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Abstract 

This thesis aims to investigate novel approaches in the field of Machine learning and advanced 

data analytics that can handle large data volumes and open new doors in the field of reservoir 

characterization. 

To begin, a new approach for rock typing is introduced using fractal theory where conventional 

resistivity logs are the only required data. Fractal analysis of resistivity logs showed that the 

fractal dimension of these logs which is a measure of the variability of the signal, is related to 

the complexity of the rock fabric. the fractal dimension of multiple deep resistivity logs in the 

Cooper Basin, Australia was measured and compared with the fabric structure of cores from 

same intervals. The results showed that the fractal dimension of resistivity logs increases from 

1.14 to 1.29 Ohm-meter for clean to shaly sands respectively, indicating that the fractal 

dimension increases with complexity of rock texture.  

 The thesis continues with a machine learning application to augment/automate facies 

classification using resistivity image logs. Given the complexity of the application, a supervised 

learning strategy in combination with transfer learning was used to train a deep convolutional 

neural network on available data. The results show that in the absence of other 

information/logs, the trained network can detect image facies with a testing accuracy of 82% 

form electric image logs and a proposed post-processing method increases the final 

categorization accuracy even further. 

An important step in reservoir characterization is understanding and quantification of 

uncertainty in reservoir models. In the next section a novel Generative Adversarial Network 

(GAN) architecture is introduced which can generate realistic geological models while 
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maintaining the variability of the generated dataset.  The concept of mode collapse and its 

adverse effect on variability is addressed in detail. The new architecture is applied to a binary 

channelized permeability distribution and the results compared with those generated by Deep 

Convolutional GAN (DCGAN) and Wasserstein GAN with gradient penalty (WGAN-GP). The 

results show that the proposed architecture significantly enhances variability and reduces the 

spatial bias induced by mode collapse, outperforming both DCGAN and WGAN-GP in the 

application of generating subsurface property distributions. 

 Finally, an advanced analytics technique for efficient history matching is proposed in the 

appendix. In this part of the thesis, an ensemble of surrogates (proxies) with generation-based 

model-management embedded in CMA-ES is proposed to reduce the number of simulation 

calls efficiently, while maintaining the history marching accuracy. History matching for a real 

field problem with 59 variables and PUNQ-S3 with eight variables was conducted via a standard 

CMA-ES and the proposed surrogate-assisted CMA-ES. The results showed that up to 65% and 

50% less simulation calls for case#1 and case#2 were required. 
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1. Introduction 

1.1  Problem statement 

Reservoir characterization includes all techniques and methods that enhance our 

understanding of the geologic, Geo-chemical and petrophysical controls of fluid flow. it is a 

constant process that Continuously evolves from field discovery to development and 

production down to abandonment phase. Throughout these stages, knowledge of the 

subsurface continually enhances as new data is received. This makes characterization of the 

reservoir a dynamic process. The challenge is that the dynamic properties of the reservoir such 

as Pressure, Saturation or Porosity continually change as the reservoir is produced. This 

together with the fact that most of the data measurements are indirect along with error of 

measurement, causes uncertainty in the reservoir characterization. Adequate characterization 

of a reservoir is increasingly important for optimising field development, reservoir evaluation 

and production.  Also, in recent years with novel subsurface applications such as carbon 

capture and sequestration or hydrogen storage, detailed characterization is imperative to 

successful operations throughout the life a field. An integrated approach for characterization 

and/or modelling of the reservoir can tear down traditional disciplinary divides and lead to 

better understanding and handling of uncertainties in the reservoir. With this statement in 

mind, the methodologies presented in this thesis have multidisciplinary applications where the 

disciplines of Petrophysics, Reservoir Engineering and Geology have been brought together. 

Reservoir characterization generally involves estimating reservoir parameters at different 

locations by correlating collected data from a wide variety of sources. Sources of data for 

subsurface reservoirs include cores, well logs, Seismic surveys, production data and outcrop 

analogues. These sources of data all have different scales and vary in dimensionality. Logs have 
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high resolution but on a small scale, generally, 1D or 2D in dimension. Well logs provide a 

vertically high-resolution model at the well locations. However, the distribution of well 

locations is sparse and biased towards proven section of the field.   Seismic data on the other 

hand is large scale and covers extensive areas but with low resolution. Dimensionality of this 

data type is 2D, 3D and sometime 4D. Combining well logs with geophysical and geological data 

will provide the necessary constrains required to extrapolate the high resolution well data 

beyond where they are measured.  Core data, as 3-dimension datatype, is classed as hard data 

and presents the most accurate information with highest resolution however their availability 

is limited as the acquisition of cores, is expensive and requires a lot of effort. The most effective 

utilisation of these data sources is, therefore, combining these different data sources. This 

approach results in the best and most complete description of reservoir which is generally 

referred to as integration modelling. Integration of different data sources enhances 

understanding of the reservoir, reduces uncertainties and mitigates risks. The goal of 

characterization is to develop different models that can be used in analytical or numerical 

evaluation methods. 

The oil and gas industry are experiencing a surge in the amount of data they are receiving from 

their fields. Field data, in recent years, has expanded in volume, velocity and complexity. This 

includes significant increase in the number of sensors in the field and in the pipelines, 

connected through Internet of Things (IoT). Resolution and sampling rate of wireline data has 

increased and complex data such as 4D seismic are becoming more common and more 

frequently recorded. Advent of technologies such as fibre optics has made access to these data 

virtually instant. The industry has always been overwhelmed with large quantities of data but 

was never able to make efficient and productive use of this data. Traditional methods in 

subsurface energy generally need to compromise between data size and complexity on one 
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hand and fidelity of the model (they are used to construct) on the other. In recent years Data 

analytics and Artificial Intelligence (AI) - Machine Learning (ML) more specific in this thesis - 

have introduced new methodologies that not only handles large and complex data types but 

is able to process the data much faster than traditional methods. This in part is also driven by 

advances in commodity hardware. Furthermore, ability of these methods to identify and learn 

features and patterns in the data makes them a great tool to unlock new insights, extract more 

information, develop new usage and leverage and optimize untapped data.  

In this work, the aim is to develop and implement advanced analytics and machine learning 

techniques with a focus on reservoir characterization using multi-scale, multi-dimensional data. 

Firstly, a novel application of fractal dimension of resistivity logs is presented.  In this one-

dimensional, small-scale application porosity and permeability derived from cores was rock 

typed into categories and the fractal dimension of the corresponding deep resistivity log was 

calculated. The correlation between the rock fabric and fractal dimension of the resistivity logs 

was investigated and a new method to make direct use of these logs in rock typing is proposed. 

This research investigates the effect of pore structure on the variability of resistivity logs. It 

takes a step further than just interpreting resistivity logs based on change in average value and 

signature and reveals information at pore scale. In this study only the effect of pore structure 

on the variability and fractal dimension of logs was investigated. Further, research is required 

to determine the effect of other factors like fluid in the rock or different shale types. Bearing 

in mind that fractal dimension is rather a quality parameter and a flag for change in pore 

structure. Then in a 2-dimensional small-scale application, a machine learning algorithm 

complete with practical data pipeline is introduced to augment/automate the tedious process 

of resistivity image log interpretation. In this technique, a convolutional neural network (CNN) 

is trained to learn interpreted facies categories in one well, then the trained network is used 



4 
 

to detect the learned facies categories in a newly drilled well. The ability of CNNs to learn and 

identify features in geological facies images is thoroughly investigated by studying the 

confusion matrix. Multiple CNN architectures are compared and challenges in the application 

are identified, and solutions presented. Next, we apply machine learning to a 2-dimensional 

large-scale application. In this study, Generative Adversarial Networks (GANs) are used to 

quantify uncertainty in a field or basin wide scale. The concept of Training Image (TI) is 

reviewed. Methodology to generate network training data from a single TI is presented and 

compared with other traditional geo-statistics methods. The variability of generated 

realizations (which is detrimental in geological uncertainty quantification) using GANs is 

thoroughly investigated including the concept of mode collapse and the effect of input training 

data. A novel architecture specialized for maintaining the variability of geological realizations 

at the same level as the input training data is presented.  

Working with large data sets and complex algorithm, computation efficiency and cost becomes 

an important factor in popularity of a characterization method. We enhance the computational 

efficiency of a Covariance Matric Adaptation Evolutionary Strategy (CMA-ES) by proposing an 

online learning scheme to update an ensemble of proxies. The effective ness of the technique 

was evaluated on two different history matching cases and other techniques such as 

generation-based model management and evolution control were examined. 

1.2  Thesis Structure 

This is a thesis by publication. Chapter 1 begins with an introduction to reservoir 

characterization and its challenges. It describes how novel advanced analytics techniques and 

machine learning algorithms can enhance the process of reservoir characterization and 

describes the aims of this thesis. The contribution of each publication to this thesis, is also 



5 
 

presented in this chapter. Chapter 2 follows with a comprehensive literature review. 

Subsequent chapters including 3, 4, 5 are composed of peer-reviewed journal papers. Chapter 

3 demonstrates that the fractal dimension of resistivity logs is indicative of the complexity of 

rock pore fabric, and therefore can be used to define rock types. In chapter 4 a machine 

learning application for automated/ augmented facies classification using Convolutional Neural 

Networks is presented. Chapter 5 investigates a novel GAN architecture for generating realistic 

and statistically faithful geological realizations.  Chapter 6 summarises the thesis with summary, 

conclusions, and future work. Finally, a conference paper in the appendix closes the thesis with 

an advanced analytics technique for efficient history matching. In the appendix an ensemble 

of surrogates with generation-based model-management embedded in CMA-ES is proposed to 

reduce the number of simulation calls while maintaining the history matching accuracy.  Table 

1 gives an overview of chapter numbers, their titles and the papers contributing to them along 

with publication status.   

Table 1: Thesis structure 

Chapter 
Number 

Chapter Title Paper 
number 

Status 

3 Rock typing and facies identification using fractal 
theory and conventional petrophysical logs 

1 Published 

4 A transfer learning approach for facies prediction 
using resistivity image well logs 

2 Submitted 

5 A variability aware GAN for improving spatial 
representativeness of discrete geobodies 

3 Published 

Appendix Accelerating CMA-ES In History Matching 
Problems Using an Ensemble of Surrogates with 
Generation-Based Management 

4 Published 

 

1.3  Contribution of each publication to this thesis 

The overall theme of this thesis is applications of machine learning and advanced analytics in 

reservoir characterization with a focus on multi-scale multi-dimensional data. Advanced 
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analytics and state-of-the-art techniques such as machine learning are utilized to better 

understand uncertainty, develop new methods, and potentially extract more information and 

propose new usage of the traditional data, while considering, different data sources with 

different scales and dimensionality. Furthermore, computational efficiency and automation is 

addressed where these techniques are adaptable. 

 This work begins by introducing a new application for conventional resistivity logs which are 

one dimensional and on a centimetre scale. In the paper titled "Rock typing and facies 

identification using fractal theory and conventional petrophysical logs" a technique to use 

fractal dimension of resistivity logs for rock typing and flow unit classification is proposed.  Rock 

typing is an integral part of reservoir characterization. In this process the reservoir is subdivided 

into layers based on similar properties and flow points. In other words, rock fabric of each layer, 

that is, pore throat dimensions, geometry, size, distribution, and capillary pressures must be 

similar. This enhances flow behaviour modelling and, significantly reduces uncertainty and risk 

of predicting production and/or injection in the field.  In this study,  porosity and permeability 

measured from cores were correlated with fractal dimension of corresponding deep resistivity 

logs. A methodology to determine fractal dimension from 1D data is proposed and the 

propagation of ions and electric current in the rock fabric along with its relationship and effect 

to fractal dimension of the resistivity logs is investigated. Traditionally, only the change in 

average of resistivity log over an interval is utilized when interpreting resistivity logs. The 

results of this investigation show that further information can be derived from these logs. For 

example, presence of layered beds with thicknesses less than the resolution of the tool can be 

flagged using is effect of these beds on fractal dimension of the resistivity log. While this is not 

possible using conventional interpretation methods. This study is presented in detail in chapter 

3. 
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Next, a Machine learning technique in facies identification is investigated in the paper titled "A 

transfer learning approach for facies prediction using resistivity image well logs". Resistivity 

image logs provide a high-resolution, 2-dimensional image of the borehole inner wall. These 

logs contribute significantly to the characterization and understanding of structural 

interpretation of the log interval. Interpretation of these logs is quite time-consuming complex 

and subject to the interpreter’s experience specially in cases where the geological setting is 

complex. There is a great need for an automated workflow to augment and optimise this 

manual process. In this study a methodology to train a convolutional neural network on already 

interpreted logs in one well is presented and the trained model is used to rapidly detect the 

interpreted facies in a newly drilled well. A comparison of different network architectures is 

carried out and their confusion matrix is interpreted. Prominent challenges when applying 

convolutional neural networks to resistivity image logs were discussed and solutions to these 

challenges are suggested. This investigation showed that convolutional neural networks are 

able to detect details in the resistivity image logs that can be used to distinguish and classify 

the facies. The accuracy at which this is achieved using image logs only was quantified. 

Although the investigation concluded that other supplementary logs are needed for facies 

classification, it also showed that resistivity image logs contribute significantly to the task. Two 

novel pre and post processing methods were presented as well. The data preprocessing 

methodology maximizes the training images extracted from logs. While the post processing 

method enhances the accuracy and bed boundary detection resolution even further. This study 

is delivered in chapter 4. 

 
Lack of data is an intrinsic issue that hinders accurate characterization of reservoirs. Often 

sparse data from biased locations in the field are extrapolated to extensive areas. To enhance 
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this process extra information can be derived from a conceptual image contributed by the 

geologist known as the Training Image (TI). Furthermore, Correct characterization and use of 

this data requires adopting methodologies that quantify and propagate uncertainty in the 

process.  In the paper titled "A variability aware GAN for improving spatial representativeness 

of discrete Geobodies", a Novel Generative Adversarial Network (GAN) architecture is 

proposed to generate model realisations that are geologically sound (realistic) and statistically 

faithful. GANs are a family of deep generative models (DGM) that have shown great potential 

in generating realizations of geological structures. This class of Neural Networks (NN), Can 

approximate high dimensional probability distributions from sample data. In this study, we 

evaluate the Ability of GANs in generating geological realisations that are (1) visually acceptable 

(2) preserve the statistics of the training image and (3) maintain the variability of the structure. 

Analysis of Distance (ANODI) is applied to quantify how well multiple point statistic of the 

realizations are preserved and probability maps are utilized to quantify the variability of the 

realizations. The effect of input data on variability is investigated by evaluating the proposed 

network on two different data sets. The proposed architecture outperformed other popular 

networks and significantly enhanced variability and reduced spatial bias wile better preserving 

multiple point statistics of the realisations. A sensitivity analysis on the key parameters of the 

proposed architecture was also conducted. As the application of generative models increases 

in generating geological realizations this study presents a universal methodology to maintain 

the variability of the output realizations. The investigation and findings of this study constitute 

chapter 5. 

Characterization of a reservoir model by tuning to one dimensional production data is referred 

to as History matching. This type of characterization is generally a nonlinear problem that does 

not have a closed-form solution. Characterization of numerical models – which integrates 
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numerous data sources with different dimensions and scales - by history matching is often an 

optimization problem with many parameters. As such, it is computationally expensive and time 

consuming.  Advanced analytics and machine learning techniques can be adapted to enhance 

computation efficiency of history matching problems. Since this study is not directly a 

characterization technique, it has been attached as an appendix to this thesis.  In the paper 

titled "Accelerating CMA-ES In History Matching Problems Using an Ensemble of Surrogates 

with Generation-Based Management" a surrogate-assisted Covariance matrix adaptation 

evolutionary strategy (CMA-ES) is proposed that reliably accelerates history matching and 

significantly reduces computation. The algorithm was tested on two simulation cases. The 

effectiveness of an ensemble of surrogates to breakdown the complexity of the fitness function 

was investigated. Furthermore, an online learning scheme to continuously improve the fidelity 

of the proxies over the history matching process is presented. Other techniques such as 

generation-based model management and evolution control were applied. The details and 

results are presented in the Appendix. 

2. Literature Review 

Reservoir characterization is a combination of methodologies associated with geostatistics, 

geophysics, petrophysics, geology and reservoir engineering (Jia et al., 2012). The main goals 

of reservoir characterization research are to aid field development and reservoir management 

teams in describing the reservoir in sufficient detail and developing 3D/4D data for reservoir 

development planning. Equipped with this information, higher recoveries with fewer wells in 

better positions at minimum cost can be obtained through optimization, increasing reserves, 

improving stimulation and completion practices and reducing to a minimum uncertainty, in 

production forecasts (Haldorsen and Damsleth, 1993, Johnston, 2004, Phillips, 1996). Large 
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quantities of data in different scales are collected during the life of a well, which are 

subsequently utilised for reservoir characterization.  

Advanced analytics and machine learning play a key role in deciphering these data. In this work 

fractal analysis, generative adversarial networks and convolutional neural networks have been 

utilized to enhance workflows in reservoir characterization.  

2.1 Fractal Analysis 

Since the introduction of Fractal analysis by Benoit Mandelbrot, many fields of science have 

been revolutionized by this concept, and subsurface characterization is no exception. While 

statistical methods continue to be useful, they ignore the fundamental concept that geological 

structures are not developed through random processes, but rather deterministic causes 

(Hardy et al., 1996).  

2.1.1 Fractal character of wireline logs 

Hewett in 1986 proved that porosity logs were fractal (Hewett, 1986). Using this the fractal 

character Hewett generated porosity distributions that enhanced fluid flow simulation. A 

similar approach was utilised by other authors (Aasum and Kelkar, 1991, Berta et al., 1994, 

Crane and Tubman, 1990, Emanuel et al., 1988, Hardy, 1992, Hewett and Behrens, 1990, 

Lozada-Zumaeta et al., 2012, Perez and Chopra, 1997). Avnir et al. (1985) showed that the pore 

structure of rocks has fractal character. Others confirmed this finding in sandstones as well 

(Katz and Thompson, 1985, Krohn and Thompson, 1986). Methods and techniques to calculate 

the fractal dimension of these structures was also presented in these studies. Pang and North 

(1996) in their work suggested that fractal character of well logs is related to the stratigraphic 

heterogeneity. Their results showed that more heterogenous rocks produced logs with higher 

fractal dimension. Shen et al. (1998) suggested that the fractal dimension of pore structure can 
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be used to classify rock type. They investigated 22 cores and concluded that the fractal 

dimension can be related to oil recovery at water breakthrough and irreducible water.  Wang 

and Mou (2014) measured the fractal dimension of various wireline log data, including 

compensated neutron, density, gamma ray and acoustic logs for 108 wells, and found 

corresponding relationships between fractal dimension of logs and texture of volcanic rocks. 

