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Abstract

In both experiment and theory, Compton scattering provides a unique window into the in-

ternal structure of hadrons. At high energies the Compton amplitude is parameterised by

parton distributions, which describe the properties of hadrons in terms of their fundamen-

tal constituents, quarks, anti-quarks and gluons—a vital bridge between the quark-gluon

picture of quantum chromodynamics (QCD) and the hadronic picture that characterises

experiment. Despite their importance, the Compton amplitude and parton distributions

have both proven difficult to determine from first principles QCD.

In this thesis, we perform the first calculations of the unpolarised off-forward and po-

larised forward Compton amplitudes in lattice QCD. By extending the Feynman-Hellmann

theorem to second-order, we are able to calculate these amplitudes from lattice two-point

functions computed in the presence of a background field, and thereby overcome difficul-

ties associated with direct calculations. Since we determine the Compton amplitude, we

not only have the potential to determine parton distributions, but also a wealth of com-

plementary properties such as scaling behaviour, higher-twist effects, and the subtraction

function.

For the present investigation, we focus on determining the Mellin moments of these

amplitudes. In both the unpolarised off-forward and polarised forward cases, we find

that our leading moments agree reasonably well with both phenomenological expectations

and determinations in other lattice methods. However, in attempting to constrain higher

moments and reconstruct the parton distributions, we encounter a range of difficulties. We

discuss key lattice systematics and identify strategies to overcome these in future work.

Following this discussion of lattice systematics, we devote the last chapter to an inves-

tigation of short-distance artefacts affecting our calculations. Focusing on the Compton

amplitude subtraction function, we show that such short-distance artefacts are significant.

However, we also demonstrate that these artefacts can be controlled using a range of tools

including varying the discretisation and an analytic expansion, thus paving the way for

much improved calculations in future work.

The ultimate aim of our method is a first principles calculation of the Compton am-

plitude with good control of all systematics. Such a calculation would have a far-reaching

impact on our understanding of nucleon structure, in areas as varied as the proton spin puz-

zle, the proton-neutron mass difference, the proton radius puzzle and the strong coupling

in the confined regime—not to mention the immense significance of the parton distribu-

tions themselves. This thesis takes us a step closer to that goal, extending the Feynman-

Hellmann method to new kinematics and spin-dependent amplitudes, and starting the

work to address key systematics.
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Chapter 1

Introduction

Protons and neutrons, collectively called nucleons, are the building blocks of every atom

and account for over 99% of the mass of visible matter in our universe. Despite their ubiq-

uity, the internal structure of nucleons is still not well understood. Our best understanding

of nucleon structure is inferred from quantum chromodynamics, which describes the inter-

actions of quarks and gluons, the constituents of nucleons and other hadrons. However,

experiments only ever observe hadrons, never lone quarks and gluons—a property known

as ‘confinement’. As such, high-energy experiments that are capable of tearing open a

hadron and revealing its internal structure have been, and continue to be, central to our

understanding of hadrons’ internal structure. The stories of QCD and such scattering

experiments are intertwined, and naturally frame the work in this thesis; we give a brief

history below.

The background

As early as 1932, it was understood that protons and neutrons are the basic constituents

of atomic nuclei [1, 2]. These particles were believed to be bound by a mysterious strong

nuclear force, with a famous early model proposed by Yukawa [3]. However, in the following

decades, as particle colliders increased in energy, more and more strongly interacting

particles were discovered, leading to a veritable particle ‘zoo’ by the mid-1950s.

Accompanying the zoo of new particles, many new theoretical frameworks emerged

to explain them: S-matrix methods, current algebra and its sum rules, and the various

classification schemes all sought to circumvent the need for quantum field theory (QFT)

of the strong force altogether. A major breakthrough among the classification schemes

was Gell-Mann’s ‘eightfold way’ [4], which introduced quarks, fractionally charged hadron

constituents. However, it offered no explanation for how quarks were held together within

the hadron, never seen by experiment.

SLAC, scaling and partons

From this conceptual quagmire, the first step towards clarity came in 1967 with the predic-

tion of ‘Bjorken scaling’ [5]. Using insights from current algebra, Bjorken argued that, for

a certain type of high-energy electron-proton scattering known as deep-inelastic scattering

(DIS), the amplitude should be constant in Q2, the probing momentum, as long as the

ratio between the energy transfer and Q2 was fixed.

Later in 1967 the Stanford linear accelerator (SLAC) began measuring DIS experi-

ments. At first, experimentalists expected that the DIS structure functions would fall off

1
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with Q2, as form factors do [6]. Instead, they observed Bjorken’s predicted behaviour [7].

Feynman explained these results with his parton model, which described hadrons as a col-

lection of weakly interacting particles [8]. Following this, the parton model was applied by

Callan and Gross to predict their famous relation between the DIS structure functions [9],

and to predict the ratio of inclusive hadron production to muon production from e+e−

scattering.

The formulation of QCD

This marked a turning point: before the SLAC experiments, physicists were dismissive

about the reality of hadron constituents. With new evidence, the task became to discover

the properties of these particles. In 1972, Fritsch and Gell-Mann stepped in, drawing on

existing work on non-Abelian gauge theories, current algebra, quark models and the like,

to give the first articulation of a quantum field theory of the strong force: QCD [10]. Two

problems remained, however: (1) the parton model assumes quarks are weakly bound, but

(2) quarks and gluons are never seen in experiment, implying they are strongly bound.

This latter property is known as confinement.

Part of this mystery was resolved in 1972 by Gross and Wilczek [11] and Politzer [12],

who showed independently that QCD has a property known as asymptotic freedom: as

the probing momentum, Q2, is increased, the QCD coupling becomes weaker. For this

they were awarded the 2004 Nobel prize. Confinement meanwhile was first explained

heuristically using the string model. Then, in 1974 Wilson gave the first formulation of

QCD on a lattice as part of an analytic argument for a confining mechanism arising from

QCD dynamics [13].

By the mid-1970s, with these major issues addressed, and the predictions of three jet

hadronisation, logarithmic scaling, and the observation of charmonium, QCD’s status was

cemented as our best theory of the strong force. However, it was still not possible to get

numerical predictions for most phenomena, and even experimentally it was difficult to

study hadrons’ internal structure.

Developments in hadron structure

Feynman’s parton model described DIS experiments in terms of parton distribution func-

tions (PDFs), which can be interpreted as probability densities to find a quark or gluon

within a given hadron, where the quark or gluon carries a certain fraction of the total

hadron’s momentum. To cast this intuitive picture into the language of QCD, theorists

developed a formal framework called factorisation [14, 15]: at high energies, QCD cross

sections ‘factorise’ into a high-energy part that could be perturbatively calculated, and

a low-energy part, the parton distribution, which could then be determined from exper-

iment. This allowed for more precise experimental determinations of parton distribution

functions (PDFs) from experiments like DIS.

The late 1970s and 1980s also saw growing interest in measurements of spin-dependent

parton distributions from deep-inelastic scattering, culminating in the famous EMC mea-

surement of the proton’s spin in 1987 [16]. Prior to these experiments, it was thought

that the proton’s 1/2 spin could be largely accounted for by the spins of its three valence

quarks. However, the valence quarks accounted for a very small amount: 30% from more

recent experiments [17–19]. This result, known today as the ‘proton spin puzzle’, suggests
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that the internal structure of hadrons is far more complex than a naive reading of QCD

implies.

For the first few decades after QCD’s formulation, PDFs and form factors were our

main tools to study hadron structure. However, further insight into hadronic structure

was sought. Beginning in the mid-1990s, theorists explored a process known as deeply

virtual Compton scattering (DVCS) [20,21]. This led to Ji’s realisation that DVCS could

be used to determine missing components of angular momentum that are necessary to

solve the proton spin puzzle [22]. The new parton distributions from this process, dubbed

generalised parton distributions (GPDs), were also shown to also contain information

about the spatial distributions of quarks and gluons [23] and forces and pressure within

hadrons [24]—an unprecedented level of insight into hadron structure. However, to this

day experimental studies of DVCS are limited, although this is expected to change with

the construction of the electron-ion collider [25].

Numerical lattice QCD

Although QCD could be applied to interpret and even predict some experimental results,

the coupling strength of QCD, αS , is too large at low energies to apply perturbative tech-

niques. Even at high energies, where perturbation theory is applicable, QCD amplitudes

retain a low-energy contribution given by parton distributions.

Therefore, as early as 1979 Creutz and collaborators applied Wilson’s lattice formu-

lation to numerical calculations [26]. However, it was not until the ‘80s and ‘90s, with

improvements in the formulation [27] and increases in computing power, that lattice QCD

calculations became feasible. Today, numerical lattice methods provide a tool to calcu-

late many otherwise inaccessible QCD observables from first-principles, including hadron

masses, CKM matrix elements, and hadron structure quantities.

Given the importance of parton distributions to our understanding of the internal

structure of hadrons, these quantities have long been a major focus of lattice QCD. How-

ever, as we will discuss in the following chapters, parton distributions cannot be accessed

directly on the lattice. Nonetheless their leading Mellin moments were first calculated in

the 1980s [28, 29], but the calculation of higher moments was found to be inhibited by

lattice artefacts [30, 31]. As such, for a long time partonic calculations in lattice QCD

were limited to these low moments.

Then beginning in 2015, a range of new lattice methods were put forward, aiming at a

more complete reconstruction of parton distributions. The most prominent of these meth-

ods are the quasi- [32] and pseudo-distribution [33] approaches, but there are numerous

others [34,35], including the Feynman-Hellmann Compton amplitude method [36].

The Feynman-Hellmann method was first applied by the CSSM/QCDSF collaboration

to calculate the unpolarised forward Compton amplitude [36–38]. Our method is fairly

unique in that it calculates a discrete version of the physical amplitude from which parton

distributions are measured, giving us access to properties that are phenomenologically and

physically interesting. This thesis extends our method to the unpolarised off-forward and

polarised forward Compton amplitudes, and begins an in-depth investigation of system-

atics.
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Chapter outline

In Chapter 2 we give a brief outline of the properties of QCD, followed by a more in-depth

look at forward Compton scattering (related to spin-dependent and -independent PDFs),

and off-forward Compton scattering (related to GPDs). Then in Chapter 3 we give a very

brief formal description of lattice QCD, as well as an account of the various other methods

to calculate partonic information on the lattice.

We begin our results in Chapter 4 with a derivation of the Feynman-Hellmann relations

for spin-dependent and off-forward Compton scattering. Such relations are extremely

powerful in that they allow us to determine a four-point correlation function in terms of

two-point functions computed in the presence of a perturbing background field.

In Chapter 5, we start our work on the off-forward Compton amplitude (OFCA) and

GPDs. As most existing parameterisations of this amplitude use collinear light-like kine-

matics [22], we derive our own parameterisation that is suitable for Euclidean lattice

calculations. We then apply this formalism and the Feynman-Hellmann relation to deter-

mine the Mellin moments of GPDs in a proof-of-principle calculation. The results of this

chapter were published in Ref. [39].

We continue and improve on our calculation of the OFCA in Chapter 6. Our major

improvement is showing the kinematics necessary to separate the helicity-conserving and

-flipping parts of the amplitude. Hence we calculate these components separately and

determine their Mellin moments, showing they are consistent with comparable three-point

studies. We also perform a Regge-inspired model fit. Although this fit shows the limita-

tions of the present method, it is instructive in pointing to the areas we need to address

in future work.

Next, in Chapter 7 we perform a determination of the polarised forward Compton

amplitude. As in the previous chapter, we separate the two spin-dependent amplitudes

and calculate their moments, from which we determine the axial coupling and the higher-

twist d2 term—the latter quantity has proven difficult to determine with more direct

lattice calculations. These determinations are broadly consistent with existing lattice and

experimental results.

Finally, in Chapter 8 we investigate the Compton amplitude subtraction function.

Previous lattice calculations using Feynman-Hellmann have found that this subtraction

function violates behaviour predicted by the operator product expansion [40]. As such,

we investigate short-distance lattice artefacts that could cause this behaviour. We demon-

strate that such artefacts are significant and develop methods to control them, thereby

paving the way for much improved accuracy and precision in our calculations.



Chapter 2

Quantum Chromodynamics

Quantum chromodynamics (QCD) is the gauge field theory (GFT) that describes the

strong interaction: the interactions of quarks and gluons that give rise to hadrons such as

protons and neutrons. It is part of the Standard Model (SM) of particle physics, which

describes three of the four fundamental forces of nature—the electromagnetic, weak and

strong forces—in terms of GFTs. However, among the GFTs of the SM, QCD has perhaps

the most non-trivial dynamics. Due in part to the strength of the force (the strong coupling

is αS ∼ 1 at standard energy scales—i.e. on the order of the low lying hadronic masses),

QCD exhibits complex emergent behaviour such as confinement and asymptotic freedom.

Moreover, as the strong coupling is close to unity at low energies, standard perturbation

theory cannot be applied to QCD and we must use alternative methods—see Chapter 3.

One way we can understand the non-trivial behaviour of QCD is through hadronic

structure: the study of how properties of hadrons emerge from the interactions of their

quarks and gluons. For instance, although protons are defined by their three valence

quarks, the sum of these quarks’ masses is ≈ 9 MeV, whereas the total proton mass is

≈ 938 MeV. This means that the vast majority of the proton’s mass, and hence the vast

majority of visible matter, is generated by the strong interaction. Similarly, approximately

30% of the proton’s spin can be attributed to the spin of its valence quarks [17–19], with

the rest coming from internal dynamics of the proton: the orbital angular momentum of

its constituents and the spins of quarks and gluons in the QCD vacuum. As almost all

visible matter is composed of protons and neutrons, the dynamical behaviour of QCD is

therefore central to understanding the properties of such matter.

To understand hadronic structure, one of the most important processes to study is high-

energy nucleon-electron scattering. In such processes, the target nucleon is ripped apart

by the incoming electron, and its internal structure revealed. More formally, we describe

these high-energy scattering cross sections in terms of parton distributions, among the

most important of which are the parton distribution functions (PDFs), introduced in the

late 1960s by Feynman [8] and Bjorken and Paschos [41]. PDFs from spin-dependent and

spin-independent deep-inelastic scattering (DIS) are probability densities that describe

how the momentum and spin of hadrons are distributed among their constituents∗. Then

in the 1990s generalised parton distributions (GPDs) were introduced [22, 42, 43]. In

addition to providing further information about the partition of hadron spin among its

constituents, these GPDs also provide information about the spatial distribution of quarks

and gluons within a hadron.

∗Moreover, PDFs are used ubiquitously as Standard Model backgrounds in searches for Beyond Standard
Model (BSM) physics.

5



2.1 Formulation of QCD 6

Moreover, nucleon-electron scattering is interesting as it allows us to study the energy

regimes of QCD. At low energies we are in the confined region, where quarks and gluons

appear bound within hadrons, and we are limited to a description in terms of hadronic

resonances. At high energies we are in the asymptotically free region of QCD, where

scattering is described in terms of quark and gluon degrees of freedom, parameterised by

the parton distributions. The transition between these two regions in nucleon-electron

scattering can greatly help further our understanding of the non-trivial dynamics of QCD

[44].

In this chapter, we start in Section 2.1 with a very brief introduction to the QCD

Lagrangian, and a discussion of the dynamical properties of QCD: confinement, asymp-

totic freedom and factorisation. Then in Section 2.2, we give an overview of important

observables in hadronic structure: elastic form factors (EFFs), structure functions and

PDFs (spin-dependent and -independent), and finally off-forward Compton scattering and

GPDs.

2.1 Formulation of QCD

In this section, we describe some of the formal properties of the classical QCD Lagrangian,

and introduce the dynamical properties of QCD: asymptotic freedom and confinement.

Quantum chromodynamics is defined by its gauge invariance—the QCD Lagrangian and

all QCD observables are invariant under the SU(3) group of transformations. Importantly,

this invariance is local, meaning that different spacetime points will have different gauge

spaces.

An element of SU(3) as a function of a spacetime point, z, can be expressed as

V (z) = exp
[
iαa(z)ta

]
, (2.1)

where αa(z) is a phase factor, and ta are the generators of the group†. Note that the

elements of SU(3) do not commute—a property that gives rise to the non-trivial dynamics

of QCD.

The fermion (quark) fields transform like

ψi(z)→ ψ′i(z) = [V (z)]ijψj(z), (2.2)

where i, j are colour indices‡.
To start constructing a gauge-invariant Lagrangian, we need to define a covariant

derivative, Dµ, such that kinetic term Dµψ and ψ transform in the same way. Consider a

naive derivative:

nµ∂µψ(z) = lim
ε→0

ψ(z + εn)− ψ(z)

ε
. (2.3)

Since our quark fields are locally gauge invariant, ψ(z+ε) and ψ(z) occupy different gauge

spaces, and hence this naive derivative does not have the desired transformation.

†In terms of the Gell-Mann matrices, λa, we can write ta = λa

2
for the fundamental representation of

SU(3).
‡There are two types of colour indices used here: (1) indices of the 3×3 SU(3) matrices in the fundamental
representation: i, j. Second, the indices that label the individual generators ta for SU(3): a, b, c.
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Therefore, to define a covariant derivative, we need an operator, U(z1, z2), such that

U(z + εn, z)ψ(z) transforms like ψ(z + εn). This operator is the Wilson line, defined as

U(z1, z2) ≡ P exp
{
ig

∫ z1

z2

dzµtaAaµ(z)
}
, (2.4)

where P denotes path-ordering, ta are again the generators, and g is the strong coupling

constant. The Wilson line satisfies the transformation law

U(z1, z2)→ V (z1)U(z1, z2)V (z2)−1. (2.5)

Therefore, as desired, the derivative of quark fields transforms like

nµD
µ
ijψj(z) = lim

ε→0

ψ(z + εn)− U(z + εn, z)ψ(z)

ε
→ [V (z)]ijnµD

µ
jkψk(z). (2.6)

For an infinitesimal path,

U(z + εn, z) = I + iεnµgAaµ(z)ta, (2.7)

and hence, by comparison with Eq. 2.3, we write the covariant derivative as

Dµ = ∂µ − igAµata, (2.8)

where we interpret Aaµ as the gauge boson fields—the gluon fields. Since there are eight

SU(3) generators, there are eight types of gluon.

It is also useful to define the field strength tensor, F aµν :

[Dµ, Dν ] = −igF aµνta, (2.9)

which can be used to construct gauge invariant quantities.

The Classical Lagrangian

Our QCD Lagrangian then must satisfy: (1) local gauge invariance, and (2) renormalis-

ability (it has mass dimension four: [L] = 4). We also neglect the CP-violating ‘QCD

theta term’, εµνρσF
aµνF aρσ, which is known from experiment to have an extremely small

coefficient§ [46].

One can then enumerate all possible structures that satisfy these conditions [47] to

construct the Lagrangian:

L =
∑

f

ψ̄if
(
/D
ij − δijmf

)
ψjf −

1

4
F aµνF aµν . (2.10)

Note that f is the flavour index that runs over the species of quarks: f = u, d, s, c, b, t.

For the quantised QCD Lagrangian density, we must include ghost terms that arise

from the gauge-fixing condition, and counter-terms from renormalisation. For the purposes

of our simple description of QCD, we omit such terms.

§The search for a mechanism to explain this coefficient’s small size is known as the ‘strong CP problem’ [45],
and is a major puzzle in physics but not relevant to the present thesis.
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αs(MZ
2) = 0.1179 ± 0.0010

α
s(

Q
2 )

Q [GeV]

τ decay (N3LO)
low Q2 cont. (N3LO)

DIS jets (NLO)
Heavy Quarkonia (NLO)

e+e- jets/shapes (NNLO+res)
pp/p-p (jets NLO)

EW precision fit (N3LO)
pp (top, NNLO)

 0.05

 0.1

 0.15

 0.2
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 0.3

 0.35

 1  10  100  1000

Figure 2.1: The strong coupling measured across a range of momentum scales, using different

processes—figure from Particle Data Group [48].

Since the elements of SU(3) do not commute, there are interaction terms in the La-

grangian that are cubic and quartic in the Aaµ fields: AbµA
c
ν∂

µAaν and AbµAcνA
′b
µA

c′
ν ,

respectively. Physically, these terms can be interpreted as self-interactions of the gluons,

which gives rise to non-trivial properties of QCD.

2.1.1 Asymptotic freedom and confinement

Due to the nature of gluon self-interaction, QCD is divided into two domains: the long-

distance/low-energy domain, where the strength of QCD interactions is strong. In this

region, quarks and gluons are completely confined within colour neutral hadrons, such as

baryons (e.g. protons and neutrons) and mesons (e.g. pions). On the other hand, in the

short-distance/high-energy domain, QCD interactions become weaker, which is referred

to as “asymptotic freedom”.

The strength of QCD interactions are described in terms of the strong coupling:

αS ≡ g2/4π, (2.11)

where g is the QCD coupling constant, introduced in Eq. (2.4). For a momentum scale Q

such that Q � ΛQCD with ΛQCD being the QCD scale, we can calculate the coupling to

one-loop order in perturbation theory:

αS(Q) ∝ 1

log(Q/ΛQCD)
. (2.12)

Note that ΛQCD ≈ 0.2 GeV is on the order of low-lying hadronic masses.
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The property of asymptotic freedom follows from Eq. (2.12): for Q � ΛQCD, the

coupling is small and hence the interactions are weak. See Fig. 2.1 for the experimental

determination of αS(Q). By contrast, for low-energies, Q . ΛQCD, we are in the confined

regime, where quarks and gluons are completely bound and for which αS & 1. Note that

the property of confinement does not follow from Eq. (2.12), which is only valid for high

energies. As yet, no first principles proof of confinement exists [49].

2.1.2 Factorisation

As discussed above, for Q � ΛQCD, the strong coupling is small enough to permit per-

turbation theory: αS < 1. Consequently, for high-energy QCD processes, we can apply

perturbation theory. However, even for such processes, most QCD cross sections cannot

be calculated from perturbation theory alone. Instead, QCD cross sections ‘factorise’ into

short-distance/high-energy contributions, which are calculable in perturbation theory, and

long-distance/low-energy contributions which are not∗∗.
The most basic form of a factorisation relation for a high energy quantity, F , is

F (Q2) = C(αS(Q))︸ ︷︷ ︸
short-distance

⊗
long-distance︷︸︸︷

q + O
(

Λ2
QCD

Q2
,
m2
N

Q2

)

︸ ︷︷ ︸
power-suppressed corrections

(higher-twist and target mass corrections)

, (2.13)

where ⊗ represents a convolution or a simple multiplication, depending on what F is.

The scale is Q � ΛQCD, which is often referred to as the hard scale, and q is low-

energy/long-distance contribution such as a parton distribution. In this thesis, we neglect

the renormalisation scale dependence of q, typically written as q(µ).

In Eq. (2.13) there are several different terms that are suppressed for Q� ΛQCD,mN :

• The function C, the Wilson coefficient or perturbative kernel, will have O(αS) cor-

rections. As αS itself goes like 1/ log(Q/ΛQCD), these corrections to C are suppressed

for large Q. Since we can calculate C in perturbation theory to a given order in αS ,

it is possible to obtain such terms to a high degree of accuracy [51].

• There are target mass corrections that are O(m2
N/Q

2), but which are attached to

leading-order long-distance contributions. There are well-known methods to account

for these contributions [52].

• Finally, there are higher-twist corrections††. These are usually the hardest correc-

tions to control since they contain their own non-perturbative contributions, distinct

from those at leading-order. They are, however, more interesting, since these higher-

twist structures provide us with interesting information about QCD dynamics.

However, at large energy scales, Q2 & 10 GeV2, we expect all these corrections to be

minimal, and the long-distance contribution, q, can be determined from experiment. Al-

ternatively, it is possible to constrain q from lattice QCD—see Section 3.2.

∗∗The exception to this are processes such as e+e− → hadrons [50].
††The term ‘twist’ is used in two related but distinct ways in the literature. Either terms that are Q2−τ

suppressed are sometimes referred to as being of twist τ , with leading order terms being τ = 2 and higher-
twist being more suppressed [53]. On the other hand, ‘twist’ may refer to transformation properties of
an operator [54]. The two definitions usually coincide. In this thesis, we use twist to refer to properties
of the operators, and refer to terms that are explicitly Q−1 suppressed as ‘power-suppressed’.
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Figure 2.2: The Feynman diagram for generic Compton scattering. The shaded blob represents

all photon-nucleon interactions.

In this thesis, we focus on the region Q2 ≈ 2 − 12 GeV2, which is what our lattice

calculations can access. It is also a highly interesting region, as it encompasses the thresh-

old of the perturbative region (i.e. where Eq. (2.13) becomes applicable), and hence helps

us understand the transition from a hadronic to a quark-gluon description; or, using the

terminology of the previous section, the transition from the confined to the asymptotically

free region [44].

To give an example of Eq. (2.13), the Mellin moments of structure functions satisfy

the following factorisation relation:

Mn(Q2) =
∑

f

cfn

(
αs(Q)

)
afn +O

(
Λ2

QCD

Q2
,
m2
N

Q2

)
, (2.14)

where, for our purposes, the nth Mellin moment of a function f(x) is defined as

Mn =

∫ 1

0
dxxn−1f(x). (2.15)

In Eq. (2.14), cn is known as the Wilson coefficient, which is perturbatively calculable, and

an is the parton distribution function moment, which contains the long-distance physics.

This sort of factorisation theorem can be derived using the operator product expansion.

Using more modern methods of perturbative QCD [50], one can derive a factorisation

theorem for the structure function F (x,Q2):

F1(x,Q2) =
∑

f

∫ 1

x

dy

y
Cf
(
x

y
, αs(µ), Q/µ

)
qf (y, µ) +O

(
Λ2

QCD

Q2
,
m2
N

Q2

)
, (2.16)

where again C is short-distance and perturbatively calculable, while qf is the long-distance

PDF.

In Eq. (2.16), qf (y, µ) is the renormalised PDF at renormalisation scale µ. Unlike Q

which is fixed by the kinematics of the process, µ is arbitrary and is often chosen to be µ =

Q. We note that such renormalised PDFs do not have such a straightforward probability

interpretation compared to the ‘bare’ PDFs of the leading-order parton model. As our

focus in this thesis is the extraction of the amplitudes themselves—e.g. F1 in Eq. (2.16)—

we are not currently concerned with a perturbative matching of parton distributions or

their renormalisation; see Refs. [15, 51, 55] for a treatment of perturbative QCD, and the

renormalisation and scale dependence of parton distributions. Considering such details

will become necessary as our calculations become more sophisticated.



2.2 Compton Scattering 11
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k k′

q

P ′ = P + q

N

e−

N

e−

Figure 2.3: The Feynman diagram for elastic electron-nucleon scattering.

2.2 Compton Scattering

Our primary objective in this thesis is to calculate Compton amplitudes in lattice QCD. In

particular, we will calculate the unpolarised off-forward Compton amplitude in Chapters

5 and 6, the polarised Compton amplitude in Chapter 7, and the Compton amplitude

subtraction function in Chapter 8. The nucleon Compton amplitude is the amplitude

for nucleon-photon scattering—see Fig. 2.2. It is typically measured experimentally from

nucleon-electron scattering processes, such as deep-inelastic scattering (DIS) and deeply

virtual Compton scattering (DVCS).

To begin this brief review of the physics of Compton scattering, we start with the sim-

pler case of elastic nucleon-electron scattering, which is not a type of Compton scattering

but which is highly related. Then, we review spin-averaged forward Compton scattering,

introducing much of the relevant formalism as well. Further, we discuss polarised Comp-

ton scattering, the focus of Chapter 7, and finally we introduce off-forward Compton

scattering, the focus of Chapters 5 and 6.

2.2.1 Elastic nucleon-electron scattering

Although we do not calculate elastic form factors (EFFs) in this thesis, we will refer

to them frequently and so give a brief definition here. These form factors parameterise

elastic‡‡ nucleon-electron scattering: e−(k) +N(P )→ e−(k′) +N(P ′)—Fig. 2.3.

The scattering matrix for this process is proportional to the matrix element for a single

nucleon-photon interaction:

〈P ′|jµ(0)|P 〉 = ū(P ′)
[
γµF1(Q2) +

iσµν(P ′ − P )ν
2M

F2(Q2)

]
u(P ), (2.17)

where ū(P ′) and u(P ) are Dirac spinors.

In this thesis, we only consider nucleons and hence define |P 〉 as the nucleon state of

momentum Pµ. The electromagnetic hadron current, jµ, is

jµ(z) =
∑

f

ef ψ̄f (z)γµψf (z), (2.18)

where ψ̄f and ψf are quark fields of flavour f , and eu = 2
3 , ed = −1

3 etc. for the charges of

the quarks.

In Eq. (2.17), the Lorentz scalar functions F1(Q2) and F2(Q2) are the Dirac and Pauli

electromagnetic form factors, respectively. They are non-perturbative quantities, and

‡‡Elastic processes are those in which the initial states are the same as the final states.
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Figure 2.4: Left: the Feynman diagram for deep-inelastic scattering. Right: the Feynman dia-

gram for forward Compton scattering.

therefore can only be measured from experiment or calculated from first principles on the

lattice.

For EFFs, the standard notation is to define them as functions of Q2 = −q2 = −(P ′−
P )2. From the Minkowski triangle inequality, we can show that q is a spacelike vector,

and hence Q2 = −q2 ≥ 0.

2.2.2 Spin-averaged forward Compton scattering

Now, we introduce the simplest and best-studied case of Compton scattering: forward,

spin-averaged. Moreover, we use this section to introduce the theoretical tools—tensor de-

composition, dispersion relations, operator product expansion and parton distributions—

that form the basis of our theoretical parameterisation and interpretation of Compton

amplitudes for this thesis. Finally, we note that this is a brief review of the topic; for more

complete introductions see Refs. [47, 51,56,57].

We start by defining the forward§§ Compton amplitude:

Tµν ≡ i
∫
d4zeiq·z〈P |T {jµ(z)jν(0)}|P 〉, (2.19)

where T {...} is the time-ordering operator, and qµ is the virtual photon momentum (see

Fig. 2.4 right).

Using the Ward identity qµT
µν = 0 = qνT

µν and other discrete symmetries, the for-

ward Compton amplitude can be decomposed into a sum of Lorentz invariant amplitudes

multiplied by gauge invariant tensor structures:

Tµν(P, q) =

(
−gµν +

qµqν
q2

)
F1(ω,Q2) +

(
Pµ −

P · q
q2

qµ

)(
Pν −

P · q
q2

qν

) F2(ω,Q2)

P · q

+
i

P · q εµνρκq
ρ

(
sκg̃1(ω,Q2) +

(
sκ − s · q

P · qP
κ
)
g̃2(ω,Q2)

)
,

(2.20)

where we have introduced the spin vector

sµ ≡
1

2
ū(p, s)γµγ5u(p, s), (2.21)

§§Forward scattering means that the momentum of the incoming and outgoing states is the same, while
off-forward means the opposite.
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and the kinematic scalars

Q2 = −q2, ω =
2P · q
Q2

= x−1. (2.22)

The momentum transfer, Q2, is the hard scale, while x is referred to as the Bjorken scaling

variable, and ω = x−1. Note that it is common for P · q or P · q/mN to be denoted as ν.

However, we generally avoid this.

The forward virtual (q2 6= 0) Compton amplitude is never measured directly in ex-

periment. Instead, it can be related to the process of deep-inelastic scattering (DIS), in

which a high-energy electron scatters inelastically with a nucleon: N + e− → X + e− (see

Fig. 2.4 left). More concretely, the hadronic tensor of inclusive∗∗∗ DIS is given by

Wµν =

∫
d4zeiq·z〈P |jµ(z)jν(0)|P 〉. (2.23)

Note that this is effectively Eq. (2.19) but here the currents are not time-ordered.

The hadronic tensor can likewise be decomposed in an identical way to Eq. (2.20),

except with the replacements F1,2 → F1,2 and g̃1,2 → g1,2.

The relationship between the Compton amplitude, Eq. (2.19), and the hadronic tensor,

Eq. (2.23), can be made using the optical theorem:

2ImM(P → P ) =
∑

X

∫
d3PX
(2π)3

1

2P 0
X

(2π)4δ(4)(P − PX)|M(P → X)|2, (2.24)

whereM(P → X) is the inclusive DIS amplitude, andM(P → P ) is the forward Compton

scattering amplitude. The former is in terms of the hadronic tensor, while the latter is in

terms of the Compton amplitude.

With some rearranging, the optical theorem can be written for the structure functions

as

Im
(
F1,2

)
= 2πF1,2, Im

(
g̃1,2

)
= 2πg1,2. (2.25)

After averaging over spins, only the spin-independent scalar amplitudes of the for-

ward Compton amplitude, F1,2, survive. These amplitudes satisfy the following fixed-Q2

dispersion integrals [58] (see Appendix B for a derivation):

F1(ω,Q2) = F1(ω,Q2)−F1(0, Q2) = 2ω2

∫ 1

0
dx

2xF1(x,Q2)

1− x2ω2 − iε , (2.26)

F2(ω,Q2) = 4ω

∫ 1

0
dx

F2(x,Q2)

1− x2ω2 − iε , (2.27)

where F1,2(x = ω−1, Q2) are the DIS structure functions that parameterise the hadronic

tensor, Eq. (2.23), not to be confused with the Dirac and Pauli EFFs, Eq. (2.17). In this

thesis, while the forward spin-averaged Compton structure functions are not our main

object of interest, they have been determined elsewhere using Feynman-Hellmann [36–38],

and we will need them in Chapters 5 and 6 as the forward limit of our off-forward Compton

amplitude.

∗∗∗Inclusive processes are those in which the final state product is not specified, hence why Eq. (2.24) has
a sum over X the final state.
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Importantly, we note that Eq. (2.26) features a contribution from the Compton ampli-

tude subtraction function:

S1(Q2) ≡ F1(ω = 0, Q2). (2.28)

This subtraction function will be the focus of Chapter 8. Unlike F1 and F2, this object

cannot be related directly to the experimental DIS structure functions. However, it is

still a background for important experimental measurements, such as the proton charge

radius [59,60], and proton–neutron mass difference [61,62].

For this thesis, the dispersion relations in Eqs. (2.26) and (2.27) are particularly useful

because they relate the Compton structure functions at any value of ω to the DIS structure

functions. This is important, as on the lattice we only have access to the unphysical region,

|ω| ≤ 1. In particular, we can Taylor expand around ω = 0 to get

F1(ω,Q2) = 4

∞∑

n=1

ω2n

∫ 1

0
dxx2n−1F1(x,Q2) = 2

∞∑

n=1

ω2nM
(1)
2n (Q2), (2.29)

F2(ω,Q2) = 4

∞∑

n=1

ω2n−1

∫ 1

0
dxx2n−2F2(x,Q2) = 4

∞∑

n=1

ω2n−1M
(2)
2n (Q2), (2.30)

whereM
(i)
n (Q2) are the Mellin moments, as defined in Eq. (2.15), of the structure functions.

Note that a factor of two is absorbed by the moment in Eq. (2.29).

Since the DIS structure functions, F1,2, are proportional to a positive definite scattering

amplitude, they are positive definite functions. As such, their moments are monotonically

decreasing with n:

M (i)
n ≥M (i)

n+1 ≥ 0, for any n ∈ N and i = 1, 2. (2.31)

More generally the moments of F1,2 satisfy the Haussdorff moment criteria for positive-

definite functions [63]:

(1− S)kM i
n ≥ 0, for any n, k ∈ N and i = 1, 2,

where S is the operator SM
(i)
n = M

(i)
n+1.

Perturbative Compton scattering

For this thesis, we are primarily interested in the Compton amplitude for the high energy

region, Q2 � Λ2
QCD, where perturbation theory is applicable, as discussed in Section 2.1.

As such, we give a brief review of some basic tools in the perturbative expansion of this

Compton amplitude.

In this high-energy region, there are strong constraints on our Lorentz scalars, Eq. (2.22).

First, the virtual photon momentum, qµ, must be a space-like vector, which can be shown

using the Minkowski triangle inequality. Therefore, it follows Q2 = −q2 ≥ 0.

Secondly, in inelastic scattering the mass of the intermediate state, mX , must be greater

than the ground state, mN . Hence mX = (P + q)2 > m2
N . With some manipulation, this

becomes

P 2 + 2P · q −Q2 > P 2 ⇒ 2P · q > Q2 ⇒ ω =
2P · q
Q2

> 1. (2.32)
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For time-ordered Compton scattering, we also have the crossed diagram: mX = (P−q)2 >

m2
N . And hence we have the limit |ω| > 1, and consequently the Bjorken scaling variable

x = 1/ω has the range |x| < 1.

Bjorken scaling and the naive parton model

In 1967, Bjorken predicted that the DIS cross section should exhibit a behaviour now

known as ‘Bjorken scaling’ [5]: at fixed x and large Q2 the DIS structure functions should

behave like constants in Q2:

lim
Q2→∞

F1(x,Q2) = F1(x), lim
Q2→∞

P · qF2(x,Q2) = P · qF2(x). (2.33)

This behaviour was later confirmed by experiments performed at the Standford linear

accelerator (SLAC) [7], which paved the way for the discovery of QCD as the gauge

theory of the strong force. Hence the Bjorken limit is

Q2 →∞, P · q →∞, x, ω fixed to finite values. (2.34)

In coordinate space this limit corresponds to the current separation, zµ, in Eq. (2.19)

approaching a light-like vector [64,65]. As such, the nucleon in the Bjorken limit propagates

along the light-cone.

In response to the SLAC experiments, Feynman [8] and Bjorken and Paschos [41]

recognised that Bjorken scaling behaviour could be recovered if one assumed that the

nucleon was composed of non-interacting fundamental particles, which they called partons.

This led to the very simple model of the hadronic tensor, Eq. (2.23), as a sum of hadronic

tensors, Wµν
f , for a given parton species, weighted by qf (x), the probability density to find

a parton of species f and carrying a fraction, x, of the nucleon’s total momentum:

Wµν =
∑

f

∫ 1

0
dx′qf (x′)Wµν

f , (2.35)

These probability densities, once cast into QCD language become parton distribution

functions (PDFs), which we discuss throughout this thesis.

Using this simple model, one can derive [56] that the DIS structure functions become

F1(x) =
1

2

∑

f

e2
f

(
qf (x) + q̄f (x)

)
, F2(x) = x

∑

f

e2
f

(
qf (x) + q̄f (x)

)
. (2.36)

where q̄f (x) is the probability density of the anti-quark. Hence in the parton model, the

structure functions are independent of Q2. Moreover, in the partonic picture the Bjorken

scaling variable coincides with the parton momentum fraction, x.

Finally, we note that Eq. (2.36) implies the famous Callan-Gross relation [9]:

F2(x) = 2xF1(x). (2.37)

The operator product expansion

The first connection between the emerging theory of QCD and the partonic description

became possible with Wilson’s operator product expansion (OPE) [66]. For two operators,
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Figure 2.5: Feynman diagram showing the handbag diagram.

A and B, Wilson conjectured that at short distances

A(z)B(0)
z→0−−−→

∑

i

ci(z)Oi(0). (2.38)

The OPE is a coordinate space equivalent of the factorisation relation, Eq. (2.13), where

the Wilson coefficients, ci, describe the short-distance physics, and the operators, Oi,
describe the long-distance physics. More discussion of the OPE is given in Appendix C.

The OPE of the product of currents in Eq. (2.19) is

T {jµ(z)jν(0)} z→0−−−→ (∂µ∂ν − gµν∂2)
∞∑

n=0,2,4

C(1)
n (z2)zµ1 ...zµnOµ1...µn

n (0)

+ (gµκ∂ρ∂ν + gρν∂µ∂κ − gµκgνρ∂2 − gµν∂ρ∂κ)
∞∑

n=0,2,4

C(2)
n (z2)zµ1 ...zµnOµνµ1...µn

n+2 (0),

+ anti-symmetric in µ↔ ν terms,

(2.39)

where the only QCD operators that contribute in the asymptotic limit of zµ → 0 are the

unpolarised twist-two operators,

O(n)µ1...µn
f (X) = ψ̄f (X)γ{µ1i

↔
D
µ2

...i
↔
D
µn}

ψf (X)− traces, (2.40)

and the polarised twist-two operators, which are neglected in Eq. (2.39), are

Õ(n)µ1...µn
f (X) = ψ̄f (X)γ{µ1γ5i

↔
D
µ2

...i
↔
D
µn}

ψf (X)− traces, (2.41)

where
↔
D = 1

2( ~D − ~D), for the covariant derivative defined in Eq. (2.8). See Appendix A

for the symmetrisation convention of the Lorentz indices and the definition of ~D.

In Eq. (2.39), the Fourier transform of the Wilson coefficients,

c(i)
n (αS(Q)) =

∫
d4eiq·zC(i)

n (z2), (2.42)

can be calculated perturbatively, and have the form

c(i)
n (αS(Q)) =

∑

f

e2
f +O(αS(Q)). (2.43)
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Hence this gives us the form of the Wilson coefficients in Eq. (2.14).

If we truncate all αS(Q) corrections to the Wilson coefficients, Eq. (2.39) is equivalent

to

T {jµ(z/2)jν(−z/2)} = −2
∑

f

e2
f

i

2π2

zρ

(z2 − iε)2

(
gµρgνκ + gµκgνρ − gµνgρκ

)

×
∞∑

n=1,3,5

(−i)n
n!

zµ1 ...zµnO
(n+1)κµ1...µn
f ,

(2.44)

which is derived in Appendix C, and is the expression we will use for our OPE in Chapter

5. This is therefore an expression for the OPE in the absolute Bjorken limit, Eq. (2.34),

which eliminates all terms suppressed by 1/Q2 and αS . The Feynman diagram for this is

given in Fig. 2.5, known as the ‘handbag diagram’. The perturbatively calculable ‘handle’

corresponds to the Wilson coefficient, while the non-perturbative structure is contained in

the blob.

After putting Eq. (2.44) between two states and Fourier transforming, we get that the

Compton structure functions are

F1(ω,Q2) =
∑

f

e2
f

∞∑

n=1

af2nω
2n, F2(ω,Q2) = 2x

∑

f

e2
f

∞∑

n=1

af2nω
2n, (2.45)

which are independent of Q2, as expected, and we have recovered the Callan-Gross re-

lationship, Eq. (2.37). Note that we have defined the matrix element of the unpolarised

operators as

〈P |O(n)µ1...µn
f |P 〉 = Pµ1 ...Pµnafn − traces, (2.46)

where the traces are terms proportional to gµiµj that give rise to m2
N/Q

2 corrections [52],

and afn is the reduced matrix element, which contains the interesting non-perturbative

information.

Finally, by comparing Eq. (2.29) to the OPE result, Eq. (2.45), we get a relation

between the local QCD operator and the n even moments of structure functions:

2

∫ 1

0
dxxn−1F1(x,Q2) =

∑

f

cfn
(
αS(Q2)

)
afn + (higher-twist), (2.47)

where cn
(
αS(Q2)

)
has the form given in Eq. (2.43). This matches the type of factorisation

relation we gave in Eq. (2.14).

Finally, interpreting F1 at αS = 0 in terms of PDFs, Eq. (2.36), we have

2

∫ 1

0
dxxn−1F1(x) =

∑
e2
f

∫ 1

0
dxxn−1

(
qf (x) + q̄f (x)

)
=
∑

e2
fa

f
n (2.48)

This gives us the first link between the parton model and QCD operators: the Mellin

moments of PDFs can be cast in terms of twist-two operators. Note that the OPE is an

expansion in the unphysical region |ω| < 1, which corresponds in coordinate space to the

short-distance region zµ → 0. As such, it does not complete our goal of finding a QCD

operator description of the PDFs, only their moments.
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Partons on the light-cone

To cast PDFs into the language of QCD operators we note that, as probability densities,

the PDFs can be written as

qf (x) =

∫
d4pX
(2π)4

∑

X

|〈X|ψf |P 〉|2δ(xP − p) = 〈P |ψ†fψf |P 〉δ(xP − p), (2.49)

where p is the parton momentum and x is the fraction of the nucleon momentum carried

by the parton.

However, the relation pµ = xPµ is not completely correct. Rather, we are assuming

that components of the parton momentum, pµ, transverse to the nucleon’s momentum are

taken to be very small compared to the components parallel to the nucleon’s momentum.

This is not true in all frames—in the nucleon rest frame, for instance.

In the center of mass frame, where qµ = (0, 0, 0, Q), the nucleon momentum is Pµ =

(E,P 1, P 2,−P ·q
Q ). Since P · q ∼ Q2 in the Bjorken limit, P · q/Q ∼ Q, which goes to

infinity. Hence for large Q, we have Pµ ' (Q, 0, 0,−Q), a lightlike vector. Therefore,

since the components of Pµ are the hard scale, all the transverse components of pµ must

be suppressed with respect to these. Hence we have p ≈ xP in this frame.

Since all our kinematics are dominated by light-like vectors in this frame, it is con-

venient to define a pair of collinear light-like vectors that span our kinematics: nµ =

Λ(1, 0, 0, 1) and n̄µ = (1, 0, 0,−1)/(2Λ), for Λ a parameter set so that n · P = 1. Hence

Pµ = n̄µ + (M2/2)nµ. Therefore, the relationship between the parton and nucleon mo-

mentum is p · n = xP · n.

Another key assumption here is that the struck parton is on-shell. Roughly speaking,

this follows from the fact that the parton is asymptotically free, and hence non-interacting;

more detailed justifications are given elsewhere [15].

As such, we can write Eq. 2.49 more precisely:

qf (x) =

∫
d4pX
(2π)4

∑

X

|〈X|ψf |P 〉|2δ(p · n− xP · n), (2.50)

where the above equation describes a nucleon splitting into one constituent parton of

momentum p, and the left-over parts of the nucleon X with momentum pX .

After some manipulation, Eq. (2.50) gives us the definition of PDFs in terms of QCD

operators:

qf (x) =

∫
dλ

2π
eiλx〈P |ψ̄f (−λn/2)

/n

2
ψf (λn/2)|P 〉, (2.51)

which is the probability amplitude for a quark to leave the hadron, propagate along the

light-cone, and be reabsorbed.

More generally, we can introduce the non-local light-cone operator

OfLC(x) =

∫
dλ

2π
eiλxψ̄f (−λn/2)Γψf (λn/2), (2.52)
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where Γ is a Dirac matrix; Γ = /n for unpolarised parton distributions. So that we can

simply write†††

qf (x) =
1

2
〈P |OfLC(x)|P 〉.

Finally, to come full circle, we can Taylor expand along the light-cone [56] to relate

the local operators of Eq. (2.40) to the light-cone operator:

nµ1 ...nµmOµ1...µm
f =

∫ 1

−1
dxxm−1OfLC(x), (2.53)

for Γ = /n. We can generalise this to other operators: for instance, if Γ = /nγ5 in the

parton distribution, it can be related to the polarised local operators given in Eq. (2.41).

Hence this is an extremely useful equation as it allows us to relate any parton distribution

function to a basis of local operators.

2.2.3 Polarised forward Compton scattering

Now we can apply these tools and concepts to the polarised (spin-dependent) part of

the forward Compton amplitude. We will calculate this Compton amplitude using lattice

QCD in Section 7. Recall that we introduced a general tensor decomposition in Eq. (2.20),

which contained the spin-independent structure functions, as well as the polarised struc-

ture functions, g̃1,2. The polarised contributions correspond to the part of the Compton

amplitude that is anti-symmetric under µ↔ ν. Experimentally, these structure functions

can be measured from polarised deep-inelastic scattering. For a more complete treatment

of polarised forward Compton scattering see Refs. [57, 67].

Again, using the optical theorem, these Compton structure functions can be related

to the DIS structure functions, g1,2, by a dispersion relation (again, see Appendix B):

g̃1,2(ω,Q2) = 4ω

∫ 1

0
dx

g1,2(x,Q2)

1− x2ω2 − iε . (2.54)

In contrast to Eq. (2.26), there is no subtraction function in this dispersion relation.

Then, as in the spin-averaged case, we can expand around ω = 0 to relate this to the

moments of the polarised DIS structure function:

g̃1,2(ω,Q2) = 4
∞∑

n=1

ω2n−1

∫ 1

0
dxx2n−2g1,2(x,Q2) = 4

∞∑

n=1

ω2n−1M̃
(1),(2)
2n−1 (Q2). (2.55)

Note that, unlike the spin-averaged structure functions, the spin-dependent structure func-

tions, g1,2, are related to a difference of cross-sections, and are hence not guaranteed to be

positive definite. Therefore, for the moments of the spin-dependent structure functions,

there is no equivalent monotonic condition on the polarised moments, M̃
(1),(2)
n (Q2).

Perturbative expansion

We can apply the tools of the OPE and light-cone operators developed in Section 2.2.2 to

gain physical insights into these polarised structure functions.

†††In general, this equation contains a Wilson line to keep the operator gauge invariant. To simplify
expressions for light-cone operators, we use light-cone gauge: nµA

µ(x) = 0 for the light-cone vector nµ.
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Operator product expansion

The OPE of the µ↔ ν antisymmetric component of the Compton amplitude is

T {jµ(z/2)jν(−z/2)} = −2
∑

f

e2
f

i

2π2

zρ

(z2 − iε)2
iεµνρκ

×
∞∑

n=0,2,4

(−i)n
n!

zµ1 ...zµnÕ
(n+1)κµ1...µn
f (0),

(2.56)

where Õ(n+1)κµ1...µn
f (0) are the operators in Eq. (2.41), and we have also truncated αS(Q)

corrections to the Wilson coefficients.

Putting Eq. (2.56) between two equal momentum states and Fourier transforming we

arrive at [57,68]

g̃1(ω) = 4
∑

f

e2
f

∞∑

n=1

ω2n−1ãf2n−1, g̃2(ω) = 8
∑

f

e2
f

∞∑

n=1

(
n− 1

1− 2n

)
ω2n−1ãf2n−1, (2.57)

where we have defined‡‡‡

〈P |Õ(n)µ1...µn
f |P 〉 = 4s{µ1Pµ2 ...Pµn}ãfn − traces, (2.58)

for Õ(n)µ1...µn
f the operators in Eq. (2.41), sµ is the spin vector in Eq. (2.21), and ãfn are

the reduced matrix elements.

To compare to the moments of g1,2, neglecting higher-twist corrections, we have

M̃ (1)
n (Q2) =

∑

f

c(1),f
n

(
αS
)
ãfn, M̃ (2)

n (Q2) =

(
1− n
n

)∑

f

c(2),f
n

(
αS
)
ãfn, (2.59)

where once again the Wilson coefficients, c
(1,2),f
n , go like Eq. (2.43). Therefore, we once

again have the moments of the structure functions in terms of local operators.

Parton interpretation

The naive parton model prediction for the DIS structure functions is [57]

g1(x) =
1

2

∑

f

e2
f

(
∆qf (x) + ∆q̄f (x)

)
,

g2(x) = 0,

(2.60)

where we have used

∆qf (x) ≡ q↑f (x)− q↓f (x),

and q↑f (x) is the probability density of finding the incident quark being flavour f with

momentum fraction x and spin up.

‡‡‡Note that we have defined the reduced matrix elements, ãn, to match that of Refs. [69,70]. To compare
to Manohar’s convention [57], ãManohar

n = 2ãn.
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In terms of light-cone operators, Eq. (2.52), these quark helicity PDFs are

∆qf (x) =

∫
dλ

2π
eiλx〈P |ψ̄f (−λn/2)/nγ5ψf (λn/2)|P 〉. (2.61)

The g1 structure function

We now discuss the physics of the g1 structure function and its moments.

Interpretation of the first moment

From the definition of the local operators, Eq. (2.41), we can see that the n = 1 operator

is simply the axial vector operator:

Õ(1)µ
f = ψ̄fγ

µγ5ψf .

Given the partonic interpretation of the structure functions, Eq. (2.60), the first mo-

ment of g1 is ∫ 1

0
dx
(
q↑f (x)− q↓f (x) + q̄↑f (x)− q̄↓f (x)

)
, (2.62)

which is the contribution to the hadron’s spin carried by quarks of flavour f .

Using the dispersion relation, Eq. (2.54), and the OPE, Eq. (2.57), we have the relation

4sµ
∑

f

e2
f ã

f
1 =

∑

f

e2
f 〈P |ψ̄fγµγ5ψf |P 〉 = 2sµgA, (2.63)

where gA is the axial coupling. Hence we can interpret the first moment as proportional

to gA, which is the contribution to the proton’s spin carried by a certain quark species.

Moreover, by isospin symmetry, we have the following relation [57]:

〈proton|
(
ψ̄uγ

µγ5ψu − ψ̄dγµγ5ψd

)
|proton〉 = 〈proton|ψ̄uγµγ5ψd|neutron〉

= 2sµgu−dA .
(2.64)

Therefore, using these results we arrive at the Ellis-Jaffe sum rule [71]

2M̃
(1)
1 (Q2) = 2

∫ 1

0
dxg1(x,Q2) = c1(αS(Q))gA, (2.65)

where we have reintroduced the Wilson coefficient c1 =
∑

f e
2
f + O(αS(Q)). Unlike our

other OPE results, where there are higher-order contributions from both the Wilson co-

efficients and higher-twist terms (refer to Eq. (2.13)), the Ellis-Jaffe sum rule only has

higher-order contributions in the Wilson coefficient. This is because one cannot construct

a gauge-invariant gluon operator to accompany the leading ω term [57].

The fact that M̃
(1)
1 (Q2) contains no higher-order contributions other than the Wilson

coefficient means that we can parameterise the moment as

2M̃
(1),u−d
1 (Q2) =

(
1− αg1(Q2)

π

)
gu−dA . (2.66)
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In the above equation, αg1 is defined as the ‘effective strong coupling’. Note that pertur-

bative calculations of the strong coupling, αS(Q2), diverge as Q→ ΛQCD; see Eq. (2.12).

By contrast, if we define an effective coupling from an experimental observable, as in

Eq. (2.66), we thereby extend the concept of a strong coupling to the Q2 < Λ2
QCD re-

gion [72]. Therefore, one can use this effective strong coupling to study confinement as

well as asymptotic freedom, and the transition between the two regions.

The g2 structure function

Now we will discuss the g2 structure function, and interpretations and predictions for its

first and second moments.

Interpretation of the first moment

For n = 1, the OPE result, Eq. (2.57), predicts that the first moment of g2 vanishes:

lim
Q2→∞

M̃
(2)
1 (Q2) = 0.

Of course, the OPE is only leading-twist and there may be higher-twist corrections to this.

However, it has been further argued that the first moment of g2 vanishes at all orders

[73]:

M̃
(2)
1 (Q2) =

∫ 1

0
dxg2(x,Q2) = 0. (2.67)

This is known as the Burkhardt-Cottingham sum rule [74], which is derived using Regge

theory, and is not completely model-independent. As such, we can test Eq. (2.67) at a

given Q2 using our lattice calculation.

Interpretation of the second moment

From the OPE result, Eq. (2.57), we have that the moments of g2 can be completely

determined by the moments of g1:

g̃2(ω) = 4
∞∑

n=1,3,5

(
1− n
n

)
ωnãn = −g̃1(ω) +

∫ ω

0
dω′

g̃1(ω′)
ω′

. (2.68)

By taking the imaginary part of Eq. (2.68) and changing the integration variable to

x = 1/ω, we arrive at the Wandzura-Wilczek (WW) relation for polarised DIS structure

functions [75]:

g2(x) = −g1(x) +

∫ 1

x
dx′

g1(x′)
x′

. (2.69)

And hence at leading-twist the g2 structure function is completely determined by g1.

