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A B S T R A C T   

The paper presents a higher order laminate model with sub-lamination capability for simulating 
wave propagation within delaminated composite and sandwich beams. Each sub-laminate adopts 
cubic and quadratic through-thickness variation for axial and transverse displacement, respec-
tively. This is achieved by taking displacements at external surfaces, which are beneficial for 
connecting sub-laminates, used to model multilayered structures by stacking them in the thick-
ness direction without additional treatment. The model has the flexibility to achieve the desired 
level of accuracy and computational efficiency by using a suitable sub-lamination scheme. The 
delamination can be inserted conveniently between two sub-laminates stacked one over the other. 
The effect of contact within delamination regions is also incorporated in this model to capture 
higher harmonics induced by a clapping mechanism produced during delamination closing. The 
model is implemented within a framework of spectral finite elements in the time-domain. The 
accuracy and computational efficiency of the model are thoroughly checked by solving numerical 
examples of wave propagation within intact/delaminated composite/sandwich beams. Detailed 
finite element (FE) models used to produce results for validation show that the proposed model 
can save more than 90% of computing time and memory compared to detailed FE modelling to 
achieve similar level accuracy. The model is finally utilised to investigate the influence of 
delamination sizes and location on the wave response of sandwich beams.   

1. Introduction 

Structural members comprised of composite laminates are used in aerospace, civil, mechanical, and marine engineering activities 
because of their attractive properties such as high strength-to-weight and stiffness-to-weight ratios, durability, and manufacturing 
flexibility. The composite laminates are made by stacking multiple fibre-reinforced polymer (FRP) plies/laminas having bonded 
connections. A special type of composite laminate that exploits lightweight features is a sandwich structure where an ultra-lightweight 
thick inner core layer with relatively low strength and stiffness is sandwiched between two thin composite face sheets [1]. 

Delamination is one of the common damages found in laminated composite structures at the interfaces between plies, which can 
grow and lead to a considerable reduction of stiffness and strength of these structures. A damage detection technique is therefore 
essential to obtain an early warning to prevent catastrophic failure of structures. Damage detection using high frequency ultrasonic 
guided waves is one of the non-destructive techniques, which has attracted significant attention in recent years since its small 
wavelength can help to detect even small size damage. A number of studies have been undertaken on its application in metal/isotropic 
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[2–7] and composite [8–11] structures. Compared to isotropic metallic structures, the behaviour of guided waves in multilayered 
composite structures is much more complex due to material anisotropy. Therefore, precise modelling of guided wave propagation 
within these composite structures is needed to correctly understand the behaviour of waves when interacted with the damage. Thus, it 
can support the development of a reliable damage detection technique for composite structures using ultrasonic guided wave data. So 
far, various techniques have been employed to simulate wave propagation in composite structures although an accurate technique 
capable of detecting small damages in these structures is limited. Few analytical models [12–14] can provide good solutions, but they 
are limited to modelling structures and defects with simple geometries. The other technique is the use of 3D finite element (FE) 
modelling [15–17], which became very popular since it can conveniently simulate complex structural and damage geometries. 
However, the modelling of high-frequency waves having small wavelengths for detecting small damage needs a very fine FE meshing 
that in turn leads to a high computational cost that may not be affordable in all situations. 

In order to reduce the computational burden of conventional 3D FE models, some researchers attempted to develop spectral finite 
element (SFE) based models. The initial development of such models was primarily frequency domain although the SFE in time domain 
was subsequently found to be convenient for the damage detection problem. In this case (SFE), a single element possesses a greater 
number of nodes for accommodating higher order interpolation/shape functions, which helps to capture high frequency waves 
effectively. However, it is to be noted that the interpolation functions based on usual nodal systems with regular spacing can produce 
significant errors near the edge nodes and this is known as the Runge phenomenon [18]. This issue has been successfully overcome by 
using non-uniform nodal locations obtained from the Gauss-Lobatto-Legendre (GLL) function where nodes are densely located near the 
element edges [19]. Compared to traditional FE modelling, SFE is found to converge faster and provides higher computational effi-
ciency for the simulation of wave propagation [18]. A time-domain based SFE was developed and successfully used for simulating 
wave propagation in composite structures [20–22]. 

One of the key features behind computational efficiency of SFE is the use of laminated models for idealising the deformation of 
composite laminates as plate or beam bending problems (not 3D model). These include the class laminate theory (CLT), most primitive 
but popular in other application for computationally efficient, where the effect of shear deformation is neglected. Since the effect of 
shear deformation is significant in laminated composites due to low transverse shear modulus, CLT underestimates the wave phase 
velocities that leads to fail in simulating guided waves [23]. The first order shear deformation theory (FSDT) [24–27] became suc-
cessful in simulating the wave propagation problem with little extra computational cost and complexity. Thus, FSDT is mostly used in 
existing SFE-based models, which can properly simulate the fundamental mode of waves but inadequate to simulate higher mode of 
waves [28] necessary for small size damage detection. In addition, FSDT neglects cross-sectional warping and its effect needs to be 
compensated using a parameter known as the shear correction factor, whose estimation is much more challenging for laminated 
composites [29]. This has inspired the development of higher order shear deformation theory (HSDT) based models [28,30,31] 
considering the effect of nonlinear sectional warping using higher order through-thickness variation of in-plane displacements. This 
has helped to eliminate shear correction factors, while improving the solution accuracy including a bit of improvement in simulating 
higher frequency waves. 

These laminate theories (CLT, FSDT, and HSDT) belong to the group of equivalent single layer theory (ESLT) where variations of 
displacements over the laminate thickness are expressed in terms of continuous polynomial functions that take their weighting pa-
rameters at a single reference plane. Thus, the derivatives of these functions expressing the displacements provide continuous vari-
ations of strains over the laminate thickness. However, the transverse strains show a discontinuity at the ply interfaces in practice due 
to an abrupt change of material properties of adjacent layers. Thus, ESLT-based models are not only incapable of simulating high 
frequency waves satisfactorily, but they are also inadequate for accurately simulating the usual fundamental mode of waves in thick 
multilayered composites structures or sandwich structures with high material heterogeneity. Moreover, incorporation of de- 
laminations in an ESLT-based model is problematic. Some researchers [25,32] attempted to solve the issue by using two sets/layers 
of elements to model the delaminated region (one set of elements above the delamination and the other set below the delamination) 
while the intact portion is modelled with a single layer of elements. This technique appeared to provide a simple solution of the 
problem although it violated some aspects such as reference plane mismatch of elements at the transition between intact and 
delaminated regions that gave an ill representation of the actual problem. Moreover, these models did not consider the effect of contact 
(a nonlinear phenomenon) in the delamination region to avoid unrealistic interpenetrations of upper and lower portions of the 
delamination. This is crucial as mentioned in some studies [33–35], specifically in some problems such as detection of small damages 
using higher harmonics caused by clapping of the upper portion of a delamination with its lower portion that is ensured by using 
contact between them. 