2.2 Convolutional neural networks 

Convolutional Neural Networks (ConvNets or CNNs) are rather well known for their 

applications in classification and computer vision tasks. The main components of these 

networks are the convolutional layer, pooling layer, nonlinear activation layer and the fully 

connected layer. Among these component the most significant is the convolutional layer 

(Alzubaidi et al., 2021). These layers not only capture the spatial dependencies of the image, 

but also use sparce connections and parameter sharing to avoid parameter size being too large 

(Chen et al., 2021). The role of the pooling layer is to subsample the feature maps to smaller 

ones (Gu et al., 2018) and make the feature maps more robust to single neuron errors (Liu et 

al., 2017). The nonlinear activation layer introduces nonlinearity to the network which 

significantly enhances the network performance (Gu et al., 2018). The fully connected layer is 

usually located at the end of the network and is the classifier section and categorizes the 

extracted local information (Sainath et al., 2013). 

2.2.1 Development of Convolutional Neural Networks 

The history of deep CNN's began with the appearance of LeNet Introduced by (LeCun et al., 

1995). AlexNet was developed and built based on LeNet-5 (Krizhevsky et al., 2017). With the 

appearance of AlexNet for the first time learned features surpassed traditional manual feature 

extraction. In 2014, an innovative CNN design with a modularized network was introduced This 
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design was called the Visual Geometry Group(VGG) (Simonyan and Zisserman, 2014). The main 

drawback of this network was utilizing a large number of parameters which resulted in high 

computational cost. Prior to the advent of the inception network, the simplest way to enhance 

CNN performance was to increase their size. This caused two major issues, it made the models 

prone to overfitting and dramatically increased the computational cost. The Inception network 

(Szegedy et al., 2015) was designed to address the above issues. The inception module 

computes 1X1, 3X3 and 5X5 convolutions within the same module, therefore it acts as a multi-

scale feature extractor. The output of these filters are then stacked along the channel 

dimension and fed to the next layer in the network (Zaccone et al., 2017). ResNet was 

introduced to address network degradation.  With network depth increasing, accuracy is 

saturated and then degrades rapidly (He et al., 2016) this is referred to as “Network 

Degradation”. The residual connection in ResNet is a method to break “degradation” and 

enable deep neural networks to achieve high accuracy (Orhan and Pitkow, 2017, Chen et al., 

2021). 

2.2.2 Transfer learning 

Although machine learning has shown great success in different fields of science, it still has 

limitations. The ideal scenario for machine learning is when labelled data is abundant. However, 

this is rarely the case in real-word scenarios (Zhuang et al., 2020). In reality, and more so in 

subsurface engineering labelled data is scarce. Furthermore, large networks required for 

learning features of complex datasets are computationally expensive to train. Transfer learning 

has proven to be a very effective technique to handle the above issues in the field of image 

recognition and image classification (Tang, 2018). In deep convolutional neural networks, with 

many layers, the lower layers detect the features while the final layers detect the class of the 
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image (Tang, 2018). In the case of image classification, transfer learning allows us to train the 

classifier layers of the CNN with our specific set of images requiring far less training images and 

computation power (Shao et al., 2014). 

2.2.3 Application of CNN to image logs 

High-resolution borehole image logs, provide detailed information on lithology, sedimentary 

textures, paleo-flow directions, structural dip analysis, in situ stress analysis and fracture 

evaluation (Lai et al., 2018, Nie et al., 2013, Kosari et al., 2015, Brekke et al., 2017, Ameen, 

2014). These logs contribute significantly to the geological understanding of the logged interval 

(Lai et al., 2018, Folkestad et al., 2012) and allow for structural features to be identified at 

resolutions of only a few millimetres (Ja'fari et al., 2012). Machine learning and more 

specifically computer vision techniques can be used to automate or augment facies 

classification at well locations. Gupta et al. (2019) used a UNET architecture to pick induced 

and natural fractures along with sedimentary surfaces from image logs. Lima et al. (2019) 

proposed an unsupervised neural network model for pattern recognition and facies 

categorization using borehole image logs. They used a non-linear autoencoder for 

representational learning to reconstruct the original training images and applied cluster 

analysis for categorization of the facies. Using the concept of transfer learning Lefranc et al. 

(2021), trained a ResNet architecture on synthetic training data produced by models. However, 

their method is still quite laborious since it requires sedimentary dips to be picked manually at 

high density.  

2.3 Generative adversarial networks 

Creating a geological model requires detailed characterization of the reservoir. However 

geological models are unable to fully describe the reservoir due to some parameters being 
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uncertain or unknown. This uncertainty in geological models must be adequately quantified 

and considered in the applications of the model. understanding uncertainty in reservoir models 

involves generating multiple realisations where governing equations are then solved for each 

realisation to yield an understanding of the probability distribution of the model response 

(Chan and Elsheikh, 2020). There has always been a desire to generate geological models that 

not only honour the hard data but are visually acceptable and statistically faithful. To this aim, 

different methodologies have evolved over time. Starting with stochastic methods followed by 

Multiple point statistic methods that produced superior more realistic realizations. Recently 

Deep Generative Models have been introduced and show great potential in this field. 

2.3.1 Stochastic methods for generating realizations 

Traditionally, stochastic simulation methods are the most popular methods for generating 

realisations. Object-based methods and pixel-based methods are the two main subcategories 

of stochastic simulation methods (Bai and Tahmasebi, 2020). The first category uses Boolean 

object-based algorithms to characterise the simulated area by placing objects that resemble 

geological features. Models generated using these algorithms are significantly more realistic 

from a geological perspective. However, Conditioning to hard data is quite challenging in these 

algorithms (Bai and Tahmasebi, 2020, Strebelle, 2002). Pixel-based Algorithms, Conduct the 

simulation pixel by pixel. These algorithms do not pose this challenge and are relatively easier 

to condition to hard data. examples of pixel-based algorithms are sequential gaussian 

simulation and truncated gaussian simulation. The challenge with these algorithms is that they 

are based on two point statistics which is inadequate to reproduce complex geological features 

(Tahmasebi, 2018) such as curvilinear geometries (e.g. Sinuous channels) which are inherent 

in many geological structures (Marini et al., 2018). As a result, when such geological systems 
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are being simulated using these algorithms, they appear geologically unrealistic. Other pixel-

based methods emerged in the literature such as Truncated pluri-gaussian (Le Loc’h et al.) to 

overcome some of these limitations and better preserved prior geological understanding 

(Astrakova and Oliver, 2015). The main difficulty with applying this method is the inference of 

the variogram models for the underlying multi gaussian functions (Mariethoz et al., 2009). 

Multiple point Statistics (MPS) methods were introduced to address the problem of generating 

realistic models of complex geological structures. These methods require large number of 

samples which is generally not available in earth sciences (Marini et al., 2018). The extra 

information can be provided by the geologist. The geologist's insight and understanding of the 

targeted region is conceptualised in an image known as the Training Image (TI) (Meerschman 

et al., 2013). The TI is designed under expert knowledge to replicate expected patterns and 

statistical features of the subsurface. The MPS methods then generate realisations that 

resemble this training image and honour any other available data. In this scenario the TI plays 

and important role and guides the outcome. An example of such technique is the Single Normal 

Equation Simulation (SNESIM). This algorithm scans the TI and stores the probability of all 

pattern occurrences in a search tree. The probabilities are then retrieved based on existing 

data to generate realisations. The challenge with these methods is that inversion using these 

methods is computationally expensive. There are re-parameterisation techniques available 

however the models provided using these techniques do not agree well with the TI. 

2.3.2 Deep Generative methods 

A more recent technique for generating realisations of geological models in the literature is 

Deep Generative Models (DGM). DGMs are a class of Neural Networks (NN) that can 

approximate high dimensional probability distributions when trained on sufficient samples 
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from the desired distribution. The trained model can then be used to generate realisations 

from the underlying distribution (Ruthotto and Haber, 2021). A further advantage of DGM's is 

that they re-parameterise the realisations by mapping the data to a latent space. Variational 

Auto-Encoders (VAE) are an example of generative models that use variational Bayesian 

inference to approximate the probability density function of a dataset of samples. They 

generally consist of an encoder and a decoder. The encoder takes in sample training data and 

reduces it to a latent space by passing it through layers with decreasing dimensionality. The 

decoder then samples from the latent space and reproduces the initial sample (Sami and 

Mobin, 2019). Laloy et al. (2017) Showed that inversion using VAEs produces superior results 

compared to MPS-based inversion methods. Canchumuni et al. (2021) Combined a VAE with 

an Ensemble Smoother with Multiple Data Assimilation to history match production data and 

reported that trained VAE resulted in noisy facies reconstruction. In general VAEs have a lower 

generative accuracy compared to Generative Adversarial Networks (Lopez-Alvis et al., 2021) 

and are prone to fail at learning intractable or highly complex probability distributions (Sami 

and Mobin, 2019). This is because, VAEs have a simpler architecture with only one loss function 

(Kullback-Leibler divergence). As described above VAEs produce their output by compressing 

the input to a latent space. Generative Adversarial Networks (GAN) on the other hand, search 

for a balance point between the Discriminator and Generator in their two-player game, where 

one tried to trick the other. As such, GANs have a more complex architecture and use two loss 

functions. 

2.3.3 Generative adversarial networks in subsurface applications 

Generative adversarial networks (GAN) are a family of deep-learning-based generative models 

where the paradigm of unsupervised learning is used in their training process. The GAN 
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architecture has two sub-models: Generator and Discriminator. Generator is used to generate 

new plausible examples from the problem domain. The Discriminator is the sub-model that is 

used for training the Generator. The architecture has the advantage that after being trained, 

the sub-models can be used as standalone models for data generation or classification. The 

training process of a GAN is based on a game theoretic scenario in which the generator 

competes against an adversary. The generator network directly produces samples from a fixed-

length random vector, referred to as latent space, while the discriminator network, the 

adversary, attempts to distinguish between samples drawn from the training data (real data), 

and the generated samples.  

 

Figure 1: Vanilla GAN workflow 

Figure 1 illustrates the basic workflow of a vanilla GAN. Based on the figure, latent vector 𝑧, is 

fed to the Generator 𝐺 to generate sample 𝐺(𝑧). FC stands for Fully Connected layers. It is 

conventional to feed a batch of latent vectors to generate a batch of samples every time. The 

Discriminator is trained to classify 𝐺(𝑧) and real samples, X. This is accomplished by maximizing 

the probability assigned to real and generated data at the output of the discriminator. 
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Among DGMs, Generative Adversarial Networks (GAN) introduced by Goodfellow et al. (2014) 

have been applied to a variety of subsurface applications. GANs have been used to generate 

realistic stochastic samples of porous media (Mosser et al., 2017, Mosser et al., 2018b).  

Mosser et al. (2018b) Trained a modified version of the DCGAN (Radford et al., 2015) on 

randomly extracted images from a micro-CT. They reported that computed two-point statistics 

an effective property, showed excellent agreement between the GAN results and segments of 

the micro-CT image. However, the generated samples showed less variation compared to the 

input training dataset. Mode collapse was mentioned as one of possible reasons. Mode 

collapse is defined as the case whereby the Generator can only generate one type of sample 

or a small set of distinct samples. This is caused when the Generator learns to generate samples 

from few modes of the data distribution but ignores other modes although they are present in 

the input training data. This effect when generating geological realizations, will result in the 

Generator producing multiple samples/realizations with one or more features replicated in 

common locations. The realizations overall are therefore spatially biased towards those 

features. There are a variety of reasons for this phenomenon e.g., vanishing gradients, 

Discriminator overfitting, poor network architecture, etc.  some solutions to reduce this effect 

include using Wasserstein loss or progressively increasing resolution of generated images 

during training. In chapter 5 of this thesis a solution suited to geological realizations is 

presented. 

Other subsurface applications of GANs includes application to seismic data. A Cycle-GAN was 

used to perform stratigraphic seismic inversion based on a velocity model (Mosser et al., 

2018a). In Mosser et al. (2020), a DCGAN in combination with a numerical solution of the 

acoustic inverse problem was trained to parametrize geological heterogeneities.  Mode 

collapse and its adverse effects on the study were discussed and use of alternative networks 
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that handle mode collapse more efficiently were suggested. GANs were also used to 

reconstruct models retrieved by iterative geostatistical seismic inversion (Azevedo et al., 2020). 

In this study, two GAN networks DCGAN and WGAN (Arjovsky et al., 2017) were trained on two 

datasets, a set of binary facies and a continuous (P-wave propagation velocity) dataset where 

an infill painting methodology (Yeh et al., 2017) was used for reconstruction of images. Laloy 

et al. (2018) used a GAN architecture to perform MPS based geostatistical inversion for 

parameter estimation. They proposed a 3D extension to the original 2D spatial GAN (SGAN) 

(Jetchev et al., 2016) and incorporated it in a Markov chain Monte Carlo (McMc). Other 

examples of applications of GAN in the literature are re-parametrization (Chan and Elsheikh, 

2019a, Chan and Elsheikh, 2020). GANs have shown great potential in generating realistic 

realizations of geological models. Multiple studies in the literature have used GANs to generate 

realizations conditioned to hard data (Chan and Elsheikh, 2019b, Dupont et al., 2018, Mosser 

et al., 2018a, Zhang et al., 2021). Different methodologies have been used to condition 

geological models to hard data. Some used semantic inpainting methodology (Yeh et al., 2017) 

to condition the model (Dupont et al., 2018). In this methodology, a GAN is trained to generate 

geological realizations. The loss of the GAN during training is defined such that the Generator 

outputs the closest realization in the latent space manifold whereby this realization honours 

the hard data. Others like (Chan and Elsheikh, 2019b) proposed an inference network to be 

added to the Generator to further refine the generator function space to produce only 

conditioned realizations. Zhang et al. (2021) used a U-net architecture to generate conditioned 

realizations. In this study the authors adopted a methodology where a loss term was 

formulated to maximize the distance between generated images with respect to 

corresponding latent vectors (Yang et al., 2019). Razak and Jafarpour (2020a, 2020b) and 
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Mosser et al. (2019) have gone a step further in their work by calibrating reservoir models using 

non-linear production data. 

Although GANs promise vast potential in generating realistic geological realizations, Mode 

collapse is an important issue to thoroughly investigate when using GANs. Mode collapse can 

induce significant error in uncertainty quantification of a model. Furthermore, conditioning to 

hard data is not a trivial task when using GANs. The available methods have the potential to 

reduce variability of the generated realizations. Currently research in this field is focused on 

rectifying the above-mentioned limitations of GANs. It is expected that more applications and 

usage of the reparameterization capability of GANS will be introduced. 

Finally, to close this section, pros and cons of the mentioned geostatistical methods for 

generating geological realizations are presented in Table 2. 

Table 2: pros and Cons of different methods for generating geological realizations. 

Methodology Variation pros cons 

Stochastic methods Pixel-based  Easy to implement with little 
computation cost. 

 Easy to condition to hard 
data 

 Cannot produce visually acceptable 
and realistic realizations. 

 Requires inference of the data 
variogram 

Object-based  Realizations are more 
realistic compared to pixel-
based methods 

 difficult to condition to hard data 

Multiple point 
statistics methods 

N/A  visually realistic realizations 

 algorithm uses TI which can 
incorporate geologists’ 
expertise 

 algorithms are computationally and 
memory intensive. 

 do not re-parametrize the 
realization 

Deep Generative 
methods 

VAEs  easy to train. 

 results are visually acceptable 

 fail at learning highly intractable 
distributions. 

GANs  results are visually 
acceptable. 

 Can learn complex 
distributions 

 results affected by Mode collapse. 

 more research required around hard 
data conditioning 
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Rock typing and facies identification using fractal theory
and conventional petrophysical logs

RoozbehKoochakA,B,ManouchehrHaghighiA,MohammadSayyafzadehAandMarkBunchA

AAustralian School of Petroleum, Santos Petroleum Engineering Building, University of Adelaide,
SA 5005, Australia.

BCorresponding author. Email: Roozbeh.koochak@adelaide.edu.au

Abstract. Rock typing or subdivision of a reservoir either vertically or laterally is an important task in reservoir
characterisation and production prediction. Different depositional environments and diagenetic effects create rocks with
different grain size distribution and grain sorting. Rock typing and zonation is usually made by analysing log data and core
data (mercury injection capillary pressure and permeability measurement). In this paper, we introduce a new technique
(approach) for rock typing using fractal theory in which resistivity logs are the only required data.

Since resistivity logs are sensitive to rock texture, in this study, deep conventional resistivity logs are used from eight
different wells. Fractal theory is applied to our log data to seek any meaningful relationship between the variability of
resistivity logs and complexity of rock fabric. Fractal theory has been previously used in many stochastic processes
which have common features on multiple scales. The fractal property of a system is usually characterised by a fractal
dimension. Therefore, the fractal dimension of all the resistivity logs is obtained.

The results of our case studies in the Cooper Basin of Australia show that the fractal dimension of resistivity logs
increases from 1.14 to 1.29 for clean to shaly sand respectively, indicating that the fractal dimension increases with
complexity of rock texture. The fractal dimension of resistivity logs is indicative of the complexity of pore fabric, and
therefore can be used to define rock types.

Keywords: Cooper Basin, fractal geometry, Higuchi’s fractal dimension method, resistivity well logs, rock typing.
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Introduction

Flow prediction of reservoirs requires identification and
modelling of rock types. This results in finding the optimum
location of well placement for production from the field. Rock
typing is an integral part of reservoir characterisation which
identifies different flow units (Gupta et al. 2017). The first step
in trying to predict the behaviour of a reservoir system is
characterisation of reservoir rock types to form a static
reservoir model. Rock, fluid and rock–fluid properties are then
attributed to up-scaled static model cells.

More accurate prediction of flow requires detailed knowledge
of the heterogeneity of the reservoirs. The performance of
a reservoir is controlled by intrinsic properties of fluids and the
geometry of the pore system. The effective description of the
reservoir requires an adequate understanding of petrophysical
properties of the rock, such as porosity, permeability, capillary
pressure, heterogeneity and fluid content (Porras et al. 1999).

Knowledge of these properties facilitates the subdivision of
the reservoir into layers with similar properties according
to flow point. This subdivision enhances flow behaviour
modelling and reduces uncertainty in predicting production.
This process is referred to as rock typing. There are many
different definitions for ‘rock type’ in the literature; the most
adopted definition is by Gunter et al. (1997): ‘Rock typing is
a method of classifying reservoir rocks into distinct units, each
of which was deposited under similar geological conditions
and has undergone similar diagenetic alterations’.