However, the WW relation has higher-twist corrections to it. Again, we will test this

relation for the n = 3 moment in our lattice calculation.

An OPE of the moments of g2 including twist-three operators gives [70]

∫ 1

0
dxxn−1g2(x,Q2) =

1− n
n

[
ãn −

dn−1

4

]
, (2.70)
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Figure 2.6: Left: the Feynman diagram for deeply virtual Compton scattering (DVCS). Right:

the Feynman diagram for general off-forward Compton scattering.

where the ãn contribution is simply that from Eq. (2.57). And hence, the Wandzura-

Wilczek breaking contribution is from the dn terms. Moreover, these dn contributions are

twist-three in the operator sense but are not 1/Q2 suppressed.

The d2 term in particular contains information about quark-gluon correlations in a nu-

cleon [69,70,76]. To isolate d2 from the structure function moments, we combine Eq. (2.70)

and the OPE result Eq. (2.57) to get that§§§

d2(Q2) ≡ 4M̃
(1)
3 (Q2) + 6M̃

(2)
3 (Q2). (2.71)

Then, from Eqs. (2.70) and Eq. (2.57), we have that d2(Q2)→ d2 as Q2 →∞.

2.2.4 Off-forward Compton scattering

Finally, we look at the process of off-forward Compton scattering, which is used to access

generalised parton distributions (GPDs). In Chapters 5 and 6, we calculate this amplitude

in lattice QCD. The off-forward Compton amplitude (OFCA) is defined as

Tµν ≡ i
∫
d4ze

i
2

(q+q′)·z〈P ′|T {jµ(z)jν(0)}|P 〉, (2.72)

which is similar to the forward Compton amplitude, Eq. (2.19), except that it describes

a hadron with initial momentum P absorbing a photon with momentum q and after then

emitting a photon with momentum q′ so that the nucleon has final momentum P ′—
see Figure 2.6. This Compton amplitude, therefore, returns to the forward amplitude as

P ′ → P . Note, again, more complete treatments of this topic can be found in Refs. [56,77].

Due to momentum conservation, this process gives us three independent momentum

vectors, which we will choose as

P̄ =
1

2
(P + P ′), q̄ =

1

2
(q + q′), ∆ = P ′ − P = q − q′. (2.73)

From these, we can form at most four linearly independent scalar variables. We choose

two scaling variables and a soft and hard momentum transfer, given respectively as:

ω̄ =
2P̄ · q̄
Q̄2

, ϑ = −∆ · q̄
Q̄2

, t = ∆2, Q̄2 = −q̄2. (2.74)

§§§Note, especially in experimental analysis, it is common to define d2 = 2M̃
(1)
3 + 3M̃

(2)
3 [44].
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Here, we now have two scaling variables, ω̄ and ϑ, and two momentum transfers, Q̄2 and

t. In the off-forward case, Q̄2 is the hard scale and is Q̄2 � −t. The variable ω̄ is simply

ω in the limit that t → 0. Similarly, Q̄2 → Q2 in the same limit. Moreover, the whole

off-forward Compton amplitude reduces to the forward Compton amplitude for t→ 0.

We will use these momentum scalars in Chapter 5. We note that standard skewness

variable in terms of these variables is ξ = ϑ/ω̄.

Deeply virtual Compton scattering

The main experimental process to probe the OFCA and thereby GPDs is deeply virtual

Compton scattering (DVCS): e−+N(P )→ e−+γ(q′)+N(P ′) (see Figure 2.6). In DVCS,

the final state photon is on-shell, and hence we have the constraint that q′2 = 0. After

applying this constraint, q′2 = 0, our Lorentz scalars become

ϑ ' 1, ω̄ ' ξ−1, Q̄2 ' −q
2

2
, (2.75)

where ' in this context means “equal up to suppressed m2
N/Q̄

2 and t/Q̄2 terms”. Hence

it is clear why DVCS is typically parameterised in terms of ξ, t, and Q2 = −q2.

We note also that there are a number of difficulties associated with extracting GPDs

from experiment, as we will discuss in Chapter 5.

Generalised parton distributions

Generalised parton distributions (GPDs) are defined by the off-forward matrix element

of the light-cone operator we saw in Eq. (2.52). For a light-like vector nµ such that

n · P̄ = 1∗∗∗∗, we have [22,78]

∫
dλ

2π
eiλx〈P ′|ψ̄f (−λn/2)/nψf (λn/2)|P 〉 = Hf (x, ϑ/ω̄, t)ū(P ′)γµnµu(P )

+ Ef (x, ϑ/ω̄, t)ū(P ′)
iσµνnµ∆ν

2mN
u(P ).

(2.76)

In contrast to the forward parton distributions, there are two GPDs, Hf and Ef , from

the one light-cone operator. Due to the momentum transfer, the helicity of the nucleon

can flip. As such, Hf and Ef are the helicity-conserving and -flipping GPDs, respectively.

If we calculate the OFCA for DVCS kinematics, we get [22,78]

Tµν(P, q;P ′, q′) =
1

2
(gµν − nµn̄ν − nν n̄µ)

∫ 1

−1
dx

(
1

x− ξ + iε
+

1

x+ ξ + iε

)

×
[
H(x, ξ, t)ū(P ′)/̄nu(P ) + E(x, ξ, t)ū(P ′)

iσαβn̄α∆β

2M
u(P )

]
,

(2.77)

using nµ and n̄µ, the light-like vectors defined in Section 2.2.2. The above equation is

equivalent to the factorisation relation, Eq. (2.16), where the perturbative kernel is the

(x± ξ + iε)−1 terms, and the long-distance physics is contained in the GPDs.

∗∗∗∗Using the standard Sudakov decomposition (see Appendix D), this gives us the familiar form of the
skewness variable, ξ = −n ·∆/2. Note that occasionally definitions of ξ in terms of nµ may differ by
a factor of two or −1.
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It is also useful to relate GPDs to the local twist-two operators from Eq. (2.40). The

off-forward nucleon matrix elements of these operators are [79]

〈P ′|O(n+1)κµ1...µn
f (0)|P 〉 = ū(P ′)γ{κu(P )

n∑

i=0

Afn+1,i(t)∆
µ1 ...∆µiP̄µi+1 ...P̄µn}

+ ū(P ′)
iσ{κα∆α

2mN
u(P )

n∑

i=0

Bf
n+1,i(t)∆

µ1 ...∆µiP̄µi+1 ...P̄µn}

+ Cfn+1(t)mod(n, 2)
ū(P ′)u(P )

mN
∆{κ∆µ1 ...∆µn} − traces,

(2.78)

where the Lorentz scalars Afn,i, B
f
n,i and Cfn are generalised form factors (GFFs).

Using Eqs. (2.76) and Eq. (2.78), as well as our relation between the light-cone and

local twist-two operators, Eq. (2.53), we can relate the GPDs H and E to the GFFs:

∫ 1

−1
dxxnHf (x, ϑ/ω̄, t) =

n∑

j=0,2,4

(−2ϑ/ω̄)jAfn+1,j(t) + mod(n, 2)(−2ϑ/ω̄)n+1Cfn+1(t),

∫ 1

−1
dxxnEf (x, ϑ/ω̄, t) =

n∑

j=0,2,4

(−2ϑ/ω̄)jBf
n+1,j(t)−mod(n, 2)(−2ϑ/ω̄)n+1Cfn+1(t),

(2.79)

recalling that ξ = ϑ/ω̄ in terms of the scalars defined at the start of this section. These

equations are the famous ‘polynomiality’ of GPDs [79], which relates moments of GPDs

to the GFFs.

Physical interpretation

From a hadronic structure perspective, GPDs provide us with a wealth of otherwise inac-

cessible physical information. Moreover, they can be related to forward PDFs and EFFs,

thereby unifying seemingly unrelated quantities.

Relation to other observables

At P ′ = P or equivalently t = 0, it is easy to see that Eqs. (2.51) and (2.76) coincide.

Therefore, it is simple to show, noting 2P · n = 2, that

Hf (x, 0, 0) = qf (x), x > 0, and Hf (x, 0, 0) = −q̄f (−x), x < 0, (2.80)

where q̄f (x) is the PDF for the anti-quark of flavour f .

Similarly, from the definition of elastic form factors in Section 2.2.1 that the GFFs

from Eq. (2.78) can be associated with the Dirac and Pauli form factors (Eq. (2.17)) for

n = 1:

A1,0(t) = F1(−t), B1,0(t) = F2(−t),
where we note that Q2 is positive in Eq. (2.17), while t is negative, hence the sign change.



2.2 Compton Scattering 26

Finally, for n = 2, these GFFs can be related to the quark contribution to the nucleon

energy-momentum tensor (EMT) for a flavour of quark f [79]:

〈P ′|T µνf |P 〉 =ū(P ′)
[
Af2,0(t)γ{µP̄ ν} +Bf

2,0(t)
iσ{µα∆α

2M
P̄ ν}

+ Cf2 (t)
∆µ∆ν − gµν∆2

M

]
u(P ).

(2.81)

Physical information

As mentioned, GPDs contain an abundance of otherwise inaccessible physical information,

including:

• Spin structure: Since the n = 2 moments parameterise the EMT, they can also

be used to calculate the QCD angular momentum operator [22]:

〈J3
f 〉 =

1

2
[Af2,0(0) +Bf

2,0(0)] =
1

2

∫ 1

−1
dxx

[
Hf (x, ξ, t) + Ef (x, ξ, t)

]∣∣∣∣
t=0

. (2.82)

This is the famous Ji sum rule. As we discussed previously, from the polarised

forward structure functions we can determine the contribution to the nucleon’s spin

coming from its quarks, Eq. (2.62). Combining that result with the Ji sum rule it is

possible to determine the contributions to the proton’s spin from the orbital angular

momentum of its constituents. Hence a measurement of GPDs would help to solve

the long-standing ‘proton spin puzzle’ [16, 80,81].

• Mechanical properties: Again, by their relation to the QCD energy-momentum

tensor, GPDs can be related to the ‘D-term’, which coincides with the GFF C2 in

Eqs. (2.78). This D-term has been referred to as ‘the last global unknown property’

[24,82,83], and can provide semi-classical or ‘mechanical’ properties of hadrons, such

as the distribution of shear forces and pressure in a hadron, and its mechanical radius.

From analyses of the OFCA using dispersion relations, it has been shown that this

D-term is experimentally accessible [84–87], and it was subsequently measured from

DVCS [88,89].

• Spatial distributions: Finally, it was shown by Burkardt [23, 90] that GPDs at

zero skewness, ξ = 0, can be Fourier transformed to access spatial distributions:

qf (x,b⊥) =

∫
d2∆⊥
(2π)2

Hf (x,−∆2
⊥)e−ib⊥·∆⊥ , (2.83)

where Hf is the helicity conserving GPD and qf (x,b⊥) is the impact parameter

dependent PDFs, defined as

qf (x,b⊥) ≡ 〈P, λ|
∫
dλ

2π
eiλxψ̄f

(
− λn/2 + b⊥

)
/nψf

(
λn/2 + b⊥

)
|P, λ〉. (2.84)

This is just the regular PDF definition, Eq. (2.52), except with the position of the

quark fields shifted by some impact parameter vector, b⊥, for which b⊥ ·n = 0. This

object is commonly interpreted as the probability density of finding a quark with
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momentum fraction x, at a displacement b⊥ from the centre of mass of the struck

hadron.

Hence a determination of GPDs can provide us with unprecedented information

about the spatial structure of nucleons.

Note on off-forward formalism

Finally, we note that the formalism used to describe off-forward scattering presented here

has been completely perturbative, in terms of the local twist-two operators, Eq. 2.40, and

the light-cone operators, Eq. 2.52. By contrast, in the sections on the forward Comp-

ton amplitude, we also used the non-perturbative methods: the tensor decomposition,

Eq. (2.20) and dispersion relations. In Chapter 5, we will derive the relevant tensor

decomposition and dispersion relations for the off-forward Compton amplitude that are

necessary to analyse our lattice results.



Chapter 3

Lattice QCD

As we discussed in the previous chapter, at low energy scales the strong coupling is αS ∼ 1,

and hence standard perturbation theory cannot be applied to QCD. Even for high energy

processes, where perturbation theory is applicable, there are still non-perturbative con-

tributions to most cross sections. Therefore, for QCD calculations with non-perturbative

contributions it is common to use a numerical approach: lattice QCD.

Lattice QCD was first formulated by Wilson [13], and involves calculating matrix ele-

ments of operators in a discrete spacetime of finite extent. As such, lattice QCD calcula-

tions have a finite number of degrees of freedom and are therefore amenable to numerical

evaluation. Moreover, it is a completely first principles approach to the calculation of

QCD operators, with improvable errors in the form of the lattice spacing (the distance

between adjacent lattice sites) and finite volume corrections. Since lattice calculations

often use heavier than physical quark masses as a way to reduce the numerical costs of

the calculation, it is also necessary to correct for these unphysical masses.

Despite great successes in calculating a range of QCD quantities, lattice methods still

face a range of persistent challenges. For the present thesis, one of our major obstacles

stems from the ‘numerical sign problem’ associated with the evaluation of high-dimensional

integrals [91, 92]. In lattice QCD the standard way to solve this sign problem is to use

Euclidean instead of Minkowski spacetime∗. However, it is not possible to directly calculate

parton distributions or real-time scattering amplitudes in Euclidean spacetime. Instead,

one can calculate related quantities in lattice QCD, which can then be used to constrain

or ultimately determine the Minkowski space quantities.

Calculating partonic information from first principles is one of the most important

topics in contemporary lattice QCD and is the central aim of this thesis. The earliest

calculations of parton distributions moments were carried out in the 1980s [28,29], but as

yet n = 3 is the highest moment calculated with this method. Recent years have seen the

development of new methods to go beyond the leading moments, the most prominent of

which are the quasi- [32] and pseudo-distribution [33] approaches, among others [94, 95],

including the Feynman-Hellmann Compton amplitude method presented in this thesis [36].

The structure of this chapter follows: in Section 3.1 we present a very brief description

of the formulation of lattice QCD: Euclidean path integrals, the discretisation of the

action, and a discussion of nucleon correlation functions. Then, in Section 3.2 we give an

overview of the various methods to calculate partonic information in lattice QCD. The

goal of this latter section is to give an idea of where our Feynman-Hellmann Compton

amplitude method fits into the field, the shared difficulties and the contrasts.

∗For calculations at finite baryon density, a related sign problem persists even in Euclidean spacetime [93].

28
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3.1 Formulation of Lattice QCD

3.1.1 Euclidean path integrals

In the path integral formalism of quantum field theory, the vacuum expectation value of

an operator is given by

〈Ω|O|Ω〉 =

∫
DAµDψ̄DψOeiSQCD

∫
DAµDψ̄DψeiSQCD

, (3.1)

where |Ω〉 is the vacuum state and Dφ is the functional volume element for some field φ.

The full QCD action is SQCD = SF + SG, where†

SF =

∫
d4z

∑

f

ψ̄f (z)
(
/D −mf

)
ψf (z), SG = −

∫
d4z

1

4
Fµν(z)Fµν(z). (3.2)

Here, we have broken up the QCD Lagrangian density from Eq. 2.10.

Due to the highly oscillatory factor of eiSQCD in Eq. (3.1), the numerical evaluation

of this equation is near impossible on classical computers—the so-called ‘numerical sign

problem’. Instead, we can use the property of analytic continuity to ‘Wick rotate’:

t→ −iτ ⇒ eiSQCD → e−S
E
QCD . (3.3)

Under this transformation, the invariant length of some spacetime vector, zµ, is

z2 = −τ2 − |z|2 < 0. (3.4)

Hence after the Wick rotation we are working in a Euclidean spacetime: the spatial and

temporal components of the invariant length have the same sign.

In the literature the convention is to change the elements of a Lorentz vector in coor-

dinate space, xµ, and in momentum space, pµ, like so:

x0 → −ix4, p0 → ip4, (3.5)

which means that the temporal/energy component moves to the end of the four-vector.

Note that the opposing sign on the momentum vector keeps Fourier transforms well-

defined.

As such, the new Euclidean action is

SEF =

∫
d4z

∑

f

ψ̄f (z)
(
Dµγ

E
µ +mf

)
ψf (z), SEG =

∫
d4z

1

4
Fµν(z)Fµν(z), (3.6)

where the Dirac matrices are changed to γEµ = (γ0,−iγi) to satisfy the Euclidean Clifford

algebra: {γµ, γν} = 2δµνI.
†In this chapter we generally suppress all colour indices. Moreover, where we wrote taAaµ(z) for the product
of the SU(3) generator and gauge field, we now simply write Aµ(z).
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And the Euclidean path integral is

〈Ω|O|Ω〉 =

∫
DAµDψ̄DψOe−SEF −SEG∫
DAµDψ̄Dψe−SEF −SEG

. (3.7)

Defining the fermion operator as

M = /D −mf , (3.8)

one can show that Eq. (3.7) becomes [96]

〈Ω|O|Ω〉 =

∫
DAµdet[M ]Oe−SEG∫
DAµdet[M ]e−S

E
G

. (3.9)

Hence, in contrast to the oscillatory eiSQCD in Eq. (3.1), we have the weight det[M ]e−S
E
G

that accompanies the operator. This distribution is far simpler to sample, and hence the

Wick rotation is crucial to making lattice QCD numerically feasible.

However, since we live in a world with real and not imaginary time, the Wick rotation

does not come without consequences. As shown in Eq. (3.4), all the coordinate space

separations in this formulation are spacelike: z2 < 0. By contrast the parton distributions

discussed in the previous chapter are defined as light-like correlation functions, Eq. (2.52).

Similarly, a direct calculation of the Compton scattering amplitude requires real time—see

Section 4.2. Therefore, this forms a central difficulty of our calculation: although the Wick

rotation is necessary to make lattice calculations computationally feasible, it also makes

the direct calculation of parton distributions and scattering amplitudes impossible. We

discuss this problem and some solutions in Section 3.2.

3.1.2 Discretisation

Even after the Wick rotation, the integral in Eq. (3.9) still has an infinite number of

degrees of freedom. Therefore, to make the evaluation of this path integral possible on a

computer, we need to reduce it to a finite number of degrees of freedom. We do this by

working in a discrete spacetime with a finite extent: the lattice. The discretisation of the

Euclidean action, Eq. (3.6), is a highly involved exercise. Here, we give a brief overview

of the discretisation used for our calculations—more complete treatments can be found in

Refs. [96–99].

Discretisation begins by replacing our continuous infinite spacetime with a bounded

discrete set of points. Hence a given spacetime vector, zµ, becomes

zµ = anµ,

where a is the lattice spacing and the elements of nµ are in {0, 1, 2, ..., N − 1} for N the

number of points in a given direction. The spatial extent is L = aN , and typically we

choose L the same in all spatial directions and the temporal extent to be T = 2L.

Due to the limited spacetime extent and periodic boundary conditions, the three mo-

mentum, p, are quantised on the lattice like so:

p =
2π

L
n, (3.10)
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where the elements of n are in {−N/2 + 1,−N/2 + 2, ..., 0, 1, ..., N/2} for N again the

number of spacetime points in a given direction. Therefore, there are the same number of

momentum values as spacetime sites for a given direction.

The lattice QCD action

Now we would like to quantise the Euclidean QCD action; we will do this separately for

the gauge and fermion components given in Eq. (3.6).

Recall from Chapter 2 that the SU(3) symmetry of QCD is local, and hence operators

at different spacetime points have different gauge spaces. As such, we introduced the

Wilson line, U(z, z′), as a way of ‘comparing’ two operators in different gauge spaces. For

the discretised theory we introduce the analogue of the Wilson line, the ‘link variable’:

Uµ(z) ≡ U(z, z + aµ̂) = eigaAµ(z), (3.11)

where µ̂ is the unit vector in the µ direction. Note that the link variable pointing in the

−µ̂ direction is U−µ(z) = U †µ(z − aµ̂).

Then, the discretised covariant derivative acting on a quark field is

Dµψ(z) =
Uµ(z)ψ(z + aµ̂)− U †µ(z − aµ̂)ψ(z − aµ̂)

2a
. (3.12)

Unlike in the continuum case (Eq. 2.8), we cannot take a to be infinitesimal, and therefore

we do not have the straightforward relationship between the covariant derivative and the

gauge boson fields Aµ as in Eq. 2.8. This suggests that gauge invariant quantities on the

lattice must be constructed from the link variables rather than Aµ directly.

Gauge component

Since one can show that a closed loop of link variables is gauge invariant [99], we start

with the simplest such loop, the plaquette:

Pµν(z) ≡ U †ν (z)U †µ(z + aν̂)Uν(z + aµ̂)Uµ(z). (3.13)

Then, using the identity eaeb = exp
{
a+ b+ 1

2 [a, b] + ...
}

and Taylor expanding the vector

fields, one can derive that

Pµν(z) = eia
2g2Gµν(z)+O(a3), (3.14)

where Gµν is a discretisation of the QCD field strength tensor, Fµν , from Eq. 2.9. This

suggests the Wilson gauge action as a suitable discretisation [13]:

SG =
2

g2

∑

sites

∑

µ<ν

Re trace
[
I− Pµν(z)

]
. (3.15)

This recovers the Euclidean gauge action, SG in Eq. (3.6), as a→ 0. There are improve-

ments in the O(a2) corrections that can be made to this action. For our calculations we

use the Symanzik-improved gluon action [27], for which a more detailed treatment can be

found in Ref. [99].
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Fermion component

At first glance, building a gauge invariant fermion action seems much simpler than the

gauge action, using the covariant derivative in Eq. (3.12):

Snaive
F =

∑

sites

[
ψ̄(z)γµ

Uµ(z)ψ(z + aµ̂)− U †µ(z − aµ̂)ψ(z − aµ̂)

2a
+mψ̄(z)ψ(z)

]
, (3.16)

which has O(a2) errors.

However, this naive fermion action suffers from a difficulty known as ‘fermion doubling’:

due to the nature of momentum on the lattice, the massless fermion propagator has 16

poles, leading to 16 fermion species, where there should be only two. This doubling can

be removed by the addition of the ‘Wilson term’ to Eq. (3.16) [96, 97, 99]. However,

this Wilson term introduces O(a) errors, which can be improved by the inclusion of the

Sheikholeslami-Wolhert (or ‘clover’) term [100].

We simply quote the Wilson fermion action below ‡:

SWF =
∑

n,m

ψ̄(zn)MW (n,m)ψ(zm), (3.17)

where MW (n,m) is the Wilson fermion matrix§, a discretisation of the fermion operator

introduced in Eq. (3.8):

MW (n,m) = (m0 + 4r) δn,m

− 1

2a

∑

µ

[
(r − γµ)Uµ(zn)δn+µ̂,m + (r + γµ)Uµ(zn − aµ̂)†δn−µ̂,m

]
,

(3.18)

where m0 is the bare fermion mass, and we typically set r = 1.

Although we do not write it out here, the Wilson action is often expressed in terms of

the ‘hopping parameter’, κ:

κ =
1

2m0a+ 8r
. (3.19)

This parameter is used to tune quark masses and is one of the fundamental inputs into

lattice calculations.

3.1.3 Determining matrix elements

We now return to our path integral, Eq. (3.9), which in terms of the gauge links is∗∗

〈Ω|O|Ω〉 =

∫
DUdet[M [U, ψ̄, ψ]]O[U, ψ̄, ψ]e−S

E
G [U ]

∫
DUdet[U, ψ̄, ψ]]e−S

E
G [U ]

, (3.20)

where we have written out the dependence on the gauge links U , and the fermion fields,

ψ̄ and ψ. The sea quark contributions are contained entirely within det[M [U, ψ̄, ψ]], and

the valence quarks in the operator, O[U, ψ̄, ψ].

‡Note that there are other possible discretisations of the fermion action [96,97].
§For zn or zm, the index refers to the lattice site, not the component of the Lorentz vector.
∗∗Here, we suppress the Lorentz index on the gauge links, and write them simply as U .
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Gauge fields

To approximate this integral, we generate gauge links with the acceptance probability

of det[M ]e−SG , for discretised M and SG as described above. Gauge field generation is

typically the most computationally expensive part of the lattice process and is performed

with Hamiltonian Monte Carlo [101], although exploratory studies have tested the ability

of machine learning techniques to improve the accuracy and computational cost of gauge

field generation [102].

As the field configurations are generated to conform to this probability distribution,

we can approximate the path integral as

〈Ω|O|Ω〉 ≈ 〈O〉U ≡
1

Nconf

Nconf∑

i=1

O[U i], (3.21)

where U i is the ith configuration of the gauge links, and we have defined 〈...〉U as the

average over all the gauge configurations. A set of gauge configurations is known as an

‘ensemble’, and hence Eq. (3.21) is also called an ‘ensemble average’.

A fundamental input into gauge field generation is the parameter β ≡ 6/g2, where g

is bare the QCD coupling strength. As such, like κ, the β parameter is used to label the

gauge ensembles in this thesis.

Fermions

For the quark fields in our operator, O, we perform all Wick contractions, which gives the

fermion part of the operator in terms of quark propagators. Since the continuum quark

propagator is the Green’s function (i.e. functional inverse) of the Fermion operator, for

discrete spacetime the lattice quark propagator is the inverse of the fermion matrix:

Sf (zn, zm) =
[
MW
f

]−1

nm
, (3.22)

for MW
f as in Eq. (3.18) for a quark of a single flavour.

The inversion of the sparse matrix in Eq. (3.18) is typically the second most computa-

tionally expensive procedure in a lattice calculation. However, as the masses of the quarks

increase, the numerical cost of this inversion decreases††. Therefore, in this thesis, our

lattice calculations use unphysically large quark masses. Although, lattice calculations at

the physical masses are becoming more common.

As an example, consider the nucleon two-point correlation function (also referred to

as a ‘correlator’):

〈Ω|χα(z′)χ†β(z)|Ω〉, (3.23)

where the proton interpolating operators are

χα(z) = εijk[ψu]iα(z)
(

[ψu]jβ(z)[Cγ5]βγ [ψd]
k
γ(z)

)
,

χ†α(z) = εijk
(

[ψ̄ū]iβ(z)[Cγ5]βγ [ψ̄d̄]
j
γ(z)

)
[ψ̄ū]kα(z).

(3.24)

††Roughly speaking, we can see this in Eq. (3.18): as m0 becomes increasingly large, the diagonal mass con-
tribution dominates the non-diagonal kinetic contribution. In the limit of infinite quark mass, therefore,
we have a diagonal matrix, for which it is trivial to find the inverse.
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Here, i, j, k are fermion colour indices and α, β, γ are Dirac indices. Note that C is the

charge conjugation matrix.

By taking all possible Wick contractions in Eq. (3.23), we find that this expectation

value can be computed from the ensemble average of quark propagators:

〈χα(z′)χ†β(z)〉U = εijkεi
′j′k′ [Cγ5]γδ[Cγ5]σρ

〈[
[Su(z′, z)]ii

′
ασ[Su(z′, z)]jj

′

γβ [Sd(z
′, z)]kk

′
δρ

− [Su(z′, z)]ij
′

αβ[Su(z′, z)]ji
′

γσ[Sd(z
′, z)]kk

′
δρ

]〉

U

.

(3.25)

Similarly, one can use operators that couple to pion fields and proceed in an identical way;

however, all the lattice QCD calculations in this thesis are for nucleons only.

3.1.4 Correlation functions

We now give a brief overview of the calculation of nucleon two- and three-point hadron

correlation functions in lattice QCD.

Two-point functions

Among the most common applications of lattice QCD is the calculation of two-point

functions, from which one can determine part of the energy spectrum of hadrons. These

methods are also important for this thesis, as the Feynman-Hellmann method is based on

the calculation of two-point functions, where the action has been modified by the addition

of perturbing background fields.

We start with the nucleon two-point function, given in Eq. (3.23). The eigenstates of

the QCD Hamiltonian are {|X(p)〉}, whereX is the hadronic state and p is the momentum,

whose components are quantised as in Eq. (3.10). These states satisfy the normalisation

conditions

HQCD|X(p)〉 = EX(p)|X(p)〉, 〈Y (p′)|X(p)〉 = 2EX(p)L3δX,Y δp′,p. (3.26)

We then define G(τ,p) the Fourier-projected two-point function‡‡:

G(Γ, τ,p) ≡ Γβα
∑

z

e−ip·z〈Ω|χα(τ, z)χ†β(0)|Ω〉, (3.27)

where Γ is a spin-parity projector, a matrix in Dirac space, and there is an implicit sum

over α and β. This correlation function is illustrated on the left panel of Fig. 3.1.

In the rest frame, p = 0, the choice of Γ isolates different spin-parity states:

Γ = diag(1, 0, 0, 0) → spin up, positive parity,

Γ = diag(0, 1, 0, 0) → spin down, positive parity,

Γ = diag(0, 0, 1, 0) → spin up, negative parity,

Γ = diag(0, 0, 0, 1) → spin down, negative parity.

‡‡By translational invariance, we can fix the initial position of the creation operator at zµ = 0 without loss
of generality.
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As such,

Γunpol =
1

2
(I + γ4), (3.28)

picks out the average of the spin up and down, and is therefore most commonly used for

nucleon two-point functions. We will discuss different spin-parity projectors in Chapters

4—7; however, for the rest of this chapter we will suppress them in our expressions.

Then inserting a complete set of states§§

G(τ,p) =
∑

X,p′

∑

z

e−ip·z〈Ω|χ(τ, z)
|X(p′)〉〈X(p′)|
〈X(p′)|X(p′)〉 χ

†(0)|Ω〉

=
∑

X,p′

∑

z

e−ip·z〈Ω|eHτ−ip̂·zχ(0)e−Hτ+ip̂·z |X(p′)〉〈X(p′)|
〈X(p′)|X(p′)〉 χ

†(0)|Ω〉

=
∑

X,p′

e−EX(p′)τ
∑

z

e−i(p−p′)·z〈Ω|χ(0)
|X(p′)〉〈X(p′)|
〈X(p′)|X(p′)〉 χ

†(0)|Ω〉

=
∑

X

e−EX(p)τ |〈Ω|χ(0)|X(p)〉|2
〈X(p)|X(p)〉 ,

(3.29)

where we have used the translational invariance of operators after the Wick rotation:

O(z, τ) = eHτ−ip̂·zO(0)e−Hτ+ip̂·z. (3.30)

For simplicity, we write Eq. (3.29) as

G(τ,p) =
∑

X

AX(p)e−EX(p)τ . (3.31)

Therefore, for large τ , the term in the sum of X with the lowest energy will dominate:

the nucleon. Hence

G(τ,p) ≈ AN (p)e−EN (p)τ , τ � a. (3.32)

Excited nucleon states may still contribute significantly if the Euclidean time is not suffi-

ciently large or if the mass splitting is too fine. As such, it is important to keep a > 1/∆E,

where ∆E is the smallest relevant mass splitting. We will explore analogous excited states

that appear in Feynman-Hellmann in Chapter 4.

Equation (3.32) allows us to extract the ground state nucleon. In particular, we define

the ‘effective mass’:

∆Eeff(τ) ≡ 1

δτ
log

( G(τ,p)

G(τ + δτ,p)

)
. (3.33)

This quantity is useful for helping lattice practitioners assess the quality of the ground

state saturation in their correlation functions.

§§Technically, in this operator formalism we also need to include an inverse factor of the partition function,
ZT =

∑
X e
−EXT , and the backwards propagating state [99]. However, both of these contributions are

highly suppressed for T � 1/EX .
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O(t)

Figure 3.1: Lattice diagrams of two-point (left) and connected three-point (right) correlation

functions. The connected quark propagators are the solid lines, while the grey blobs are the source

and sink—time increases left to right. The circled cross in the three-point function represents the

insertion of the operator.

For the correlator, Eq. (3.32), we note that large momenta make it difficult to extract

the ground state: at p = 0 the mass splitting is well defined:

EN = mN ≤ EN1 = mN1 ≤ . . .

However, for non-zero momenta we have

EN =
√
m2
N + p2 ≤ EN1 =

√
m2
N1

+ p2 ≤ . . .

And hence as |p| ∼ mX , the mass splitting becomes increasingly small and so it is harder

to isolate the ground state. This is a persistent problem in our calculation and other

calculations of partonic quantities on the lattice, as we discuss in Section 3.2.

Three-point functions

The three-point correlation function,

〈Ω|χ(z′)O(y)χ†(z)|Ω〉, (3.34)

is another extremely important correlation function, which is central to studies of hadron

structure in lattice QCD—see the right panel of Fig. 3.1. Using this correlation function,

one can determine the matrix element 〈N |O(0)|N〉, where we have used nucleon states,

but in principle other states are possible. As such, this type of calculation has allowed

for first principles determinations of electromagnetic form factors [103], scalar, tensor and

axial charges [104], and the moments of parton distribution functions [105], among others.

By Fourier transforming Eq. (3.34) and setting the source point to be at the origin,

we get

G3−pt(τ, t) =
∑

z,y

e−ip·(z−y)e−ip·y〈Ω|χ(τ, z)O(t,y)χ†(0)|Ω〉. (3.35)

Again, inserting a complete sets of states and using translational invariance as in

Eq. (3.29), we have

G3−pt(p,p; τ, t) =
∑

X,Y

e−EX(p)(τ−t)e−EY (p)t

〈X(p′)|X(p′)〉〈Y (p)|Y (p)〉

× 〈Ω|χ(0)|X(p)〉〈X(p)|O(0)|Y (p)〉〈Y (p)|χ†(0)|Ω〉.
(3.36)
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Then, by taking the ratio of the above expression with the two-point function, Eq. (3.27),

for forward kinematics we have

G3−pt(p,p; τ, t)

G(p, τ)
∝〈N(p)|O(0)|N(p)〉, for τ − t� a, t� a. (3.37)

It is necessary to take both τ − t � a and t � a in order to isolate the nucleon ground

states (or other ground-state hadron). Therefore, three-point calculations require careful

control of contributions from excited states [106]. As with two-point functions, higher sink

momentum makes extracting the ground state more difficult.

Four-point functions

One can generalise this method to calculate four-point functions:

〈Ω|χ(z′)O1(y′)O2(y)χ†(z)|Ω〉. (3.38)

This type of matrix element is extremely important to the current study, as our Feynman-

Hellmann method is one approach to circumvent the many difficulties associated with a

direct calculation of four-point functions.

The standard way of performing the partial Fourier transform is then

G4−pt(τ, t1, t2; p,k,k′)

=
∑

z,y′,y

e−ip·(z−y′)e−ik
′·(y′−y)e−ik·y〈Ω|χ(z, τ)O1(y′, t2)O2(y, t1)χ†(0)|Ω〉. (3.39)

Therefore, to isolate the ground state at the source and sink we need τ − t2 � a and

t1 � a. To get ground state saturation in the intermediate state (i.e. between t1 and t2),

we need t2 − t1 � a. For low-energy observables, where we are only interested in the

nucleon pole contribution, it is necessary to ensure ground state saturation [107,108]. On

the other hand, for high-energy observables, such as the hadronic tensor, ground state

saturation is not desirable [109]. In either case, four-point functions require a much more

careful treatment of excited states than two- and three-point functions, and may require

a lattice with a larger temporal extent.

An example of an operator that is commonly used in hadron structure studies of four-

and three-point functions, and which will be used in this thesis, is the vector current:

jµ(z) = ψ̄(z)γµψ(z).

On the lattice, we discretise this either with the local vector current:

jloc
µ (zn) = ZV ψ̄(zn)γµψ(zn), (3.40)

where ZV is the multiplicative renormalisation factor.

Or the conserved vector current, which is a Noether current on the lattice [99]:

jcon
µ (zn) =

1

2

(
ψ̄(zn + aµ̂)(r + γµ)U †µ(zn)ψ(zn)− ψ̄(zn)(r − γµ)Uµ(zn)ψ(zm + aµ̂)

)
.

(3.41)
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3.2 Lattice Parton Distributions

The calculation of partonic information from first principles QCD is the central goal of

this thesis, and is among the most important and difficult areas in all lattice QCD—see

reviews [105,110,111].

Recall the definition of the standard parton distribution function in terms of a light-

cone operator, Eq. (2.51):

qf (x) =

∫
dλ

2π
eiλx〈P |ψ̄f (−λn/2)

/n

2
ψf (λn/2)|P 〉,

where nµ is a light-like vector. As discussed in Section 3.1, the Euclidean signature

of spacetime on the lattice (Eq. (3.4)) prevents the calculation of light-like correlation

functions, and hence prevents the direct calculation of parton distributions. Since a direct

determination is impossible, there is an abundance of methods to indirectly access partonic

information on the lattice. Our Feynman-Hellmann Compton amplitude method is just

one such method. In this section we give a brief review of the other main approaches.

3.2.1 Lattice OPE

Recall from Chapter 2 that we can relate the Mellin moments of parton distributions to

local operators. In the case of the unpolarised PDF this is:

afn = 2

∫ 1

−1
dxxn−1qf (x),

where afn are the reduced matrix elements of the twist-two operators defined in Eq. (2.40):

〈P |O(n)µ1...µn
f |P 〉 = afnP

µ1 ...Pµn − traces.

This is important from the perspective of lattice calculations, as local operators by

definition do not depend on a coordinate space separation. As such, the matrix elements

of local operators are the same in Euclidean and Minkowski space. Therefore, we can

calculate the moments of parton distributions using the three-point function formalism

described above. For instance, for the operator O(2)µν , the unrenormalised matrix element

can be calculated like so:

G3−pt(p; τ, t)

G(p, τ)
∝〈N(p)|O(2)µν |N(p)〉 = (PµP ν − traces)abare

2 . (3.42)

However, renormalising the matrix element in Eq. (3.42) becomes extremely compli-

cated due to operator mixing induced by the broken Lorentz symmetry on the lattice.

The twist-two local operators defined in Eq. 2.40 belong to an irreducible representation

of the Lorentz group (some further discussion is given in Appendix C). Since lattice QCD

is formulated on a hypercubic grid of points, it breaks Lorentz symmetry. Instead of the

usual continuum orthogonal group O(4) of transformations, only a finite subgroup, the

hypercubic subgroup, survives. As a result, the usual leading-twist operators mix under

renormalisation with other operators on the lattice [30, 31]. If an operator mixes with
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lower dimensional operators, these operators contain coefficients of 1/a, which can make

such calculations harder when extrapolating to the the continuum [112,113].

For the lowest n = 2 operator, this mixing can be controlled systematically by subtract-

ing off the divergent unphysical operator [112], but as n gets larger the mixing becomes

harder to control [113]. Therefore, few studies go beyond the n = 3 moment. This is

problematic, since the number of moments needed to reconstruct parton distributions is

much higher: some estimates are n ∼ 50 moments [114], while a lower number, n ∼ 10, is

possible if one makes certain assumptions about the parton distribution [115].

The first numerical calculations of lattice parton distribution moments were performed

in the late 1980s [28, 29], making it by far the oldest and most developed method to

determine partonic information in lattice QCD. While there are ongoing efforts to extend

this method to higher moments [116, 117], this approach remains limited, which has led

to other methods to calculate lattice parton distributions.

For the present thesis, we are most interested in the calculation of the nucleon spin-

dependent and off-forward moments. In the case of spin-dependent PDFs, there have

been numerous calculations of the first moment [104], which is simply the axial charge,

Eq. (2.64). Moreover, there have been lattice calculations of d2 [118–121], the quantity

from Eq. (2.70). For the off-forward Compton amplitude, there have been many calcula-

tions of the n = 1, 2, 3 moments [122–133], but no higher than this.

3.2.2 Quasi- and pseudo-distributions

Since the 2010s, there has been a wave of new methods proposed to calculate the x

dependence of parton distributions in lattice QCD. Among the most prominent of these

are the quasi-distribution [32] and the pseudo-distribution approaches [33]∗∗∗. Both of

these methods start by calculating the same lattice correlation function:

〈Ω|χ(z′, τ)O(y′,y, t)χ†(z, 0)|Ω〉, (3.43)

where the operator here is

O(y′,y, t) = ψ̄(y′, t)ΓU(y′,y; t, t)ψ(y, t), (3.44)

noting that U(y′,y; t, t) is the Wilson line (Eq. (2.4)) from the point (y, t) to (y′, t) and

Γ is some Dirac matrix. On the lattice, this is discretised in terms of the link variable,

Eq. (3.11). See Fig. 3.2 for a lattice diagram of this correlation function.

A key feature of the operator in Eq. (3.44) is that it is non-local in space, but local in

time. This confers two advantages: (1) like local operators, the matrix elements of equal-

time operators are the same in Minkowski and Euclidean space [135]; and (2) with only

a single time coordinate, one can ensure ground state saturation of the matrix element in

effectively the same way as three-point functions, Eq. (3.36), thereby avoiding the many

difficulties of directly calculating four-point functions.

The extracted matrix element from the correlation function in Eq. (3.43) is

〈P |ψ̄(z)γµU(z, 0)ψ(0)|P 〉 = 2Pµh(P · z, z2) + zµh̄(P · z, z2), (3.45)

∗∗∗There are also calculations of coordinate space current-current operators [34, 35, 134], which are calcu-
lated and analysed in an analogous way to the pseudo-distributions.
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Figure 3.2: Lattice diagram of the correlation function for quasi- and pseudo-distributions,

Eq. (3.43). The coiled line represents the gauge link of length z.

where we have limited ourselves to Γ = γµ, and no momentum transfer. Since our operator

in Eq. (3.44) is local in time, the separation is purely spatial; the convention in the

literature is to choose this separation purely in the ê3 direction ††† zµ = (0, 0, z, 0). Hence

our two Lorentz scalars become P · z = −zPz and z · z = −z2.

We can see that the operator in Eq. (3.45) is similar to the coordinate space correlation

in the light-cone definition of the PDF, Eq. (2.52):

〈P |ψ̄(−λn/2)γµn
µU(−λn/2, λn/2)ψ(λn/2)|P 〉.

In fact, the form factor h(P ·z, z2) is proportional to this matrix element if zµ is a light-like

vector. As such, h(P · z, z2) gives us the spacelike (or Euclidean) analogue of the light-

like parton distribution. The form factor h̄(P · z, z2) is purely higher-twist, and must be

removed.

Constructing the distributions and light-cone matching

The difference between the quasi and pseudo approaches then arises purely from what one

does with the form factor h(P ·z, z2). The quasi-distribution is defined by integrating over

the spatial separation, z [32]:

Q(x, Pz) = NQ
∫ ∞

−∞

dz

2π
e−ixPzzh(P · z, z2), (3.46)

where NQ is a normalisation factor.

To match this quasi-distribution to the light-cone parton distribution, q(x), one uses

large momentum effective theory (LaMET) [32, 136]. The general form of the relation

between the PDF and the quasi-distribution is [137,138]

Q(x, Pz) =

∫
dy

|y|CQ
(
x

y
,

1

xPz

)
q(y) +O

(
Λ2

QCD

P 2
z x

2(1− x)

)
. (3.47)

Note that this is a factorisation theorem of the form in Eq. (2.16). The kernel CQ can be

calculated to a given order in perturbation theory. The higher-twist corrections on the

other hand must be sufficiently suppressed by large momentum: Pz � ΛQCD.

By contrast, the pseudo-distribution is defined by integrating over the variable zPz:

P(x, z) = NP
∫ ∞

−∞

dzPz
2π

e−ixP ·zh(P · z, z2). (3.48)

†††Hopefully this does not cause confusion: in general for this thesis we use zµ as a generic spacetime
coordinate; for this brief discussion of quasi- and pseudo-distributions we use‡‡‡ zµ = (0, 0, z, 0).
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Then, the pseudo-distributions are related to the PDF by a similar factorisation theorem

[137,138]

P(x, z) =

∫
dy

|y|CP
(
x

y
, z2

)
q(y) +O(z2Λ2

QCD(1− x)). (3.49)

Once again, the perturbative kernel can be calculated in perturbation theory, while higher-

twist corrections need to be suppressed by short-distances: z � 1/ΛQCD.

Challenges

From Eqs. (3.46)—(3.49) we can see the contrasting difficulties in the quasi and pseudo

approaches:

• Integration: In constructing the quasi- and pseudo-distributions from h(P ·z, z2)—

Eqs. (3.46) and (3.48), respectively—the quasi method has an advantage [139, 140].

For the quasi-distribution, Eq. (3.46) is approximated by a sum over a range of

separations |z| ≤ zmax for zmax ∼ 10a [141]. Since h(P · z, z2) decays exponentially

with z [142], a finite extent in this sum is justified [141,143].

By contrast, to attain the full range of zPz for the pseudo-distribution integral,

Eq. (3.48), one needs to access very large values of the sink momentum, Pz, which

are not feasible in current calculations [139,144]. As the full domain of the integrand

in Eq. (3.48) is not accessible, the pseudo-distribution approach is faced with an ill-

conditioned ‘inverse problem’§§§.

• Higher-twist: On the other hand, for the control of higher-twist contributions,

pseudo-distributions have an advantage. As quasi-distributions require Pz � ΛQCD

to suppress higher-twist corrections, the large sink momentum decreases the quality

of the signal. Moreover, due to the factors of 1/x2 and 1/(1 − x) in the quasi-

distribution higher-twist corrections, it is often very difficult to determine the physi-

cal parton distribution outside of some intermediate range of 0 < xlb < x < xub < 1.

By contrast, from Eq. (3.49) the higher-twist corrections to pseudo-distributions

are suppressed by short-distance: z2 � 1/ΛQCD. Hence large momentum is not

necessary. Moreover, there are no divergent 1/x2 or 1/(1 − x) terms in the higher-

twist corrections—on the contrary, the higher-twist corrections are suppressed for

x ∼ 1.

Therefore, in different ways, both methods face the challenge of accessing high sink

momentum. Moreover, both methods face difficulties of renormalisation and operator-

mixing—see reviews [105, 110, 111]. However, impressive advances have been made for

quasi- and pseudo-distribution calculations, which appear to be approaching phenomeno-

logical PDFs [145].

Since the present thesis is most concerned with the calculation of generalised parton

distributions and polarised PDFs, we note that there have already been a number of

numerical calculations of quasi-GPDs [146–149], and very recently of pseudo-GPDs as

well [150]. For polarised PDFs, there have been a number of studies in both formalisms

[151–154].

§§§It has also been argued that the quasi-distribution approach suffers from a related inverse problem, since
they approximate the continuous integral by a finite number of points [139].
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3.2.3 Two current operators

Now we look at calculations of the matrix element of the product of currents, jµ(z)jν(0).

These calculations include Compton amplitudes (time-ordered currents), as calculated in

this thesis, or a hadronic tensor (single time-ordering). This type of calculation has two

main advantages over the lattice OPE, quasi and pseudo approaches: (1) there are fewer

difficulties with renormalisation and operator mixing, as the product of currents has a

well-defined continuum limit∗∗∗∗; and (2) as this is a discretisation of the operator for

physical particle scattering, we can access highly important non-leading-twist information

that is otherwise inaccessible††††.

Nucleon hadronic tensor

The calculation of the nucleon hadronic tensor, Eq. (2.23), using the direct evaluation of

four-point functions has been an ongoing area of study for a number of years [94,107,109,

155–157]. The necessary four-point function is

G4−pt(τ, t1, t2; p,q) =
∑

z,y′,y

e−ip·ze−iq·(y
′−y)〈Ω|χ(z, τ)jµ(y′, t2)jν(y, t1)χ†(0)|Ω〉. (3.50)

As discussed in Section 3.1, it is difficult to ensure ground state saturation at the source

and sink for four-point functions. For the hadronic tensor, we do not need ground state

saturation in the intermediate state, and as such the temporal separation between the two

currents, ∆t = t2 − t1, does not need to be extremely large.

Then, by taking a ratio of four- and two-point functions, G4−pt/G2−pt, one can isolate

Wµν(∆t) =

∫
d(∆t)e−q0∆tWM

µν , (3.51)

where WM
µν is the Minkowski hadronic tensor, Eq. (2.23). As in the discussion of pseudo-

distributions, solving the above equation for the Minkowski hadronic tensor constitutes

an ill-conditioned inverse problem. Attempts have been made to solve this problem using

similar approaches to work on pseudo-distributions [109]. However, due to difficulties

associated with the calculation of four-point functions, as discussed in Section 3.1, these

calculations have not gone beyond preliminary tests‡‡‡‡.

Heavy-quark OPE

Another four-point function approach is the heavy-quark OPE (HOPE) method, in which

intermediate propagator between y and y′ is calculated with an unphysical heavy quark

[95, 158, 159]. As discussed in Section 3.1, at heavier quark masses the inversion is much

cheaper, making this calculation cheaper than a standard four-point function. Moreover,

the heavy quark mass suppresses higher-twist corrections [158].

∗∗∗∗While in principle the continuum limit of our Compton amplitude has no operator mixing problems,
at finite lattice spacings such problems may exist—see Chapter 8

††††This second advantage does not apply to the heavy-quark OPE method.
‡‡‡‡There are also calculations of four-point functions for low Q2, which appear to be successful for ex-

ploratory calculations [107,108]. However, since these are low-energy, they do not investigate partonic
information and we do not discuss them in this review.
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Figure 3.3: Lattice diagrams showing the type of contributions necessary for the calculation of

the hadronic tensor. The blue photon line in the three-point function represents the insertion of a

vector current.

While the calculation of the nucleon hadronic tensor from this method has been pro-

posed [160], numerical efforts have focused on the pion distribution amplitude, which only

requires a three-point function to calculate:

GHOPE(τ, t1, t2; p,q)

=
∑

z,y′,y

e−iq·(y
′−y)eip·z〈Ω|ψ(y′, t2)γµΨ(y′, t2)Ψ(y, t1)γνψ(y, t1)χ†(z, τ)|Ω〉. (3.52)

Note that here the interpolating operators are for pions, and Ψ(z) is the heavy quark

field. By focusing on the distribution amplitude, one avoids difficulties associated with the

calculation of four-point functions; however, extending this work to the nucleon hadronic

tensor would require the direct calculation of four-point functions [95]. Although solving

for the associated Minkowski space distribution from Eq. (3.52) also constitutes an inverse

problem, so far work in this area has focused on the extraction of moments [159].

In relation to the spin-dependent and off-forward amplitudes that we are interested in,

there is so far no comparable work from other four-point function methods. As such, the

work presented in this thesis is the first calculation of these amplitudes from a two-current

approach.

3.2.4 Comparisons

Although the lattice parton methods presented here appear to be drastically different,

they share a few common features that we now discuss. It is important to understand

these generalities, as our own Feynman-Hellmann Compton amplitude method shares

these features as well. Moreover, in zooming out and understanding the general structure

of these methods, we can better compare their relative merits and disadvantages.

A unifying feature of quasi, pseudo and two-current approaches is the relation between

a Euclidean (spacelike separated) distribution, FE(ξ), and the desired Minkowski parton

distribution/structure function, FM (x):

FE(ξ) =

∫
dxK(x, ξ)FM (x), (3.53)
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where we have neglected higher-twist contributions. This difficulty traces its origin to the

Wick rotation, Eq. (3.3), without which we would be able to directly calculate FM (x).

All methods have some difficulty associated with ‘undoing’ this equation to obtain

FM (x). For the quasi-distribution approach, these difficulties are associated with con-

trolling higher-twist terms, especially the 1/x and 1/(1− x) divergences. For the pseudo-

distribution and two-current approaches, the difficulty lies mostly in the ill-conditioned

inverse problem [109,139,159]—our Feynman-Hellmann Compton amplitude method suf-

fers from the same problem [161].

To tame this inverse problem, there are primarily three approaches that are considered:

• Model-independent inversions using Backus-Gilbert, singular value decomposition,

and machine learning [109,139,161,162]. This sort of reconstruction is most desirable,

since one reconstructs the original distribution with minimal assumptions. However,

it requires extremely clean data, which may be difficult for lattice QCD calculations

especially at high momentum.

• Using a model-dependent parameterisation [139,161]. While a parameterisation gives

us a great deal more traction over the inverse problem, it is typically less desirable

as we are assuming more about the distribution we want to extract. We will explore

such a fit in Chapter 6.

• Taylor expanding the kernel, K(x, ξ), in ξ, which is equivalent to an OPE on the

operator level. This sort of approach is the emphasis of the HOPE method [159] and

is also used for pseudo-distributions [145]. We also use this for Chapters 5—7, and

was used in our previous calculations [37, 38]. Although this does not give a com-

plete reconstruction of the desired Minkowski space amplitude, the determination of

moments is far more numerically stable, and the moments themselves contain inter-

esting physical information. Moreover, it is usually easier to access higher moments

this way than through the lattice OPE method.

Finally, we note a key difference between approaches that use a discretisation of physi-

cal currents (such as ours and the hadronic tensor method), and approaches that calculate

an unphysical operator (such as the HOPE, quasi-distribution and pseudo-distribution

methods).

For the discretisation of a physical operator, our higher-twist corrections are physical

up to discretisation artefacts, and therefore represent useful and interesting information.

As such, it is desirable to extract the Minkowski distribution with its Λ2/Q2 corrections:

FE(ξ,Λ2/Q2) =

∫
dxK(x, ξ)FM (x,Λ2/Q2). (3.54)

By contrast, for methods that calculate an unphysical operator, we have instead

FE(ξ,Λ/µ) =

∫
dxK(x, ξ,Λ/µ)FM (x) +O

(
Λ

µ

)
. (3.55)

The Λ/µ corrections are simply a systematic error and must be controlled by a mixture

of perturbative calculation of the kernel K and extrapolation to µ→∞.



Chapter 4

Lattice Feynman-Hellmann

In lattice field theory, Feynman-Hellmann∗ (FH) is a powerful method that offers an

alternative to the direct evaluation of n-point functions. In this method, a background

field with some weak coupling, λ, is added to the regular Lagrangian. Two-point functions

computed in the presence of this background field can then be related to three- and four-

point (and in principle n-point) functions. In analogy to the original Feynman-Hellmann

theorem [163,164],
∂Eλ
∂λ

= 〈n|∂Hλ

∂λ
|n〉, (4.1)

where Eλ is the perturbed energy and Hλ is the perturbed Hamiltonian, lattice Feynman-

Hellmann methods relate the perturbed two-point function to the desired n-point function

by a derivative with respect to the perturbing parameter, λ.

In the case of three-point functions, Feynman-Hellmann has been applied with success

to a wide range of matrix elements, including sigma terms [165–168], electromagnetic

form factors, [169], the axial and tensor charges [170–174], and the energy-momentum

tensor [175], among others. It has been argued that Feynman-Hellmann evaluation of

three-point functions may increase control of excited-state contamination compared to a

direct evaluation [173]. Moreover, certain properties such as large current momentum are

easier to access with FH [169].

