Equipped

with Lemma 4.14 we may prove statements about the LP-objective

if𝑋1∩𝐵all ≠ ∅. In doing so, we prove another relation with respect
to such a sequence, which fits the proof and will be useful later.
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Lemma 4.17. Let (𝐴1, 𝐵1), . . . , (𝐴𝑚, 𝐵𝑚) be a sequence of minimal
strictly reducible pairs and let 𝑋 ∈ {0, 1}𝑛 be a sample.

(1) If 𝑋1 =
⋃𝑚

𝑖=1𝐴𝑖 , then LP(𝐺) = LP(𝐺 [𝑢 (𝑋 )]) + |𝑋1 |.
(2) If 𝑋1 ∩ 𝐵ℓ ≠ ∅ for an ℓ ∈ [𝑚], then LP(𝐺 (𝑢 [𝑋 ])) + |𝑋1 | >

LP(𝐺).

Suitable for Lemma 4.7 we have characterized the case 𝑋1 ∩
𝐵all ≠ ∅. It remains to give a relation to this lemma when 𝐴all ∩
𝑋1 ≠ ∅ and 𝐴all ⊊ 𝑋1. In particular, we want to ensure that in

this case at least one vertex of 𝐴all \𝑋1 must be one in an optimal

fractional𝑊 -separator of 𝐺 [𝑢 (𝑋 )].

Lemma 4.18. Let (𝐴, 𝐵) be a minimal strictly reducible pair in 𝐺
and let 𝐴 ⊂ 𝐴. Then, there is a partition 𝐴1, . . . , 𝐴𝑚 of 𝐴 \ 𝐴 with
disjoint vertex sets 𝐵1, . . . , 𝐵𝑚 ⊆ 𝐵, such that for each 𝑖 ∈ [𝑘] the
tuple (𝐴𝑖 , 𝐵𝑖 ) is a minimal strictly reducible pair in 𝐺 −𝐴.

By Lemma 4.9 we already know that the head vertices of a min-

imal strictly reducible pair in an optimal fractional𝑊 -separator

have value one. Lemma 4.18 ensures that if some of the head ver-

tices are removed, the value of the remaining head vertices in the

respective optimal fractional solution remain one. The proof of

Lemma 4.8 can be found in the the full version [1] and concludes

Phase 1.

Next, we prove that Phase 2 works successfully. After Phase 1,

we have a search point 𝑋 in the population P with 𝐴all ⊆ 𝑋1 such

that LP(𝐺) = LP(𝐺 [𝑢 (𝑋 )]) + |𝑋1 |. Consequently, |𝑋1 | ≤ OPT and

therefore we can prove that Global Semo Alt reaches a search

point 𝑋 ′ with 𝑋 ′
1
= 𝐴all from 𝑋 in FPT-time.

Lemma 4.19. Let 𝐺 = (𝑉 , 𝐸) be an instance of the𝑊 -separator
problem, and let (𝐴1, 𝐵1), . . . , (𝐴𝑚, 𝐵𝑚) be a sequence of minimal
strictly reducible pairs in 𝐺 , such that 𝐺 − ⋃

𝑖=1𝐴𝑖 contains no
strictly reducible pair. Using the fitness function 𝑓2, the expected
number of iterations of Global Semo Alt until the population P
contains a search point 𝑋 with 𝑋1 =

⋃𝑚
𝑖=1𝐴𝑖 is upper bounded by

O
(
𝑛3 (log𝑛 + OPT) + 𝑛2 · 2OPT

)
.

The question that remains is whether we keep 𝑋 ′ in the popula-

tion once we find it. This is where the uncovered-objective and the

structural properties of minimal strictly reducible pairs come into

play.

Lemma 4.20. Let 𝑋 ∈ {0, 1}𝑛 and let (𝐴1, 𝐵1), . . . , (𝐴𝑚, 𝐵𝑚) be
a sequence of minimal strictly reducible pairs in 𝐺 , such that 𝐺 −⋃

𝑖=1𝐴𝑖 contains no strictly reducible pair. If 𝑋1 =
⋃𝑚

𝑖=1𝐴𝑖 , then 𝑋
is a Pareto-optimal solution.