This definition includes depositional features along with
diagenetic effects in defining a rock type. This implicitly
suggests that the pore structure of a rock – i.e. pore and pore
throat dimensions, geometry, size, distribution and capillary
pressures – should be similar within a rock type. It has been
long established in the oil and gas literature that these parameters
are the main drivers of fluid flow in porous media.
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In conventional reservoirs, flow unit rock typing is usually
done based on porosity–permeability relations. There are numerous
rock typing studies in the literature. The common evaluation
techniques are:

* Physical core description of large- and small-scale features,
along with core measurements of porosity and permeability;
dominant pore throat diameter frommercury injection capillary
pressure (MICP) data.

* Texture, composition and lithology of the rock, along with
considering the deposition environment of the reservoir.

* Identification of lithofacies from log analysis complemented
with core-based measurements.

Other methods include use of R35measurements frommercury
injection, proposed by Pittman (1992), in which average pore
throat radius ismeasured from the35% injection level ofmercury.
The concept of rock quality index and flow zone indicators was
introduced by Amaefule et al. (1993). In tight sands, however,
use of all the above techniques needed to be complemented with
rock texture and fabric descriptions to achieve more accurate
results (Rushing et al. 2008).

One way to infer rock types is by use of well logs. In this
method, statistical features are defined for the trend of the
corresponding well log, and these features are used to identify
the same rock type in other wells. However, since conventional
interpretations of logs do not provide any direct information on
complex pore geometries, it is difficult to consider pore structure
in rock typing methods using well logs.

Fractal geometry offers a new approach for interpreting well
logs. Use of fractal theory in oil and gas has a significant history.
In 1986, Hewett proved that porosity logs were fractal (Hewett
1986). Using the fractal character, Hewett generated porosity
distributions and used them to enhance fluid flow simulation.
There were other similar studies (Crane and Tubman 1990;
Emanuel et al. 1990; Hewett and Behrens 1990; Aasum and
Kelkar 1991; Hardy 1992; Hardy and Beier 1994; Perez and
Chopra 1997; Lozada-Zumaeta et al. 2012). Some authors found
that the pore structure of rocks was a fractal property (Avnir et al.
1985). Others investigated different sandstones and confirmed
their fractal character (Katz and Thompson 1985; Krohn and
Thompson 1986). These workers also suggested methods to
determine the fractal dimension of these structures. Pang and
North (1996) suggested that the fractal dimension of well logs is
related to stratigraphic heterogeneity; more heterogeneous
rock produced well logs with a larger fractal dimension. Shen
et al. (1998) suggested that the fractal dimension of pore structure
can be used to classify rock type. They investigated 22 cores
and concluded that the fractal dimension can be related to oil
recovery at water breakthrough and irreducible water. Wang
and Mou (2014) measured the fractal dimension of various
wireline log data, including compensated neutron, density,
gamma ray and acoustic logs for 108 wells, and found
corresponding relationships between fractal dimension of logs
and texture of volcanic rocks.

In most studies, the fractal dimension of the pore structure
is derived from microscopic core images and images of thin
sections using image processing techniques. Furthermore, no
study has considered the fractal dimension of resistivity well

logs and its relationship to rock texture. Considering the effect
of rock texture on the resistivity of the rock, along with the fact
that pore structure of rocks is fractal, makes it logical to expect
that the fractal dimension of resistivity logs is related to rock
texture.

The objective of this study is to show that fractal dimension
of resistivity logs can be related to rock texture, and thus can be
used as a new method to identify rock types. First, a background
of fractal theory and resistivity of porous media is presented,
followed by details of our proposed method. Then, data and
results are interpreted and discussed.

Theory background

In this section, a background in fractal theory and some facts
on resistivity in porous media are presented.

Fractal theory background

A fractal is a geometric pattern that shows similarity to itself
at any level of magnification (scale). The pattern that causes
the self-similarity can be repeated at multiple scales to
produce irregular shapes and surfaces that cannot be modelled
by conventional geometry. This is the main feature that
differentiates fractal geometry from Euclidian geometry. The
concept of fractals was introduced by Mandelbrot and has
been shown to be capable of mathematically modelling
irregular natural patterns.

Before the introduction of fractal geometry, mathematicians
had come across many patterns and shapes that could not be
modelled by Euclidian geometry. A turning point came when
Benoit Mandelbrot introduced a more comprehensive definition
of dimension. He stated that the dimension of a fractal must be
used as an exponent when measuring its size (Mandelbrot 1983).
As a result, fractals cannot be described with integer dimensions
but require fractional dimension, hence the name fractal
geometry.

Mandelbrot defined fractal as ‘a shape made of parts that
are similar to, or repeat the whole in some way’ (Mandelbrot
1983). This is a definition of self-similar fractals. This type of
fractal is too regular to model natural phenomena. Self-affine
fractals, however, are defined as objects that are statistically
similar to themselves. For example, a fern leaf would look
similar to itself at different scales but would not be identical.
Self-affine fractals are mainly used to model time–depth
sequences and spatial distributions. This property that objects
can look statistically self-similar while also exhibiting some
variability in detail at different length scales is the central
feature of fractals in nature (Feder 1988). Fractals have been
used in many areas of natural sciences, e.g. river networks, fault
lines, mountain ranges, coastlines, thickness of tree trunks, heart
rates and earthquakes.

The scale invariance of fractals is mathematically described
by a power law. A power law distribution is the only statistical
distribution that is scale invariant.

One of the best methods for mathematical modelling of
self-affine fractals is fractional Brownian motion (fBm). In
terms of a function of time, fBm is defined as:
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The fBm is a self-similar, stationary process with long range
interdependence, and has a covariance in the form of:
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where bH(t) is an fBm as a function of time, s is the standard
deviation and H is commonly known as the Hurst exponent
and characterises the scaling behaviour of the series; H ranges
between 0 and 1. When H is close to zero the time series are
rough with strong variation, and when H is close to 1 they are
smooth with less variation.

TheH is related to the fractal dimension of a one-dimensional
time series by:

D ¼ 2� H ð3Þ

where D is the fractal dimension.
The H also quantifies the persistence and anti-persistence

trend in the time series. Persistence (H > 0.5) means that an
increasing trend is likely to be followed by an increasing
trend; and anti-persistence (H< 0.5) means that an increasing
trend is likely to be followed by a decreasing trend. Fractal
statistics provide a simple way of relating variations at larger
scales to those at smaller scales and vice versa (Gray et al. 1993).

Equation 3 is onemethod of calculating the fractal dimension,
where H can be derived using the rescaled range method,
considering the time series is best modelled as fBm. Other
popular techniques are used to test for fractal scaling and
determination of fractal dimension of wireline logs (or any
time series): variogram and spectral techniques, box-counting
method, Katz, Sevcik and Higuchi methods.

The three commonly used techniques for estimating fractal
dimension (i.e. rescaled range, variogram and spectral techniques)
are not reliable when the underlying signal is either limited, non-
Gaussian or non-stationary (Gray et al. 1993). These methods
are severely affected by small number of samples and non-
stationarity, therefore they are not suitable for analysing
logging data. This is especially true for fluvial facies of the
Cooper Basin where production intervals are relatively small.
The box-counting method is highly sensitive to sampling
frequency. In addition, in the case of wireline logs the data
axes are incompatible, in other words the x (resistivity) and
y (depth) axes cannot be compared with each other.
Raghavendra and Dutt (2010) developed a variation of the
box-counting method called the Multiresolution Box-counting
Method (MBCM) that resolved this issue, but the MBCM
requires a high sampling rate, making it unsuitable for
analysing well logs. The same study showed that the Katz and
Sevcik methods yielded poor results compared with MBCM
and the Higuchi method.

Among the mentioned methods, Higuchi’s algorithm is least
affected by the sample number of the signal and is most suitable
for analysing the fractal dimension of short-interval signals.
For this reason, we used Higuchi’s method to calculate the
fractal dimension of resistivity logs.

Higuchi’s method

Higuchi’s algorithm for calculating the fractal dimension of
a one-dimensional signal is described below (Higuchi 1988):

Consider a finite, discrete set of samples taken at regular
interval:

x 1ð Þ; x 2ð Þ; x 3ð Þ; . . . :; x Nð Þ ð4Þ
where N is the total number of samples. From this given time-
series new subseries denoted by xm

k are generated.
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where k is the scaling factor usually chosen based on the total
number of samples. Both k and m are integer values, and [a]
denotes the closest integer to a. For example, for k= 3, and total
sample number of N= 100, the subseries are:

x13; x 1ð Þ; x 4ð Þ; x 7ð Þ; x 10ð Þ; . . . ; x 97ð Þ; xð100Þ

x23; x 2ð Þ; x 5ð Þ; x 8ð Þ; x 11ð Þ; . . . ; x 95ð Þ; xð98Þ

x33; x 3ð Þ; x 6ð Þ; x 9ð Þ; x 12ð Þ; . . . ; x 96ð Þ; xð99Þ
For each subseries xm

k a corresponding length is defined as:
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where N�1

N�m
k½ �:k, is a normalisation factor for the xm

k subseries.

The above formula will result in k number of lengths for each
xm
k subseries. The length for k is defined as L(k) and is computed

as the average value of the k sets of Lm(k). That is:

L kð Þ ¼
Xk

m¼1

Lm kð Þ ð7Þ

If L(k) is proportional to k–D, then the initial time series is fractal
with dimension D.

If L(k) is plotted against k on a double logarithmic plot,
the points will fall on a straight line, the slope of which is
fractaldimension (D) of the time series.

Resistivity of porous media

Resistivity logs are among the very first logs to be recorded.
The principal use of resistivity logs is to locate hydrocarbons;
however, they can also provide information on lithology, texture,
facies overpressure and source rock aspects (Rider 1986).

104 The APPEA Journal R. Koochak et al.



The resistivity of the rock matrix is usually assumed to be
infinite, thus the resistivity is presumed to be a function of the
pore fluid alone. This is not entirely true as the matrix plays
a passive role in resistivity of the rock. This passive role is
dependent on the geometry of the pores, pore connections,
tortuosity and pore size distribution. Studies have shown that
resistivity of fluid-filled sedimentary rocks is mostly controlled
by pore structure (Archie 1942; Bigalke 2000). Wettability,
saturation history and temperature also play important roles
(Swanson 1985; Kumar et al. 2010). Pore-structure characteristics
can be estimated from electrical resistivity logs and used for
a better estimation of permeability (Verwer et al. 2011).

Any clays present play an active role in conduction of the
rock. Clays conduct electricity in two ways: through pore water
and through clay itself (Rider 1986). The resistivity of reservoir
rocks depends on numerous factors which can collectively be
described as rock fabric. Rock fabric describes the spatial and
geometric configuration of the rock, and can be represented by
numerical engineering values complemented with geological
descriptions of the rock.

Katz and Thompson (1985) proposed that the pore spaces
of sandstones are fractal and presented several measurements
to support their proposal. The electrical conductivity in porous
media obeys a scaling law (Toledo et al. 1994), which suggests
that resistivity well logs have fractal character:

sw / Sw
1

m 3�Dð Þ ð8Þ
where, sw is the electrical conductivity of the porous medium,
Sw is water saturation and m is Archie’s cementation factor.

We propose that the fabric of a rock type affects the variability
of resistivity logs, and this can be uniquely characterised by the
fractal dimension of the resistivity logs.

Data

The Cooper Basin is the most prospective onshore petroleum
and natural gas province in Australia. It is a sedimentary basin
that formed and developed from the late Carboniferous to
middle Triassic geologic periods. It unconformably overlies
the Warburton Basin and unconformably underlies the Cretaceous
Eromanga Basin (Gravestock and Jensen-Schmidt 1998). The
basin is located across the north-east of South Australia and the
south-west of Queensland. The reservoir system comprises
a multi-zone high-sinuosity fluvial sandstone ranging from
tight (unconventional) to good-quality conventional reservoir
rocks. There is a large range of porosity and permeability in
the basin due to combination of facies and burial depth. The
main gas reservoir is within the Patchawarra Formation with
an average porosity of 10.5% and permeability up to 2500 mD,
and the Toolachee Formation with an average porosity of
12.4% and permeability up to 1995mD (Gravestock et al. 1998).

Oil is produced from the low-sinuosity fluvial sand within
the Tirrawarra Sandstone with average porosity of 11.1% and
permeability up to 329 mD (Gravestock et al. 1998).

In this paper, 59 core samples from different locations
(laterally) in the Cooper Basin were chosen for analysis. The
data was quality controlled and cores withmissing or low-quality
data such as noisy or low sample-rate logs, missing intervals

or failed MICP tests were excluded. Eventually eight cores,
with MICP data and a full suite of logs, were analysed. The
pore size distribution of the core samples were derived using
MICP. Porosity and permeability of the cores were derived using
routine core analysis.

Work flow

In this study, we aimed to investigate the relationship between
the rock texture and the fractal dimension of resistivity logs.
For this purpose, core data and corresponding resistivity logs
were analysed. The core data were used to classify the cores
in rock types. Rock types were defined using porosity and
permeability of the cores along with pore size distribution.

The collected data were primarily quality controlled. Any
cores or intervals with missing or noisy data or failed MICP
tests were excluded. Based on these properties, the cores were
then divided into three different rock types.

The fractal dimension of the resistivity log corresponding
to each core was calculated. To calculate fractal dimension, the
data need to be unimodal and stationary without imposing
any specific trend. This is a criterion of homogeneity required
for a meaningful fractal dimension. Homogeneous datasets
exhibit a unimodal distribution, and a visual inspection of
the histogram is sufficient to ensure that just a single peak
exists in the data density distribution. It should be noted that
resistivity data are not Gaussian but log-normal. Thus, the
logarithm of resistivity values should be taken before plotting
the histogram. If the histogram is not unimodal, the log interval
needs to be broken down into more homogenous sections.
Also, before calculation of the fractal dimension, the data need
to be normalised with zero mean and unit standard deviation.
Given the type of data and common sampling rates of well
logs, Higuchi’s method was chosen for this study. Higuchi’s
algorithm was coded in Matlab software and used for
calculating fractal dimensions.

Finally, the fractal dimensions were compared with the
defined rock types.

Results and discussion

Cores from different locations in the Cooper Basin were
analysed. The cores were classified into three rock types. The
fractal dimension of the corresponding resistivity log to each
core was then calculated using Higuchi’s method as mentioned
in the work flow.

Based on the porosity and permeability measurements of
the cores, along with the pore size distribution from MICP
tests, the cores were classified into three main rock types.
Properties of the rock types are presented in Table 1. The pore
size distributions of all cores are presented in Figs 1–3. The rock
types were defined as follows:

Rock type I was characterised by porosities in the range of
13–20% and permeability range of 50–300 mD. The pore throat
size distribution ranged within 1–100mm throats. About 50%
of the pore radiuses were in the range of 10–100mm. This
arrangement showed that the rock type consisted of large grain
sizes and the high permeability suggested good interconnectivity
in the structure.

Rock typing and facies identification The APPEA Journal 105



Rock type II featured porosities ranging within 7–14% and
permeability within 5–40 mD. The majority of the pore throat
sizes were within 1–10mm, which was an order of magnitude
smaller than that of type I. The pore size distribution suggested
that the grain sizes in this type were smaller and reduction in
permeability was due to increase in capillary pressures.

Rock type III was a tight sandstone reservoir with
porosities ranging within 5–14% and permeability within
0.096–3 mD. The majority of the pore throats were
0.1–1 mm, which was an order of magnitude smaller than

that of type II. Although the porosity was similar to type II,
the permeability suggested that most of the porosity was
ineffective. The grain sizes in this rock type were very fine
and pore throats were filled with clay.

The fractal dimension of the resistivity well logs
corresponding to each core was calculated using Higuchi’s
method. Some of the well log intervals are presented in
Figs 7 and 8 as examples. In order to calculate fractal
dimension of logs, the data needed to be stationary and
Gaussian. To achieve this, homogenous intervals were chosen
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Fig. 1. Pore size distribution of the cores related to rock type I.
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Fig. 2. Pore size distribution of the cores related to rock type II.

Table 1. Properties of the defined rock types

Rock type Porosity (%) Permeability (mD) Fractal dimension Description

I 13–20 50–300 1.145–1.158 Majority of pore throats in the range 10–100mm

II 7–14 5–40 1.186–1.199 Majority of pore throats in the range 1–10mm

III 5–14 0.096–3 1.221–1.286 Majority of pore throats in the range 0.1–1mm
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based on the gamma ray and sonic logs. The numerical values of
resistivity curves were then extracted and normalised by
subtracting the average and dividing by the standard deviation
of the data.

As per Higuchi’s method, series lengths were calculated for
different scales k. The log of the average length of each series
(log(L(k)), was plotted against the log of the inverse of the scale
(1/k). The result was a straight line, with slope equal to the fractal
dimension of the resistivity log. The plots of k vs log(L(k) for
every core are shown in Figs 4–6. The slope of the line was
determinedbyabest linearfit to the points. The rangeof the fractal
dimensions of each rock type is presented in Table 1.

As the complexity of rock structure increased (due to smaller
grain sizes and/or increased clay content) and fluid flow in the
media became more difficult, the fractal dimension of the
corresponding resistivity log increased (Table 1). This indicates
that the complexity of the rock structure was reflected in the
variability of the resistivity logs.

Rock type I featured large pore sizes and high porosity overall.
Large pore size indicated large, well-sorted matrix grains and
the high permeability indicated that pores were well connected.
The pore size distributions of the cores of type I are plotted in
Fig. 1. A considerable portion of the pore throat sizes ranged
within 10–100mm. The fractal dimension of the resistivity log
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Fig. 7. Well logs corresponding to core 1.
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corresponding to this rock type was in the range of 1.145–1.158,
which is the lowest among the three rock types investigated.

For rock type II, pore sizes were an order of magnitude
smaller than for type I. Smaller pores indicated a component
of smaller grain sizes and this rock type also showed lower
permeability. The pore size distribution of the cores of this
rock type are shown in Fig. 2. A considerable fraction of the
throat sizes were in the range of 1–10mm. The fractal dimension
of the resistivity log relating to this rock type ranged within
1.186–1.199, showing more complexity in the logs compared
with type I.

