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Abstract
Aim We aimed to assess the cost effectiveness of four different lipid-lowering strategies for primary prevention of coronary 
heart disease initiated at ages 30, 40, 50, and 60 years from the UK National Health Service perspective.
Methods We developed a microsimulation model comparing the initiation of a lipid-lowering strategy to current standard 
of care (control). We included 458,692 participants of the UK Biobank study. The four lipid-lowering strategies were: (1) 
low/moderate-intensity statins; (2) high-intensity statins; (3) low/moderate-intensity statins and ezetimibe; and (4) inclisiran. 
The main outcome was the incremental cost-effectiveness ratio for each lipid-lowering strategy compared to the control, with 
3.5% annual discounting using 2021 GBP (£); incremental cost-effectiveness ratios were compared to the UK willingness-
to-pay threshold of £20,000–£30,000 per quality-adjusted life-year.
Results The most effective intervention, low/moderate-intensity statins and ezetimibe, was projected to lead to a gain in 
quality-adjusted life-years of 0.067 per person initiated at 30 and 0.026 at age 60 years. Initiating therapy at 40 years of 
age was the most cost effective for all lipid-lowering strategies, with incremental cost-effectiveness ratios of £2553 (95% 
uncertainty interval: 1270, 3969), £4511 (3138, 6401), £11,107 (8655, 14,508), and £1,406,296 (1,121,775, 1,796,281) 
per quality-adjusted life-year gained for strategies 1–4, respectively. Incremental cost-effectiveness ratios were lower for 
male individuals (vs female individuals) and for people with higher (vs lower) low-density lipoprotein-cholesterol. For 
example, low/moderate-intensity statin use initiated from age 40 years had an incremental cost-effectiveness ratio of £5891 
(3822, 9348), £2174 (772, 4216), and was dominant (i.e. cost saving; −2,760, 350) in female individuals with a low-density 
lipoprotein-cholesterol of ≥ 3.0, ≥ 4.0 and ≥ 5.0 mmol/L, respectively. Inclisiran was not cost effective in any sub-group at 
its current price.
Conclusions Low-density lipoprotein-cholesterol lowering from early ages is a more cost-effective strategy than late inter-
vention and cost effectiveness increased with the increasing lifetime risk of coronary heart disease.

1 Introduction

Coronary heart disease (CHD) remains a leading cause of 
morbidity and mortality worldwide [1]. An important causal 
determinant of CHD are low-density lipoproteins (LDL) [2], 
whereby exposure to high levels of LDL over time exerts 
a cumulative effect on the risk for CHD (i.e. risk is pro-
portional to both magnitude and duration of exposure) [3]. 
Concomitantly, there is evidence suggesting that early phar-
macological lowering of LDL-cholesterol (LDL-C) leads 
to a marked reduction in the lifetime risk of CHD, with one 
study estimating a > 50% reduction in the lifetime risk of 
atherosclerotic cardiovascular disease with a 50% reduction 

in LDL-C from age 30 years compared with usual care [4]. 
Indeed, because current practice is based on 10-year abso-
lute risk estimates, pharmacological lowering of LDL-C is 
rarely initiated in individuals under 50 years of age [5–7], 
and the potential benefits of lowering LDL-C earlier in life 
are forgone.

However, whether lowering LDL-C early in life would 
be cost effective, the age at which to intervene and how 
this varies for different clinical populations (e.g. by sex and 
baseline LDL-C level) are unknown. Recently, Kohli-Lynch 
and colleagues showed, for the first time, that statin use in 
young adults without CHD in the USA is likely cost effec-
tive, especially among male individuals [8]. However, this 
analysis did not explicitly consider the cumulative causal 
effect of LDL-C, was based on the US healthcare system and 
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Key Points for Decision Makers 

It is unclear at what age(s), and in which populations, is 
it cost effective to start lowering cholesterol (low-density 
lipoprotein-cholesterol) for primary prevention (i.e., first 
occurrence) of coronary heart disease.

We show that statin-based lipid-lowering therapies are 
cost effective for primary prevention of coronary heart 
disease when initiated from as young as 30 years of age, 
and cost saving for many clinical populations.

Low-density lipoprotein-cholesterol lowering from early 
ages is a more cost-effective strategy than late interven-
tion and cost-effectiveness increases with the increasing 
lifetime risk of coronary heart disease. The approach 
to primary prevention of coronary heart disease may 
improve with a shift to early and sustained lowering of 
low-density lipoprotein-cholesterol.

did not explore the available range of pharmacological lipid-
lowering strategies (LLS) suitable for primary prevention of 
CHD. Thus, the optimal LLS and age to intervene to reduce 
CHD for specific clinical subgroups remain unknown.

These data would ideally be derived from a randomised 
clinical trial, but such a trial is unlikely to ever be under-
taken given that it would take decades and would be pro-
hibitively expensive. Therefore, in the present analysis, we 
used the cumulative causal effect of LDL-C on CHD derived 
from Mendelian randomisation analyses (as the best avail-
able source of causal evidence) to develop a microsimula-
tion model to assess the cost effectiveness of LDL-C low-
ering from ages 30, 40, 50 and 60 years with four separate 
pharmacological LLS from the UK National Health Service 
perspective.

The four LLS selected were: (1) low/moderate-intensity 
statins; (2) high-intensity statins; (3) low/moderate-intensity 
statins and ezetimibe; and (4) inclisiran. Statins are the cur-
rent mainstay LLS, being efficacious and cheap. However, 
statin intolerance and side effects occur in an important 
minority of users, with the risk of these outcomes increasing 
with increasing statin dose [9]. Ezetimibe offers an option 
for intensifying LDL-C reduction when used in combina-
tion with low/moderate-intensity statins, with this strategy 
leading to a greater LDL-C reduction and less intolerance-
related drug discontinuation, although the treatment cost is 
higher [10, 11]. Finally, inclisiran (a short interfering RNA 
therapy directed at proprotein convertase subtilisin/kexin 
type 9) is injected twice a year and achieves large and sus-
tained LDL-C reductions [12]. The fact that is only has to 

be administered twice per year may also offer an advantage 
over the other therapies in terms of adherence [13], which is 
notoriously low for statins [14]. Other proprotein convertase 
subtilisin/kexin type 9 inhibitors were not included as, given 
their more frequent dosing regimes, they are unlikely to 
improve adherence as much as inclisiran [13], will likely 
be more difficult to manufacture at the scale required for 
primary prevention than inclisiran [15], and inclisiran has 
already been approved for primary prevention of CHD by 
the US Food and Drug Administration [16].

2  Methods

A complete description of all analyses and data sources used 
in this study, as well as all analysis syntax, are available in 
the protocol. All analyses were conducted in Stata, Version 
17.0 (StataCorp, College Station, TX, USA).

2.1  Study Population

The population for this study was sourced from the UK 
Biobank [17], which enrolled over 500,000 participants 
between 2006 and 2010 from 22 assessment centres across 
the UK. We included all participants with an available date 
of birth, LDL-C measurement (for most analyses) and who 
had not had a myocardial infarction (MI) prior to enrolment 
(n = 458,692). All participants provided written informed 
consent at enrolment; individuals who withdrew consent 
were removed.