We are ready for the final theorem of this section, which shows

that Phase 3 also works successfully.

Proof of Theorem 4.1: Let (𝐴1, 𝐵1), . . . , (𝐴𝑚, 𝐵𝑚) be a sequence
of minimal strictly reducible pairs, such that 𝐺 − ⋃𝑚

𝑖=1𝐴𝑖 con-

tains no strictly reducible pair. Furthermore, let P be a popula-

tion with respect to 𝑓2 in the algorithm Global Semo Alt. By
Lemma 4.19 we have a search point 𝑋 ∈ P with 𝑋1 =

⋃𝑚
𝑖=1𝐴𝑖 after

O
(
𝑛3 (log𝑛 + OPT) + 𝑛2 · 2OPT

)
iterations in expectation. More-

over, by Lemma 4.20 𝑋 is a Pareto-optimal solution, and by Theo-

rem 4.4 there is an optimal𝑊 -separator 𝑉 ∗ such that 𝑋1 ⊆ 𝑉 ∗.

Since 𝐺 [𝑢 (𝑋 )] contains no strictly reducible pair, we can derive

from Lemma 4.6 that |𝑉 (𝐺 [𝑢 (𝑋 )]) | ≤ 2 · OPT ·𝑊 . The algorithm

Global Semo Alt calls with 1/3 probability the mutation that flips

every vertex 𝑢 (𝑋 ) with 1/2 probability in 𝑋 . That is, reaching a

state 𝑋 ′ from 𝑋 , such that 𝑋 ′
1
= 𝑉 ∗ has a probability of at least

Ω
(
2
−2·OPT·𝑊

)
, where selecting 𝑋 ′ in P has probability Ω(1/𝑛2)

(cf. Lemma 2.1). Thus, once 𝑋 is contained in P it takes in expecta-

tion O
(
𝑛2 · 4OPT·𝑊

)
iterations reaching 𝑋 ′. As a result, the algo-

rithm needs in total O
(
𝑛3 (log𝑛 + OPT) + 𝑛2 · 4OPT·𝑊

)
iterations

finding an optimal𝑊 -separator in expectation.

5 APPROXIMATIONS
In this sectionwe consider the𝑊 -separator problemwith the fitness

𝑓2 and 𝑓3 associated with Global Semo and Global Semo Alt.
We show that the algorithms find approximate solutions when

we reduce their overhead. In particular, we prove the following

theorems.

Theorem 5.1. Using the the fitness function 𝑓3, the expected num-
ber of iterations of Global Semo until it finds a (𝑊 +1)-approximation
in 𝐺 = (𝑉 , 𝐸) is upper bounded by O

(
𝑛2 (log𝑛 +𝑊 · OPT)

)
.

Theorem 5.2. Let 𝐺 = (𝑉 , 𝐸) be an instance of the𝑊 -separator
problem and let Y ∈ [0, 1).

(1) Using the fitness function 𝑓2, the expected number of itera-
tions of Global Semo Alt until an (1 + Y (3/2𝑊 − 1/2))-
approximation is sampled is upper bounded by

O
(
𝑛3 (log𝑛 +𝑊 · OPT) + 2OPT + 𝑛2 · 4(1−Y )OPT·𝑊

)
.

(2) Using the fitness function 𝑓3, the expected number of itera-
tions of Global Semo Alt until a (2 + Y (3/2𝑊 − 1/2))-
approximation is sampled is upper bounded by

O
(
𝑛2 (log𝑛 +𝑊 · OPT) + 𝑛 · 4(1−Y )OPT·𝑊

)
.

Note that Theorem 5.2 implies that we can hope for incremental

progress towards an optimal solution if we compare it to The-

orem 4.1. Note also that Theorem 5.2 (1) has a running time of

O
(
𝑛3 (log𝑛 +𝑊 · OPT) + 𝑛2 · 4(1−Y )OPT·𝑊

)
if Y < 1/2.

To prove our theorems, we show that once there is a search point

in the population that has a desired target value with respect to

the LP-objective and the one-objective, then the algorithms find

in polynomial time a𝑊 -separator that does not exceed this target

value. That is, the 1-bits of this search point do not necessarily have

to form a𝑊 -separator.