For the present thesis, we are interested in applying Feynman-Hellmann to calculate

four-point functions, particularly Compton amplitudes. For the case of four-point func-

tions, Feynman-Hellmann is vastly more computationally efficient than the direct eval-

uation. In fact, a comparable evaluation of the Compton amplitude through the direct

evaluation of four-point functions is so computationally expensive that it has never been

implemented†.
The evaluation of four-point functions using Feynman Hellmann is an active area of

research, led by the CSSM/QCDSF collaboration. This was first applied to the simplest

case: the unpolarised forward Compton structure functions [36–38, 161, 176]. The lead-

ing Mellin moments determined from these calculations show good agreement with both

phenomenology and other lattice studies. The aim of the present work is to extend this

method to other more involved cases, such as the off-forward Compton amplitude [39]

(Chapters 5 and 6), the polarised forward Compton amplitude (Chapter 7), and the sub-

traction function [40] (Chapter 8). In all these cases, unlike the unpolarised forward case,

∗Similar to, if not indistinguishable from, background field methods.
†The hadronic tensor method is the closest to a direct four-point function evaluation of the Compton
amplitude. Nonetheless, this method still calculates quite a different quantity to our Compton amplitude.
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we use two different currents. As such, the Feynman-Hellmann relations for this chapter

are for the second-order in λ, mixed current case.

Furthermore, apropos the arguments in Chapter 3, we note that what we can calculate

on the lattice is the Euclidean Compton amplitude. In this chapter, we will discuss under

what conditions we can relate this to the Minkwoski Compton amplitude. In principle,

we can reconstruct the Minkwoski from the Euclidean; however, due to the well-known

inverse problem, a complete reconstruction is made difficult by the numerically unstable

solutions [161].

The outline of this chapter is as follows: in Section 4.1, we will derive our chosen

Feynman-Hellmann identities using a Dyson series. In Section 4.2, we first explain the

implementation of Feynman-Hellmann in lattice QCD. Then, we discuss the interpretation

of the Euclidean Compton amplitude, its relation to the Minkowski Compton amplitude,

and the associated inverse problem.

Motivation

A straightforward discretisation of the Compton amplitude (Eq. (2.19)) is

Tµν =
∑

z,z′

eiq·(z−z
′)〈N |T {jµ(z)jν(z′)}|N〉, (4.2)

where we drop the factor of i due to the Wick rotation to Euclidean space. To evaluate

this matrix element directly would require the calculation of a four-point function,

〈Ω|χ(τ, z)jµ(t2,y2)jν(t1,y1)χ†(0)|Ω〉, (4.3)

which, as discussed in Section 3.1, demands very careful treatment of excited states to

ensure ground-state saturation at the source and sink. Moreover, note that Eq. (4.2)

requires a sum over time-slices on which the currents are inserted. Hence we would need

to calculate the four-point function for each pair of time-slices, t1 and t2, in our integration

region, increasing the computational costs by a factor of O(N2
T ), for NT the number of

time-slices. This sort of calculation is so costly that it has never been performed.

Instead, four-point functions are typically calculated at a fixed time separation [94,

95], as discussed in the previous chapter. This approach still suffers from the difficulties

associated with isolating the ground state in four-point functions‡. Moreover, without the

sum over time-slices one is left with
∑

z

eiq·z〈N |jµ(z, t2)jν(0, t1)|N〉

=
∑

X

e−(EX−EN−q0)(t2−t1)

2EX
〈N |jµ(0)|X〉〈X|jν(0)|N〉δpX ,p+q.

(4.4)

And therefore, even if one can ensure ground state saturation, a variation in t2− t1 is still

necessary to extract partonic information [159]. Therefore, multiple four-point functions

must be calculated and further analysis performed to determine the amplitude.

‡As discussed previously, there are also calculations of the low-energy hadronic tensor from four-point
functions, for which excited states are easier to control [107,108]. However, the hadronic information that
these studies aim to determine is quite different to our own.
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Feynman-Hellmann

By contrast, using Feynman-Hellmann methods we can calculate the discretised Compton

amplitude, Eq. (4.2), with its sum over time-slices, using only a two-point function. This is

remarkably useful, since the excited state contributions of two-point functions are typically

much easier to handle than three- and four-point functions [106], and moreover it gives us

the desired Compton amplitude, Eq. (4.2), without any further need to vary time-slices.

To give an idea of how this is possible, we consider a simple example of the forward spin-

independent Compton amplitude for a structureless fermion. We start with the perturbed

fermion propagator:

Sλ(zn, zm) =
[
M − λOq

]−1

nm
, (4.5)

where M is the fermion matrix, Eq. (3.18), λ a small coupling and Oq the perturbing

matrix.

Then, by a matrix geometric series§, we can expand Eq. (4.5) about λ = 0:

Sλ = S︸︷︷︸
unperturbed

+λ SOqS︸ ︷︷ ︸
three-point

+λ2 SOqSOqS︸ ︷︷ ︸
four-point

+O(λ3),
(4.6)

where S = M−1 is the unperturbed propagator.

The four-point function of Eq. (4.6) can then be related to the second derivative of the

propagator with respect to λ. If we choose diagonal perturbing matrices of the form

Oq(n,m) = 2δn,m cos(q · zn)γ3,

then we have that this derivative is

∂2Sλ(z, 0)

∂λ2

∣∣∣∣
λ=0

= 8
∑

y1,y2

cos(q · y1) cos(q · y2)S(z, y2)γ3S(y2, y1)γ3S(y1, 0), (4.7)

which can be expressed in terms of operators as

∂2Sλ(z, 0)

∂λ2

∣∣∣∣
λ=0

= 8
∑

y1,y2
t1,t2

cos(q · y1) cos(q · y2)〈Ω|ψ(τ, z)j3(t2,y2)j3(t1,y1)ψ̄(0)|Ω〉, (4.8)

which is a four-point function with a sum over all the spatial coordinates, y1,2, as well as

the temporal coordinates, t1,2.

In this simple example we can see the two main advantages of second-order Feynman-

Hellmann: (1) we only need to determine two-point functions, meaning we do not face any

of the aforementioned difficulties associated with direct four-point calculations, and (2) the

four-point functions we determine have a sum over the time-slices on which the currents

are inserted. The sum over time slices means that we can directly access a discretisation

of the amplitude, as in Eq. (4.2), without needing further calculations to vary the time

separation between the two currents.

§One can show that, for two n×n matrices A and B, we have (A−B)−1 = A−1∑∞
k=0(BA−1)k so long as

each of the eigenvalues of A−1B are less than one [177].
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This gives us the remarkable property of being able to determine the Compton ampli-

tude from a two-point function—a great advantage in computational cost and control of

excited states.

4.1 Feynman-Hellmann Derivation

In this section, we derive Feynman-Hellmann relations that allow us to relate derivatives

of our perturbed two-point functions to four-point functions. These relations have the

form
∂2

∂λ1∂λ2

Gλ(τ)

G0(τ)

∣∣∣∣
λ=0

' τ

2EN
T, (4.9)

where T is a Compton amplitude, which we will show is attached to a linear in τ contribu-

tion. This derivation is in continuum spacetime—the lattice implementation is discussed

in Section 4.2, and in Chapter 8 we explore discretisation artefacts arising in the lattice

Feynman-Hellmann method.

Previous Feynman-Hellmann proofs [37,178] have used the following steps:

1. Describe the perturbation to the lattice action: Sλ = SQCD + λV .

2. Take the derivative of the perturbed correlator as expressed in terms of the path

integral

Gλ = 〈O〉 =

∫
DφOe−Sλ∫
Dφe−Sλ ,

with respect to λ. Recall the notation of Eq. (3.7).

3. Take the derivative of the same correlator expressed as

Gλ(τ) = Aλe
−Eλτ .

This is the form of Eq. (3.32), except with perturbed energies and overlaps.

4. Equate the two derivatives to derive an equation of the form

∂2Eλ
∂λ2

∣∣∣∣
λ=0

∝ T.

However, in the second step we need to show that there is a well-defined perturbed energy,

Eλ. In the case of off-forward first order [169] and second-order FH [56], where there

are degeneracies in the spectrum of unperturbed energies, this means that there are two

corresponding low-lying perturbed energies. It is then necessary to show that the correct

low-lying perturbed energy is being extracted, a task that is often quite difficult [56]. By

contrast, the Dyson series approach is simply a perturbative expansion of the perturbed

correlator, which does not require us to assume anything about the perturbed energy

spectrum. As such, we apply the Dyson series expansion for our Feynman-Hellmann proof

here.
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4.1.1 Mixed currents: the general case

The Feynman-Hellmann relations we will use in the present thesis all have mixed-currents;

that is, in the two-current operator such as Eq. (2.19), the two currents will differ by

momentum transfer, Lorentz index or another property. The general form of such an

operator is given below:

〈out|J1J2|in〉.
As such, here we give a derivation of a general Feynman-Hellmann relation for these

mixed-current operators.

To begin, note that for mixed-current operators we need to add two perturbing back-

ground fields to the QCD Lagrangian:

LFH(z) = LQCD(z) + λ1O1(z) + λ2O2(z), (4.10)

where λ1,2 are our FH couplings and O1,2 are our background field operators.

As long as O1,2 contain no derivatives of particle fields, the Legendre transformation

to the Hamiltonian density is simply

HFH(z) = HQCD(z)− λ1O1(z)− λ2O2(z).

And hence the perturbed Hamiltonian is

HFH = HQCD − λ1V1 − λ2V2, (4.11)

where

V1,2 ≡
∫
d3zO1,2(z).

In general,

O1,2(z) =
(
eiq1,2·z ± e−iq1,2·z)J(z), (4.12)

for some time-independent current J(z).

We can see from Eq. (4.12) that our background fields will transfer some momenta

q1,2. For forward scattering, we want q1 = q2, while for off-forward q1 6= q2. Between

two states |X(pY )〉 and |Y (pY )〉, where the momentum pY is not fixed, we can see that

the background fields transfer momentum in the following way:

〈X(pX)|Vn|Y (pY )〉 =

∫
d3z
(
eiq·z ± e−iq·z

)
ei(pY −pX)·z〈X(pX)|J(0)|Y (pY )〉

= 〈X(pX)|J(0)|Y (pY )〉(2π)3
(
δ(3)(pX − q− pY )± δ(3)(pX + q− pY )

)
.

(4.13)

Therefore, our choice of momentum transfer in the background field is what determines

the energy EY (pY ). As we will see, this is an extremely important point in determining

the Euclidean time dependence of the perturbed two-point function, and we will need to

be careful in how we choose the momenta transferred by our background fields.
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This perturbed Hamiltonian is the starting point of our Dyson transfer proof, as we

can use it to expand the perturbed time evolution operator, e−HFHτ , with a Dyson series∗∗:

e−HFHτ = e−HQCDτ

[
1 +

2∑

n=1

λn

∫ τ

0
dτ ′eHQCDτ

′
Vne

−HQCDτ
′

+

2∑

n,m=1

λnλm

∫ τ

0
dτ ′
∫ τ ′

0
dτ ′′eHQCDτ

′
Vne

−HQCD(τ ′−τ ′′)Vme−HQCDτ
′′
]

+O(λ3),

(4.14)

where we note that V (τ) = eHQCDτV e−HQCDτ , and so our currents pick up time depen-

dence.

By using the perturbed Lagrangian in Eq. (4.10), we calculate perturbed nucleon two-

point functions (correlators):

Gλ(τ,p′) = Γβα

∫
d3ze−ip

′·z
λ〈Ω|χα(z, τ)χ†β(0)|Ω〉λ, (4.15)

where λ = (λ1, λ2), and Γ is the spin-parity projector. Note that the perturbed vacuum,

|Ω〉λ, is simply the eigenstate of the perturbed Hamiltonian, HFH, with eigenvalue zero.

Therefore, expressed in terms of the momentum eigenstates, the perturbed vacuum is

|Ω〉λ = c1|Ω〉+O(λ), (4.16)

where c1 is O(1) and all other terms are O(λ).

Recall the Euclidean translational invariance, Eq. (3.30), which gives us χ(z, τ) =

eHFHτ−iP̂·zχ(0)e−HFHτ+iP̂·z, for the perturbed Hamiltonian. And then recall the identity

in the space of momentum eigenstates, Eq. (A.3):

I =
∑

X,s

∫
d3p

(2π)3

1

2EX(p)
|X(p, s)〉〈X(p, s)|.

Hence we can insert two identities into Eq. (4.15) and take the spacetime-dependence out

of the interpolating operators. After evaluating the integral over spatial coordinate, z, to

get a delta function, and then performing the integral over p′, we get

Gλ(τ,p′) = Γβα
1

4

∑

s,s′

∑

X,Y

∫
d3p

(2π)3
λ〈Ω|χ(0)|X(p′, s′)〉〈X(p′, s′)|e−HFHτ |Y (p, s)〉〈Y (p, s)|χ†(0)|Ω〉λ

4EX(p′)EY (p)
.

(4.17)

Note that states and energies without a λ subscript are unperturbed. For the sake of

brevity, we will suppress spin-dependence from here on, and introduce it in the final

expressions.

∗∗This relation can be proven by applying the identity e−(A+B)τ = e−Aτ + e−Aτ
∫ τ

0
eAτ

′
Be−(A+B)τ ′ itera-

tively and taking the matrix elements of B to be small.
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= +
∑

n

λn

∫ τ

0

dτ ′
Vn(τ

′)

+
∑

n,m

λnλm

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′
Vm(τ

′′) Vn(τ
′)

Figure 4.1: Lattice diagram of the expansion of the perturbed correlator, Eq. (4.18). The prop-

agator with a photon line overlayed on the quark line represents the perturbed propagator, where

the perturbation is applied to the singly represented quark.

By inserting Eq. (4.14) into Eq. (4.17), we get

Gλ(τ,p′) =
∑

X,Y

∫
d3p

(2π)3

1

4EX(p′)EY (p) λ〈Ω|χ(0)|X(p′)〉〈Y (p)|χ†(0)|Ω〉λ

× 〈X(p′)|e−HQCDτ

[
1 +

2∑

n=1

λn

∫ τ

0
dτ ′eHQCDτ

′
Vne

−HQCDτ
′

+
2∑

n,m=1

λnλm

∫ τ

0
dτ ′
∫ τ ′

0
dτ ′′eHQCDτ

′
Vne

HQCD(τ ′′−τ ′)Vme−HQCDτ
′′

+O(λ3)

]
|Y (p)〉.

(4.18)

This equation is represented visually in Fig. 4.1.

Taking a step back for a moment, we note that we are interested in the λ1λ2 term,

as this gives us the mixed-current operator. The (λ1)2 and (λ2)2 contributions will give

us terms for which both currents are the same, such as in the µ = ν term of the forward

Compton amplitude.

It is convenient to define the perturbed overlap:

ZXλ (p) ≡ λ〈Ω|χ(0)|X(p)〉
= ZX(p) + λ1ZX1,0(p) + λ2ZX0,1(p) +O(λ2).

(4.19)

Evaluating Dyson series terms

We now want to evaluate the matrix elements of each of the terms in the Dyson expansion,

Eq. (4.15), for each order of λ in the perturbed time-evolution operator. In particular, we

want to show that the λ1λ2 term is proportional to the mixed-current Compton amplitude,

and moreover that this term is enhanced by a linear factor of the Euclidean sink time, τ .

We refer to terms that are linear in τ as ‘τ -enhanced’. On the other hand, we want to show

that all terms that are not the Compton amplitude are either constant or exponentially

suppressed in τ .
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For simplicity of notation, we decompose the perturbed nucleon correlator as

Gλ = G(0) + G(1) + G(2) +O(λ3), (4.20)

where G(n) is the contribution with n insertions of the current, which corresponds to the

O(λn) term in the Dyson series.

Note that, just like the unperturbed two-point function and three- and four-point

functions, we ensure ground state saturation at the source with

∑

X

〈X(p′)|e−HQCDτ
τ�a' 〈N(p′)|e−EN τ .

However, we have summed over the current insertion times. Therefore, ground state

saturation at the source needs to be ensured with kinematic choices that we outline below.

No insertion

We start with the O(λ0) term of the Dyson series, which has no insertion of the current.

Using the state normalisation, Eq. (A.4), this is

G(0) =
∑

X

e−EX(p′)τ |ZXλ (p′)|2
2EX(p′)

τ�a' e−EN (p′)τ |ZNλ (p′)|2
2EN (p′)

. (4.21)

Once we divide out by our unperturbed correlator for the same momentum, Eq. (3.32),

this term will be constant in τ .

Even though this term has no insertions (i.e. it is O(λ0) in the Dyson series), due to

the factors of ZNλ it contains all orders of λ:

ZNλ (ZNλ )∗ = (ZN + λ1ZN1,0 + λ2ZN0,1 + . . . )(ZN + λ1ZN1,0 + λ2ZN0,1 + . . . )∗. (4.22)

Therefore, even when we isolate the λ1λ2 term, there is a residual contribution from G(0).

Single insertion

Next, we look at the O(λ) term of the Dyson series, which has a single insertion of the

current.

Now, our choice of our background fields, V1,2, determines what momenta p the source

may have. As long as we choose V1,2 such that EY (p) 6= EN (p′) for all Y , the O(λ) term

from the Dyson series is

G(1) =
∑

X,Y

∫
d3p

(2π)3

ZXλ (p′)
(
ZYλ (p)

)∗

4EX(p′)EY (p)

×
2∑

n=1

λne
−EX(p′)τ 1− e−(EY (p)−EX(p′))τ

EY − EX
〈X(p′)|Vn|Y (p)〉.

(4.23)
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Now, we can take the large Euclidean time limit
∑

X e
−EXτ τ�a' e−EN τ . Moreover, we will

apply Eq. (4.13) to Eq. (4.23) to get

G(1) τ�a' e−EN (p′)τ
2∑

n=1

λn
∑

Y

ZNλ (p′)
(
ZYλ (p′ + qn)

)∗

4EN (p′)EY (p′ + qn)

× 1− e−(EY (p′+qn)−EN (p′))τ

EY (p′ + qn)− EN (p′)
〈N(p′)|Jn(0)|Y (p′ + qn)〉 ±

(
qn → −qn

)
.

(4.24)

Again, once we divide out by the unperturbed correlator, this will have τ dependence

dominated by 1− e−(EY (p′±qn)−EN (p′))τ . Therefore, we must choose our background fields

such that EY (p′ ± qn) > EN (p′) for all Y . Even near-degeneracies here can make fitting

difficult, a fact we will discuss further in Chapter 6. On the other hand, if we had chosen

V1,2 such that EY (p′±qn) = EN (p′) for some Y , it is straightforward to see that Eq. (4.24)

would have contributions linear in Euclidean time dependence.

Since the nucleon is the ground state of the spectrum, to ensure that EY (p′ ± qn) >

EN (p′), it is sufficient to keep the following condition:

|p′ ± qn| > |p′|, for both momenta q1,2. (4.25)

As in the zeroth order case, although Eq. (4.23) only has one insertion, it may contain

higher orders of λ due the factors of ZNλ . For example,

λ1ZNλ (ZNλ )∗ = λ1(ZN + λ1ZN1,0 + λ2ZN0,1 + . . . )(ZN + λ1ZN1,0 + λ2ZN0,1 + . . . )∗, (4.26)

meaning that the G(1) expression contains all powers of λ beyond O(λ). Therefore, it also

contributes to the λ1λ2 term.

Double insertion

And finally, the term we are interested in is that with two insertions of the current:

G(2) =
∑

X,Y

∫
d3p

(2π)3

ZXλ (p′)
(
ZYλ (p)

)∗

4EX(p′)EY (p)
e−EX(p′)τ

×
2∑

n,m=1

λnλm〈X(p′)|
∫ τ

0
dτ ′
∫ τ ′

0
dτ ′′eHQCDτ

′
Vne

HQCD(τ ′′−τ ′)Vme−HQCDτ
′′ |Y (p)〉.

(4.27)

After inserting a complete set of states and taking large Euclidean time, Eq. (4.27) becomes

G(2) τ�a'
∑

Y

∫
d3p

(2π)3

ZXλ (p′)
(
ZYλ (p)

)∗

4EN (p′)EY (p)
e−EN (p′)τ

×
2∑

n,m=1

λnλm

∫ τ

0
dτ ′
∫ τ ′

0
dτ ′′e−(EZ(pZ)−EN (p′))τ ′+(EZ(pZ)−EY (p))τ ′′

×
∑

Z

∫
d3pZ
(2π)3

1

2EZ(pZ)
〈N(p′)|Vn|Z(pZ)〉〈Z(pZ)|Vm|Y (p)〉.

(4.28)
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Focusing solely on the Euclidean time-dependence for a moment, we see that, if we choose

our background fields, V1,2, such that EY (p) = EN (p′), then

∫ τ

0
dτ ′
∫ τ ′

0
dτ ′′e−(EZ(pZ)−EN (p′))τ ′e(EZ(pZ)−EY (p))τ ′′

=
1

EZ(pZ)− EN (p′)

(
τ +

e−(EZ(pZ)−EN (p′))τ

EZ(pZ)− EN (p′)

)
.

(4.29)

And if EY (p) 6= EN (p′),

∫ τ

0
dτ ′
∫ τ ′

0
dτ ′′e−(EZ(pZ)−EN (p′))τ ′e(EZ(pZ)−EY (p))τ ′′

=
1

EZ(pZ)− EY (p)

(
e−(EZ(pZ)−EN (p′))τ − 1

EZ(pZ)− EN (p′)
− e−(EY (p)−EN (p′))τ − 1

EY (p)− EN (p′)

)
.

(4.30)

Therefore, the perturbed correlator is the sum of Eqs. (4.21), (4.24), (4.28), as given

in the decomposition, Eq. (4.20).

4.1.2 Off-forward momentum

Now we can get more specific with the type of Compton amplitude we want to calculate.

We start with the off-forward Compton amplitude (OFCA), defined in Eq. (2.72):

Tµν = i

∫
d4ze

i
2

(q+q′)·z〈P ′|T {jµ(z)jν(0)}|P 〉.

In contrast to the forward Compton amplitude we discussed in Section 2.2.2, there is a

net momentum transfer between the initial and final states—see Chapter 5.

To calculate this Compton amplitude, we choose the two background fields

O1(z) = (eiq1·z + e−iq1·z)jk(z), O2(z) = (eiq2·z + e−iq2·z)jk(z), (4.31)

where q1 6= q2 and jµ(z) = ψ̄(z)γµψ(z) is the vector current. Importantly, we will choose

our two inserted momenta, q1,2, such that

|p′| = |p′ + q1 − q2|, (4.32)

for our sink momentum p′. In terms of the off-forward kinematics we introduced in Section

2.2.4, the soft-momentum transfer is ∆ = q1−q2. Hence the condition in Eq. (4.32) keeps

us in a frame where the incoming/outgoing energy are equal. This equal energy condition

is key to extracting our τ -enhanced contribution and the OFCA.

Therefore, for these background fields using Eq. (4.13), the four-point function of

Eq. (4.28) becomes

〈N(p′)|Vn|Z(pZ)〉〈Z(pZ)|Vm|Y (p)〉
= 〈N(p′)|jk(0)|Z(pZ)〉〈Z(pZ)|jk(0)|Y (p)〉∆nm,

(4.33)
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where

∆ij ≡(2π)6
[
δ(3)(p′ − qi − pZ) + δ(3)(p′ + qi − pZ)

]

×
[
δ(3)(p− qn − pZ) + δ(3)(p + qn − pZ)

]
.

(4.34)

These delta functions ensure that our intermediate momenta are always pX = p′ ± qn.

Similarly, our source momenta must be p = p′(±)qn(±)qm, which gives 16 total terms

and nine unique source momenta: p′ ± (q1 − q2), p′ ± (q1 + q2), p′ ± 2q1, p′ ± 2q2, p′.

Exponential in τ contributions

As in our discussion of the unperturbed two-point function in Chapter 3, the perturbed

two-point function has excited state contaminations that we must take into account in our

calculations. These take the form of terms that are exponentials in τ . In particular, we

need to carefully choose our kinematics so that these terms are sufficiently suppressed.

To begin, we look at the exponential terms in Eqs. (4.29) and (4.30). After evaluating

the delta functions discussed above, these will become either of the form

e−(EX(p′±qn)−EN (p))τ

EX(p′ ± qn)− EN (p)
, for n = 1, 2 and some state X. (4.35)

Note that this is no different from the exponential contributions from the O(λ) contribu-

tions in Eq. (4.24), and these will be suppressed as long as the condition of Eq. (4.25) is

satisfied.

On the other hand, there are contributions that behave like

e−(EX(p′(±)qn(±)qm)−EN (p))τ

EX(p′(±)qn(±)qm)− EN (p)
, for n,m = 1, 2 and some state X. (4.36)

This second type Feynman-Hellmann excited state is relatively easy to avoid, if one chooses

kinematics such that EX(p′(±)qn(±)qm) > EN (p′). Again, since the nucleon is the

ground state, it is sufficient to keep

|p′(±)qn(±)qm| > |p′|, for all combinations (±)qn(±)qm except q1 − q2. (4.37)

The conditions in Eqs. (4.25) and (4.37), respectively, only account for one and two

insertions of the current. On the other hand, our calculation will have contributions from

all orders of λ, which encompass all possible insertions of the momentum q1,2.

Therefore, we can generalise the conditions in Eqs. (4.25) and (4.37), and include the

condition in Eq. (4.32) with

|p′ + q1 − q2| = |p′|,

|p′ + nq1 +mq2| > |p′|, for all other n,m ∈ Z. (4.38)

Physically, the first equation corresponds to keeping us in an equal energy frame, while

the second equation corresponds to keeping the intermediate state off-shell.
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Even if we satisfy the conditions in Eq. (4.38), there are still kinematic limits we need

to be careful of. For instance, if EX(p′ + nq1 +mq2) ≈ EN (p′), we still have

e−(EX(p′(±)qn(±)qm)−EN (p))τ

EX(p′(±)qn(±)qm)− EN (p)
∼ τ. (4.39)

In other words, for sufficiently small τ these near-degenerate contributions behave like the

τ -enhanced contributions that we are interested in.

In particular, we are interested in three different kinematic limits that induce near-

degeneracies and hence large FH excited terms:

• In both the forward and off-forward case, when the hard scale (Q2 or Q̄2) is much

less than m2
N , the nucleon mass squared, then we have

EN (p′ ± qi) ≈ EN (p′),

which causes the excited states in Eq. (4.35) to blow up.

• In the cases where ω → ±1 (or in the off-forward case ω̄ → ±1), we have

EN (p′ ± 2qi) ≈ EN (p′) or EN (p′ + q1 − q2) ≈ EN (p′),

causing the excited states in Eq. (4.36) to blow up.

• Finally there is a case that is unique to off-forward kinematics. If |t| � m2
N , then

EN (p′ + q1 − q2) ≈ EN (p′),

again, this causes excited states in Eq. (4.36) to blow up.

To summarise, we have unsuppressed FH excited terms in the kinematics

Q2, Q̄2 � m2
N , ω, ω̄ → ±1, |t| � m2

N . (4.40)

As such, in the following chapters we will either avoid these kinematic limits, or where

they are unavoidable, discuss difficulties induced by these excited states.

τ-enhanced contributions

As mentioned, the contributions we are interested in are the τ -enhanced (that is, linear in

Euclidean time) contributions. As long as we choose momenta that obey the conditions in

Eqs. (4.25) and (4.38), the dominant contribution will be the linear in τ term of Eq. (4.29),

arising in the case that EY (p) = EN (p′). The only kinematics for which we will get

EN (p) = EN (p′) are if qi = qn, in which case p = p′ and we have the forward Compton

amplitude. Otherwise, we need that p′ = p+q1−q2, since we have chosen our momentum

insertions so that |p| = |p + q1 − q2|.
Therefore, the τ -enhanced contribution of Eq. (4.28) is proportional to

∑

Z

∫
d3p

(2π)3

∫
d3pZ
(2π)3

1

2EZ(pZ)

〈N(p′)|jk(0)|Z(pZ)〉〈Z(pZ)|jk(0)|N(p)〉
EZ(pZ)− EN (p′)

∆nm. (4.41)
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It is convenient to define the operator

Ôµν(p,q) ≡
∑

X

1

2EX(p + q)

jµ(0)|X(p + q)〉〈X(p + q)|jν(0)

EX(p + q)− EN (p)
.

After evaluating all the delta functions in Eq. (4.41) and keeping only the terms for which

|p′| = |p|, we get

(λ1)2
(
〈N(p′)|Ôkk(p′,−q1)|N(p′)〉+ 〈N(p′)|Ôkk(p′,q1)|N(p′)〉

)

+ (λ2)2
(
〈N(p′)|Ôkk(p′,−q2)|N(p′)〉+ 〈N(p′)|Ôkk(p′,q2)|N(p′)〉

)

+ λ1λ2

(
〈N(p′)|Ôkk(p′,q1)|N(p)〉+ 〈N(p′)|Ôkk(p′,−q2)|N(p)〉

)
.

(4.42)

where p now has a fixed value determined by p′ = p+q1−q2. Noting that the µ = ν = k

component of the forward Compton amplitude is

Tµν(p,q) = 〈N(p)|Ôµν(p,q)|N(p)〉+ 〈N(p)|Ôνµ(p,−q)|N(p)〉. (4.43)

And the OFCA is

Tµν(p,p′; q,q′) = 〈N(p′)|Ôµν(p′,q)|N(p)〉+ 〈N(p′)|Ôνµ(p′,−q′)|N(p)〉. (4.44)

It is clear from this form of the Compton amplitudes, with the spacetime dependence

integrated out, that our Compton amplitude will not vary with τ . However, practically

speaking a fit in τ will be sensitive to excited state contributions as outlined in this section.

Therefore, Eq. (4.28) becomes

G(2) τ�a' ZNλ (p′)
2EN (p′)

τe−EN (p′)τ

2EN (p′)

[[
(λ1)2Tkk(p

′,q1) + (λ2)2Tkk(p
′,q2)

](
ZNλ (p′)

)∗

+ λ1λ2Tkk(p,p
′; q1,q2)

(
ZNλ (p)

)∗]
+ exponentially suppressed terms.

(4.45)

Hence, using Eqs. (4.21), (4.24), (4.45), the perturbed correlator is

Gλ(τ,p)
τ�a' e−EN (p′)τ

{ |ZNλ (p′)|2
2EN (p′)

+

2∑

n=1

λnA
(1)
ND,n(λ)e−(EN (p′±qn)−EN (p′))τ

+ λ1λ2A
(2)
ND(λ)e−(EN (p′−∆)−EN (p′))τ+

τ

2EN (p′)
ZNλ (p′)
2EN (p′)

[[
(λ1)2Tkk(p

′,q1) + (λ2)2Tkk(p
′,q2)

](
ZNλ (p′)

)∗

+ λ1λ2Tkk(p,p
′; q1,q2)

(
ZNλ (p)

)∗]
+O(λ3)

}
,

(4.46)

where we have collected the matrix elements we are not interested in as A(λ), noting that

these coefficients contain all powers of λ1,2; the A
(1)
ND terms are the near-degenerate terms

arising from one insertion of the current, while A
(2)
ND are near-degenerate terms from two

insertions.
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In principle, we could perform multi-state fits in Euclidean time that incorporate these

near-degenerate terms. Similar multi-state fits were performed for a Feynman-Hellmann

calculation of the axial coupling [173]. However, this would require significant work to

extend it to the more complicated case of second-order with momentum transfer. Instead,

our discussion of near-degeneracies here is simply to help us understand the kinematics

that are susceptible to excited state contaminations.

Now if our near-degeneracies are sufficiently suppressed, Eq. (4.46) becomes

Gλ(τ,p)
τ�a' e−EN (p′)τ

{ |ZNλ (p′)|2
2EN (p′)

+
τ

2EN (p′)
ZNλ (p′)
2EN (p′)

[[
(λ1)2Tkk(p

′,q1) + (λ2)2Tkk(p
′,q2)

](
ZNλ (p′)

)∗

+ λ1λ2Tkk(p,p
′; q1,q2)

(
ZNλ (p)

)∗]
+O(λ3)

}
,

(4.47)

And we note that if λ2τ � a, then we can re-sum this as an exponential††

Gλ(τ,p)
τ�a' |ZNλ (p′)|2

2EN (p′)
exp

{
−
(
EN (p′) +

1

2EN (p′)

[[
(λ1)2Tkk(p

′,q1) + (λ2)2Tkk(p
′,q2)

]

+ λ1λ2Tkk(p,p
′; q1,q2) +O(λ3)

])
τ

}
.

(4.48)

This parameterisation gives us the form Gλ = Aλe
−Eλτ present in many Feynman-

Hellmann derivations.

Now we are ready to derive a Feynman-Hellmann relation of the form in Eq. (4.9).

Using the contributions to the perturbed correlator, Eq. (4.46), the second-order mixed

derivative of the correlator is

∂2

∂λ1∂λ2

Gλ(τ)

G0(τ)

∣∣∣∣
λ=0

τ�a' Bint +
∑

i=1,2

B
(1)
ND,ie

−(EN (p′±qi)−EN (p′))τ

+B
(2)
NDe

−(EN (p′−∆)−EN (p′))τ +
τ

2EN (p′)
Tkk(p,p

′; q1,q2),

(4.49)

where

Bint =
∂2

∂λ1∂λ2

|ZNλ (p′)|2
2EN (p′)

∣∣∣∣
λ=0

, BND =
∂2AND(λ)

∂λ1∂λ2

∣∣∣∣
λ=0

,

for each of the coefficients in Eq. (4.46). Recall from Eqs. (4.22) and (4.26) that the zero

and single current insertion contributions still contain λ1λ2 terms.

Again, if τ is sufficiently large or our kinematics otherwise keep these terms suppressed,

we arrive at the very simple Feynman-Hellmann relation:

∂2

∂λ1∂λ2

Gλ(τ)

G0(τ)

∣∣∣∣
λ=0

τ�a' Bint +
τ

2EN (p′)
Tkk(p,p

′; q1,q2). (4.50)

††This reparameterisation assumes ZNλ (p′) ≈ ZNλ (p).
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Note that we could have used used Eq. (4.48) to derive

∂2Eλ

∂λ1∂λ2

∣∣∣∣
λ=0

= −Tkk(p,p
′; q1,q2)

2EN (p′)
, (4.51)

which is the standard form of FH relation that is derived in Refs. [37,178,179]. However,

in this thesis we will use the correlator derivative, Eq. (4.50), instead of this energy shift.

In practice, we approximate the derivative of the correlator using

∂2Gλ
∂λ1∂λ2

∣∣∣∣
λ=0

=
G(λ,λ) + G(−λ,−λ) − G(λ,−λ) − G(−λ,λ)

4λ2
+O(λ2). (4.52)

And hence it is convenient to define

Rλ ≡
G(λ,λ) + G(−λ,−λ) − G(λ,−λ) − G(−λ,λ)

G(0,0)
. (4.53)

If we are dealing with a nucleon, our correlator is also carrying a pair of Dirac indices

that are traced over with a spin-parity projector (recall Eqs. (4.15) and (4.7)). Hence

Eq. (4.50) with the spin-parity projections becomes‡‡

∂2

∂λ1∂λ2

Γβα
∑

s,s′ G
αβ
λ (τ)

Γβαunpol

∑
s,s′ G

αβ
0 (τ)

∣∣∣∣
λ=0

τ�a' τ

2EN (p′)

∑
s,s′ tr

[
Γu(p′, s′)Tkkū(p, s)

]
∑

s tr[Γunpolu(p′, s)ū(p′, s)]
, (4.54)

dropping the τ independent intercept term.

Hence it is useful to define

RΓ
µν ≡

∑
s,s′ tr

[
Γu(P ′, s′)Tµν ū(P, s)

]
∑

s tr[Γunpolu(P ′, s)ū(P ′, s)]
, (4.55)

where we always use the unpolarised spin-parity projector, Eq. (3.28), for the denominator.

By varying the spin-parity projector in the numerator, we can isolate different components

of the off-forward Compton amplitude—we will discuss this in more detail in Chapter 6.

4.1.3 Spin-dependent forward

Next, we derive a FH relation for the spin-dependent structure functions of the forward

Compton amplitude, Eq. (2.19). These structure functions, g̃1,2 of Eq. (2.20), only exist

in the µ 6= ν component of the forward Compton amplitude, and moreover they are odd

under q → −q. Therefore, the cosine phases we used in the previous section, Eq. (4.12),

will annihilate our Compton amplitude. As such, we need to extract a signal that is odd

under q→ −q.

If we naively use cosine phases, eiq·z + e−iq·z, on both currents, then the final product

will be even in q. Similarly, if both currents have the sine combination, eiq·z − e−iq·z, we

will also have only even in q contributions, since

∑

z,y

sin(q · z) sin(q · y)

‡‡For the energy shift parameterisation, Eq. (4.51), an equivalent of the spin-parity trace can be achieved
by taking a combination of spin up and down correlators in a ratio [179].
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is still even under q→ −q.

Instead, by having one current carrying the sine combination and the other the cosine,

we isolate a contribution that is odd under q → −q, as we would like. Hence we choose

the perturbing operators:

O1(z) = (eiq·z + e−iq·z)j1(z), O2(z) = i(eiq·z − e−iq·z)j2(z), (4.56)

noting that the sine phases have a factor of i to keep them Hermitian, and hence our

overall Compton amplitude real. Note also that now our background fields have the same

momentum, q, as we are interested in the forward Compton amplitude.

Exponential in τ contributions

The forward case is somewhat simpler in terms of kinematic constraints: there is no need

for the constraint in Eq. (4.32), since there is only one inserted momentum. Since there

is only one momentum, the condition in Eq. (4.38) becomes

|p + nq| > |p|, for n ∈ Z\{0}. (4.57)

As discussed, we have poorly suppressed FH excited states arising for the kinematics

Q2 � m2
N and ω → ±1.

τ-enhanced contributions

Hence, for the spin dependent forward, the τ -enhanced contribution of Eq. (4.28) is pro-

portional to

∑

Z

∫
d3p

(2π)3

∫
d3pZ
(2π)3

1

2EZ(pZ)

〈N(p)|jn(0)|Z(pZ)〉〈Z(pZ)|jm(0)|N(ps)〉
EZ(pZ)− EN (p)

∆̃nm, (4.58)

where, using Eq. (4.13),

∆̃nm ≡(2π)6(i)δn,2
[
δ(3)(p− q− pZ) + (−1)δn,2δ(3)(p + q− pZ)

]

× (i)δm,2
[
δ(3)(ps − q− pZ) + (−1)δm,2δ(3)(ps + q− pZ)

]
,

(4.59)

where ps is the source momentum.

Again, we evaluate the delta functions in Eq. (4.59), but this time keep only the

contributions for which p = ps:

(λ1)2
(
〈N(p)|Ô11(p,q)|N(p)〉+ 〈N(p)|Ô11(p′,−q)|N(p)〉

)

+ (λ2)2
(
〈N(p)|Ô22(p,q)|N(p)〉+ 〈N(p)|Ô22(p,−q)|N(p)〉

)

+ iλ1λ2

(
〈N(p)|Ô12(p,q)|N(p)〉+ 〈N(p)|Ô21(p,q)|N(p)〉

)

− iλ1λ2

(
〈N(p)|Ô12(p,−q)|N(p)〉+ 〈N(p)|Ô21(p,−q)|N(p)〉

)
.

(4.60)
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From Eq. (4.43), the last two lines of Eq. (4.60) are T12(p, q) − T21(p,−q). Since we are

interested in isolating the q → −q odd contribution, we can rewrite this as T12(p, q) −
T21(p,−q) = 2T12(p, q). Hence Eq. (4.28) becomes

G(2) τ�a' |ZNλ (p)|2
2EN (p)

τe−EN (p)τ

2EN (p)

[
(λ1)2T11(p,q) + (λ2)2T22(p,q)

+ 2iλ1λ2T12(p,q)
]

+ exponentially suppressed terms.

(4.61)

Again, in analogy to the OFCA section, we will drop all the terms except the most

dominant to get

∂2

∂λ1∂λ2

Gλ(τ)

G0(τ)

∣∣∣∣
λ=0

τ�a' Bint +B
(1)
NDe

−(EN (p±q)−EN (p))τ +
iτ

EN (p)
T12(p,q). (4.62)

We note that, since we do not have off-forward kinematics, we only have the near-

degeneracies from a single insertion of the current, B
(1)
ND. Then, for sufficiently suppressed

near-degeneracies, we have

∂2

∂λ1∂λ2

Gλ(τ)

G0(τ)

∣∣∣∣
λ=0

τ�a' Bint +
iτ

EN (p)
T12(p,q). (4.63)

Since the spin dependent structure component of the Compton amplitude is itself imagi-

nary, the factor of i keeps the whole signal real.

As in the case of the OFCA, we will introduce the spins and Dirac indices again to get

∂2

∂λ1∂λ2

Γβα
∑

s,s′ G
αβ
λ (τ)

Γβαunpol

∑
s,s′ G

αβ
0 (τ)

∣∣∣∣
λ=0

τ�a' iτ

EN (p)

∑
s,s′ tr

[
Γu(p, s′)T12ū(p, s)

]
∑

s tr[Γunpolu(p, s)ū(p, s)]
. (4.64)

We always use the unpolarised spin-parity projector for the correlator on the denomi-

nator. Again, we can vary Γ in the numerator to isolate different components of the

spin-dependent Compton amplitude.

Again, as in the off-forward case, we can express the perturbed correlator in the form

Gλ = Aλe
−Eλτ as long as λ2τ � a, and derive the Feynman-Hellmann relation in terms

of the energy-shift:

∂2Eλ

∂λ1∂λ2

∣∣∣∣
λ=0

=
iT12(p,q)

EN (p)
. (4.65)

Since T12 is imaginary, the energy shift is real.

4.2 Implementation and Interpretation

4.2.1 Implementation

In the previous section, we presented some useful Feynman-Hellmann relations, Eqs. (4.50)

and (4.63), derived in continuum quantum field theory, that relate perturbed two-point

functions to four-point functions. Here, we will discuss how these perturbed two-point
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functions are calculated in practice, as well as some of the differences to be mindful of

between the continuum derivations presented in the previous section and the discretised

implementation.

Although we started with a perturbed Lagrangian, Eq. (4.10), in most implementa-

tions of Feynman-Hellmann we do not directly perturb the lattice action, which would

require the generation of new gauge configurations, a highly computationally expensive

task. Instead, we calculate perturbed quark propagators as discussed at the start of this

chapter.

Local current

The first case we consider is that in which the vector currents in our lattice Compton

amplitude, Eq. (4.2), are the local vector current§§, Eq. (3.40):

jloc
µ (zn) = ZV ψ̄(zn)γµψ(zn).

Recall the unperturbed fermion matrix from Eq. (3.18), M . We perturb this with two

perturbing matrices, O1,2:

Mλ = M − λ1O1 − λ2O2. (4.66)

For the off-forward Compton amplitude, we choose the matrices

[
O1

]
n,m

= δn,m(eiq1·zn + e−iq1·zn)γ · ê,
[
O2

]
n,m

= δn,m(eiq2·zn + e−iq2·zn)γ · ê, (4.67)

where ê is a unit three-vector that picks out the direction of our current. For Chapter 5,

we always choose ê = (0, 0, 1). However, for Chapter 6, we will choose directions such as

ê = 1√
2
(1,−1, 0) to isolate certain contributions from the OFCA.

On the other hand, for the spin-dependent forward Compton amplitude, we choose

[
O1

]
n,m

= δn,m(eiq·zn + e−iq·zn)γ1,
[
O2

]
n,m

= δn,mi(e
iq·zn − e−iq·zn)γ2. (4.68)

These perturbing matrices correspond directly to discretised versions of the background

fields in Eqs. (4.31) and (4.56) by Ô = ψ̄Oψ.

Then, the perturbed quark propagators are simply

Sλ(zn, zm) =
[
M − λ1O1 − λ2O2

]−1

n,m
. (4.69)

In terms of these quark propagators, the perturbed proton correlators are calculated ex-

actly as in the unperturbed case, Eq. (3.25), with one or more of the quark propagators

replaced by perturbed quark propagators:

Guuλ ∼
〈
SuλS

u
λS

d
〉
U
, Gddλ ∼

〈
SuSuSdλ

〉
U
, Gudλ ∼

〈
SuλS

u
λS

d
λ

〉
U
, (4.70)

where 〈...〉U represents gauge ensemble averaging as in Eq. (3.25).

§§For an implementation with the conserved current, Eq. (3.41), see Refs. [40, 178].
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Figure 4.2: Lattice diagrams showing the type of disconnected contributions that are missing

from our calculation. These disconnected contributions correspond to one or both of the photons

interacting with a sea quark.

Then, our FH relations in Eqs. (4.50) and (4.63) may be applied to these objects. For

the flavour diagonal (f = f ′) we have, up to the intercept term,

∂2

∂λ1∂λ2

Gffλ (τ)

G0(τ)

∣∣∣∣
λ=0

' τ

2EN
T ffkk ,

where T ffµν is the OFCA with both currents have flavour f , neglecting charge.

For the case where the perturbation is applied to both flavours (see Eq. (4.70)), we

have

∂2

∂λ1∂λ2

Gudλ (τ)

G0(τ)

∣∣∣∣
λ=0

' τ

2EN

(
T uukk + T ddkk + T udkk

)
,

where T udµν is the mixed flavour OFCA:

T udµν ≡ i
∫
d4ze

i
2

(q+q′)·z〈P ′|T {juµ(z)jdν (0)}|P 〉.

Therefore, to isolate this flavour contribution, we must take

∂2

∂λ1∂λ2

Gudλ (τ)− Guuλ (τ)− Gddλ (τ)

G0(τ)

∣∣∣∣
λ=0

' τ

2EN
T udkk . (4.71)

Then, if we are only considering the up and down quarks, the proton Compton amplitude

is

T pµν =
4

9
T uuµν +

1

9
T ddµν −

2

9
T udµν .

Analogous expressions are applicable to the spin-dependent Compton amplitude, except

using the Feynman-Hellmann relation in Eq. (4.63).

In this thesis we do not determine the T udµν contribution, as this is generally highly

suppressed [38].

Disconnected contributions

As the perturbation is only applied to the quark propagators, it only affects the valence

quarks. In order to apply the perturbation to the sea quarks too, one would need to

generate new gauge configurations, as was performed in Refs. [180, 181]. In this case, the



4.2 Implementation and Interpretation 64

gauge links are generated according to the perturbed weight:

det
[
M [U ]− λsea

1 O1 − λsea
2 O2

]
e−SG[U ], (4.72)

whereas in our calculation we have set λsea = 0.

Alternatively, the sea quark contributions could be approximated by a reweighting of

the unperturbed configurations similar to techniques applied to finite density calculations

[182].

It is far cheaper computationally to calculate without perturbing the sea quarks. How-

ever, it means that our Compton amplitudes are missing disconnected contributions, which

are illustrated in Fig. 4.2. This sort of calculation is common in lattice QCD, particu-

larly exploratory studies, as it is generally assumed that sea quark contributions to most

observables are minor. Moreover, as all of our calculations will be at the SU(3) flavour

symmetric point, the isovector (up quark minus down quark) contributions will be inde-

pendent of sea quarks, whether our calculation includes them or not. Hence our isovector

results will not require sea quark contributions.

4.2.2 Interpretation

Once we have calculated a Compton amplitude on the Euclidean lattice, our work has

only just begun. As discussed in Chapter 3, the Wick rotation in Eq. (3.3) makes the

calculation of real time scattering amplitudes impossible.

For instance, we can write the Minkowski Compton amplitude as

TMµν = i
∑

X

∫
d3z

∫ ∞

0
dtei(q0+EN−EX+iε)te−i(q+P−PX)·z〈P |jµ(0)|X〉〈X|jν(0)|X〉, (4.73)

up to the crossed term: µ↔ ν and q → −q.
By contrast, when we Wick rotate Eq. (4.73), we get the Euclidean Compton ampli-

tude:

TEµν =
∑

X

∫
d3z

∫ ∞

0
dτe(q0+EN−EX)τe−i(q+P−PX)·z〈P |jµ(0)|X〉〈X|jν(0)|X〉, (4.74)

again, up to the crossed term. So if ∆E < 0,

lim
ε→0+

i

∫ ∞

0
dtei(∆E+iε)t =

∫ ∞

0
dτe∆Eτ , (4.75)

and hence Eqs. (4.73) and (4.74) can be equated with one another [37, 135]. However,

if ∆E ≥ 0, then Eq. (4.75) is no longer valid and we cannot equate our Euclidean and

Minkowski amplitudes.

In our Feynman-Hellmann calculations, we set q0 = 0. And hence to equate the

Euclidean and Minkwoski Compton amplitudes we must have EN − EX < 0. Note that

this condition is already encompassed by the kinematic constraints in Eq. (4.38).

The condition EN − EX < 0 implies that

√
m2
X + (p± q)2 >

√
m2
N + p2 ⇒ m2

X + (p± q)2 > m2
N + P2. (4.76)
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Since mX > mN for all X 6= N , then our strongest constraint on p is for X = N :

m2
N + (p± q)2 > m2

N + p2 ⇒ ±2p · q + q2 > 0. (4.77)

Recall the inverse Bjorken scaling variable, Eq. (2.22). Noting that Q2 = q2, while P · q =

−p · q, this condition implies that to equate the Euclidean and Minkowski Compton

amplitudes we must have

− 1 < ω < 1. (4.78)

This is in contrast to the physical region of the Compton amplitude |ω| > 1, Eq. (2.32).

We note that, while it is possible to calculate |ω| ≥ 1 values, we do not analyse these,

since we cannot directly relate them to the Minkowski amplitude∗∗∗.

4.2.3 Inverse problem

As we saw, the Wick rotation leads to the necessity to keep ω in an unphysical region.

Therefore, as in the other lattice parton methods discussed in Section 3.2, the Euclidean

spacetime leads to an ill-conditioned ‘inverse problem’ [161]. Moreover, as with the pseudo-

distribution, HOPE and hadronic tensor inverse problems, we have a similar set of tools

with which to tame this difficulty.

To see how this inverse problem arises, we start with the dispersion relation, Eq. (2.26):

F1(ω,Q2) = 2ω2

∫ 1

0
dx

2x

1− (ωx)2
F1(x,Q2) =

∫ 1

0
dxK(ω, x)F1(x,Q2). (4.79)

If |ω| < 1, the physical structure function F1 and the amplitude we get from the lattice

calculation, F1, are related through a Fredholm integral equation of the first kind, which

is numerically unstable and does not always have unique solutions.

In Section 3.2, we discussed standard methods to tame these inverse problems used in

other lattice calculations of partonic quantities. A previous attempt at direct inversion

through singular value decomposition failed for our forward Compton amplitude data [161],

as this type of method is extremely sensitive to systematic errors, noisy data points and

a limited number of ω values—all of which are present in our lattice data. Therefore, in

this thesis we use the follow methods:

• In Chapters 5—7, we extract the moments of the relevant amplitudes. To demon-

strate this for the unpolarised forward Compton amplitude, recall Eq. (2.29) where

we Taylor expand about ω = 0:

F1(ω,Q2) = 2
∞∑

n=1

ω2n−1M2n−1(Q2),

where

Mn(Q2) ≡ 2

∫ 1

0
dxxn−1F1(x,Q2).

We will use similar moment expansions for the off-forward and polarised Compton

amplitudes.

∗∗∗One can derive analogous relations showing that the off-forward analogue must be kept |ω̄| . 1 [56].
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The extraction of moments is numerically very stable, and the moments themselves

provide interesting physical information. However, since we are limited to |ω| < 1,

for ωN as N becomes larger, these higher moments are more suppressed. Moreover,

the higher ω values require higher sink momentum values. As discussed in Chapter

3, high sink momentum decreases the quality of the signal. Therefore, we are limited

in the number of moments we can meaningfully constrain.

• Furthermore, in Chapter 6, we use a phenomenological parameterisation of gener-

alised parton distributions with a limited number of parameters, similar to Ref. [161].

While sacrificing some model-independence, this gives us much more traction on the

inversion.

Now that we have derived the relevant Feynman-Hellmann relations, and outlined

the processes of implementing and interpreting these results, we are ready to apply this

formalism to numerical calculations.



Chapter 5

The Off-Forward Compton

Amplitude: Part I

In the previous chapter, we outlined how to use Feynman-Hellmann to calculate the off-

forward Compton amplitude (OFCA). Here, we apply this formalism to a lattice QCD

calculation of the OFCA, and show how to use this amplitude to determine properties

of generalised parton distributions (GPDs). GPDs are observables that have generated

a great deal of interest, theoretical and experimental, in recent years. They contain a

staggering amount of physical information, including the spin decomposition [22] and the

spatial distributions [23] of quarks and gluons within a hadron. More recent research has

shown that GPDs can be used to access the ‘mechanical’ properties of hadrons: their

internal pressure, energy and force distributions [83,88].

Experimental determinations of GPDs require measurements of exclusive, hard scat-

tering processes like deeply virtual Compton scattering (DVCS) and deeply virtual meson

production (DVMP). In these processes, the quantity of interest is the off-forward Comp-

ton amplitude as this can be related to GPDs at high energies. Such experiments have

been performed at HERA [183–187], COMPASS [188], JLab [189–192], and in the future

at the Brookhaven electron-ion collider [25].

However, experimental determinations of GPDs suffer from a number of kinematic

difficulties related to the high-dimensionality of off-forward scattering∗, including the de-

convolution problem, and the necessity to span kinematics. As such, most experimental

extractions of GPDs use simple parameterisations that bring a great deal of model depen-

dence [193, 194]. Therefore, lattice QCD studies can provide first principles information

on GPDs to guide or constrain experimental determinations.

Historically, lattice QCD calculations of GPD properties have been limited to three-

point studies of their Mellin moments [122–133]. However, as discussed in Section 3.2,

the n = 3 moments are the highest so far computed [127]. There have also been cal-

culations of quasi-GPDs [146–149], and a test calculation of pseudo-GPDs [195]. These

latter two methods aim to reconstruct the light-cone distributions, whereas here we cal-

culate a discretisation of the Compton amplitude, which can be more directly related to

experiment.

The structure of this chapter is as follows: in Section 5.1 we derive a parameterisation

of the OFCA that is suitable to compare to our lattice calculation. Since we calculate the

full Compton amplitude including all higher-twist corrections, we need a non-perturbative

∗In other words, off-forward scattering is a function of four scalar variables, whereas forward scattering is
a function of two.
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P

q

P ′ = P + ∆

q′ = q −∆

Figure 5.1: The Feynman diagram for off-forward γ∗(q) +N(P )→ γ∗(q′) +N(P ′) scattering.

tensor decomposition where we know the partonic interpretation of each of the amplitudes

in the Q̄2 →∞ limit. This is different to the perturbative matching for quasi- and pseudo-

parton distributions: as discussed in Section 4.2, we wish to determine the Compton

amplitude with its power corrections, but still know the asymptotic limit of the structures.

Then in Section 5.2 we use the FH method to calculate the OFCA for two values

of the soft momentum transfer: t = −1.10,−2.20 GeV2. Further, we use zero-skewness

(ξ = 0) kinematics; this reduces the number of variables we need to span and is physically

interesting [23]. We then apply the aforementioned parameterisation to interpret the

OFCA we calculate in terms of GPDs. In particular, following the discussion of Section

4.2, we extract the n = 2, 4 Mellin moments of the OFCA, which can be interpreted in

the high-energy limit as the corresponding moments of GPDs.