In order to eliminate the limitations of ESLT, Rekatsinas et al. [36] used a layer-wise (LW) based laminate theory to develop a SFE 
model for simulating wave propagation in composite and sandwich structures with no delamination. The LW theory provides a better 
representation of the variations of displacements in the thickness direction by using unknowns at all layer interfaces, which can also 
represent the interfacial transverse strain discontinuities successfully. This helped to achieve a significant improvement of the pre-
diction capability. Compared to typical 3D FE modelling, LW theory-based models are relatively better in terms of computational cost. 
This is due to the element length (LW) not being restricted by the ply thickness, unlike FE models where the element aspect ratio needs 
to be restricted within a certain limit. However, the unknowns in a LW model are dependant on the number of layers/interfaces, which 
may not be preferred and the computational cost can still be high for modelling multilayered composites. This has inspired Kapuria 
et al. [37,38] to develop a zigzag (ZZ) laminate theory based SFE, where the unknowns at all interfaces are replaced by the unknowns 
at one reference plane by using inter-laminar stress (transverse) continuity conditions. The accuracy of this computationally efficient 
model (ZZ) is not poor, but those mentioned ZZ theory-based model [37,38] demands a C1 continuous displacement field in its FE 
implementation which is a challenging issue. Moreover, incorporation of de-laminations within a typical ZZ model is another issue if it 
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(ZZ model) is applied for modelling the laminate unless it (whole laminate) is divided into sub-laminates and apply ZZ models 
separately to the individual sub-laminates. This is not addressed in the above mentioned ZZ theory based SFE [37,38] as the research is 
focused on wave propagation of intact laminates. Though the issue of C1 continuous finite element formulation has been addressed in 
some studies [39–41] using different strategies along with other advancements (e.g., transverse deformability), these models are 
neither applied to wave propagation problems nor modelled de-laminations. It is possible to extend one of these techniques to the 
address the proposed problem, but this option is not chosen since the incorporation of delamination will be cumbersome. Thus, a 
different strategy is adopted in this study to develop a model that can address all the above-mentioned issues with no major com-
plexities for successfully simulating the propagation of guided waves within delaminated composite and sandwich structures 
considering the effect of contact. 

In this study, a pure displacement-based higher order laminate model having sub-lamination modelling [42] capability is devel-
oped for simulation of wave propagation within delaminated composite and sandwich beams. Within a sub-laminate, cubic and 
quadratic functions (polynomials) are used to achieve a higher order approximation of the through-thickness variation of axial and 
transverse displacements, respectively. These functions are expressed in terms of unknown displacements at exterior (top and bottom) 
surfaces of the sub-laminate. For an accurate simulation of a multilayered beam, it can be modelled by stack multiple sub-laminates in 
its thickness direction where the unknown displacement at the exterior surfaces facilitates to connect the sub-laminates conveniently 
and does not need any additional transformations. This modelling strategy also allow to conveniently accommodate a delamination 
between two adjacent sub-laminates stacked in the thickness direction. In this scenario, a contact algorithm is used to link the unknown 
displacements at the two surfaces of the delamination where they are disconnected when delamination opens while connected with 
high stiffness springs during delamination closing. The model can accommodate a portion of the beam thickness having multiple layers 
with no delamination into one sub-laminate to improve computation efficiency without compromising solution accuracy. 

A C◦ continuous SFE model is developed based on this laminate theory and the model is implemented by developing a code in 
MATLAB while keeping as general as possible. The model permits the accommodation of any number of nodes in an element auto-
matically in order to achieve any level of precision with reference to discretisation along the beam length. Similarly, the any level of 
discretisation along thickness direction can be achieved by choosing the appropriate number of higher order sub-laminates. This can 
achieve a highly accurate solution with higher computational cost or a moderately accurate solution with computation efficiency. That 
is, the model has the flexibility of trading of between accurate and computational cost. The performance of the model is first validated 
by simulating wave propagation in laminated beams with/without delamination. In the absence of suitable results available in the 
literature for validation, numerical results are generated by simulating the same beam problems using detailed FE modelling 
(expensive model) employing a reliable FE package code (ABAQUS). After a successful validation of the model, it is utilised to 
investigate the influence of delamination size and location on the wave responses of sandwich beams. 

2. Model formulation 

2.1. Higher order beam theory 

The mathematical formulation for the proposed theory to model high frequency wave propagation within multilayered laminated 
beams is presented in this section. The model has sub-lamination modelling capability that permits to simulate the entire laminated 
beam by stacking a few sub-laminates each consisting of a couple of physical layers/plies (Fig. 1). A higher order through-thickness 
deformation kinematics is introduced for modelling each sub-laminate for accurately capturing high frequency waves needed to detect 
small-scale defects. This higher order sub-laminate model (HOSLM) can also function like an equivalent single layer model, where the 
whole structure is simulated with one sub-laminate, or like a typical layer-wise model by taking every layer as a sub-laminate. 

The deformation of a sub-laminate is assumed to have a two-dimensional (2D) plane stress condition in the x-z plane (see Fig. 1a). 
According to the HOSLM, the through-thickness variations for axial (u) and transverse (w) displacements (primary displacements in 2D 
plane) of a sub-laminate are approximated as follows 

u = u0 − zθ + z2α + z3β (1)  

w = w0 + zγ + z2δ (2) 

Fig. 1. (a) Typical higher order sub-laminate model (HOSLM) based sub-laminate with four physical layers, (b) Twelve-layered beam modelled by 
three sub-laminates. 
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where u0 and w0 are mid-plane axial and transverse displacements, respectively, and θ is the rotation of the sectional plane normal to x 
axis Fig. 1a) passing through the mid-plane of the sub-laminate (1D displacement field). The terms α, β, γ, δ higher order variations of u 
and w. As these terms are non-physical parameters, they are replaced in terms of physical quantities (axial and transverse displace-
ments) incorporating at the sub-laminate top (uT , wT) and bottom (uB, wB) surfaces. This is done by substituting Eqs. (1) and ((2) at z 
= h

2 and z = − h
2 (see Fig. 1a) that leads to α =

2(uT+uB − 2u0)
h2 , β =

4(uT − uB+hθ)
h3 , γ = wT − wB

h , δ =
2(wT+wB − 2w0)

h2 . The displacement fields can 
therefore be defined as: 

u = Auu0 + Buθ + CuuT + DuuB (3)  

w = Aww0 + BwwT + CwwB (4)  

where Au = h2 − 4z2

h2 , Bu = 4z3 − h2z
h2 , Cu = 2hz2+4z3

h3 , Du = 2hz2 − 4z3

h3 , Aw = h2 − 4z2

h2 , Bw = hz+2z2

h2 , Cw = 2z2 − hz
h2 . It should be noted that the incor-

poration of displacements at the top and bottom surfaces (uT , wT , uB, wB) facilitates easy connection of the sub-laminates without any 
additional treatment. Moreover, these displacements at external surfaces are beneficial for conveniently modelling delamination in 
composite laminates (details provided in Section 2.3). In addition to the adopted higher order variations of displacements (HOSLM), 
the capability of stacking multiple HOSLM-based sub-laminates helps to improve the modelling accuracy. 

2.2. Governing equation of motion 

The equation of motion for a dynamic system can be derived using the Lagrange equation. It can be expressed as: 

d
dt

{
∂L
∂Δ̇

}

−

{
∂L
∂Δ

}

+

{
∂R

∂Δ
⋅

}

= 0 (5)  

where L (= T - V) is the Lagrangian consisting of kinetic energy (T) and potential energy (V) that is dependant on strain energy U and 
work done by external load We (V = U-We), R is the dissipation potential to capture damping, Δ is the unknown displacement vector 

(details will be shown later in this section), t is the time, and Δ
⋅ 

is the velocity vector (d/dt Δ). The key components (V, T, R) of Eq. (5) 
can be expressed as 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

V =
1
2

∫∫

εT σdxdz −
∫
(
uqx + wqz

)
dx

T =
1
2

∫∫
(
ρxu̇

2 + ρzẇ
2)dxdz

R =
1
2

∫∫
(
μxu̇

2 + μzẇ
2)dxdz

(6)  

where ε is the strain vector, σ is the stress vector, qx = qx(x, t) is a distributed axial load and qz = qz(x, t) is a distributed transverse load 
(similarly applicable to point load and other loads), ρ is the mass density (subscripts show directions) and μ is the damping coefficient. 
Displacements with dots in the equations represent their time derivatives. Note also that qx and qz act at the top, bottom or mid- 
surfaces of the beam and having no variations along the z axis. Though a generic treatment for the load is shown in this section, 
the present study primarily used point loads in the form of high frequency impulse, such as the Hann windowed tone burst (see the 
details later). The different responses (displacements, velocities, strain, and stresses) associated with Eq. (6) are presented below in 
convenient forms for deriving the equation of motion from Eq. (6). 