2.2  Model Overview

We developed a microsimulation model that aged UK 
Biobank participants from 30 to 85 years of age in 0.1-year 
increments (1-year increments were used in the probabilis-
tic sensitivity analysis). Participants started at age 30 years 
alive and without established CHD. In each cycle, partici-
pants without a prior MI were at risk of  non-fatal MI, fatal 
MI or coronary death, or non-CHD death; if a non-fatal MI 
occurred, individuals were then at risk of  all-cause death 
(Fig. 1 of the Electronic Supplementary Material [ESM]). 
The risk for non-fatal MI, fatal MI or coronary death (fatal 
MI hereafter), and non-CHD death in people without prior 
MI, and risk for all-cause mortality in people with MI were 
all derived from the UK Biobank using data from the first 
assessment to the end of the follow-up (up to 30 Septem-
ber, 2021) via Poisson regression (see protocol p. 26–40). 
The two outcomes influenced by cumulative LDL-C were 
non-fatal MI and fatal MI. The incidence of these outcomes 
was modelled using Poisson regression with spline effects 
of age, period, and cohort (i.e. age-period-cohort models as 
described by Carstensen [18]), stratified by sex, using log 
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of person-time as the offset. These risk estimates were then 
individualised by adjusting these risks based on cumula-
tive LDL-C for each UK Biobank participant in the model. 
Similar methods for adjusting risk estimates based on cumu-
lative LDL-C have been described for people with familial 
hypercholesterolaemia and individuals already receiving 
statin-based therapies [19, 20]. In the present study, risk 
adjustment by LDL-C was done by projecting the lifetime 
trajectory of LDL-C for each UK Biobank participant (pro-
tocol p. 41–59) under each scenario, and assuming the risk 
of non-fatal MI and fatal MI was proportional to the mean 
cumulative LDL-C at a given age. Thus, the risk of non-
fatal MI and fatal MI for every individual participant at 
any given age was calculated using the formula:  Ra = R 
× 0.48(LDLµ−LDLτ), where Ra is the adjusted individual age-
specific rate, R is the original age-specific and sex-specific 
rate for the whole population, LDLµ is the mean cumulative 
LDL-C for the UK Biobank sample at that given age, and 
LDLτ is the mean cumulative LDL-C for the specific UK 
Biobank participant at that age (protocol p. 60–4). The value 
0.48 was derived from a Mendelian randomisation study as 
the relative risk (converted from the original odds ratio of 
0.46 presented in the study) of CHD per mmol/L decrease 
in LDL-C over the lifetime [3]. Thus, in the model, the risks 
of non-fatal MI and fatal MI were individualised to each 
participant and assumed to be a function of age, sex and 
mean cumulative LDL-C. The rate of non-CHD mortality 
was modelled using an age-period-cohort model [18], and 
assumed to be insensitive to cumulative LDL-C. All-cause 
mortality following an MI was modelled using Poisson 
regression with spline effects of age, time since MI, and 
age at MI (age minus time since MI), a log-linear effect of 
time (year), using the log of person-time as the offset [21]. 
All transition probabilities were divided by 10 when using 
0.1-year increments. Because primary prevention was the 
focus, the effect of LDL-C on outcomes following MI was 
not incorporated into the model. All inputs to the model and 
their sources are shown in Table 1 of the ESM.

2.3  Interventions

We simulated four interventions for primary prevention 
of CHD initiated at four different ages (30, 40, 50 and 60 
years) for a total of 16 intervention scenarios. The four 
interventions were: (1) low/moderate-intensity statins; (2) 
high-intensity statins; (3) low/moderate-intensity statins 
and ezetimibe; and (4) inclisiran. The effects of the first 
three interventions on LDL-C were based on systematic 
reviews [11, 22], and the complete rationale is explained in 
the protocol (p. 51–52). We estimated that low/moderate-
intensity statin use (based on atorvastatin 10/20 mg) would 
lower LDL-C by 40% (95% confidence interval 39, 41), 

high-intensity statin use (based on atorvastatin 40/80 mg) 
would lower LDL-C by 50% (49, 51), and low/moderate-
intensity statin and ezetimibe use would lower LDL-C by 
55% (54, 56). For inclisiran, we estimated that a twice-yearly 
dose would lower LDL-C by 51.5% (95% confidence interval 
49.0, 53.9). This was based on a weighted average of the 
results of the ORION-10 and ORION-11 trials of a 284-
mg dose of inclisiran given twice yearly [12]. People were 
assumed to continue using each intervention following an 
MI. Once an intervention was initiated, we assumed no other 
lipid-lowering therapies were added, and that adherence 
was perfect (for the base case). For the interventions from 
ages 50 and 60 years, people were able to initiate baseline 
lipid-lowering therapies before the intervention, in line with 
current standard of care, but at the age of intervention, eve-
ryone in the sample either initiated the intervention therapy 
or switched from control lipid lowering to the intervention 
(see protocol p. 41–59; this only affected cumulative LDL-
C, not costs, because costs were only tracked from the start 
of the intervention).

The comparator (i.e. the control scenario) was designed 
to mimic the current standard of care; thus, we used LDL-C 
trajectories in the UK Biobank including initiation of lipid-
lowering therapies as per standard of care. Details about 
the current standard of care are available in the protocol 
(p. 41–42 and 51); briefly, for people without MI, anyone 
receiving lipid-lowering therapy at the baseline assessment 
in the UK Biobank was assumed to have initiated statins 5 
years prior to their initial assessment and anyone not receiv-
ing lipid-lowering therapy at baseline initiated statin therapy 
at rates of 1 per 1000 person-years for people aged 40–49 
years, 15 per 1000 person-years for people aged 50–59 years, 
and 35 per 1000 person-years for people aged 60 years and 
above [23]. Additionally, people who initiated statins were 
assumed to persist on them indefinitely. This meant that 
0.2%, 1.7%, 13.5%, 39.3% and 54.9% of female individuals 
without MI were receiving statins by ages 40, 50, 60, 70 and 
80 years, respectively; corresponding numbers in male indi-
viduals were 0.5%, 3.5%, 19.9%, 46.6% and 60.5% (Table 2 
of the ESM). Statins were initiated following an MI in all 
people in the control scenario.

To include each intervention and the comparator in the 
model, the LDL-C trajectory for each UK biobank partici-
pant was estimated and the risk of non-fatal MI and fatal 
MI calculated under each of the scenarios by applying the 
formula derived from Mendelian Randomisation, described 
above (protocol p. 60–64). Thus, all interventions were 
assumed to mediate their effects via lowering LDL-C. These 
estimates were then used to run the microsimulation (proto-
col p. 65–146), comparing all results to the control (current 
LDL-C trajectories). Thus, each participant served as their 
own control for these simulations.
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2.4  Quality of Life

Utilities quantify the perception of health for an individual 
and are measured on a scale where 0 represents death and 
1 represents perfect health. All utilities were derived from 
the EuroQol-Five Dimensions (EQ-5D) questionnaire [24]. 
The utility for people without MI was set using the follow-
ing equation: 0.9454933 + 0.0256466 × male − 0.0002213 
× age − 0.0000294 ×  age2, which was derived from Ara 
and Brazier’s study using the Health Survey for England, 
in which they used the EQ-5D UK preference-based algo-
rithm [25]. The chronic utility for people after an MI was 
set at 0.79 (95% confidence interval 0.73, 0.85), which was 
derived from a systematic review of utility values for people 
with MI (likely a mix of both EQ-5D-5L and EQ-5D-3L) 
[26], and applied to the background age-specific and sex-
specific utility for people without MI. A non-fatal MI also 
incurred an acute disutility of 0.03 (0.01 for three cycles) 
[27], as previously described [28].

2.5  Healthcare Costs

A National Health Service perspective was adopted [29], 
and only direct costs were included in the analysis. The 
cost of acute MI in the UK was set at £2047.31, which was 
derived directly from the UK National Health Service Cost 
Schedule in 2021 (Table 3 of the ESM) [30]. Only incident 
MIs were counted; the cost of recurrent MIs were assumed 
to be encapsulated in the chronic cost of MI. The chronic 
cost of MI was set at £4705.45 (standard error: 112.71) for 
the first 6 months, and £1015.21 (standard error: 171.23) 
per year thereafter; these values were derived from a cohort 
study using the Clinical Practice Research Datalink in 
the UK [31], and inflated to 2021 GBP (£) using the UK 
National Health Service cost inflation index [32]. Except 
for inclisiran, medication costs were drawn directly from the 
National Health Service Electronic Drug Tariff from June 
2021 [33]—the cost of lipid-lowering therapy in the control 
arm was based on the mean price for the most commonly 
used statins in June 2021 [34], and was set at £19.00 per 
year; the annual cost of low/moderate-intensity statins was 
set at £18.39; high-intensity statins set at £27.39; and low/
moderate-intensity statins and ezetimibe at £49.31 (protocol 
p. 77–79) [33, 34]. Inclisiran has special cost arrangements 
in the UK, and is currently available at a price of £1987.36 
per dose (£3974.72 per year) [35].

2.6  Outcomes

We tracked the age of incident MI, number of incident MIs, 
years of life lived, quality-adjusted life years (QALYs), and 
acute and chronic healthcare costs in each microsimulation. 