5.1 Theoretical Parameterisation

We start with the off-forward Compton amplitude (OFCA) from Eq. (2.72):

Tµν ≡ i
∫
d4ze

i
2

(q+q′)·z〈P ′|T {jµ(z)jν(0)}|P 〉,

which describes hadron-photon scattering with some momentum transfer between initial

and final states—see Fig. 5.1.

Recall from Eq. (2.73) that we have three linearly independent momentum vectors:

P̄ =
1

2
(P + P ′), q̄ =

1

2
(q + q′), ∆ = P ′ − P = q − q′.

From these, we form the following scalar variables, given in Eq. (2.74):

ω̄ =
2P̄ · q̄
Q̄2

, ϑ = −∆ · q̄
Q̄2

, t = ∆2, Q̄2 = −q̄2.

The t → 0 limit recovers the forward Compton amplitude, Eq. (2.19). In terms of the

forward Compton scattering scalars (Eq. (2.22)), the scalars of Eq. (2.74) are in the forward

limit

lim
t→0

ω̄ → ω, lim
t→0

Q̄2 → Q2, lim
t→0

ϑ→ 0.

Most studies of the OFCA use the ‘skewness’ variable, which in covariant kinematics is

ξ = − ∆·q̄
2P̄ ·q̄ = ϑ/ω̄. Hence ϑ = 0, ω̄ 6= 0 implies that ξ = 0.

In analogy to Section 2.2.2, the generalised Bjorken limit can be defined as

Q̄2 →∞, ω̄, ϑ fixed. (5.1)
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5.1.1 Motivation

In the existing literature on the OFCA, there are primarily two types of works. First,

there are perturbative expansions of the OFCA for DVCS kinematics [22], which we saw

in Eq. (2.77):

Tµν = −1

2
(nµn̄ν + nν n̄µ − gµν)

∫ 1

−1
dx

(
1

x− ξ + iε
+

1

x+ ξ + iε

)

×
[
H(x, ξ, t)ū(P ′)/̄nu(P ) + E(x, ξ, t)ū(P ′)

iσαβn̄α∆β

2mN
u(P )

]
.

These expansions use light-cone vectors, nµ and n̄µ, and parameterise the non-perturbative

structures in terms of convolutions of GPDs. Hence they are easy to relate to GPDs,

but are only applicable to highly-boosted hadrons in Minkowski spacetime. This is not

simply a matter of Lorentz-transforming back to another frame, since expressions such

as Eq. (2.77) explicitly drop terms that are small in the infinite momentum frame, but

may be non-negligible in other frames. For instance, in the infinite momentum frame

there are only three possible Lorentz vectors with which to build tensor structures (see

Appendix D), while in a generic frame for a spin 1/2 particle we have P̄ , q̄, ∆ as well as

the Dirac bilinears. Therefore, although it is possible to derive the light-cone expansion

from a covariant expansion, it is in general not possible to go the other way.

Second, there are older papers that attempt a complete non-perturbative tensor de-

composition of the amplitude [196–199]:

Tµν =

18∑

i=1

Ai(ω̄, ϑ, t, Q̄2)Lµνi , (5.2)

where Ai are scalar amplitudes, and Lµνi are gauge-invariant tensors. We have already seen

a tensor decomposition like this for the forward Compton amplitude, Eq. (2.20). However,

while the forward Compton amplitude can be parameterised by only four independent

structures, the off-forward needs 18.

Although Eq. (5.2) can be compared to our lattice calculation†, it would not be imme-

diately clear how to interpret the scalar amplitudes, Ai, in terms of GPDs. Existing tensor

decompositions, especially Perrottet’s [196] and Tarrach’s work [197], are concerned with

finding the most general possible form of the Compton amplitude, which means eliminating

kinematic zeros and poles‡. However, since these works predate knowledge of GPDs, they

are typically not interested in connecting their scalar amplitudes to physical observables,

especially not GPDs.

In principle the perturbative light-cone expansion in terms of GPDs and the tensor

decompositions describe the same object. Therefore, we expect that at high energies

†Up to O(a) differences between the lattice and continuum Ward identities.
‡For instance, a tensor structure of the form 1

p·qA has a kinematic pole at p · q = 0, while p · qA has a
kinematic zero at the same point. However, this does not necessarily imply that the tensor structure A
goes to infinity or zero as p · q → 0, as A itself may contain powers of p · q. As such, these kinematic
poles/zeroes are undesirable for the most general tensor decomposition.
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(Q̄2 � Λ2
QCD) the amplitudes of Eq. (5.2) are dominated by convolutions of GPDs [22,200]:

A '
∫
dxG(x, ϑ/ω̄, t)

[
ω̄

1 + xω̄ − iε ±
ω̄

1− xω̄ − iε

]
,

where G is a GPD. Or, in the Euclidean region, |ω̄| < 1,

A '
∑

n

ω̄n
∫
dxxn−1G(x, ϑ/ω̄, t).

However, because light-cone perturbative expansion cannot be matched to the existing

tensor decompositions, we need to do some of this work ourselves.

As such, in this section our ultimate aim is to derive a form of the OFCA that can be

compared to our lattice calculation and can be related to leading-twist GPDs. The steps

involved in this procedure are

1. Perform a perturbative expansion of the OFCA that is Lorentz covariant—i.e. valid

in any frame. This means that, rather than using formalisms that require light-cone

kinematics [201,202], we use the short-distance operator product expansion (OPE),

discussed in Chapter 2 and Appendix C.

2. Start with a given tensor decomposition—we will use Tarrach’s [197]—and, with

various Gordon-type identities [203], transform this basis into one that matches the

OPE from the previous step§.

As such this will give us the leading-twist content of all 18 scalar amplitudes of the OFCA,

which allows us to interpret our lattice results in terms of GPDs. However, recall that

the point is not a perturbative matching from our lattice results to GPDs. Instead, we

want to know what the invariant amplitudes A are in the partonic limit, but we are still

interested in the finite 1/Q̄2 corrections.

5.1.2 Operator product expansion

A suitable tool for a perturbative expansion of the OFCA is the short-distance operator

product expansion (OPE). This recommends itself to comparison with a lattice calculation

for two main reasons: (1) it does not rely on light-cone vectors but is instead Lorentz

covariant; and (2) it is an expansion in a basis of local operators. Since the matrix

elements of local operators are the same in Euclidean and Minkowski space—recall the

discussion in Sections 3.2 and 4.2—we easily use the OPE to interpret our lattice results.

We have already seen an example of a short-distance OPE in Section 2.2.2, where the

forward Compton amplitude was shown to be a power series in ω with PDF moments as the

coefficients. Similarly, we find that the OPE of the OFCA is a power series in ω̄ with GPD

moments as coefficients. There exist in the literature several OPEs of the OFCA [204–207].

However, as these largely focus on the spin-zero case and/or significantly pre-date GPDs,

in this section we give our own OPE. We have used these previous studies, as well as

expansions using the related light-ray operator formalism [20,201,208], as a guide.

§This means that, unlike Tarrach, we will not have a tensor decomposition free of kinematic zeroes and
singularities. While this limits the generality of our results to all possible kinematics, it is completely
adequate for our purpose.
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Coordinate space matrix element

We start by recalling the OPE of the coordinate space current product, Eqs. (2.44) and

(2.56), which gave us the ‘handbag’ contribution∗∗ [47, 51]:

T
{
jµ(z/2)jν(−z/2)

}
= −2

i

2π2

zµ

(z2 − iε)2

[
Sµρνκ

∞∑

n=1,3,5

(−i)n
n!

zµ1 ...zµnO
(n+1)κµ1...µn
f (0)

+ iεµνρκ

∞∑

n=0,2,4

(−i)n
n!

zµ1 ...zµnÕ
(n+1)κµ1...µn
f (0)

]
,

(5.3)

where Sµρνκ = gµρgνκ + gµκgνρ − gµνgρκ, and the operators are defined in Eqs. (2.40) and

(2.41).

In the forward case, the leading-order handbag term (see Fig. 2.5) is the dominant

contribution to the Compton amplitude as long as Q2 � Λ2
QCD, and it is the only contri-

bution in the asymptotic Bjorken limit, Q2 → ∞. Similarly, in the off-forward case the

handbag contribution dominates as long as either |q2| or |q′2| are large [200]; in our case

it is more convenient to express this as Q̄2 � Λ2
QCD. However, additionally we need to

keep our hard momentum transfer much greater than our soft momentum transfer [209]:

Q̄2 � |t|.
To go from Eq. (5.3) to the OFCA, we simply need to: (1) take the matrix element

between off-forward states, 〈P ′|...|P 〉; and (2) Fourier transform. Although formally sim-

ple, these steps can become quite involved. Hence we have kept most of the details in

Appendix E, and below only sketch the process.

For convenience, we define the Dirac bilinears

hµ = ū(P ′)γµu(P ), eµ = ū(P ′)
iσµα∆α

2mN
u(P ),

h̃µ = ū(P ′)γµγ5u(P ), ẽµ =
∆µ

2mN
ū(P ′)γ5u(P ).

(5.4)

To take the off-forward matrix element of the current product OPE, Eq. (5.3), we

simply substitute the off-forward matrix elements from Eqs. (2.78) and (D.6) into this

expression. For instance, the µ↔ ν symmetric component is

〈N(P ′)|T {j{µ(z/2)jν}(−z/2)}|N(P )〉 = −2
i

2π2

zµ

(z2 − iε)2
Sµρνκ

×
∞∑

n=1,3,5

(−i)n
n!

n∑

j=0,2,4

{ 1

n+ 1
(∆ · z)j(P̄ · z)n−j

[
hκAn+1,j(t) + eκBn+1,j(t)

]

+
n− j
n+ 1

(∆ · z)j(P̄ · z)n−j−1P̄ κ
[
An+1,j(t)h · z +Bn+1,j(t)e · z

]

+
j

n+ 1
(∆ · z)j−1(P̄ · z)n−j∆κ

[
An+1,j(t)h · z +Bn+1,j(t)e · z

]

+ δj,0∆κ(∆ · z)nCn+1(t)
1

mN
u(P ′)u(P )

}
.

(5.5)

∗∗Here, we drop the factor of the quark charge squared, e2
f , and the sum over flavours, both of which are

simple to reintroduce.
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The anti-symmetric component is given in Eq. (E.1).

Fourier transform

Then, to Fourier transform these matrix elements the general recipe is

1. Introduce Fourier conjugates,

(P̄ · z)n = in
∫ ∞

−∞
dχeiχP̄ ·z

∂n

∂χn
δ(χ),

(∆ · z)n = in
∫ ∞

−∞
dηeiη∆·z ∂

n

∂ηn
δ(η),

h · z = i

∫ ∞

−∞
dχ̃1e

iχ̃1h·z ∂

∂χ̃1
δ(χ̃1),

e · z = i

∫ ∞

−∞
dχ̃2e

iχ̃2e·z ∂

∂χ̃2
δ(χ̃2).

For the polarised component h(e)→ h̃(ẽ), but otherwise the process is the same.

2. Use the identity

∫
d4zeil·z

zµ

2π2(z2 − iε)2
=

lµ

l2 + iε

to integrate out the z-dependence.

3. Use the identity

∫ b

a
dxf(x)

∂n

∂xn
δ(x− y) = (−1)n

∂n

∂xn
f(x)

∣∣∣∣
x=y

,

to evaluate the integrals over the Fourier conjugates.

The final result for the component symmetric in µ↔ ν is

T {µν}(ω̄, ϑ, t) =
2

Q̄2

∞∑

n=2,4,6

n−1∑

j=0,2,4

{
2

n
ω̄n−2(−2ξ)j [h{µAn,j(t) + e{µBn,j(t)]

(
ω̄q̄ν} + 2P̄ ν}

)

+
4

Q̄2

1

n
ω̄n−3(−2ξ)j [An,j(t)h · q̄ +Bn,j(t)e · q̄]

(
(n− 1)ω̄P̄ {µq̄ν} + (n− 2)P̄µP̄ ν

)

+
4

Q̄2
δj,0ω̄

n−3(−2ξ)nCn(t)(h · q̄ − e · q̄)
(
ω̄P̄ {µq̄ν} + P̄µP̄ ν

)

− gµν ω̄n−1
(

(−2ξ)j [An,j(t)h · q̄ +Bn,j(t)e · q̄] + δj,0(−2ξ)nCn(t)(h · q̄ − e · q̄)
)}

,

(5.6)
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where we have used ξ = ϑ/ω̄ to simplify. While for the anti-symmetric contribution, we

have

T [µν](ω̄, ϑ, t) =
2

Q̄2
iεµνρκ

∞∑

n=1,3,5

n−1∑

j=0,2,4

ω̄n−2(−2ξ)j
{

1

n

[
h̃κÃn,j(t) + ẽκB̃n+1,j(t)

]
ω̄q̄ρ

+
2

Q̄2

n− 1

n
P̄κq̄ρ

[
Ãn,j(t)h̃ · q̄ + B̃n+1,j(t)ẽ · q̄

]}
,

(5.7)

where we have used the bilinear definitions given in Eq. (5.4).

Comparison to canonical results

It is useful to compare our results to existing perturbative expansions using the light-like

kinematics, as in Eq. (2.77). This serves two purposes: (1) it is a cross-check of our results,

and (2) it demonstrates how the light-cone kinematics simplify the expression massively

but also lead us to lose information.

To start, we note that the Sudakov decomposition (see Appendix D) is

P̄µ ' n̄µ, q̄µ ' Q̄2

2ξ
nµ, hµ ' (n · h)n̄µ, eµ ' (n · e)n̄µ

h̃µ ' (n · h̃)n̄µ, ẽµ ' (n · ẽ)n̄µ.

Therefore, with DVCS kinematics (ξ ' ω̄−1 and ϑ ' 1), Eq. 5.6 becomes

T {µν} =
(
nµn̄ν + nν n̄µ − gµν

) ∞∑

n=2,4,6

ξ−n
[
(
n−1∑

j=0,2,4

(2ξ)jAn,j(t) + (2ξ)nCn+1(t))h · n

+ (

n−1∑

j=0,2,4

(2ξ)jBn,j(t)− (2ξ)nCn+1(t))e · n
]
.

(5.8)

Then, using the polynomiality relations, Eq. (2.79), this becomes††

T {µν} =
(
nµn̄ν + nν n̄µ − gµν

) ∞∑

n=2,4,6

ξ−n
∫ 1

−1
dxxn−1

[
H(x, ξ, t)h · n+ E(x, ξ, t)e · n

]

=
1

2

(
gµν − nµn̄ν − nν n̄µ

) ∫ 1

−1
dx

(
1

x− ξ + iε
+

1

x+ ξ + iε

)

×
[
H(x, ξ, t)h · n+ E(x, ξ, t)e · n)

]
,

(5.9)

and hence we recover the standard perturbative expansion of the DVCS amplitude, Eq. (2.77).

The same process can be applied to the anti-symmetric component—see Appendix E. Com-

paring Eqs. (5.6) and (5.9), we can see just how much information is lost by using collinear

light-like kinematics.

††Note that, since definitions of ξ often differ by a factor of two between different works, polynomiality
expressions may be expressed in powers of 2ξ or just ξ.
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Electromagnetic gauge invariance

Further, notice that Eqs. (5.6) and (5.7) violate electromagnetic (EM) gauge invariance

(their Ward identities) by terms linear in ∆µ
⊥ = ∆µ + (2ϑ/ω̄)P̄µ. Specifically, Eqs. (5.6)

and (5.7) are transverse with respect to q̄µ but not ∆µ. Since the Ward identities for

off-forward scattering can be expressed as

(q̄ + ∆/2)µT
µν = 0 = (q̄ −∆/2)νT

µν ,

this means that these expressions do not completely satisfy their Ward identities. This

property is found in all leading-twist expansions of the off-forward Compton amplitude

[20,208,210].

We can understand this by noting that our coordinate space OPE, Eq. (5.3), has

current conservation with respect to the displacement zµ:

∂µz T {jµ(X + z/2)jν(X − z/2)} = 0.

However, with respect to the central coordinate, Xµ,

∂µXT {jµ(X + z/2)jν(X − z/2)} 6= 0.

The EM gauge invariance of this leading-twist OFCA has been studied in detail else-

where [20,207,208,210], where it has been found that gauge invariance can be restored by

considering ‘total derivative’ operators—operators that contain ∂µX derivatives‡‡—which

are typically left out of the OPE since (1) they vanish between forward matrix elements;

and (2) they are in-principle twist-three.

Fortunately for us, the process of including the total derivative operators is equivalent

to the ad hoc inclusion of tensor structures that restore the gauge invariance: P̄µ∆ν ,

hµ∆ν , eµ∆ν , ∆µ∆ν , etc. Therefore, our work for the perturbative expansion is complete:

we can match, for instance, the gµν contribution in Eq. (5.6) to a gauge invariant tensor

decomposition, without worrying about extra gauge dependent terms.

5.1.3 Tensor decomposition

From Feynman-Hellmann techniques, we compute the full, non-perturbative Compton

amplitude, not just the leading-twist contribution. Therefore, our ultimate aim in this

section is to derive a non-perturbative tensor decomposition, as we saw in the forward case,

Eq. (2.20), that can be matched to the OPE result. This has already been accomplished

by Tarrach [197], building on the works of Bardeen and Tung [211] and Perrottet [196].

Tarrach’s basis of tensor structures is chosen to minimise the number of kinematic poles

and singularities; this basis, however, is extremely difficult to match onto the leading-

twist GPDs (and PDFs). Hence, starting with Tarrach’s decomposition, we rework it into

a basis that resembles the OPE results, Eqs. (5.6) and (5.7).

‡‡Since ∂µX produces factors of −i∆µ between two off-forward states, these total derivatives produce van-
ishing contribution in the forward limit, but non-vanishing contributions in the off-forward case.
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As previously discussed, the OFCA, Eq. (2.72), can be decomposed into 18 linearly

independent tensor structures [196–199,212]:

Tµν(ω̄, ϑ, t, Q̄2) =
18∑

i=1

Ai(ω̄, ϑ, t, Q̄2)Lµνi ,

where Ai are invariant amplitudes and Lµνi are Lorentz tensors and Dirac bilinears.

As a result of the Ward identities, qµT
µν = 0 = q′νT

µν , contributions to the Compton

amplitude that are proportional to qν or q′µ are not linearly independent. Hence we can

write the OFCA as

Tµν = T̄ρσPµρPσν ,
where the gauge projector is

Pµν = gµν − q′µqν

q · q′ , (5.10)

and T̄µν is the OFCA without qν or q′µ terms.

Therefore, the tensor decomposition basis of the full OFCA is determined by that of

T̄µν , since all other terms are entirely determined by the Ward identities. To arrive at

a suitable basis, we take Tarrach’s basis and apply various Gordon(-type) identities, to

arrive at an expression that can be easily matched to the OPE. The details of this process

are outlined in Appendix E. The final result is

T̄µν =
1

2P̄ · q̄

{
−
(
h · q̄H1 + e · q̄E1

)
gµν +

1

P̄ · q̄
(
h · q̄H2 + e · q̄E2

)
P̄µP̄ν

+H3h{µP̄ν}

}
+

i

2P̄ · q̄ εµνρκq̄
ρ

{
h̃κH̃1 + ẽκẼ1 +

1

P̄ · q̄
[(
P̄ · q̄h̃κ − h̃ · q̄P̄ κ

)
H̃2

+
(
P̄ · q̄ẽκ − ẽ · q̄P̄ κ

)
Ẽ2

]}
+
(
P̄µq

′
ν + P̄νqµ

)(
h · q̄K1 + e · q̄K2

)

+
(
P̄µq

′
ν − P̄νqµ

)(
h · q̄K3 + e · q̄K4

)
+ qµq

′
ν

(
h · q̄ − e · q̄

)
K5

+ h[µP̄ν]K6 +
(
hµq

′
ν + hνqµ

)
K7 +

(
hµq

′
ν − hνqµ

)
K8 + P̄{µū(P ′)iσν}αu(P )q̄αK9,

(5.11)

using the Dirac bilinears from Eq. (5.4). In Eq. (5.11), there are nine K, five unpolarised

(H and E) and four polarised (H̃ and Ẽ) amplitudes, which gives 18 in total.

The basis in Eq. (5.11) is chosen to match onto the high-energy limit, from the OPE

expression, Eqs. (5.6) and (5.7). While this does introduce kinematic singularities into our

basis, these are not relevant to the leading-twist contribution or our numerical calculation.

The amplitudes of Eq. (5.11) also reduce in the forward (t → 0) limit to the more

well-known functions of the forward Compton amplitude:

H1
t→0−→ F1, H2 +H3

t→0−→ F2,

H̃1
t→0−→ g̃1, H̃2

t→0−→ g̃2,

where F1,2 are the Compton structure functions [37] and Img̃1,2 = 2πg1,2, for g1,2 the

spin-dependent, deep-inelastic structure functions [57], which we will study in Chapter 7.

On the other hand, the K amplitudes vanish in the forward limit.
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To be consistent with the rest of the off-forward literature, we refer to the amplitudes

in Eq. (5.11) as Compton form factors (CFFs). Therefore, when we are at t 6= 0 these

amplitudes are CFFs, but when we are at t = 0 they become Compton structure functions.

Comparison to OPE

Comparing the OPE results, Eqs. (5.6) and (5.7), to interpret the high energy limit of

each of the scalar amplitudes in the tensor decomposition, we have:

• A complete list of the leading-twist contribution to all the amplitudes is given in

Eq. (E.17). All of the K amplitudes vanish. For the remaining nine amplitudes,

these are expressed in terms of a sum of GPDs moments:

H1(ω̄, ϑ, t) = 2

∞∑

n=1

ω̄2n

∫ 1

−1
dxx2n−1H(x, ϑ/ω̄, t).

• We find off-forward equivalents of the Callan-Gross relation, Eq. (2.37):

H1 =
ω̄

2

(
H2 +H3

)
, E1 =

ω̄

2
E2. (5.12)

For the forward Compton amplitude, Feynman-Hellmann methods have been used

to determine power-suppressed Callan-Gross breaking [38].

• At leading-twist, the polarised scalar amplitudes have an off-forward analogue of the

Wandzura-Wilczek relation, Eq. (2.68):

∫ 1

0
dxxnImH̃1(1/x, ϑ/ω̄, t) = −n+ 1

n

∫ 1

0
dxxnImH̃2(1/x, ϑ/ω̄, t), (5.13)

and similarly for the replacement H̃ → Ẽ . In the t → 0 limit, this reduces to the

Wandzura-Wilczek relation [68,75], Eq. (2.68).

• The leading-twist contribution to the subtraction function, Eq. (5.18), is

S1(ϑ, t) = 2
∞∑

n=1

(2ϑ)2nC2n(t), (5.14)

a result that has been found in previous studies using different formalisms [84–87].

Therefore, a lattice calculation of S1 for ϑ 6= 0 could be used to extract the D-term.

Dispersion relation

Recall from the Section 4.2 that dispersion relations are important for our method, as

they allow us to relate the Compton amplitude in the unphysical region |ω̄| < 1, where our

lattice calculation is possible, to the physical Compton amplitude with |ω̄| > 1. Therefore,

here we present equations of the form in Eq. (4.79) for the off-forward amplitudes in

Eq. (5.11). To do this we quote some results derived in Regge theory [213–215]—more

details on the analytic features of the amplitudes can be found in Appendix B.
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We start by defining the variable

ν =
P̄ · q̄
mN

. (5.15)

Then, from Refs. [213–215], in the Regge limit ν →∞ with fixed t and Q̄2, our amplitudes

have the following behaviour:

H1, E1,K6 ∼ ναM (t), all other amplitudes ∼ ναM (t)−1, ναM (t)−2, or ναM (t)−3, (5.16)

where αM (t) . 0.5. Since ω̄ = mNν/Q̄
2, at fixed Q̄2 the amplitudes will go like

lim
ω̄→∞

H1, E1,K6 −→∞, while lim
ω̄→∞

A −→ 0, (5.17)

for all other amplitudes.

As can be seen in Appendix B, this means that the amplitudes H1, E1 and K6 satisfy

subtracted dispersion relations:

H1(ω̄, ϑ, t, Q̄2) = S1(ϑ, t, Q̄2) +
2ω̄2

π

∫ 1

0
dx
xImH1(x, ϑ, t, Q̄2)

1− x2ω̄2 − iε ,

E1(ω̄, ϑ, t, Q̄2) = −S1(ϑ, t, Q̄2) +
2ω̄2

π

∫ 1

0
dx
xImE1(x, ϑ, t, Q̄2)

1− x2ω̄2 − iε

K6(ω̄, ϑ, t, Q̄2) = S2(ϑ, t, Q̄2) +
2ω̄2

π

∫ 1

0
dx
xImK6(x, ϑ, t, Q̄2)

1− x2ω̄2 − iε .

(5.18)

Since the amplitude K6 vanishes for zero-skewness kinematics and all our lattice calcula-

tions are at zero-skewness, this amplitude does not concern us.

From Eq. (5.18), we define

H1(ω̄, ϑ, t, Q̄2) ≡ H1(ω̄, ϑ, t, Q̄2)− S1(ϑ, t, Q̄2),

E1(ω̄, ϑ, t, Q̄2) ≡ E1(ω̄, ϑ, t, Q̄2) + S1(ϑ, t, Q̄2).
(5.19)

Note that S1 defined in Eq. (5.18) is a generalisation of the forward Compton amplitude

subtraction function in Eq. (2.26): S1(ϑ, t, Q̄2)
t→0−→ S1(Q2). The forward subtraction

function, S1(Q2), was briefly discussed in Section 2.2.2 and will be the focus of Chapter 8.

The off-forward subtraction function is physically interesting as a test of the ‘fixed pole’

hypothesis in Regge phenomenology [216, 217], and moreover because it is a background

for experimental determinations of the proton pressure distribution [89].

The other amplitudes satisfy an unsubtracted dispersion relation, such as for the po-

larised Compton structure functions§§, Eq. (2.54). These dispersion relations are examples

of a Fredholm integral equation as in Eq. (4.79). Again, the inverse problem arises from

the difficulty associated with inverting these integral equations to solve for the amplitude

in the physical region.

§§The form of the unsubtracted dispersion relation depends on whether or not a factor of 1/P̄ · q̄ has been
taken out of the amplitude, thereby making it odd under ω̄ → −ω̄. See Appendix B for more details.
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In the t→ 0 limit, the dispersion relation for H1 recovers Eq. (2.26):

H1(ω̄, ϑ, t, Q̄2)
t→0−→ 4ω2

∫ 1

0
dx

xF1(x,Q2)

1− x2ω2 − iε ,

where F1 is the deep-inelastic scattering structure function. However, unlike the forward

case, there is no optical theorem to relate ImH1,2 to an inclusive cross section. Instead,

we can compare the Minkowski amplitudes, ImA, to those extracted from experiment in

DVCS or a related process. Moreover, at large values of the hard scale, Q̄2 � Λ2
QCD, we

can interpret the Mellin moments of the CFFs as GPD moments, using the OPE result.

5.1.4 Parameterisation for the lattice

In Chapter 4, we derived the Feynman-Hellmann relation, Eq. (4.50), that allowed us to

calculate the OFCA. In particular, we calculate the quantity

Rµν(ω̄, t, Q̄2) =

∑
s,s′ tr

[
Γu(P ′, s′)Tµν ū(P, s)

]
∑

s tr[Γunpolu(P ′, s)ū(P ′, s)]
,

where Γ is a spin-parity projector.

Using the results of the tensor decomposition and OPE, Eqs. (5.11) and (E.17), we

want to parameterise Rµν in terms of leading-twist GPDs. To do so, we note that for our

lattice calculation we have the following restrictions:

• We choose the µ = ν = 3 component of the Compton amplitude.

• The Feynman-Hellmann relation requires q̄0 = ∆0 = 0.

• We choose zero-skewness (ξ = 0 = ϑ) kinematics by choosing q2
1 = q2

2.

• We choose the spin-parity projector Γ = (I + γ0)/2.

Although it cannot be accessed experimentally, the zero-skewness region is physically

interesting as at zero-skewness GPDs can be Fourier transformed to spatial probability

distributions [23]. Moreover, the GFFs that parameterise the zero-skewness GPD moments

are those relevant to the spin decomposition and mechanical properties of hadrons.

This zero-skewness condition also removes the tensor structures with scalar amplitudes

K3,4,6,8,9 and Ẽ2 (see Appendix E). Further, by calculating the µ = ν = 3 component and

taking a spin trace, we remove tensor structures associated with H̃1 and Ẽ1. While there

is a contribution from the tensor structure with amplitude H̃2, it is suppressed by a factor

of 1/Q̄4. Hence it is very small compared to the H and E terms. See Appendix F for the

results of the spin-parity traces.

Finally, our lattice calculation will have a hard scale of Q̄2 ∼ 7 GeV2. As such, we can

approximately treat the remaining amplitudes, K1,2,5,7, as suppressed since they have no

leading-twist contribution. This leaves only the H1,2,3 and E1,2 amplitudes.

Applying these conditions, Eq. (4.55) becomes

Rµν(ω̄, ϑ, t, Q̄2) =
1

EN +mN

{
− gρσ

[
(EN +mN )H1 +

t

4mN
E1

]

+
P̄ ρP̄ σ

P̄ · q̄
[
(EN +mN )

(
H2 +H3

)
+

t

4mN
E2

]}
PµρPσν ,

(5.20)
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with Pµν as defined in Eq. (5.10).

Next, we note that at ω̄ = 0

Rµν(ω̄ = 0, t, Q̄2) =

(
1− t

4mN (EN +mN )

)(
− gµν +

q′µqν
q · q′

)
S1(t, Q̄2), (5.21)

using the subtraction function definition in Eq. (5.18).

Therefore, subtracting off the ω̄ = 0 contribution,

Rµν(ω̄, t, Q̄2) = Rµν(ω̄, t, Q̄2)−Rµν(ω̄ = 0, t, Q̄2), (5.22)

is equivalent to replacing H1 → H1 and E1 → E1 in Eq. (5.20), where we have used the

definition Eq. (5.19).

As we discuss in Section 5.2 and in more depth in Chapter 8, our calculation of S1

has asymptotic behaviour at odds with the prediction from the OPE. Since this will be

our primary focus in Chapter 8, we do not discuss the subtraction in great depth in this

chapter.

Next we substitute the OPE results from Eq. (E.17) into Eq. (5.21):

Rµν(ω̄, t) = 2Kµν

∞∑

n=1

ω̄2n
[
A2n,0(t) +

t

4mN (EN +mN )
B2n,0(t)

]
, (5.23)

where we have defined the kinematic factor

Kµν =
P̄µq̄ν + P̄ν q̄µ + ∆[µP̄ν]

P̄ · q̄ +
Q̄2

(P̄ · q̄)2
P̄µP̄ν + δµν , (5.24)

which neglects suppressed ∆µ∆ν/P̄ · q̄ terms.

For a first approximation of extracting the GPD moments, we will calculate

Rkk(ω̄, t, Q̄2)/Kkk(P̄3, q̄3, P̄ · q̄, Q̄2).

Since our lattice calculations are in frames that are roughly near the rest frame (i.e. EN ≈
mN ), we can approximate combination of GFFs in Eq. (5.23) as a Lorentz scalar:

Mf
n (t) ≡ Afn,0(t) +

t

8m2
N

Bf
n,0(t). (5.25)

Therefore,

Rkk(ω̄, t)/Kkk = 2
∞∑

n=1

ω̄2nMf
2n(t), (5.26)

allowing a fit in ω̄ to extract the moments, Mf
n (t).

Limitations

We highlight that this parameterisation is limited for a two main reasons

1. It is desirable to determine the helicity-conserving (A GFFs or equivalently H CFFs)

and helicity-flipping structures (B GFFs or equivalently E CFFs) independently. By

contrast, we only extract the linear combination in Eq. (5.23).
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Table 5.1: Details of the gauge ensemble used in this chapter [218].

Nf cSW β κl, κs N3
L ×NT a mπ ZV Ncfg

[fm] [MeV]

2 + 1 2.65 5.50 0.1209 323 × 64 0.074 468 0.861 1764

2. We are ultimately interested in looking at the Q̄2 dependence of the CFFs and

the difference between, for instance H1 and H2 + H3, which would provide highly

interesting and useful phenomenological information. However, in the above param-

eterisation we have lost this information, by approximating the CFFs with their

leading-twist contributions.

We will address both these issues in Chapter 6. However, the lattice calculation presented

in this chapter is highly exploratory, and our main goal is to show that we capable of

calculating the OFCA with this method.

5.2 Lattice Results

We are now ready to apply the Feynman-Hellmann formalism of Chapter 4 and the pa-

rameterisation presented above for an exploratory lattice calculation of the OFCA.

5.2.1 Simulation details

To perform this calculation, we use gauge ensembles generated by the CSSM/QCDSF/UKQCD

collaboration [218]. These configurations are at the SU(3) flavour symmetric point, κl =

κs, with a non-physical pion mass, mπ = 468 MeV, approximately three times the physical

mass. Details of these gauge ensembles are given in Table 5.1.

Feynman-Hellmann implementation

As discussed in Section 4.2, we implement Feynman-Hellmann on the level of perturbed

quark propagators:

Sλ(zn, zm) =
[
M − λ1O1 − λ2O2

]−1

n,m
, (5.27)

where M is the usual fermion matrix. To get the µ = ν = 3 component of the OFCA we

choose the perturbing matrices to be

[
O1

]
n,m

= δn,m(eiq1·zn + e−iq1·zn)γ3,
[
O2

]
n,m

= δn,m(eiq2·zn + e−iq2·zn)γ3. (5.28)

As discussed in Section 4.2, this means that our results do not include disconnected con-

tributions to the OFCA. These contributions could be calculated with an extension of the

FH method that would incure significantly greater computational costs.

Recall the Feynman-Hellmann relation, Eq. (4.50):

∂2

∂λ1∂λ2

Gλ(τ)

G0(τ)

∣∣∣∣
λ=0

τ�a' Bint +
τ

2EN (p′)
Tkk(p,p

′; q1,q2).
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Table 5.2: Current insertion momenta, q1,2, and derived kinematics for two sets of correlators.

All data on configurations with N3
L ×NT = 323 × 64, κl,s = 0.1209, β = 5.5.

Q̄2 t q1 q2 ∆ λ Nmeas

[GeV2] [GeV2] 2π/L 2π/L 2π/L

7.13 0 (5, 1, 0) — — (0.0125, 0.025) 7036
7.13 −1.10 (1, 5, 1) (−1, 5, 1) (2, 0, 0) (0.0125, 0.025) 996
6.03 −2.20 (4, 2, 2) (2, 4, 2) (2,−2, 0) (0.0125, 0.025) 996

In practice, we approximate the mixed second-order derivative by Eq. (4.53):

Rλ ≡
G(λ,λ) + G(−λ,−λ) − G(λ,−λ) − G(−λ,λ)

G(0,0)
.

Therefore, to evaluate Rλ we need to calculate the perturbed propagators for four combi-

nations: (λ1, λ2) = (λ, λ), (−λ,−λ), (−λ, λ), and (λ,−λ). Moreover, because we want to

ensure that we are extracting the λ2 contribution of Rλ, we calculate two magnitudes of

λ = 0.0125, 0.025, chosen based on λ-tuning tests carried out in the forward case [37,178].

Kinematics

The momenta q1,2 we choose in our perturbing matrices, Eq. (5.28), determine the hard

and soft momentum transfers from Eq. (2.74):

Q̄2 =
1

4
(q1 + q2)2 = q̄2, t = −(q1 − q2)2 = −∆2. (5.29)

Moreover, as we discussed previously, the zero-skewness case is set by

ϑ = −∆ · q̄
Q̄2

=
q2 − q′2

2Q̄2
= 0,

and hence we ensure zero-skewness by choosing |q1| = |q2|.
Therefore, in choosing our momenta q1,2, we want |q1| = |q2|; see Fig. 5.2.1. Moreover,

for our initial studies, we are mostly interested in varying the soft momentum transfer, t,

at fixed Q̄2. Hence we calculate two sets of correlators, with different q1,2—see Table 5.2.

This gives us two different values of the soft momentum transfer, t = −1.10,−2.20 GeV2,

with Q̄2 ≈ 7, 6 GeV2, respectively. While these two Q̄2 values are quite different, for Q̄2

sufficiently large, we expect this difference in Q̄2 to be minimal compared to the change

in t. However, this is the sort of claim we can investigate in future studies.

Then, the ω̄ values are determined by the sink momentum p′:

ω̄ =
4p′ · (q1 + q2)

(q1 + q2)2
. (5.30)

Looking at our parameterisation, Eq. (5.23), we can see that multiple ω̄ values are required

to extract the GPD moments.

Recall the constraints on our sink momenta, Eq. (4.38):

• We must keep |p′| = |p′ − q1 + q2|.
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∆

Figure 5.2: Example of kinematic set up for lattice off-forward scattering. Left: the magenta

vectors are ±q1 and the blue vectors are ±q2. Right: derived kinematics, p̄, q̄, and ∆ (Eq. (5.25))

of the left diagram.

• And we need that |p′| < |p′ + nq1 +mq2| for all other integers n,m.

For simplicity, we define the dimensionless sink momentum as n′:

p′ =
2π

L
n′, for n′i ∈ N. (5.31)

Recall from Chapter 3 that large sink momenta, |p′|, decreases the quality of the signal.

Therefore, we keep n′2 ≤ 5, which corresponds to p′2 ≤ 1.37 GeV2. Finally, by the

arguments in Section 4.2, we note that we must exclude values of p′ that give |ω̄| > 1.

The explicit values of ω̄ for our kinematics are shown in Table 5.3. Since our amplitude

is invariant under the exchanges ∆µ → −∆µ, ω̄ → −ω̄, we average over ±p′, ±(p′−q1+q2)

to increase our statistics. We do not report these sink momenta in Table 5.3.

Table 5.3: Left: t = −1.10 GeV2. Right: t = −2.20 GeV2. Corresponding q1,2 values are given

in Table 5.2.

n′ ω̄ n′2

(1, 0, 0) 0 1
(1, 0, 1) 0.08 2
(1, 0, 2) 0.15 5

(1, 1,−1) 0.31 3
(1, 1, 0) 0.38 2
(1, 1, 1) 0.46 3
(1, 2, 0) 0.77 5

n′ ω̄ n′2

(1,−1, 0) 0 2
(1,−1, 1) 0.18 3
(2, 0,−1) 0.36 4
(2, 0, 0) 0.55 4
(2, 0, 1) 0.73 5
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Figure 5.3: Plot of τ fits for Rλ, as defined in Eq. (4.53), for up quarks and t = −1.10 GeV2.

Top: Rλ for p′ = (2π/L)(1, 0, 0) for the two different λ values. Bottom: Rλ with λ = 0.025 for a

range of momenta.

5.2.2 Determining the Compton amplitude

Now we present the results of this lattice calculation, starting with the fits in Euclidean

time and the Feynman-Hellmann parameter, λ, to extract the off-forward Compton am-

plitude.

Euclidean time fits

Recall that we constructed the combination of correlators, Rλ(τ,p′) in Eq. (4.53) to ex-

tract the OFCA. From our Feynman-Hellmann relation, Eq. (4.50), Rλ(τ) will have the

functional form f(τ) = aτ + b, where τ is Euclidean time. Then, from the Feynman-

Hellmann relation in Eq. (4.50), the slope a is proportional to the OFCA, while b is a

superfluous parameter.

For the fitting in Euclidean time we use the same fit window for all sink momenta:

τmin = 4a, τmax = 9a. This fit window is chosen based on (1) where the signal is roughly

linear, and (2) where we have χ2/dof ∼ 1 for all sink momenta. We present a significantly

improved procedure to choose the fit windows in Chapters 6 and 7. However, since this

chapter’s calculation is more proof-of-principle, we use this simple procedure.

We calculate the χ2/dof of the Euclidean time fits using the full covariance matrix and

report these values in Table 5.4, where we show that χ2/dof ∼ 1 for all the momenta,

demonstrating that the data is largely well described by a linear fit. An example of the

Euclidean time fits for the t = −1.10 GeV2 results is given in Figure 5.3.
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Figure 5.4: Plot of λ-dependence of Rλ after fitting in Euclidean time, for the same data as

Fig. 5.3. Top: Rλ appears very well-described by f(λ) = cλ2. Bottom: comparing the extracted c

and Rλ/λ
2, we see small tensions between the fit and the data.

Recall in Chapter 4 that we showed there are Feynman-Hellmann excited states induced

by the kinematics Q̄2 or |t| � m2
N , and |ω̄| → 1. Since we are not particularly near these

kinematic limits for this calculation, we need not consider excited states in too much

detail—attested to by the good quality of our linear fits. However, in Chapter 6, we will

consider these contributions in greater detail.

Feynman-Hellmann parameter fits

Once we have fit Rλ(p′) as a function of the Euclidean time, we next investigate its be-

haviour as a function of the Feynman-Hellmann coupling, λ. From the Feynman-Hellmann

relation, Eq. (4.50), and Eq. (4.52), the coefficient of the λ2 contribution is proportional

to the OFCA, and the next-to-leading order term is O(λ4), which is suppressed by ∼ 10−2

for our chosen λ.

For goodness-of-fit, we find that the calculation of a χ2/dof using the covariance matrix

is not suitable for this highly-correlated data with two values—see Appendix G. Instead,

we examine the effect of O(λ4) contaminations by calculating the quotient λ2
1Rλ2/(λ

2
2Rλ1),

which is 1 for perfectly quadratic results. In Table 5.4, we can see that, although the central

value of this quotient is close to 1 for all momenta, not all are within errors of 1. This

indicates a 2 − 4% contamination from higher order terms, which is negligible compared

to our overall errors. Controlling such suppressed, higher order contributions is a current

area of investigation [219].

Hence for this study, we find it sufficient to use the purely quadratic fit function,

f(λ) = cλ2. In Figure 5.4, we plot the normalised ratio, Rλ/λ
2, as a function of λ,
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Table 5.4: Parameters demonstrating the quality of fits in Euclidean time and the Feynman-

Hellmann parameter, λ, for the up quark results with t = −1.10 GeV2.

n′ χ2/dof (τ fits) λ2
1Rλ2/(λ

2
2Rλ1)

(1,0,0) 0.87 1.039(4)

(1,0,1) 1.1 1.033(5)

(1,0,2) 0.75 1.01(2)

(1,1,-1) 0.49 1.019(6)

(1,1,0) 1.0 1.032(4)

(1,1,1) 0.57 1.022(6)

(1,2,0) 1.6 0.99(3)

and compare this to the quadratic coefficient from the fit. We observe that the data is

reasonably well described by a purely quadratic fit.

Using the Feynman-Hellmann relation, Eq. (4.50), we can now interpret the quadratic

coefficient as proportional to the off-forward Compton amplitude. Then, by varying the

sink momentum, we can calculate the amplitude at multiple values of the scaling variable,

ω̄. The results are shown in Figure 5.5.

The forward t = 0 curve in this plot is a fit to the Q2 = 7.13 GeV2 results from

Ref. [37]. As that study also used the Feynman-Hellmann method and the same gauge

configurations as the present calculation, we can compare it to our off-forward, t 6= 0,

results to determine the t-dependence of the OFCA.

5.2.3 Moment fitting

As discussed in Section 4.2, the Euclidean Compton amplitude is itself unphysical, and

it can only be related to the physical Compton amplitude through an integral equation,

Eq. (4.79). Moreover, in Sections 3.2 and 4.2 we outlined some methods to overcome

this problem. In this section we apply the moment fitting method and determine the two

leading even moments.

Using the results of our OPE, Eq. (5.23), we can interpret the moments of the OFCA

as GPD moments, defined in Eq. (5.25). Hence, using Eq. (5.23), a fit in ω̄ to the function

fNmax(ω̄, t) = 2

Nmax∑

n=1

ω̄2nM2n(t) (5.32)

yields the first Nmax even moments of the OFCA at fixed t and Q̄2 values. Since |ω̄| < 1

a truncation in this series is justified. At leading-twist, these moments are approximately

the following linear combination of generalised form factors:

Mn(t) = An,0(t) +
t

8m2
N

Bn,0(t).

To fit the moments, we use Bayesian Markov chain Monte Carlo (MCMC) implemented

with the PyMC3 library [220, 221]. This takes prior distributions as inputs, and outputs
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Figure 5.5: Plot of R, as defined in Eq. (5.23), divided by the kinematic factor, K33, from

Eq. (5.24). The top plot is for up quarks, while the bottom is for down quarks. The red curve is

a parameterisation of results from Ref. [37]. The blue and green curves are from the moment fits.

a posterior distribution based on minimising exp(−χ2/2). The χ2 is given by

χ2 =
∑

i

[
fmodel(ωi)− f lattice(ωi)

]2

σ2
, (5.33)

where σ2 is the sum of the variances—i.e. the trace of the covariance matrix. By sampling

prior distributions, we can apply physically-motivated constraints on our parameters and

regularise parameter space, which helps prevent over-fitting [37].

For this chapter and Chapters 6 and 7, we use uniform prior distributions. However,

we need to be careful that our priors are not too severe for the data (indicated by a

skewed posterior distribution) or that our parameters are unconstrained (indicated by

a flat posterior distribution—i.e. the posterior is the same as the prior distribution up

to statistical fluctuations). Ideally, given normally distributed lattice data, the posterior

distribution will also be normally distributed.
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Figure 5.6: Density distributions for the first two up quark moments at t = −1.10 GeV2. The

upper two plots use monotonic in n priors distributions, Eq. (5.34), while the lower two plots

use constant in n positive distributions, Eq. (5.35). Nmax is the number of moments fit in the

parameterisation, Eq. (5.32).

In the case of the forward Compton amplitude, we can use the monotonically decreas-

ing condition on the moments, Eq. (2.31). However, for the off-forward amplitude, there

is no optical theorem connecting the OFCA to a scattering cross section, and hence no

requirement for the off-forward scalar amplitudes to be positive definite. However, our mo-

ments, defined in Eq. (5.25), are dominated by An,0(t), the moments of the zero-skewness

GPD H(x, t), which is typically treated as positive in model-dependent parameterisa-

tions [222–225]. Therefore, it is reasonable for the proof-of concept calculation in this

chapter to treat the underlying distribution as strictly positive on the domain x ∈ [−1, 1],

and thus its moments as monotonically decreasing for fixed t:

0 ≤Mn+1(t) ≤Mn(t), for n ∈ N. (5.34)

In Chapter 6, we will use physically motivated GPD constraints to provide better prior

distributions for our sampling [226–228].

Another model-dependency is the order of truncation in the ω̄ polynomial: Nmax

in Eq. (5.32). Although the Bayesian MCMC is capable of taking more fit parameters

than the number of ω̄ points, it is unlikely that all these parameters will be constrained.

Therefore, as a rule of thumb we use Nmax to at most equal to the number of ω̄ values.

In Figure 5.6, we present the posterior densities for the up quark, t = −1.10 GeV2

moments. To examine the model-dependence, we compare the moments fit using mono-

tonically decreasing in n priors, Eq. (5.34), to those fit with constant in n; that is, where

the same prior is used for each moment:

0 ≤Mn ≤ 100, for all n ∈ N. (5.35)
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Figure 5.7: The t-dependence of the first two even moments, Mf
n (t), defined in Eq. (5.25). The

top plot is for up and the bottom is for down quarks. The t = 0 points are from a fit to results in

Ref. [37].

Moreover, we vary Nmax between two and five.

We observe that the leading moment, M2, is stable as Nmax is varied. Moreover, the

values of M2, as extracted with the monotonic and constant moments, are highly con-

sistent. On the other hand, the value of M4 differs significantly depending on whether

monotonic or constant priors are used. For the constant in n moments, the M4 distribu-

tions are heavily skewed towards zero, and do not converge with Nmax. By contrast, the

monotonically sampled moments, M4, does not depend greatly on the order of truncation

for Nmax > 2, and the distributions appear only slightly skewed towards zero.

Since we are limited to |ω̄| < 1, the higher moments will be suppressed by a factor of

ω̄2N for some N with respect to the lower moments. Moreover, large sink momentum is

required to access high ω̄, Eq. (5.30). Recall from Chapter 3 that large sink momentum

makes a clean signal harder to obtain. As such, the lower moments are generally easier

to obtain. For this preliminary study, we choose to fit the first four even moments,

n = 2, 4, 6, 8, using monotonic conditions, and report the first two even moments. For

consistency, we only fit the first four moments of the forward results as well.

We present results for the t-dependence of the leading moments in Figure 5.7. The

values of the n = 2 GPD moments are statistically consistent with moments from three-

point lattice calculations at a comparable pion mass [127]. The decay in the moments

with increasing −t is as expected from other lattice studies [122–127]. However, the n = 4

moments have never been determined from three-point methods, and therefore there are

no analogous lattice studies to compare to.
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Figure 5.8: The off-forward subtraction function, defined in Eq. (5.18), with respect to the soft

momentum transfer, t, with the other Lorentz scalars fixed: ϑ = 0 and Q̄2 ≈ 7 GeV2. Plotted are

the results for up and down quarks.

Experimental determinations of GPDs have not advanced to the stage of model-

independent moment determinations, and hence there are no comparable experimental

results for t 6= 0. By contrast, the forward (t = 0) moments have been determined from

deep-inelastic scattering over a range of Q2. We find that at t = 0 our n = 2 moment is

consistent with experiment; however, the n = 4 moment is larger than the experimental

moments by approximately a factor of two at a similar Q2 [44]. Therefore, it is likely that

the n = 4 moments for the off-forward (t 6= 0) results are also anomalously large. We

discuss this issue further in Chapter 6.

Off-forward subtraction function

Finally, we present our results for the off-forward subtraction function, S1(ϑ, t, Q̄2), as

defined in Eq. (5.18). From Eq. 5.21, we see that the subtraction function is proportional

to the OFCA at ω̄ = 0, and hence we can extract this quantity directly from our lattice

calculation.

From our OPE, Eq. (5.14), we expect that this quantity behaves like

S1(ϑ, t, Q̄2) = 2
∞∑

n=1

(2ϑ)2nC2n(t),

for Q̄2 � Λ2
QCD. Hence for our results, where ϑ = 0, we should have S1(ϑ = 0, t, Q̄2) ≈ 0,

with additional terms suppressed by 1/Q̄2. As such, we expect the subtraction function

contribution to be suppressed compared to the leading moments.

By contrast, our results, Fig. 5.8, show that S1 is significantly larger than all the

leading moments. This is an intriguing result, as the off-forward subtraction function

is of interest to Regge phenomenologists [216, 217] and for determinations of the proton

pressure distribution [89].
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In Chapter 8, we will investigate this anomalous behaviour of the subtraction function

more thoroughly in the case of forward kinematics, and attempt to determine if it is an

artefact of our calculation or a gap in our understanding of high-energy physics.

5.3 Conclusion and Outlook

In this chapter, we presented the first calculation of the off-forward Compton amplitude

in lattice QCD using the Feynman-Hellmann method. The first step was to derive a non-

perturbative parameterisation of the off-forward Compton amplitude that was comparable

to Euclidean calculations, and moreover that could be interpreted in terms of GPDs at

large Q̄2. We achieved this by matching a short-distance OPE to a tensor decomposition.

In terms of the numerical calculation, the signal determined from the perturbed propa-

gators is consistent with ground-state dominance (linear in Euclidean time), and moreover

the signal is quadratic as a function of the Feynman-Hellmann coupling, as expected. This

demonstrates that, within systematics, this method is capable of isolating the off-forward

Compton amplitude.

Moreover, we fit the moments of GPDs to this Compton amplitude; the leading n = 2

moments are consistent with other lattice QCD calculations, while the n = 4 moments

showed tension with experimental values at a similar Q2. However, since we have not per-

formed an investigation of the lattice systematics such as the spacing, volume, pion mass as

well as any Feynman-Hellmann specific systematics, this sort of tension is unsurprising—

we will discuss this more in Chapter 6. We also saw that the off-forward subtraction

function was at odds with the prediction from the OPE. This behaviour is investigated in

detail in Chapter 8.

Finally, we note that a major drawback of this chapter’s calculation is that we were

forced to make leading-twist approximations and moreover only extracted a linear com-

bination of the helicity-conserving and -flipping amplitudes. In the next chapter we show

how to determine the Compton form factors H1 and E1 separately, without a leading-twist

approximation.



Chapter 6

The Off-Forward Compton

Amplitude: Part II

In this chapter we present an improved calculation of the off-forward Compton amplitude.

In particular, we separately determine the helicity-conserving and -flipping Compton form

factors (CFFs), H1 and E1, respectively, and show how to extract the OFCA without

recourse to leading-twist approximations. This calculation uses one value of the hard

momentum transfer, Q̄2 ≈ 5 GeV2, and four values of the soft momentum transfer, t ≈
0,−0.29,−0.57,−1.14 GeV2, with zero-skewness kinematics at an unphysical pion mass of

mπ ≈ 412 MeV.

The separate extraction of H1 and E1 is important for two reasons. Firstly, at leading-

twist these CFFs are related by a convolution (recall Section 4.2) to the generalised parton

distributions (GPDs) H and E, respectively. Therefore, the separate determination of

H1 and E1 allows us to calculate the moments An,0 and Bn,0 separately, and furthermore

attempt a determination of the GPDs directly. This is in contrast to the results in Chapter

5, which were a linear combination of H1,2,3 and E1,2, and hence were more difficult to

directly relate to the GPDs.

Secondly, by determining H1 and E1 without leading-twist approximations, we open

up the possibility of studying their Q̄2 dependence, as has already been achieved in the

forward case [38]. Since most measurements of deeply virtual Compton scattering (DVCS)

are in the region Q2 ≈ 1−12 GeV2 and contain additional |t|/Q2 corrections [229,230], the

Q̄2 dependence of the OFCA is highly interesting phenomenological information. At the

moment, experimental studies of the hard scale dependence of DVCS are limited [231,232],

but show non-trivial Q2 dependence [233, 234]. While the isolation of H1 and E1 in this

chapter lays the groundwork for studying their Q̄2 dependence, for this work our results

are at a single Q̄2 value.

By contrast, for quasi- and pseudo-GPD studies such additional higher-twist correc-

tions are a systematic error that needs to be removed. In particular, a model calculation of

quasi- and pseudo-GPDs suggested that these methods cannot sufficiently control higher-

twist corrections for |t| & 0.5 GeV2 [235]. Therefore, while higher-twist corrections are

a significant systematic error for the quasi- and pseudo-GPDs, for calculations of the

off-forward Compton amplitude they can provide useful physical information.

We also present more modest improvements to the method of Chapter 5: To improve

the quality and efficiency of Euclidean time fitting, we implement a weighted averaging

method for these fits. Further, in contrast to the simple monotonic condition on the Mellin

91
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moments used in Chapter 5.34, we derive model-independent constraints on the moments,

which allow us to determine moments that violate monotonicity.

The structure of this chapter follows: in Section 6.1 we derive the kinematics that

allow us to isolate H1 and E1. Then, in Section 6.2 we perform the lattice calculation,

determining the moments in a similar way to Chapter 5, and then perform a model-

dependent fit to determine the H(x, t) GPD.