Eqs. (3) and (4) can be used to express the primary displacements (u, w) in terms of 1D displacement field fT =

[ u0 θ uT uB ω0 ωT ωB ] and a sectional matrix Hd dependant on z as 
{

u
w

}

= Hdf (7)  

where 

Hd =

[
Au Bu Cu Du 0 0 0
0 0 0 0 Aw Bw Cw

]

(8a) 

Fig. 2. Location of Gauss-Lobatto-Legendre (GLL) nodes of typical spectral finite element (SFE) with eight nodes.  

Y. Feng et al.                                                                                                                                                                                                            



Journal of Sound and Vibration 566 (2023) 117929

5

To model beams under high frequency waves to capture small-scale defects, SFE with higher order approximations of the x 
directional displacement components of f are used. For this purpose, GLL nodes are used to improve the accuracy of interpolations 
compared to usual FE interpolation functions with equispaced nodes that may accumulate errors at the two ends (Runge’s phenom-
enon) for higher order approximations. Fig. 2 shows the location of GLL nodes of a typical case with eight nodes but it can also be any 
other number of nodes n. 

As the proposed laminate model can be implemented with C◦ FE formulation, all seven displacement components of f are inter-
polated with the same number of GLL nodes n per element where the k-th displacement component fk of f can be expressed as 

f k =
∑n

i=1
NiΔk

i (8b)  

where Ni is the interpolation function corresponding to node i and Δk
i is the nodal displacement at node i corresponding to fk. The 

location of GLL nodes ξi ∈ [− 1, 1] can be obtained by solving a set of equations (1 − ξ2
i )L′

n− 1(ξi) = 0 for i ∈ 1,…, n where L′
n− 1is the 

derivative of (n-1)th order Legendre polynomial [18] with respect to ξ, and n is the total number of GLL nodes within each element. 
Once the locations of GLL nodes are obtained, the expressions of Ni are determined using Lagrangian polynomials [43]. 

Eq. (8) is then substituted into Eq. (7) to express the 1D displacement vector f in terms of the nodal displacement vector Δ consisting 
of m (=n × 7) nodal unknowns (Δk

i ) as 
{

u
w

}

= HdBdΔ (9)  

where Bd consists of 1D shape functions Ni. 
Following a similar procedure, the time derivative of Eqs. (3) and (4), providing velocities at any point in the 2D plane within a sub- 

laminate, can be expressed in terms of the nodal velocity vector Δ̇ as 
{

u̇
ẇ

}

= HvBvΔ̇ (10)  

where Bv = Bd and Hv = Hd. 
The primary strain vector ε in the 2D plane can be written in terms of derivatives of u and w, and with the aid of Eqs. (3) and (4) it 

can be decoupled into a z dependant sectional matrix H and x dependant 1D strain vector ε as 

ε =

⎧
⎨

⎩

εx
εz
γxz

⎫
⎬

⎭
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂x
∂w
∂z

∂u
∂z

+
∂ω
∂x

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

= Hε (11)  

where 

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 Au Bu Cu Du 0 0 0 0 0 0

0 0 0 0 0 0 0 0
∂Aw

∂z
∂Bw

∂z
∂Cw

∂z
0 0 0

∂Au

∂z
∂Bu

∂z
∂Cu

∂z
∂Du

∂z
0 0 0 0 0 0 0 Aw Bw Cw

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(12)  

εT =

[

u0 θ uT uB
∂u0

∂x
∂θ
∂x

∂uT

∂x
∂uB

∂x
ω0 ωT ωB

∂w0

∂x
∂wT

∂x
∂wB

∂x

]

(13) 

The strain vector (Eq. (13)) is dependant on seven 1D displacement components appearing in f. 
Eq. (8) is then substituted into Eq. (13) to express the one-dimensional strain vector in terms of the nodal displacement vector Δ as: 

ε = BΔ (14)  

where the strain-displacement matrix B consists of 1D shape functions and their derivatives. 
A typical composite ply within a laminated beam or sub-laminate is idealized as a homogeneous orthogonal material layer and its 

3D stress-strain (σ - ε) relationship in its off-axis (material axis) system (1–2–3) can be written as: σoff = Qεoff where the 6 × 6 
constitutive matrix Q is depended on direction-dependant elastic modulus (E1, E2, E3), shear modulus (G12, G23, G31) and Poisson’s 
ratio (ν12, ν23, ν31) [44]. For a multi-layered laminate/sub-laminate, the stress-strain relationship of individual layers having different 
fibre orientations needs to be expressed in terms of a common axis system of the laminate in order to combine their contributions. This 
is done by the coordinate transformation of the constitutive relationship of individual layers to express that in the laminate axis 
(on-axis) system (x-y-z) using a transformation matrix T dependant on ply/fibre orientations (θ) as [44] 
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σon = Qεon (15) 

Since the sub-laminate is assumed to have a plane stress condition in the x-z plane, σy= τxy= τyz= 0. To implement this condition, 
Eq. (7) is inverted to appear the stress components on the right-hand side that helped to conveniently reduce the size of the system of 
equations from 6 to 3. The reduced form of this equation is inverted again to arrive at the final form of the 2D constitutive relationship 
of a composite ply as: 

σ = Dε (16) 

Systematically substituting Eqs. (9)–(11), (14) and (15) into Eq. (6), potential energy V and kinetic energy T can be expressed as 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

V =
1
2
ΔT

∫

BT DKBΔdx − ΔT
∫

BT
d qdx =

1
2
ΔT KΔ − ΔT P

T =
1
2
Δ̇T

(∫

BT
v DmBvdx

)

Δ̇ =
1
2
Δ̇T

MΔ̇
(17)  

where K is the stiffness matrix, P is the load vector, Mis the mass matrix, DK =
∫

HTDHdz, q = HT
d

[
qx 0
0 qz

]

Hd, and Dm =

∫
HT

v

[
ρx 0
0 ρz

]

Hvdz. It is to be noted that q needs not be integrated over z as the load can only have distribution along x and not along z. 

Thus,Hd used in the above equation should be substituted with a contact value of z depending on the position of the load. 
In a similar manner, the dissipation potential can be derived using Eqs. (6) and (10) as 

R =
1
2
Δ
⋅ T

CΔ
⋅

(18)  

where C is the damping matrix and can be expressed in terms of Hv, Bv, μx,and μz. However, due to the challenges associated with 
direct measurement of the damping coefficient, the concept of Rayleigh damping is used in this study. This helps to express the 
damping matrix in the proportion of the stiffness and mass matrices as C = a0M + a1K where the coefficients a0 and a1 can be 
evaluated using natural frequencies and the specified damping ratio with respect to the critical damping coefficient of the structure 
(details are available in a standard text [45]). 

Substitution of Eqs. (17) and (18) into Eq. (5) produces the following governing equation of motion: 

KΔ + CΔ
⋅
+ MΔ

..

= P (19) 

Though the above equation is derived using an element of a sub-laminate, the same form of the equation is applicable for the whole 
structure by assembling the contribution of all components of the equation from all elements and their sub-laminates. For the intact 
portion of the laminate, the connection between two adjacent sub-laminates placed one over the other along the thickness direction 
can be simply achieved by taking the nodes at the bottom surface of the upper sub-laminate and the nodes at the top surface of the 
lower sub-laminate as common nodes. 