Rock type III had very low permeability and the pore sizes
are hypothesised to be much smaller than types I and II, as
shown in the pore size distribution of the corresponding cores
(Fig. 3). The gamma readings in this rock type were typically
high, indicating the presence of clays, consistent with the
very low permeability. Porosity in type III was similar to that
of type II (ranging around 5–14%) but the majority of this
porosity would be ineffective due to the clay content. The
fractal dimension measured for the logs relating to type III
ranged within 1.221–1.286, which was higher than both other
rock types, although in this case electrical matrix surface
conductivity would be an important component in the resistivity
response.

The results of this study could be used to confirm chosen
rock types, and also show that information could be hidden in
the variability of logs which has so far been neglected.

Conclusions

In this study, core data from Cooper Basin were categorised into
three rock types based on porosity, permeability, pore size
distribution and core descriptions. The fractal dimension of the

resistivity logs corresponding to each rock type was calculated
using Higuchi’s method.

The fractal dimension of resistivity logs related to rock type I,
which was characterised by better sorting and bigger pore
sizes, was 1.145–1.158. Rock type II was more resistant to
fluid flow than type I but less than type III, and had fractal
dimension range of 1.186–1.199. Finally, rock type III with
the most complex pore structure showed the highest fractal
dimension range of 1.221–1.286.

The results suggest that higher fractal dimensions corresponded
tomore complex rock fabric, i.e. as the pore structure becamemore
resistant to fluid flow, with smaller pore sizes, more dead-end pore
spaces and more tortuosity, the fractal dimension of the resistivity
well logs increased. We conclude that fractal dimension of
resistivity logs can be used to identify complexity of the
electrical conductivity network fabric (often equivalent to the
pore network fabric) and thus rock types.

This work was carried out using gas-saturated sandstone
reservoir intervals. More research is needed to extend the
findings to water- or oil-saturated zones and other lithologies.
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ABSTRACT

Resistivity image logs have a long history in facies detection and classification. Manual inter-
pretation of these logs is subjective, time consuming and costly. There has always been a need to
augment this process with the purpose to increase efficiency and consistency. In this study, we
introduce a supervised learning technique to augment image facies detection based on electric
log images alone. Being able to detect facies solely using image logs would reduce reliance on
supplementary logs and reduce cost significantly. This workflow requires the geologist to label
example facies in one well to be used as training data, then the trained network classifies logs at
other locations. A common challenge reported in literature for application of supervised learning
to facies detection is shortage of labelled data. To overcome this challenge, we propose a method
of data preparation to increase the number of images from available data. The preferred machine
learning technique in this study is Transfer learning. Three pretrained networks (VGG, Inception
V3 and Resnet) were investigated and their output compared. In our dataset, two out of seven
wells were interpreted and labelled. We used one well to train the network and the second well
for validation. We introduce a post processing methodology to adapt the pre-trained classifier
network to evaluating a continuous resistivity image log that not only delivers consistent results
but enhances the bed-boundary detection resolution. Our proposed methodology can efficiently
augment resistivity image log interpretation and reduce dependence on a particular human in-
terpreter. The results show that in the absence of other information/logs, the trained network
can detect image facies with a testing accuracy of 82% using electrical image logs alone and the
proposed post-processing method increases the final categorization accuracy even further.

1. Introduction
Lithofacies or facies represent the sedimentary unit whose petrophysical properties can be distinguished from

surrounding rock (Liu et al., 2021). Facies classification is a crucial step in CO2 sequestration projects, as the injection
target beds are determined based on petrophysical property modelling that is guided by lithological units and features
of the formation. At any particular well location, classification can be based on log data or cores. However, in between
well locations the geophysical properties required for facies classification are derived from coarse-scale measurements
such as seismic properties determined using surface surveys (wu2015). This study focuses on facies classification at
well locations using electrical borehole image logs.

High-resolution borehole image logs, when calibrated with core data and conventional logs provide detailed in-
sights on lithology, sedimentary textures, palaeoflow directions, structural dip analysis, in situ stress analysis and
fracture evaluation (Nie et al., 2013; Ameen, 2014; Kosari et al., 2015; Brekke et al., 2017; Lai et al., 2018). These
logs significantly contribute to geological understanding and structural interpretation of the logged interval (Folkestad
et al., 2012; Lai et al., 2018). Sedimentological and structural features down to a few millimetres in resolution can be
identified using borehole image logs (Ja’fari et al., 2012). As such, image logs are a valuable source of information
for facies classification, which is an integral part of stratigraphic correlation and reservoir prediction (Liu et al., 2021).
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Electrical borehole image logs provide a two-dimensional, 360 degrees image of the borehole wall. After decades
of application, geological interpretation of borehole image logs remains subjective particularly when the geological
setting is complex (Lai et al., 2018). The background experience of the interpreter becomes a primary influence on the
final interpretation. The process for facies identification using resistivity image logs requires an experienced geologist
to visually inspect the logs and manually pick geological features using specialized application software. However, this
process is tedious, time consuming and costly (Gupta et al., 2019). There is a great need for an automated workflow
to augment and optimize this manual process.

Machine learning has shown promising results in augmenting facies classification at well locations. Gupta et
al.(2019) used a UNET architecture to pick induced and natural fractures along with sedimentary surfaces. Labelled
data from four wells was used in that study to train two separate networks. One locally trained and the other globally
trained. In the locally trained network only 10% of the data in a single well were used in training and the network
was used to detect features in the rest of the well. The global models are trained using labelled data from multiple
wells where the model is then used to detect learned features in other wells in the region. The authors suggested that
supervised-learning approaches are challenging due to sparse features and reported occurrences of false classification,
without investigating the cause or offering a solution. Lima et al.(2019) proposed an unsupervised neural network
model for pattern recognition and facies categorization using borehole image logs. They used a non-linear autoencoder
for representational learning to reconstruct the original training images and applied cluster analysis for categorization
of the facies. The methodology in their study does not guarantee returning facies categories that relate to the required
geological application. Furthermore, the study does not propose how to distinguish structurally different facies that are
visually similar. Using the concept of transfer learning, Lefranc et al.(2021) trained a ResNet architecture on synthetic
training data produced by models. To enhance accuracy, they added noise to the synthetic data. To categorize real
logs, the method requires dipping planar features (nominally sedimentary dip fabrics) to be picked manually at high
density and the background resistivity must be removed so the real log is visually similar to the synthetic images. Other
limitations of this method are that the training data do not cover the full range of sedimentary bedforms and the network
will not be trained on features of any post depositional deformation that may have occurred. The majority of workers
contributing studies to the literature have complained of a lack of reliably labelled data to use for training their models
and absence of post processing methods for augmenting or categorizing additional bed boundaries. In this work we
propose a methodology to increase the number of training images from available labelled data and a post processing
method is developed to enhance classification using continuous logs to identify bed boundaries at a resolution of 0.3
meters. To achieve this, we trained a convolutional neural network to classify lithological facies in the Late Cretaceous
succession tested by CO2 injection and storage operations of the CO2CRC Otway Project in the Otway Basin of south
eastern Australia (Bunch, 2014). A supervised learning scheme was employed to augment facies classification at well
locations, using resistivity image logs. Data from two wells, CRC-1 and CRC-2 were available. Logs from both wells
were quality controlled, processed and interpreted. In this study we used CRC-2 interpreted facies classes as input
training data and the noisier CRC-1 image log record as the testing case. The goal of this study was to investigate
whether a CNN can extract enough features from the image log data alone to be able to accurately distinguish facies
classes. This would save the cost of running other supplementary logs along with borehole image logs (though in
reality a standard 1D log suite will always be acquired for baseline information). As such, in this study supplementary
information such as core data and conventional log data were not involved in the training of the network. Our results
confirm that the distribution of the images was quite complex. This is because, (1) the training images lacked distinctive
features in comparison to other datasets like those typically used for training image recognition models, such as animals
or everyday objects, and (2) the relative visual similarity of image log facies categories. To overcome these challenges,
we used transfer learning which is a technique that takes part of a larger trained model and uses it in a new model for
a related task, without the need to access large training data and computing resources to train the original model.

Transfer learning has proven to be a very effective technique in the field of image recognition and image classifi-
cation. In deep convolutional neural networks, with many layers, the lower layers detect the features while the final
layers detect the class of the image (Tang, 2018). In the case of image classification, transfer learning allows us to
train the classifier layers of the CNN with our specific set of images requiring far fewer training images and compu-
tational power (Tang, 2018). Transfer learning allows us to retrain the final layer of an existing model, resulting in a
significant decrease in not only training time, but also the size of the dataset required. There are numerous pre-trained
models used in transfer learning applications such as those named VGG, Inception and ResNet. These networks were
originally trained on millions of images from thousands of classes. Retaining the classifier layers means that we can
maintain the parameters (knowledge) the network has learnt during the original training and apply it to our dataset.
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This results in high accuracy classification of facies with a much lower requirement for training data and demand for
computing power. In this study, the three mentioned networks were applied using the input image log dataset and a
post processing methodology was developed to adapt the CNN architecture to better evaluate the continuous resistivity
image log. Our main goal was to explore whether CNNs are able to extract features from this modality of data alone.
The remainder of this text is structured as follows: We continue with the geologic setting of the data. Next image
classification using deep CNNs is reviewed. Data preparation methodology and proposed deep learning model are
presented in the subsequent sections followed by results and discussions. Finally, conclusions and future work are
presented.

2. Geologic setting
The CO2CRC project field demonstration site is located in south-eastern Australia, within the onshore Otway basin.

The facility is to the southwest of Melbourne in the state of Victoria, between the coastal towns of Port Campbell to
the east and Warrnambool to the west. The Otway Basin is a rift basin stretching northwest from southeast of South
Australia to the northwest of Tasmania. The basin formed during the Antarctic-Australian separation associated with
the break-up of Gondowana (Willcox and Stagg, 1990). Local tectonic activity and eustatic sea level variation has
produced fivemajor group-level sedimentary successions: the Otway, Sherbrook,Wangerrip, Nirranda andHeytesbury
groups (Woollands and Wong, 2001). Deposition of the lower most Otway Group was controlled by tectonic activity
prior to local relative sea level changes. The depositional environment was continental, producing first volcaniclastic
sediments graduating to fluvial and shallow lacustrine sediments in the upper parts (Mishra et al., 2019; Woollands and
Wong, 2001). Marine breakthrough is recorded by the Sherbrook Group, as sea level became regional base level to the
depositional environment. The succession varies from marginal marine sediments at its base to those of a widespread
deltaic plain environment at the top (Boyd and Gallagher, 2001; Mishra et al., 2019; Woollands and Wong, 2001). The
Wangerrip group was deposited under varying conditions from low energy marginal marine to shallow marine. The
depositional environment in this group is represented by a first-order transgressive-regressive cycle producing first
a fining up, then a coarsening upwards succession (Morton et al., 1994; Mishra et al., 2019). The Nirranda Group
developed under open marine conditions and the Heytesbury Group bears depositional environments varying from
inner shelf at the base to mid-shelf at the top (Mishra et al., 2019; Woollands and Wong, 2001). The Sherbrook Group
is the primary interval of interest for CO2 storage operations of the Otway Project. The Waarre Formation – the
primary petroleum reservoir within the onshore basin area – and the deep saline reservoir formations of the lower
Paaratte Formation were the first and second targets for CO2 sequestration experiments respectively (Bunch et al.,
2012).

2.1. Facies categories
Six high-level facies categories were chosen for training the CNN. These capture 15 sub-classes of mainly de-

positional sedimentary litho-facies interpreted manually following acquisition of core and image log data. The six
high-level categories are defined as Mudstone, Heterolithics, Muddy Sandstone, Clean sandstone, Cemented layers
and Pebbles. The Mudstone category generally shows no visible internal laminations with common to abundant dis-
seminated pyrite. It can sometime have stress features like borehole breakouts or drilling induced tensile fractures
(which are far rarer). The Heterolithics facies category is characterized by alternating layers of centimeter to decimeter
thick, moderately resistive layers with similarly thick conductive mudstones. The bed boundaries are generally sharp
but in some cases are diffuse as well. Tops and bases of layers are generally well defined but when they are rather
diffuse this category is difficult to distinguish from Muddy Sandstone. The Muddy Sandstone category comprises of
alternating resistive (possibly sand-rich) and lightly conductive (possibly muddy) layers. The layer boundaries are gen-
erally more diffuse. The thickness of the layers ranges between centimeter and decimeters. Dispersed pyrite nodules
are characteristic of this category presenting as small dark conductive patches throughout the layer. When the resis-
tivity contrast range of the layers is high this category looks similar to Heterolithics. The presence of pyrite nodules
in this category can sometime mean that it looks similar to Mudstone when images are dynamically normalized. The
Clean sandstone facies generally appears in structureless (‘massive’) thicker beds occasionally with a mottled resistiv-
ity fabric. Changes in resistivity can be due to change in porosity, grain packing or cementation. This facies can look
similar to Mudsone or sometimes Heterolithics when images are dynamically normalized. Cemented layers represent
a distinctly post-depositional type that is indicated by highly resistive intervals with elevated density and reduced neu-
tron porosity values. The resistivity of these beds may exceed the resistivity range of the FMI tool and saturates the
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Figure 1: CNN architecture, depicting the main elements and structure

image, especially when images are statically normalized. This facies overprints primary sedimentary fabrics and is
therefore quite distinct when compared to other categories.

3. Image classification using deep convolutional neural networks
CNN’s have had extraordinary success in image recognition and classification applications. Image feature extrac-

tion is the basis for image classification. In general, image classification describes the whole image by extracting
features using some feature learning method and then uses the classifier to identify the object category. Therefore, the
method of extracting features from an image is especially important (Chen et al., 2021). Traditional image classifica-
tion methods such as the Bag of Words model, extract features in a separate step (Lorente et al., 2021). The greatest
success of deep CNNs is attributed to their strong feature-learning ability (Matthew Zeiler and Rob, 2014). Classifi-
cation using a CNN is an end-to-end learning process. Only the original image is provided as input, the training and
prediction process are carried out through the network, which produces the final output (Chen et al., 2021).

3.1. CNN Architecture
The main structure of a CNN comprises convolutional, pooling, nonlinear activation and fully connected layers. In

the CNN architecture, the convolutional layer is the most significant component (Alzubaidi et al., 2021). On the one
hand, it acts as the receptive field that retains the correlation between features and image pixels in the width and length
direction. In other words, it can capture the spatial dependencies of the image. On the other hand, the convolutional
layer repeatedly calculates the same convolution kernel at different positions using a sliding window, that is, using
parameter sharing and sparse connections to avoid the parameter size being too large (Chen et al., 2021). The pooling
layer subsamples the feature maps to convert large feature maps to smaller ones while maintaining the majority of
dominant information at each step. This reduces network computing cost by reducing layer connections (Gu et al.,
2018). The pooling layers also make the output feature map more robust to distortion or error generated by single
neurons (Liu et al., 2017). The role of the non-linear activation layer in all neural networks is to map the input to
the output. This introduces nonlinearity to the neural network; having a suitable nonlinear activation function can
significantly enhance the performance of a network (Gu et al., 2018). The fully connected layer is generally located at
the end of the CNN architecture. Inside this layer, each neuron is connected to all other neurons fulfilling the function
of full connection. This layer is the classifier that categorises the local information extracted in the convolutional and
pooling layers (Sainath et al., 2013). The number of neurons at the output stage is the number of required categories
(Chen et al., 2021). An example of a CNN architecture is shown in Figure 1.

The history of deep CNN’s began with the appearance of LeNet, which was introduced by LeCun et al. (1995).
this was the first time that backpropagation was used in training CNNs. The architecture of LeNet-5 is shown in Figure
2. Krizhevsky et al. (2017) built the AlexNet model based on the LeNet-5. This network proved for the first time
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Figure 2: LeNet-5 Architecture

Figure 3: The Architecture of VGG-16. Convolution: Size= 3×3, Stride=1, Activation= Relu. Pooling: size= 3×3,
Stride=2

that learned features can surpass manually extracted features (Chen et al., 2021). AlexNet improved CNN learning
ability by increasing its depth and implementing several parameter optimization strategies (Alzubaidi et al., 2021).
To enhance applicability of the CNN to a larger number of categories, the number of feature extraction stages was
increased from five in LeNet to seven in AlexNet. The main drawback of AlexNet was its tendency towards overfitting
due to the larger network. To alleviate this issue, overlapping pooling was introduced (Chen et al., 2021). Larger size
filters were used to adapt the network to larger size input images and the RELU activation function replaced Sigmoid
for faster convergence. In 2014, Simonyan and Zisserman (2014) proposed an innovative design for CNNs whereby
the network was modularized. This design was called the Visual Geometry Group (VGG). The network comprised
several identical convolutional layers (modules) in succession followed by a maximum pooling layer. The convolution
layers maintain an unchanged image width and height while the pooling layer halves it. The VGG network has a
variety of different layer structure models. Figure 3 shows the VGG-16 network layers. This network used smaller
3×3 filters and showed experimentally that parallel assignment of small filters has the same influence as larger filters.
Themain drawback of this is that it utilized close to 140million parameters, which resulted in a high computational cost
(Alzubaidi et al., 2021). The simplest way of enhancing CNN performance is by increasing their size. i.e., by adding
more hidden layers with more channels in each layer. This approach has two major drawbacks. First, larger models are
prone to overfitting especially in cases where training data is limited. Second, this approach dramatically increases the
computational requirements for training. Furthermore, intuitively, visual information should be processed at multiple
scales (Szegedy et al., 2015). This is because sometimes it is not possible to obtain enough useful features to perform
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Figure 4: Inception V1 to V3 modules.

an accurate classification with a single convolution. In fact, some inputs work better with smaller convolution kernels
and others with larger kernels Zaccone and Karim (2018). The Inception network was designed to address the above
issues. An Inception network consists of Inception modules (shown in Figure 4) stacked on top of each other with an
occasional max pooling layer (Szegedy et al., 2015). The inception module computes 1×1, 3×3 and 5×5 convolutions
within the same module, therefore it acts as a multi-scale feature extractor. The outputs of these filters are then stacked
along the channel dimension and fed to the next layer in the network Zaccone and Karim (2018). Inception-V3 is the
third version in the series of Inception network architectures introduced by Google. It is a deep CNN used for image
classification (Szegedy et al., 2015). ResNet was introduced to address network degradation. Many studies show that
simply increasing the network depth does not proportionally increase its performance. With increasing network depth
accuracy is saturated and degrades rapidly (He et al., 2016). This is not an issue of disappearing gradients or overfitting.
In fact, deep networks with numerous layers can converge through initial and/or batch normalization. Degradation
occurs when a network is not optimized well due to its increased depth. The residual connection in ResNet is a method
employed to break degradation and enable deep neural networks to achieve high accuracy (Orhan and Pitkow, 2017;
Chen et al., 2021). Figure 5 shows examples of the residual block used in Resnet. Figure 5(a) is an ordinary CNN
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Figure 5: CNN blocks. a) ordinary CNN block b) ResNet-34 block c) deep ResNet blocks.

block. The residual block in Figure 5(b) is used in ResNet-34. When the network stack is deep, a 1×1 convolution
is added at the end of the 3×3 layer to control the number of channels. The residual block in Figure 5(c) is used in
ResNet-50/101/152.