6.1 Set-up and Parameterisation

In the previous chapter, we isolated a complicated linear combination of the CFFs H1,2,3

and E1,2:

Rµν(ω̄, t, Q̄2) =
1

EN +mN

{
− gρσ

[
(EN +mN )H1 +

t

4mN
E1

]

+
P̄ρP̄σ
P̄ · q̄

[
(EN +mN )

(
H2 +H3

)
+

t

4mN
E2

]}
PµρPσν .

After dropping all but the leading-twist contributions, this allowed us to calculated mo-

ments that were a linear combination of GPD moments,

Mn(t) = A2,0(t) +
t

8m2
N

B2,0(t),

after further assuming that EN ≈ mN .

Here, we improve on this parameterisation significantly: (1) we isolate a linear com-

bination of H1 and E1 with only highly suppressed Q̄−3 corrections; and (2) we then use

spin-parity projectors to separately determine H1 and E1.

We begin with the tensor decomposition from the previous chapter, Eq. (5.11). Since

we perform the lattice calculation of this chapter at ξ = 0 = ϑ, we can eliminate the

structures in Eq. (5.11) that vanish in this kinematic region [197]:

T̄µν =
1

2P̄ · q̄

{
−
(
h · q̄H1 + e · q̄E1

)
gµν +

1

P̄ · q̄
(
h · q̄H2 + e · q̄E2

)
P̄µP̄ν

+H3h{µP̄ν}

}
+

i

2P̄ · q̄ εµνρκq̄
ρ

{
h̃κH̃1 + ẽκẼ1 +

1

P̄ · q̄
[(
P̄ · q̄h̃κ − h̃ · q̄P̄ κ

)
H̃2

]}

+
(
P̄µq

′
ν + P̄νqµ

)(
h · q̄K1 + e · q̄K2

)
+ qµq

′
ν

(
h · q̄ − e · q̄

)
K5

+
(
hµq

′
ν + hνqµ

)
K7.

(6.1)

The key kinematic choice for this chapter is that we always take the soft momentum

transfer, ∆, to be parallel to the direction of current, êk:

∆ ∝ êk. (6.2)

Since both q̄ and p̄ are orthogonal to ∆∗, this kinematic choice means that any terms in

our tensor decomposition with an uncontracted q̄µ or P̄µ vanish.

Therefore, the only terms that survive are

∗We can see this by noting that, from the zero-skewness condition, q̄ ·∆ = 0; and P̄ ·∆ = (P ′2−P 2)/2 = 0.
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Figure 6.1: Diagram of momentum insertions for q1 = (5, 3, 1) (magenta arrows) and q2 =

(5, 3,−1) (blue arrows). Therefore, the momentum transfer ∆ is completely in the z direction,

while the p̄ and q̄ vectors are in the x− y plane.

• gµν terms that give us the desired H1 and E1 amplitudes.

• ∆µ∆ν terms that are generally suppressed.

As such, this kinematic choice minimises the effects of EM gauge dependent terms and

hence discretisation artefacts, as our local current does not satisfy the continuum Ward

identities [236,237]. Moreover, it helps us isolate H1 and E1 instead of a linear combination

of other Compton form factors.

Below we sketch how the polarised tensor structures vanish with this kinematic choice,

and moreover give the order to which the K1,2,5,7 amplitudes are suppressed.

Vanishing polarised terms

After gauge projection with Eq. (5.10), the polarised CFFS, H̃1,2 and Ẽ1,2, will be attached

to the tensor structure†

∆{µεν}σρκ∆σ q̄ρh̃κ.

Now if we choose the condition in Eq. (6.2), we have ν = σ, and hence the above equation

must vanish. This removes H̃2 completely, whereas in the kinematics of the previous

chapter it was only suppressed.

Suppressed contributions

Further, the K1,2,5,7 amplitudes have no gµν tensor structure. Therefore, after gauge

projection, the only contribution that survives is

∆k∆k

q · q′ K1,2,5,7 ∼
−t
Q̄2
K1,2,5,7.

Hence these tensor structures, which are already Q̄−1 suppressed, are further suppressed

by |t|/Q̄2, making them Q̄−3.

†Unlike the forward case, it is not true that the polarised terms vanish by taking µ = ν. This is a
consequence of the off-forward Ward identities, qµT

µν = 0 = Tµνq′ν , which gives the gauge projector

Pµν in Eq. (5.10) anti-symmetric contributions. Hence εµ′ν′ρκPµµ
′Pν′ν has both symmetric and anti-

symmetric components.
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Final decomposition

Therefore, up to Q̄−3 corrections, the gauge-projected Compton amplitude is

Tkk =
1

2P̄ · q̄

[(
h · q̄H1 + e · q̄E1

)(
1 +

q′kqk
q · q′

)

+
1

P̄ · q̄
(
h · q̄H2 + e · q̄E2

)(
P̄kP̄k −

P̄ · q̄
q · q′ (q

′
kP̄k + P̄kqk) +

(
P̄ · q̄
q · q′

)2

q′kqk

)

+H3

(
P̄khk −

P̄ · q̄
q · q′ (q

′
khk + hkqk) +

P̄ · q̄h · q̄
(q · q′)2

q′kqk

)]
.

(6.3)

The Dirac bilinear hµ = ū(P ′)γµu(P ) is orthogonal to ∆µ, so that the hk terms, which

are proportional to h ·∆, must vanish. Moreover, as previously explained, P̄k = 0 = q̄k.

Therefore, Eq. (6.3) becomes

Tkk =
1

2P̄ · q̄

[(
h · q̄H1 + e · q̄E1

)(
1− ∆k∆k

4q · q′
)
− P̄ · q̄

4(q · q′)2

(
h · q̄(H2 +H3) + e · q̄E2

)
∆k∆k

]
.

(6.4)

Recall the off-forward Callan-Gross relations derived in the previous chapter, Eq. (5.12).

Therefore, if we are not completely at Q̄2 →∞, there remain small Callan-Gross violating

terms, ∆HCG and ∆ECG, which are O(αS) and therefore suppressed:

ω̄

2

(
H2 +H3

)
= H1 + ∆HCG,

ω̄

2
E2 = E1 + ∆ECG.

Further, note that q · q′ = −Q̄2 + t/4. Hence Eq. (6.4) becomes

Tkk =
1

2P̄ · q̄

{(
h · q̄H1 + e · q̄E1

)(
1− ∆k∆k

4(Q̄2 − t/4)

t

4(Q̄2 − t/4)

)

−
(
h · q̄∆HCG + e · q̄∆ECG

) ∆k∆k

4(Q̄2 − t/4)

Q̄2

Q̄2 − t/4

}
.

(6.5)

Given that ∆HCG and ∆HCG are O(αS), with the extra |t|/Q̄2 suppression, they are at

best Q̄−3. Therefore, up to Q̄−3 corrections, the OFCA is

Tkk =
1

2P̄ · q̄
(
h · q̄H1 + e · q̄E1

)
. (6.6)

This is a drastic improvement on the previous chapter, where we truncated all terms

that were not leading-order (Q̄−1 and higher), and only isolated a linear combination of

H1,2,3 and E1,2. Here, we have either eliminated completely unwanted tensor structures,

or suppressed them by a further |t|/Q̄2, with only a simple linear combination of H1 and

E1 remaining.
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Recall leading-twist contributions to these amplitudes, Eq. (E.17):

lim
Q̄2→∞

H1(ω, t, Q̄2) = 2

∞∑

n=1

ω̄2nA2n,0(t),

lim
Q̄2→∞

E1(ω, t, Q̄2) = 2
∞∑

n=1

ω̄2nB2n,0(t).

(6.7)

Moreover, as t→ 0, we have H1 → F1, the forward Compton structure function.

Finally, note that it is possible to calculate T44 to get a further linear combination that

includes H2,3 and E2, as has been done in the forward case [38]. By doing so one could

explicitly calculate the power-suppressed off-forward Callan-Gross violations, as has been

done for the forward Compton amplitude using Feynman-Hellmann [38].

6.1.1 Spin-parity projectors

Recall from our Feynman-Hellmann relation, Eq. (4.54), that we calculate the quantity

RΓ
µν =

∑
s,s′ tr

[
Γu(P ′, s′)Tµν ū(P, s)

]
∑

s tr[Γunpolu(P ′, s)ū(P ′, s)]
, (6.8)

where Γ is a spin-parity projector. We fix the denominator to have an unpolarised spin-

parity projector, and vary the numerator’s projector.

Therefore, by using two different spin-parity projectors we can construct a pair of linear

equations and solve for H1 and E1. The spin-parity projectors we use are the polarised

and unpolarised:

Γunpol =
1

2
(I + γ0), Γpol =

1

2
(I + γ0)γ · êpolγ

5, (6.9)

where êpol is the direction of the polarisation vector we choose, not to be confused with

the unit vector from Eq. (6.2).

Applying the result in Eq. (6.6), we get the linear system of equations

(
Runpol
kk

Rpol
kk

)
=

(
NHunpol NEunpol

NHpol NEpol

)( H1

E1

)
. (6.10)

Then, as long as the matrix of N factors is invertible, we can isolate H1 and E1 separately.

Note that this process would have been very difficult to do for the results of Chapter 5,

as we were dealing with a complicated linear combination of tensor structures, including

hµP̄ ν . Therefore, the kinematic choice in Eq. (6.2) also makes this separation of helicity-

conserving and -flipping amplitudes possible.

As shown in Appendix F, the N factors for the unpolarised projector are

NHunpol = 1, NEunpol =
t

4mN (EN +mN )
, (6.11)
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while for the polarised projector they are slightly more cumbersome:

NHpol =
i(∆× êpol) · q̄

2P̄ · q̄ ,

NEpol = i

{(
(EN +mN )2 + t/4

)
(∆× êpol) · q̄− (P̄ · êpol + ∆ · êpol/2)(∆× P̂) · q̄

+ P̄ · q̄(∆× êpol) · P̄− t/2(P̄× êpol) · q̄
}(

4P̄ · q̄mN (EN +mN )
)−1

.

(6.12)

The Npol factors depend on the choice of êpol, which in principle gives us four total

simultaneous equations. However, in practice there is only one choice of polarisation for

which
i(∆× êpol) · q̄

2P̄ · q̄ ∼ 1,

while for the other choices, this is suppressed. Hence there is only one choice of polarisation

that gives a reasonable signal.

As in the previous chapter, we can also use these results to determine the off-forward

subtraction function, Eq. (5.18). Since H1 and E1 are the only structures in the zero-

skewness Compton amplitude that have subtraction terms—i.e. non-zero ω̄ = 0 contributions—

we can determine them without needing to truncate non-leading-twist contributions.

Using the Gordon identity, we have that

h · q̄
2P̄ · q̄ =

e · q̄
2P̄ · q̄ +

ū(P ′)u(P )

2mN
.

Hence, substituting this into Eq. (6.4) and noting that H1(ω̄ = 0) = S1 = −E1(ω̄ = 0), we

have

Tkk(ω̄ = 0, t, Q̄2) =
ū(P ′)u(P )

2mN

(
1 +

∆k∆k

4(Q̄2 − t/4)

)
S1(t, Q̄2). (6.13)

After performing the spin-parity traces, this becomes

Runpol
kk (ω̄ = 0, t, Q̄2) =

(
1− t

4mN (EN +mN )

)(
1 +

∆k∆k

4(Q̄2 − t/4)

)
S1(t, Q̄2), (6.14)

Rpol
kk (ω̄ = 0, t, Q̄2) = 0. (6.15)

GPD fitting priors

In Chapter 5, we fit the moments of the GPDs using the monotonic decreasing condition

for fixed t Eq. (5.34):

0 ≤Mn+1(t) ≤Mn(t), for n ∈ N.

This condition is completely justified in the forward (t = 0) case, since the F1 structure

function is proportional to the deep-inelastic scattering cross section—recall Eq. (2.31).

However, there is no model-independent justification for such a condition in the case of

the H1 Compton form factor. Moreover, there are good reasons to believe monotonicity

is completely invalid for the down quark contribution to the E1 CFF: lattice studies of the

Bd
n,0, n = 1, 2, 3 moments are negative [122–127].
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As such, we derive model-independent constraints on GPD moments that can be used

as Bayesian fitting priors. We start with the model-independent constraints on the twist-

two unpolarised GPDs given in Refs. [226–228]. At ξ = 0 these are

|H(x, t)| ≤ |q(x)|, |E(x, t)| ≤ 2mN√−t |q(x)|, (6.16)

where q(x) is the corresponding parton distribution function.

Focusing on the helicity-conserving GPD, H(x, t), for x > 0, we multiply by xn to get

xn|H(x, t)| ≤ xn|q(x)| = xnq(x), (6.17)

where we have used that q(x) is positive in the domain x ∈ (0, 1).

Again, keeping x > 0,

xn|H(−x, t)| ≤ xn|q(−x)| = xn| − q̄(x)| = xnq̄(x). (6.18)

We have used the fact that q(−x) = −q̄(x), and q̄(x) ≥ 0 for x ∈ (0, 1).

From the triangle inequality, we have that

xn
∣∣H(x, t)−H(−x, t)

∣∣ ≤ xn
(
|H(−x, t)|+ | −H(−x, t)|

)
≤ xn

(
q(x) + q̄(x)

)
. (6.19)

Therefore, for n odd,

∣∣∣∣
∫ 1

−1
dxxnH(x, t)

∣∣∣∣ ≤
∫ 1

0
dxxn

∣∣H(x, t)−H(−x, t)
∣∣ ≤

∫ 1

0
dxxnq(+)(x), (6.20)

where we have defined q(+)(x) = q(x) + q̄(x).

Similarly, for the E GPD, we can repeat the above steps since the factor of 2mN/
√−t

is positive and independent of x:

∣∣∣∣
∫ 1

−1
dxxnE(x, t)

∣∣∣∣ ≤
∫ 1

0
dxxn

∣∣E(x, t)− E(−x, t)
∣∣ ≤ 2mN√−t

∫ 1

0
dxxnq(+)(x). (6.21)

Therefore, we have our constraints:

∣∣An,0(t)
∣∣ ≤ an,

∣∣Bn,0(t)
∣∣ ≤ 2mN√−t an, for n even. (6.22)

Clearly, this means that the constraints on the B GFFs become looser as t→ 0.

Strictly speaking, these constraints only apply to leading-twist GPDs, and therefore

they are only true for GPD moments and not the moments of the CFFs‡. Therefore,

there are finite Λ2
QCD/Q̄

2 corrections to these inequalities for our Compton form factors.

However, since we are at Q̄2 ≈ 5 GeV2, these corrections will be suppressed.

‡We note that some model independent constraints on the off-forward amplitude itself exists [238].



6.2 Lattice Results and Phenomenology 98

Table 6.1: Details of the gauge ensemble used in this chapter [239].

Nf cSW β κl, κs N3
L ×NT a mπ ZV Ncfg

[fm] [MeV]

2 + 1 2.48 5.65 0.122005 483 × 96 0.068 412 0.871 537

6.2 Lattice Results and Phenomenology

In this section, we present the results of our lattice calculation, using the Feynman-

Hellmann relation derived in Chapter 4, and the analytic results given in the previous

section.

6.2.1 Simulation details

We use a gauge ensemble from the CSSM/QCDSF/UKQCD collaboration [239]. As with

the previous chapter, our gauge configurations are at the SU(3) flavour symmetric point,

κl = κs, and we are at a similarly larger-than-physical pion mass—mπ ≈ 412 MeV in

this chapter compared to mπ ≈ 470 MeV in the previous chapter. In contrast to the

calculation in Chapter 5, our lattice has many more lattice sites: 483 × 96 compared to

323 × 64. This larger lattice size is the most important difference between the two gauge

ensembles: it allows us to span a much wider range of ω̄ values and t values. The details

of our gauge ensemble are given in Table 6.1.

Feynman-Hellmann implementation

The basic implementation of Feynman-Hellmann is no different to what is outlined in

Chapters 4 and 5. We calculate perturbed quark propagators,

Sλ(zn, zm) =
[
M − λ1O1 − λ2O2

]−1

n,m
,

where O1,2 are our perturbing matrices.

As discussed in the previous section, we choose the direction of our current to be parallel

with that of the soft momentum transfer, ∆, Eq. (6.2). For some of our kinematics—see

Table 6.2—we have for instance ∆ ∝ (1,−1, 0), which means our currents must be in this

direction. This is easily achieved by taking the perturbing matrices

[
O1

]
n,m

= δn,m(eiq1·zn + e−iq1·zn)γ · êk,
[
O2

]
n,m

= δn,m(eiq2·zn + e−iq2·zn)γ · êk. (6.23)

So, for example, with ∆ ∝ (1,−1, 0),

γ · êk =
1√
2

(
γ1 − γ2

)
,

which is simple to implement.

We use the same Feynman-Hellmann relation as the previous chapter, Eq. (4.50), and

we approximate the mixed second-order derivative by Eq. (4.53).
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Table 6.2: Current insertion momenta, q1,2, and derived kinematics for two sets of correlators.

All data on configurations with N3
L ×NT = 483 × 96, κl,s = 0.122005, β = 5.65.

Q̄2 t q1 q2 ∆ λ Nmeas

[GeV2] [GeV2] 2π/L 2π/L 2π/L

4.86 0 (5, 3, 0) — — (0.0125, 0.025) 1605
4.79 −0.29 (4, 3, 3) (3, 4, 3) (1,−1, 0) (0.0125, 0.025) 1031
4.86 −0.57 (5, 3, 1) (5, 3,−1) (0, 0, 2) (0.0625, 0.0125) 1072
4.86 −1.14 (4, 2, 4) (2, 4, 4) (2,−2, 0) (0.0625, 0.0125) 1031

Kinematics

As in the previous chapter, we choose zero-skewness kinematics by setting |q1| = |q2|.
We calculate three separate sets of propagators, with three non-zero values of the soft

momentum transfer: t = −0.29,−0.57,−1.14 GeV2. Since these results have a larger

lattice size than the previous chapter’s, we are able to access lower t values more easily,

as t ∝ 1/L2. Moreover, we are interested in keeping the hard momentum transfer, Q̄2, as

fixed as possible between the data sets with different t values. This allows us to isolate

the t dependence from the Q̄2 dependence. For t = 0,−0.57,−1.14 GeV2, we have the

exact same hard scale: Q̄2 = 4.86 GeV2. For t = −0.29 GeV2 it is slightly smaller at

Q̄2 = 4.79 GeV2. However, we do not expect this slight change in Q̄2 to have much of an

effect. The momentum transfers and Feynman-Hellmann parameters of our different data

sets are summarised in Table 6.2.

Furthermore, the larger value of L allows for a greater spread of ω̄ values. This is

because our sink momentum squared is

p′2 =

(
2π

L

)2

n′2, for n′i ∈ N,

where n′ is the dimensionless sink momentum defined in Eq. (5.31). Hence with larger L

we can go to larger n′2 compared to the smaller lattice in the previous chapter. In Chapter

5, we limited ourselves to n′2 ≤ 5, which corresponds to p′ ≤ 1.17 GeV. In this chapter,

we limit ourselves to n′2 ≤ 10, which corresponds to p′ ≤ 1.19 GeV. Hence the maximum

sink momentum of the two chapters are approximately equal.

Again, as in the previous chapter, we keep our sink momentum such that the kinematic

conditions of our FH relation are met: Eq. (4.38). The sink momenta that meet all these

conditions and their corresponding ω̄ values are given in Table 6.3. We can see the much

wider spread of ω̄ values compared to the ω̄ values from Chapter 5 given in Table 5.3.

Also, note that the t = −0.29 GeV2 results have no ω̄ = 0 term, and hence we will need

to fit the subtraction function in these results, rather than determine it directly.

Note that the unpolarised amplitude is invariant under ∆µ → −∆µ and ω̄ → −ω̄, while

the polarised changes sign under these exchanges. Therefore, we average our unpolarised

results over these exchanges:

Runpol
kk =

Runpol
kk (p′) +Runpol

kk (−p′) +Runpol
kk (p′ − q1 + q2) +Runpol

kk (−(p′ − q1 + q2))

4
,
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Table 6.3: Dimensionless sink momenta, n′, and corresponding ω̄ values for the three different

sets of off-forward data. Left: t = −0.29 GeV2. Center: t = −0.57 GeV2. Right: t = −1.14 GeV2.

n′ ω̄ n′2

(1, 0,−1) 0.03 2
(0,−1, 2) 0.15 5
(1, 0, 0) 0.21 1

(2, 1,−2) 0.27 9
(0,−1, 3) 0.33 10
(1, 0, 1) 0.39 2

(2, 1,−1) 0.45 6
(1, 0, 2) 0.57 5
(2, 1, 0) 0.63 5
(1, 0, 3) 0.75 10
(2, 1, 1) 0.81 6

n′ ω̄ n′2

(0, 0, 1) 0.0 1
(−1, 2, 1) 0.06 6
(1,−1, 1) 0.12 3
(0, 1, 1) 0.18 2

(2,−2, 1) 0.24 9
(1, 0, 1) 0.29 2
(0, 2, 1) 0.35 5

(2,−1, 1) 0.41 6
(1, 1, 1) 0.47 3
(0, 3, 1) 0.53 10
(2, 0, 1) 0.59 5
(1, 2, 1) 0.65 6
(2, 1, 1) 0.76 6
(3, 0, 1) 0.88 10
(2, 2, 1) 0.94 9

n′ ω̄ n′2

(1,−1, 0) 0.0 2
(2, 0,−1) 0.12 5
(1,−1, 1) 0.24 3
(2, 0, 0) 0.35 4

(1,−1, 2) 0.47 6
(2, 0, 1) 0.59 5
(3, 1, 0) 0.71 10
(2, 0, 2) 0.82 8

and for the polarised results we have

Rpol
kk =

Rpol
kk (p′)−Rpol

kk (−p′)−Rpol
kk (p′ − q1 + q2) +Rpol

kk (−(p′ − q1 + q2))

4
.

6.2.2 Determining the Compton amplitude

Euclidean time fits: weighted averages

As in Chapter 5, we use a simple linear function, f(τ) = aτ + b, to fit the combination

of correlators, Rλ(τ), as defined in Eq. (4.53). However, whereas in the previous chapter,

our Euclidean time fit windows were chosen by eye and checking where χ2/dof ∼ 1,

in this chapter we use a weighted averaging method. Weighted averaging allows us to

automate this fitting process, which is important given that we have many more ω̄ values

and one more t value compared with the previous chapter; similarly, we also calculate

the polarised spin-parity projector, thereby doubling our number of results. Moreover,

weighted averaging allows us to preference fits based on quantitative measures, removing

biases and selecting the best possible fit window.

We start by choosing an absolute upper and lower bound on our fit windows: [Tmin, Tmax].

Within this range, we fit all the time windows [τmin, τmax], such that τmax−τmin ≥ 3, which

keeps the number of degrees of freedom greater than zero.

To choose [Tmin, Tmax], we define the quantity

∆τRλ(τ) =
Rλ(τ + δτ)−Rλ(τ)

δτ
, (6.24)

where we choose δτ = 2.
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This quantity allows us to better see by eye where Rλ(τ) deviates from a linear function,

in a similar fashion to how the effective mass, Eq. (3.33), allows us to see the deviation of

the unperturbed correlator from an exponential.

Below we give an outline of the weighted averaging process

1. In the interest of saving time, we do not individually choose [Tmin, Tmax] for each

data set. Instead, we choose by eye [Tmin, Tmax] for the largest sink momentum, i.e.

the correlators for which |p′| is greatest. These will be the noisiest results, and so it

will be easiest to see the value of Tmax at which the signal decays.

2. While the Tmin from the previous step is used for all momenta, Tmax varies between

momenta. To automate finding Tmax for other momenta, we start by looking at the

unperturbed two-point function for the maximum momentum, G(0,0)(pmax, τ). At

out chosen Tmax, the mean of this two-point function will be a certain number of

standard deviations, Nσ, from zero:

|G(Tmax)| −NσδG(Tmax) ≤ 0. (6.25)

3. Then, to find Tmax for the other momenta, we take this Nσ as an input, and choose

Tmax as the earliest time for which Eq. (6.25) is satisfied.

4. Now that we have [Tmin, Tmax] for all momenta, we fit every allowed fit window,

labelled i, and assign to it a weight [240,241]:

w̃i =
p(δai)−2

∑
i′ p(δa

i′)−2
, (6.26)

where ai is the slope parameter from the ith fit, δai is the statistical error and p(ai)

is the p-value determined by

p(ai) = Γ̃(Ndof/2, χ
2/2)/Γ̃(Ndof/2),

with Γ̃ the regularised upper incomplete gamma function:

Γ̃(s, x) =

∫ ∞

x
dtts−1e−s, Γ̃(s) =

∫ ∞

0
dtts−1e−s.

The weight in Eq. (6.26) is designed to penalise poor fits (those with large χ2/Ndof),

as well as unconstrained fits (those with large δai).

5. Finally, we calculate the weighted average of the slope parameter:

awavg =
∑

i

w̃iai,

which we treat as proportional to the Compton amplitude from our FH relation,

Eq. (4.50).

Hence this method allows us to fit a very large amount of data by only choosing [Tmin, Tmax]

for the noisiest momentum.
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Figure 6.2: Plot of τ fits for Rλ, as defined in Eq. (4.53) and the ‘effective mass’, ∆τRλ, defined

in Eq. (6.24), for the up quarks, unpolarised, and λ = 0.0125. The shaded bands are fits to the
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Figure 6.3: Heat map showing the weight assigned to each fit window, for up quarks, unpolarised,

p = 2π
L (0, 2, 1), λ = 0.0125 results. This corresponds to the light blue points in Fig. 6.2. The

weight, w̃i, is defined in Eq. (6.26).
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As an example we plot the t = −0.57 GeV2 fits for λ = 0.0125, up quarks and the

unpolarised projector in Fig. 6.2. The range of fits Tmin, Tmax = 5, 13 has been chosen by

eye for the largest momentum in this data set, p′ = 2π
L (0, 3, 1), which is then use to find

Tmax for all other momenta. In Fig. 6.3, we present a heatmap of the weights, Eq. (6.26).

Feynman-Hellmann excited states

As discussed in our Feynman-Hellmann chapter, there are a number of kinematic limits

in which Feynman-Hellmann excited states are weakly suppressed—see Eq. (4.40). For

instance, when |t| � m2
N , the excited states behave like

e−(EN (p′+∆)−EN (p′))τ

EN (p′ + ∆)− EN (p′)
∼ τ,

which contaminates the linear in τ term that we wish to extract.

While the Euclidean time fits for the t = −0.57,−1.14 GeV2 are quite reasonable, for

the t = −0.29 GeV2 data set there appear to be greater contaminations in the early time

slices (see Fig. H.2 of Appendix H). Hence this difficulty probably derives from weakly

suppressed FH excited states, since t = −0.29 GeV2 is the smallest soft momentum transfer

we have yet computed. Here, we only use this insight diagnostically to explain why the

signal for the lowest t value is poor. Controlling this systematic is a goal of future work.

Similarly, we have weakly suppressed FH excited states for |ω̄| ≈ 1. Since we have

much larger ω̄ values in this chapter (Table 6.3), we are more prone to similar weakly

suppressed excited states—we discuss this further later in this section.

Feynman-Hellmann parameter fits

For fits in the Feynman-Hellmann parameter λ, we use the same fit function as Chapter

5: f(λ) = cλ2. The results are presented in Fig. 6.4. We note that, compared to the

previous chapter’s results, Fig. 5.4, there appears to be less O(λ4) contamination. This

could be because our λ values are slightly smaller for some of the data sets in this chapter.

Alternatively, since we use different weights for each λ, it could be that the weighted

averaging is better at isolating the respective ground state of each λ value. Further, we

note that the difficulty discussed in Appendix G remains, since we again only have two λ

values that are highly correlated.

Separating H and E
Now that we have our lattice results for the ratio RΓ, we take two spin projectors,

Γunpol,Γpol−ê, and from these solve for the helicity-conserving and -flipping amplitudes,

H1 and E1, respectively. Recall Eq. (6.10):

(
Runpol
kk

Rpol
kk

)
=

(
NHunpol NEunpol

NHpol NEpol

)( H1

E1

)
.



6.2 Lattice Results and Phenomenology 104

0.0 0.2 0.4 0.6 0.8 1.0 1.2

λ ×10−2

6

8

R
λ
(p

)/
λ

2

0.0

0.5

1.0
R
λ
(p

)

×10−3

p′ = 2π
L (0, 1, 1)

p′ = 2π
L (0, 2, 1)

p′ = 2π
L (0, 3, 1)
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Since NHunpol = 1, we normalise our polarised results by NHpol so that they are on the same

order as the unpolarised:

(
Runpol
kk

Rpol
kk /N

H
pol

)
=

(
1 NEunpol

1 NEpol/N
H
pol

)( H1

E1

)
. (6.27)

Note that for most of our kinematics, we have

|NEunpol| � 1, NHpol/N
E
pol ≈ 1, Runpol

kk ∼ Rpol
kk /N

H
pol. (6.28)

Hence if we set NHpol/N
E
pol = 1, which is generally a very good approximation, then we

have ( H1

E1

)
=

1

1−NEunpol

(
1 −NEunpol

−1 1

)( Runpol
kk

Rpol
kk /N

H
pol

)
. (6.29)

Therefore, since NEunpol is small for our kinematics, H1 ≈ Runpol
kk , and is hence well-

constrained. On the other hand, E1 ≈ Rpol
kk /N

H
pol − R

unpol
kk , the difference of two large

signals, which means the results for the helicity-flipping amplitude tend to be somewhat

noisier.

For our polarised Compton amplitude, the N factors are dominated by

NHpol, N
E
pol ∼

(∆× êpol) · q̄
2P̄ · q̄ , (6.30)

and hence we choose the spin polarisation direction, êpol, such that this vector triple

product is maximised. For t = −0.57 GeV2, this means ê = ŷ, while for the other two

sets (t = −0.29,−1.1 GeV2), we choose ê = ẑ.

In general, we find a good signal for both polarised and unpolarised results. However,

since H1 is dominant in the signal, Eq. (6.28), we observe that the signal of the E1 CFF

is slightly worse. See Fig. 6.5, where we plot the ratios R and the Compton form factors

for t = −0.57 GeV2 and the u− d combinations.

Furthermore, since the polarised pre-factors go like N ∼ |∆| (Eq. (6.30)), at smaller

values of |t|, we expect the polarised signal to be worse. This is what we observe in the

t = −0.29 GeV2 results—see Fig. H.4 of Appendix H.

Off-forward subtraction function

As in the previous chapter, we can extract the off-forward subtraction function, S1, as

defined in Eq. (5.18), from the ω̄ = 0 results of the unpolarised results—see Eq. (6.14).

We note that our results in Fig. 6.6 are similar to those from Chapter 5—see Fig. 5.8.

As discussed in Chapter 5, our results for the subtraction function appear to violate the

OPE prediction for this quantity. We discuss the forward subtraction function in detail

in Chapter 8.

Note there is no ω̄ = 0 result for the t = −0.29 GeV2 data, and hence these points are

from the fit to that data that we perform in the next section.
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Figure 6.6: The off-forward subtraction function, defined in Eq. (5.18) for our range of t values

and with Q̄2 ≈ 5 GeV2 and ϑ = 0. Shown are results for up and down quarks,

6.2.3 Moment fits

Now that we have the two Compton form factors, H1 and E1, as functions of ω̄ for a

range of t values, we can fit the moments of these using Bayesian Markov chain Monte

Carlo (MCMC) as in Chapter 5. However, in contrast to that chapter, we use the model-

independent GPD priors in Eq. (6.22). For the t = 0,−0.57,−1.14 GeV2 results, we use

the following parameterisation for both of the subtracted CFFs:

fNmax(ω̄, t) = 2

Nmax∑

n=1

ω̄2nM2n(t).

Since |ω̄| < 1, we can truncate this power series at a reasonable Nmax.

For the t = −0.29 GeV2 results, we must fit the subtraction function:

funsub
Nmax

(ω̄, t) = S(t) + 2

Nmax∑

n=1

ω̄2nM2n(t), (6.31)

where S(t) is constant in ω̄.

From our OPE results, Eq. (E.17), we can interpret the leading twist contributions

to each of the amplitudes at zero-skewness (ϑ = 0 = ξ) as towers of GPD moments,

Eq. (6.7). Therefore, unlike the previous chapter, we are now able to separately calculate

the helicity-conserving and -flipping GPD moments, An,0 and Bn,0, respectively. From

here on we generally ignore the power corrections that arise from the fact that we have

not extrapolated to Q̄2 →∞, and we treat our moments of the Compton form factors as

GPD moments.

To use the GPD based prior distributions, Eq. (6.22), we need the forward moments

an as an input. We determine these forward moments from the forward (t = 0) Compton

amplitude calculated with Feynman-Hellmann at the same Q2 value. Since the forward
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Figure 6.7: Density distributions for the nth moment of the H1 CFF (top), and the E1 CFF

(bottom) for the up quark and t = −0.57 GeV2 results. The bounds of the x-axis indicate the

range of our prior distributions. Nmax is the order of truncation in the ω̄ polynomial.

moments do satisfy the monotonically decreasing condition, we determine an with mono-

tonic priors as in Refs. [37, 38]

Taking these forward moments, we use the following priors to fit our GPD moments:

∣∣An,0(t)
∣∣ ≤ ān + δan,

∣∣Bn,0(t)
∣∣ ≤ 2mN√−t (ān + δan). (6.32)

As in the previous chapter, the prior is uniformly distributed in this range. To fit the

subtraction function for the t = −0.29 GeV2 results, we use the ω̄ = 0.03 results, which

should be very close to the subtraction function, and take a uniform prior distribution in

the range

0.5H1(ω̄ = 0.03) ≤ S1 ≤ 1.5H1(ω̄ = 0.03). (6.33)

Although this seems somewhat arbitrary, using these priors the posterior for the subtrac-

tion function is a well-defined normal distribution—see Fig. H.6.

Results

In Fig. 6.7, we plot the posterior density distributions for the up quark moments of the

two CFFs at t = −0.57 GeV2. We show the lowest three moments, and vary Nmax, the

order of truncation in the ω̄ polynomial; that is, the highest moment is M2Nmax . For the

first two moments, we find good agreement among all Nmax except Nmax = 2. This likely

reflects the larger number of ω̄ values in this chapter, which reduces the dependence on

truncation order.
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As we expect, the leading n = 2 moment is well-determined for both A and B moments,

as it is constrained by the small ω̄ data, which is cleaner and has more ω̄ points. For n = 4

the B GFF is approximately normally distributed, although its errors are quite large. For

the higher n A GFFs, the distributions skew rightwards. This shows that for the higher n

A GFFs the fit prefers a higher value than what is allowed by the prior. This is concerning,

since our GPD priors in Eq. (6.22) are model-independent. We will return to the unusually

large values of A GFF moments for n > 2 in our section on systematics.

As can be seen in Fig. 6.8, the data is generally well described by the fit. The clear

exception is the t = −0.29 GeV2 data, which is much worse both in terms of the Compton

form factors (Fig. 6.8), and the determined moments (Fig. 6.10); see also Fig. H.4. We

discuss difficulties associated with the t = −0.29 GeV2 and E1 results in our section on

systematic errors.

In Fig. 6.9, we plot the moments of H1, and in Fig. 6.10 those of E1, both of which we

interpret as their leading twist GPD moment contributions, A2,0 and B2,0, respectively.

Further, in Fig. 6.11, we plot the isovector combination of these moments compared to

the moments extracted from lattice three-point calculations at a similar pion mass [127].

For these moment plots, we also perform a simple dipole fit to the moments as a

function of t:

G(t) =
G(0)

1− t/m2
dip

. (6.34)

There are theoretical motivations to use this parameterisation for |t| < 1 GeV2 [242], and

moreover it has been used in numerous previous lattice studies of GPD moments. There

are other parameterisations that are commonly used, including the tripole [243] and z-

fit [244]. However, since our error bars are large and we have a small sample of t values,

we restrict ourselves to this simple dipole fit. The results of the parameters for these fits

are presented in Table 6.4.

Looking at Fig. 6.9, we note that the A2,0 and A4,0 moment are generally well-

determined. This is a result of the fact that the H1 CFF is dominant in our data. The A2,0

moments are generally in good agreement with other determinations of this GFF using

three-point function methods [122–127]. They are also in agreement with the previous

chapter’s set of results, Fig. 5.7, which are dominated by the An,0 GFFs, and hence we

expect the data sets to largely agree.

As discussed in Chapter 5, the A4,0 at t = 0 is approximately a factor of two larger

than this moment measured experimentally at a similar hard scale [44]. Moreover, recall

from Fig. 6.7 that the A4,0 distribution at t = −0.57 GeV2 skewed rightwards, indicating

that the upper bound from the priors is too severe and that a less constrained fit would

return an even higher value. We discuss possible sources of this anomalous behaviour in

our section on systematic errors.

In Fig. 6.10, by contrast, we see that our B2,0 is less well-determined, especially for

smaller |t|, and the B4,0 results are quite unconstrained. In its very general features, B2,0

agrees with previous three-point lattice results: the up quark contribution is positive,

while the down quark contribution is largely negative [122–127]. Encouragingly the Bu−d
2,0

contribution (see Fig. 6.11) agrees well with previous lattice studies at a similar pion

mass [127]. On the other hand, there is tension between our Bu+d
2,0 results, and those of

other lattice calculations. Moreover, we note that the dipole parameters are generally
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the parameterisation in Eq. (5.32) and the prior distributions in Eq. (6.32). Top: the H1 CFF

for up quarks with the data points for the forward results omitted. Bottom: the E1 CFF for the

isovector combination.
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Figure 6.11: The n = 2 isovector moments compared to moments from a lattice three-point

calculation of GPDs with comparable pion masses [127].

much more poorly determined for the B form factors. This is likely due to the larger error

bars, especially for t− 0.29 GeV2, and the fact that there is no t = 0 result for this GFF.

Finally, we compare our u − d, n = 2 results to three-point results from Ref. [127]:

one set with mπ = 350 MeV, and another with mπ = 500 MeV. Both these pion masses

are close to our pion mass of mπ = 412 MeV. Similarly, our lattice volume is L ∼ 3 fm,

which is close to the lattice sizes used for the three-point calculations. However, our

lattice had many more sites: N3
L × NT = 483 × 96, compared to N3

L × NT = 283 × 32

and N3
L ×NT = 203 × 32 for the three-point function studies. We find strong agreement

between our results and the three-point calculations. While our error bars are significantly

larger than many of those for the three-point functions, our method is still exploratory

and there are many possible avenues to improve the quality of our signal—in particular,

see Chapter 8. Nonetheless the agreement between our method and the three-point study

is encouraging.

There are also higher-twist—m2
N/Q̄

2, |t|/Q̄2 and Λ2
QCD/Q̄

2—corrections to our mo-

ments that should, even in the continuum limit, distinguish our moments from the three-

point moments. Although it is difficult to comment on these effects here, we note that the

|t|/Q̄2 effects will increase with |t|, which could possibly account for the slight increase in

the t = −1.1 GeV2 for A2,0 shown in Fig. 6.11.

Similarly, we see a reasonable agreement between the parameters from the dipole fit

and those of lattice three-point studies at a similar pion mass for the isovector n = 2

moment [127]. Theoretically it is expected that dipole mass increases with n, which in
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Table 6.4: Summary of parameters from our dipole fit. The dipole mass for some GFF, G, is

labelled mG.

u d u− d
A2,0(0) 0.413(81) 0.205(58) 0.217(51)

B2,0(0) 0.35(26) -0.13(18) 0.54(38)

A4,0(0) 0.219(70) 0.084(54) 0.174(63)

mA2,0 1.19(48) 0.76(33) 1.40(91)

mB2,0 1.5(2.1) 1.7(5.1) 1.05(96)

mA4,0 2.4(4.0) 0.34(54) 1e+04 ± 2.7e+11

Table 6.4 we can see is largely the case, comparing mA2,0 and mA4,0 . However, as we will

discuss, the higher moments of H1 may be affected by lattice artefacts.

Finally, as a point of comparison, we note that we can use the Ji sum rule, Eq. (2.82),

to determine the contribution to the total proton spin from quark spin and orbital angular

momentum:

〈J3
u−d〉 =

1

2
[Au−d2,0 (0) +Bu−d

2,0 (0)] = 0.39(22),

which agrees with lattice three-point studies at a similar pion mass [127]. However, due

to the large size of the error bars on B2,0(0), the errors are significantly larger than those

for the three-point studies.

6.2.4 Generalised parton distribution fit

Finally, we attempt a fit to our data using a GPD model. As discussed in Sections 3.2

and 4.2, extracting a parton distribution from the Compton amplitude in the |ω̄| < 1

region is an ill-conditioned inverse problem: the resulting parton distribution will be very

sensitive to fluctuations in our data [161]. Therefore, a direct inversion method such as

singular value decomposition would require much more precise data and a greater spread

of ω̄ values than is currently available.

Instead, one can use a simplified parton distribution ansatz with a finite number of

parameters and our Bayesian MCMC fitting procedure. Although this means sacrific-

ing model-independence, it also gives us far more traction in solving for the GPD. This

approach has already been applied to Ioffe time distributions of forward parton distribu-

tions [139] and the forward Compton amplitude from Feynman-Hellmann [161]. Here, we

simultaneously fit the forward (t = 0) and off-forward data to our parameterisation. A

similar global fit to lattice three-point moments and quasi-GPDs has also been carried

out [245].

For our GPD model we use a simple Regge-inspired parameterisation [222–225],

H(x, t) =
Γ(3− α0 + β)

Γ(2− α0)Γ(β + 1)
Ax−α(t)(1− x)β, (6.35)

where α(t) = α0 + α′t. This gives us a total of four parameters: A,α0, α
′ and β. The

above parameterisation is normalised so that A = A2,0(t = 0), the leading PDF moment.

Note that Γ here is the complete gamma function, not to be confused with the regularised
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gamma function, Γ̃, in Eq. (6.26) or the spin-parity projector. We also note that this model

is best justified for valence quarks, though our results include sea quark contributions.

From our OPE results, Eq. (E.17), we know that at leading-twist

H1(ω̄, t) = 2
∑

n=1

ω̄n
∫ 1

−1
dxx2n−1H(x, t) = 2

∑

n=1

ω̄n
∫ 1

0
dxx2n−1H(+)(x, t), (6.36)

where we have defined H(+)(x, t) = H(x, t) − H(−x, t). Inserting our model GPD for

H(+)(x, t), we find our final parameterisation:

H1(ω̄, t) = 2A
∞∑

n=1

ω̄2n Γ(2n− α(t))Γ(3− α0 + β)

Γ(2− α0)Γ(1 + 2n− α(t) + β)
, (6.37)

So the nth moment is

An,0(t) = A
Γ(n− α(t))Γ(3− α0 + β)

Γ(2− α0)Γ(1 + n− α(t) + β)
. (6.38)

Unlike the previous section, there is no reason to truncate the power series in ω̄,

since each moment does not add another parameter, but on the contrary allows us to

better constrain our given four parameters. Recall that, due to the ill-conditioned inverse

problem, small changes in our ω̄ space fit can result in much larger changes in our parton

distributions. As such, we choose a very large order of truncation, n = 100, in our fit.

Note that the above series can be resummed as

H1(ω̄, t) = 2Aω̄2 Γ(3 + β − α0)Γ(2− α(t))

Γ(3 + β − α(t))Γ(2− α0)

× 3F 2

[
1, (2− α(t))/2, (3− α(t))/2

(3 + β − α(t))/2, (4 + β − α(t))/2
; ω̄2

]
,

(6.39)

where 3F 2 is a generalised hypergeometric function.

While the GPD ansatz in Eq. (6.35) is useful, it is known that for |t| & 0.8 GeV2 this

parameterisation does not reproduce the behaviour of the Dirac form factor F1, which is

the n = 1 GPD moment [246,247]. As a result, we use only the t = 0,−0.29,−0.57 GeV2

data, dropping the t = −1.1 GeV2 results from our fit. Other, more involved GPD models

exist [222–225,246–249]; however, for a first attempt we stick to this simplest model.

Due to monotonicity of the forward moments (Eq. (5.34)), we can constrain A. Further,

from integrability of Eq. (6.35), we can constrain α(t) and β:

0 ≤ A ≤ 1, α(t) < 2, β > −1. (6.40)

To ensure that our Compton amplitude shrinks in size with increasing −t, we choose

α′ > 0. Phenomenologically and from Regge theory, we expect α′ ≈ 0.9 GeV−2 for

valence quarks [250], and α′ ≈ 0.2 GeV−2 for sea quarks [251]. Since we only look at the

u−d contribution that has no sea quarks, we centre our priors around the former value. In

practice, since we always choose α′ > 0 and we have t < 0, the bound α(t) = α0 +α′t < 2

means that we only need to keep α0 < 2, since α′t < 0.

Therefore, to test the model-dependence of our fit to changes in the prior distributions,

we use three ranges of uniform priors given in the table below. They are chosen to conform
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Figure 6.12: Density distributions for the fit parameters of the GPD ansatz, Eq. (6.35). The

different colours are the three different prior distribution widths: ‘wide’, ‘medium’ and ‘thin’.

to the aforementioned conditions, and to be roughly centered around the phenomenologi-

cally expected values: α0 = 0.2, α′ = 0.9 GeV−2 and β = 3.

A α0 α′ [GeV−2] β

thin [0, 1] [−0.3, 0.7] [0.8, 1.1] [2, 4]
medium [0, 1] [−1.1, 1.5] [0.25, 1.5] [0, 6]

wide [0, 1] [−6, 1.9] [0.0, 2.5] [−0.9, 8]

As can be seen in Fig. 6.12, the posterior distributions are highly sensitive to the choice

of prior distribution, and typically do not favour the phenomenological values, except for

A. For β with ‘wide’ and ‘medium’ priors, the posterior is reasonably well-constrained,

although the peak differs significantly from the phenomenologically expected value of

β ≈ 3. For α0 and α′, the distributions are skewed but otherwise poorly defined, reflecting

that the data does not constrain these parameters well.

In the top panel of Fig. 6.13, we show the CFF H1 at t = −0.57 GeV2 compared

to the parameterisation fits. We note that the ‘wide’ and ‘medium’ prior limits are a

reasonably good fit to this data. On the other hand, the ‘thin’ fit, which is chosen based

on phenomenologically reasonable prior distributions, is a poor match for the higher ω̄

values.

In the lower panel of Fig. 6.13, we plot the resulting parton distribution weighted by

x, xp(x). This is simply the fit to Eq. (6.35) at t = 0 weighted by x. Phenomenologically,

we expect it to peak between x ≈ 0.2–0.3. Instead, the ‘medium’ and ‘wide’ distributions

peak at a much larger x value. We saw in Fig. 6.12 that the data favoured β smaller than

the phenomenological expectation. Since the x → 1 behaviour is dominated by (1 − x)β,

the fact that the data prefers small β is borne out in x space by a distribution that does

not drop sufficiently quickly for x→ 1.

It is also noteworthy that, while the ‘wide’ and ‘medium’ parameter fits are almost

identical in ω̄ space, they produce quite different parton distributions. This is a result

of the ill-conditioned inverse problem: small changes in our Compton amplitude lead to

much larger changes in the parton distribution.
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Finally, in Fig. 6.14 we compare the moments from this GPD model fit to the largely

model-independent moment fits we presented previously. While the A2,0 moments agree

across t values for all the fits§, there is less agreement among the A4,0 results. In particular,

the ‘wide’ and ‘medium’ results are just consistent with the moment fit, while the ‘thin’

results are consistent with only one of the t values from the moment fit. As discussed

previously, the A4,0 at t = 0 from our moment fit is approximately a factor of two larger

than that measured experimentally [44].

Therefore, this demonstrates that for our large ω̄ results, our H1 is anomalously large,

which leads to unphysically small values of β and hence a parton distribution that peaks

at a later value of x than expected. This is the same effect we saw for the moment fit:

the An,0 moments for n > 2 are unphysically large, and these moments are similarly

constrained by large ω̄.

6.2.5 Systematic errors

Here, we address some of the anomalous results presented in this chapter: (1) the poor

quality of the t = −0.29 GeV2 results; (2) the E1 Compton form factor and its moments,

Bn,0, especially for isoscalar combination; and (3) the magnitude of the An,0 moments for

n > 2.

As discussed previously in this chapter, there are a number of reasons why the E1 and

t = −0.29 GeV2 results will be poorer both independently, as well as the E1 results at

t = −0.29 GeV2. We recapitulate these below:

• The contamination from FH excited states is worse from small |t|, Eq. (4.39).

• There is no ω̄ = 0 term for the t = −0.29 GeV2 results, so the subtraction term

must also be fit.

• In the combined polarised and unpolarised signals, E1 is suppressed with respect to

H1, Eq. (6.28).

• Similarly, the Rpol data goes like |∆|, leading to poorer signal for E1 at low |t|.

• The prior distributions, Eq. (6.22), for the moments of E1 have an upper bound of

2mN/
√−t, and hence the priors are much looser for small |t|.

As such, we expect the t = −0.29 GeV2 results, particularly for E1, to be the lowest quality.

From the Compton amplitude (Fig. 6.8) and the moments (Fig. (6.10)) this appears to be

the case—supplementary results are given in Appendix H.

We also saw in both the moment fit and the GPD model fit that the large ω̄ values

lead to unphysical results. Since the large ω̄ values are determined by large sink momenta,

p′, there are two likely systematic errors associated with high momentum:

• Euclidean time fits: at large p′ it is more difficult to isolate the ground state

at the sink, as discussed in Chapter 3. Similarly, as we showed in Chapter 4, in

the limit |ω̄| → 1, FH excited states are less suppressed—Eq. (4.40). Both of these

contributions could prevent a clean isolation of the off-forward Compton amplitude

for large ω̄.

§Recall that we have dropped the t = −1.1 GeV2 results from our fit.
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• Discretisation artefacts: it is possible that O(a|p′|) and O(a|q1,2|) discretisation

errors in our lattice Compton amplitude are worse for large ω̄. This is because for

large ω̄ we need larger |p′| and project out the largest contribution from the q1,2

vectors—see Eq. (5.30).

There are methods such as distillation [144] and momentum smearing [252, 253] to im-

prove extraction of matrix elements for momenta as high as |p′| ' 3 GeV, more than

double the value of |p′| ' 1 GeV used here. Similarly, lattice Feynman-Hellmann cal-

culations have previously performed multi-state fits to account for FH induced excited

states [173]. In Chapter 8, we will discuss discretisation effects in greater detail; however,

a full investigation of discretisation effects is beyond the scope of this thesis.

Of course, there are many other lattice systematics to investigate, both those that are

unique to our method and general artefacts. Here, we only listed the systematics that

may explain some of our anomalous results.

6.3 Conclusion and Outlook

In this chapter, we have implemented a range of improvements to the lattice calculation

in Chapter 5, both conceptual and numerical. We isolated the Compton form factors

H1 and E1, with much greater range of ω̄ values, and with one more t value than the

previous chapter. The leading moments for these Compton form factors were found to be

consistent with lattice calculations at a similar pion mass, which is a promising sign for

future calculations.

Moreover, the isolation of these two CFFs opens up the possibility of studying higher-

twist contributions, as has been done in the forward case with Feynman-Hellmann [38].

Similarly, by isolating these two form factors, it is possible to perform fits using GPD

models. A successful implementation of model fits and the determination of higher-twist

contributions would both be very exciting from a phenomenological perspective.

Finally, we also made more incremental improvements to our method, implementing

weighted averaging for the Euclidean time fits, and deriving prior distributions for our

moments that reflect positivity constraints on GPDs, allowing us to fit non-positive def-

inite CFFs such as Ed1 . As such, the numerical recipe outlined in this chapter lays the

groundwork for future studies.

However, in isolating the different CFFs and performing the model GPD fit we have

pushed our method to its limits, and demonstrated the need for greater control of lattice

systematics. The most salient of these are listed below.

• Improved signal at large sink momenta, for which a number of methods are available

[144, 252, 253]. This would help us improve the determination of higher moments,

and possibly address the anomalous large ω̄ behaviour.

• Apropos the large ω̄ behaviour and the anomalous behaviour of the subtraction

function (Fig. 6.6), a thorough investigation of lattice discretisation artefacts is nec-

essary. In Chapter 8, we apply a lattice perturbation theory (LPT) calculation of

the Compton amplitude [254] to correct some of these artefacts. Such a calculation

could in principle be extended to off-forward kinematics and used to correct the

O(a|p′|) and O(a|q1,2|) artefacts discussed above.
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• As we discussed in our Euclidean time fitting section and Chapter 4, for certain

kinematics our Feynman-Hellmann excited states may be difficult to suppress. Along

these lines, multi-state fits to FH calculations have been very successful for the

extraction of the axial charge [173], a method which can be extended to our type of

calculation.

• Finally, it is ideal that lattice systematics which are not specific to our type of

calculation—unphysical quark masses, lattice spacing and volume—are accounted

for before contact is made with phenomenology.

However, all of these difficulties can in principle be overcome. A calculation of the off-

forward Compton amplitude that accounted for these systematics would give us a wealth

of phenomenological knowledge:

• The off-forward subtraction function, S1(ϑ, t, Q̄2), is of interest in relation to the

question of the ‘fixed pole’ hypothesis in Regge phenomenology [216, 217]. Further,

it is a background for experimental determinations of the proton pressure distribution

[89]. Moreover by calculating this quantity for non-zero-skewness we could determine

the D-term [87]. Our method is one of the few ways to calculate this quantity from

first principles—we will discuss this further in Chapter 8.

• Higher-twist corrections and the scaling behaviour of the off-forward Compton am-

plitude is currently not well-studied from a theoretical or experimental perspec-

tive [231–234]. Our method allows us to determine the Q̄2 behaviour and isolate

certain higher-twist contributions as was done in the forward case [38].

• Finally, we can also use this method to determine the x and t dependence of GPDs,

which would complement efforts in the quasi- and pseudo-distribution approaches.

This work has been a starting point, showing the promise and also the limits of our present

method.



Chapter 7

Polarised Forward Compton

Amplitude

In this chapter we take the tools developed in Chapters 4–6 and apply them to a calcula-

tion of the polarised forward Compton amplitude. We have already derived a Feynman-

Hellmann relation for this quantity in Chapter 4. Moreover, we apply the method of

separating H1 and E1 developed in Chapter 6 to extract the different spin-dependent

Compton structure functions, g̃1 and g̃2. Then, we determine Mellin moments of the two

spin-dependent deep-inelastic scattering structure functions, g1 and g2.

Recall in Chapter 2 we have already discussed in some detail the polarised forward

Compton amplitude and its moments. For the purposes of our calculation, this polarised

Compton amplitude is particularly interesting for two reasons: (1) the moments of the

polarised structure functions are related to many physical quantities and sum rules; and

(2) it is often the non-leading-twist contributions to these moments that are of the most

interest—for instance, the higher-twist d2 contribution or the effective strong coupling.

Moreover, experimental determinations struggle to access small x kinematics which are

necessary to measure these moments [255, 256]. Since our calculation is best suited to

determine moments for a range of hard scale, Q2, values, we are uniquely positioned to

determine physical quantities and test sum rules for the polarised structure functions.