These outcomes were used to generate our primary outcome, 
the incremental cost-effectiveness ratio (ICER), defined as 
the incremental healthcare costs divided by the incremental 
QALYs for each intervention compared to the control sce-
nario. Results were compared to The UK National Institute 
for Health and Care Excellence willingness-to-pay thresh-
old range of £20,000–£30,000 per QALY [29]. All analyses 
were conducted in the overall population, then stratified 
by sex and LDL-C. The mean LDL-C in each subgroup is 
shown in Table 4 of the ESM. All health economic outcomes 
underwent discounting at 3.5% per year (in the base case; 
this meant calculating the discounting rate in 0.1-year incre-
ments for most analyses), as recommended by UK guidelines 
[29].

2.7  Sensitivity and Scenario Analyses

We conducted one-way sensitivity analyses to determine 
which of the inputs the model was most sensitive to (pro-
tocol p. 147–179). To determine the combined effect of 
uncertainty on outcomes, we also conducted probabilistic 
sensitivity analyses using 1000 Monte Carlo simulations 
based on the uncertainty in the model parameters, drawing 
values randomly from the distributions listed in Table 1 of 
the ESM (protocol p. 180–280; distributions of key inputs 
are shown in Figs. 2–5 of the ESM). This is the source for 
95% uncertainty intervals where they are presented.

We also conducted four scenario analyses (protocol p. 
281–314). In the first two, we reduced the discounting rate to 
0% and 1.5%. For the third, we conducted a scenario analy-
sis in which the efficacy of each intervention in lowering 
LDL-C was assumed to decrease by 1% per year. This was 
designed to mimic lower adherence and increasing discon-
tinuation of statin-based LLS over time, while incurring 
costs (i.e. the worst scenario from the healthcare perspec-
tive—people still actively seek out their prescriptions, but 
do not take them, incurring costs without any benefits). Con-
versely, for inclisiran, which does not have this problem (i.e. 
people cannot incur a cost if they do not receive the therapy), 
this scenario encapsulates the uncertainty associated with 
its long-term efficacy, which has not been tested beyond 4 
years [36], while still incurring costs (i.e. assuming that effi-
cacy decreases while the injection schedule is unchanged). 
Additionally, for statin-based interventions only, 20% of 
people were assumed to discontinue statins immediately in 
this scenario. In the fourth scenario, to estimate the impact 
of lower adherence, 40% of users of LLT were assumed to 
discontinue therapy immediately, but not incur costs.

Finally, we conducted a threshold analysis to determine 
the maximum price at which inclisiran would be cost effec-
tive, increasing the price in £1 increments from £10 to £1000 
(protocol p. 315–322).
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3  Results

3.1  Cost Effectiveness of LLS

The lifetime risk of MI decreased with each younger age of 
intervention (Figs. 6–7 of the ESM), and absolute reduction 
was highest for higher risk people (i.e. male individuals and 
people with higher LDL-C; Figs. 8–11 of the ESM). Con-
comitantly, the reduction in MIs and gain in years of life 
lived decreased with the increasing age of intervention for 
all interventions, whereas the relative gain in QALYs was 
greatest for interventions started at age 40 years (Table 1, 
and Tables 5–8 and Fig. 12 of the ESM). For example, in 
the most effective intervention, low/moderate-intensity 
statins and ezetimibe, the number of MIs/coronary deaths 
was reduced by 51.6% with intervention from age 30 years, 
41.2% from age 40 years, 28.8% from age 50 years and 
16.8% from age 60 years, which corresponded to a relative 
gain of QALYs of 0.33%, 0.36%, 0.32% and 0.21%, respec-
tively (Table 1). The relative increase in healthcare costs for 
each intervention also decreased with the increasing age of 
intervention and the ICER was lowest when intervening at 
age 40 years for all interventions (Table 1). Nevertheless, 
low/moderate-intensity statins and high-intensity statins 
were cost effective (using the lower £20,000 willingness-
to-pay threshold) at all ages in all simulations (Fig. 12 of 
the ESM), and low/moderate-intensity statins and ezetimibe 
was cost effective if initiated at ages 30, 40 and 50 years (and 
at 60 years, if the more lenient £30,000 willingness-to-pay 
threshold is considered). Conversely, inclisiran was not cost 
effective in the overall population at any age of intervention 
at its current price.

Results stratified by sex are presented in Tables 9–10 and 
Fig. 13 of the ESM, and results stratified by sex and LDL-C 
are presented in Figs. 1, 2 and Tables 2, 3, and Tables 11–16 
of the ESM. Quality-adjusted life-years gained in all inter-
ventions were higher for male individuals than female indi-
viduals, and overall healthcare costs were lower, leading to 
considerably lower ICERs in male individuals. Stratifica-
tion by LDL-C showed that the QALY gain increased, and 
incremental costs decreased, with higher LDL-C (Figs. 1, 2). 
Indeed, for female individuals with an LDL-C ≥ 5.0 mmol/L, 
low/moderate-intensity statins were cost saving at all ages 
in most simulations, and low/moderate-intensity statins and 
ezetimibe was cost effective across most ages once LDL-C 
was above 4.0 mmol/L. For male individuals, the majority of 
simulations showed low/moderate-intensity statins to be cost 
saving when LDL-C was above 3.0 mmol/L, high-intensity 
statins to be cost saving once LDL-C was above 4.0 mmol/L 
(for ages 30, 40 and 50 years), and low/moderate-intensity 
statins and ezetimibe once LDL-C was above 5.0mmol/L. 

Inclisiran was not cost effective in any sub-group in any 
simulation (Figs. 14–15 of the ESM).

3.2  One‑Way Sensitivity Analyses

Results from the one-way sensitivity analyses are presented 
in Fig. 16 of the ESM. For the low/moderate-intensity and 
high-intensity statin interventions from ages 30, 40 and 50 
years, chronic MI cost was the most influential factor on the 
ICER. For low/moderate-intensity statins and ezetimibe and 
inclisiran from ages 30, 40 and 50 years, the most influential 
factor was the utility without MI, followed by the chronic 
utility value for people with MI. Nevertheless, even the most 
influential factors did not materially affect the ICERs. While 
the most influential factors differed by sex and LDL-C, as 
with the overall analysis, even the most influential factors 
had very little impact on ICERs.

3.3  Scenario Analyses

The discounting rate had a substantial impact on the results, 
especially at younger ages (results from the base case are 
shown for comparison in Table 17 of the ESM; from sce-
nario analyses 1 and 2 in Tables 18 and 19 of the ESM). 
For example, in the base case, the QALY gain with low/
moderate-intensity statin use from age 30 years was 21,782 
(0.23% gain relative to control), whereas with 0% and 1.5% 
discounting, this value was 93,374 (0.47%) and 48,912 
(0.35%). Conversely, for low/moderate-intensity statin use 
from age 60 years, the QALY gain was 6519 (0.12%) in the 
base case, and 12,361 (0.16%) and 9333 (0.14%) with 0% 
and 1.5% discounting, respectively. Moreover, incremen-
tal healthcare costs were much lower with lower discount-
ing rates, leading to considerably lower ICERs at younger 
ages: at 3.5% discounting, ICERs for interventions from age 
30 years were £3783, £6000, £13,467 and £1,578,096 per 
QALY gained for low/moderate-intensity statins, high-inten-
sity statins, low/moderate-intensity statins and ezetimibe, 
and inclisiran, respectively; and at 0% discounting, the cor-
responding ICERs were −£390 (dominant), £845, £4635 and 
£790,823 per QALY, and intervention at age 30 years led to 
lower ICERs than intervention at age 40 years (Table 18 of 
the ESM).