In this study we trained three networks on our dataset, VGG-16, Inception-V3 and ResNet-101. All three networks
architectures used Softmax as the classifier in the final layer. The input to the Softmax classifier is the embedding
vector, where the length of the vector is equal to the number of classes. The SoftMax classifier scales the embeddings
into probabilities. The output probabilities sum to one for all classes. Mathematically, Softmax is defined as:

S (y)i =
eyi

∑n
j=1 e

yi
(1)

y is an input vector to Softmax function. It consists of n elements for n classes. The denominator is a normalization
term. It ensures that the values of the output vector sum to one. We have used integer coding to label the training
data. That is, integers [0] to [5] were used label facies one to facies six. Based on this definition of truth labels Sparce
Categorical Cross Entropy loss is minimized to train the weights of the network. The mathematical notation of this
loss is shown in equation 2.

J (w) =
n
∑

i=1
tilog

(

Pi
)

(2)

In the above equation, w is the weights of the network. ti is the truth value and pi is the probability of the itℎ class.

4. Data Preparation
CRC-1 and CRC-2 are two deep wells drilled 173 m apart (by wellhead location) for subsurface CO2 injection

experiments as part of the CO2CRC Otway Project. Data acquired at these wells as part of their drilling operations
were available for network training and testing. Resistivity borehole images were acquired at both wells using Schlum-
berger’s Fullbore Formation MicroImager (FMI). The FMI is an eight arm, pad-based micro-resistivity measurement
device with pads in contact with the borehole wall. Log data were pre-processed and facies categories were inter-
preted throughout the logged interval. Log quality control (LQC) of raw data was undertaken to assess suitability of
the raw data for processing and interpretation. Generally, the most important pre-processing of borehole image log
data is speed/depth correction (electrode data alignment) and image orientation using high-resolution accelerometer
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and magnetometer data (Wilson et al., 2013). For the purpose of well elevation alignment, CRC-2 log data were con-
sidered the reference case so no depth adjustment was applied. CRC-1 data were depth shifted to match CRC-2 log
elevations. Regardless, lithostratigraphic variation exists between these wells despite their close proximity. During
logging difficult borehole conditions such as washouts, breakouts or excessive pad pressure may cause tool sticking
in the borehole and parts of the image to lose clarity or to appear stretched or compressed (Folkestad et al., 2012).
An accelerometer speed correction was applied to the raw data in an attempt to remove as many speed irregularities
from the image as possible. Data in both wells were normalized to produce both Statically and Dynamically nor-
malized images. Dynamically normalized image data were generated using a sliding normalisation window of 1.0
metre. Statically normalized images were used to correlate lithological or facies changes over the entire well length,
while dynamic normalized images were used for detailed comparisons of sedimentary features (Serra, 1989; Goodall
et al., 1998; Wilson et al., 2013; Lai et al., 2018). The processed logs were interpreted and calibrated to information
interpreted from core by an experienced expert geologist (see Lawrence et al., 2013 for details) to produce the fifteen
litho-facies sub-classes that were later grouped into six categories for training. Dynamically normalized data were
used to provide input training images. They were displayed as an unwrapped borehole wall image with 0◦ (North) at
the left-hand edge, 180◦ (south) in the centre and 360◦ (North) at the right-hand edge, were converted to scalar data
and exported to text format (LAS). This resulted in a continuous image without electrode pad or flap gaps in the form
of a large matrix. The 192 columns of this matrix represented the reading of each pad/flap button on the FMI tool and
the rows represented the data at each depth sample. The nominal vertical resolution of the FMI tool is 0.2 inches or
5 millimetres (Gaillot et al., 2007). Each value in the matrix was a resistivity value representing a single pixel in the
image. To generate the training images, all intervals of the same facies category were extracted from the interpreted
image based on the manual log interpretation of Lawrence et al. (2013). These sub-images were concatenated to form
a single continuous image for each facies category. As a result, six images were produced, each image consisting of
the same facies category from various depths of the log where generated. Each image was 192 pixel in width and the
height of the image was equal to the sum of the pixels interpreted to be of that facies category as determined from
the original manual log classification. To match the network input dimensions, a 192×192 window was randomly and
repeatedly cropped out of each image to generate the input data. This method allows for the user to define how many
images will be generated for each facies. In this work, we generated 500 images from each of the six facies category
images, that is a total of 3000 input training images. The dataset was then randomly selected to produce a training
dataset (80% of the images) and a testing dataset (20% of the dataset). Figure 6 shows the input dataset preparation.

5. Proposed Deep learning model
The architecture of our trained CNN requires a single 192×192×3 image as input. However, as described in the

previous section, the resistivity image log is a continuous vertical record of the borehole wall. In the case of our training
well data (from the CRC-2 well), the size of the image is 192×418627 and the size of the CRC-1 image is 192×680902.
To adapt the CNN architecture to this image, we run a sliding 192×192 window over the log image with a stride of
one pixel. At each shift of the window, we assign the output of the CNN, which is an array of six probabilities for each
class, to each line of the image in that window. By the time a sliding window passes over a specific line in the image,
that line is evaluated 192 times. To determine the final class for that line, we sum all the 192 arrays assigned to that
line, the result is an array where each element is the sum of all probabilities assigned to the corresponding class. The
sum is normalized by dividing each element by 192. The maximum probability is selected as the class for that line.
Next a simple function f converts the output to a one-hot coded array. Once the algorithm is finalized, every line in
the image is assigned a class. The class of any section of the log is the same as the class associated to the lines that
form that section. Results show that this method enhances the continuity and accuracy of class detection and produces
better bed boundary detection resolution. In this study we refer to bed boundary detection resolution as the accuracy
at which the CNN detects the boundary between two consecutive facies. That is where one facies ends and the next
begins. To measure the bed boundary detection resolution, the interpreted boundaries in the test log are compared with
the those determined by the CNN in the same log. The proposed method can detect bed boundaries within 0.1 to 0.3
meters. Figure 7 depicts the process.
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Figure 6: Data preparation methodology. First labelled facies intervals are cropped out of the original log and concatenated
together. Next a random 192×192 window is used to generate images.

6. Results & Discussions
Given a set of interpreted resistivity image logs where facies categories have been determined and labelledmanually

by an expert (Lawrence et al., 2013), we aim to train a CNN to learn the interpreted facies and automatically detect them
in a new log. To achieve this, we have trained a CNN on labelled data, and proposed a post-processing methodology to
adapt the CNN architecture to evaluate a continuous resistivity image log. Our emphasis in this study is to investigate
whether a CNN is able to extract enough features from each facies category to be able to accurately classify new data
independent of any other supplementary logs. The logs in this study were generated using Schlumberger’s FMI tool.
The configuration used for logging was four pads and four flaps each hosting 24 button electrodes, all with diameters
of 0.16 inches (Gaillot et al., 2007), which means the borehole wall was covered with 192 sensor buttons at every
depth sample point. Therefore, the width of the log is 192 pixels. It is worth mentioning that the FMI tool does not
cover the entire borehole circumference. The gaps between the pads/flaps are not sampled. This tool can be run in
borehole sizes between 6.25 and 21 inches and the four pad, four flap configuration with 192 buttons covers 80% of
the total borehole circumference in an 8-inch borehole (Gaillot et al., 2007). This configuration covers more area in
smaller borehole sizes and less in larger ones. Thus, since the facies are generally continuous around the borehole
wall, we have chosen to include all 192 pixels in the width direction, in our generated training images. On the other
hand, the vertical resolution of the tool is approximately 5 millimetres. In other words, each pixel represents a vertical
dimension of 5 millimetres . Most bedding boundaries show some angle of dip but the thickness of sedimentary beds
is far greater than the depth sample interval. For reference, the average bed thickness of each facies category in both
CRC-1 and CRC-2 wells are presented in Table 1.

Based on the thickness of our interpreted facies and the geological stratigraphy of the region we chose 0.5 meters as
the depth/height window of images extracted from the concatenated facies category images that were used for training,
which is equal to 192 pixels in the vertical direction. As such, 192×192 pixel dimensions were chosen for input training
images. For a similar application using log data from other regions, the height of the input training images may need to
be adjusted to suit the thickness of strata and resolution of the log tool in question. Any change to the height of the input
image should not be detrimental to the effectiveness of the proposed methodology. When resistivity image logs are
processed two normalized images are generated. A statically normalized image and a dynamically normalized image.
Sedimentary structures, fractures and bioturbation are more easily observed on the dynamically normalized images,
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Figure 7: Post processing methodology.

Table 1

Average facies bed thickness in both CRC-1 and CRC-2 wells.

Facies Average thickness in millimetres
Well CRC-1 Well CRC-2

Mudstone 1396.6 1319.6
Heterolithics 791.0 700.9
Muddy-Sands 1132.1 971.3
Clean-Sands 1166.7 767.1
Cemented 346.1 391.9
Pebbles 83.0 114.9

whereas the statically normalized images assist in identifying grain size and general lithology trends (being a better
representation of absolute resistivities; (Keeton et al., 2015)). In general, dynamic normalization better accentuates
local features such as small-scale sedimentary fabrics, which are key in the training process of the network. For this
reason in this study, we have used the dynamic images to generate the input training dataset. The log data that were
used to generate the training image data was generally of good quality with occasional noise such as drill bit effects,
induced fractures, artefacts of a non-ideal borehole environment, and both stick and pull tool velocity distortion effects.
When generating the images, we included the noisy intervals in the training data with the expectation that characteristic
stratigraphic patterns would emerge to control the classification process. Since the noise intervals were not significant,
this allows the network to learn the noise features and exclude themwhen classifying intervals (by attributing low and/or
non-dominant probabilities for all facies categories). In a first attempt, we designed and trained a CNN from scratch.
Limited labelled data and the visual simplicity of the borehole resistivity images led to the assumption that a small
CNN trained from scratch would be sufficient to learn the features and the distribution of the input images. However,
the testing accuracy of that network only reached a maximum of 58%. The result of this experiment showed that
the training images had a complex distribution. Other contributing factors were: (1) lack of distinctive features in the
training images, and; (2) the visual similarity of some facies categories in dynamically normalized images. As a result,
the training data did not effectively represent the class distributions and the network could not learn and adequately
discriminate rich sedimentary features. To address these issues a larger, deeper network is needed. Therefore, we
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looked to the concept of transfer learning. In transfer learning an already trained model is repurposed to a new task.
This technique takes advantage of the trained feature extracting convolutional layers. New fully connected classifier
layers that are adapted to the new task classification categories, will be introduced to the network and trained based
on the classification of the new task. Since the network has already learned to extract features, training on the new
task will be significantly less computationally intensive and time consuming. A further advantage of this technique is
that it can achieve a higher performance with only a small amount of data. To ensure that transfer learning is suitable
for our application we tested three different pre-trained networks i.e. VGG-16, Inception-V3 and Resnet-101 on the
same input training dataset. These three networks reached a testing accuracy of 67.5% , 78.1% and 82.9% respectively.
Details of training and testing accuracy of the three mentioned networks are presented in Table 2.

Table 2

Training and testing Accuracy of three CNN's tested on the dataset.

CNN Name Training Accuracy Testing Accuracy

VGG-16 69.1% 67.5%
Inception-V3 99.7% 78.1%
ResNet-101 97.1% 82.9%

The comparison of the results showed that the accuracy trend complies with the trend on other data sets. This
compatibility of accuracy trend is confirmation that transfer learning is a suitable technique for our dataset. The
ResNet-101 network is the classifier of choice for this study since it produced the highest accuracy. To further evaluate
the performance of the above networks, a confusion matrix for each network was developed. A confusion matrix is a
visual summary of the performance of a classifier. The confusion matrices for the three networks trained on our six
facies categories is shown in Figure 8. The rows and columns of the matrix are the six facies categories organised in
the same order. The diagonal elements denote the correctly classified outputs. The off-diagonal elements show the
incorrectly classified outcomes. The three matrixes show a similar learning pattern. Facies category ‘5’ – Cemented,
and ‘6’ – Pebbles, are quite accurately detected by all the network s. The Cemented class returns a resistivity that may
often be higher than the FMI tool capacity, thereby saturating the measurement tool. The image is therefore distinct and
can be easily learned and detected by the network. An example image of the Cemented category is shown in Figure
9. Facies ‘3’ and ‘4’ are misclassified most often. Facies ‘3’ is misclassified as Facies ‘4’ 20% of the time, while
Facies ‘4’ is misclassified as Facies ‘3’ 10% of the time in the ResNet-101 confusion matrix. These figures are higher
in the VGG-16 and Inception-V3 matrices respectively, which is in line with the testing accuracy of these networks as
presented in Table 2.This is due to the similarity of the sedimentary textures revealed in these two facies categories
by dynamically normalized images. Conceptually, both categories represent sandstone with a mixture of mud/clay.
The level of mud in the rock determines the class. Therefore, occasionally these two classes can be hard to distinguish
form each other though also using the corresponding statically normalized image may help. Examples of two labelled
intervals of Facies ‘3’ and ‘4’ are shown in Figure 10. It can be seen from the matrices that Facies ‘1’ and ‘2’ are
occasionally misclassified as either Facies ‘3’ or ‘4’. Clearly, this occurs more often for VGG-16 and Inception-V3
than for ResNet-101. These misclassifications occur because these facies are visually similar in the log even though
they are geologically categorized in different categories. This limitation is due to using image logs alone which was
a research question in our investigation. CNNs are able to classify visually similar categories from image logs better
than the human eye, but to enhance accuracy of categorizing these facies, other data types such as supplementary 1D
logs of the conventional wireline suite should be incorporated as part of the training process. This is not within the
scope of the current study and therefore has not been addressed. The ultimate goal of the trained CNN is to classify the
learned facies categories in a full-length resistivity image log. We have proposed a post-processing methodology to
adapt the architecture of a CNN to this task. The post-processing technique is applied to the output of ResNet-101 since
it produced the best transfer learning accuracy. The simplest strategy would have been to slide a 192×192 window
over the resistivity image with a user-defined stride and evaluate a single image after each shift. However, given the
accuracy of our best network ResNet stands at 82%, this methodology would return incorrect results 18% of the time
to the post-processing step. Results were inconsistent even in thick intervals of the same facies category with incorrect
designations produced too often, requiring human intervention to correct and finalize. Another imperfection of this
method is the very low resolution of bed boundary detection. A proposed solution would be a moving window with
a stride of one. After each shift the outcome of the CNN classifier which is an array with 6 probability elements is
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Figure 8: Confusion matrices. a) VGG-16 b)Inception-V3 c) ResNet-101.

assigned to each horizontal line in the 192×192 sliding window. As the window slides over a specific line in the image
log, the line is evaluated 192 times and assigned 192 output arrays. As per the testing accuracy of the network, 82% of
category designations for this line are correct, therefore the element wise sum of all the arrays will result in an array
where the correct category has the highest probability and is thereby assigned to the line. Repetition of this method
for every line in the image produces a significant increase in the predictive accuracy and consistency of log facies
categorisation. Furthermore, bed boundary resolution is increased. We tested the network with this post-processing
methodology using lower quality image log data acquired at and manually interpreted for CRC-1. This represents a
‘whole-well’ test that produced an accuracy of facies categorisation of 92% and a bed boundary resolution that ranges
between 0.1 to 0.3 metres.

7. Conclusion
In this study, we have presented a methodology using Convolutional Neural Networks (CNN) and transfer learning

to augment/automate facies classification of resistivity image logs. We have proposed a data preparation methodol-
ogy that allows the user to generate more training data from the reference log. We have discussed challenges in the
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Figure 9: Example of Facies 5, Cemented.

Figure 10: Example of facies 3 (Muddy-Sands) and faces 4 (Clean-Sands). some intervals of these facies are visually quite
similar.

application of machine learning to facies detection and classification of image log data such as complexity of dataset
distribution and inadequate labelled data, subsequently we propose transfer learning to resolve these issues. We inves-
tigated three different CNNs and showed that transfer learning is a suitable technique for our dataset. Finally, we have
proposed a post-processing step to increase the accuracy of facies classification of a continuous log that also enhances
bed boundary detection/resolution. Our objective in this study was to determine whether CNNs are able to detect fa-
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cies classes using image log alone. The results show that in the absence of any other information and using image log
only the trained network can detect facies categories with a testing accuracy of 82% and the proposed post-processing
method increases the final categorization accuracy even further. We conclude that such a classification system would
benefit from the use of supplementary logs. An alternative might be to combine statically and dynamically normalized
images in the training dataset. The former could act as a baseline to discriminate cases of textural similarity in the
latter. Otherwise, 1D wireline log data such as the ‘porosity logs’ (sonic velocity, bulk density, neutron porosity) might
be used to provide an alternative and somewhat independent baseline discriminator for training the CNN classifier.
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A B S T R A C T

Generative Adversarial Networks (GAN) have shown great potential in not only producing acceptable
realizations of geologically complex models but also successfully reparametrizing them. Training GANs is quite
challenging. One such challenge is mode collapse. When generating realizations of spatial property, mode
collapse causes reduction in variability, compared to the input training dataset, and thus, the realizations
become spatially biased at specific locations. To address this issue, we developed a new GAN architecture
where a regularization term is introduced to maintain the variability and reduce mode collapse. This is
achieved by using a probability map to evaluate variability and spatial bias of generated realizations and
modifying the GAN loss function to minimize this bias. We applied the new architecture to a binary channelized
permeability distribution and compared the results with those generated by Deep Convolutional GAN (DCGAN)
and Wasserstein GAN with gradient penalty (WGAN-GP). Our results show that the proposed architecture
significantly enhances variability and reduces the spatial bias induced by mode collapse, outperforming both
DCGAN and WGAN-GP in the application of generating subsurface property distributions.