Lemma 5.3. Let 𝐺 = (𝑉 , 𝐸) be an instance of the𝑊 -separator
problem, P a population with respect to the fitness function 𝑓2 or
𝑓3, 𝑐 > OPT, and 𝑋 ∈ P a search point satisfying |𝑋1 | + (𝑊 +
1) · LP(𝐺 [𝑢 (𝑋 )]) ≤ 𝑐 . Using the the fitness function 𝑓2 or 𝑓3, the
expected number of iterations of Global Semo until it finds a𝑊 -
separator 𝑆 in 𝐺 with |𝑆 | ≤ 𝑐 is upper bounded by O

(
𝑛2𝑊 · OPT

)
or

O
(
𝑛3𝑊 · OPT

)
, respectively.

We conclude this section with the proof of Theorem 5.2 (1).

Thereby, we basically need to show that we reach in the stated run-

time a search point 𝑋 that satisfies the precondition of Lemma 5.3

with the desired approximation value.
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Proof of Theorem 5.2 (1). Let 𝑋 ∈ {0, 1}𝑛 be a search point

such that 𝐺 [𝑢 (𝑋 )] contains no minimal strictly reducible pair

(irreducible-condition). Furthermore, let 𝑆 be an optimal solution

of 𝐺 [𝑢 (𝑋 )] and let 𝑈 = 𝑢 (𝑋 ) \ 𝑆 . Note that |𝑆 | ≤ OPT. Since

𝐺 [𝑢 (𝑋 )] contains no minimal strictly reducible pair, we have |𝑈 | =
|𝑢 (𝑋 ) | − |𝑆 | ≤ 2𝑊 |𝑆 | − |𝑆 | = |𝑆 | (2𝑊 − 1) by Lemma 4.6.

Recall that Global Semo Alt chooses with 1/3 probability the

mutation that flips every bit corresponding to the vertices in 𝑢 (𝑋 )
with 1/2 probability. From this, the search point 𝑋 has a probability

of Ω
(
2
−(1−Y ) |𝑆 |− (1−Y ) |𝑆 | · (2𝑊 −1)

)
= Ω

(
4
−(1−Y ) |𝑆 | ·𝑊

)
to flip (1 −

Y) |𝑆 | fixed vertices of 𝑆 and to not flip (1 − Y) |𝑆 | · (2𝑊 − 1) fixed
vertices of 𝑈 in one iteration. Independently from this, half of

the remaining vertices of 𝑆 and 𝑈 are additionally flipped in this

iteration, i.e.,
1

2
Y |𝑆 | of 𝑆 and

1

2
Y |𝑈 | of𝑈 . Let 𝑆 ′ and𝑈 ′ be the flipped

vertices in this iteration and let 𝑋 ′ be the according search point.

Note that LP(𝑋 ′) ≤ |𝑆 | − |𝑆 ′ | simply because there is a𝑊 -separator

of 𝐺 [𝑢 (𝑋 )] − 𝑆 ′ of size |𝑆 | − |𝑆 ′ |. Hence, we have

|𝑋 ′
1
| + (𝑊 + 1) · LP(𝐺 [𝑢 (𝑋 ′)])

= |𝑋1 | + |𝑆 ′ | + |𝑈 ′ | + (𝑊 + 1) · LP(𝐺 [𝑢 (𝑋 ′)])
≤ |𝑋1 | + |𝑆 ′ | + |𝑈 ′ | + (𝑊 + 1) · ( |𝑆 | − |𝑆 ′ |)
= |𝑋1 | + |𝑆 | (𝑊 + 1) − |𝑆 ′ |𝑊 + |𝑈 ′ |.