When the intervention was assumed to decrease in effi-
cacy by 1% per year (and 20% of the cohort immediately 
discontinued statin-based interventions, while still incurring 
costs), QALYs gained were lower and incremental health-
care costs higher, leading to higher ICERs than the base 
case (Table 20 of the ESM). Nevertheless, low/moderate-
intensity statins and high-intensity statins remained cost 
effective at all ages, and low/moderate-intensity statins and 
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Table 1  Summary of interventions in the total population

Age of 
interven-
tion

Outcome Absolute value Difference to control

Control Low/moderate 
intensity statins

High intensity 
statins

Low/moderate 
intensity statins and 
ezetimibe

Inclisiran

30 N 458,692 (458,692, 
458,692)

0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

Incident MIs 65,884 (59,047, 
76,917)

− 25,478; − 38.7% 
(− 29,239, 
− 22,985)

− 31,332; − 47.6% 
(− 36,013, 
− 28,208)

− 33,988; − 51.6% 
(− 39,394, 
− 30,589)

− 32,242; − 48.9% 
(− 37,354, 
− 28,650)

Deaths 148,250 (135,515, 
163,065)

− 6,942; − 4.7% 
(− 11,345, 
− 3,948)

− 8,538; − 5.8% 
(− 13,959, 
− 4,924)

− 9,246; − 6.2% 
(− 15,073, 
− 5,374)

− 8,738; − 5.9% 
(− 14,489, − 5,002)

YLL 10,961,655 
(10,931,241, 
10,988,973)

16,060; 0.15% 
(10,939, 23,183)

19,409; 0.18% 
(13,428, 27,501)

20,847; 0.19% 
(14,614, 29,639)

19,794; 0.18% 
(13,743, 28,370)

QALYs 9,463,645 
(8,605,772, 
10,402,795)

23,856; 0.25% 
(18,875, 30,617)

28,716; 0.30% 
(22,757, 36,251)

30,898; 0.33% 
(24,625, 39,276)

29,406; 0.31% 
(23,242, 37,749)

Medication costs (£, 
millions)

24 (24, 25) 178; 737.1% (178, 
179)

277; 1147.1% (277, 
278)

519; 2145.7% (517, 
520)

43,717; 180901.1% 
(43,601, 43,820)

Acute MI costs (£, 
millions)

31 (22, 42) − 12; − 38.2% 
(− 16, − 8)

− 14; − 46.3% 
(− 19, − 10)

− 15; − 49.8% 
(− 21, − 11)

− 15; − 47.6% (− 20, 
− 11)

Chronic MI costs 
(£, millions)

236 (178, 311) − 88; − 37.1% 
(− 116, − 67)

− 106; − 44.8% 
(− 138, − 81)

− 114; − 48.2% 
(− 149, − 87)

− 108; − 45.7% 
(− 143, − 82)

Total healthcare 
costs (£, millions)

292 (232, 369) 78; 26.9% (48, 100) 157; 53.8% (123, 
183)

389; 133.3% (351, 
417)

43,594; 14950.2% 
(43,470, 43,697)

ICER (Δ £/ Δ 
QALY)

3,253 (1,951, 4,784) 5,429 (3,907, 7,355) 12,567 (9,810, 
16,055)

1,482,023 (1,153,300, 
1,873,878)

40 N 456,016 (455,474, 
456,463)

0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

Incident MIs 64,668 (58,176, 
75,517)

− 19,084; − 29.5% 
(− 21,940, 
− 17,147)

− 24,276; − 37.5% 
(− 27,995, 
− 21,739)

− 26,652; − 41.2% 
(− 30,829, 
− 23,936)

− 25,054; − 38.7% 
(− 29,302, 
− 22,180)

Deaths 146,184 (133,833, 
160,457)

− 5,364; − 3.7% 
(− 8,621, − 3,128)

− 6,794; − 4.6% 
(− 11,032, 
− 4,073)

− 7,474; − 5.1% 
(− 11,966, 
− 4,493)

− 7,000; − 4.8% 
(− 11,300, − 4,209)

YLL 9,974,590 
(9,934,146, 
10,011,467)

15,400; 0.15% 
(10,103, 21,853)

19,140; 0.19% 
(13,128, 26,737)

20,873; 0.21% 
(14,563, 29,012)

19,602; 0.20% 
(13,530, 27,518)

QALYs 8,367,720 
(7,600,682, 
9,226,820)

22,215; 0.27% 
(17,008, 28,087)

27,383; 0.33% 
(21,417, 34,394)

29,885; 0.36% 
(23,584, 37,460)

28,217; 0.34% 
(22,068, 35,373)

Medication costs (£, 
millions)

34 (33, 34) 151; 449.3% (150, 
151)

241; 718.4% (240, 
242)

460; 1373.6% (459, 
462)

39,782; 118665.1% 
(39,622, 39,920)

Acute MI costs (£, 
millions)

41 (29, 56) − 12; − 28.5% 
(− 16, − 8)

− 15; − 35.8% 
(− 20, − 11)

− 16; − 39.0% 
(− 22, − 12)

− 15; − 36.8% (− 21, 
− 11)

Chronic MI costs 
(£, millions)

300 (230, 390) − 82; − 27.3% 
(− 107, − 63)

− 102; − 33.8% 
(− 133, − 78)

− 111; − 36.9% 
(− 144, − 85)

− 104; − 34.7% 
(− 138, − 80)

Total healthcare 
costs (£, millions)

375 (303, 470) 56; 15.0% (30, 76) 124; 33.1% (92, 
149)

333; 88.7% (299, 
360)

39,663; 10569.9% 
(39,496, 39,805)

ICER (Δ £/ Δ 
QALY)

2,553 (1,270, 3,969) 4,511 (3,138, 6,401) 11,107 (8,655, 
14,508)

1,406,296 (1,121,775, 
1,796,281)
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MI Myocardial infarction, YLL Years of life lived, QALYs Quality-adjusted life-years, ICER Incremental cost-effectiveness ratio.

Table 1  (continued)

Age of 
interven-
tion

Outcome Absolute value Difference to control

Control Low/moderate 
intensity statins

High intensity 
statins

Low/moderate 
intensity statins and 
ezetimibe

Inclisiran

50 N 449,476 (448,240, 
450,535)

0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

Incident MIs 61,604 (55,417, 
71,816)

− 11,777; − 19.1% 
(− 13,688, 
− 10,352)

− 15,856; − 25.7% 
(− 18,487, 
− 13,967)

− 17,759; − 28.8% 
(− 20,792, 
− 15,715)

− 16,432; − 26.7% 
(− 19,491, 
− 14,307)

Deaths 141,159 (129,584, 
154,626)

− 3,405; − 2.4% 
(− 5,349, − 1,880)

− 4,572; − 3.2% 
(− 7,181, − 2,729)

− 5,111; − 3.6% 
(− 8,063, − 3,074)

− 4,746; − 3.4% 
(− 7,518, − 2,862)

YLL 8,599,242 
(8,548,403, 
8,643,411)

11,297; 0.13% 
(6,762, 16,503)

14,869; 0.17% 
(9,771, 20,835)

16,536; 0.19% 
(11,231, 22,847)

15,320; 0.18% 
(10,258, 21,581)

QALYs 6,985,205 
(6,347,824, 
7,705,302)

15,465; 0.22% 
(11,362, 20,170)

20,135; 0.29% 
(15,470, 25,796)

22,414; 0.32% 
(17,430, 28,271)

20,826; 0.30% 
(15,985, 26,603)

Medication costs (£, 
millions)

45 (45, 45) 114; 252.6% (113, 
114)

192; 425.4% (190, 
192)

381; 846.1% (379, 
383)

34,283; 76153.1% 
(34,079, 34,459)

Acute MI costs (£, 
millions)

51 (37, 69) − 9; − 18.0% (− 13, 
− 7)

− 12; − 23.9% 
(− 17, − 9)

− 14; − 26.6% 
(− 18, − 10)

− 13; − 24.6% (− 17, 
− 9)

Chronic MI costs 
(£, millions)

347 (270, 446) − 58; − 16.7% 
(− 75, − 45)

− 76; − 21.9% 
(− 97, − 59)

− 84; − 24.3% 
(− 108, − 66)

− 79; − 22.7% (− 103, 
− 60)

Total healthcare 
costs (£, millions)

443 (366, 547) 46; 10.5% (29, 60) 103; 23.3% (81, 
121)

283; 63.8% (257, 
303)

34,194; 7717.9% 
(33,986, 34,371)

ICER (Δ £/ Δ 
QALY)

2,985 (1,669, 4,536) 5,106 (3,611, 6,982) 12,584 (9,820, 
16,491)

1,638,818 (1,283,226, 
2,140,728)

60 N 434,024 (432,139, 
435,752)

0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

Incident MIs 53,960 (48,221, 
63,678)

− 5,161; − 9.6% 
(− 6,201, − 4,507)

− 7,808; − 14.5% 
(− 9,381, − 6,861)

− 9,086; − 16.8% 
(− 10,906, 
− 8,035)

− 8,217; − 15.2% 
(− 10,033, − 7,047)

Deaths 129,376 (118,856, 
141,347)

− 1,547; − 1.2% 
(− 2,404, − 1,006)

− 2,333; − 1.8% 
(− 3,665, − 1,549)