The first moment of g1 can be related by the Ellis-Jaffe sum rule, Eq. (2.65), to the axial

coupling gA, and in particular the axial decay constant gu−dA [71]. This first moment of g1

can also be used to access the effective strong coupling, Eq. (2.66), which is particularly

interesting as it extends the idea of the QCD coupling into the non-perturbative domain

[72]. Lattice determinations of the axial coupling gA through three-point functions have a

long history, and have come under increased scrutiny recently as it has become clear that

excited state contaminations are significant for such calculations [104]. This has motivated

recent calculations of gA through first-order Feynman-Hellmann, which may have better

excited state control [173, 174, 181]. However, none of these three-point or first-order

Feynman-Hellmann calculations are capable of accessing the hard scale dependence that

is necessary to determine the effective coupling.

The first moment of g2 is predicted to be zero by the Burkardt-Cottingham sum rule

[74]; however, this prediction is not completely model-independent and therefore needs

to be tested theoretically and experimentally. Experimental determinations of the first

moment of g2 are difficult due to the limited accessibility of low x data [255]. Although

this sum rule has been investigated thoroughly in perturbative QCD [257–261], few lattice

QCD methods exist to test it. Since we can access this moment with its higher-twist

119
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corrections, ours is the first lattice calculation capable of testing the Burkardt-Cottingham

sum rule to all orders.

Moreover, using the third moments of g1 and g2, one can access the higher-twist but

not power-suppressed matrix element d2 [44, 70]. This observable contains interesting

information about quark-gluon correlations within nucleons. There have been numerous

experimental determinations of this quantity, but there is little agreement among these

results due its small size and relatively large errors [262–268]. There have also been several

lattice determinations of d2 using three-point functions, starting with quenched [118] and

later dynamical calculations [119–121]. Again, there is a great amount of variation in the

lattice results, as there are among the experiments. This is in part due to the fact that

d2 is highly sensitive to changes in lattice spacing and pion mass [120], and in part due to

the difficulty in resolving the small signal for d2.

Finally, there have been calculations of the twist-two parton distributions (the helicity

or polarised PDFs) using the quasi-distribution [151–153] and pseudo-distribution [154]

approaches. As Q2 → ∞, the structure function g1(x,Q2) converges to this parton dis-

tribution function. However, these quasi- and pseudo-distribution studies in principle can

only access the light-cone parton distributions, and not the higher-order contributions

necessary to determine the effective strong coupling or test the Burkardt-Cottingham sum

rule to all orders.

The structure of the chapter follows: In Section 7.1, we construct a parameterisation

that separates the two spin-dependent Compton structure functions, g̃1,2. Moreover, we

derive prior distributions for the moments that we use for Bayesian Markov chain Monte

Carlo fitting. Then in Section 7.2, we present our results for a single value of the hard scale,

Q2 = 4.86 GeV2. We also present our determinations of the aforementioned moments:

gA, d2 as well as a test of the Burkardt-Cottingham sum rule. Further, we discuss some

possible sources of lattice artefacts and methods to control them. Finally, in Section

7.3, we summarise these results and identify future areas of investigation. As such, this

research lays the groundwork for further studies of the g1 and g2 structure functions using

lattice Feynman-Hellmann methods.

7.1 Set-up and Parameterisation

We have already met the spin-dependent Compton structure functions, g̃1,2, in Eq. (2.20):

Tµν(P, q) =

(
−gµν +

qµqν
q2

)
F1(ω,Q2) +

(
Pµ −

P · q
q2

qµ

)(
Pν −

P · q
q2

qν

) F2(ω,Q2)

P · q

+
i

P · q εµνρκq
ρ

(
sκg̃1(ω,Q2) +

(
sκ − s · q

P · qP
κ
)
g̃2(ω,Q2)

)
.

Recall the definition of the spin vector, Eq. (2.21):

sµ ≡
1

2
ū(p, s)γµγ5u(p, s).

Similarly, we encountered these Compton structure functions in another form in Chap-

ter 5, where we considered off-forward scattering. From Eq. (5.11), we note that g̃1,2 are
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the forward limit of H̃1,2:

lim
t→0
H̃1,2(ω̄, ϑ, t, Q̄2) = g̃1,2(ω,Q2).

These Compton structure functions can be related to the polarised structure functions

of deep-inelastic scattering, g1,2, by a dispersion relation, which was given in Eq. (2.54):

g̃1,2(ω,Q2) = 4ω

∫ 1

0
dx

g1,2(x,Q2)

1− x2ω2 − iε .

As discussed in Section 4.2, for our lattice calculation we must stay in the region |ω| < 1.

Hence in the above equation it is very difficult to solve for g1,2 directly.

Instead, as was given in Eq. (2.55), we can Taylor expand around ω = 0,

g̃1,2(ω,Q2) = 4

∞∑

n=1

ω2n−1

∫ 1

0
dxx2n−2g1,2(x,Q2) = 4

∞∑

n=1

ω2n−1M̃
(1,2)
2n−1(Q2),

and extract M̃
(1,2)
n , the Mellin moments of g1,2. We discussed some of the properties of

these moments in Section 2.2.3.

7.1.1 Parameterisation of the lattice calculation

Recall in Chapter 6 that we separated H1 and E1 using spin-parity projectors. In this

chapter, we use a very similar procedure to separate out the Compton structure functions

g̃1,2.

First, recall that from our Feynman-Hellmann relation, Eq. (4.64), we determine the

spin-parity traced forward Compton amplitude:

RΓ
µν =

∑
s,s′ tr

[
Γu(P, s′)Tµν ū(P, s)

]
∑

s tr[Γunpolu(P, s)ū(P, s)]
, (7.1)

where Γ is a spin-parity projector such as

Γunpol =
1

2
(I + γ0), Γpol =

1

2
(I + γ0)γ · êpolγ

5,

where êpol is the direction of the polarisation vector.

Starting with the tensor decomposition of the forward Compton amplitude, Eq. (2.20),

and choosing µ = 1 and ν = 2, we have

T12(P, q) =
q1q2

q2
F1(ω,Q2) +

(
P1 −

P · q
q2

q1

)(
P2 −

P · q
q2

q2

) F2(ω,Q2)

P · q

+
i

P · q ε12ρκq
ρ

(
sκg̃1(ω,Q2) +

(
sκ − s · q

P · qP
κ
)
g̃2(ω,Q2)

)
.
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Then, by choosing our kinematics such that q1 = 0 = P1, we can isolate the spin-dependent

amplitudes:

T12 =
i

P · q ε1230q3

(
g̃1s

0 +

(
s0 − s · q

P · q p
0

)
g̃2

)

= − i

P · q q3

(
g̃1s

0 +

(
s0 − s · q

P · qEN
)
g̃2

)
.

(7.2)

Spin-parity projectors

Note that the spin-parity structure of all the tensor structures in Eq. (7.2) is carried by

the spin vector, 2sµ = ūγµγ5u, defined in Eq. (2.21).

If we choose the unpolarised spin parity projector, then∗

∑
s,s′ tr

[
Γunpolu(p, s′)sµū(p, s)

]
∑

s tr[Γunpolu(p, s)ū(p, s)]
= 0,

which removes all the structures in Eq. (7.2). Therefore, we cannot use the unpolarised

projector to construct a pair of equations as we did in Chapter 6.

Instead, we will use the polarised projector,

Γpol =
1

2
(I + γ0)γ · êpolγ

5,

but with two different choices of the polarisation vector êpol.

We denote Rpol−epol
µν as Eq. (7.1) with spin-parity projector Γpol and the polarisation

vector chosen to be êpol. Using this, we construct the linear system of equations,

(
Rpol−y

12

Rpol−z
12

)
=

(
N

(1)
y N

(2)
y

N
(1)
z N

(2)
z

)(
g̃1

g̃2

)
. (7.3)

Hence, as long as this matrix of N factors is invertible, we can solve for g̃1,2. When we

discuss systematic errors, we will note that if the matrix of N factors is close to singular

(i.e. the determinant is non-zero but very small), discretisation artefacts may be enhanced

with respect to the structure functions we wish to isolate.

As shown in Appendix F,

N (1)
epol

=
ip · êpol

p · q q3, N (2)
epol

=
imNq3

p · q

[
p · êpol

EN +mN
− ENq · êpol

p · q

]
. (7.4)

Note that êpol = x̂ will also remove all the structures in our chosen kinematics. Therefore,

we only use the y and z directions.

7.1.2 Spin-dependent fitting priors

Here, as in Chapter 6, we derive some constraints on the moments of g1,2 that we will use

as prior distributions when we come to fit these moments using Bayesian Markov chain

Monte Carlo (MCMC).

∗See Appendix F for explicit results for the spin-parity traces.
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The g1 structure function

Unlike the moments of the unpolarised forward Compton amplitude, g1,2 are not directly

proportional to a scattering cross section, but to a difference of cross sections. As such,

we cannot guarantee that g1,2 are positive definite, and we instead have a weaker bound

[44,57,269]:
|g1 − γ2g2|

F1
≤ 1, (7.5)

where all the structure functions are understood to be at the same x and Q2 values, and

we have introduced the factor

γ ≡ 2mNx√
Q2

.

Since at our kinematics Q2 � m2
N , we can set γ2 ≈ 0 in Eq. (7.5) to get the following

positivity bound on g1:

|g1(x,Q2)| . F1(x,Q2), (7.6)

where F1 is the spin-independent DIS structure function.

As such, following similar reasoning to the positivity bounds proof in Chapter 6, we

can derive the relation between the moments of these two structure functions:

∣∣M̃ (1)
n (Q2)

∣∣ =

∣∣∣∣
∫ 1

0
dxxng1(x,Q2)

∣∣∣∣ .
∫ 1

0
dxxnF1(x,Q2) =

1

2
M (1)
n (Q2), (7.7)

where we need to be aware of the factor of two that was absorbed by the F1 moments

Eq. (2.29).

Note that the n = 1 moment of F1 is difficult to determine. Even in the parton model,

we have

M
(1)
1 =

∫ 1

0
dx
(
qf (x) + q̄f (x)

)
,

which is hard to evaluate, since it cannot be related to a model independent sum rule.

Since the leading moment of g1 will be well-determined in our calculation, it will be less

sensitive to the prior, and hence we simply need a broad prior that does not over-constrain

this parameter. Therefore, for the n = 1 moment, we use a reasonably loose prior that

easily encompasses the expected values of M̃
(1)
1 ≈ 0.5 for up quarks and M̃

(1)
1 ≈ −0.1 for

down quarks: ∣∣M̃ (1)
1 (Q2)

∣∣ ≤ 2, (7.8)

for both u and d quarks.

For higher moments, we can use the moments of F1 as calculated from Feynman-

Hellmann [37, 38]. Since we can only access the even in n moments of F1 using this

method, the bound is

∣∣M̃ (1)
n (Q2)

∣∣ . 1

2
M (1)
n (Q2) ≤ 1

2
M

(1)
n−1(Q2), for n = 3, 5, 7 . . . , (7.9)

since the moments of F1 are monotonically decreasing.
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The g2 structure function

Similarly, we have another positivity bound† [44, 57,269]

γ|g1 + g2|
F1

≤
√

(1 + γ2)
F2

2xF1
− 1. (7.10)

Since the upper bound is a non-linear combination of structure functions, it cannot be

easily turned into a constraint on the moments. As such, we rearrange this inequality. We

start by noting that the Callan-Gross relation, Eq. (2.37),

F2

2xF1
= 1 +O

(
m2
N

Q2
,
Λ2

QCD

Q2

)
,

can be used to approximate Eq. 7.10 as

γ|g1 + g2|
F1

. γ ⇒ |g1 + g2| . F1. (7.11)

While this approximation is a bit crude, as we will see in the fitting process, it does not

appear to over-constrain the parameters.

Using identical reasoning to the proofs for g1 and in Chapter 6, we have

∣∣M̃ (2)
n (Q2)

∣∣ . 1

2
M (1)
n (Q2) +

∣∣M̃ (1)
n (Q2)

∣∣. (7.12)

As with the g1 moments, for n = 1 we use

∣∣M̃ (2)
1 (Q2)

∣∣ ≤ 2, (7.13)

and for n = 3, 5, 7 . . .

∣∣M̃ (2)
n (Q2)

∣∣ . 1

2
M (1)
n (Q2) +

∣∣M̃ (1)
n (Q2)

∣∣ ≤ 1

2
M

(1)
n−1(Q2) +

∣∣M̃ (1)
n (Q2)

∣∣, (7.14)

since we have only calculated the n even moments of F1.

7.2 Lattice Results and Phenomenology

We are now ready to apply the Feynman-Hellmann relation in Chapter 4 to calculate

the spin-dependent Compton structure functions, g̃1,2 and interpret them. Since this

calculation is exploratory, we use only one Q2 value, and the intention here is simply to

show the validity of this type of calculation. However, the initial results are promising.

7.2.1 Simulation details

This calculation uses the same gauge ensemble as Chapter 6; see table 6.1. In particular,

we note that we are at the flavour symmetric point, κl = κs, with a larger than-physical

†Note that an improvement on the above bound is possible [270]. However, since this improved bound in-
volves a non-linear combination of structure functions that is difficult to rearrange into a linear expression,
for this exploratory study we stick to the simpler positivity bound derived here.
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pion mass, mπ = 412 MeV, and a lattice volume of N3
L × NT = 483 × 96. We use three

sources, and hence Nmeas = 1600.

Feynman-Hellmann implementation

As discussed in Section 4.2, we calculate perturbed quark propagators,

Sλ(zn, zm) =
[
M − λ1O1 − λ2O2

]−1

n,m
,

where M is the usual fermion matrix.

The component of the Compton amplitude that we want to determine, Eq. (7.2), is

odd under q → −q. Therefore, as discussed in Chapter 4, to isolate a signal that is odd in

q → −q, we choose one current carrying cos(q · zn) and the other sin(q · zn). Hence we

use the perturbing matrices

[
O1

]
n,m

= δn,m(eiq·zn + e−iq·zn)γ1,
[
O2

]
n,m

= iδn,m(eiq·zn − e−iq·zn)γ2. (7.15)

Again, as discussed in previous chapters, we only calculate the connected contributions to

the Compton amplitude—i.e. only the diagrams where the photons are absorbed/emitted

by valence quarks.

Recall our Feynman-Hellmann relation, Eq. (4.63):

∂2

∂λ1∂λ2

Gλ(τ)

G0(τ)

∣∣∣∣
λ=0

τ�a' Bint +
iτ

2EN (p)
T12(p,q).

As in the previous chapters, we use the combination of correlators, Rλ, as defined in

Eq. (4.53). And similarly, we use two λ magnitudes of λ = 0.0125, 0.025.

Kinematics

Our momentum scalars are determined by the FH insertion momentum, q, and the sink

momentum, p:

Q2 = q2, ω =
2p · q

q2
. (7.16)

We choose q = 2π
L (0, 5, 3), which gives a hard scale of Q2 = 4.86 GeV2.

Recall from Chapter 4 that, for the FH relation to hold, we needed to satisfy the

kinematic constraint, Eq. (4.57):

|p| < |p + nq|, n ∈ Z\{0}.

Moreover, to relate our Euclidean amplitude to the Minkowski, we need |ω| < 1, and

finally we choose our sink momentum such that |p| ≤ 32π
L = 1.13 GeV. This is slightly

less than the previous two chapters’ upper bound on the sink momentum. In the case

of forward kinematics, it is easier to access higher ω without large sink momentum—

hence our slightly lower bound. Finally we note that at ω = 0, since the lattice signal is

by construction odd under ω → −ω, our result is zero. With all these constraints, the

explicit values of ω we use are given in Table 7.1.
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Table 7.1: Sink momentum, p, and corresponding ω values, for q = 2π
L (0, 5, 3).

L
2πp ω ( L2πp)2

(0,−1, 2) 0.06 5

(0, 1,−1) 0.12 2

(0, 0, 1) 0.18 1

(0, 2,−2) 0.24 8

(0, 1, 0) 0.29 1

(0, 0, 2) 0.35 4

(0, 2,−1) 0.41 5

(0, 1, 1) 0.47 2

(0, 0, 3) 0.53 9

(0, 2, 0) 0.59 4

(0, 1, 2) 0.65 5

(0, 2, 1) 0.76 5

(0, 3, 0) 0.88 9

(0, 2, 2) 0.94 8

Finally, since our amplitude flips sign under p→ −p, we take

Rpol
12 =

Rpol
12(p)−Rpol

12(−p)

2

to increase our statistics.

7.2.2 Determining the Compton amplitude

Euclidean time and Feynman-Hellmann parameter fits

We fit the same combination of correlators as the previous two chapters, Rλ, as defined in

Eq. (4.53), using the fit function f(τ) = aτ + b and interpret the slope, a, as proportional

to a linear combination of Compton structure functions.

To perform the Euclidean time fits we use the weighted average procedure outlined in

Section 6.2; a sample of the signal is present in Fig. 7.1. We note that this fit is significantly

cleaner than most of the off-forward results in Chapter 6 (see for instance Fig. H.2). This

likely reflects the fact that, due to our the forward kinematics of this chapter, we do not

have FH excited states induced by |t| � m2
N . Moreover, a heat map of the weights is

shown in Fig. 7.2. We can see that the weight, Eq. (6.26), typically favours fitting at the

earliest possible τmin.

The analysis of the signal as a function of the FH parameter is no different to the

previous to sections. We fit the single parameter function f(λ) = cλ2, and observe that

the signal is well-described by this function, with some suppressed O(λ4) contaminations,

which appear negligible compared to the overall error—see Fig. 7.3.
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Figure 7.1: Plot of τ fits for Rλ, as defined in Eq. (4.53) and the ‘effective mass’, ∆τRλ, defined

in Eq. (6.24), for the up quarks, z polarised, and λ = 0.0125. The shaded bands are fits to the

function f(τ) = aτ + b using weighted averages; the lighter shade is the whole range considered,

and the darker shade is the fit window with the highest weight.
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Figure 7.2: Heat map showing the weight assigned to each fit window, for up quarks, z polarised,

p = 2π
L (0, 2, 1), λ = 0.0125 results. The weight, w̃i, is defined in Eq. (6.26).
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Figure 7.3: Plot of λ-dependence of Rλ after fitting in Euclidean time, for the same data as

Fig. 7.1. Top: Rλ appears very well-described by f(λ) = cλ2. Bottom: comparing the extracted

b and Rλ/λ
2, we can see some tensions between the fit and the data, indicating small O(λ4)

contaminations.

Separating g1 and g2

After extracting Rpol
12 for the polarisation vector in the y and z directions, we then need

to solve for the Compton structure functions, g̃1,2. We do this using the linear equations

in Eq. (7.3): (
Rpol−y

12

Rpol−z
12

)
=

(
N

(1)
y N

(2)
y

N
(1)
z N

(2)
z

)(
g̃1

g̃2

)
.

The results for R are shown in the top panel of Fig. 7.4, where we can see that the

signal-to-noise of the data is somewhat better than comparable results for the off-forward—

see Fig. 6.5. Note that, unlike the off-forward case, where the R had the roughly the same

ω behaviour as the extracted amplitudes, the polarised forward R has no simple behaviour

as a function of ω. This is because the N factors for the polarised case, Eq. (7.4), have

significant dependence on the direction of the sink momentum, in contrast to the N factors

for the off-forward case.

The extracted g̃1,2 are shown in the bottom panel of Fig. 7.4. For the low to mid

ω values, these structure functions are as we expect: g̃1 is dominated by linear in ω

behaviour, while g̃2 is extremely small. However, we can see some erratic behaviour for

the largest three ω values. This is interesting, as the corresponding data for the R is very

clean at these ω values. This behaviour is likely the result of a lattice artefact; we discuss

this further in the section on systematic errors.
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Figure 7.4: Top: the ω dependence of R as defined in Eq. (7.1), for the two chosen polarisation

directions and the isovector, u − d, combination. Bottom: the polarised structure functions, g̃1,2,

extracted from the R, using Eq. (7.3).
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Figure 7.5: Density distributions for the nth moment of the g1 structure function (top), and the

g2 structure function (bottom)—up quark contributions only.

Moment fits

As in Chapters 5 and 6, we fit to the ω dependence using Bayesian Markov chain Monte

Carlo [220,221]. Since we explicitly construct a signal that is odd in q and moreover this

is how we expect the physical structure functions to behave, we fit to the function

fNmax(ω,Q2) = 4

Nmax∑

n=1

ω2n−1M̃2n−1(Q2). (7.17)

As in previous chapters, we vary Nmax to test the effect of this truncation on the leading

moments.

The prior distributions we sample for the moments of g1 are given in Eqs. (7.8) and

(7.9). For g2, we use the prior distributions given in Eqs. (7.13) and (7.14). These prior

distributions provide somewhat looser bounds on the moments of g2 compared to those of

g1.

In Fig. 7.5 we plot the posterior distributions for the moments of g1 and g2; only the up

quark moments are shown. For g1, we observe that the leading moment is very stable with

Nmax, reflecting the fact that this moment is well-constrained by the low to mid ω values.

By contrast, the higher moments are more variable with Nmax; however, they appear to

stabilise for Nmax ≥ 4. It is unclear how much we can trust these higher moments, since

they should be largely constrained by higher ω values, the largest three of which appear

to be affected by lattice artefacts.

Similarly, for all the g2 moments, there appears to be convergence for Nmax ≥ 4. The

comparatively large size of the n = 5 moment is fairly untrustworthy, since this moment
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Figure 7.6: Comparison of fit to Eq. (7.17) for g̃1,2 and discrete ω data values.

is most constrained by the three largest ω values. However, the well-defined distribution

for n = 1, 3 moments, despite their loose bounds, is encouraging. We choose Nmax = 7

due to the large number of ω values and the stability of the moments beyond Nmax ≥ 4.

In Fig. 7.6 we plot the fit in ω space compared to the discrete values. Encouragingly,

the g̃1 fit does not appear to be over-fit to the largest three ω values, and maintains

linear-in-ω-dominated behaviour. The extent of over-fitting is harder to discern in the g̃2

structure function due to its small size.

Results

As outlined in the Section 7.1, there are many phenomenologically interesting quantities

we can determine from the moments of g1,2. We focus on

• The first moment of g1, M̃
(1)
1 , which gives the axial coupling, gA, Eq. (2.65).

• The first moment of g2, M̃
(2)
1 , through which we can test the Burkardt-Cottingham

sum rule, Eq. (2.67).

• The d2 term, Eq. (2.71), which is a linear combination of M̃
(1)
3 and M̃

(2)
3 .

The results are collected in Table 7.2.
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Table 7.2: Summary of key physical quantities from the moments.

u d u− d proton

gA 1.069(20) -0.2413(70) 1.310(21) 0.4483(88)

Mg2
1 -0.000166(99) -0.000079(42) -0.00009(10) -0.000083(45)

d2 0.20(15) 0.146(54) 0.05(16) 0.103(65)

Axial charge

Recall the Ellis-Jaffe sum rule, Eq. (2.65), which relates the axial coupling, gA, to the first

moment of g1:

2M̃
(1)
1 = c1

(
αS(Q2)

)
gA,

where c1

(
αS(Q2)

)
is the Wilson coefficient. This relation is different to the other factori-

sation relations in this thesis, as there are no other operators that contribute to the OPE

for this moment [57]. As a result, we can factor out the Wilson coefficient to determine

gA from our moment directly.

Therefore, we use a perturbative calculation to determine this Wilson coefficient up to

α4
S [271]:

c1

(
αS(Q2)

)
= 1− αS(Q2)

π
+ (−4.583 + 0.3333Nf )

(
αS(Q2)

π

)2

+ (−41.44 + 7.607Nf − 0.1775N2
f )

(
αS(Q2)

π

)3

+ (−479.4 + 123.4Nf − 7.697N2
f + 0.1037N3

f )

(
αS(Q2)

π

)4

,

(7.18)

where Nf is the number of quark flavours and αS(Q2) is the strong coupling; Nf = 3 for

our calculation. For αS(Q2), we use Refs. [272,273].

Using this Wilson coefficient, our result for the u− d axial charge is gu−dA = 1.310(21);

see Table 7.2 for other flavour combinations. Experimentally, this axial charge can be

determined from neutron beta decay. From the Particle Data Group’s meta-analysis [48],

we have the averaged experimental value of gu−dA = 1.2724(23). This is not quite consistent

with our determination, but they are obviously close.

The discrepancy between our results and experiment is likely due to a number of

systematics. Unlike experiment, our calculation uses Nf = 2 + 1 flavours with isospin

symmetry, whereas experiment has all six flavours of quark at different masses. Moreover,

our quark masses are unphysically large with no attempt at a chiral extrapolation. Finally,

we have not attempted to account for discretisation artefacts in our calculation or the

electromagnetic interactions among quarks. Addressing such systematics is a goal of future

work.

Similarly, we can compare our result to the Flavour Lattice Averaging Group’s (FLAG’s)

meta-determination of the same quantity using lattice three-point functions and first-

order Feynman-Hellmann. For Nf = 2 + 1 flavour results, FLAG report the value

gu−dA = 1.248(23) [104]. Again, our result is close to this value, but not quite consis-

tent within one sigma.
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There are a number of possible sources for these discrepancies. Firstly, our determi-

nation uses heavier-than-physical quark masses. Therefore, calculating with lighter quark

masses and performing a chiral extrapolation could reduce the disagreement between ours

and other lattice results, which are mostly at lighter masses and/or have a chiral extrapo-

lation‡. Another possible contributing factor to the discrepancy is our Wilson coefficient,

Eq. (7.18), and it may be necessary to include higher-order in αS terms or compute a

discretised Wilson coefficient to account for lattice artefacts. Finally, since all other gA
determinations use either direct three-point evaluations or first-order Feynman-Hellmann,

there will be different excited state corrections and discretisation artefacts compared with

ours, which could also contribute to this discrepancy.

Burkardt-Cottingham sum rule

Recall that the Burkardt-Cottingham sum rule (Eq. (2.67)) predicts that the first moment

of g2 vanishes for all Q2:

M̃
(2)
1 (Q2) = 0.

However, this sum rule is model-dependent and hence it may be violated in QCD.

While we find extremely small values for M̃
(2)
1 (. 10−4), the u, d and proton results

are not consistent within one standard deviation with zero—see Table 7.2. It is possible

that this could be caused by highly suppressed corrections that violate the Burkardt-

Cottingham sum rule. Similarly, results from experimental studies of the Burkardt-

Cottingham sum rule suggest small violations of this sum rule [255].

However, we need to be cautious in interpreting these results. Since the moments

are M̃
(2)
1 ∼ 10−6, and our Feynman-Hellmann couplings at λ2 ∼ 10−4, the whole sig-

nal is ∼ 10−10. Therefore, our results may be affected by the machine precision of the

gauge links (single precision) and the propagators (double precision). Moreover, such a

small contribution could easily be the result of some other lattice systematics, such as

discretisation artefacts. As such, further investigation is needed into the first moment of

g2.

d2 term

Finally, we determine the d2 term from a linear combination of the n = 3 moments of g1

and g2:

d2 = 4M̃
(1)
3 + 6M̃

(2)
3 .

For the proton, we find dp2 = 0.103(65); see Table 7.2 for other flavour combinations.

Experimental values of d2 for the proton range from as low as dp2 = −0.00828(656) to

as high as dp2 = 0.0296(214) [262–268]. Therefore, our results are close to some of these

determinations, and even consistent with a few due to the large relative errors of both our

calculation and the experimental values. From lattice three-point calculations d2 has been

determined as dp2 = 0.004(5) [119] and dp2 = 0.0105(19)(65) [120]. While not consistent

with our results, we note that this type of three-point study is still exploratory, and

their determinations of d2 appear sensitive to variations in pion mass and lattice spacing.

‡Note that the three-point results for gA are usually smaller for larger pion masses. By contrast, our large
pion mass results are larger than expected. However, since our determination and those from three-point
studies use completely different operators, the pion mass dependence of each is likely different.
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Figure 7.7: Comparison of |detN| for the calculation of g̃1,2 and the off-forward amplitudes, H
and E . Values for smaller ω are not included since these are all very large, |detN| ∼ O(10) and

greater, for the g̃1,2 matrix.

Moreover, discrepancies could arise between our calculation and three-point studies due

to higher-twist and power-suppressed corrections that are present in our results.

Finally, we note that, as can be seen in Figs. 7.3 and 7.6, the behaviour of g̃1,2 at

large ω appears somewhat anomalous. Any anomalous behaviour at large ω is likely to

impact the higher moments more than the leading moment, as discussed in Chapter 6.

Therefore, it is unclear to what extent we can trust our results for higher moments given

this behaviour. We discuss a possible source of this anomalous behaviour in the next

section.

7.2.3 Systematic errors

Here, as in Chapter 6, we discuss some difficulties with our large ω results. These points

require sink momentum to be large and to project out the largest values of qµ. Hence

both the O(apµ) and O(aqµ) discretisation effects are maximised for such points. More-

over, since we also have a dependence on the qµ and Pµ directions—see the N factors,

Eq. (7.4)—this induces additional discretisation artefacts, as the continuum Ward identi-

ties are violated on the lattice [236,237]

However, the relative size of these discretisation artefacts can be exacerbated or sup-

pressed by the linear system of equations we use to solve for the structure functions. Recall

from Eq. (7.3) that to access the g̃1,2 we need to invert the matrix of N factors:

N ≡
(
N

(1)
y N

(2)
y

N
(1)
z N

(2)
z

)
. (7.19)

If this matrix is close to singular—i.e. detN is very small but not zero—it can enhance

lattice artefacts with respect to the structure functions. Moreover, even without lattice
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artefacts, a small detN means that only one structure function can be well-determined,

which blows up the statistical error on the other structure function.

To see how a small detN can enhance lattice artefacts, we write out the vector of

Rs with the inclusion of discretisation artefacts, δay,z, which are different for the y and z

polarisations: (
Rpol−y

12

Rpol−z
12

)
=

(
N

(1)
y g̃1 +N

(2)
y g̃2 + δay

N
(1)
z g̃1 +N

(2)
z g̃2 + δaz

)
.

After applying N−1 to this vector, we have

N−1

(
Rpol−y

12

Rpol−z
12

)
=

(
g̃1 +

(
N

(2)
z δay −N (2)

y δaz
)
/ detN

g̃2 −
(
N

(1)
z δay −N (1)

y δaz
)
/ detN

)
.

Since there is no reason for N
(1,2)
z δay − N

(1,2)
y δaz to be O(detN ), these contributions

pick up an extra factor of 1/ detN with respect to the structure functions. As such, a

near-singular N matrix (detN ≈ 0) will enhance the discretisation artefacts by 1/detN .

Hence even with relatively small values of δa in the R, it is possible to have a sizeable

discretisation error in the Compton structure functions.

In Fig. 7.7 we plot |detN|, which is a measure of the orthogonality of the matrix’s rows,

against ω. We do not plot the smallest four values of ω, since these are all |detN| ∼ O(10)

or greater, and hence not a concern. We see that the three largest ω values have the

smallest three values of |detN|. In particular, ω = 0.76 has by far the worst orthogonality

with |detN| ∼ O(10−2). Comparing this to the results for the structure functions, Fig. 7.4,

there appears to be a relationship between small values of | detN| and ‘jittery’-looking

points in the structure functions. In particular, ω = 0.76, which has the smallest |detN|,
appears to be the most anomalous value of the structure functions

As a point of comparison, we also plot in Fig. 7.7 the determinant of the N matrix

for the the H and E amplitudes from the previous chapter, Eq. (6.27). One can see that

this detN is reasonably orthogonal for all values of ω̄. Hence we do not expect the same

problem for the H1 and E1 amplitudes.

Therefore, the anomalous behaviour of the larger ω values for g̃1,2 is likely due to

small lattice artefacts being enhanced with respect to the Compton structure functions

by a system of equations that is barely linearly independent. This orthogonality issue is

straightforward to remedy: by taking equivalent values of the momentum transfer, such

as qµ = 2π
L (0, 3, 5), and/or different Lorentz indices, one has a different N matrix.

A complementary method of improving the extraction of g1,2 would be to use the

lattice perturbation theory (LPT) calculation carried out in Ref. [254] to account for

some of the O(a|p|) and O(a|q|) artefacts. In such an analysis the N matrix would be

altered to include such corrections, which in principle would improve the extraction of

the Compton structure functions. In practice, it is likely that a combination of choosing

a more orthogonal N matrix and insights from the aforementioned LPT calculation will

lead to an accurate isolation of g1,2—this is a goal of future work.
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7.3 Conclusion and Outlook

In this chapter we have presented an exploratory calculation of the polarised forward

Compton amplitude. Such a calculation is a natural and straightforward application of

techniques we developed to analyse the off-forward Compton amplitude in Chapters 5

and 6. Moreover, the spin-dependent Compton amplitude is particularly well-suited to

our method, as there is a great amount of phenomenological interest in the moments of

structure functions and their non-leading-twist contributions.

Our initial results show a great deal of promise: the signal for this amplitude is of

good quality and FH excited states seem to be under control. In terms of the moments,

the extracted gA is physically reasonable—it is likely that with corrections for systematics

it will be possible to match state-of-the-art three-point determinations. Interestingly, the

first moment of g2, which the Burkardt-Cottingham sum rule predicts to be zero, is found

to be very small but non-zero, in agreement with experimental determinations. Finally,

the d2 form factor is roughly in the same area as most lattice and experimental results,

which themselves show a great deal of variance. Although, greater precision on this result

is necessary.

As in Chapter 6, there are discretisation artefacts for large ω values that affect the

quality of these results. As large ω is necessary for constraining higher moments, such

artefacts need to be controlled to improve determinations of d2 and other higher moments.

However, unlike in the case of Chapter 6, we showed the matrix N , which we need to

invert to isolate the structure functions, can enhance existing lattice artefacts. As such, a

judicious choice of qµ and current direction could allow us to tame these lattice artefacts;

this is a goal of future work.

Once such artefacts can be controlled, a major area of interest is the Q2 dependence of

the amplitude. For the leading moment of g1, this would improve our determination of gA.

Moreover, from the same moment we could determine αg1 , the effective strong coupling,

defined in Eq. (2.66). This effective strong coupling allows for a determination of the run-

ning of the coupling below the perturbative threshold, Q < ΛQCD, which provides highly

interesting information about quark confinement and the transition from the confining to

asymptotically free regions [72].

Moreover, the Q2 dependence of the first moment of g2 would tell us more about

the breaking of the Burkardt-Cottingham sum rule. And finally, the Q2 dependence of

the second moments of g1,2 would help in phenomenological determinations of the d2

observable, which so far has been difficult to constrain experimentally.



Chapter 8

The Compton Amplitude

Subtraction Function

In this chapter, we use our Feynman-Hellmann method to calculate the Compton ampli-

tude subtraction function. In the preceding chapters, we presented results for a number of

physical quantities that are generally in agreement with other determinations, with some

deviations at large ω values. However, our results for the subtraction function exhibit be-

haviour that is drastically at odds with many other determinations of the same quantity.

In particular, our calculation appears to violate predictions from the operator product

expansion (OPE).

Naturally, this anomalous behaviour makes it necessary to investigate lattice artefacts.

Since the OPE is a short-distance relation, we focus on investigating short-distance lattice

artefacts, and present a different implementation of lattice Feynman-Hellmann that allows

us to test for the presence of these artefacts.

In Chapter 2 we defined the forward Compton amplitude subtraction function, Eq. (2.28),

as

F1(ω = 0, Q2) = S1(Q2).

We also briefly discussed the off-forward generalisation of this quantity in Chapters 5 and

6; see Eq. (5.18) for a definition. Here, we limit ourselves to the forward subtraction

function.

Recall that we first showed the subtraction function in a dispersion relation, Eq. (2.26):

F1(ω,Q2) = F1(ω,Q2)− S1(Q2) = 2ω2

∫ 1

0
dx

2xF1(x,Q2)

1− x2ω2 − iε .

Since F1 is the physically measurable quantity, it is not possible to obtain S1(Q2) from

deep-inelastic scattering∗. By contrast, it is straightforward to calculate S1(Q2) using the

Feynman-Hellmann method outlined in the preceding chapters. Hence in principle our

method gives us the ability to access this subtraction function, which is otherwise difficult

to constrain from experimental measurements.

The Compton amplitude subtraction function is a necessary input for two important

physical quantities. First, it is required for theoretical predictions of the mass difference

between the proton and neutron. Part of this mass difference is generated by the differ-

∗It is possible to measure the subtraction function from a Compton scattering process, such as DVCS.
However, these processes will often have off-forward kinematics, and hence it is necessary to extrapolate
to the forward limit to access S1(Q2).
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ent charges of the constituent quarks [61, 62]. This electromagnetic contribution can be

evaluated from the Cottingham sum rule [274],

δmEM = − i

2mp

α

(2π)3

∫
d4q

Tµνg
µν

Q2 − iε , (8.1)

where Tµν is the forward, spin-averaged Compton amplitude for a proton. The Comp-

ton structure functions F1 and F2 can be measured using DIS structure functions—see

Eqs. (2.26) and (2.27). On the other hand, the subtraction function cannot be determined

from scattering data, which leads to conflicting evaluations of this contribution based on

the model that is used [275,276].

Similarly, this subtraction function is an input for the hadronic background of the

proton charge radius. In particular, recent determinations of the charge radius from the

muonic-hydrogen Lamb shift disagree with previous results from electron–proton scatter-

ing [277] by seven standard deviations [278]—a tension commonly called the ‘proton radius

puzzle’ [59].

As the hadronic backgrounds for the muon and electron experiments are different, a

more precise determination of this background could help resolve this puzzle [279, 280].

The ‘two-photon exchange’ hadronic corrections to the Lamb shift are dependent on the

Compton amplitude:

MTPE = −ie4

∫
d4q

(2π)4

TµνL
µν

Q4 − iε , (8.2)

where Lµν is the leptonic contribution, which can be calculated from QED, and Tµν is

the proton Compton amplitude. Since the Compton subtraction function is not well

constrained, it contributes the dominant uncertainty to the hadronic background [281–

283]. As such, a more precise determination of the subtraction function could help resolve

the proton radius puzzle.

Finally, as discussed in Chapter 6, the subtraction function for the off-forward Comp-

ton amplitude, S1(ϑ, t, Q̄2), is an input for the determination of the proton’s pressure

distribution through deeply virtual Compton scattering [88, 89]. While this is potentially

an area where our FH method could prove useful, in this chapter we limit ourselves to the

discussion of the forward Compton subtraction function.

Though it is difficult to measure this forward subtraction function experimentally,

it has been determined from effective theory schemes [276, 281, 283–288], and a non-

relativistic calculation [282]. These effective theory and non-relativistic calculations are

typically only applicable for small values of the hard scale: Q2 � m2
N ,Λ

2
QCD. Moreover,

these calculations have sizeable errors and are not always consistent with one another [289].

At large Q2, the subtraction function can be evaluated using the operator product

expansion (OPE) [290,291], and the following asymptotic behaviour is predicted:

S1(Q2) ∼ m2
N

Q2
, for Q2 � m2

N . (8.3)

However, as can be seen in Eqs. (8.1) and (8.2), a determination for the whole domain of

S1(Q2) is necessary for inputs into the aforementioned physical quantities.

At intermediate Q2, a lattice calculation of the Compton subtraction function is ideal.

One such calculation has been performed using a direct four-point function [107]. However,
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Table 8.1: Details of the gauge ensembles used in previous calculations of the Compton subtrac-

tion function [218,239].

Set Nf N3
L ×NT L a mπ

[fm] [fm] [MeV]

#1 2 + 1 323 × 64 2.4 0.074 470

#2 2 + 1 483 × 96 3.3 0.068 410

#3 2 + 1 483 × 96 2.8 0.058 430

this calculation isolated the nucleon in the intermediate state, making it only sensitive to

the low-energy nucleon pole contribution.

Here, we apply the Feynman-Hellmann method to calculate the Compton amplitude

subtraction function. Our calculation is ideally suited for Q2 ∈ [2, 12] GeV2; that is,

in the intermediate range where the S1(Q2) is difficult to determine. However, previous

calculations of the Compton subtraction function using Feynman-Hellmann [36–38, 40]

have found behaviour highly at odds with the OPE prediction, Eq. (8.3): instead of

asymptoting to zero at large Q2, our results asymptote to a large non-zero value.

In this chapter, we argue that this anomalous high-energy behaviour can be largely

attributed to short-distance artefacts, where the separation between the two currents is

on the order of the lattice spacing: |z| ∼ a. Therefore, we design an alternative imple-

mentation of FH, temporal interlacing, that is less sensitive to these effects. We apply

this temporal interlacing to structureless fermions, where the exact continuum solution is

known, and to nucleons. These results show that the anomalous behaviour of the subtrac-

tion function is largely due to a lattice artefact.

The outline of this chapter is as follows: In Section 8.1, we outline the existing results

and discuss other comparable lattice calculations. Then, in Section 8.2, we investigate the

short-distance artefacts in the Compton amplitude. We start by examining the structure-

less fermion results, which are computationally inexpensive and for which the continuum

result can be calculated analytically. We then introduce the interlacing procedure, apply-

ing it to both the nucleon and structureless fermions. Finally, we discuss possible methods

to parameterise these short-distance artefacts analytically, allowing us to better isolate the

physical contributions.

8.1 Background and Existing Results

Recall that in Chapter 4 we derived the Feynman-Hellmann relations relating the per-

turbed two-point functions and the spin-dependent and off-forward Compton amplitude.

It is completely straightforward to take our perturbed two-point function for either case,

Eq. (4.45) or (4.61), and set either λ1,2 = 0, to derive the FH relation for the spin-averaged

forward Compton amplitude:

∂2

∂λ2

Gλ(τ)

G0(τ)

∣∣∣∣
λ=0

τ�a' Bint +
τ

EN (p)
T33(p,q). (8.4)
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Figure 8.1: Existing results for the forward subtraction function calculated with Feynman-

Hellmann using both the local and conserved currents [40, 178]. The OPE line is from a the

parameterisation in Ref. [291] using scalar charges [174] and moments [37] for the 323× 64 lattice.

Or, through the energy shift,

∂2Eλ
∂λ2

∣∣∣∣
λ=0

= −T33(p,q)

EN (p)
, (8.5)

where we have chosen µ = ν = 3 to eliminate the spin-dependent terms. This type of

calculation has been performed and presented in Refs. [36–38,40].

By simply taking p = 0, Eq. (8.4) becomes

∂2

∂λ2

Gλ(τ)

G0(τ)

∣∣∣∣
λ=0

τ�a' Bint +
τ

mN
S1(Q2), (8.6)

and hence we can use it to easily calculate the Compton amplitude subtraction function.

8.1.1 Existing results

We start by presenting the existing results for the forward spin-averaged Compton subtrac-

tion function using the Feynman-Hellmann method [36–38,40]. These were calculated on

the configurations given in Table 8.1, and include results for the local current, Eq. (3.40),

as well as the conserved current†, Eq. (3.41).

All of these results are presented in Fig. 8.1. We have indicated the OPE prediction

from Ref. [291] with a dashed line. This OPE prediction only includes the leading m2
N/Q

2

†For the Feynman-Hellmann implementation of the conserved current, see Refs. [40, 178].
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term, which may not be sufficient for intermediate values of Q2. For inputs into the

physical OPE, we use inputs for the lattice ensemble labelled #1 in Table 8.1; further

details on our evaluation of the OPE result are supplied in Appendix I. One can observe

the remarkable disagreement between the OPE prediction and the lattice results.

On the other hand, the FH results in Fig. 8.1 indicate a relatively good agreement

among themselves: the different lattice spacings, volumes and the conserved and local

current results appear fairly consistent with one another. While there are some discrepan-

cies among the FH results, especially at intermediate Q2, they are much more consistent

with each other than with the OPE prediction. Moreover, there is no clear trend in lattice

spacing or volume‡ towards the continuum OPE value.

Similarly, the off-forward subtraction function, as discussed in Chapters 5 and 6, ap-

pears to suffer from this anomalous high-energy behaviour—Figs. 5.8 and 6.6. However,

in the off-forward case it is desirable to sample a greater Q̄2 range to confirm that the

predicted asymptotic behaviour, Eq. (8.3), is violated.

From the discrepancy between the lattice results and the OPE, we cannot immediately

conclude that our results suffer from a lattice artefact. While the validity of the OPE is

widely-accepted, it is still not completely independent of assumptions, as discussed in

Appendix C. Several studies using Regge analysis have considered the potential for OPE-

breaking effects to emerge from a spin-zero intermediate state (a ‘J = 0 fixed pole’)

[217, 293], which could account for the discrepancy seen in Fig. 8.1. However, this fixed

pole hypothesis remains a contentious issue§ with arguments for and against [216,294–297].

8.1.2 Short-distance artefacts

The general form of the operator product expansion is given by Eq. (2.38):

A(z)B(0)
z→0−−−→

∑

i

ci(z)Oi(0).

Since this relation only describes the short-distance, |z| ≈ 0, behaviour, it is natural to

expect that OPE-breaking lattice artefacts will similarly arise from the short-distance

behaviour on the lattice.

To examine the coordinate space behaviour of the Compton amplitude calculated with

Feynman-Hellmann, consider the perturbed propagators we calculate:

Sλ =
[
M − λOq

]−1
. (8.7)

To get the four-point function, one can take a second-derivative of this with respect to λ:

∂2

∂λ2
Sλ(τ, z; 0,0)

∣∣∣∣
λ=0

=
∑

z′,z′′

τ ′,τ ′′

S(τ, z; τ ′, z′)Oq(z′)S(τ ′, z′; τ ′′, z′′)Oq(z′′)S(τ ′′, z′′; 0,0),

(8.8)

where S = M−1 is the unperturbed propagator.

‡An effective field theory calculation of finite volume effects showed the Compton amplitude is not partic-
ularly sensitive to changes in volume [292].
§Moreover, it would complicate the Cottingham sum rule, Eq. (8.1), and hadronic contributions to the
Lambshift, Eq. (8.2): a non-zero Q2 independent term would make the integrals over q diverge.
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The above equation shows that our calculation has a sum over all spacetime points for

the intermediate propagator, including |z′ − z′′| = 0, a, 2a. Therefore, writing this out in

terms of a discretisation of the Compton amplitude,

Tµν =
∑

z

eiq·z〈P |T {jµ(z)jν(0)}|P 〉,

this corresponds to having the current separation, z, as small as |z| = 0, a, 2a.

Such extremely short-distance contributions are a concern, as it has been shown that

at |z| ∼ a the coordinate space current product has lattice artefacts [298,299]:

T {jµ(z)jν(0)} |z|≈0' T {jµ(z)jν(0)}continuum +O
(
a

|z|

)
.

Note that in Euclidean spacetime |z| =
√
τ2 + |z|2.

These artefacts are due to the well-known operator mixing problem arising from broken

Lorentz symmetry [300, 301], which we discussed in Section 3.2. Since our lattice calcu-

lation includes contributions from this very short-distance region, |z| ∼ a, it is possible

these artefacts are responsible for the OPE-breaking behaviour seen in Fig. 8.1.

For this reason, Refs. [298,299] suggest keeping the spatial separation in the window

a� |z| � Λ−1
QCD, (8.9)

so that the spatial separation will be sufficiently large to suppress lattice artifacts, but

sufficiently small so that physical short-distance contributions are not removed.

We emphasise that our discretisation of the Compton amplitude is not incorrect—

it should recover the physical Compton amplitude in the continuum limit. It is more

a question of convergence: if the discretisation converges to the continuum poorly, our

results may be unphysical even at relatively fine lattice spacings.

Other lattice calculations

Short-distance lattice artefacts in matrix elements of a two-current operator have been

studied in other numerical lattice calculations, some of which we mentioned in Section

3.2.

For instance, there are calculations of matrix elements that are Fourier transformed in

space but not time:

T (∆t) =

∫
d3e−iq·z〈out|J (1)(∆t, z)J (2)(0)}|in〉. (8.10)

Such calculations include: the hadronic vacuum polarisation (HVP), where the ‘in’/‘out’

states are both the vacuum [302]; the heavy-quark OPE method, where the ‘out’ state is

the vacuum and the ‘in’ is a pion [95]; and the hadronic tensor, where the ‘in’/‘out’ states

are both hadrons [94].

Lattice QCD calculations of the HVP are related to the famous gµ − 2 puzzle, and as

such their lattice artefacts have been investigated thoroughly. It has been found that short

Euclidean time intervals, ∆t ∼ a, contribute significant lattice artefacts to the HVP [302].
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In particular, it has been shown [303,304] that for the currents between vacuum states

the lattice correlation function has short Euclidean time artefacts in the form

T (∆t) = T continuum(∆t)

[
1 +

∑

n=1

bn
a2n

(∆t)2n

]
. (8.11)

Hence by a mixture of fitting to such parameterisations through varying ∆t, taking the

continuum limit, and using different lattice spacings, it is possible to control these artefacts

[302].

Similarly, for the heavy-quark OPE it was found that at ∆t ≤ 2a results using this

method exhibit anomalous behaviour, which these studies attributed to short-distance

lattice artefacts [159, 305]. However, as yet no calculations of the hadronic tensor have

examined these effects.

Another related class of calculation are those that are of purely coordinate space matrix

elements:

〈out|j1(τ, z)j2(0)|in〉. (8.12)

For an early lattice calculation using a non-linear sigma model, it was found that the

lattice results exhibited OPE-breaking for |z| . 2a [306]. When similar short-distance

artefacts were examined in the pseudo-distribution method, it was found that large arte-

facts appeared for the smallest current separations considered, |z| = a, 2a [307–310].

Therefore, there are good reasons, from both analytic and numerical studies, to suspect

that the OPE-breaking observed in Fig. 8.1 is at least partially due to short-distance lattice

artefacts.

8.2 Investigating Short-Distance Artefacts

In this section, we investigate short-distance artefacts in our calculation of the Compton

amplitude. We focus on the the subtraction function, but naturally such artefacts may also

affect the ω dependent part of the Compton amplitude. As such, they could be responsible

for some of the anomalous results presented in Chapters 6 and 7.

We investigate these short-distance artefacts in three ways: (1) we calculate the stuc-

tureless fermion Compton amplitude, which are computationally inexpensive to calculate

and for which the continuum result can be determined analytically; (2) we use a dif-

ferent implementation of Feynman-Hellmann that allows us to control the separation in

Euclidean time and thereby vary the effects of short-distance artefacts; and (3) we finish

by applying the results of a lattice perturbation theory (LPT) parameterisation for the

O(a) artefacts of the Compton amplitude.

8.2.1 Structureless fermion calculation

As previously discussed, we cannot conclusively say that there are no physical OPE-

breaking mechanisms for a hadron. For a structureless fermion, however, we can calculate

the Compton amplitude exactly with simple QED—see the Feynman diagrams in Fig. 8.2.
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Figure 8.2: Feynman diagrams for Compton scattering with a structureless fermion.

We obtain

Tµν(ω,Q2) =
2ω2

1− ω2

[
pµqν + pνqµ

p · q +
Q2

(p · q)2
pµpν − gµν

]

+
2ω

1− ω2

i

p · q εµνρσq
ρsσ.

(8.13)

Therefore, if we choose µ = ν = 3 and p3 = q3 = 0, we have

T33(ω) =
2ω2

1− ω2
.

And hence at ω = 0,

T33(ω = 0, Q2) = 0. (8.14)

As such, we can calculate this structureless fermion Compton amplitude using our lattice

FH method and compare it to the known continuum result. A significant deviation from

Eq. (8.14) would indicate the presence of lattice artefacts. Consequently, this structureless

fermion case is an ideal testing ground for lattice artefacts.

We define the structureless fermion analogue of a subtraction function as simply the

ω = 0 contribution to the gµν coefficient in Eq. (8.13):

Ŝ(Q2) = T latt
33 (ω = 0, Q2), (8.15)

where we choose p3 = q3 = 0.

Lattice setup

To calculate this on the lattice, we set the strong coupling to zero by choosing unit gauge

links Uµ = 1 for the gauge link defined in Eq. (3.11). Then, instead of taking multiple

Wick contractions to construct a hadron as outlined in Chapter 3, we simply use the single

Wilson fermion propagator. The implementation of Feynman-Hellmann is then identical

to the hadron case; we use the FH relation Eq. (8.4) with the local current and set ZV = 1.

We work with dimensionless quantities: the reduced momentum,

q̂µ =
L

2π
qµ, (8.16)

and the hopping parameter, Eq. (3.19):

κ =
1

2am0 + 8r
. (8.17)

Note we always use r = 1, and hence m0 = 0 corresponds to κ = 1/8.
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Table 8.2: Details of the structureless fermion calculation.

κ am L3 × T λ q̂2

0.0956–0.1248 0.064–0.802 323 × 64 0.00625, 0.0125 4–34

We also define m, the pole mass of a structureless fermion. This is the positive energy

pole of the Wilson propagator at zero momentum. Even for a free theory we have m 6= m0,

although this is not the result of the fermion being dressed by an interaction; it is simply

due to the small discretisation effects. Typically m ≈ m0, and hence κ and am are

approximately inversely proportional.

Results

The details of the structureless fermion calculation are given in Table 8.2. We choose the

range of κ between 0.0956 and 0.1248. At κ = 0.1248 (i.e. just less than 1/8), we have

a pole mass of am = 0.064, and hence the O(am) discretisation effects are minimal, and

our results should look very close to the continuum, up to potential finite volume effects.

On the other hand, our largest κ is 0.0956 with a mass am = 0.802, which is extremely

coarse but allows us to observe the extremity of lattice artefacts. In total there are 10 κ

values in this range.

Recall in Chapter 4 when we discussed FH excited terms, we noted that Q2 � m2
N

kinematics induce FH excited terms. For the structureless fermion case, where we have

p = 0, these excited states behave like

exp

{
−m

(√
1 + q2/m2 − 1

)
τ

}
. (8.18)

Hence for a|q| � am, these terms will not be suppressed. As such, to suppress the effects

of these FH excited terms, we calculate results that have q̂2 ≥ 4. Although, for the largest

am and smallest q̂2 such excited states may still contribute significantly.

As the structureless fermion results only have one configuration (Uµ = 1) and are

very regular, we perform a simple Euclidean time fit to the function f(τ) = aτ + b, and

extract the slope, which is proportional to the Compton amplitude. We perform these

calculations for two different λ values: λ = 0.00625, 0.0125, and perform λ fits as in the

previous sections.

Although these fitting procedures come with error bars, we do not report these since

the errors are typically very small, they do not reflect physical uncertainties like gauge

noise, and the purpose here is mostly to get a qualitative understanding of the structureless

fermion’s behaviour.

We use a similar ratio to previous calculations,

Rλ ≡
Gλ + G−λ − 2G0

G0
,

to approximate the second-order derivative.
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Figure 8.3: Subtraction function analogue for structureless fermion, Eq. (8.15), for a range of κ

and q̂2. Note it appears to vanish as κ→ 1/8.
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Figure 8.4: Subtraction function for q̂2 = 26 as a function of am. While it appears to converge

to the continuum limit as am → 0, even at relatively fine discretisations, the lattice artefacts are

quite large.
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Figure 8.5: ω dependence of structureless fermion results for q̂2 = 26.

Discussion

In Fig. 8.3, we see that the results for Ŝ, the structureless fermion ‘subtraction function’,

appear to have significant q̂2 dependence for low q̂2 and small κ (equivalently large am).