The proposed HOSLM has significant benefits in modelling delaminations due to the presence of nodes at the two external surfaces 
(top/bottom) of a sub-laminate. Delamination can be easily inserted between two HOSLM-based sub-laminates by taking double sets of 
nodes with no physical gap between them (See Fig. 3). In that case, one set of nodes is attached to the bottom surface of the upper sub- 
laminate and the other set of nodes is attached to the top surface of the lower sub-laminate. Propagation of guided waves with a 
damaged/delaminated structure is often classified into two categories: linear waves and non-linear waves. For linear waves, the upper 
and lower sets of nodes are assumed to behave independently with no connection between them in order to simplify the analysis. 
However, there might be interactions between these node sets in reality and it can be used for nonlinear wave simulation due to contact 
effects at the delamination. For such simulation, these two sets of nodes are disconnected during delamination opening under tensile 
loading while a contact mechanism is incorporated between them during delamination closing under compressive loading that avoids 
a possible interpenetration of these adjacent sub-laminates. The contact is simulated by inserting zero length penalty springs between 

Fig. 3. Modelling intact and delamination regions with spectral finite elements (SFEs).  
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these two sets of nodes, where the stiffness of these springs is switched to zero to deactivate them during delamination opening. This is 
controlled by checking the values of w of the two sets of nodes, although it introduces a nonlinearity in the form of contact, which is 
solved iteratively following the successive approximation technique. In order to avoid any numerical disturbance and achieve 
converged results, the value of the penalty stiffness should be chosen in a range, recommended by Bathe [43], which should be around 
103 times of the diagonal element of the structural stiffness matrix corresponding to the degree of freedom restrained by the spring. 

2.3. Solution of the governing equation 

Eq. (19) can be solved directly following a time integration technique, such as the Newmark beta method [18], but such an implicit 
time integration can take more computing time compared to an explicit time integration technique. In that case, the above equation is 
rearranged as 

MΔ
..

= P − KΔ − CΔ
⋅
= P − PK − PC (20)  

where the solution process operates on the mass matrix appeared on the left-hand side of the equation considering contributions of 
stiffness and damping on its right-hand side in the form of corresponding load vectors PK and PC. The explicit time integration 
technique uses lumped mass matrix with non-zero diagonal elements only that facilitates decoupling the multiple degrees of freedom 
(DOF) system into several single DOF problems. This is the key to improve computational efficiency. It also does not need an operation 
on the big stiffness and damping matrices of the structure as their contributions are incorporated in the form of corresponding load 
vectors evaluated at the element/sub-laminate levels and assembled them to get PK and PC. The central difference with respect to time 
is used to solve the individual single DOF based equations to obtain the nodal displacement, velocity and acceleration of the beam. 

It is to be noted that a diagonal mass matrix can be achieved by using nodal quadrature based spatial integration of the mass matrix 
(Eq. (17)) taking GLL nodes as integration points. This is valid for a usual SFE formulation, but it is not applicable to the present model 
due to higher order couplings between translational and rotational DOFs appeared in defining the through-thickness deformational 
kinematics of the beam. However, an alternative technique is used in the present scenario to diagonalise the mass matrix by adopting a 
simple but efficient mass lumping scheme based on the row-sum method [46]. Before using such a method herein, the consistent mass 
matrix presented in Eq. (17) is integrated using the usual Gauss quadrature technique that is also recommended by Duczek and 
Gravenkamp [46]. This successfully worked with the present formulation and ensured conservation of the total mass of the structure. 

A MATLAB code was then developed to implement the entire formulation in a generalized form for simulating high frequency wave 
propagation and scattering in composite and sandwich beams with any arbitrary laminations having multiple delaminations. The code 
can take any number of GLL points for the SFE, however, the analysis of numerical examples presented in this study adopted eight GLL 
points based on an initial convergence study of the solution accuracy. 

3. Model verification 

3.1. Wave propagating in intact composite beams 

3.1.1. Wave velocity estimations 
The performance of the proposed model for predicting wave propagation within a multi-layered composite beam is first tested in 

terms of its group (Cg) and phase (Cp) velocities. The laminated beam is 500 mm long, and 2 mm thick and consists of eight layers with a 
ply orientation of [0/90/0/90]s. The Cycom® 970/T300 graphite-epoxy, used for each equal-thickness plies, has material properties 
along their principal material axis: E1 = 128.75 GPa, E2 = E3 = 8.35 GPa, G12 = G13 = 4.47 GPa, G23 = 2.9 GPa, ν 12 = ν 13 = 0.33, ν 23 
= 0.44, ρ = 1517 kg/m3. 

To investigate both asymmetrical (A0) and symmetrical (S0) modes of guided waves, the beam is excited with a concentrated 
impulsive force F(t) applied at its left end in the transverse and axial directions, respectively, as shown in Fig. 4. The force F(t) is given 
in the form of a five-cycle Hann windowed tone burst pulse signal [47] with an amplitude of 1.0 N, which is kept unchanged in all cases 
as well as other examples. The beam is simulated using the proposed higher order beam model (HOSLM) where eight sub-laminates are 
used for simulating an eight layered beam to achieve high precision. From the time history analysis of the beam, the signals for its 

Fig. 4. (a) A0 and (b) S0 modes of guided waves.  
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response are captured at five locations/points along the beam length with an interval of 2.0 mm. With these signals (time-varying 
displacement), the group velocity is calculated as Cg(f) = Δx

ΔT where Δx is the distance between two adjacent points (2.0 mm in this 
case) and ΔT is the time needed by a wave to reach from one point to the next point i.e., a travelling distance of Δx. The calculation is 
repeated taking four different pairs of points from these five points, which show very little difference between their values, and these 
are averaged before reported in Fig. 5. In a similar manner, the phase velocity is calculated as Cp =

2πfΔx
ΔΦ where ΔΦ is the phase 

difference of the wave at two adjacent points and f is the frequency of the pulse [47] used to excite the beam. 
The excitation frequency (f) is varied from 20 kHz to 200 kHz with an increment of 20 kHz and the group and phase velocities 

estimated for A0 and S0 modes of waves are presented in Fig. 5. For the validation of these results, the Dispersion Calculator (DC) (i.e. a 
calculation tool developed by German Aerospace Centre [48]) is used and results produced by DC are included in Fig. 5. It shows a 
close correlation between the results obtained by the proposed model and DC, which gives initial confidence in using the present 
model. 

3.1.2. Capabilities and performance of model in low frequency range 
The accuracy of the present model in simulating wave propagation within composite beams is first studied by comparing results 

with those generated by existing models. For this purpose, a four layer laminated composite beam (0/90/90/0) is analysed. The beam 
is 500 mm long and 2 mm thick. The material properties of each equal-thickness ply are: E1 = 127 GPa, E2 = E3 = 7.9 GPa, G12 = G13 =

3.4 GPa, G23 = 3.435 GPa, ν 12 = ν 13 = 0.275, ν 23 = 0.15, ρ = 1578 kg/m3. The beam is excited by a 100 kHz pulse with five cycles at 
the beam’s left end to generate the A0 mode of guided wave. The present model with four sub-laminate is used to simulate the wave 
propagation. The deflection results are obtained on the top surface of the beam along the axial axis, and beam deflections against 
positions along beam axis when the propagation time (tp) equal 200μs is plotted in Fig. 6. The same problem was also solved by Barouni 
and Saravanos [49] using a LW theory based model, and Rekatsinas et al. [50] using single layer based HSDT and FSDT models. Results 
produced by Those models are also shown in Fig. 6. The figure shows that the response predicted by the FSDT based model has obvious 
deviation compared to the LWT based model. Although the HSDT based model provides encouraging results, the right-half part of the 
signal still shows significant deviations. The present model also assumes a higher order variation through-thickness displacements, but 
it has capability of sub-lamination modelling which can improve modelling accuracy. It can be observed from Fig. 6 that the results 
produced by the present model match well with the benchmark results generated by the LWT based model. This is because that the 
present model performs like a typical LWT model when every physical layer is simulated by one sub-laminate. However, the present 
model can achieve higher computational efficiency than a typical LWT model by choosing an appropriate sublamination scheme, 
which will be investigated in the rest part of this section. 