− 2,712; − 2.1% 
(− 4,205, − 1,805)

− 2,440; − 1.9% 
(− 3,946, − 1,622)

YLL 6,718,611 
(6,660,927, 
6,769,209)

5,097; 0.08% 
(3,958, 6,690)

7,511; 0.11% 
(5,905, 9,719)

8,672; 0.13% 
(6,850, 11,336)

7,826; 0.12% (6,093, 
10,490)

QALYs 5,271,297 
(4,793,374, 
5,815,845)

6,558; 0.12% 
(5,268, 8,109)

9,639; 0.18% 
(7,855, 11,836)

11,128; 0.21% 
(9,099, 13,848)

10,081; 0.19% (8,130, 
12,678)

Medication costs (£, 
millions)

53 (53, 54) 71; 133.2% (70, 71) 132; 247.5% (131, 
133)

280; 525.6% (277, 
282)

26,769; 50326.6% 
(26,543, 26,969)

Acute MI costs (£, 
millions)

56 (40, 75) − 5; − 8.8% (− 7, 
− 3)

− 7; − 13.2% (− 10, 
− 5)

− 9; − 15.3% (− 12, 
− 6)

− 8; − 13.9% (− 11, 
− 5)

Chronic MI costs 
(£, millions)

325 (258, 413) − 26; − 8.0% (− 33, 
− 20)

− 38; − 11.7% 
(− 48, − 30)

− 44; − 13.6% 
(− 56, − 35)

− 40; − 12.3% (− 51, 
− 31)

Total healthcare 
costs (£, millions)

434 (365, 527) 40; 9.2% (32, 46) 86; 19.8% (75, 95) 227; 52.2% (214, 
237)

26,721; 6152.7% 
(26,492, 26,924)

ICER (Δ £/ Δ 
QALY)

6,076 (4,447, 7,990) 8,911 (6,808, 
11,277)

20,335 (16,273, 
25,299)

2,650,674 (2,106,068, 
3,298,793)
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ezetimibe remained cost effective from age 40 and 50 years 
(and age 30 years, if the £30,000 willingness-to-pay thresh-
old is considered). When 40% of people were assumed to 
immediately cease LLT at initiation (with no medication 
costs incurred), incremental QALYs and healthcare costs 
were lower, and ICERs were slightly higher than the base 

case, but all interventions that were cost effective in the 
base case were also cost effective in this scenario (Table 21 
of the ESM).

Finally, the threshold analyses indicated that inclisiran 
(284-mg dose given twice yearly) would be cost effective 

Fig. 1  Results of 1,000 Monte Carlo simulations for each intervention 
presented in a common cost-effectiveness plane, by age of interven-
tion and LDL-C for female individuals. Inclisiran is excluded in these 
figures as the costs were too high to appear on the same axes as the 
other interventions; see Supplementary Figure 14 for a plot including 

inclisiran. Solid line: £20,000 per QALY willingness- to-pay thresh-
old; dashed line: £30,000 per QALY willingness-to-pay threshold. 
LDL-C Low-density lipoprotein cholesterol, QALYs Quality-adjusted 
life-years.
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at annual prices that ranged from £31 in all female indi-
viduals from age 60 years, using the £20,000 per QALY 
gained willingness-to-pay threshold, to £451 in male indi-
viduals with an LDL-C ≥ 5.0 mmol/L from age 40 years, 
using the £30,000 per QALY gained willingness-to-pay 
threshold (the current annual price is £3974.72; Table 22 
of the ESM).

4  Discussion

In the present study, we have shown that LLS initiated 
earlier are more cost effective than LLS initiated later in 
life. Moreover, because absolute risk is higher in male indi-
viduals and people with higher LDL-C, cost effectiveness 

Fig. 2  Results of 1,000 Monte Carlo simulations for each intervention 
presented in a common cost-effectiveness plane, by age of interven-
tion and LDL-C for male individuals. Inclisiran is excluded in these 
figures as the costs were too high to appear on the same axes as the 
other interventions; see Supplementary Figure 15 for a plot including 

inclisiran. Solid line: £20,000 per QALY willingness- to-pay thresh-
old; dashed line: £30,000 per QALY willingness-to-pay threshold. 
LDL-C Low-density lipoprotein cholesterol, QALYs Quality-adjusted 
life-years.
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Table 2  Summary of all interventions by LDL-C—females

Intervention Age of 
interven-
tion

Outcome LDL-C

All ≥3.0 mmol/L ≥4.0 mmol/L ≥5.0 mmol/L

Low/moderate 
intensity statins

30 QALYs (per person) 0.029 (0.019, 0.041) 0.034 (0.023, 0.049) 0.050 (0.033, 0.071) 0.085 (0.048, 0.127)
Total healthcare 

costs (£, per 
person)

269.6 (229.4, 298.5) 245.3 (196.4, 279.6) 161.1 (90.1, 213.8) − 6.1 (− 138.0, 81.2)

ICER (Δ £/ Δ 
QALY)

9,283 (6,437, 
14,329)

7,108 (4,835, 
11,147)

3,212 (1,701, 5,394) − 81 (− 1,654, 1,150)

40 QALYs (per person) 0.027 (0.018, 0.038) 0.032 (0.021, 0.045) 0.048 (0.030, 0.067) 0.077 (0.038, 0.117)
Total healthcare 

costs (£, per 
person)

215.8 (178.9, 243.6) 191.8 (146.9, 225.6) 103.6 (38.6, 153.8) − 61.9 (− 180.8, 26.4)

ICER (Δ £/ Δ 
QALY)

7,858 (5,237, 
12,661)

5,891 (3,822, 9,348) 2,174 (772, 4,216) − 808 (− 2,760, 350)

50 QALYs (per person) 0.020 (0.011, 0.030) 0.024 (0.013, 0.036) 0.035 (0.018, 0.054) 0.053 (0.017, 0.089)
Total healthcare 

costs (£, per 
person)

169.3 (139.5, 191.3) 148.8 (112.7, 174.7) 71.3 (20.9, 109.3) − 54.6 (− 143.0, 17.8)

ICER (Δ £/ Δ 
QALY)

8,289 (5,382, 
15,390)

6,059 (3,823, 
11,639)

2,034 (581, 4,737) − 1,016 (− 3,896, 
342)

60 QALYs (per person) 0.010 (0.008, 0.013) 0.012 (0.009, 0.015) 0.015 (0.012, 0.020) 0.016 (0.011, 0.023)
Total healthcare 

costs (£, per 
person)

125.1 (111.7, 135.6) 111.7 (95.3, 124.2) 55.1 (33.9, 71.2) − 4.5 (− 33.4, 16.6)

ICER (Δ £/ Δ 
QALY)

12,564 (9,196, 
16,779)

9,318 (6,688, 
12,637)

3,600 (2,014, 5,594) − 278 (− 1,888, 
1,262)

High intensity 
statins

30 QALYs (per person) 0.035 (0.024, 0.048) 0.041 (0.029, 0.057) 0.060 (0.041, 0.083) 0.100 (0.062, 0.147)
Total healthcare 

costs (£, per 
person)

461.6 (414.3, 496.0) 433.3 (377.2, 474.0) 336.7 (254.7, 397.0) 138.0 (− 9.3, 240.8)

ICER (Δ £/ Δ 
QALY)

13,315 (9,503, 
19,615)

10,512 (7,462, 
15,690)

5,612 (3,721, 8,720) 1,388 (− 87, 3,045)

40 QALYs (per person) 0.034 (0.023, 0.045) 0.040 (0.027, 0.053) 0.058 (0.039, 0.079) 0.096 (0.057, 0.140)
Total healthcare 

costs (£, per 
person)

386.3 (342.3, 419.5) 356.6 (303.8, 397.5) 252.5 (173.9, 313.0) 49.8 (− 84.9, 156.1)

ICER (Δ £/ Δ 
QALY)

11,505 (8,171, 
17,059)

8,932 (6,466, 
13,257)

4,309 (2,677, 6,898) 511 (− 890, 1,973)

50 QALYs (per person) 0.026 (0.016, 0.036) 0.031 (0.020, 0.044) 0.046 (0.027, 0.065) 0.071 (0.032, 0.109)
Total healthcare 

costs (£, per 
person)

315.4 (278.4, 343.5) 289.9 (245.2, 322.6) 195.3 (132.1, 243.9) 30.8 (− 78.7, 116.9)

ICER (Δ £/ Δ 
QALY)

11,995 (8,443, 
19,451)

9,169 (6,464, 
15,067)

4,262 (2,627, 7,986) 414 (− 1,178, 2,014)

60 QALYs (per person) 0.014 (0.011, 0.019) 0.017 (0.014, 0.022) 0.023 (0.018, 0.030) 0.030 (0.022, 0.041)
Total healthcare 

costs (£, per 
person)

244.5 (226.0, 260.0) 226.7 (203.9, 245.1) 156.2 (125.6, 181.6) 65.2 (24.4, 99.6)

ICER (Δ £/ Δ 
QALY)

17,049 (12,767, 
22,241)

13,178 (9,818, 
17,354)

6,708 (4,723, 9,419) 2,144 (650, 4,024)
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LDL-C Low− density lipoprotein cholesterol, QALYs Quality-adjusted life-years, ICER incremental cost effectiveness ratio.