As per Eq. (8.18) and the accompanying discussion, we expect low q̂2 and large am results

to be most affected by poorly suppressed Feynman-Hellmann excited states. However, for

sufficiently small am and large q̂2, Ŝ is mostly flat, with some small jitters. Hence we

interpret these results with small am and large q̂2 as the structureless fermion subtraction

function.

As we can see in both Figs. 8.3 and 8.4, even where the FH excited states appear

suppressed, the structureless fermion subtraction function is noticeably distinct from the

continuum value of zero. However, as κ → 1/8 or equivalently am → 0, we have Ŝ → 0,

the continuum prediction. While this is encouraging, the deviation from the continuum is

still evident even at moderately fine discretisations.

In Fig. 8.5 we plot the ω dependence of the structureless fermion Compton amplitude.

Similarly, at κ = 0.1248 we see good agreement between the continuum and lattice re-

sults. However, at coarser discretisations, even after subtracting Ŝ, there is a significant

discrepancy between lattice and continuum results. This indicates the presence of lattice

artefacts in the ω dependence as well. However, whether this occurs as the result of poorly

suppressed FH excited states occurring as ω → ±1, or as a genuine artefact to the lattice

Compton amplitude needs to be examined in future work.



8.2 Investigating Short-Distance Artefacts 148

τ1

τ2

τ1

τ2

τ1

τ2

Figure 8.6: Integration regions for different temporal interlacings, with the time-ordering τ2 ≥ τ1.

The blue dots represent pairs of time-slices with current insertions, while the yellow line is the

τ1 = τ2 line. Left: no interlacing, i.e. τmin = 0. Center: τmin = 1 interlacing. Right: τmin = 2

interlacing.

8.2.2 Temporal interlacing: formulation

In the case of the structureless fermion we are able to vary κ down to extremely fine

discretisations to test for the presence of short-distance lattice artefacts. In the nucleon

case, an equivalent calculation would be prohibitively expensive: not only would such

fine lattice spacings require expensive new gauge configurations, but because nucleons are

extended objects, we would need to greatly increase the number of lattice sites. Instead,

in this section we formulate a different implementation of FH that allows us to vary the

Euclidean time separation, and hence vary the contribution for the |z| ∼ a region. In

doing so, we test for the presence of short-distance lattice artefacts without needing to

vary the lattice spacing. We apply this new implementation to the structureless fermion

first and then the nucleon.

As discussed in Chapter 4, a major advantage of the FH method is that we get all

time-slices with one inversion. However, this comes with a disadvantage: we cannot easily

control which time-slices the two currents are inserted on. As a solution, we can use two

perturbing currents, each on different, non-overlapping sets of time-slices. This enforces a

minimum temporal separation, τmin. Hence we have |z| =
√

z2 + τ2 ≥ τmin, and thereby

introduce a non-zero minimum current separation.

The general form of the perturbing matrices is

[O1,2]n,m = Γ(1),(2)
τn,τm δzn,zm(eizn·q + e−izn·q)γ3, (8.19)

where Γ(1),(2) are matrices in Euclidean time space.

For the simplest case, where one of the currents is on every even time-slice and the

other on every odd, we have

Γ
(1)
τ,τ ′ ≡

{
1 if τ = τ ′ and τ, τ ′ both even,

0 otherwise.

Similarly, Γ
(2)
τ,τ ′ is 1 if τ = τ ′ are odd, and zero for all other combinations. This leads to

one of the currents being inserted on all the odd time-slices and the other on all the even.
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Hence there is a minimum temporal separation of τmin = 1 (using the a = 1 convention

for simplicity). See Fig. 8.6 center.

The perturbed propagator is

Sλ(zn, zm) =

[[
M − λ1O1 − λ2O2

]−1
]

n,m

. (8.20)

Therefore, the mixed second-order derivative of the perturbed propagator is

∂2

∂λ1∂λ2
Sλ(τ, z; 0,0)

∣∣∣∣
λ=0

=
∑

z′,z′′

τ ′,τ ′′

S(τ, z; τ ′, z′)Oq(z′)S(τ ′, z′; τ ′′, z′′)Oq(z′′)S(τ ′′, z′′; 0,0),

(8.21)

where we have defined

S(τ, z; τ ′, z′) ≡
{

0 if τ, τ ′ are both even or both odd,

S(τ, z; τ ′, z′) otherwise.

Therefore, the Feynman-Hellmann relation for τmin = 1 interlacing is

EN
∂2Gλ
∂λ1λ2

∣∣∣∣
λ=0

' τ
∑

τ1=0,2,4,6...

∑

τ2=1,3,5,...

∑

z

e−iq·z〈P |T {j3(z, τ1)j3(0, τ2)}|P 〉. (8.22)

With a judicious choice of kinematics, the RHS of Eq. (8.22) is proportional to a discreti-

sation of S1(Q2). The interlacing in Eq. (8.22) changes the measure of the two sums over

time-slices from a→ 2a, which must be accounted for by a factor of four:

EN
∂2Gλ
∂λ1λ2

∣∣∣∣
λ=0

' 1

4
τT33.

However, once this normalisation is accounted for, in the continuum limit Eq. (8.22)

approaches the same object as our previous discretisations of the Compton amplitude.

In the case of τmin = 2 interlacing, Γ(1) is zero except when τ = τ ′ = 4n for n ∈ Z,

while Γ(2) is zero except when τ = τ ′ = 4n+ 2.

This gives us

EN
∂2Gλ
∂λ1λ2

∣∣∣∣
λ=0

' τ
∑

τ1=0,4,8,12...

∑

τ2=2,6,10,...

∑

z

e−iq·z〈P |T {j3(z, τ1)j3(0, τ2)}|P 〉. (8.23)

Again, the measure of the sum goes a→ 4a, and hence we must account for this with an

overall factor of 16. See right-hand diagram in Fig. 8.6 for an illustration.

Therefore, the temporal interlacing for τmin = 1 removes contributions with |z| = 0,

while the τmin = 2 interlacing removes contributions with |z| = 0, a; see Fig. 8.6. However,

the larger τmin is, the more coarsely the integration region is sampled, which removes

points even where |z| � a. As such, to avoid different lattice artefacts induced by an

overly coarse sampling of the Euclidean time interval, the largest τmin we implement is

τmin = 2.
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Table 8.3: Details of the structureless fermion calculation with interlacing.

κ am N3
L ×NT λ q̂2 τmin

0.1080—0.1248 0.064—0.488 323 × 64 0.00625, 0.0125 26 0,1,2
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Figure 8.7: The structureless fermion subtraction function analogue at q̂2 = 26 for both interlaced

results, τmin = 1, 2, and the regular results, τmin = 0.

8.2.3 Temporal interlacing: structureless fermion

We now apply the alternative FH implementation, temporal interlacing, to the structure-

less fermion case. The relevant FH relations are Eqs. 8.22 and 8.23. We calculate two

sets of interlaced results with τmin = 1, 2, and compare these to the regular (uninterlaced)

implementation, which we denote as τmin = 0.

We choose a more limited range of κ and q̂ than the uninterlaced results. In particular,

we calculate only q̂2 = 26. The details of the calculation are given in Table 8.3. We use

the same λ values as the uninterlaced results. However, because we now have two currents

(one for each set of time-slices) we use the familiar ratio, Eq. (4.53), to approximate the

mixed second-order derivative:

Rλ ≡
G(λ,λ) + G(−λ,−λ) − G(λ,−λ) − G(−λ,λ)

G(0,0)
.

Discussion

We can see in Fig. 8.7 that Ŝ → 0 with am → 0 for all the results, τmin = 0, 1, 2. While

the interlacing results appear closer to the continuum result, for am ≈ 0.2 and above,

τmin = 1 outperforms τmin = 2 in terms of agreement with the continuum. For am ≈ 0.1

and below, the τmin = 2 results outperform the τmin = 1 results.

Similarly, we plot the ω dependence in Fig. 8.8. We can see that the subtracted

τmin = 0 results and the τmin = 1 results appear very close. Also, note that the τmin = 2
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uninterlaced results.
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results appear more jittery; that is, they deviate from the expected ω polynomial with

positive coefficients.

However, since it is difficult to judge by eye the agreement between the lattice results

and the continuum, we define a simple metric:

∆d ≡
N∑

i=1

|T cont
33 (ωi)− T latt

33 (ωi)|
N

, (8.24)

where T
cont(latt)
33 (ωi) is the Compton amplitude for the continuum (lattice). As such, ∆d

quantifies how close the results are across all ω values for different κ and τmin; large ∆d

corresponds to poor agreement with the continuum.

The results are presented in the heat map in Fig. 8.9. We can see that the interlacing

is a significant improvement on the uninterlaced results for all κ values except κ = 0.1248,

which has the finest discretisation. Moreover, it appears that, in contrast to the Ŝ results,

the τmin = 2 results are best for the coarser (larger am) results.

Conclusion

From all of these structureless fermion results, we can make a number of conclusions about

the lattice Compton amplitude for a structureless fermion:

• This Compton amplitude contains a significant degree of contamination from lattice

artefacts.

• As κ→ 1/8 or equivalently am→ 0, we recover the continuum Compton amplitude.

However, significant artefacts remain even at relatively fine discretisations.

• At all κ values but the finest, the interlacing significantly improves agreement with

the continuum.

• At the finest discretisation (κ = 0.1248), the interlacing increases the disagreement

with the continuum.

These last two points indicate the trade-offs of the interlacing procedure: while it does

suppress the lattice artefacts from short-distance effects, |z| ∼ a, it also more coarsely

samples the integration region which likely introduces its own artefacts. The artefacts

from a coarser sampling would be removed in the NT → ∞ limit. Therefore, at all but

the finest lattice spacing, the price of the interlacing procedure is worth paying, but for

sufficiently fine lattice spacings it appears to impair the results.

We must be careful about applying interpretations of structureless fermion results to

the nucleon case (for instance, the nucleon is an extended object, while a structureless

fermion is point-like). Nonetheless, this test motivates a similar application of the inter-

lacing procedure to the nucleon.

8.2.4 Temporal interlacing: nucleon

Now we apply this temporal interlacing procedure to the nucleon results, and again observe

the change in the subtraction function, S1(Q2), as well as the ω dependence.
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Simulation details

For the hadron interlacing results, we use the gauge ensemble labelled #1 in Table 8.1.

These gauge configurations were used in Chapter 5 and more details are given in Table

5.1. To summarise, they are N3
L ×NT = 323 × 64, at a pion mass of mπ ≈ 470 MeV, and

a lattice spacing of a = 0.074 fm.

We apply the interlacing procedure for τmin = 1, 2, and note that τmin = 0 corresponds

to the regular (existing) FH results for this lattice. The τmin = 1, 2 results have low

statistics, Nmeas = 200. To test the Q2 dependence, we calculate the interlaced results for

four values of the hard scale: Q2 = 2.7, 4.7, 7.1, 12.3 GeV2.

The Feynman-Hellmann perturbations to the fermion matrices are identical to those

in the structureless fermion case, Eq. (8.19), except with the QCD fermion matrix and

with the quark propagators inserted into a nucleon two-point function. The FH relations

are given in Eqs. (8.22) and (8.23).

Again, we approximate the mixed second-order derivative with the ratio given in

Eq. (4.53). Hence, as in the preceding chapters, we calculate four pairs of (λ1, λ2):

(±λ,±λ) and (±λ,∓λ). For the interlaced results the diagonal terms, (±λ,±λ), are

simply the uninterlaced propagators, and hence we need not calculate them.

τ and λ fits

We fit the combination of correlators, Rλ, to the usual linear fit function, f(τ) = aτ + b,

and interpret the slope as proportional to the Compton amplitude. Unlike Chapters 6 and

7, we do not apply our more involved weighted average fitting method. Instead, we choose

a uniform fit window of τ ∈ [6, 11]. This is simply because our interlacing results are low

statistics, and we are more interested in general, qualitative behaviour.

Then, as in previous chapters, after isolating the slope in Euclidean time, we fit the λ

dependence of the result to the function f(λ) = cλ2 in order to determine c. Note that

the λ values for τmin = 0, 1 results are λ = 0.0125, 0.025, while for τmin = 2 they are

λ = 0.00625, 0.0125. We resolve a good signal for both. We show these fits in Fig. 8.10,

where they exhibit good agreement with the quadratic-only fit function.

Also in Fig. 8.10, we plot the analogue of the effective mass, ∆τRλ(τ),

∆τRλ(τ) =
Rλ(τ + δτ)−Rλ(τ)

δτ
,

with the fits for the slope in τ . Since the interlacing results have time-dependent back-

ground fields, we might expect some unusual behaviour in the Euclidean time fits. How-

ever, in Fig. 8.10, we see a good signal for τmin = 1, 2 even at 200 measurements.

Results and discussion

In Fig. 8.11, we present our results for the subtraction function for all τmin and Q2 values.

In this plot, all results have Nmeas = 200. As before, the OPE prediction is from Ref. [291]

with scalar charge [174] and structure function moments [37] determined on the same

gauge configurations as our Feynman-Hellmann results.

We observe a dramatically improved agreement between the lattice results and the

continuum OPE as τmin increases. As with the structureless fermion, Fig. 8.4, the hadron

results appear to be very sensitive to changes in τmin. This confirms the existence of large
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Figure 8.10: p = (0, 0, 0), for up quarks and the smallest λ values. Note that the τmin = 2 results

have different λ values. Moreover, we multiply the τmin = 2 results by a factor of 10, so that the

signal quality can be better shown despite their small size.

lattice artefacts in our original calculation of S1(Q2). Hence the anomalous behaviour we

presented at the start of the chapter, Fig. 8.1, can be attributed to short-distance lattice

artefacts.

However, this comes with a caveat: even at τmin = 2, the results do not appear to

asymptote to zero as Q2 → ∞. This result is frustratingly ambiguous; it could be due

to unsuppressed lattice artefacts or physical OPE-breaking. We do not calculate results

for τmin = 3, as this is likely too coarse a sampling of the integration region in Euclidean

time.

Moreover, there is no strong convergence in the τmin = 1, 2 results that would allow

us to isolate the physical subtraction function. As such, while we have confirmed the

presence of large lattice artefacts, we can neither determine the continuum S1(Q2) nor

rule out OPE-breaking.

In addition to the subtraction function, we are interested in the effect of the interlacing

on the ω dependence. Hence we also determine the subtracted Compton structure function,

F1(ω,Q2) = F1(ω,Q2)− S1(Q2),

for all values of τmin. This is plotted in Fig. 8.12.

In contrast to the results for S1(Q2), the results for F1(ω,Q2) show relatively good

agreement among the three values of τmin. This is reassuring: it tells us that our deter-

minations of the subtracted Compton amplitude, from which we determine the moments,

is not heavily affected by these short-distance artefacts.
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Figure 8.11: The Compton amplitude subtraction function for multiple values of τmin, compared

to the OPE prediction from Ref. [291]. All results have Nmeas = 200.
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Figure 8.12: The subtracted Compton structure function F1 at a fixed value of Q2 = 4.6 GeV2.

Note that the uninterlaced, τmin = 0, results have Nmeas = 1000, while Nmeas = 200 for the

interlaced results, τmin = 1, 2.
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However, we note that for the results in Fig. 8.12, the regular τmin = 0 results have

Nmeas = 1000, while the interlacing results have Nmeas = 200. This is because it is harder

to get a reasonable signal from the τmin = 0 results for high momentum at low statistics.

As such, this reflects well on the interlaced results.

8.2.5 Towards a parameterisation of discretisation artefacts

While the interlacing results confirm the presence of large lattice artefacts in the Compton

amplitude subtraction function, it is difficult to isolate S1(Q2) using these results alone:

the number of τmin values is limited and it is difficult to establish convergence with our

limited range of τmin values.

Therefore, in this section we use the results of a lattice perturbation theory (LPT)

calculation [254] to parameterise the O(a) artefacts of the lattice Compton amplitude. We

then compare these results to our structureless fermion and nucleon Compton amplitudes.

A lattice perturbation theory expansion was performed for the lattice Compton am-

plitude with Wilson fermions up to O(a2) in Ref. [254]. However, the discretisation of

the Compton amplitude considered in this work differs from ours in two ways: (1) it has

an additional ‘seagull’ operator, which is independent of qµ; and (2) it uses the conserved

current, Eq. (3.41), whereas our numerical results largely use the local current, Eq. (3.40),

with only limited calculations using the conserved [40].

To address the first difference, we simply drop terms in the expansion that originate

from the seagull operator. To address the second, we note that the conserved current can

be expressed in terms of the local current without its renormalisation factor, plus higher

dimension operators involving derivatives:

jcon
µ (z) = ψ̄(z)γµψ(z) +

a

2
ψ̄(z)γµ

(
~Dµ + ~Dµ

)
ψ(z) +

ar

2
ψ̄(z)

(
~Dµ − ~Dµ

)
ψ(z), (8.25)

where

~Dµf(z) =
Uµ(z)f(z + aµ̂)− f(z)

a
, f(z) ~Dµ =

f(z + aµ̂)U †µ(z)− f(z)

a
. (8.26)

The key point is that the derivative operators in Eq. (8.25) are of dimension four and

hence only appear in the LPT expansion at O(a2) and higher [311]. Therefore, the O(a)

contributions are the same for the Compton amplitude with conserved current and the

local current (not including the ZV renormalisation factor).

Therefore, if we define the lattice Compton amplitude as

T latt
µν = T cont

µν + T (1)
µν︸︷︷︸
O(a)

+ T (2)
µν︸︷︷︸
O(a2)

+... (8.27)

then the relevant O(a) correction for a quark of flavour f , µ = ν = 3 and q3 = 0, using

the LPT expansion in Ref. [254], is∗∗

T
(1),f
33 (a, q) =

2a

Q̂2

∑

σ

(
cos(aqσ)− 1

)
〈P |ψ̄fψf |P 〉, (8.28)

∗∗Calling this contribution O(a) is slightly confusing since it has the form a
(
1+O(a2|q|2)

)
. However, since

|q| ∝ 1/a, the whole expression is O(a). These a|q| terms are suppressed by 1/NL.
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Figure 8.13: The ω = 0 contribution to the structureless fermion Compton amplitude on the

lattice, using numerical Feynman-Hellmann results for the local current (circles) and the analytic

O(a) corrections in Eq. (8.28) (crosses).

where

Q̂2 =
∑

σ

sin(aqσ)2 +

(∑

σ

(
cos(aqσ)− 1

))2

. (8.29)

Note that the scalar charge here is for the bare (unrenormalised) operator. For the full

expression see Ref. [254], Eq. (3.3).

In Eq. (8.28), we also have the matrix element 〈p|ψ̄fψf |p〉 = 2EpaS , where aS is the

scalar charge. For the structureless fermion aS = 1 + O(a). It is straightforward to

calculate aS for structureless Wilson fermions—see Appendix I. For the nucleon, we use

〈P |ψ̄fψf |P 〉 = 2ENa
f
S , where aS is the scalar charge. We use aS calculated for the 323×64

lattice [174].

Comparison to numerical results

We start with the structureless fermion. Since the continuum result for ω = 0 vanishes for

the structureless fermion, Eq. (8.14), all non-zero contributions must be lattice artefacts.

As such, we compare the three finest discretisations κ = 0.1248, 0.1239, 0.1225 to the O(a)

LPT expansion given in Eq. (8.28).

In Figs. 8.13 and 8.14, we observe very good agreement between the LPT expansion and

the numerical Feynman-Hellmann for the finest discretisations, κ = 0.1248, 0.1239, 0.1225.

Moreover, for all results the analytic expansion appears to match the ‘jitters’ of the nu-

merical results with remarkable accuracy.

However, in Fig. 8.14, we can see that for coarser discretisations, am & 0.2, there is a

notable divergence between the LPT and our numerical results. This suggest significant

O(a2) contributions, which are not included in the LPT results to the order we choose.
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Figure 8.14: Structureless fermion subtraction function for q̂2 = 26 as a function of am (the pole

mass), compared to the O(a) LPT correction. Note that this LPT correction is not simply linear

in am, since we include corrections from the scalar charge—see Appendix I.
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Figure 8.15: The Compton amplitude subtraction function for local and conserved currents

calculated on the 323×64 lattice [37,40,178]. The O(a) LPT term is subtracted from our Feynman-

Hellmann result as in Eq. (8.30). See Appendix I.1 for details of OPE prediction, the dashed line.
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We need to be wary in extrapolating these results to the nucleon case. Nonetheless it

seems that for structureless fermions, even at relatively coarse discretisations, the O(a)

correction from the LPT result account for most of the lattice artefact.

For the numerical results of the nucleon, we perform an O(a) improvement on the

conserved and local Compton amplitudes. The definition for this improvement, in terms

of the quantities in Eqs. (8.28) and (8.27), are

T csv-imp
µν = T csv

µν − T (1)
µν , T loc-imp

µν = T loc
µν − Z2

V T
(1)
µν , (8.30)

where we drop the seagull contribution from the LPT term for the conserved as well.

Recall that we have to multiply the LPT corrections by Z2
V for the local current.

We plot this comparison in Fig. 8.15. Again, we compare this to the OPE prediction

from Ref. [291]; see Appendix I for more details on the calculation of the OPE prediction.

We observe that the local current results match the predicted OPE very well, while the

conserved results are still not consistent with the OPE.

Lattice perturbation theory for interlacing results

Finally, we can estimate theO(a) corrections as performed above for the interlacing results.

To do so requires altering the LPT result in Eq. (8.28) in a straightforward way.

We start by rewriting Eq. (8.28) as

T
(1),f
33 (a, q) = C(q)〈P |ψ̄fψf |P 〉, (8.31)

where C is the coefficient given by

C(q) =
2a

Q̂2

∑

σ

(
cos(aqσ)− 1

)
. (8.32)

To adapt this to the interlacing results then we only need to alter C(q), since this is the only

part that depends on q, while the operator is local and hence unaffected by interlacing.

To alter this C(q), we first Fourier transform to a mixed time-momentum space:

C̃(q,∆t) =
∑

q4

e−iq4∆tC(q, q4). (8.33)

See Appendix A for definitions of discrete Fourier transforms.

We can then find the C(q) coefficient for the interlaced results by taking the inverse

Fourier transform except with ∆t starting from aτmin instead of zero:

C(τmin)(q, q4) =

T−a∑

∆t=aτmin

eiq4∆tC̃(q,∆t). (8.34)

Then, we can perform the subtraction of the O(a) corrections:

T imp.
33 (q, τmin) = T33(q, τmin)− Z2

V C(τmin)(q)〈P |ψ̄fψf |P 〉. (8.35)

The results for τmin = 0, 1, 2 are plotted in Fig. 8.16. We note that compared to the

initial interlacing results, Fig. 8.11, the three interlacings agree quite well with each other
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Figure 8.16: Comparison of proton subtraction function for all three interlacings, which have the

O(a) corrections subtracted off according to Eq. (8.35). The dashed grey line is the OPE prediction

from the calculation in Appendix I. Note that all the results in this figure, including the τmin = 0,

are for 200 configurations only and hence different to those in Fig. 8.15.

and with the OPE expectation. In particular, the τmin = 2 results show strong agreement

with the OPE prediction. This suggests that the discretisation artefacts are largely under

control with a combination of the interlacing results and the LPT improvement. Finally,

we note that it is somewhat strange that there is no obvious trend in the results of Fig. 8.16

as τmin increases. This could possibly be due to opposing signs in the O(a2) and O(a3)

terms, which become the dominant lattice artefacts once the O(a) is removed. Moreover,

as our results are only for 200 configurations, a more high statistics calculation with

multiple gauge ensembles would be necessary before further comment on such a trend is

made.

Nonetheless the results presented in Fig. 8.16 are very encouraging, with further work

needed to ensure that discretisation artefacts are fully controlled: extending the LPT

expansion to O(a2), and calculations on different gauge configurations would both improve

our degree of certainty in these results.

Finally, we note that, given the success of applying LPT in the case of the subtraction

function, we could also use the LPT result to account for O(a|p|) and O(a|q|) kinematic

artefacts. Such artefacts are likely responsible for the anomalous large ω and ω̄ behaviour

as seen in Chapters 6 and 7. As such, applying LPT to these artefacts could significantly

improve our extractions of the forward and off-forward amplitudes, and in turn the parton

distributions themselves.
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8.3 Conclusion and Outlook

In this chapter we have investigated the Compton amplitude subtraction function, focusing

on its anomalous high-energy behaviour, which violates predictions from the operator

product expansion. Using the structureless fermion as a playground, we showed that

there are significant lattice artefacts to this Compton amplitude that could account for

this OPE-breaking behaviour.

Although these artefacts vanish in the continuum limit, such a limit is very expensive

for the nucleon case. Therefore, we designed an alternative implementation of Feynman-

Hellmann, temporal interlacing, that allowed us to test for these artefacts without taking

extremely fine lattice spacings. The temporal interlacing results confirmed the existence of

large lattice artefacts for S1(Q2), and moreover showed that almost all the OPE-breaking

could be attributed to short-distance lattice artefacts. On the other hand, the temporal

interlacing had only minimal effect on the ω dependent part of the Compton structure

functions.

Finally, we compared the results of anO(a) lattice perturbation theory calculation [254]

to our results. For the structureless fermion results at finer discretisations, these O(a)

corrections were a very good description, but for coarser results they diverged. We per-

formed an O(a) improvement to the local and conserved Compton subtraction functions.

To bring both the interlacing and the LPT together, we performed the O(a) improvement

on the interlacing results, which showed strong agreement among the interlacings and with

the OPE prediction. While this indicates that discretisation artefacts are largely under

control, further work—extending the LPT to O(a2) and calculations on different gauge

ensembles—would improve our certainty in this result.

Another approach not explored in this chapter to control such short-distance arte-

facts is to perform the calculation with gradient flowed gauge links. It has been shown

analytically that this method can control short-distance artefacts in quasi-parton distri-

butions [312, 313] and for coordinate space current products [117]. Test calculations with

gradient flow for hadronic observables have been performed by the CSSM/QCDSF collab-

oration [314], with an extension to the Compton amplitude an aim of future work.

A first principles calculation of the Compton amplitude subtraction function would be

of great physical interest for a number of reasons:

1. Our calculation is best suited for Q2 ∈ [2, 12] GeV2, a range that is inaccessible

for effective theory and non-relativistic calculations, but also a range in which we

cannot necessarily assume only perturbative contributions are significant. As such,

results from lattice Feynman-Hellmann are well positioned to fill in the gaps of our

understanding of S1(Q2).

2. Since both the Cottingham sum rule and the two-photon exchange term (Eqs. (8.1)

and (8.2), respectively) require an integral over q, this intermediate range of Q2 is

necessary for evaluations of the proton–neutron mass difference and the hadronic

backgrounds to the proton charge radius. Hence our results could improve deter-

minations of the proton–neutron mass difference and help clarify the proton charge

radius puzzle.

3. Finally, we could extend our control of systematics to the off-forward subtraction

function. The off-forward case is of great interest as it is an input for experimental
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measurements of the D-term, which gives access to the proton pressure distribution

among other quantities. As such, a determination of the off-forward subtraction

function could help make experimental determinations of the D-term more model-

independent and accurate.

Moreover, it is possible that the path to control discretisation artefacts discussed here

could help control the anomalous large ω behaviour presented in Chapters 6 and 7, and

thereby improve our determinations of parton distributions and their moments.

As such, the work in this chapter represents the first steps towards a lattice QCD

determination of the Compton amplitude subtraction function, as well as the first steps

in controlling short-distance discretisation artefacts that may affect our determination of

parton distributions.



Chapter 9

Conclusion and Outlook

In this thesis, we have shown that the Feynman-Hellmann method is a versatile and pow-

erful framework, capable of determining the Compton amplitude in lattice QCD for both

off-forward and forward kinematics, as well as polarised and unpolarised contributions.

The calculation of the Compton amplitude from first principles has enormous potential,

allowing us to determine parton distributions, which complement existing efforts in quasi-

and pseudo-distribution frameworks. In addition, a determination of the Compton am-

plitude allows us to access information, such as the scaling, which has direct relevance to

experiment. While the work presented here demonstrates the potential of the Feynman-

Hellmann Compton amplitude approach, we have also exposed major sources of system-

atic error, and discussed various methods to control them. As such, this work breaks

new ground for our method, allowing for the calculation of new quantities and developing

techniques to control systematics.

In Chapters 5 and 6 we investigated the unpolarised off-forward Compton amplitude

(OFCA), performing the first calculation of this amplitude in lattice QCD. Since there

was previously no suitable parameterisation of the OFCA in the literature, our first step

was to derive such a parameterisation. We then applied this to a proof-of-concept cal-

culation, which was published in Ref. [39]. This initial calculation, however, was fairly

limited as we could not separate the helicity-conserving or -flipping amplitudes, H and E ,

respectively. In Chapter 6, we significantly improved upon this calculation, and showed

how to separate H1 and E1. We calculated these amplitudes for zero-skewness kinematics

and t ≈ −0.3,−0.6 − 1.1 GeV2. We determined their leading moments, which agreed

well with three-point calculations at a similar pion mass and volume. While this is en-

couraging, we also saw the limits of the present method: both the higher moments and

a model-dependent reconstruction of the GPD yielded results at odds with experimental

determinations. We argued that lattice artefacts affecting the large ω̄ results are to blame

for our inability to go beyond the leading moments.

Similarly, in Chapter 7 we performed the first lattice QCD calculation of the polarised

forward Compton amplitude. Using analogous methods to the off-forward calculation, we

separated the g̃1,2 amplitudes, and determined their moments. As with the off-forward

case, our leading Mellin moments showed reasonable agreement with phenomenology, but

the higher moments and large ω values appeared to be affected by artefacts. Unlike the

off-forward case, however, we showed that these artefacts are enhanced by a system of

equations with poor orthogonality in the separation of g̃1,2. Therefore, we outlined a path

for future work to improve this orthogonality, and thereby significantly improve our control

of these artefacts.
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Finally, in Chapter 8 we investigated lattice artefacts affecting the Compton ampli-

tude subtraction function. To study and control these artefacts, we employed a range of

tools: structureless fermion calculations, varying the discretisation of the Compton am-

plitude, and an analytic lattice perturbation theory (LPT) expansion. We showed that

short-distance lattice artefacts are the dominant contribution to the subtraction function.

However, we also showed that the ω dependent part of our amplitude is not as affected

by these short-distance artefacts, and hence our previous results for the moments are

not completely invalidated. Nonetheless, due to the dominance of these short-distance

artefacts in our signal, controlling such artefacts is a priority in future calculations.

Even before major efforts are undertaken to control these artefacts, there are still

quantities to explore with the Feynman-Hellmann Compton amplitude method:

• As we argued that the leading moments are largely unaffected by the short-distance

artefacts, we could determine the Q̄2 dependence of the leading off-forward moments,

as has been done in the forward case [38]. This would probe non-leading-twist con-

tributions to the OFCA, which are not well-studied theoretically or experimentally.

• Since the polarised amplitudes appear less affected by short-distance artefacts, we

can also pursue meaningful work here. By improving the separation of g̃1,2 and

determining these amplitudes over a range of Q2 values, we can study a range of

properties discussed in Chapter 7.

• Similarly, our methods could be extended to the polarised off-forward amplitudes,

H̃ and Ẽ . This would give access to the polarised GPDs as well as an off-forward

analogue of the d2 structure [315].

To address Feynman-Hellmann specific systematics, there are a few major areas of

interest:

• Controlling the short-distance lattice artefacts discussed in Chapter 8, using alterna-

tive implementations of Feynman-Hellmann such as temporal interlacing and Wilson

flow [314], or analytic parameterisation that account for these artefacts.

• In terms of Euclidean time fitting, methods such as distillation and momentum

smearing would allow us to access better signal for higher momenta [144, 252, 253],

giving us a greater spread of ω values. Similarly, one could include Feynman-

Hellmann excited states in these fits, as was done in Ref. [173].

• Finally, there is the inclusion of disconnected diagrams, which has previously been

achieved in first-order Feynman-Hellmann [180]. Although these contributions are

expected to be small, sea quark contributions to the Compton amplitude are of

significant interest [316].

In addition, there are systematics that are not specific to Feynman-Hellmann, such as

pion mass, lattice spacing and volume dependence, for which we have barely scratched the

surface, and must be investigated before strong comparisons with experiment are made.

If the systematics can be sufficiently controlled, our method would realise its full poten-

tial: an accurate and completely first principles determination of the Compton amplitude

and the wealth of physical information that would entail. The work in this thesis takes us

closer to that goal, showing both our method’s great promise and starting the project of

addressing key systematics.



Appendix A

Definitions and Conventions

Here, we collect a few useful definitions and conventions used throughout this thesis.

Symmetrisation of Lorentz tensors

For symmetrisation and anti-symmetrisation of a rank-2 tensor, we use the convention

T {µν} =
1

2

[
Tµν + T νµ

]
, T [µν] =

1

2

[
Tµν − T νµ

]
, (A.1)

while the general expression for a fully symmetrised rank-n tensor is

T {µ1...µn} =
1

n!

∑

σ∈Sn
T νσ(1)...νσ(n) , (A.2)

where Sn is the group of permutations of the numbers 1, 2, ..., n, and σ is an element of

Sn. Here, we denote the ith component of some group element, σ ∈ Sn, as σ(i).

Continuum normalisations

In the continuum, we define the identity in the space of hadron states as

I =
∑

X,s

∫
d3p

(2π)3

1

2EX(p)
|X(p, s)〉〈X(p, s)|, (A.3)

with the normalisation

〈X(p1)|Y (p2)〉 = (2π)32EXδ
(3)(p1 − p2)δX,Y . (A.4)

For the unique case of the vacuum, we have 〈Ω|Ω〉 = 1.

For Fourier transforms, we use the convention

f̃(p) =

∫
d4xeip·xf(x), f(x) =

∫
d4p

(2π)4
e−ip·xf̃(p), (A.5)

for four-vectors p and x.

Hence the Dirac deltas are
∫
d4xeip·x = (2π)4δ(4)(p),

∫
d4pe−ip·x = (2π)4δ(4)(x). (A.6)
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Lattice normalisations

We define a coordinate space four-vector on the lattice

xµ = anµ for the elements of nµ in {0, 1, ..., N − 1},

where N is the number of lattice sites in a given dimension. Similarly, we define a mo-

mentum space four-vector

k4 =
2π

L
m4, ki =

2π

aN
mi for the elements of mµ in

{
−N

2
+ 1,−N

2
+ 2, ...,

N

2

}
.

For the lattice results in this thesis we have NT = 2NL, where NT,L are the number of

lattice sites for the temporal and spatial dimensions of the lattice.

Given these definitions, the Fourier transform for coordinate space is

f̃(p) =
∑

xµ

eip·xf(x) = a4
NT−1∑

n0=0

NL−1∑

ni=0

e
i 2π
NT

m4n4e
−i 2π

NL
m·n

F (n), (A.7)

since the measure of the sum for each spatial dimension is a.

Similarly, the momentum space Fourier transform is

f(x) =
1

(2π)4

∑

pµ

e−ip·xf̃(p)

=
1

TL3

NT /2∑

m0=−NT /2+1

NL/2∑

mi=−NL/2+1

e
−i 2π

NT
m4n4e

i 2π
NL

m·n
F̃ (m) ,

(A.8)

since the measure of the sum is 2π/L for the spatial sum, and 2π/T for the temporal. Note

that the F functions above are simply the f functions, with their arguments transformed

to be dimensionless integers.

Using a geometric series, it can be shown that the Kronecker delta is

δn,m =
1

N

N−1∑

k=0

ei
2πk
N

(n−m) =
1

N

N/2∑

k=−N/2+1

ei
2πk
N

(n−m), (A.9)

so long as |n−m| < N .

Hence, comparing to Eq. (A.6), the discrete equivalents of the Dirac deltas are

δ(4)(p) =
1

(2π)4

∑

xµ

eip·x =
TL3

(2π)4
δ

(4)
m,0, δ(4)(x) =

1

(2π)4

∑

pµ

e−ip·x =
1

a4
δ

(4)
n,0, (A.10)

where δ
(4)
m,0 = δm1,0δm2,0δm3,0δm4,0, the four-dimensional Kronecker delta.

This keeps the normalisation in the space of states

〈X(p1)|Y (p2)〉 = 2EXL
3δ

(3)
m1,m2δX,Y . (A.11)



Appendix B

Analyticity of the Compton

Amplitude

In this appendix we show how to derive dispersion relations for the scalar amplitudes of the

Compton amplitude. For lattice calculations of the Compton amplitude these relations are

particularly important, as they connect the |ω̄| . 1 region, which is accessible in Euclidean

spacetime, to the physical |ω̄| & 1 region. Here, we focus on off-forward kinematics, as it

is straightforward to take t = 0 and recover the forward dispersion relations.

Analytic Region

To begin, we expand the time-ordering of the OFCA, defined in Eq. (2.72):

Tµν = i

∫
d4zeiq̄·z

[
〈P ′|jµ(z/2)jν(−z/2)|P 〉Θ(z0) + 〈P ′|jν(−z/2)jµ(z/2)|P 〉Θ(−z0)

]
,

(B.1)

where Θ is the Heaviside step function. Inserting a complete set of states, and using the

translation operator,

Tµν =
∑

X

i

∫
d3PX
(2π)3

1

2P 0
X

∫
d4z
[
ei(q̄+P̄−PX)·z〈P ′|jµ(0)|X〉〈X|jν(0)|P 〉Θ(z0)

+ ei(q̄+PX−P̄ )·z〈P ′|jν(0)|X〉〈X|jµ(0)|P 〉Θ(−z0)
]
,

(B.2)

where PX is the four momentum of state |X〉. Now apply the definition of the Dirac delta:

Tµν =
∑

X

(2π)3i

∫
d3PX
(2π)3

1

2P 0
X

∫
dz0

×
[
δ(3)(q̄ + P̄−PX)eiz

0(q̄0+P̄ 0−P 0
X)〈P ′|jµ(0)|X〉〈X|jν(0)|P 〉Θ(z0)

+ δ(3)(q̄ + PX − P̄)eiz
0(q̄0+P 0

X−P̄ 0)〈P ′|jν(0)|X〉〈X|jµ(0)|P 〉Θ(−z0)
]
.

(B.3)

The integral representation of the step function is

Θ(z0) =
1

2πi
lim
ε→0+

∫ ∞

−∞
ds

eisz
0

s− iε , (B.4)
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where we evaluate Eq. (B.4) with a semi-circle contour in the upper half of the complex

plane, whose radius goes to infinity. Then,

Θ(z0) = lim
ε→0+

{
e−εz

0
if z0 > 0

0 if z0 < 0,
(B.5)

Θ(−z0) = lim
ε→0+

{
0 if z0 > 0

eεz
0

if z0 < 0.
(B.6)

Now we can evaluate Eq. (B.3):

∫ ∞

−∞
dz0eiz

0(q̄0+P̄ 0−P 0
X)Θ(z0) =

−i
P 0
X − q̄0 − P̄ 0 − iε , (B.7)

∫ ∞

−∞
dz0eiz

0(q̄0−P̄ 0+P 0
X)Θ(−z0) =

−i
P 0
X + q̄0 − P̄ 0 − iε , (B.8)

where from now on we suppress the limit ε → 0+. Putting Eqs. (B.7) and (B.8) into

Eq. (B.3), we get

Tµν(P, q;P ′, q′) =
∑

X

[〈P ′|jµ(0)|X(P + q)〉〈X(P + q)|jν(0)|P 〉
2P 0

X(P 0
X − (P 0 + q0)− iε)

+
〈P ′|jν(0)|X(P− q′)〉〈X(P− q′)|jµ(0)|P 〉

2P 0
X(P 0

X − (P 0 − q′0)− iε)
]
.

(B.9)

Therefore, we have discontinuities in our amplitude where the intermediate state goes

on-shell: at P 0
X = P 0 + q0 or P 0

X = P 0 − q′0.

In the incoming nucleon’s rest frame, this becomes

(P 0
X)2 = (P 0 + q0)2 ⇒ m2

X + q2 = m2
N + 2q0mN + (q0)2 ⇒ m2

X = (P + q)2.

Similarly,

(P 0
X)2 = (P 0 − q′0)2 ⇒ m2

X + q′2 = m2
N − 2q′0mN + (q′0)2 ⇒ m2

X = (P − q′)2.

Hence the discontinuities are where the invariant mass of the intermediate state is m2
X =

(P + q)2 or m2
X = (P − q′)2. We can use this to determine the kinematic discontinuities of

each the amplitudes, A, in Eq. (5.11). We assume that the momentum transfers, t and Q̄2,

are fixed, and investigate the cuts in the variables ω̄ and ϑ; see Eq. (2.74) for definitions

of the kinematic scalars.

Since the nucleon is the ground state, we have that m2
X ≥ m2

N . Therefore, m2
X =

(P + q)2 implies

m2
X = (P + q)2 = (P̄ + q̄)2 = P̄ 2 + 2P̄ · q̄− Q̄2 = −Q̄2(1 +

t

4Q̄2
− ω̄) +m2

N ≥ m2
N , (B.10)

and m2
X = (P − q′)2 implies

m2
X = (P − q′)2 = (P̄ − q̄)2 = P̄ 2− 2P̄ · q̄− Q̄2 = −Q̄2(1 +

t

4Q̄2
+ ω̄) +m2

N ≥ m2
N , (B.11)



169

where we have used P̄ 2 = m2
N − t/4. Therefore, we have the relation

− Q̄2(1 +
t

4Q̄2
± ω̄) ≥ 0 (B.12)

If we assume that Q̄2 is fixed, then Eq. (B.12) implies that there are discontinuities in the

ω̄ plane for

|ω̄| ≥ 1 + t/(4Q̄2). (B.13)

Similarly, we can hold ω̄ fixed in Eq. (B.12) to derive cuts in ϑ. If we have ω̄ >

1 + t/(4Q̄2) and −Q̄2(1 + t
4Q̄2 − ω̄) ≤ 0, this implies that Q̄2 ≥ 0, which implies that

− 1

4
(q2 + 2q · q′ + q′2) ≥ 0 ⇒ q2 + q′2 ≤ t

2
< 0. (B.14)

Hence we must have q2 < 0 and/or q′2 < 0. These imply that

0 > q2 = (q̄ + ∆/2)2 = t/4 + ∆ · q̄ − Q̄2 ⇒ ϑ < −1 +
t

4Q̄2
. (B.15)

0 < q′2 = (q̄ −∆/2)2 = t/4−∆ · q̄ − Q̄2 ⇒ ϑ > 1− t

4Q̄2
. (B.16)

However, since our lattice calculations in Chapters 5 and 6 focus on the ϑ = 0 with ω̄ 6= 0

case, we will also focus on the dispersion relation in ω̄.

Regge Behaviour

Recall in Chapter 5 that we quoted some results from Regge theory [213–215] that give

us the behaviour of the scalar amplitudes of the Compton amplitude as a function of

ν =
P̄ · q̄
mN

. (B.17)

To repeat these results: at fixed t and Q̄2, we have that

H1, E1,K6 ∼ ναM (t), all other amplitudes ∼ ναM (t)−1, ναM (t)−2, or ναM (t)−3, (B.18)

where αM (t) . 0.5. Since ω̄ = mNν/Q̄
2, at fixed Q̄2 the amplitudes have the behaviour

lim
ω̄→∞

H1, E1,K6 −→∞, while lim
ω̄→∞

A −→ 0, (B.19)

for all other amplitudes.

Unsubtracted Dispersion Relation

The amplitudes defined in Ref. [215] are all even functions of ω̄. However, for the am-

plitudes that go like ναM (t)−2 or ναM (t)−3, we can factor out 1/P̄ · q̄, and get that these

amplitudes still behave like ναM (t)−1 or ναM (t)−2. Hence even with this factor taken out,

they still vanish as ω̄ → 0. Moreover, by taking out a factor of 1/P̄ · q̄, they become odd

functions of ω̄, which is important for their dispersion relations.
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Reω̄

Imω̄

Figure B.1: Contour the dispersion relations in ω̄. The cuts on the real axis start at ω̄ ≈ 1. The

radius of the contour is taken to infinity.

Here, we derive a dispersion relation for the amplitudes that have a 1/P̄ · q̄ factored

out—see Eq. (5.11). These are H̃1,2, Ẽ1,2, and H2,3, E2. We note that, in the forward limit,

H2 +H3
t→0−→ F2, H̃1,2

t→0−→ g̃1,2, (B.20)

where we studied the latter two in Chapter 7.

To derive a dispersion relation for these amplitudes, recall from Eq. (B.13) that these

amplitudes have cuts for |ω̄| ≥ 1 + t/(4Q̄2). Here, we will drop the t/(4Q̄2) corrections as

these are highly suppressed for our kinematics.

We consider an amplitude A(ω̄0, t, Q̄
2) at some fixed values of the momentum transfer

variables t, Q̄2, which is odd under ω̄ → −ω̄ and which vanishes as ω̄ →∞. We can take ω̄

as a complex variable by analytic continuation. Then, for ω̄0 real and |ω̄0| ≤ 1, we apply

Cauchy’s theorem for a contour C, with a radius less than one, centered at the origin:

A(ω̄0, t, Q̄
2) =

1

2πi

∮

C
dω̄
A(ω̄, t, Q̄2)

ω̄ − ω̄0
. (B.21)

To evaluate this integral we transform C into the contour given in figure B.1. Letting the

contour along the cuts be a distance ε > 0 above or below the real axis, we can write

Eq. (B.21) as

A(ω̄0, t, Q̄
2) =

1

2πi

[ ∫ ∞

1
dω̄
A(ω̄ + iε, t, Q̄2)−A(ω̄ − iε, t, Q̄2)

ω̄ − ω̄0

+

∫ −1

−∞
dω̄
A(ω̄ + iε, t, Q̄2)−A(ω̄ − iε, t, Q̄2)

ω̄ − ω̄0

]
+ arc contributions.

(B.22)
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Now we let ω̄ → −ω̄ in the second integral. For simplicity we suppress the t, Q̄2 arguments:

A(ω̄0) =
1

2πi

[ ∫ ∞

1
dω̄
A(ω̄ + iε)−A(ω̄ − iε)

ω̄ − ω̄0

+

∫ 1

∞
dω̄
−A(−ω̄ + iε) +A(−ω̄ − iε)

−ω̄ − ω̄0

]
+ arcs,

(B.23)

where we have used the fact that these amplitudes are odd under ω̄ → −ω̄. Hence

A(ω̄0, t, Q̄
2) = −A(−ω̄0, t, Q̄

2). Moreover, since A vanish for ω̄ →∞, the arc contributions

must vanish. Therefore, Eq. (B.23) becomes

A(ω̄0) =
1

2πi

∫ ∞

1
dω̄[A(ω̄ + iε)−A(ω̄ − iε)]

( 1

ω̄ − ω̄0
− 1

ω̄0 + ω̄

)
. (B.24)

The Schwarz reflection principle states that a function with real number boundary

value on the real axis has the property f∗(z) = f(z∗) [317]. Therefore, by the Schwarz

reflection principle A(ω̄0 + iε)−A(ω̄0 − iε) = 2iIm
[
A(ω̄0 + iε)

]
, and hence we will define

a spectral function: 2πρ(ω̄ + iε) = Im
[
A(ω̄ + iε)

]
.

Therefore,

A(ω̄0) = 2

∫ ∞

1
dω̄ρ(ω̄)

( 1

ω̄ − ω̄0
− 1

ω̄0 + ω̄

)
= 2

∫ ∞

1
dω̄ρ(ω̄)

2ω̄0

ω̄2 − ω̄2
0

. (B.25)

Using the substitution x = 1/ω̄, we get

A(ω̄0) = 4ω̄0

∫ 1

0
dx

ρ̃(x)

1− x2ω̄2
0

. (B.26)

In the case of forward kinematics, we can use the optical theorem, 2πg1,2 = Img̃1,2 the

spectral function ρ̃ can be identified with one of the deep-inelastic scattering structure

functions: F2 or g1,2. Hence we derive Eqs. (2.27) and (2.54).

However, in the off-forward case we cannot use the optical theorem. Therefore, for

instance, the dispersion relation for H2 is just

H2(ω̄0, t, Q̄
2) =

2

π
ω̄0

∫ 1

0
dx

ImH2(1/x, t, Q̄2)

1− x2ω̄2
0

. (B.27)

This is still a useful relation, as it allows us to relate the amplitude in the unphysical

region that is accessible in Euclidean spacetime, to the physical region.

Subtracted Dispersion Relation

For the subtracted dispersion relation, we are considering amplitudes such as H1 and E1,

which are even functions under ω̄ → −ω̄, and which do not vanish as ω̄ →∞.

We repeat all the steps that got us to Eq. (B.22) in the unsubtracted case:

A(ω̄0, t, Q̄
2) =

1

2πi

[ ∫ ∞

1
dω̄
A(ω̄ + iε, t, Q̄2)−A(ω̄ − iε, t, Q̄2)

ω̄ − ω̄0

+

∫ −1

−∞
dω̄
A(ω̄ + iε, t, Q̄2)−A(ω̄ − iε, t, Q̄2)

ω̄ − ω̄0

]
+ arc contributions.

(B.28)
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Now we let ω̄ → −ω̄ in the second integral, and use the Schwarz reflection principle to get

A(ω̄0) = 2

∫ ∞

1
dω̄ρ(ω̄)

( 1

ω̄ − ω̄0
+

1

ω̄0 + ω̄

)
+ arcs, (B.29)

where we have again defined 2πρ(ω̄ + iε) = Im
[
A(ω̄ + iε)

]
.

Unlike the case of the unsubtracted dispersion relation, the arc contributions do not

disappear on their own. Therefore, we wish to remove these contributions so that we will

have a relationship between the amplitude in the unphysical region and the amplitude in

the physical, without the appearance of the unknown arc contributions. As such, we note

that the ω̄ = 0 contribution is

A(0) = 2

∫ ∞

1
dω̄

2ρ(ω̄)

ω̄
+ arcs. (B.30)

Therefore, we can remove the arc contributions:

A(ω̄0)−A(0) =2

∫ ∞

1
dω̄ρ(ω̄)

( 1

ω̄ − ω̄0
+

1

ω̄0 + ω̄
− 2

ω̄

)

=4ω̄2
0

∫ ∞

1
dω̄

ρ(ω̄)

ω̄(ω̄2 − ω̄2
0)
.

(B.31)

Substituting the variable x = 1/ω̄, we get

A(ω̄0)−A(0) = 4ω̄2
0

∫ 1

0
dxx

ρ̃(x)

1− (ω̄0x)2
, (B.32)

which is the form of the subtracted dispersion relations such as Eqs. (2.26) and (5.18).

Again, in the case of F1, the forward Compton structure function, ρ̃ = F1, the deep-

inelastic structure function. However, for the off-forward case, we do not have this rela-

tionship.



Appendix C

Operator Product Expansion

In Chapter 2 we discussed the operator product expansion (OPE) in QCD and its appli-

cation to deep-inelastic scattering. Then, in Chapter 5 we performed a leading-order OPE

on the nucleon off-forward Compton amplitude. In this chapter, we discuss in greater

detail the OPE relation, its justification, and the more formal method of applying it. Our

discussion uses Refs. [47, 51,318] as guides.

We start by assuming that the OPE relation,

A(z)B(0)
z→0−−−→

∑

i

ci(z)Oi(0),

applies to the product of currents. Note that the OPE has been proven to all orders in

perturbation theory [319]. However, for a matrix element where not all contributions are

perturbative (such as QCD), the OPE is only a conjecture [320,321]. Although there is no

formal proof, the OPE has been extremely successful from a phenomenological perspective,

and there are many good theoretical reasons to believe that the OPE relation holds in

cases such as the Compton amplitude [322].

To apply the OPE to the time-ordered product of currents in the Compton amplitude

we use a slightly different but equivalent form:

T {j(z)j(0)} z→0−−−→
∑

n,i

C(i)
n (z2)zµ1 ...zµnOµ1...µn

i (0). (C.1)

Note that C
(i)
n (z2) are the reduced Wilson coefficients

Now there is something slightly confusing: the OPE is an expansion about zµ ≈ 0,

whereas the dominant contribution to the current product in deep-inelastic scattering

comes from the z2 ≈ 0 region [64]. Therefore, we are only interested in the singularity

of the Wilson coefficient in powers of (z2)−1, which are most dominant for z2 ≈ 0. Such

singularities are not affected by the zµ1 ...zµn terms.

Power Counting: Canonical Dimension

Since the operators that are most dominant in deep-inelastic scattering will be those

attached to the most singular reduced Wilson coefficients, C
(i)
n (z2), we start by examining

the degree of singularity in these functions.
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The simplest way to do this is to examine the dimension of the operator, Oµ1...µn
i (0).

Since T {j(z)j(0)} has a fixed dimension of six∗, the RHS of Eq. (C.1) must also match this

dimension. The spacetime coordinate has dimension [z] = −1. Comparing the dimension

of the two sides of Eq. (C.1), we have that the dimension of C
(i)
n (z2) is

dCi,n = 2dj − (dOi,n − n), (C.2)

where dOi,n is the dimension of the operator Oµ1...µn
i , we get a dimension of −n from

zµ1 ...zµn , and dj is the dimension of a current. Then, since the only dimensionful parameter

that C
(i)
n (z2) can depend on is z2, we have that in the limit z2 → 0,

lim
z2→0

C(i)
n (z2) ∼ 1

(z2)
(2dj−(dOi,n−n))/2

=
1

(z2)(2dj−τ)/2
, (C.3)

where we have defined the ‘twist’ of an operator as τ = dOi,n − n. Since dj is fixed, it is

clear from Eq. (C.3) that the most divergent C
(i)
n (z2) will be attached to the operator with

the lowest twist. Therefore, the operators that contribute most to deep-inelastic scattering

will be those with the lowest twist.

Leading Twist Operators

More generally, the twist of an operator is defined as τ ≡ dimension − spin [54]. For

example, a quark field has spin 1/2 and dimension [ψ] = 3/2 (as per the QCD Lagrangian,

Eq. (2.10)), resulting in a twist of 1. Similarly, the twist of the gluon field strength tensor

is also 1. Therefore, the lowest twist terms one can have are twist-two, since our operators

must be bilinears in our particle fields. On the other hand, the covariant derivative has

canonical dimension [Dµ] = 1 and spin 1, making its overall twist 0. As a result, we can

add as many covariant derivatives as we like without changing the twist of the operator,

and so the light-cone OPE has an infinite number of leading-order terms, in contrast to

the short distance OPE.

In addition, to have definite spin, an operator must belong to an irreducible represen-

tation of the Lorentz group. This means it must be symmetrised in its Lorentz indices,

and any terms proportional to gµiµj (traces) must be subtracted (the justifications for this

are quite involved; see Ref. [323]).

Therefore, the basis of twist-two operators is

O(n)µ1...µn
f (X) = ψ̄f (X)γ{µ1i

↔
D
µ2

...i
↔
D
µn}

ψf (X)− traces, (C.4)

Õ(n)µ1...µn
f (X) = ψ̄f (X)γ{µ1γ5i

↔
D
µ2

...i
↔
D
µn}

ψf (X)− traces. (C.5)

These are the same operators used in Chapter 2. As discussed in Section 5.1, we tech-

nically also need to include operators with total derivatives. However, for the standard

presentation of the OPE, we leave these out.