1. Introduction

Geological or reservoir modeling is an intricate task requiring mul-
tiple sources of information to be combined. The modeling process
usually involves the characterization of reservoir properties in ex-
tended areas using hard data from few locations. However, these
models can never fully describe the reservoir since some properties of
the geological system will be unknown or uncertain. The sources of
uncertainty are, among others, subsurface complexity and heterogene-
ity, incorrect geological concept and critically sparse data sampling.
Lack of hard data is an intrinsic issue that hinders accurate modeling
in earth sciences. To make best use of these models, uncertainty in
each included data type must be estimated and propagated through
the process of generating the model. Understanding uncertainty in
reservoir models usually involves generating multiple realizations of
the geological model that are both geologically sound (realistic) and
statistically faithful. Governing equations are then solved for each
realization to get an understanding of the probability distribution of
the model response (Chan and Elsheikh, 2020). Uncertainty can be
reduced by conditioning the models to hard data and nonlinearly
correlated production data. In this process also referred to as inversion,

∗ Corresponding author.
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E-mail addresses: roozbeh.koochak@adelaide.edu.au (R. Koochak), mohammad.sayyafzadeh@adelaide.edu.au (M. Sayyafzadeh).

reparametrizing the model can significantly reduce the computational
cost. Therefore, being able to reparameterize models is an important
feature.

Stochastic simulation methods are the most widely used methods
for generating realizations. These methods are generally divided in
two categories: Object-based methods and Pixel-based (sometimes also
known as Point-based) methods (Bai and Tahmasebi, 2020). Object-
based simulation methods parametrize geological geometries and use
Boolean object-based algorithms to place these objects on the simulated
area. These methods maintain geological realism better than other
methods, however, their major limitations is that conditioning the
realizations to hard data is challenging (Bai and Tahmasebi, 2020;
Strebelle, 2002). Pixel-based methods, such as Sequential Gaussian
Simulation and Truncated Gaussian Simulation, conduct the simu-
lation pixel by pixel. Using these techniques, it is complicated to
produce curvilinear geometries such as sinuous channels, (Tahmasebi,
2018), inherent in many geological facies structures. Considering two
point statistics is inadequate for reproducing complex geological struc-
tures (Marini et al., 2018), as a result realizations produced by these
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methods are unrealistic when simulating such geological systems. Trun-
cated Pluri-Gaussian (Le Loch et al., 1994) is a pixel-based method
introduced to overcome some of these limitations and better preserve
prior geological understanding (Astrakova and Oliver, 2015). The basic
idea in this method is to simulate several continuous gaussian fields and
truncate them to produce a categorical variable. The main difficulty
in applying this technique is the inference of the variogram models
for the underlying multi-gaussian functions (Mariethoz et al., 2009).
Multiple points statistic (MPS) methods were introduced to address the
problem of generating realistic models of complex geological structures.
Using multiple points requires a large number of samples which are
usually not available in earth sciences (Marini et al., 2018). This extra
information can be derived from a conceptual image contributed by
the geologist known as the Training Image (TI). MPS methods can
generate realizations that honor the training image. An example is
Single Normal Equation Simulation (SNESIM). This algorithm scans the
TI and stores the probability of all pattern occurrences in a search tree,
the probabilities are then retrieved based on existing data to gener-
ate realizations (Strebelle and Journel, 2001). Inversion using these
methods (Jäggli et al., 2017; Laloy et al., 2016) is computationally
expensive. There are reparameterization techniques available, however
the models provided using these techniques do not agree well with the
TI (Laloy et al., 2018).

Recently, a large body of research has applied Deep Generative
Models (DGM) to generate realizations of a geological model. DGMs
are a class of Neural Networks (NN) that can approximate high-
dimensional probability distributions when trained successfully, given
sufficient samples from the desired distributions. The trained model
can then be used to generate realizations from the underlying distri-
butions (Ruthotto and Haber, 2021) and they have the added value
of re-parametrizing the realizations, compared to MPS methods. Vari-
ational Auto-encoders (VAE) are an example of generative models
that use variational Bayesian inference to approximate the probability
density. VAEs consist of an encoder and a decoder. The encoder takes
in sample training data, and passes it through layers with decreasing
dimensionality, mapping the data to a latent space. The decoder then
samples from the latent space and reproduces the initial data (Sami
and Mobin, 2019). Inversion using VAEs has been reported to produce
superior results compared to MPS-based inversion (Laloy et al., 2017).
In combination with the ensemble smoother with multiple data assim-
ilation to history match production data, Canchumuni et al. (2021)
reported that the trained VAE resulted in ‘‘noisy’’ facies reconstruc-
tions. In general VAEs have a lower generative accuracy compared
to Generative Adversarial Networks (Lopez-Alvis et al., 2021) and are
prone to fail at learning intractable probability distributions (Sami and
Mobin, 2019). Among DGMs, Generative Adversarial Networks (GAN)
have shown great potential for generating realizations of a geological
model. The basic GAN created by Goodfellow et al. (2014) consists of
two neural networks, Generator and Discriminator, trained end-to-end
to produce realizations of a desired distribution. Since the introduction
of GAN in 2014, many GAN architectures have been developed and
tailored to the specific needs of their application.

There are three main components to generating satisfactory geolog-
ical realizations: 1. The realizations need to be geologically sound and
visually acceptable, 2. they must preserve the statistics of the structure
or reference training image (that includes univariate, two-point and
multiple-point statistics) and 3. they must maintain the variability of
the structure. Honoring hard data is an important feature of geological
realizations, however, the focus of this study is on unconditioned
models. Most of the literature documenting studies that have utilized
GANs in earth science applications have reported that GANs achieve
the first two components quite well, while due to mode collapse the
variability tends to decrease (Chan and Elsheikh, 2020, 2019b; Azevedo
et al., 2020). Training a GAN minimizes the divergence between the
probability Density Function (PDF) of the training data and the PDF
that the generator samples. In this process the condition where the

generator captures few major modes of the input training data and
ignores many small modes is referred to as mode collapse (Bang and
Shim, 2018). This results in reduction in variability of the realizations
that are generated. In other words, the realizations look similar in most
areas of the model with minor differences. This effect will severely
disturb uncertainty quantification or History matching as the generated
realizations will be biased towards certain areas in the model. Some
work has addressed this issue using a Wasserstein GAN, which theoret-
ically reduces mode collapse (Arjovsky et al., 2017). In general, there
are two forms of variability that need to be maintained: (1) the within-
realization variability and (2) the between-realization variability (Tan
et al., 2014). The within-realization variability refers to each individual
realization capturing the statistics (uni-variate, two-point, multiple-
point, etc.) of the geological structure (training data set), while the
between-realization variability refers to the dissimilarity of the gen-
erated realizations. Mode collapse refers to the output realizations
not being diverse. Therefore, variability in this paper always refers to
dissimilarity between generated realizations.

In this study, to improve the variability of generated geological re-
alizations we propose a new GAN architecture. Similar to conventional
GANs, our architecture consists of a Generator and Discriminator. A
regularization term has been added to the Generator loss to improve
variability and reduce spatial bias. To evaluate our proposed architec-
ture, we train a Deep Convolutional GAN (DCGAN) and a Wasserstein
GAN with gradient penalty (WGAN-GP) to generate realizations based
on the famous Strebelle benchmark reference training image (Strebelle
and Journel, 2001) of a stationary channelized fluvial system. We then
compare the results with those generated by our proposed architecture.
We introduce the new architecture using this binary benchmark image
since it is well known and frequently used in the literature, but the
proposed methodology can potentially be extended to be applied to
multiple-facies realizations. The rest of this paper is structured as fol-
lows: in Section 2, we describe some related work. A short background
of GANs and their training process along with brief description of
DCGAN, WGAN-GP and mode collapse in presented in Section 3. Our
proposed architecture is discussed in Section 4 followed by the exper-
imental setup in Section 5. Results and discussion, then conclusions of
the study follow, together with ideas for future work.

2. Related work

In the field of geosciences several studies have been conducted to
evaluate the effectiveness of GANs for generating realizations. Some
GAN variants have been proposed to improve the variability of gen-
erated realizations and conditioning to hard data. Note, to prevent
confusion between the geological conceptual Training Image, and GAN
input training data we, from here on, refer to the conceptual geological
image as Reference Training Image (RTI). To emphasize, the RTI is a
conceptual image of expected spatial structures and are usually built
based on prior information (Meerschman et al., 2013). The GAN input
training data are a set of realizations assembled based on the RTI and
used to train the GAN.

GANs have been used to generate realistic stochastic samples of
porous media (Mosser et al., 2017, 2018b). In Mosser et al. (2018b)
a modified version of the DCGAN (Radford et al., 2015) was trained
on randomly extracted images from a micro-CT. They reported that
computed two-point statistics and effective properties showed excellent
agreement between the GAN results and segments of the micro-CT
image. However, they observed far less variation in the generated
samples compared to the input training dataset. Mode collapse was
mentioned as one of possible reasons. GANs have also been applied
to seismic data. A Cycle-GAN was used to perform stratigraphic seis-
mic inversion based on a velocity model (Mosser et al., 2018c). In
Mosser et al. (2020), a DCGAN was trained to parametrize geological
heterogeneities and was combined with a numerical solution of the
acoustic inverse problem using the adjoint method. Mode collapse was
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discussed in this work and use of alternative networks that handle
mode collapse more efficiently was envisioned. GANs were also used
to reconstruct models retrieved by iterative geostatistical seismic in-
version (Azevedo et al., 2020). Both a DCGAN and WGAN (Arjovsky
et al., 2017) were trained on two types of dataset, a set of binary facies
and a continuous (P-wave propagation velocity) dataset where an infill
painting methodology (Yeh et al., 2017) was used for reconstruction of
images. Histograms, two-point variograms and probability maps were
used to evaluate the quality of the results. The authors reported a
reduction in the variability of the results when generating conditioned
realizations compared to unconditioned ones. Re-parametrization is an
important feature of GANs. In Chan and Elsheikh (2019b) a WGAN was
used to reparametrize geological realizations. The results were visually
acceptable, and the flow statistics induced by the generated realizations
were similar to the reference. A similar approach was used in Chan
and Elsheikh (2020) to re-parametrize conditioned and unconditioned
geological realizations. A GAN architecture was used in Laloy et al.
(2018) to perform an MPS-based geostatistical inversion for parameter
estimation. They proposed a 3D extension to the original 2D spatial
GAN (SGAN) (Jetchev et al., 2016) and incorporated it in a Markov
chain Monte Carlo (McMC). The authors reported that the generated re-
alizations captured the multiple point statistics of the RTI, and the low
dimensional representation allowed for efficient probabilistic inversion.
Multiple studies have used GANs to generate realizations conditioned
to hard data (Chan and Elsheikh, 2019a; Dupont et al., 2018; Mosser
et al., 2018a; Zhang et al., 2021). While Dupont et al. (2018) used
a modified version of semantic inpainting methodology to condition
realizations, Chan and Elsheikh (2019a) proposed an inference network
added to the Generator to further refine the generator function space so
that the generated samples are conditioned to hard data. Zhang et al.
(2021) used a U-net architecture to generate geological realizations
conditioned to hard data. To increase the variability of the generated
models they adopted a methodology where a loss term was formulated
to maximize the distance between generated images with respect to
corresponding latent vectors (Yang et al., 2019). The distance metric
used by this paper was L1 norm. In addition to generating different
geological realizations, Razak and Jafarpour (2020b,a) and Mosser
et al. (2019) have gone a step further by calibrating a reservoir model
using non-linear production data.

3. Background

3.1. Generative Adversarial Networks (GANs)

GANs are a family of deep-learning-based generative models where
the paradigm of unsupervised learning is used in their training process.
A brief explanation of supervised vs unsupervised is provided to better
explain the idea behind a GAN model. In machine learning, given a set
of inputs X and outputs Y as labels; a typical problem is to learn the
parameters of a model that maps X → Y. The mapping is usually learned
by correcting the model parameters to produce correct labels for the
input set. The correction process is governed, or supervised by updating
model parameters, usually in an iterative process, so as to minimize the
error between model outputs and the true labels. In cases where the
output set is not provided, the paradigm of unsupervised learning can
be used. Given only set X, the goal is to find patterns in the data. This
is a much less well-defined problem, since the desired patterns to look
for are not known (Murphy, 2012). In order to make predictions about
data in an unsupervised manner, models can be trained to summarize
the distribution of input variables which can in turn create or generate
new samples within the input distribution.

The architecture has two sub-models: Generator and Discrimina-
tor (Goodfellow et al., 2014). Generator is used to generate new plau-
sible examples from the problem domain. The Discriminator is the
sub-model that is used for training the Generator. The architecture has
the advantage that after being trained, the sub-models can be used as

Fig. 1. Vanilla GAN architecture.

standalone models for data generation or classification (Radford et al.,
2015). The training process of a GAN is based on a game theoretic sce-
nario in which the generator competes against an adversary. The gen-
erator network directly produces samples from a fixed-length random
vector, referred to as latent space, while the discriminator network,
the adversary, attempts to distinguish between samples drawn from the
training data (real data), and the generated samples (Goodfellow et al.,
2016).

Fig. 1 illustrates the basic workflow of a vanilla GAN. Based on the
figure, latent vector 𝑧, is fed to the Generator 𝐺 to generate sample
𝐺(𝑧). FC stands for Fully Connected layers. It is conventional to feed
a batch of latent vectors to generate a batch of samples every time.
The Discriminator is trained to classify 𝐺(𝑧) and real samples, X. This
is accomplished by maximizing the probability assigned to real and
generated data at the output of the discriminator. From implementation
point of view, this is accomplished by defining a binary classifica-
tion task with labels 0 and 1 for generated and real samples. Hence,
the Discriminator seeks to minimize the average binary cross entropy
loss (Goodfellow et al., 2014) denoted as:

ℒ𝐺𝐴𝑁
𝐷 = −E𝑥∼𝑝𝑑 [𝑙𝑜𝑔 (𝐷(𝑥))] − E𝐺(𝑧)∼𝑝𝑔 [𝑙𝑜𝑔 (1 −𝐷 (𝐺(𝑧)))] (1)

where E is the expected value of sample drawn from the real data 𝑝𝑑 or
generated data 𝑝𝑔 . 𝐷(.) Denotes the output of the Discriminator which
is the probability assigned to a sample being drawn from the real data.
After updating the Discriminator, the Generator is trained in the GAN
architecture, while keeping the discriminator frozen. In this process, a
batch of samples is generated and labeled 0. The generated batch along
with the real samples labels as 1s are fed to the discriminator. Here,
if good samples are generated, the Discriminator produces small loss
values and vice versa. The loss is then back propagated in the GAN in
order to update the Generator. This process is repeated until no further
improvements of the GAN is possible. Putting this into notation, the
Generator loss can be represented as:

ℒ𝐺𝐴𝑁
𝐺 = E𝐺(𝑧)∼𝑝𝑔 [𝑙𝑜𝑔 (1 −𝐷 (𝐺(𝑧)))] (2)

Having described the training process of GAN sub-models, the
training of GAN can be summarized as a minimization–maximization
(minmax) process, achieved via a minmax loss (Ko and Lin, 1995;
Thekumparampil et al., 2019). The minimax GAN loss refers to the
minimax simultaneous optimization of the discriminator and generator
models. The Discriminator is trained to maximize the probability of
assigning correct labels to samples from both the training data and
generated data. At the same time, the Generator is trained to minimize
log(1 −𝐷 (𝐺(𝑧))) (Goodfellow et al., 2014). In general, the minmax
refers to an optimization strategy in two-player turn-based games for
minimizing the loss or cost for the worst case of the other player.
Ultimately equilibrium is achieved when 𝑝𝑑 = 𝑝𝑔 and 𝐷(.) = 1∕2. At
this point the Discriminator is unable to distinguish between real and
fake samples (Goodfellow et al., 2014).

After training, the Generator can map a random sample from the
latent space into a sample from the input training data space. Therefore,
new but different samples from the input training data are generated.
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Fig. 2. Convolutional and Transposed convolutional layers. (a) In a convolutional layer the weights of the filter 𝑊 map the input to a lower dimension 𝑌 . (b) in a transposed
convolutional layer the filter with weights 𝑊 maps its input to a higher dimension.

Fig. 3. Example of severe mode collapse. The image shows 25 tiled samples generated
by a GAN. (a) The images are very similar and channels occur in common locations.
(b) Example of how the realizations should look like with reduced mode collapse.

3.2. Deep convolutional GAN (DCGAN)

DCGAN, introduced by Radford et al. (2015) is a direct architecture
extension of the GAN, designed for image related tasks, which replaces
the fully connected layers of the Generator and Discriminator with
convolutional layers. This is the preferred architecture when dealing
with image data, as convolutional layers can extract information from
images taking into account the spatial structure of the image. The layers
in the generator usually try to map the input latent space into a larger
space, hence transposed convolutional layers are used. On the other
hand, the Discriminator tries to map both generated and real samples
into a lower dimension, hence convolutional layers are considered. In
both types of layer, the objective is to train convolutional filters that
can extract meaningful information from the previous layer, so that
the trained network can output the desired model. Fig. 2 illustrates
schematically how convolutional and transposed convolutional layers
operate. In the convolutional setup, the weights of the filter 𝑊 map the
input to a lower dimension 𝑌 , while in the transposed convolutional
setup, the filter with weights 𝑊 is used to map its input to a higher
dimension.

3.3. Wasserstein GAN (WGAN)

The traditional GAN Loss function tries to minimize the distance be-
tween the distribution function of the generated and real data using the
Kullback–Leibler (KL) divergence (Goodfellow et al., 2014). However,
this loss is prone to mode collapse. This is mostly due to the well-
trained Discriminator, leaving the generator with only a small value
of loss available for improvement. The Wasserstein GAN (Arjovsky
et al., 2017) was introduced in 2017, with a new loss function used
to improve the Discriminator. Instead of the sigmoid classification loss,
here the Discriminator acts like a critic and outputs real values as scores

to indicate how representative the input samples are. The Discriminator
loss is represented as:

ℒ𝑊𝐺𝐴𝑁
𝐷 = −E𝑥∼𝑝𝑑 [𝐷(𝑥)] + E𝐺(𝑧)∼𝑝𝑔 [𝐷 (𝐺(𝑧))] (3)

This formulation is similar to the original GAN where only the log
term has disappeared. Similarly, the Generator loss function is reduced
to:

ℒ𝑊𝐺𝐴𝑁
𝐺 = −E𝐺(𝑧)∼𝑝𝑔 [𝐷 (𝐺(𝑧))] (4)

A problem with WGAN is that the Wasserstein distance is highly in-
teractable and the updated values of the model parameters can change
rapidly causing instability in the training of GAN. To alleviate this prob-
lem, gradient clipping was proposed (Arjovsky et al., 2017). Later the
clipping process was replaced with a Gradient Penalty (GP) (Gulrajani
et al., 2017), resulting in a new GAN named WGAN-GP. In this scheme,
the model is penalized if the gradient norms move away from the norm
target value 1. The Generator loss function of the WGAN-GP is similar
to WGAN, however, the GP term is added to ℒ𝑊𝐺𝐴𝑁

𝐷 . Accordingly,
ℒ𝑊𝐺𝐴𝑁−𝐺𝑃

𝐷 can be formulated as:

ℒ𝑊𝐺𝐴𝑁−𝐺𝑃
𝐷 = ℒ𝑊𝐺𝐴𝑁

𝐷 (5)

+ 𝜆E𝐺(𝑧)∼𝑝𝑔

[

(

‖∇𝐷 (𝛼𝑥 + (1 − 𝛼𝐺(𝑧))) ‖2 − 1
)2
]

where ∇ represent the Gradient operation and 𝛼 controls the contribu-
tion of real and generated samples in the penalization term.