Table 2  (continued)

Intervention Age of 
interven-
tion

Outcome LDL-C

All ≥3.0 mmol/L ≥4.0 mmol/L ≥5.0 mmol/L

Low/moderate 
intensity statins 
and ezetimibe

30 QALYs (per person) 0.037 (0.026, 0.050) 0.044 (0.031, 0.060) 0.064 (0.044, 0.089) 0.107 (0.068, 0.156)
Total healthcare 

costs (£, per 
person)

979.6 (928.5, 
1,016.7)

949.0 (889.5, 993.4) 847.3 (759.2, 911.1) 635.9 (482.7, 747.0)

ICER (Δ £/ Δ 
QALY)

26,376 (19,310, 
37,842)

21,602 (15,635, 
30,967)

13,181 (9,516, 
19,386)

5,890 (3,687, 9,882)

40 QALYs (per person) 0.036 (0.025, 0.049) 0.043 (0.031, 0.057) 0.063 (0.044, 0.085) 0.104 (0.065, 0.150)
Total healthcare 

costs (£, per 
person)

858.6 (809.2, 895.0) 826.6 (767.0, 870.3) 714.9 (630.0, 780.4) 493.3 (346.3, 609.6)

ICER (Δ £/ Δ 
QALY)

23,551 (17,473, 
34,269)

19,173 (14,317, 
27,283)

11,275 (8,122, 
16,897)

4,748 (2,820, 8,195)

50 QALYs (per person) 0.029 (0.019, 0.040) 0.035 (0.022, 0.048) 0.050 (0.031, 0.072) 0.079 (0.040, 0.120)
Total healthcare 

costs (£, per 
person)

728.4 (687.9, 758.6) 700.4 (651.6, 735.3) 597.0 (528.0, 650.3) 415.1 (294.5, 508.9)

ICER (Δ £/ Δ 
QALY)

25,135 (18,214, 
38,610)

20,096 (14,528, 
31,155)

11,792 (8,325, 
19,776)

5,168 (3,136, 10,694)

60 QALYs (per person) 0.016 (0.013, 0.021) 0.020 (0.015, 0.025) 0.027 (0.021, 0.035) 0.037 (0.028, 0.048)
Total healthcare 

costs (£, per 
person)

580.7 (559.1, 598.0) 560.6 (534.4, 581.1) 483.2 (447.9, 511.5) 376.0 (325.1, 417.4)

ICER (Δ £/ Δ 
QALY)

35,275 (26,881, 
45,193)

28,440 (21,619, 
36,735)

17,706 (13,702, 
23,275)

10,049 (7,142, 
14,075)

Inclisiran 30 QALYs (per person) 0.035 (0.024, 0.049) 0.042 (0.029, 0.058) 0.061 (0.042, 0.085) 0.102 (0.064, 0.151)
Total healthcare 

costs (£, per 
person)

95,682.7 (95,443.0, 
95,881.4)

95,641.6 (95,397.1, 
95,845.2)

95,506.6 (95,260.1, 
95,724.0)

95,236.6 (94,927.1, 
95,509.2)

ICER (Δ £/ Δ 
QALY)

2,706,488 
(1,969,551, 
3,926,770)

2,290,220 
(1,652,351, 
3,262,681)

1,563,320 
(1,122,363, 
2,283,469)

933,248 (630,417, 
1,479,150)

40 QALYs (per person) 0.034 (0.024, 0.046) 0.041 (0.029, 0.055) 0.060 (0.041, 0.081) 0.098 (0.059, 0.143)
Total healthcare 

costs (£, per 
person)

87,817.9 (87,573.3, 
88,027.0)

87,768.3 (87,516.0, 
87,988.6)

87,600.3 (87,321.9, 
87,844.5)

87,276.7 (86,929.3, 
87,589.7)

ICER (Δ £/ Δ 
QALY)

2,545,380 
(1,887,241, 
3,726,175)

2,147,789 
(1,600,091, 
3,066,778)

1,464,046 
(1,075,493, 
2,157,394)

887,716 (608,579, 
1,476,516)

50 QALYs (per person) 0.027 (0.017, 0.038) 0.032 (0.021, 0.046) 0.047 (0.028, 0.067) 0.074 (0.035, 0.113)
Total healthcare 

costs (£, per 
person)

77,117.4 (76,865.6, 
77,336.8)

77,062.2 (76,800.1, 
77,279.8)

76,877.8 (76,603.6, 
77,118.9)

76,526.0 (76,164.5, 
76,835.5)

ICER (Δ £/ Δ 
QALY)

2,874,104 
(2,047,217, 
4,553,995)

2,383,131 
(1,681,769, 
3,708,045)

1,634,746 
(1,139,990, 
2,713,538)

1,037,877 (679,485, 
2,188,117)

60 QALYs (per person) 0.015 (0.012, 0.020) 0.018 (0.014, 0.024) 0.024 (0.019, 0.032) 0.032 (0.024, 0.044)
Total healthcare 

costs (£, per 
person)

62,736.7 (62,480.0, 
62,967.3)

62,682.1 (62,422.3, 
62,914.5)

62,494.9 (62,208.9, 
62,741.8)

62,157.2 (61,803.3, 
62,464.5)

ICER (Δ £/ Δ 
QALY)

4,195,768 
(3,183,393, 
5,397,560)

3,488,957 
(2,663,533, 
4,507,392)

2,565,053 
(1,977,680, 
3,346,184)

1,927,322 (1,422,921, 
2,632,635)
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Table 3  Summary of all interventions by LDL-C—males

Intervention Age of 
interven-
tion

Outcome LDL-C

All ≥3.0 mmol/L ≥4.0 mmol/L ≥5.0 mmol/L

Low/moderate 
intensity statins

30 QALYs (per person) 0.080 (0.064, 0.102) 0.097 (0.076, 0.123) 0.137 (0.106, 0.175) 0.217 (0.147, 0.286)
Total healthcare 

costs (£, per 
person)

50.2 (− 44.0, 121.6) − 11.2 (− 126.5, 
75.2)

− 183.1 (− 353.1, 
− 63.1)

− 512.8 (− 792.4, 
− 314.7)

ICER (Δ £/ Δ 
QALY)

622 (− 562, 1,590) − 113 (− 1,282, 
780)

− 1,325 (− 2,613, 
− 467)

− 2,390 (− 3,998, 
− 1,407)

40 QALYs (per person) 0.075 (0.058, 0.094) 0.090 (0.069, 0.114) 0.126 (0.095, 0.159) 0.191 (0.125, 0.256)
Total healthcare 

costs (£, per 
person)

12.2 (− 72.5, 74.2) − 45.4 (− 146.9, 
31.0)

− 211.3 (− 354.7, 
− 101.9)

− 491.4 (− 733.3, 
− 315.7)

ICER (Δ £/ Δ 
QALY)

169 (− 981, 1,051) − 503 (− 1,693, 
342)

− 1,674 (− 2,940, 
− 783)

− 2,568 (− 4,604, 
− 1,582)

50 QALYs (per person) 0.052 (0.037, 0.069) 0.064 (0.046, 0.082) 0.086 (0.059, 0.116) 0.113 (0.050, 0.176)
Total healthcare 

costs (£, per 
person)

22.0 (− 35.9, 66.0) − 19.0 (− 88.3, 
36.7)

− 138.6 (− 242.5, 
− 62.4)