The sub-lamination capability of the proposed higher order beam model provides flexibility in balancing solution accuracy and 
computational efficiency. In order to assess this, different sub-lamination schemes of the model are used to simulate the laminated 
composite beam used in Section 3.1.1 by taking a specific case of the excitation (transverse impulsive force with 100 kHz excitation 
frequency) to produce A0 mode of guided wave. A sub-lamination scheme is designated as SLS-n where n is the number of sub- 
laminates used for the whole laminate. In this case, four sub-lamination schemes are used, which are (i) SLS-1 (all 8 layers of the 
beam are accommodated by 1sub-laminate), (ii) SLS-2 (2 sub-laminates, each accommodated 4 layers; sub-laminate 1: 0/90/0/90, 
sub-laminate 2: 90/0/90/0), (iii) SLS-4 (4 sub-laminates, each accommodated 2 layers), and (iv) SLS-8 (8 sub-laminates, each 
accommodated 1 layer i.e., equivalent to a layer-wise model). The time-history for the transverse displacement (w) at the mid-span of 
the beam captured at its top surface is plotted in Fig. 7 that includes incident as well as reflected waves from the other end. 

For verification of these results, a detailed 2D FE modelling-based simulation of the beam is undertaken using a reliable commercial 
FE code (ABAQUS/Explicit). The detailed model used 4-node rectangular plane stress elements (CPE4R), where the aspect (length-to- 
depth) ratio of elements is restricted to 2 to avoid any numerical disturbance. Two adjunct layers in thickness direction are connected 
by using ‘tie constraint’ in the intact region, and it is not applied in the delaminated region to simulate the delamination. For the 

Fig. 5. Variation of (a) group velocity and (b) phase velocity with respect to excitation frequency (DC: dispersion calculator [48]).  
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scenario that effect of contact is considered, ‘surface to surface hard contact’ is used in the delaminated region. Those procedure is 
consistently followed in the following examples. The strategy for validating results using detailed FE modelling is also employed in 
other examples when there are no suitable results available in the literature. In addition, a FSDT-based equivalent single layer SFE 
model [27] (implemented in a separate MATLAB code) is also used to solve the same problem. The results produced by these two 
modelling strategies are included in Fig. 7. It shows that the FSDT-based model performed worst considering the detailed FE 
modelling-based results as a reference. The FOSD-based model underestimated the wave amplitude and group velocity, which are 
more severe in the case of reflected waves. Compared to the FOSD-based model, the proposed model, even with the single 
sub-lamination scheme (SLS-1), has shown encouraging results in terms of a close prediction for the wave amplitude while the group 
velocity is slightly overestimated. The prediction of the proposed model is improved with the increase of sub-lamination numbers, 
because it helped to capture strain discontinuity (including transverse normal strain) at the interfaces between adjacent sub-laminates. 
It is interesting to observe that the improvement from SLS-1 to SLS-2 is not significant although it is significant from SLS-2 to SLS-4 
while improvement from SLS-4 to SLS-8 is again insignificant. It is to be noted that SLS-4 and SLS-8 predicted results very close to the 
reference results. Thus, considering the computationally efficient of simulation, SLS-1 and SLS-4 are preferred options for this problem 
depending on the desired level of accuracy. 

The same beam problem is used to study the computational efficiency of the proposed model and compared with that of the detailed 
FE modelling using ABAQUS (explicit). For this purpose, the number of degrees of freedom (DOF) needed to achieve a converged 
solution as well as the computing time for that solution is taken as the basis. Since it has been found above that SLS-4 sublamination 
scheme is a preferred option, it is used for the convergence study with respect to element size/number for discretisation along beam 
length. The convergence is also dependant on the size of the time step, which is automatically adjusted by ABAQUS using its in-build 
algorithm while a standard recommendation [18] (Δt ≤ 2/ωmax, where ωmax is the highest frequency of the structure) is followed for 
the proposed model. It has been found that the reflected wave needed finer meshing i.e., more elements to achieve converged results 
compared to the incident wave. The reflected wave predicted by these two modelling techniques using different mesh refinements is 
presented in Fig. 8, which shows that the proposed model needed a minimum of 5258 DOF (see Figure(a)) while the detailed FE model 
needed a minimum of 68,034 DOF (see Figure(b)). The simulations are conducted using the same computer (HP-Z2-G4 workstation, 
Intel i7–9700 CPU, 32GB RAM) for the proposed model and the detailed FE model. The minimum number of DOF and computing time 
needed by both modelling techniques are presented in Table 1, which clearly shows a significant reduction of computing time (87%) 
and memory (92%) by the proposed model. The table also included the case of SLS-1 of the proposed model that provided a further 
reduction of computation demand that may be appealing if not aiming for the highest precision. 

Though the present study used explicit time integration for better computational efficiency, the proposed formulation was initially 
implemented within an implicit time integration-based scheme (Newmark method). In order to confirm that the solution accuracy was 
not compromised using the explicit time integration scheme, the same beam problem was analysed with the present model (SLS-4) 
with the implicit time integration scheme (with populated consistent mass matrix) where the same meshing was used. The results 
produced by both time integration schemes are presented in Fig. 9, which shows a very close agreement between them. However, the 
simulation based on implicit time integration has taken more than 5 times computing time using the same computer. 

3.1.3. Capabilities and performance of model in high frequency range 
The performance of the proposed model for capturing higher frequency waves is studied in this section. For this purpose, the same 

laminated composite beam studied in Section 3.1.2 is used however the beam length is reduced to 200 mm. Also, the excitation 
frequency is increased to generate waves in the structure that can have higher modes, unlike the previous section where the generated 
waves had fundamental mode only. To estimate the range of excitation frequency for this structure for this purpose, DC is used to create 

Fig. 6. Deflection response of beam’s top surface along the beam axis for tp = 200μs.  
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dispersion curves of waves produced in the beam, which are presented as a variation of wavenumber with respect to the excitation 
frequency in Fig. 10. The figure shows that the next higher modes appear when the excitation frequency exceeds a cut-off frequency, 
which is around 400 kHz for the asymmetrical wave (A1) and 650 kHz for the symmetrical wave (S1) in this problem. 

To generate the higher mode of asymmetrical wave (A1) in the laminated composite beam, the proposed model is employed to 
analyse the beam under a transversely applied excitation F(t) with 600 kHz frequency at one of the beam ends. The time-varying 
response (transverse displacement w) is captured near the other end of the beam (top surface), which is presented in Fig. 11. It is 
noted that the wave possesses both low velocity fundamental mode (A0) and higher mode (A1) having higher velocity, which are 
clearly shown in Fig. 11 (A1 arrived at same measuring place much earlier than A0). In a similar manner, the symmetrical mode of 
waves is investigated although the results are not reported to avoid repetition. The analysis of the beam is conducted with three 
sublimation schemes (SLS-8, SLS-4, and SLS-2) of the present model where a convergence study in terms of element size is made to 
have a stable result. The result (Fig. 11) shows that the performance of SLS-4 and SLS-8 is very close, as in the previous case while the 
performance of SLS-2 is deteriorated further compared to the low frequency case. The proposed model is therefore capable of capturing 
all modes (fundamental and high modes) accurately unlike some existing models [30]. 