3.4. Mode collapse

Generally, we expect GANs to generate a wide variety of samples.
This is especially important in geosciences, where maintaining variabil-
ity is crucial for an accurate quantification of uncertainty in predictions
(e.g., forecast of hydrocarbon recovery factor). GANs have been shown
to successfully generate visually acceptable samples. However due to
mode collapse in the training process of a GAN, variability in the gener-
ated realizations is lower than the variability of the input data resulting
in induced spatial bias. Mode collapse is defined as the case whereby
the Generator can only generate one type of sample or a small set of
distinct samples. This is caused when the Generator learns to generate
samples from few modes of the data distribution but ignores other
modes although they are present in the input training data (Srivastava
et al., 2017). This effect when generating geological realizations, will
result in the Generator producing multiple samples/realizations with
one or more features replicated in common locations. The realizations
overall are therefore spatially biased towards those features. Mode
collapse can be severe where it is visually detectable in the samples or
it can be partial where the effects are subtle and not visually obvious.
A partial mode collapse would cause bias in the generated geological
realizations where certain areas in the model will have a higher chance
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Fig. 4. Proposed framework for Variability Aware GAN(VA-GAN). In this framework, a probability map is produced for each batch of generated data in every iteration. Then
probability loss is used to punish spatially biased batches.

Fig. 5. Reference training image for a binary facies model of a fluvial distribution.

of showing sand while other areas are biased to shale. An example
of severe mode collapse is shown in Fig. 3. In this figure, 25 tiled
visually acceptable realizations of a channelized fluvial system (Fig. 3b)
have been compared with 25 tiled realizations of the same geological
system generated with severe mode collapse (Fig. 3a). Clearly, despite
the introduced noise, under mode collapse the yellow channels are
reoccurring in more or less the same locations.

4. Proposed GAN architecture

Given a distribution of geological patterns, we aim to generate
realizations that are visually acceptable, honor the statistics of the
distribution and maintain variability. This study focuses on maintain-
ing the variability of the generated realizations at the same level as
the input training data and reduce spatial bias as much as possible.
To achieve this, we have proposed a new GAN architecture with a
regularization term introduced to the Generator loss function. GANs

work through the training data in batches. To investigate the vari-
ability, we generated probability maps of the input training data and
GAN generated realizations. Probability maps are an excellent tool for
evaluating spatial bias, since they can visually show the location of the
spatial bias and quantitatively measure the severity of it. Comparison
of the probability maps generated for input training data and generated
realizations showed GAN results exhibit spatial bias. This comparison
sparked the idea to change the GAN architecture so that in every
iteration it punishes spatially biased batches.

Fig. 4 shows our proposed framework. As shown in the figure our
proposed architecture consists of a Discriminator and a Generator that
perform the traditional functionality. However, a regularization term is
added to the generator loss to penalize batches of data that show spatial
bias. This is accomplished by introducing a loss component to the
Generator derived by the norm one distance between the probability
map of the batch data and the probability map of the input training
data. In the case of a stationary RTI, substituting with distance to a
uniform map would suffice. In a non-stationary case, though, where for
example the geologist prefers to assign higher probability to a feature
or channel in a specific location of the map, generating the input
training data probability map would accommodate for that and is a
more general approach.

Assume 𝑥𝑘 ∈ Z𝑖×𝑗
2 , where 𝑘 ∈ [1, 2,… , 𝑁𝑟] is 𝑘th binary realization

sample of size 𝑖 × 𝑗 from a dataset X ∈ Z𝑖×𝑗×𝑁𝑟
2 . 𝑁𝑟 denotes the total

number of realizations in a batch or input training dataset. Since 𝑥
is a binary realization the pixel values are either 0 for background
mud or 1 for channels. Summing all same index pixel values of all
realizations in the dataset X and dividing the result by 𝑁𝑟, will generate
the probability map 𝑃𝑚 (X) ∈ R𝑖×𝑗 of size 𝑖×𝑗, where each pixel in 𝑃𝑚 (X)
has a value between zero and one, which represents the probability of
sand occurrence at that pixel. If each realization is represented by an
𝑖 × 𝑗 matrix then:

𝑃𝑚 (X) = 1
𝑁𝑟

𝑁𝑟
∑

𝑘=1
𝑥𝑘 (6)

Probability loss is defined as:

ℒ𝑝 = ‖𝑃𝑚 (𝐺(𝑧)) − 𝑃𝑅‖1 (7)

where 𝑃𝑚 (𝐺(𝑧)) is the probability map of a batch of realizations and
𝑃𝑅 is the probability map of the input training data. We will from here
on refer to this architecture as Variability Aware GAN (VA-GAN).
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Fig. 6. Samples of input training data generated using two methods. (a) Direct Patch (b) SNESIM.

Fig. 7. Probability map of input training data. (a) Probability map of Direct Patch input training data (b) probability map of SNESIM input training images.

Fig. 8. Effect of three different Batch size values on VA-GANℒ𝑀𝑖𝑛𝑀𝑎𝑥
. (a) Discriminator loss. (b) Generator loss. (c) Probability loss.

We have compared our proposed VA-GAN with two other GANs
used to generate geological realizations. The DCGAN and WGAN-GP
used in this study, both have convolutional layers in their structure,
therefore, the main difference between the two GANs is the formulation
of their loss. The DCGAN uses the traditional MinMax loss, while the
WGAN-GP uses the Wasserstein loss (Wloss). We have tested VA-GAN
with both minmax (VA-GANℒ𝑀𝑖𝑛𝑀𝑎𝑥) and Wasserstein loss (VA-GANℒ𝑊

)
to evaluate its effect on variability of realizations. The Generator loss
(ℒ𝐺) in VA-GANℒ𝑀𝑖𝑛𝑀𝑎𝑥

is:

ℒMinMax
𝐺 = −E𝐺(𝑧)∼𝑝𝑔 [𝑙𝑜𝑔 (𝐷 (𝐺(𝑧)))] + 𝛽ℒ𝑃 (8)

ℒ𝐺 in VA-GANℒ𝑊
is:

ℒWasserstein
𝐺 = −E𝐺(𝑧)∼𝑝𝑔 [𝐷 (𝐺(𝑧))] + 𝛽ℒ𝑃 (9)

In the above loss functions, 𝛽 is a weighting factor used to establish
a balance between the contribution of the first component of the loss
functions and ℒ𝑃 . 𝛽 controls how much variability correction should
be applied to the generator loss. To derive a value for 𝛽, we have
conducted a sensitivity analysis. The analysis shows that the optimum
outcome can be achieved when both loss components are in the same
order of magnitude. For example, in DCGAN the Generator loss is in the
order of 1𝐸−1 while the ℒ𝑃 is in the order of 1𝐸+3. Therefore, the best
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Fig. 9. Sample 100 × 100 realizations generated by different GANs trained on Direct Patch dataset. From top, (a) DCGAN (b) WGAN-GP (c) VA-GANℒ𝑀𝑖𝑛𝑀𝑎𝑥
(d) VA-GANℒ𝑊

.

𝛽 value is one that ensures both loss components have approximately
similar contribution.

5. Experimental setup

5.1. Datasets and reference training image

In this study, we limit our investigations to a binary fluvial dis-
tribution of permeability zones. The GANs are trained to generate
unconditional realizations of size 100 × 100. We have used a modified
version of the famous Strebelle RTI (Strebelle and Journel, 2001) shown
in Fig. 5 as a statistical reference to generate realizations. The RTI is a
250 × 250 pixel binary channelized permeability model exhibiting geo-
statistical stationarity. It consists of two facies, where yellow in Fig. 5
corresponds to channel sand and blue indicates background mud/clay-
rich floodplain material. We have rotated the original channel flow
direction by 45 degrees. Therefore, in our realizations the channel
flow direction is along a Northwest–Southeast trend. In order to use
the reference image as input training data to the GANs, we used two
different methods. Our first dataset was created by sliding a 100 × 100
patch window over the reference image with a step of 4 pixels. A
similar strategy was used in Azevedo et al. (2020). The step of 4 pixels
was chosen to limit the number of dataset samples between 1000 to
1500 based on reports in the literature. Higher numbers would only
increase the computation expense of training the network. Overall 1444

realizations of size 100 × 100 were produced. We refer to this dataset
as the ‘‘Direct Patch’’ dataset. The second dataset was 1000 realizations
generated using an MPS algorithm, SNESIM. The MPS algorithm was
applied using the SGeMS toolbox (Remy et al., 2009). A similar method-
ology was used in Chan and Elsheikh (2020) and Liu et al. (2019). This
dataset will be referred to as ‘‘SNESIM’’ dataset. Samples of realizations
generated using the above-mentioned methods are presented in Fig. 6.
There are numerous methods that can be used to generated the input
training dataset (Mariethoz et al., 2010; Gravey and Mariethoz, 2020).
In Cao et al. (2021) a large dataset of Strebelle RTI simulations are
referenced. It has been shown that the input training data affects the
generated results of GANs (Kamenshchikov and Krauledat, 2018). We
trained the GANs in this study on both datasets to also investigate the
effect of each method. The SNESIM was chosen for this study because
it is frequently used in the literature and the Direct patch dataset and
its effects on the results is a research question we aim to investigate.
Replacing any of the datasets with a diffrent one would not affect the
ultimate goal of the paper. Probability maps were generated for both
the input training data and generated realizations. The input training
data are binary images where 1 represents high permeability sand
channel and 0 represents background mud. Each individual pixel in the
probability map has a value between 0 and 1. This can be interpreted
as the probability of sand occurring at that location. The probability
map of both Direct patch and SNESIM input training data is shown in
Fig. 7. These images show no spatial bias and all pixel values are close
to 30% which is consistent with the univariate statistics of the RTI.
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Fig. 10. Sample 100 × 100 realizations generated by different GANs trained on SNESIM dataset. From top, (a) DCGAN (b) WGAN-GP (c) VA-GANℒ𝑀𝑖𝑛𝑀𝑎𝑥
(d) VA-GANℒ𝑊

.

To generate probability maps, sets of 150 realizations were gener-
ated using a trained Generator. The output of the trained generator
ranges between −1 and 1. The realizations were then rescaled and
binarized.

There are many methods available for quality controlling and eval-
uating samples of generated realizations (Rongier et al., 2016). In this
study, besides visual and qualitative evaluation of the GAN results, the
method of Analysis of distances (ANODI) as described by Tan et al.
(2014) was used for a more quantitative approach to evaluating the
generated samples. Method of ANODI captures multiple point statistics
of complex structures by calculating a multiple point histogram of
patterns extracted using predefined template at different resolutions.
The Jensen–Shannon divergence between the histograms is used as a
measure of distance between the images. This distance is used to gauge
how close the generated realizations are to the RTI. In other words, how
well the generated data have preserved the multiple point statistics of
the reference training image. The analysis was performed on both the
input datasets and generated samples at 10 different resolutions, with
a template size of 4 × 4 . To visualize the distances, Multidimensional
scaling (MDS) is used. As a measure of quality of the generated data
we used the average Jensen–Shannon distance of all the generated
realizations to the reference training image.

5.2. GAN implementation

The DCGAN architecture used in this study, is similar to the DCGAN
proposed in Radford et al. (2015). The network was customized for
100 × 100 input size images. The Discriminator uses LeakyRelu activa-
tion for all layers except Sigmoid activation as the last layer. A Dropout
layer is used after the input layer with the probability of 0.5. Batch nor-
malization was used in every layer of the discriminator. The Generator
uses Relu activation for all layers except the last, where Tanh activation
is used. Batch normalization was used in all layers. VA-GANℒ𝑀𝑖𝑛𝑀𝑎𝑥

was
trained on Direct patch and SNESIM datasets to compare with DCGAN.
Both networks were trained with the same hyper-parameters namely
batch size of 100, learning rate of 2𝐸 − 4 and same layering in the
Generator and Discriminator as described above. Adam optimizer was
used for training. A sensitivity analysis showed that higher batch sizes
yield better variability. As shown in Fig. 8, increasing the Batch size
while training VA-GANℒ𝑀𝑖𝑛𝑀𝑎𝑥

reduces the probability loss while it has
little effect on the Generator and Discriminator losses. Meanwhile, the
probability maps showed a narrower range between the minimum and
maximum pixel value and less outliers, indicating lower spatial bias and
better variability for both input datasets. Batch sizes larger than 100
showed little improvement. The WGAN-GP algorithm (Gulrajani et al.,
2017) used in this study has a layer structure, similar to the WGAN used
by Chan and Elsheikh (2020), only input size is adjusted to 100 × 100
images. The Generator uses ReLu activation for all layers except the
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Fig. 11. MDS plots of the Jensen–Shannon distances between input datasets to RTI and generated realizations to RTI. (a) (Left column) Realizations generated from GANs trained
on Direct patch dataset. (b) (right column) Realizations generated from GANs trained on SNESIM dataset. From top, Row 1: DCGAN, Row 2: WGAN-GP, Row 3: VA-GANℒ𝑀𝑖𝑛𝑀𝑎𝑥

,
Row 4: VA-GANℒ𝑊

. The number adjacent to the Z-axes of each figure is the Euclidean norm of the Jensen–Shannon distance of all generated realizations to the RTI.

final layer which has a Tanh activation. Batch normalization layers
were used as well. The batch size was 32 and learning rate was 2𝐸 − 4
similar to the network trained in Chan and Elsheikh (2020). LeakyReLu
activation layers along with batch normalization layers made up the
Discriminator. The last layer in the Discriminator does not have any
activation. In the process of training the WGAN-GP, we noticed that
the batch normalization layers play an important role. The absence of
these layers caused significant noise in the produced realizations. This
noise in turn significantly increased the Jensen–Shannon distance of
the realizations to the RTI. VA-GANℒ𝑊

was trained with similar hyper-
parameters and the variability of generated results was compared to
WGAN-GP. We aimed for the GAN layers to be as close as possible to the
networks used in the literature to achieve a more reliable comparison
between our architecture and what has been previously used. For this
reason, we have used similar layers to networks used in our Refs. Chan
and Elsheikh (2020) and Radford et al. (2015). All GANs whether
reference or proposed (VA-GAN) were trained from scratch and our
stopping criterion was when loss stabilized rather than specific number
of epochs or iterations. The latent input vector size for all the GAN
architectures trained in this study is 100. The Discriminators were

adjusted to input single channel (grayscale) images of size 100 × 100.
The generator images have the same size and channel number.

6. Results

We have trained all the four GANs on two sets of input training
images. A DCGAN and WGAN-GP were trained, and their results were
compared with those obtained by our proposed VA-GANℒ𝑀𝑖𝑛𝑀𝑎𝑥

and
VA-GANℒ𝑊

. Our proposed architectures, are designed to reduce spatial
bias and maintain variability of the input training data. 𝛽 = 1𝐸 −4 and
𝛽 = 1𝐸 − 2 were used for VA-GANℒ𝑀𝑖𝑛𝑀𝑎𝑥

and VA-GANℒ𝑊
generator

losses respectively. Visual inspection and ANODI were both used to
evaluate the quality of the realizations, and probability maps were used
as a measure for variability and spatial bias.

Samples of generated realizations of all four GANs trained on the
Direct patch input dataset are shown in Fig. 9. Five random realizations
were drawn from 150 realizations generated from each GAN. Each row
in the figure corresponds to a GAN. From top, (a) DCGAN, (b) WGAN-
GP (c)VA-GANℒ𝑀𝑖𝑛𝑀𝑎𝑥

(d)VA-GANℒ𝑊
. The realizations in the figure

have preserved the binary features, channel width and continuity of
the RTI. All four GANs are capable of generating visually acceptable
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Fig. 12. Comparison of univariate statistics of Probability maps of input training data and generated realizations of GANs. The data sources for each probability map are as
follows: (a) Comparison of probability maps produced from GANs trained on Direct patch dataset, (I) realizations generated from DCGAN, (II)realizations generated from WGAN-
GP, (III)realizations generated from VA-GANℒ𝑀𝑖𝑛𝑀𝑎𝑥

, (IV)realizations generated from VA-GANℒ𝑊
, (V) Direct patch input dataset. (b)Comparison of probability maps produced from

GANs trained on SNESIM dataset, (I)realizations generated from DCGAN, (II)realizations generated from WGAN-GP, (III)realizations generated from VA-GANℒ𝑀𝑖𝑛𝑀𝑎𝑥
, (IV)realizations

generated from VA-GANℒ𝑊
, (V)SNESIM input dataset.

realizations that preserve qualitatively the multiple point statistics of
the RTI.

Fig. 10 shows five randomly selected realizations out of a pool
of 150 realizations generated by each GAN trained on the SNESIM
dataset. Each row corresponds to a GAN as described above. While
all samples in Fig. 10 are visually acceptable and channel sinuosity
and width are consistent with the RTI, the generated samples are less
continuous. GANs trained on the SNESIM dataset produce samples
that occasionally show artifacts and channels are less continuous, with
shorter and more dispersed channels present in most of the sample
realizations. The cause of this issue is the SNESIM algorithm and the
discontinuity was introduced when SNESIM was applied to generate
the input training dataset. This is clearly shown in Fig. 6 and was also
observed by Azevedo et al. (2020).