− 288.6 (− 446.0, 
− 153.9)

ICER (Δ £/ Δ 
QALY)

422 (− 698, 1,353) − 287 (− 1,414, 
572)

− 1,601 (− 2,976, 
− 699)

− 2,539 (− 6,127, 
− 1,204)

60 QALYs (per person) 0.022 (0.018, 0.027) 0.027 (0.022, 0.033) 0.033 (0.026, 0.041) 0.025 (0.014, 0.037)
Total healthcare 

costs (£, per 
person)

50.3 (26.6, 68.2) 31.3 (0.8, 53.9) − 30.6 (− 67.8, 
− 2.3)

− 52.6 (− 97.7, 
− 15.0)

ICER (Δ £/ Δ 
QALY)

2,330 (1,153, 3,468) 1,149 (28, 2,134) − 937 (− 2,119, 
− 74)

− 2,073 (− 4,344, 
− 659)

High intensity 
statins

30 QALYs (per person) 0.097 (0.078, 0.122) 0.116 (0.093, 0.146) 0.165 (0.129, 0.206) 0.263 (0.188, 0.338)
Total healthcare 

costs (£, per 
person)

196.0 (85.2, 282.4) 122.4 (− 11.1, 
226.8)

− 83.5 (− 277.0, 
60.6)

− 484.0 (− 807.5, 
− 255.0)

ICER (Δ £/ Δ 
QALY)

1,986 (820, 3,194) 1,048 (− 119, 2,103) − 501 (− 1,714, 
373)

− 1,854 (− 3,269, 
− 938)

40 QALYs (per person) 0.093 (0.073, 0.116) 0.111 (0.087, 0.140) 0.157 (0.122, 0.196) 0.241 (0.172, 0.316)
Total healthcare 

costs (£, per 
person)

132.2 (29.1, 211.6) 60.0 (− 58.5, 155.2) − 142.4 (− 327.8, 
− 5.5)

− 505.5 (− 794.0, 
− 284.4)

ICER (Δ £/ Δ 
QALY)

1,433 (288, 2,511) 556 (− 525, 1,501) − 905 (− 2,107, 
− 33)

− 2,078 (− 3,670, 
− 1,159)

50 QALYs (per person) 0.068 (0.052, 0.087) 0.083 (0.063, 0.104) 0.114 (0.083, 0.147) 0.159 (0.093, 0.223)
Total healthcare 

costs (£, per 
person)

124.0 (53.2, 178.9) 70.1 (− 15.2, 138.5) − 82.8 (− 211.5, 
11.4)

− 305.7 (− 505.6, 
− 144.3)

ICER (Δ £/ Δ 
QALY)

1,809 (729, 2,959) 850 (− 214, 1,816) − 727 (− 1,925, 
108)

− 1,948 (− 3,886, 
− 865)

60 QALYs (per person) 0.032 (0.027, 0.039) 0.040 (0.033, 0.048) 0.051 (0.041, 0.062) 0.054 (0.040, 0.072)
Total healthcare 

costs (£, per 
person)

139.0 (104.1, 165.2) 110.4 (68.2, 142.6) 23.8 (− 32.2, 64.7) − 47.5 (− 120.2, 5.6)

ICER (Δ £/ Δ 
QALY)

4,320 (3,050, 5,694) 2,765 (1,631, 3,971) 469 (− 630, 1,401) − 872 (− 2,224, 103)
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LDL-C Low− density lipoprotein cholesterol, QALYs Quality-adjusted life− years, ICER Incremental cost effectiveness ratio

Table 3  (continued)

Intervention Age of 
interven-
tion

Outcome LDL-C

All ≥3.0 mmol/L ≥4.0 mmol/L ≥5.0 mmol/L

Low/moderate 
intensity statins 
and ezetimibe

30 QALYs (per person) 0.105 (0.084, 0.130) 0.125 (0.101, 0.156) 0.177 (0.139, 0.221) 0.282 (0.206, 0.362)

Total healthcare 
costs (£, per 
person)

687.3 (563.6, 780.3) 607.7 (462.6, 718.1) 386.4 (178.8, 540.3) − 47.3 (− 384.5, 
195.8)

ICER (Δ £/ Δ 
QALY)

6,566 (4,864, 8,698) 4,842 (3,412, 6,596) 2,182 (974, 3,447) − 164 (− 1,407, 755)

40 QALYs (per person) 0.101 (0.080, 0.126) 0.121 (0.096, 0.151) 0.171 (0.134, 0.212) 0.264 (0.194, 0.344)

Total healthcare 
costs (£, per 
person)

574.0 (465.3, 660.5) 495.9 (368.0, 599.6) 276.3 (89.6, 423.2) − 125.5 (− 431.9, 
114.2)

ICER (Δ £/ Δ 
QALY)

5,658 (4,132, 7,590) 4,060 (2,758, 5,618) 1,604 (498, 2,693) − 486 (− 1,759, 483)

50 QALYs (per person) 0.076 (0.058, 0.096) 0.092 (0.071, 0.115) 0.127 (0.096, 0.162) 0.179 (0.116, 0.248)

Total healthcare 
costs (£, per 
person)

506.1 (428.1, 568.6) 445.8 (353.7, 521.6) 274.1 (137.7, 378.9) 15.4 (− 198.8, 183.7)

ICER (Δ £/ Δ 
QALY)

6,631 (4,920, 8,961) 4,831 (3,484, 6,680) 2,158 (1,011, 3,450) 86 (− 1,155, 1,191)

60 QALYs (per person) 0.037 (0.031, 0.045) 0.046 (0.038, 0.056) 0.059 (0.048, 0.072) 0.068 (0.052, 0.088)

Total healthcare 
costs (£, per 
person)

449.3 (409.5, 479.3) 415.7 (366.7, 452.7) 314.9 (251.6, 362.6) 216.5 (132.9, 282.0)

ICER (Δ £/ Δ 
QALY)

12,015 (9,651, 
14,910)

9,021 (7,133, 
11,310)

5,269 (3,826, 6,955) 3,138 (1,727, 4,952)

Inclisiran 30 QALYs (per person) 0.099 (0.079, 0.125) 0.119 (0.096, 0.150) 0.169 (0.131, 0.212) 0.269 (0.194, 0.347)
Total healthcare 

costs (£, per 
person)

94,257.2 (93,939.8, 
94,512.6)

94,143.5 (93,806.3, 
94,408.2)

93,845.9 (93,463.9, 
94,130.2)

93,244.6 (92,747.1, 
93,657.7)

ICER (Δ £/ Δ 
QALY)

950,312 (751,702, 
1,186,725)

792,437 (628,240, 
981,103)

556,804 (443,243, 
713,859)

347,777 (268,089, 
481,998)

40 QALYs (per person) 0.095 (0.074, 0.120) 0.115 (0.090, 0.144) 0.161 (0.125, 0.202) 0.248 (0.176, 0.328)
Total healthcare 

costs (£, per 
person)

85,946.7 (85,612.2, 
86,219.5)

85,809.4 (85,448.1, 
86,094.5)

85,437.9 (85,044.4, 
85,775.5)

84,723.5 (84,183.4, 
85,178.5)

ICER (Δ £/ Δ 
QALY)

901,580 (716,602, 
1,154,873)

748,870 (595,278, 
952,624)

530,430 (421,881, 
686,067)

341,588 (258,456, 
479,655)

50 QALYs (per person) 0.070 (0.053, 0.090) 0.086 (0.066, 0.109) 0.118 (0.088, 0.152) 0.165 (0.099, 0.236)
Total healthcare 

costs (£, per 
person)

74,768.5 (74,430.5, 
75,089.6)

74,610.6 (74,257.4, 
74,929.3)

74,191.8 (73,779.5, 
74,537.4)

73,419.2 (72,879.4, 
73,924.8)

ICER (Δ £/ Δ 
QALY)

1,060,317 (833,271, 
1,398,079)

869,141 (687,402, 
1,133,759)

631,317 (487,580, 
847,443)

444,613 (310,148, 
744,599)

60 QALYs (per person) 0.034 (0.028, 0.042) 0.042 (0.034, 0.051) 0.053 (0.043, 0.067) 0.059 (0.043, 0.079)
Total healthcare 

costs (£, per 
person)

60,072.5 (59,709.4, 
60,403.2)

59,921.2 (59,540.4, 
60,250.9)

59,522.6 (59,096.4, 
59,880.7)

58,811.7 (58,258.0, 
59,295.0)

ICER (Δ £/ Δ 
QALY)

1,781,228 
(1,438,102, 
2,184,265)

1,439,308 
(1,160,604, 
1,771,271)

1,117,871 (892,194, 
1,394,101)

1,004,317 (748,935, 
1,381,204)
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improves by targeting LLS to these sub-groups. Indeed, 
some of the statin-based LLS were cost saving in people 
with high LDL-C, although they were also cost effective at 
all ages for most sub-groups. Inclisiran was not cost effec-
tive in any subgroup or any simulation. These results dem-
onstrate that statin-based LLS are a highly cost-effective 
method of reducing the lifetime risk of CHD when initiated 
from as young as 30 years of age, and support a shift in the 
approach to primary prevention of CHD away from short-
term absolute risk estimates to early and sustained lowering 
of LDL-C.