∗We count dimension in terms of mass, so [m] = 1. Here, we only consider the canonical dimension;
considering additional quantum mechanical effects, this is altered by the anomalous dimension.
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For gluons, the twist two operators are

O(n)µ1...µn
g (X) = F {µ1

α (X)i
↔
D
µ2

...i
↔
D
µn}

Fαµn}(X)− traces. (C.6)

The leading-order Wilson coefficients for any operators with gluon fields will be zero, since

adding gluon lines to the leading-order handbag diagrams introduces terms of order α2
S .

Therefore, we do not give these operators in our final result.

Form of Current Product

Obtaining the basis of operators is the most challenging part of the expansion process.

However, once we have identified these operators, we can determine the operator product

expansion (OPE) by leveraging various general properties of the current product. These

include Lorentz covariance, crossing symmetry (which eliminates q-odd terms in the sym-

metric Compton tensor), and current conservation (∂zj(z) = 0).

Then, the OPE of the time-ordered current product is

T {jµ(z)jν(0)} z→0−−−→ (∂µ∂ν − gµν∂2)
∞∑

n=0,2,4

C(1)
n (z2)zµ1 ...zµnOµ1...µn

n (0)

+ (gµκ∂ρ∂ν + gρν∂µ∂κ − gµκgνρ∂2 − gµν∂ρ∂κ)
∞∑

n=0,2,4

C(2)
n (z2)zµ1 ...zµnOµνµ1...µn

n+2 (0)

+ anti-symmetric in µ↔ ν terms.

(C.7)

Free field approximation

To derive the form of the current product used in Eqs. (2.44) and (2.56), we use a slightly

different method that is equivalent to the above expansion, so long as we take the Wilson

coefficients of the above expansion to leading-order. The key idea behind this alternative

expansion is to take the current of products as operators for non-interacting quarks. This

then gives us the ‘handbag’ contribution that is identical to the leading-twist OPE with

leading-order Wilson coefficients.

For the non-interacting or free quark fields in the current product, we can apply Wick’s

theorem to get

T
{
ψ̄f (z)γµψf (z)ψ̄f (y)γνψf (y)

}
=− trace[γµ ψf (z)ψ̄f (y)γν ψ(y)f ψ̄f (z)]

+ : ψ̄f (z)γµ ψf (z)ψ̄f (y)γνψf (y) :+ : ψ̄f (z)γµψf (z)ψ̄f (y)γνψf (y) :

+ : ψ̄f (z)γµψf (z)ψ̄f (y)γνψf (y) :,

(C.8)

where the contractions yield free quark propagators, SF (z − y), which are singular both

in the limit that z → y and (z − y)2 → 0 [47].

Therefore, in the short-distance limit z → y, the trace term will be the most singular

of Eq. C.8, the second two terms less singular. The last term corresponds to a power-

suppressed cat’s ears diagram (See Figure C.1). We are only interested in the most singular

terms. Therefore, we can ignore the cat’s ears term. Further, the trace term (vacuum
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Figure C.1: Feynman diagrams corresponding to terms in Eq. C.8: the trace term (left), the two

terms with a single contraction (center), the term with no contraction (right).

polarisation) doesn’t contribute to the scattering process, so we ignore this term too. This

leaves us with the two terms that have only one propagator each: the ‘handbag’ terms.

Hence we keep only the terms in Eq. (C.8) with one contraction. These contractions

yield free quark propagators. Therefore, after using γ-matrix identities, we get

T {jµ(z/2)jν(−z/2)} = Sρ(z)

(
Sµρνκ

[
ψ̄f (z/2)γκψf (−z/2)− ψ̄f (−z/2)γκψf (z/2)

]

− iεµνρκ[ψ̄f (z/2)γκγ5ψf (−z/2) + ψ̄f (−z/2)γκγ5ψf (z/2)]

)
,

(C.9)

where we have introduced the reduced leading-order quark propagator:

Sµ(z) ≡ i

2π2

zµ

(z2 − iε)2
⇒ γµS

µ(z) = SF (z),

and Sµρνκ = gµρgνκ + gµκgνρ − gµνgρκ. This is the component of the quark propagator

that contributes in the short-distance limit [324].

We can Taylor expand the operators about zµ = 0, and isolate their twist-two compo-

nent:

[ψ̄f (z/2)γκψf (−z/2)]twist-two =

∞∑

n=0

(−i)n
n!

zµ1 ...zµnO
(n+1)κµ1...µn
f (0), (C.10)

where O(n+1)κµ1...µn
f (X) are the standard twist-two local operators, given in Eq. (2.40).

We can apply the same procedure to the polarised operators

[ψ̄f (z/2)γκγ5ψf (−z/2)]twist-two =

∞∑

n=0

(−i)n
n!

zµ1 ...zµnÕ
(n+1)κµ1...µn
f (0), (C.11)

where Õ(n+1)κµ1...µn
f (0) are the polarised twist-two local operators from Eq. (2.41).

Therefore, the twist-two symmetric under µ↔ ν component of the current product in

the short-distance limit (zµ → 0) is

T {j{µ(z/2)jν}(−z/2)} = −2
i

2π2

zρ

(z2 − iε)2

(
gµρgνκ + gµκgνρ − gµνgρκ

)

×
∞∑

n=1,3,5

(−i)n
n!

zµ1 ...zµnO
(n+1)κµ1...µn
f ,

(C.12)
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which is Eq. (2.44). The anti-symmetric component is

T {j[µ(z/2)jν](−z/2)} = −2
i

2π2

zρ

(z2 − iε)2
iεµνρκ

×
∞∑

n=0,2,4

(−i)n
n!

zµ1 ...zµnÕ
(n+1)κµ1...µn
f (0),

(C.13)

which is Eq. (2.56).



Appendix D

More Fun with GPDs

In this appendix we discuss in further detail the properties of generalised parton distribu-

tions (GPDs), expanding on the discussion in Chapters 2 and 5.

Kinematic relations

Some standard relations between the momentum vectors we defined for off-forward scat-

tering (Eq. (2.73)) are

P̄ ·∆ =
1

2
(P 2 − P ′2) = 0, P̄ 2 = m2

N −
t

4
. (D.1)

Sudakov decomposition

As discussed in Chapters 2 and 5, light-cone operators and expansions of the off-forward

Compton amplitude often employ a pair of collinear lightlike vectors:

nµ = Λ(1, 0, 0, 1), n̄µ =
1

2Λ
(1, 0, 0,−1), (D.2)

where Λ is a normalisation chosen such that n · P̄ = 1.

Given these two vectors, we can decompose any vector into

kµ = (n̄ · k)nµ + (n · k)n̄µ + kµ⊥, (D.3)

where k⊥ ·n = 0 = k⊥ · n̄. Hence k⊥ has two degrees of freedom, which accounts for all four

degrees of freedom of any four-vector. Equation (D.3) is sometimes called the ‘Sudakov

decomposition’.

Applying this to the case of off-forward scattering, we get

P̄µ =
m2
N − t/4

2
nµ + n̄µ, (D.4a)

∆µ = (m2
N − t/4)ξnµ − 2ξn̄µ + ∆µ

⊥, (D.4b)

q̄µ = − 1

ω̄
n̄µ +

Q̄2ω̄

2
nµ, (D.4c)

where we have defined ξ = −n ·∆/2 and assumed that the transverse components of P̄ and

q̄ are small. Moreover, we only recover the usual Lorentz scalars from the above light-cone

decomposition up to terms of order M2/Q̄2 and t/Q̄2, which are suppressed.

Finally, for some vector k it is common to see the notation k+ = k · n and k− = k · n̄.

178



179

Polarised generalised parton distributions

Here, we define polarised GPDs and give some of their basic properties. Although not

a focus of our investigations, these GPDs are interesting to us for two reasons: (1) we

include them in our parameterisation of the off-forward Compton amplitude in Chapter

5, and (2) they are the generalisation of the polarised moments we calculate in Chapter

7. Moreover, it would be straightforward to extend the methods in this thesis to calculate

the moments of polarised GPDs using Feynman-Hellmann.

In terms of light-cone operators, we defined in Eq. (2.52), the polarised GPDs are

defined as
∫
dλ

2π
eiλx〈P ′|ψ̄f (−λn/2)/nγ5ψf (λn/2)|P 〉 = H̃f (x, ϑ/ω̄, t)ū(P ′)γµγ5nµu(P )

+ Ẽf (x, ϑ/ω̄, t)
∆ · n
2mN

ū(P ′)γ5u(P ),

(D.5)

where H̃f and Ẽf are the polarised twist-two GPDs for a quark of flavour f .

Now we will define the polarised generalised form factors. We start with the matrix

elements of the twist-two local operators, Eq. (2.41). Note that these are the same local

operators we used to parameterise the forward polarised Compton amplitude.

In terms of the polarised GFFs, Ãn,j(t) and B̃n,j(t), the matrix element of the polarised

twist-two operators are

〈P ′|Õ(n+1)κµ1...µn
f (0)|P 〉

= ū(P ′, s′)γ{κγ5u(P, s)
n∑

j=0,2,4

Ãfn+1,j(t)∆
µ1 ...∆µj P̄µj+1 ...P̄µn}

+
∆{κ

2mN
ū(P ′, s′)γ5u(P, s)

n∑

j=0,2,4

B̃f
n+1,j(t)∆

µ1 ...∆µj P̄µj+1 ...P̄µn}.

(D.6)

Then, applying Eq. (2.53), we get that the Mellin moments of the GPDs are

∫ 1

−1
dxxnH̃f (x, ϑ/ω̄, t) =

n∑

i=0,2,4

(2ϑ/ω̄)iÃfn+1,i(t),

∫ 1

−1
dxxnẼf (x, ϑ/ω̄, t) =

n∑

i=0,2,4

(2ϑ/ω̄)iB̃f
n+1,i(t).

(D.7)

Note also that Ãn,0(t = 0) = 2ãn, for the polarised forward matrix element defined in

Eq. (2.58).



Appendix E

Off-Forward OPE and Tensor

Decomposition (Ch. 5)

In this appendix we provide further details for the derivations of the operator product

expansion (OPE) and tensor decomposition presented in Chapter 5.

E.1 Operator Product Expansion

As in Chapter 5, we start with the OPE of the current product that was discussed in

Chapter 2 and derived in Appendix C:

T
{
jµ(z/2)jν(−z/2)

}
= −2

i

2π2

zµ

(z2 − iε)2

[
Sµρνκ

∞∑

n=1,3,5

(−i)n
n!

zµ1 ...zµnO
(n+1)κµ1...µn
f (0)

+ iεµνρκ

∞∑

n=0,2,4

(−i)n
n!

zµ1 ...zµnÕ
(n+1)κµ1...µn
f (0)

]
.

Similarly, recall the Dirac bilinears defined in Eq. (5.4):

hµ = ū(P ′)γµu(P ), eµ = ū(P ′)
iσµα∆α

2mN
u(P ),

h̃µ = ū(P ′)γµγ5u(P ), ẽµ =
∆µ

2mN
ū(P ′)γ5u(P ).

To take the off-forward matrix element of the leading-order current product, we simply

insert the off-forward matrix elements from Eqs. (2.78) and (D.6) into this expression.

The µ↔ ν symmetric term was given in Eq. (5.5), while the anti-symmetric term is

〈P ′|T {j[µ(z/2)jν](−z/2)}|P 〉 = −2Sρ(z)iεµνρκ

∞∑

n=0,2,4

(−i)n
n!

×
n∑

j=0,2,4

{
1

n+ 1
(∆ · z)j(P̄ · z)n−j

[
h̃κÃfn+1,j(t) + ẽκB̃f

n+1,j(t)
]

+
n− j
n+ 1

(∆ · z)j(P̄ · z)n−j−1P̄ κ
[
Ãfn+1,j(t)h̃ · z + B̃f

n+1,j(t)ẽ · z
]

+
j

n+ 1
(∆ · z)j−1(P̄ · z)n−j∆κ

[
Ãfn+1,j(t)h̃ · z + B̃f

n+1,j(t)ẽ · z
]}
.

(E.1)

180



E.1 Operator Product Expansion 181

Fourier transform

Since we are interested in calculating the leading-order part of the off-forward Compton

amplitude,

Tµν = i

∫
d4zeiq̄·z〈P ′|T

[
jµ(z/2)jν(−z/2)

]
|P 〉,

we now need to Fourier transform this matrix element.

Recall that the general recipe given in Chapter 5 is:

1. Introduce Fourier conjugates,

(P̄ · z)n = in
∫ ∞

−∞
dχeiχP̄ ·z

∂n

∂χn
δ(χ),

(∆ · z)n = in
∫ ∞

−∞
dηeiη∆·z ∂

n

∂ηn
δ(η),

h · z = i

∫ ∞

−∞
dχ̃1e

iχ̃1h·z ∂

∂χ̃1
δ(χ̃1),

e · z = i

∫ ∞

−∞
dχ̃2e

iχ̃2e·z ∂

∂χ̃2
δ(χ̃2).

For the µ↔ ν, we need h(e)→ h̃(ẽ).

2. Use the identity

∫
d4zSµ(z) =

∫
d4zeil·z

zµ

2π2(z2 − iε)2
=

lµ

l2 + iε

to integrate out the z-dependence.

3. Use the identity

∫ b

a
dxf(x)

∂n

∂xn
δ(x− y) = (−1)n

∂n

∂xn
f(x)

∣∣∣∣
x=y

,

to evaluate the integrals over the Fourier conjugates.
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After applying this recipe, we have that the symmetric component of the twist-two

nucleon OFCA is

T {µν} =
∞∑

n=2,4,6

n−1∑

j=0,2,4

{
4

Q̄2

1

n
ω̄n−2(−2ξ)j−1[h{µAfn,j(t) + e{µBf

n,j(t)]

×
[
ω̄(−2ξ)q̄ν} +

2(n− j − 1)

n− 1
(−2ξ)P̄ ν} +

2j

n− 1
∆ν}

]

+
8

Q̄4

1

n
ω̄n−3(−2ξ)j−2[Afn,j(th · q̄ +Bf

n,j(t)e · q̄]
[
(n− j − 1)ω̄(−2ξ)2P̄ {µq̄ν}

+
2(n− j − 1)j

n− 1
(−2ξ)P̄ {µ∆ν} + jω̄(−2ξ)∆{µq̄ν}

+
j(j − 1)

n− 1
∆µ∆ν +

(n− j − 1)(n− j − 2)

n− 1
ω̄(−2ξ)2P̄µP̄ ν

]

+
8

Q̄4
δj,0ω̄

n−3(−2ξ)n−2Cfn(t)(h · q̄ − e · q̄)
[
(−2ξ)ω̄∆{µq̄ν} + ∆µ∆ν

]

− gµν ω̄n
[
(−2ξ)j [Afn,j(t)h · q̄ +Bf

n,j(t)e · q̄] + δj,0(−2ξ)nCfn(t)(h · q̄ − e · q̄)
]}
,

(E.2)

where we have used ξ = ϑ/ω̄.

Similarly, for the anti-symmetric component we get

T [µν] =
2

Q̄2
iεµνρκ

∞∑

n=0,2,4

n∑

j=0,2,4

Ãfn+1,j(t)(−2ξ)j−1

×
{

1

n+ 1
h̃κω̄

n−1

[
ω̄(−2ξ)q̄ρ +

n− j
n

(−2ξ)P̄ρ +
j

n
∆ρ

]
+
n− j
n+ 1

ω̄n−2P̄κ

×
[
ω̄(−2ξ)

2h̃ · q̄
Q̄2

q̄ρ +
n− j − 1

n
(−2ξ)

2h̃ · q̄
Q̄2

P̄ρ +
j

n

2h̃ · q̄
Q̄2

∆ρ +
1

n
ω̄(−2ξ)h̃ρ

]

+
j

n+ 1
ω̄n−2(−2ξ)−1∆κ

[
ω̄(−2ξ)

2h̃ · q̄
Q̄2

q̄ρ +
n− j
n

(−2ξ)
2h̃ · q̄
Q̄2

P̄ρ

+
j − 1

n

2h̃ · q̄
Q̄2

∆ρ +
1

n
ω̄(−2ξ)h̃ρ

]}
+ (Ã→ B̃ and h̃→ ẽ),

(E.3)

where the term in brackets indicates that there is an additional contribution to the anti-

symmetric component identical to that shown but with the given substitutions.

Equations E.2 and E.3 are extremely unwieldy. Therefore, to produce a cleaner result,

we first define∗ ∆µ
⊥ ≡ ∆µ + 2ξP̄µ. Since ∆⊥ · q̄ = 0, we have that ∆⊥ · q(′) ∼ t, which

will give us suppressed t/Q̄2 terms. Therefore, we discard tensor structures with ∆⊥ and

reintroduce them when we come to talk about gauge invariance†.

∗We note that other studies use the definition ∆µ
⊥ ≡ ∆µ+ 2

ω̄
P̄µ. These definitions are equivalent for DVCS

kinematics, where ξ ' ω̄−1.
†Recall from Chapter 5 we discussed the fact that leading-twist expansions of the OFCA do not satisfy
their Ward identities unless additional operators are included in the OPE basis. Therefore, it seems
possible that this may all be due to the dropping of the ∆⊥ terms. However, as can be confirmed by
considering these expressions prior to throwing out ∆⊥, Eqs. E.2 and E.3, this is not the case.
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Therefore, we substitute ∆µ = ∆µ
⊥ − 2ξP̄µ into Eq. E.2 and throw out all ∆⊥ terms

to get

T {µν}(ω̄, ϑ, t) =
2

Q̄2

∞∑

n=2,4,6

n−1∑

j=0,2,4

{
2

n
ω̄n−2(−2ξ)j [h{µAfn,j(t) + e{µBf

n,j(t)]
(
ω̄q̄ν} + 2P̄ ν}

)

+
4

Q̄2

1

n
ω̄n−3(−2ξ)j [Afn,j(t)h · q̄ +Bf

n,j(t)e · q̄]
(

(n− 1)ω̄P̄ {µq̄ν} + (n− 2)P̄µP̄ ν
)

+
4

Q̄2
δj,0ω̄

n−3(−2ξ)nCfn(t)(h · q̄ − e · q̄)
(
ω̄P̄ {µq̄ν} + P̄µP̄ ν

)

− gµν ω̄n−1
(

(−2ξ)j [Afn,j(t)h · q̄ +Bf
n,j(t)e · q̄] + δj,0(−2ξ)nCfn(t)(h · q̄ − e · q̄)

)}
,

which was our final expression for the symmetric component, Eq. (5.6).

The procedure for the anti-symmetric component is slightly more complicated. We

start by substituting for ∆ = ∆⊥ − 2ξP̄µ and throwing out ∆⊥ terms again:

T [µν] =
2

Q̄2
iεµνρκ

∞∑

n=0,2,4

n∑

j=0,2,4

{
1

n+ 1
h̃κÃ

f
n+1,j(t)ω̄

n−1(−2ξ)j(ω̄q̄ρ + P̄ρ)

+
n

n+ 1
ω̄n−2(−2ξ)jP̄κÃ

f
n+1,j(t)

(
ω̄

2h̃ · q̄
Q̄2

q̄ρ +
n− 1

n

2h̃ · q̄
Q̄2

P̄ρ +
1

n
ω̄h̃ρ

)}

+ (Ã→ B̃ and h̃→ ẽ).

(E.4)

Moving the n → n − 1 and dropping terms that cancel by the P̄ρP̄κ terms which vanish

when contracted with the Levi-Civita, we get

T [µν] =
2

Q̄2
iεµνρκ

∞∑

n=1,3,5

n−1∑

j=0,2,4

ω̄n−2(−2ξ)j
{

1

n
h̃κÃ

f
n,j(t)(ω̄q̄ρ + P̄ρ)

+
n− 1

n
P̄κq̄ρÃ

f
n,j(t)

2q̄ · h̃
Q̄2

+
1

n
P̄κÃ

f
n,j(t)h̃ρ

}
+ (Ã→ B̃ and h̃→ ẽ).

(E.5)

Then, since the h̃κP̄ρ and ẽκP̄ρ terms are symmetrised in their Lorentz indices, they also

vanish when contracted with the Levi-Civita. This gives us

T [µν](ω̄, ϑ, t) =
2

Q̄2
iεµνρκ

∞∑

n=1,3,5

n−1∑

j=0,2,4

ω̄n−2(−2ξ)j
{

1

n

[
h̃κÃ

f
n,j(t) + ẽκB̃

f
n+1,j(t)

]
ω̄q̄ρ

+
2

Q̄2

n− 1

n
P̄κq̄ρ

[
Ãfn,j(t)h̃ · q̄ + B̃f

n+1,j(t)ẽ · q̄
]}
,

which was our final expression for the anti-symmetric component, Eq. (5.7).
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E.2 Tensor Decomposition

As discussed in Chapter 5, a general tensor decomposition of the OFCA was performed

by Tarrach [197]. Here, we do not take this decomposition for reasons given in Chapter 5,

but instead use it to derive our own that matches the OPE results, Eqs. (5.6) and (5.7).

We start with the 34 generators given by Tarrach (Eq. 8 of that work)—that is, the

34 tensor structures that satisfy the necessary discrete symmetries. Then, we perform the

following manipulations:

• Remove from Tarrach’s 34 generators the 14 structures with q′µ or qν terms, which

by the Ward identities must be linearly dependent with other tensor structures.

• Remove generators 13 and 28 (according to Tarrach’s Eq. 8) due to the linear de-

pendence of these terms with other generators, as explained in Tarrach. This leaves

18 gauge independent, linearly independent tensor structures.

• Reorganise these structures with the Gordon identity and related identities, so that

they can be matched to leading twist GPD structures.

• Identify which scalar amplitudes must vanish at zero skewness (q2 = q′2), using

crossing symmetry and time reversal.

• Gauge project these 18 tensor structures.

The result is a zero-skewness tensor decomposition, with structure functions that can be

matched to the leading-twist OPE results.

Tarrach’s generators are‡

fµν1 = gµν ū
′u,

fµν2 = P̄µP̄ ν ū′u,

fµν3 =
(
P̄µq′ν + P̄ νqµ

)
ū′u,

fµν4 =
(
P̄µq′ν − P̄ νqµ

)
ū′u,

fµν5 = gµν ū′/̄qu,

fµν6 = P̄µP̄ ν ū′/̄qu,

fµν7 =
(
P̄µq′ν + P̄ νqµ

)
ū′/̄qu,

fµν8 =
(
P̄µq′ν − P̄ νqµ

)
ū′/̄qu,

fµν9 = qµq′ν ū′u,

fµν10 = P̄µū′γµuν + P̄ ν ū′γµuµ,

fµν11 = P̄µū′γµuν − P̄ ν ū′γµuµ,

fµν12 = qµū′γµuν + q′ν ū′γµuµ,

fµν13 = qµū′γµuν − q′ν ū′γµuµ,

fµν14 = 2
(
P̄µq̄αū

′iσανu+ P̄ ν q̄αū
′iσαµu

)
,

fµν15 = 2
(
qµq̄αū

′iσανu+ q′ν q̄αū′iσαµu
)
,

fµν16 = 2
(
qµq̄αū

′iσανu− q′ν q̄αū′iσαµu
)
,

fµν17 = −2iū′σµνu,

fµν18 = 4iεµνρκq̄ρū
′γκγ5u.

(E.6)

In principle, this basis is sufficient for the tensor decomposition. However, we would like

to be able to compare our decomposition to the leading-twist GPD structures. Therefore,

we will use the Gordon identity and related identities (see Ref. [203] for a comprehensive

‡Note that our amplitude, following conventions of more recent papers, has Tarrach’s Lorentz indices
swapped: µ ↔ ν. Moreover, also in contrast to Tarrach, our generators are sandwiched between the
spinors.
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list of on-shell identities that can be derived from the Dirac equation) to make the basis

in Eq. E.6 more suitable to compare to leading-twist expressions.

We can use the Gordon identity to derive

P̄µū′u = mN

(
hµ − eµ

)
⇒ P̄ · q̄ū′u = mN

(
h · q̄ − e · q̄

)
. (E.7)

This allows us to re-define generators 1-4 of Eq. E.6, by making the substitution ū′u→ e·q̄.
Furthermore, we can rearrange fµν17 using the relation

iεµνρκq̄ρẽκ = iεµνρκq̄ρh̃κ −
1

mN

(
P̄µū′iσανuq̄α − P̄ ν ū′iσαµuq̄α + P̄ · q̄ū′iσµνu

)
.

The first term on the RHS is proportional to tensor structure 18, while the last term is

proportional to 17. The middle two terms are actually proportional to Tarrach’s generator

28, which is non-trivially linearly dependent with the other generators. Therefore, we can

make the replacement:

fµν17 = iεµνρκq̄ρẽκ.

By a similar argument, we can use the relation

P̄µū′γ5u =
1

2
ū′iσαµγ5u∆α, (E.8)

to replace

iεµνρκq̄ρP̄κẽ · q̄ = ∆ · q̄iεµνρκq̄ρ∆αū′iσακu

=
∆ · q̄
mN

(
∆µū′iσανuq̄α −∆ν ū′iσαµuq̄α + ∆ · q̄ū′iσµνu

)
.

(E.9)

The last term of the RHS is proportional to generator 17 of Eq. E.6, while the first two

terms are (up to gauge terms) proportional to generator 15.

Therefore, we can make the replacement

fµν15 = iεµνρκq̄ρP̄κẽ · q̄. (E.10)

Then,

iεµνρκq̄ρP̄κh̃ · q̄ = fµν15 +
1

2mN
iεµνρκεαβδλq̄ρP̄κq̄αP̄βū

′iσδλu. (E.11)

The second term on the RHS creates terms that are proportional to structures 3, 4, and

9 of Eq. E.6, and a term proportional to

P̄ · q̄
(
P̄µū′iσανuq̄α − P̄ ν ū′iσαµuq̄α

)
− P̄ 2

(
q̄µū′iσανuq̄α − q̄ν ū′iσαµuq̄α

)
. (E.12)

The first term in the above expression, as we already mentioned, is linearly dependent

with the rest of the basis. The second term is linearly dependent with generator 16 up to

gauge terms.

Therefore, we can make the replacement

fµν16 = iεµνρκq̄ρP̄κh̃ · q̄. (E.13)
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Our basis can then be written in a form that matches easily to leading-twist structures:

fµν1 = gµνh · q̄,

fµν2 = P̄µP̄ νh · q̄,

fµν3 =
(
P̄µq′ν + P̄ νqµ

)
h · q̄,

fµν4 =
(
P̄µq′ν − P̄ νqµ

)
h · q̄,

fµν5 = gµνe · q̄,

fµν6 = P̄µP̄ νe · q̄,

fµν7 =
(
P̄µq′ν + P̄ νqµ

)
e · q̄,

fµν8 =
(
P̄µq′ν − P̄ νqµ

)
e · q̄,

fµν9 = qµq′ν(h · q̄ − e · q̄),

fµν10 = P̄µhν + P̄ νhµ,

fµν11 = P̄µhν − P̄ νhµ,

fµν12 = hµq′ν + hνqµ,

fµν13 = hµq′ν − hνqµ,

fµν14 = 2
(
P̄µq̄αū

′iσανu+ P̄ ν q̄αū
′iσαµu

)
,

fµν15 = iεµνρκq̄ρP̄κẽ · q̄,

fµν16 = iεµνρκq̄ρP̄κh̃ · q̄,

fµν17 = iεµνρκq̄ρẽκ,

fµν18 = iεµνρκq̄ρh̃κ.

(E.14)

This is the basis that gives us the final tensor decomposition, Eq. (5.11), after taking out

factors of 1/P̄ · q̄ to match conventions in the forward limit.

Due to the zero skewness condition, we can eliminate amplitudes that are odd un-

der ξ → −ξ. This eliminates the amplitudes for i = 4, 8, 11, 13, 14, 15. Therefore, the

generators become

fµν1 = gµνh · q̄,

fµν2 = P̄µP̄ νh · q̄,

fµν3 =
(
P̄µq′ν + P̄ νqµ

)
h · q̄,

fµν5 = gµνe · q̄,

fµν6 = P̄µP̄ νe · q̄,

fµν7 =
(
P̄µq′ν + P̄ νqµ

)
e · q̄,

fµν9 = qµq′ν(h · q̄ − e · q̄),

fµν10 = P̄µhν + P̄ νhµ,

fµν12 = hµq′ν + hνqµ,

fµν16 = iεµνρκq̄ρP̄κh̃ · q̄,

fµν17 = iεµνρκq̄ρẽκ,

fµν18 = iεµνρκq̄ρh̃κ.

(E.15)

E.2.1 Gauge Projection

Since our Ward identities in the continuum are qµT
µν = 0 = Tµνq′ν , our gauge projector

is

Pµν = gµν − q′µqν

q · q′ .

And hence our final tensor decomposition for the zero-skewness case is

Tµν(q, q′;P ) =
∑

i

Ai(ω̄, t, Q̄
2)f iµ′ν′Pµµ

′Pν′ν . (E.16)

It is convenient to keep the gauge projectors implicit, particularly in the case of a lattice

calculation, where the Ward identities will be broken by O(aq′µ) and O(aqν) terms. For
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a conserved current on the lattice, the Ward identities are

2

a
sin(aqµ/2)Tµν = 0 = Tµν

2

a
sin(aq′ν/2),

and hence the discretisation corrections are well-behaved, and our lattice projector can be

changed accordingly:

Pµνlatt = gµν − sin(aq′µ/2) sin(aqν/2)

sin(aq′α/2) sin(aqα/2)
.

E.2.2 Comparison to OPE

Comparing to the OPE, the leading-twist contributions to the scalar amplitudes in Eq. (5.11)

are

H1(ω̄, ϑ, t) = 2

∞∑

n=1

ω̄2n

∫ 1

−1
dxx2n−1H(x, ϑ/ω̄, t),

H2(ω̄, ϑ, t) =
2Q̄2

P̄ · q̄

∞∑

n=1

ω̄2n

∫ 1

−1
dxx2n−1

[
H(x, ϑ/ω̄, t)− 1

n

[
H(x, ϑ/ω̄, t) + E(x, ϑ/ω̄, t)

]]
,

H3(ω̄, ϑ, t) =
2Q̄2

P̄ · q̄

∞∑

n=1

ω̄2n 1

n

∫ 1

−1
dxx2n−1

[
H(x, ϑ/ω̄, t) + E(x, ϑ/ω̄, t)

]
,

E1(ω̄, ϑ, t) = 2
∞∑

n=1

ω̄2n

∫ 1

−1
dxx2n−1E(x, ϑ/ω̄, t),

E2(ω̄, ϑ, t) =
2Q̄2

P̄ · q̄

∞∑

n=1

ω̄2n

∫ 1

−1
dxx2n−1E(x, ϑ/ω̄, t),

H̃1(ω̄, ϑ, t) = 2

∞∑

n=1

ω̄2n−1

∫ 1

−1
dxx2n−2H̃(x, ϑ/ω̄, t),

Ẽ1(ω̄, ϑ, t) = 2
∞∑

n=1

ω̄2n−1

∫ 1

−1
dxx2n−2Ẽ(x, ϑ/ω̄, t),

H̃2(ω̄, ϑ, t) = 4

∞∑

n=1

n− 1

1− 2n
ω̄2n−1

∫ 1

−1
dxx2n−2H̃(x, ϑ/ω̄, t),

Ẽ2(ω̄, ϑ, t) = 4
∞∑

n=1

n− 1

1− 2n
ω̄2n−1

∫ 1

−1
dxx2n−2Ẽ(x, ϑ/ω̄, t),

Ki(ω̄, ϑ, t) = 0, for all i.

(E.17)



Appendix F

Dirac Traces (Chs. 5-7)

For our Dirac traces, we consider the Dirac bilinears in Eq. (5.4):

hµ = ū(P ′, s′)γµu(P, s), eµ = ū(P ′, s′)
iσµα∆α

2mN
u(P, s),

h̃µ = ū(P ′, s′)γµγ5u(P, s).

Instead of ẽµ as defined in Eq. (5.4), we will use the more general ū(P ′, s′)γ5u(P, s), which

survives the t→ 0 limit.

For each of these bilinears, we are interested in the Dirac trace, which we denote by

the function F(Γ, b):

F(Γ, b) ≡
∑

s,s′ tr
[
Γu(P ′, s′)bū(P, s)

]
∑

s tr[Γunpolu(P ′, s′)ū(P ′, s′)]
,

for some bilinear b, where Γ is a spin-parity projector. In this thesis, we only consider

Γunpol =
1

2
(I + γ0), Γpol =

1

2
(I + γ0)γ · êpolγ

5,

where êpol is the direction of the polarisation vector. For more general results, see

Refs. [179,203].

Note the following

• We are in the equal energy frame: P 0 = P ′0 = P̄ 0 = EN .

• We use the notation εµνρV = εµνρσVσ for the Levi-Civita.

Therefore, for the unpolarised spin-parity projector, we have

F(Γunpol, hµ) = 2P̄µ +
g0µ∆2 −∆0∆µ

2(EN +mN )
,

F(Γunpol, eµ) =
∆2P̄µ +mN (g0µ∆2 −∆0∆µ)

2mN (EN +mN )
,

F(Γunpol, h̃µ) =
iεµ0∆P̄

EN +mN
,

F(Γunpol, ū
′γ5u) = 0.

(F.1)
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For the polarised spin-parity projector, where we choose êpol = k̂ for simplicity of

notation, we get

F(Γpol, hµ) =
i(εkµP̄∆ −mεkµ∆0)

EN +mN
,

F(Γpol, eµ) =

{
(4m2

N + ∆2)εkµ∆0 − 2 (∆0 + 4mN + 2EN ) εkµP̄∆ − 2(2P̄k + ∆k)εµP̄∆0

− 2(2P̄µ −∆µ)εkP̄∆0 + 2∆2εkµP̄0

}(
8imN (EN +mN )

)−1
,

F(Γpol, h̃µ) =
−4 (mN (EN +mN )− t/4) gkµ + 4P̄ k(mNg

0µ + P̄µ) + ∆µ(2mNg
0k −∆k)

2 (EN +mN )
,

F(Γpol, ū
′γ5u) =

1

4

(
tg0k − 2 (EN +mN ) ∆k + 2∆0P̄ k

)
.

(F.2)

Forward kinematics

Setting P̄ = P and ∆ = 0 gives us the forward limit. From Eq. (5.4), we note that eµ = 0

in the forward limit. Moreover, we denote the forward bilinears as

vµ = ū(P )γµu(P ) = hµ

∣∣∣∣
P=P ′

, aµ = ū(P )γµγ5u(P ) = h̃µ

∣∣∣∣
P=P ′

, (F.3)

which decouples them from their GPD associations.

Therefore, for the unpolarised projector, we have

F(Γunpol, vµ) = 2Pµ,

F(Γunpol, aµ) = 0,

F(Γunpol, ūγ5u) = 0.

(F.4)

Similarly, for the polarised spin-parity projector, we get

F(Γpol, vµ) = 0,

F(Γpol, aµ) =
−2 (EN +mN ) gkµ + 2P k(mNg

0µ + Pµ)

EN +mN
,

F(Γpol, ūγ5u) = 0.

(F.5)

Off-forward N factors

Recall our final tensor decomposition in Chapter 6, Eq. (6.6):

Tkk =
1

2P̄ · q̄
(
h · q̄H1 + e · q̄E1

)
,

and the spin-parity traced Compton amplitude, Eq. (4.55):

RΓ
µν ≡

∑
s,s′ tr

[
Γu(P ′, s′)Tµν ū(P, s)

]
∑

s tr[Γunpolu(P ′, s)ū(P ′, s)]
.
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Therefore, our N factors are simply

NHΓ =
F(Γ, h · q̄)

2P̄ · q̄ , NEΓ =
F(Γ, e · q̄)

2P̄ · q̄ . (F.6)

Unpolarised

For the unpolarised projector, note that our choice of the current direction and q1,2 in

chapters 5 and 6, means that g0µ∆2−∆0∆µ vanishes. Hence we arrive at the very simple

linear combination

NHunpol = 1, NEunpol =
t

4mN (EN +mN )
. (F.7)

Polarised

For the polarised projector, the results are not as simple. First,

NHpol =
F(Γpol, h · q̄)

2P̄ · q̄ =
1

2P̄ · q̄
i(εkq̄P̄∆ −mεkq̄∆0)

EN +mN
. (F.8)

Then, since in our choice of kinematics, q̄, ∆ and k̂ are all three vectors with no µ = 0

component, we must have

εkq̄P̄∆ = P̄ 0εkq̄0∆ = EN εkq̄0∆, (F.9)

since the Levi-Civita vanishes if any one of the contracted vectors is linearly dependent

with the others.

Then, with some rearranging, we have

NHpol = F(Γpol, h · q̄) =
i(EN +m)

EN +mN
εkq̄0∆ = iε0q̄∆k =

i(∆× k̂) · q̄
2P̄ · q̄ . (F.10)

For the E Compton form factor, we use

NEpol =
F(Γpol, e · q̄)

2P̄ · q̄ . (F.11)

To evaluate F(Γpol, e · q̄), we note that

εkq̄∆0 = −(∆× k̂) · q̄, εkq̄P̄∆ = EN (∆× k̂) · q̄,
εq̄P̄∆0 = (∆× P̂) · q̄, εkP̄∆0 = −(∆× k̂) · P̄,
εkq̄P̄0 = −(P̄× k̂) · q̄.

(F.12)
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Substituting these into Eq. (F.2) and the choices we make in our lattice calculation, ∆0 = 0

and ∆ · q̄ = 0, we get

F(Γpol,e · q̄) =

{
(4m2

N + ∆2)εkµ∆0 − 2 (∆0 + 4mN + 2EN ) εkµP̄∆

− 2(2P̄k + ∆k)εµP̄∆0 − 2(2P̄µ −∆µ)εkP̄∆0 + 2∆2εkµP̄0

}(
8imN (EN +mN )

)−1

= −
{(

4(EN +mN )2 + ∆2
)
(∆× k̂) · q̄− 2(2P̄k + ∆k)(∆× P̂) · q̄

+ 4P̄ · q̄(∆× k̂) · P̄− 2∆2(P̄× k̂) · q̄
}(

8imN (EN +mN )
)−1

= i

{(
(EN +mN )2 + t/4

)
(∆× k̂) · q̄− (P̄k + ∆k/2)(∆× P̂) · q̄

+ P̄ · q̄(∆× k̂) · P̄− t/2(P̄× k̂) · q̄
}(

2mN (EN +mN )
)−1

(F.13)

For simplicity, we normalise by F(Γpol, h · q̄):

NHpol = 1, NEpol =
F(Γpol, e · q̄)
F(Γpol, h · q̄)

, (F.14)

which keeps the coefficient of H1 unity, as in the unpolarised case.

Polarised forward N factors

T12 = − i

P · q q3

(
g̃1s

0 +

(
s0 − s · q

P · qEN
)
g̃2

)
. (F.15)

First, recall that the spin vector is defined as sµ = aµ/2 in Eq. (2.21).

Hence, since we must have k 6= 0, then

F(Γpol, s0) =
1

2
F(Γpol, a0) =

P k(EN +mN )

EN +mN
. (F.16)

And

F(Γpol, s · q) =
1

2
F(Γpol, a · q) =

(EN +mN ) qk + P · qP k
EN +mN

. (F.17)

Hence, if we take k̂ = êpol, then we have

N (1)
epol

= −i
F(Γepol

, s0)

P · q q3, N (2)
epol

=
iq3

P · q

[F(Γepol
, s · q)

P · q EN −F(Γepol
, s0)

]
, (F.18)

which gives us

N (1)
epol

=
ip · êpol

p · q q3, N (2)
epol

=
imNq3

p · q

[
p · êpol

EN +mN
− ENq · êpol

p · q

]
. (F.19)



Appendix G

Feynman-Hellmann Parameter

Fits (Chs. 5-8)

In this appendix we discuss our fits to the Feynman-Hellmann parameter, λ, as carried

out in Chapters 5—8. We use data from Chapter 5. Using the χ2 metric, these λ fits

appear very poor with χ2/dof ∼ O(10) and larger. On the other hand, judging by eye, the

fits pass through the error bars of the data points (for instance, see Fig. 5.4), suggesting

that the fits are reasonable. Here, we show that the large χ2 values can be traced to the

fact that the statistical fluctuations in the data are highly correlated for the two values of

the Feynman-Hellmann parameter, λ. Highly correlated data and its effect on the χ2 has

been studied in the context of lattice QCD before, and alternative goodness-of-fit measures

have been proposed [325–327]. However, we limit ourselves to describing the nature of the

problem, and do not discuss alternative metrics.

The χ2 metric

In the following discussion, our data is the ratio Rλ, defined in Eq. (4.53), where the

Euclidean time fits have already been performed. Therefore, for a given sink momentum,

p′, and a given λ, our data Rλ has N samples∗. Moreover, we only consider the case where

there are two λ values.

We start by defining the elements of the sample covariance matrix, C:

Cij =
1

N − 1

N∑

n=1

(
R

(n)
λi
− R̄λi

)(
R

(n)
λj
− R̄λj

)
, (G.1)

where R
(n)
λi

is the nth sample of the ratio for λi, and R̄λi is the average of the samples for

the same λ.

In terms of the sample covariance matrix, the χ2 is

χ2 =

2∑

i,j=1

(
Rfit
λi
− R̄λi

)[
C−1

]
ij

(
Rfit
λj
− R̄λj

)
. (G.2)

It is useful to define the vector in the space of samples:

r
(n)
λi

= R
(n)
λi
− R̄λi . (G.3)

∗In the way we perform statistical analysis, N is the number of bootstraps [99].
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Figure G.1: Plots of rλ1
/λ2

1 against rλ2
/λ2

2 for the t = −1.10 GeV2 data from Chapter 5, with

rλi
defined in Eq. (G.3). Each data point is the nth sample. Clearly, statistical fluctuations are

highly correlated for the two λ values.

Using this vector, we write the covariance matrix as

Cij =
1

N − 1
rλi · rλj . (G.4)

Hence the inverse is

C−1 =
1

detC

1

N − 1

(
rλ2 · rλ2 −rλ2 · rλ1

−rλ1 · rλ2 rλ1 · rλ1

)
, (G.5)

with

detC =
1

N − 1

(
|rλ1 |2|rλ2 |2 − (rλ1 · rλ2)2

)
. (G.6)

Therefore, if rλ1 and rλ2 are approximately parallel (i.e. statistical fluctuations in the

two data sets are highly correlated), then detC ≈ 0 and hence 1/ detC blows up. Since

χ2 ∼ (detC)−1, this can cause a very large χ2, even for good agreement between the data

and the fit (i.e. small Rfit
λi
− R̄λi).

We can see in Fig. G.1 that the statistical fluctuations in rλ are highly correlated for the

two λ values: the two distributions are almost identical. Similarly, comparing the values

of detC in Table G.1, we can see that all momentum projections have extremely small

values of detC, with the largest χ2 corresponding to the smallest detC. This strongly

suggests that the large χ2 values are caused by highly correlated statistical fluctuations in

the two λ values.
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Table G.1: Relevant quantities for the up quark data, t = −1.10 GeV2 in Chapter 5.

n′ χ2/dof detC

(1,0,0) 216 2× 10−19

(1,0,1) 91.0 3× 10−19

(1,0,2) 0.18 7× 10−18

(1,1,-1) 9.53 1× 10−19

(1,1,0) 89.8 4× 10−19

(1,1,1) 16.9 8× 10−19

(1,2,0) 1.81 2× 10−17

The strong correlation between the data at two different λ values is unsurprising, since

we generate our perturbed quark propagators by

Sλ =
[
M − λO

]−1
, (G.7)

where the majority of the statistical noise comes from the gauge fields in M , the unper-

turbed fermion matrix, Eq. (3.18). As such, we expect the statistical fluctuations for two

different λ values to be almost exactly correlated—this is what we see in Fig. G.1.

Again, we refer the reader to the existing literature [325–327] for a discussion of alter-

native goodness-of-fit metrics.



Appendix H

Additional Lattice Results (Ch. 6)

In this appendix, we present some additional results from the calculation presented in

Chapter 6. In particular, for the Euclidean time dependence of the polarised, t =

−0.57 GeV2 results, and for the unpolarised t = −0.29,−1.14 GeV2 results. We also

plot the ω̄ dependence of the t = −0.29,−1.14 GeV2 data sets.
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Figure H.1: Plot of τ fits for Rλ, as defined in Eq. (4.53) and the ‘effective mass’, ∆τRλ, defined

in Eq. (6.24), for the up quarks, polarised, and λ = 0.0125, t = −0.57 GeV2. The shaded bands

are fits to the function f(τ) = aτ + b using weighted averages; the lighter shade is the whole range

considered, and the darker shade is the fit window with the highest weight.
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Figure H.2: The same plot as Fig. H.1 but for the unpolarised projector and t = −0.29 GeV2.
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Figure H.3: The same plot as Fig. H.2 but for the t = −1.14 GeV2 data.
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Figure H.4: Top: the quantity RΓ
kk, as defined in Eq. (4.55), for t = −0.29 GeV2, u− d quarks;

note the polarised is normalised to keep the pre-factor ofH1 unity. Bottom: the extracted Compton

form factors.
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Figure H.5: The same plot as Fig. H.4 but for t = −1.14 GeV2.
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Figure H.6: Posterior distribution for the fit to the subtraction function, Eq. (6.31), for the data

set with t = −0.29 GeV2. The limits of the x-axis are the limits of the prior distribution, given in

Eq. (6.33).



Appendix I

Supplementary Calculations

(Ch. 8)

In this appendix, we present some supplementary calculations to Chapter 8. First, in

Section I.1 we present our the OPE prediction of the subtraction function from Ref. [291],

using inputs calculated on one of our gauge ensembles. Then, in Section I.2 we present

our calculation of the scalar charge for a structureless Wilson fermion.

I.1 OPE of the Subtraction Function

We compare our Feynman-Hellmann subtraction function results to the prediction from

the OPE given in Ref. [291]. We use inputs from lattice ensemble in Table 5.1: the

mass, the scalar charges [174], and the structure function (parton distribution function)

moments [37].

From Ref. [291], the spin-0 and spin-2 contributions to the nucleon subtraction function

for a quark of flavour f are

Sf1 (Q2) =
2

Q2

(
2m2

Na
f
2 − σf

)
, (I.1)

where a2 is the second PDF moment and

σf = mf 〈P |ψ̄fψf |P 〉 = 2mNmfa
f
s , (I.2)

with afs the scalar charge. Note that we ignore the ‘gluon contributions’ from Ref. [291],

since these correspond to disconnected diagrams, which are not calculated in our Feynman-

Hellmann implementation.

Finally,

S1(Q2) =
∑

f

e2
fS

f
1 (Q2). (I.3)

The result is plotted against our Feynman-Hellmann results in Figs. 8.1 and 8.15.

I.2 Structureless Fermion Scalar Charge

In Chapter 8, in order to compare the lattice perturbation theory to our Feynman-

Hellmann results for a structureless fermion, we needed to determine the matrix element
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〈p|ψ̄ψ|p〉 = 2Epas, where |p〉 is a structureless fermion state and as is the scalar charge.

In the continuum, as = 1, while on the lattice it is as = 1 + O(a). In this section, we

present two methods to calculate the scalar charge, and show that they are equivalent.

Three-Point Function

The three-point function we start with is

〈ψ(x)ψ̄(y)γ4ψ(y)ψ̄(0)〉T . (I.4)

We wish to calculate the partial Fourier transform of this quantity:

G3−pt(k, t, τ) =
∑

x,y

e−ik·x〈ψ(x)ψ̄(y)γ4ψ(y)ψ̄(0)〉T , (I.5)

where x4 = τ , y4 = τ ′.
It is simple to show that the above equation can be expressed as

G3−pt(k, τ, τ
′) =

1

ZT
〈0|ψ(0)|k〉〈k|ψ̄(0)|0〉

2Ek
e−Ek(τ−τ ′)γ4

〈0|ψ(0)|k〉〈k|ψ̄(0)|0〉
2Ek

e−Ekτ
′
, (I.6)

ignoring the negative parity state.

Or equivalently,

G3−pt(k, τ, τ
′) =

1

ZT
〈0|ψ(0)|k〉〈k|ψ̄(0)|0〉

(2Ek)2
〈k|ψ̄(0)ψ(0)|k〉e−Ekτ

=
1

ZT
u(k)ū(k)

2Ek
ase
−Ekτ ,

(I.7)

where as is the scalar charge and u(k) is a spinor for a positive parity fermion.

In contrast to our derivations of the nucleon n-point functions in Chapter 3, we retain

the partition function ZT = 1 + e−EkT . Unlike all other matrix elements we have so far

discussed, for the structureless fermions we take am close to zero, and hence e−EkT is

not approximately zero. Therefore, ZT ≈ 1 is not a good approximation for our finest

discretisations.

The free Wilson fermion propagator has the exact solution:

S(k) =
∑

kµ

eik·(x−y)〈ψ(x)ψ̄(y)〉T = a
M(k)− iγµ sin(akµ)

M(k)2 +
∑

µ sin2(akµ)
, (I.8)

where

M(k) = am0 +
∑

µ

(
1− cos(akµ)

)
(I.9)

Therefore, a partial Fourier transform gives us the time-momentum propagator:

S(k, τ) =
∑

k4

eik4τa
M(k)− iγµ sin(akµ)

M(k)2 +
∑

µ sin2(akµ)
. (I.10)
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In terms of operators, this is

S(k, τ) =
1

ZT
〈0|ψ(0)|k〉〈k|ψ̄(0)|0〉e−Ekτ

=
1

ZT
u(k)ū(k)

2Ek
e−Ekτ ,

(I.11)

where we again ignore the negative parity state.

Therefore, Eq. (I.6) can be expressed as

G3−pt(k, t, τ) = ZTS(k, t− τ)γ4S(k, τ). (I.12)

Note that since each Wilson propagator carries a factor of 1/ZT , whereas our three-point

function needs only one such term, we multiply by ZT to fix this normalisation. Although

this makes little difference where NT � (am)−1, since we take am→ 0 with NT fixed, we

need to keep the partition function explicit.

More explicitly, we calculate the ratio

Rs(k, t) =
tr
{

ΓunpolG3−pt(k, t, τ)
}

tr
{

ΓunpolS(k, t)
} =

tr
{

ΓunpolZTS(k, t− τ)γ4S(k, τ)
}

tr
{

ΓunpolS(k, t)
} = as, (I.13)

the scalar charge. It is best to set k = 0.

Feynman-Hellmann

While Eq. (I.13) is fairly straightforward to compute, especially compared to nucleon

three-point functions, we can derive a simpler and totally analytic expression for as for

Wilson fermions.

Using the Feynman-Hellmann theorem for sigma terms [165], we have

as =
∂mpole

∂m0
, (I.14)

where mpole is the pole mass from the Wilson fermion propagator.

The pole mass can be found by solving the following equation for mpole = −ik4 :

(
am0 + 2 sin

(
iampole

2

))2

+ sin(iampole)
2 = 0. (I.15)

From this we find a range of solutions:

ampole = ± log
(
1 + am0

)
+ 4iπn, for n ∈ Z. (I.16)

Since the Taylor series of log(1 + x) is

log(1 + x) = x− x2

2
+
x3

3
− x4

4
+ ... (I.17)

this means that the positive pole mass is ampole = log(1 + am0).
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Figure I.1: Comparison of the structureless fermion scalar charge calculated using Eq. (I.13)

(three-point), to the same quantity calculated with Eq. (I.18) (Feynman-Hellmann).

Therefore,

as =
log(1 + am0)

∂m0
=

1

1 + am0
. (I.18)

Although much simpler, this expression for the scalar charge is less fundamental than the

three-point expression in Eq. (I.13). However, comparing the values from the two different

methods for a range of κ = 0.1080− 0.1248 and NT = 64, they match remarkably well, as

shown in Fig. I.1. Note that for κ = 0.095 the discrepancy between the Feynman-Hellmann

and three-point results is ∼ 10−9, while for κ = 0.1248 the discrepancy is ∼ 10−15, both of

which are negligible given that as ∼ 1. Therefore, we use Eq. (I.18) for our structureless

fermion scalar charges in Chapter 8.
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[114] F. Ynduráin, “Reconstruction of the deep inelastic structure functions from their

moments,” Physics Letters B, vol. 74, no. 1, pp. 68 – 72, 1978.

[115] W. Detmold, W. Melnitchouk, and A. W. Thomas, “Extraction of parton distribu-

tions from lattice QCD,” Mod. Phys. Lett. A, vol. 18, pp. 2681–2698, 2003.

[116] Z. Davoudi and M. J. Savage, “Restoration of Rotational Symmetry in the Contin-

uum Limit of Lattice Field Theories,” Phys. Rev. D, vol. 86, p. 054505, 2012.

[117] C. Monahan and K. Orginos, “Locally smeared operator product expansions in scalar

field theory,” Phys. Rev. D, vol. 91, no. 7, p. 074513, 2015.

[118] M. Gockeler, R. Horsley, W. Kurzinger, H. Oelrich, D. Pleiter, P. E. L. Rakow,

A. Schafer, and G. Schierholz, “A Lattice calculation of the nucleon’s spin dependent

structure function g(2) revisited,” Phys. Rev. D, vol. 63, p. 074506, 2001.

[119] M. Gockeler, R. Horsley, D. Pleiter, P. E. L. Rakow, A. Schafer, G. Schierholz,

H. Stuben, and J. M. Zanotti, “Investigation of the second moment of the nucleon’s

g(1) and g(2) structure functions in two-flavor lattice QCD,” Phys. Rev. D, vol. 72,

p. 054507, 2005.
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A. Schiller, H. Stüben, F. Winter, and J. M. Zanotti, “Hyperon sigma terms for

2 + 1 quark flavors,” Physical Review D, vol. 85, Feb 2012.



Bibliography 214
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holz, H. Stüben, R. D. Young, and J. M. Zanotti, “Feynman–Hellmann approach to

transition matrix elements and quasi-degenerate energy states,” 5 2023.

[220] J. Salvatier, T. V. Wiecki, and C. Fonnesbeck, “Probabilistic programming in python

using pymc3,” PeerJ Computer Science, vol. 2:e55, 2016.

[221] M. D. Hoffman and A. Gelman, “The no-u-turn sampler: Adaptively setting path

lengths in hamiltonian monte carlo,” Journal of Machine Learning Research, vol. 15,

pp. 1593–1623, 2014.



Bibliography 218

[222] L. Schoeffel, “Generalised parton distributions at HERA and prospects for COM-

PASS,” Phys. Lett. B, vol. 658, pp. 33–39, 2007.

[223] M. Diehl and W. Kugler, “Some numerical studies of the evolution of generalized

parton distributions,” Physics Letters B, vol. 660, p. 202–211, Feb 2008.
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fitting procedure to deeply virtual meson production — the next-to-leading order

case,” Nuclear Physics B, vol. 884, p. 438u(P)2013546, Jul 2014.

[251] D. Mueller, “Pomeron dominance in deeply virtual Compton scattering and the

femto holographic image of the proton,” 5 2006.



Bibliography 220

[252] G. S. Bali, B. Lang, B. U. Musch, and A. Schäfer, “Novel quark smearing for hadrons
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