As second measure of quality, ANODI was applied to generated
results of all the 8 settings and the input training data. The results of
Jensen–Shannon distances are shown in MDS plots of Fig. 11 for better
visualization. In this figure, green shows the input realizations, blue
shows the generated realizations and the larger black dot represents
the RTI. The left and right columns are results from GANs trained on
the Direct patch and the SNESIM dataset respectively. The Euclidian
norm of the Jensen–Shannon distance of all 150 generated realizations
to the RTI is used to evaluate which GAN preserves the multiple point
statistics of the RTI better than others. This distance for each GAN is
shown next to the Z-Axes of each plot in Fig. 11 and also presented
in Table 1 for convenience. In general, GANs trained on the Direct
patch dataset produced statistically closer results with lower Jensen–
Shannon distances to the RTI, which is in line with observing more
continuous channels in the realizations. Regardless of the input training
data, WGAN-GP (Fig. 11 Row2) was able to preserve better the multiple
point statistics of the RTI compared to DCGAN (Fig. 11 Row1). Our
proposed architecture has reduced the Jensen–Shannon distance of the
realizations to RTI while enhancing variability considerably. As shown
in Table 1, VA-GANℒ𝑀𝑖𝑛𝑀𝑎𝑥

in comparison to DCGAN and VA-GANℒ𝑊
compared to WGAN-GP have enhance the average Jensen–Shannon
distance of realizations by 19.5% and 10% respectively.

It should be noted that although DCGAN results show a higher
Jensen–Shannon distance, the realization generated are still visually
acceptable. However, the reduction of the Jensen–Shannon distance

Table 1
Euclidean norm of the Jensen–Shannon distances between generated realizations and
the reference training image.

GAN Direct Patch SNESIM
input data input data

DCGAN 0.41 0.64
WGAN-GP 0.30 0.55
VA-GANℒ𝑀𝑖𝑛𝑀𝑎𝑥

0.33 0.46
VA-GANℒ𝑊

0.27 0.45

and generating results that better preserve multi-point statistics of the
reference image is a further advantage of our proposed architecture.

Probability maps were generated for both the input training datasets
and the generated realizations. These maps were used to evaluate the
variability and spatial bias of generated realizations. The probability
maps of the input training data are shown in Fig. 7. Fig. 7a shows
the probability map of the Direct Patch input data and Fig. 7b is
the probability map of the SNESIM dataset. Neither of these images
show any significant spatial bias. The range of the probability values
at all locations are similar and there are no significant outliers. The
univariate statistics of the pixel values of the maps are shown in Fig. 12.
In this figure the blue box shows the 25th to 75th percentile and the
red line in the middle is the median of the map pixel values. The
whiskers show the range of the data and the red crosses are the outliers.
The Direct patch map ranges between 26–35%, while the SNESIM map
has range between 20–30%. Both maps show a narrow range with few
insignificant outliers. The probability maps of the input training data
were used as a reference for the GANs trained on that input data.

Probability maps of samples generated by GANs trained in this study
have been presented in Fig. 13. The GANs trained on the Direct patch
dataset (column a), show significantly more spatial bias compared to
GANs trained on the SNESIM dataset(column b). The DCGAN structure
clearly shows bias in multiple locations when trained on Direct Patch
dataset (Fig. 13 a(I)). Severe outliers are observed, some areas show
over 80% chance of sand occurrence and other areas with probability
lower than 10% chance of sand occurrence. This can also be observed
in the sample realizations (Fig. 9). A repeated trend is clearly visible in
the samples generated by the DCGAN. The results of DCGAN, however,
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Fig. 13. Probability maps created from 150 realizations generated by different GANs. (a) (Left column) probability maps of realizations generated by GANs trained on Direct patch
dataset. (b) (right column) probability maps of realizations generated by GANs trained on SNESIM dataset. (I) DCGAN, (II) WGAN-GP, (III) VA-GANℒ𝑀𝑖𝑛𝑀𝑎𝑥

, (IV) VA-GANℒ𝑊
. Each

probability map is of size 100 × 100.

are not as severe when trained on the SNESIM data set (Fig. 13
b(I)). Nevertheless, outliers over 50% and lower than 10% are present
in the probability map when DCGAN is trained on SNESIM dataset.
VA-GANℒ𝑀𝑖𝑛𝑀𝑎𝑥

significantly enhances the results, narrowing the range
of probabilities and reducing the outliers (Fig. 13 Row III).

WGAN-GP algorithm, as expected and reported in the literature,
reduces the effect of mode collapse. The results of this study have
demonstrated this feature of the WGAN-GP (Fig. 13 Row II). Bias in
the generated samples is not as severe. However, the range of proba-
bility values is wide and outliers over 50% and lower than 10% are
occasionally observed. VA-GANℒ𝑊

has enhanced the results compared
to WGAN-GP as well, bringing the spatial distribution of the probability
maps closer to that of the input data.

Training GANs on the Direct patch dataset produces more realistic
and continuous channels. However, GANs trained on this dataset are
prone to mode collapse, and spatial bias is observed in the results. Using
our proposed architecture, it is possible to train a GAN with the Direct
Patch input dataset, resulting in more visually continuous realizations
with better preserved multiple point statistics of the RTI and at the
same time maintain variability and reduce spatial bias. Naturally, the
next step would be to condition the generated realizations to observed

data. As mentioned in the related work section there have been a
number of attempts to generate conditioned realizations. However,
mode collapse and spatial bias caused by the GAN architecture and
input training data often adversely affect the conditioning algorithm.
The extent of this adverse effect might be offset somewhat by the
tendency for a suit of conditioned realizations to exhibit less variability
than unconditioned realizations. However, the specific focus in this
study was on reducing the tendencies for mode collapse and spatial
bias.

7. Discussions

To better demonstrate the impact of 𝛽 in Eqs. (8) and (9), we have
conducted a sensitivity analysis. The values of 𝛽 used in this analysis are
given in Table 2. Both VA-GANℒ𝑀𝑖𝑛𝑀𝑎𝑥

and VA-GANℒ𝑊
were trained

using the Direct patch dataset and these 𝛽 values.
The proposed 𝛽 is the value where both loss components are at the

same order of magnitude (this is the value used to derive the results in
the paper). This value was derived, using a Heuristic approach, where
the first 20 iterations of training were monitored. In each iteration,
both loss components were calculated and compared to determine the
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Fig. 14. Sample realizations generated from the 𝛽 sensitivity analysis. 𝛽 value for each set of realizations is shown on the Y axis. (a) VA-GANℒ𝑀𝑖𝑛𝑀𝑎𝑥
, (b) VA-GANℒ𝑊

.

Table 2
Range of beta values included in the sensitivity check.

GAN One order Proposed 𝛽 One order Two orders
smaller larger larger

VA-GANℒ𝑀𝑖𝑛𝑀𝑎𝑥
1𝐸−5 1𝐸−4 1𝐸−3 1𝐸−2

VA-GANℒ𝑊
1𝐸−3 1𝐸−2 1𝐸−1 1.0

difference in the order of magnitude. 𝛽 values one order of magnitude
lower and one and two orders of magnitude higher compared to the
proposed 𝛽 were analyzed. 𝛽 = 0 (regular GAN) has also been pre-
sented for better comparison. Fig. 14 shows sample realizations of the
trained GANs. Three samples were randomly chosen from a pool of
150 realizations generated using each GAN. As the images show, when
increasing the Beta value, the ℒ𝑃 component of loss function increases,
and the focus of the loss function shifts to this component. Significantly
large values will prevent the GAN from learning the features of the
training data. On the other hand, as 𝛽 becomes increasingly small,
there is less focus on the probability loss and with extremely small
values the component vanishes, therefore, results starts to resemble
the regular GAN. The box plot of the probability maps generated using
these realizations confirms this finding. As shown in Fig. 15, 𝛽 values
that do not maintain a balance between the loss components, tend
to either introduce spatial bias or disturb the learning process of the
GAN. In Fig. 15(a), VA-GANℒ𝑊

still provides acceptable results with
beta values one order of magnitude larger than the proposed 𝛽. This is
because the GAN component of the loss in this architecture increases as
the training progresses, therefore, larger values of 𝛽 are still acceptable.

There are different methods that can be used to obtain the optimum
beta value. Users can for example use sensitivity analysis or setup a rule
to be applied every iteration based on the value of the loss components.

The method of choosing beta is not detrimental to the methodology all
together.

There are numerous regularization methods in the literature with
the aim to stabilize GAN training and reduce Mode collapse (Kurach
et al., 2019). Regularization methods generally strive to impose Lip-
schitz continuity on the discriminator to prevent the weights from
exploding during training (Lee and Seok, 2020). We have compared
the effectiveness of our proposed architecture with two regularization
methods. WGAN-GP uses gradient penalty regularization. We have
demonstrated, that Our proposed method can be applied to a GAN
in conjunction with other regularization methods to further enhance
results, as we have demonstrated with WGAN-GP (Figs. 12 and 13). We
have further compared VA-GANℒ𝑀𝑖𝑛𝑀𝑎𝑥

with 𝐿2 regularized DCGAN.
The results showed that while 𝐿2 regularization reduced outliers in the
probability maps, it does not adequately reduce spatial bias. For the
sake of conciseness, we have not presented the 𝐿2 comparison graphs
here.

8. Conclusion

In this study, we developed a new GAN architecture to maximize
variability of generated samples of subsurface spatial property. We
applied our proposed architecture to generate unconditioned sample
realizations based on the reference training image. The quality and vari-
ability of results of the conventional GANs and our proposed GANs were
compared. The networks were trained on two input datasets, the Direct
patch and SNESIM datasets. As quality measures, visual inspection and
ANODI analysis were used. Probability maps were also applied to eval-
uate spatial bias and variability. Our proposed architecture significantly
enhanced variability and reduced spatial bias compared to DCGAN and
outperformed WGAN-GP. The results showed that the input training
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Fig. 15. Box plot of probability maps generated from the 𝛽 sensitivity analysis (a)VA-GANℒ𝑀𝑖𝑛𝑀𝑎𝑥
, (b) VA-GANℒ𝑊

.

dataset influenced the variability. GANs trained on the Direct patch
dataset showed more spatial bias compared to GANs trained on SNESIM
dataset. However, the range of values in the probability maps of our
proposed architecture where narrower and closer to the probability
maps of the input training data with less outliers compared to original
GANs. Our proposed architecture also reduced the average Jensen–
Shannon distance between the generated realizations and RTI by 19.5%
and 10% compared to DCGAN and WGAN-GP respectively. This shows
that the proposed architecture better preserved the multiple point
statistics of the RTI. The proposed architecture can be applied to any
GAN being trained on binary geological realizations.

In the future, the capability of GANs for generating Multi-facies
property distributions should be investigated. It would be important to
measure how the variability of a non-stationary and/or Multi-facies RTI
may be preserved. A detailed comparison of GANs with current tech-
niques would further clarify the pros and cons on these networks. In a
separate avenue, there is room to research variability of conditioning
algorithms and further conditioning to ‘soft’ geological constraints such
as Isopach maps.
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6. Summary, Conclusions and Future Work 

The primary objective of reservoir characterization is to produce geological models that 

honour the available data. Adequate characterization of the reservoir results in better 

understanding of the subsurface which in turn increase recovery factor, leads to better 

reservoir management and is essential for post depletion activities such as carbon capture and 

sequestration or storage. In recent years the subsurface energy sector has seen a surge in data 

collection, however, traditional methods due to their inherent limitations are unable to fully 

utilize these data. This thesis investigated and introduced novel techniques in subsurface 

characterization using advanced analytics and machine learning that can handle large data 

volumes and open new doors in the field of reservoir characterization. This thesis investigated 

and introduced novel techniques in subsurface characterization using advanced analytics and 

machine learning. The thesis explored Fractal analysis, Convolutional neural networks, 

Generative adversarial networks and presented an enhanced optimization technique for 

history matching in the appendix. For each of the problems, a novel technique is proposed with 

the aim to enhance subsurface characterization using the available data. 

The thesis began with Fractal analysis of the deep latero-log resistivity logs. A novel technique 

was introduced for rock typing using the Fractal dimension of these logs. The fractal dimension 

is a measure of the variability of the resistivity log. The research showed that as the complexity 

of the rock texture and fabric increases the log shows higher variability and a higher fractal 

dimension. The results of this investigation showed that fractal dimension of resistivity logs can 

be used as new parameter in reservoir rock typing. Furthermore, it introduced a new technique 

to extract more information from available resistivity logs that were never utilized before. 
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The thesis continued with introducing a methodology to automate/ augment interpretation of 

resistivity image logs. The research emphasised on solely using the image logs and excluded 

any other data types. Transfer learning was used to overcome some of the challenges faced in 

this process and it was proven that transfer learning is applicable to subsurface datasets. Using 

a trained network and novel post processing step the accuracy of the automated process 

exceed 90%. The aim of this study was to determine the accuracy that can be achieved using 

image logs alone. Generally, image logs are required to be accompanied by a suit of 

supplementary logs that aid the interpreter in categorizing facies. Omitting the supplementary 

logs would reduce the cost of the interpretation significantly. Although the result shows a high 

accuracy from image logs alone, this workflow would benefit from some additional data. 

Researching methodologies to incorporate multiple data sources in this workflow would be of 

great interest. Another potential application of this workflow would be denoising the logs or 

noise detection in the image logs. 

 

In the next chapter, variability of geological model realizations generated using a Generative 

adversarial network was investigated. The input training data was produced using a conceptual 

image delivered by a geologist. The GAN was trained to learn the statistics of the training image 

and produce realizations that are realistic and statistically faithful. The variability of the images 

was investigated in detail and a novel method to update the loss function of the network with 

the aim to maintain the variability of the output samples at the same level as that of the input 

data. The proposed method outperformed the state-of-the-art methods in the literature used 

for reducing the effects of mode collapse. GANs are a recently developed technique and their 

application in geological model development is at the beginning of its journey. There are still 
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numerous challenges that need to be overcome. Mode collapse for one has a detrimental 

effect on uncertainty evaluation and must be evaluated and addressed when using GANs. 

Another important challenge is generating training data to train the network on. The method 

introduced in this thesis although effective, it is applicable to stationary models only. Non-

stationary models or geological structures are quite challenging to train a GAN on.    

Finally, in the appendix, an ensemble of surrogates (proxies) with generation-based model-

management embedded in CMA-ES is proposed to reduce the number of simulation calls. The 

proposed method divides the likelihood term into multiple functions and represents each 

function with a separate surrogate. The algorithm was used to history match two cases one 

real with 59 uncertain variables and the other synthetic with 8 variables. The results showed 

that up to 65% and 50% less simulation calls for case#1 and case#2 were required. 

From this investigation into development of novel advanced analytics and machine learning 

methods in subsurface characterization the following conclusions are drawn: 

1. The fractal analysis of the deep resistivity logs revealed the correlation between the 

variability of resistivity logs and complexity of rock fabric, making this analysis useful 

for rock typing. Application of novel data analytics and machine learning techniques 

can introduce new features in subsurface data that have traditionally been neglected.  

2. Convolutional neural networks are effective and efficient tools to analyse subsurface 

image data. It was shown on two occasions in this thesis that computer vision 

algorithms can be extended to subsurface image logs given that the limitations of the 

algorithm and how these limitations translate in subsurface analysis are well 

understood and investigated. 
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3. Convolutional neural networks can extract facies from resistivity images logs better 

than human interpretation when the resistivity logs are the only information available. 

However, complexity of the image distribution, lack of features in the images and 

similarity of categorized facies means that to reach accuracy levels similar to human 

full-suite interpretation, other logs and information need to be included in the network 

training process.  

4. Given the complexity of the distribution of subsurface images, large and deep networks 

are required to learn the features of these images. Not only training these networks is 

computationally expensive, but lack of adequate data and training images makes this 

task even more challenging. Transfer learning has proven to be an efficient solution to 

both above-mentioned issues. Furthermore, I was proven that transfer learning is 

applicable to subsurface image datasets. 

5. Generative adversarial networks (GAN) can adequately learn and generate geological 

models that are realistic and statistically faithful. These networks however, depending 

on their design can suffer from mode collapse which will hinder and reduce the 

variability of the generated models. 

6. Providing input training data that is sufficiently representative of the distribution the 

network will learn, in variability, dataset size and image statistics is key to a successful 

training. The input training data is detrimental in the training of the network. 

This research provided novel techniques for subsurface characterization and answered 

important questions in that field. Non-the-less this research can be extended in several ways. 

Below are suggestions for future work: 
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1. Introduction of a novel technique to incorporate other data types such as one-

dimensional logs and geologists experience along with resistivity image logs when 

training a convolutional neural network with the aim to maximize the accuracy of 

automatic interpretation. 

2. In depth investigation of a methodology to allow for neural networks to detect and flag 

noisy intervals in resistivity image logs. This would significantly reduce interpretation 

time. Furthermore, this feature can be used to develop online quality monitoring and 

noise detection capabilities.   

3. Research the ability of GANs in generating multi-facies property distribution. Evaluate 

the variability of the generated samples as the distribution increases in complexity. This 

research would give GANs much wider application in geological modelling and would 

be a great step towards more practical applications. 

4. Research novel methodology to generate training input data from a non-stationary 

and/or multi-facies training image while maintaining variability and statistical features 

of the image. This would significantly broaden the application of GANs in geological 

modelling. 
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Summary 
 
Because of the quasi-gradient update embedded in CMA-ES algorithm, it can outperform most of the 
population-based algorithms, from a convergence speed standpoint. However, due to the computationally 
expensive fitness function associated with history matching, the reduction of function (simulation) calls can be 
favourable. 
In this study, an ensemble of surrogates (proxies) with generation-based model-management is proposed to 
reduce the number of simulation calls efficaciously. Since the fitness function is highly nonlinear, an ensemble 
of surrogates (Gaussian process) is utilised. The likelihood term is divided into multiple functions, and each is 
represented via a separate surrogate. This improved the response surface fitting.  
In generation-based management, a stochastically selected measure (surrogate or reservoir-simulation) should 
be used to evaluate all the individuals of each generation. CMA-ES requires ranking of the individuals to select 
the parents. Therefore, the generation-based model-management fits well in CMA-ES, as surrogates are 
normally better in ranking the individuals than approximating the fitness.  
History matching for a real problem with 59 variables and PUNQ-S3 with eight variables was conducted via a 
standard CMA-ES and the proposed surrogate-assisted CMA-ES. The results showed that up to 65% and 50% 
less simulation calls for case#1 and case#2 were required. 
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 PUNQ-S3 

Figure 1 PUNQ-S3 reservoir model. 

Table 1 PUNQ-S3 uncertain parameters.  

X Model 
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Table 2 X model uncertain parameters. 

PUNQ-S3 results 
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Figure 2 Mean of  versus number of simulations- PUNQ-S3.
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Figure 3 Standard Deviation of  versus number of simulations- PUNQ-S3. 

Figure 4 Rank correlation for all 100 history matching times – PUNQ-S3. 
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Table 3 PUNQ-S3 results.  

X Model results 
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Figure 5  versus number of simulations – X Model. 

Figure 6-a History matching results – X Model. 
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Figure 6-b History matching results – X Model. 

Figure 6-c History matching results – X Model. 
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