To identify the different wave modes for an unknown problem having test data, the time-domain response can be transformed into 
the frequency domain where the separation of different wave modes can result in clearer visualisation. For this purpose, a two- 
dimensional Fourier transform (2D FT) technique [51] is used that requires time-domain responses at a number of equally spaced 

Fig. 7. Signal for beam mid-span (top surface) transverse displacement: (a) predicted by the present model (SLS-8), 2D detailed model, and FSDT 
based mode; (b) incident wave, and (c) reflected wave from beam end predicted by the present model with different sublamination schemes and 
FSDT based mode. 
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measurement points along the direction of wave travel. The 2D FT produces the frequency-wavenumber spectrum that helps to easily 
separate the multiple modes for visualisation purposes. The time-domain responses obtained from the present analysis (SLS-4) are 
measured at 21 points aligned along the beam length (top surface) with a spacing of 1.0 mm, which at a distance of 50.0 mm and ended 
at 70.0 mm from the beam end subjected to excitation. The frequency-wavenumber spectrum produced by the 2D FT is presented in 
Fig. 12, which is also superposed with the dispersion curves (Fig. 10) obtained using DC. Two densified regions appear in Fig. 12a, 
which clearly shows that the central frequency of the wave that is equal to the excitation frequency is around 600 kHz. There are also 
two wave modes, which are A0 and A1 in this case. This is similarly observed in Fig. 12b for the symmetrical mode of waves where the 

Fig. 8. Convergence study for the same response (Fig. 7c)) using the (a) present model (SLS-4), (b) detailed FE model.  

Table 1 
Computational efficiency of present model with reference to detailed FE model in low frequency range.   

Detailed FE model Present model (SLS-4) Present model (SLS-1) 

Degrees of freedom (DOF) 68,034 5258 (92%*) 1673 (98%) 
Computing time (sec) 3180 409 (87%) 34 (99%)  

* % reduction compared to the detailed FE model. 

Fig. 9. Signal for beam mid-span (top surface) transverse displacement using present model (SLS-4) based on explicit and implicit time integrations.  
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Fig. 10. Dispersion curve for the laminated composite beam (A0 and S0 - fundamental mode and A1 and S1 - next higher modes).  

Fig. 11. Time-history responses of transverse displacement for 600 kHz asymmetrical guided wave predicted by different models.  

Fig. 12. Frequency-wavenumber spectrum for (a) asymmetrical, (b) symmetrical modes of guided wave in laminated composite beam.  
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central frequency of the wave is found to be 750 kHz, which is actually given as the input for the excitation frequency in conducting the 
time history analysis. 

To assess the computational efficiency of the present model in the high frequency range, similar to that presented in Section 3.1.2 
for low frequency, the scenario for the asymmetrical mode of waves produced with the excitation frequency of 600 kHz is chosen to 
present the results in terms of computing time and number of unknowns (DOF). These are shown in Table 2 and compared with those 
needed by the detailed FE model. The table shows a similar level of computational efficiency in the high frequency range. For the 
present problem, the number of unknowns is reduced by 98% and it is 91% for the computing time. 

3.1.4. Wave attenuation due to damping 
Damping is one of the main factors causing wave attenuation in addition to any dispersive actions. A laminated composite (0/90/0) 

beam is used herein to investigate the performance of the present model in simulating attenuation of guided waves within the beam 
due to damping. The beam consists of three equal-thickness glass fibre reinforced epoxy layers, and their material properties along the 
principal material axis are: E1 = 44.68 GPa, E2 = E3 = 6.90 GPa, ν13 = 0.28, ν23 = 0.355, G13=2.54 GPa, ρ = 1990 kg/m3. The beam is 
300 mm long and 0.99 mm thick (each layer 0.33 mm thick). The beam is excited with a similar pulse having seven-cycle and 200 kHz 
of excitation frequency to produce A0 mode of guided wave in the beam, and the wave response is captured at 9 points along the beam 
length (top surface) at an interval of 10 mm where the first measurement point is 5 mm away from the beam end subjected to the 
excitation. This problem was studied by Ramadas et al. [52] using a detailed FE model to analyse the beam utilising Rayleigh’s 
damping model. The same damping parameters (a0 = 13.536 rad/s and a1 = 8.571× 10− 9s/rad) provided by them are used in the 
present analysis. The wave amplitudes predicted by the present model (SLS-3) at each measurement point are normalised to that at the 
first measurement point and plotted in Fig. 13. The published results [52] are also presented in Fig. 13 for validation. The figure shows 
satisfactory agreement between the reference results and those produced by the present model. 

3.2. Wave propagation in delaminated beams 

3.2.1. Delaminated composite beam considering no effect of contact 
To investigate the performance of the proposed mode to simulate wave propagation in delaminated composite beams, the present 

model is first used to analyse a three-layer glass/epoxy laminate containing a relatively larger asymmetrically located delamination 
(Fig. 14). The same material in Section 3.1.4 is used herein for each equal-thickness ply. The beam is excited with a 200 kHz pulse with 
seven-cycle to produce A0 mode of guided wave in the beam by giving transverse load at the top and bottom surface of the beam end 
(Shown in Fig. 14). The response of deflection predicted by the present model using three sub-laminates (SLS-3) is obtained at 100 mm 
away (point A in Fig. 14) from the excitation point, and the result is shown in Fig. 15. The same problem is also solved by Ramadas et al. 
[53] using 2D detailed FE model, and the result is also plotted in Fig. 15. The figure shows high agreement between the results from 
literature [53] and those produced by the present model. 

To further study the performance of the sublamination capability of the presented model, the eight-layered composite used in 
Section 3.1.1 (same geometry and materials) is adopted herein but a smaller 2.0 mm long delamination is incorporated between the 
4th and 5th layers near the middle of the beam length as shown in Fig. 16. The beam is excited with the same five cycle pulse and an 
excitation frequency of 100 kHz is used to produce an A0 mode of guided wave. Since the minimum number of sub-laminates required 
by the present model is 2 to model the laminated beam with one delamination, the sub-lamination schemes used are SLS-8, SLS-4 and 
SLS-2. The wave response predicted by the proposed model is captured at Points A and B (see Fig. 16) and presented in Fig. 17. Fig. 17a 
corresponding to point A shows the incidental wave followed by the reflected wave produced by the wave interaction with the 
delamination (a portion of the wave) while Fig. 17b (point B) shows the transmitted wave (reaming portion of the wave). To validate 
these results, the problem is also solved via the detailed FE model and the results obtained are included in Fig. 17. The figure shows that 
both sub-lamination schemes SLS-8 and SLS-4 of the present model performed in a similar manner to the detailed FE model. Although 
the present model with SLS-2 slightly overestimated the velocity of the reflected and transmitted wave, it could be a better option for 
higher computational efficiency if that high prediction is not required. 

Wave propagation in a laminated composite beam with multiple de-laminations is now investigated. The same 8 layered compose 
beam is considered although two de-laminations at two different locations and planes as shown in Fig. 18 is analysed for this purpose. 
The first delamination (d1) having a length of 4.0 mm is located at the interface between the 4th and 5th layers near the middle part of 
the beam length. The second delamination (d2) having a length of 2.0 mm is located between the 6th and 7th near the quarter part of 
the beam length close to the end that is subjected to excitation. To accommodate two delaminations, at least 3 sub-laminates are 
required by the present model. Thus, the three sub-laminate schemes used for modelling the beam are: (i) SLS-3 (sub-laminate 1: 0/90/ 
0/90 at top, sub-laminate 2, (ii) 90/0 at middle, sub-laminate 3: 90/0 at bottom), and (iii) SLS-4 and SLS-8. With the same excitation at 
the right end of the beam, the wave (A0) response for w predicated by the model (SLS-3, SLS-4 and SLS-8) at points A, B and C (see 

Table 2 
Computational efficiency of present model compared to detailed FE model in high frequency range.   

Detailed FE model Present (SLS-4) 

Degree of freedom (DOF) 648,162 10,802 (98%*) 
Analysis time (sec) 12,925 1137 (91%)  

* % reduction compared to the detailed FE model. 
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Fig. 18) is plotted in Fig. 19a, 19b, and 19c, respectively. 
Compared to the incident wave (see Fig. 19a, point A), the amplitude of the transmitted wave obtained after passing through the 

delamination d2 (see Fig. 19b, point B) became bit lower, which is then further reduced a bit when the wave transmitted through 
another delamination d1 (see Fig. 19c, point C). This behaviour is expected since the wave is likely to lose a portion of its energy when it 
interacts with a delamination. The wave started travelling from the right end to the left end and the incidental wave having its full 

Fig. 13. Reduction of wave (A0) amplitude along beam axis showing wave attenuation in composite beam due to damping.  