Next, we upper bound |𝑆 ′ | and |𝑈 ′ | in terms of |𝑆 | ≤ OPT. Using the

fact |𝑈 | ≤ |𝑆 | (2𝑊 − 1), we obtain |𝑈 ′ | = 1

2
Y |𝑈 | ≤ 1

2
Y |𝑆 | (2𝑊 − 1) =

Y |𝑆 |𝑊 − 1

2
Y |𝑆 |. Regarding 𝑆 ′ we have |𝑆 ′ | = (1 − Y) |𝑆 | + 1

2
Y |𝑆 | =

|𝑆 | − Y |𝑆 | + 1

2
Y |𝑆 |. As a result, we obtain

|𝑋 ′
1
| + (𝑊 + 1) · LP(𝐺 [𝑢 (𝑋 ′)])

≤ |𝑋1 | + |𝑆 | (𝑊 + 1) − |𝑆 ′ |𝑊 + |𝑈 ′ |

≤ |𝑋1 | + |𝑆 | (𝑊 + 1) − (|𝑆 | − Y |𝑆 | +
1

2

Y |𝑆 |)𝑊 + Y |𝑆 |𝑊 − 1

2

Y |𝑆 |

≤ |𝑋1 | + |𝑆 | (𝑊 + 1) − |𝑆 |𝑊 + Y |𝑆 |𝑊 −
1

2

Y |𝑆 |𝑊 + Y |𝑆 |𝑊 − 1

2

Y |𝑆 |

= |𝑋1 | + |𝑆 | + |𝑆 |
(
2Y𝑊 − 1

2

Y𝑊 − 1

2

Y

)
.

Observe that once a desired𝑋 is guaranteed to be in the population,

an event described above occurs after O
(
𝑛2 · 4(1−Y ) |𝑆 | ·𝑊

)
itera-

tions in expectation for the fitness functions 𝑓2, where the factor

𝑛2 comes from selecting 𝑋 (cf. Lemma 2.1).

Let (𝐴1, 𝐵1), . . . , (𝐴𝑚, 𝐵𝑚) be a sequence of minimal strictly re-

ducible pairs, such that 𝐺 −⋃𝑚
𝑖=1𝐴𝑖 contains no strictly reducible

pair. By Lemma 4.19 we have a search point 𝑋 in the population P
with𝑋1 =

⋃𝑚
𝑖=1𝐴𝑖 after O

(
𝑛3 (log𝑛 + OPT) + 𝑛2 · 2OPT

)
iterations

in expectation. Note that𝑋 satisfies the irreducible-condition. More-

over,𝑋 is a Pareto-optimal solution by Lemma 4.20. By Theorem 4.4

we have |𝑋1 | = OPT − |𝑆 |. Using that |𝑆 | ≤ OPT, we obtain

|𝑋 ′
1
| + (𝑊 + 1) · LP(𝐺 [𝑢 (𝑋 ′)])

≤ |𝑋1 | + |𝑆 | + |𝑆 |
(
2Y𝑊 − 1

2

Y𝑊 − 1

2

Y

)
= OPT − |𝑆 | + |𝑆 | + |𝑆 |

(
2Y𝑊 − 1

2

Y𝑊 − 1

2

Y

)
≤ OPT

(
1 + Y

(
3

2

𝑊 − 1

2

))
.

As a result, by the choice of𝑋 the resulting search point𝑋 ′ satisfies

the precondition of Lemma 5.3 with 𝑐 = OPT

(
1 + Y

(
3

2
𝑊 − 1

2

))
.

That is, once 𝑋 ′ is in the population P, the algorithm Global
Semo Alt need in expectation O(𝑛3𝑊 · OPT) iterations having
a search point in P which is a

(
1 + Y

(
3

2
𝑊 − 1

2

))
-approximation.

In summary, in expectation the desired search point 𝑋 ′ is in P
after O

(
𝑛3 (log𝑛 +𝑊 · OPT) + 𝑛2 · 2OPT + 𝑛2 · 4(1−Y )OPT·𝑊

)
iter-

ations. □

6 CONCLUSION
In this work, we studied the behavior of evolutionary algorithms

with different multi-objective fitness functions for the𝑊 -separator

problem from the perspective of parameterized complexity. More

precisely, we investigated the running time of such evolutionary

algorithms depending on the problem parameter OPT +𝑊 . Our

analysis was based on properties of reducible structures, showing

that, given a suitable fitness function, the evolutionary algorithm

tends to reduce the given instance along these structures. Once

this is done, the running time for either obtaining an arbitrarily

close approximation or an exact solution is tractable with respect to

the problem parameter. In particular, this shows that evolutionary

algorithms solve the𝑊 -separator problem in expectation in FPT-

time for the parameter OPT +𝑊 .
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