Currently, pharmacological lowering of LDL-C for pri-
mary prevention of CHD is rarely used in individuals aged 
under 50 years [7], whereas decades of evidence [2, 4], as 
well as our model, suggest that intervening in early adult-
hood would be the most efficacious time to intervene. We 
extend this evidence by showing that early intervention is 
also a more cost-effective strategy than initiating pharma-
cological lowering of LDL-C later in life. Current practice 
for initiating pharmacological LDL-C lowering in primary 
prevention is based largely on the calculation of a 10-year 
absolute risk of CHD [5, 6]; however, because older age is 
the predominant determinant of risk in the short term, while 
the development of atherosclerosis begins early in life [37, 
38], this method of determining treatment initiation forgoes 
the benefits that could accrue if practice were to change to 
earlier lowering of LDL-C so that the cumulative accumu-
lation of coronary plaque is attenuated. Our results add to 
the health economic justification for such a shift in clini-
cal practice [8], as discussed in the World Heart Federation 
Cholesterol Roadmap 2022 [4].

Furthermore, our results suggest that early assessment 
of LDL-C and the lifetime risk of CHD would be useful in 
determining which interventions are cost effective for which 
clinical sub-groups, and at what age to intervene depend-
ing on the absolute lifetime risk of CHD. While we have 
presented results combined by sex and across all LDL-C 
levels to illustrate the effect of age of intervention on cost 
effectiveness, it would be rare to make clinical decisions 
without considering sex and LDL-C. Indeed, our results 
should not be taken to suggest that everyone can or should 
receive a pharmacological LLS from early in life—further 
research will be required into lifestyle interventions and to 
target treatment more effectively. For example, future studies 
could include other cardiovascular risk factors and examine 
the cost effectiveness of lifestyle interventions and phar-
macological LLT by age in finer increments (than 10-year 
intervals). Moreover, because primary prevention strategies 
often by necessity target large numbers of people, the eco-
nomic considerations move beyond cost effectiveness to a 
consideration of the overall cost of the intervention. It is 
therefore of significance that in several sub-groups, many 
of the statin-based LLS were cost saving.

It is worth also noting that, analogous to 10-year risk esti-
mates biasing treatment towards older ages, by design, high 
discounting rates favour treatment decisions that focus on 
the short-term—we saw a large increase in the estimates of 
QALYs gained and healthcare costs prevented by the inter-
ventions when the discounting rate was decreased. It has 
been argued that constant discounting practices for longer 
term primary prevention strategies, where benefits are not 
expected to accrue for many decades, are unfair to future 
generations and may need to be re-considered [39].

Importantly, the statin-based LLS remained cost effec-
tive even when non-adherence was simulated. Neverthe-
less, statins have notoriously low long-term adherence [14, 
40], and the efficacy of long-term LLS will require more 
research and interventions to ensure adherence to this ther-
apy improves, although if the effect of LDL-C is cumulative 
and causal, it would be expected that benefits still accrue if 
statins are only taken for a period. Low adherence to statins 
was the predominant motivation for including inclisiran in 
our study [13]. However, inclisiran was not cost effective 
in any simulation, and the threshold analysis indicated that 
the maximum cost-effective price (£451 in male individuals 
with an LDL-C ≥5.0 mmol/L) is substantially lower than the 
current price (£3974.72). Moreover, these estimates were 
based on a comparison to current practice, whereas, because 
statin-based interventions were cost effective, the appropri-
ate comparator is likely to change to one of the statin-based 
interventions we simulated, implying that inclisiran will 
need to be priced closer to statins if it is to be cost effective 
for primary prevention of CHD. Indeed, even in a second-
ary prevention population, inclisiran would need to be made 
available at a greatly reduced price (compared to other pro-
protein convertase subtilisin/kexin type 9 inhibitors) to be 
considered cost effective [41].

4.1  Limitations

There are important limitations to the present work. First, 
the UK Biobank suffers from a significant “healthy volun-
teer” selection bias [42], meaning we likely underestimated 
the absolute lifetime risk of MI and consequently under-
estimated the cost effectiveness of therapies, although this 
has little effect on our conclusions for statin-based interven-
tions, which were highly cost effective in most populations. 
Nevertheless, the lifetime risk of MI in the control scenario 
presented here appears relatively consistent with the avail-
able literature (see discussion in the protocol p. 74).

Second, we did not include other modifiable risk factors 
in our estimation of lifetime risk, which could further target 
treatments and improve cost effectiveness. Incorporating 
MR-based estimates of lifetime risk in these models is an 
important area of further study.



105Lipid-Lowering Strategies for Primary Prevention of CHD in the UK

Third, while the microsimulation model was based on 
causal evidence from Mendelian randomisation, the results 
cannot be considered as robust as those based on a ran-
domised clinical trial. Indeed, the LDL-C reductions used 
here (37–52%) were far greater than the variation naturally 
present and used in Mendelian randomisation (~0–5% per 
allele [3]), meaning our results rely on extrapolation of 
these effect estimates under the assumption that LDL-C 
does indeed have a log-linear relationship with CHD risk 
across all values of LDL-C [43]. Thus, if interventions such 
as these are implemented, monitoring of long-term safety 
and effectiveness will be more important than usual. Nota-
bly, in certain high-risk populations, very long-term lipid 
lowering has been shown to be safe and effective [44], and 
the assumption that LDL-C has a log-linear relationship with 
CHD risk is supported by extensive evidence [2].

Fourth, to be conservative, we only considered the effect 
of LLS on MI and coronary death—it is likely that other con-
ditions (such as ischaemic stroke, peripheral artery diseases, 
and abdominal aortic aneurysm [45–47]) would be impacted 
by lowering of LDL-C, which in turn would raise the overall 
clinical benefits and improve the cost effectiveness. Never-
theless, the causal effect of LDL-C on these outcomes is 
much weaker than for CHD (e.g. a 1-mmol/L increase in 
LDL-C over the lifetime is associated with a 12% increase 
in the odds of ischaemic stroke [48], compared with 117% 
for CHD [3]). Further, we have not considered the effect 
of LDL-C on outcomes following MI, which again would 
improve cost effectiveness. Conversely, we have not con-
sidered side effects, which would worsen cost effectiveness.

Fifth, consistent with the National Institute for Health 
and Care Excellence guidelines [29], we only considered 
healthcare costs associated with MI in this model. As health-
care costs increase considerably with age [49], it is unclear 
whether improved survival as a result of LLS would offset 
some of the cost savings from lower rates of MI. This is an 
area for further study. Sixth, we did not source healthcare 
costs or utility values directly from the UK Biobank sam-
ple as these were not available; others have used algorithms 
to derive utility scores directly from the UK Biobank [50], 
but we opted to use EQ5D-based measures of utility in this 
study. Finally, we did not consider the disutility associated 
with medicalising otherwise healthy young adults or, simi-
larly, the acceptability of the LLS that were simulated.

5  Conclusions

Low-density lipoprotein-cholesterol lowering from early 
ages leads to a considerably greater reduction in the lifetime 
risk of MI than intervention at later ages and is also more 

cost effective. Cost effectiveness increased with increasing 
LDL-C and was higher for male individuals than female 
individuals (groups with a higher lifetime risk of CHD). It 
may be prudent to reconsider current approaches to primary 
prevention of CHD that focus on a 10-year absolute risk 
and instead focus more on early and sustained lowering of 
LDL-C for people with a higher lifetime risk of CHD.
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