Fig. 14. Composite laminate with an asymmetrically located delamination.  

Fig. 15. Time history for wave responses (w) of composite beam with single delamination captured at locations A (Fig. 14).  

Fig. 16. Laminated composite beam with single mid-plane delamination.  
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energy is captured at point A that appeared as the first part of the plot shown in Fig. 19a. The wave is moved forward (towards left) and 
interacted with the delamination d2 where a part of the wave energy moved forward as transmitted wave that is captured at B (first part 
of the plot in Fig. 19b) while the reaming energy moved backward as reflected wave that is captured at A (second part of the plot in 
Fig. 19a). The transmitted wave from d2 then moved forward and interacted with delamination d1 where a part of this wave is 
transmitted that is captured at C (Fig. 19c) while the remaining part of this wave is reflected that is captured at B (last part of the plot in 
Fig. 19b). The reflected wave from d1 is again interacted with the de-lamination d2 and its transmitted part is captured at A (last part of 
the plot in Fig. 19a). This part is likely to be combined with the initially reflected wave form d2 that reflected from the right end. 

The beam is similarly analysed with the detailed FE model and the results obtained are included in Fig. 19. The figure shows that 
the present model with minimum number of sub-laminates (SLS-3) provided a good prediction for wave amplitude, although the wave 
velocity was slightly overestimated. This deviation, however, increased gradually with the increase of wave travel time/distance. 
Unless a prolonged wave propagation is simulated, model SLS-3 can be recommended for such problems owing to better computational 
efficiency. 

3.2.2. Delaminated sandwich beam considering no effect of contact 
The performance of the proposed model in simulating wave propagation within a delaminated sandwich beam is studied in this 

section. For this purpose, a sandwich beam (0/90/C/90/0) with a thick core layer (10 mm thick) sandwiched between two sym-
metrically placed identical laminated face sheets (each ply 0.5 mm thick) is used. This beam (1000 mm long and 12 mm thick, Fig. 20) 
has a delamination (10 mm long) at the interface between the core and top face sheet near the mid-length of the beam. The material 
properties of the laminated sheets (graphite-epoxy) are the same as those used in Section 3.1.1 while the core material properties core 
are: E1 = E2 = 0.08,040 GPa, E3 = 1.005 GPa, G12 = 0.03,220 GPa, G13 = G23 = 0.1206 GPa, ν12 = 0.25, ν 13 = ν 23 = 0.02, ρ = 64 kg/m3. 

The beam is excited with the same five-cycle pulse (see Section 3.1.1) at its right end to generate an A0 mode of guided wave. After 
interaction of the wave with the delamination, the wave response is captured at point A (see Fig. 20) as well as the loaded point in order 
to respectively capture the transmitted and reflected waves. To assess the range of excitation frequency needed for this purpose, the 
dispersion curve of the sandwich beam is first produced by using the DC, which are plotted in Fig. 21. The figure shows that the higher 
order wave mode (A1) is generated along with the fundamental mode (A0) when the wave frequency exceeds 20 kHz. To avoid the 
appearance of the A1 mode of wave that may make the wave response signal too noisy to hinder an easy damage detection, an 
excitation frequency of 15 kHz is selected. For the analysis of the beam with the present model, two sub-laminate schemes (SLS-5 and 
SLS-3) are used to accommodate the delamination. The time-history for the wave responses (w) predicted by these models are plotted 
in Fig. 22, which shows that model SLS-3 is adequate to accurately predict reflected and transmitted waves for a thick sandwich beam. 

The computational efficiency of the present model for simulating this beam problem is also studied. The computational demands 
required by the present model (SLS-3) and the detailed FE model to achieve stable converged results are presented in Table 3. This 
shows that the present model can save 97% of unknown variables and 90% of analysis time compared to the detailed model in 

Fig. 17. Time history for wave responses (w) of composite beam with single delamination captured at (a) locations A, (b) location B (see Fig. 16).  

Fig. 18. Laminated composite beam having two de-laminations at different interfacial planes and locations.  
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simulating wave propagation within the delaminated sandwich beam. 

3.2.3. Contact nonlinearity effect on wave propagation in delaminated composite beam 
Contact is one of the nonlinear phenomena observed in the propagation of guided wave in a structure when the wave interacts with 

a damage such as delamination where the contact between damaged surfaces is activated or deactivated depending on the nature of 
loading that leads to generation of higher harmonics. This is due to clapping of the two surfaces of a delamination in mode I or closing- 
opening mode of deformation. This nonlinear behaviour has drawn much attention since it is more sensitive to small damage [54]. As 
mentioned in Section 2, the present model incorporated a penalty-based technique to simulate contact behaviour in the delaminated 
region. To investigate the performance of the present model in capturing contact nonlinearity, the same problem used in Section 3.2.1 
is considered herein for this purpose. The position of the delamination is also moved up from the mid-plane (interface between 4th and 
5th layers) of the 8 layered beam to the interface between the 2nd and 3rd layers. This is done on the basis of an existing study [55] 
where it is stated that the placement of a delamination at the mid-plane of a symmetrical laminated beam is likely to produce an 
insignificant higher harmonic that may be hard to recognise. 

Fig. 19. Time-history for wave responses (w) of composite beam with multiple de-laminations captured at (a) location A, (b) location B, (c) location 
C (see Fig. 18). 

Fig. 20. Sandwich beam containing delamination.  
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The present model (SLS-4) is used to reanalyse the beam here with and without using the contact model. In this case, the time 
history for the wave response (w) predicted by the model for these two cases is captured at a point (beam top surface) 50 mm away 
from the excitation point. As it can be difficult to detect the influence of higher harmonics in the time domain, the time history-based 
wave response data is converted to the frequency domain using a fast Fourier transform (FFT) technique. Before performing the FFT, 
the wave response (time domain) is processed by subtracting with corresponding wave response of the same beam with no damage 
(baseline subtraction technique) to retain only the damage contribution. The results obtained for the two cases with and without 
contact are presented in Fig. 23 along with those produced by the detailed FE model with contact simulated using the surface-to- 
surface based contact algorithm of ABAQUS. The figure shows the higher harmonics in the form of a hump around 200 kHz (2 
times of the excitation frequency), which is observed only for simulations exhibiting the contact phenomenon. 

Fig. 21. Dispersion curves (group velocity) of delaminated sandwich beam.  

Fig. 22. Time-history of wave responses of delaminated sandwich beam (Fig. 20) at (a) point A, (b) excitation point.  

Table 3 
Computational efficiency of proposed model for simulating wave (A0) propagation within delaminated sandwich 
beam.   

Detailed FE model Present (SLS-3) 

Degrees of freedom (DOF) 175,666 5979 (97%*) 
Computing time (sec) 41,934 4133 (90%)  

* % reduction compared to the detailed FE model. 
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4. Influence of delamination size and location on wave response of sandwich beam 

The performance (accuracy and computational efficiency) of the proposed model in simulating the propagation of a guided wave 
within composite/sandwich beams with/without delamination has been successfully verified in the previous section. Based on this 
confidence, the model is now used to investigate the influence of delamination size and location on the wave responses of a sandwich 
beam (Fig. 24). The 1000.0 mm long beam (0/90/0/90/C/90/0/90/0) has two symmetrically placed identical laminated face sheets 
each having four layers. The material properties for the core (10 mm thick) and each ply (0.25 mm thick) are the same as those utilised 
in Section 3.2.2. 

The location of the delamination (see Fig. 24) is varied by changing its interfacial position of the upper laminate face sheet and with 
no change in horizontal placement. This has resulted in four damage case scenarios, which are defined as (i) D1 (interface between 1st 
ply, i.e., topmost ply, and 2nd ply), (ii) D2 (interface between 2nd ply and 3rd ply), (iii) D3 (interface between 3rd ply and 4th ply), and 
(iv) D4 (interface between 4th ply and core layer). The delamination length is variated from 5 mm to 30 mm with an increment of 5 
mm. This results in 6 scenarios, and all these scenarios are investigated under each of the damage cases (D1-D4). 

To estimate the range of excitation frequency, the dispersion curves of the beam are first determined using DC which and plotted as 
wavelength versus frequency in Fig. 25. In order to have a clearer wave response for easy damage detection, the excitation frequency 
should be chosen so that the appearance of higher modes (A1 or S1) can be eliminated. Amongst the two options for the fundamental 
modes, the asymmetrical mode (A0) is preferable than the symmetrical mode (S0) since the wavelength for A0 is smaller (see Fig. 25) 
compared to S0, which is beneficial for detecting smaller size defects. Based on this observation, the beam is excited transversely at its 
right end (see Fig. 24) using a five cycle pulse having a frequency of 15 kHz to generate an A0 mode of the wave within the beam. The 
reflected and transmitted wave generated after interaction of the incident wave with the delamination is captured at Points A and B 
(see Fig. 24), respectively. Although there are many damage scenarios, the influence of a small damage is insignificant on dispersion 
curves. 

Since the number of damage scenarios/cases is large, the transmitted and reflected wave response are presented in the form of their 
amplitudes only. These are again estimated from the wave response in the time domain as well as the frequency domain following the 
process stated in Section 3.2.3. As the wave response in the time domain can only demonstrate the primary component of the wave 
propagating with the beam effectively, it can be used to get a global scenario of wave propagation. But it is not effective to get a local 
picture in the form of higher harmonics (high frequency with low amplitude) produced by a localised damage through some action 
such as clapping that needs a frequency domain based estimation. Thus it is important to consider the effect of contact in the frequency 
domain based analysis while it is not key for time domain based analysis. 

Fig. 26 presents variations of reflected and transmitted wave amplitudes obtained from time domain data with respect to the 
delamination length for the four damage locations (D1-D4). In all cases, the wave amplitudes are normalized with their incident wave 

Fig. 23. (a) Wave response in frequency-domain of delaminated beam simulated with and without contact, (b) magnified view of higher harmonics.  

Fig. 24. Laminated sandwich beam (0/90/0/90/C/90/0/90/0) with varied length and location of delamination.  
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amplitudes. Fig. 26a shows that the reflected wave amplitudes for D2 and D4 are higher than D1 and D3 when the delamination length 
is less than 15 mm. When the delamination length increases beyond 15 mm, the amplitudes for D3 and D4 are found to be much higher 
than other damage cases while the maximum amplitude occurs for D3 for 30 mm long delamination. Fig. 26b presents the amplitudes 
of the transmitted waves, which demonstrate a decreasing trend initially with the increase of delamination size. It is also found to have 
an opposite trend when the delamination size exceeds 20 mm to 25 mm. In this case, the minimum amplitude occurs for D3 when 
delamination is 30 mm long and this same damage scenario provided the maximum amplitude of the reflected wave. 

Fig. 27 presents the variations of amplitude of higher harmonics with respect to the delamination length and damage locations (D1- 
D4) for the reflected wave (point A) and the transmitted wave (point B). These are obtained following the same frequency domain- 
based technique described in Section 3.2.3. As shown in Fig. 27a and b, the amplitude (D1 and D2) increased with increase of 
delamination length up to a certain limit and it is then decreasing dropped down gradually. Fig. 27c and d show that the amplitude for 
D3 and D4 increased with the delamination length with no steady reduction except some fluctuations. This indicates that the higher 
harmonic amplitude does not always increase with the delamination length since the behaviour is also affected by the delamination 
location. Moreover, the amplitude for the reflected wave is larger than the transmitted wave for all cases except in one case (D2). Thus 
the use of reflected wave which generally having a stronger signal should be preferable for damage detection through higher har-
monics. In simulation of this phenomena, the model should have the provision of contact that will induce nonlinearity in the response 
leading to higher harmonics. 

4. Conclusion 

A higher order laminate model is developed within a spectral finite element (SFE) framework in this study to simulate the prop-
agation of guided waves in delaminated composite and sandwich beams. The model has the capability of sub-lamination based 
modelling where each sub-laminate adopted a cubic variation of in-plane displacement and a quadratic variation of transverse 

Fig. 25. Dispersion curves of nine-layered sandwich beam (Fig. 24).  

Fig. 26. Variations of wave amplitudes for the (a) reflected and (b) transmitted obtained from time domain data with respect to the delamination 
length and locations. 
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displacement through the thickness. These high order displacement formulations are expressed by unknown displacements at exterior 
(top and bottom) surface, which are beneficial for modelling multilayered structures accurately. This can be achieved by stacking 
several sub-laminates in the thickness direction and connecting them with their exterior surface nodal displacements directly without 
any additional treatment. In that case, delamination can be conveniently inserted between two adjunct sub-laminates, where the 
unknown displacements at their top and bottom surfaces are connected by high stiffness springs to simulate contact behaviour within 
the delamination. These springs are activated during delamination closing while deactivated during delamination opening. In order to 
achieve a higher computational efficiency, multiple layers having no delamination within these layers can be accommodated into one 
higher order sub-laminate with no significant loss of accuracy. Based on the proposed laminate model, a C◦ continuous SFE code is 
developed using MATLAB. The code is written in a general form so that it can accommodate any number of nodes within an element to 
achieve any level of accuracy. Similarly, the model can also cater for different levels of discretisation in the thickness direction by using 
a different number of sub-laminates. The model therefore has high flexibility to trade-off between accuracy and computational effort. 

The performance of the proposed model is examined by simulating several numerical examples of wave propagation within 
composite and sandwich beams. Initially, wave velocities are calculated for different excitation frequencies. The model is then used to 
simulate wave propagation (in lower and higher frequency ranges) within intact composite beams. In addition, the model is utilised to 
simulate wave attenuation due to damping within an intact composite beam. The wave propagation within composite and sandwich 
beam with delaminations is then simulated using the model. These problems are used to test the ability of the model for capturing 
higher harmonics induced by a clapping mechanism within the delamination region. For the validation of our results, 2D detailed FE 
models are produced using a commercial FE code (ABAQUS) to solve the same problem. The results show that the proposed model can 
save more than 90% computing time and memory compared those needed by the commercial FE code with similar level of solution 
accuracy. 

After successful validation, the proposed model is used to investigate the influence of delamination size and locations on the 
amplitude of responses for sandwich beams. The following observations are made from the time domain response:  

• In general, the amplitude for the reflected wave exhibits an increasing trend with an increasing of delamination size while the 
transmitted wave has an opposite trend. 

Fig. 27. Variations of higher harmonic amplitudes (processed data in frequency domain) with respect to delamination length and location: (a) D1, 
(b) D2, (c) D3, and (d) D4. 
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• The location of delamination has a prominent effect on the wave response amplitude. The amplitude of the wave reflected from the 
delamination is smaller in most of cases when the delamination is located at an interface away from the core while it is larger when 
the delamination is close to core layer. 

Similarly, the following observations are made from the frequency domain response:  

• The amplitude of the higher harmonics obtained from the reflected wave is higher than that obtained from the transmitted wave in 
most of cases.  

• For both the transmitted and reflected waves, the amplitude of the higher harmonics exhibits a similar trend with change of 
delamination location and size. The amplitude is initially increased and then drops when the delamination size increases for the 
sandwich beam containing delamination away from the core, while this has a steady increasing trend when the delamination is 
located close to the core layer. 
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