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A B S T R A C T   

Traditionally, reservoir management has been synonymous with the operation of engineering infrastructure 
systems, with the majority of literature on the topic focusing on strategies that optimize their operation and 
control. This is despite the fact that reservoirs have major impacts on society and the environment, and the 
mechanics of how to best manage a reservoir are often overshadowed by both environmental changes and 
higher-order questions associated with societal values, risk appetite and politics, which are highly uncertain and 
to which there are no “correct” answers. As a result, reservoirs have attracted more controversy than any other 
type of water infrastructure. In this paper, we address these often-ignored issues by providing a review of 
reservoir management through the lens of wickedness, competing objectives and uncertainty. We highlight the 
challenges associated with reservoir management and identify research efforts required to ensure these systems 
best serve society and the environment into the future.   

1. Introduction 

Arguably, there is no other type of water infrastructure in the world 
that has attracted more controversy than reservoirs and dams. On the 
one hand, these systems have been used by many civilizations for over 
5000 years to provide various services, from traditional water supply 
and irrigation (Panagopoulos & Giannika, 2023) to flood control and 
mitigation, and more recently to hydro-power generation and environ-
mental water management (McCully, 1996; MDBA, 2021). And there is 
renewed interest in dam construction due to the ever-increasing demand 
for water and power (World Bank, 2009). On the other hand, the con-
struction of large dams is heavily criticized, due to not only their high 
cost but also the increased awareness of the associated social and 
environmental impacts that cannot be easily assessed in monetary terms 
(Ho et al., 2017; World Commission on Dams, 2000). The way reservoirs 
are managed adds to this controversy, as reservoirs often serve 
competing purposes (e.g., water supply security and flood mitigation) 
and the way they perform is governed by subjective decisions about 

potential tradeoffs in the face of imperfect information and uncertainty 
in both the natural environment and human society. Therefore, reservoir 
management, which includes operation, maintenance, rehabilitation, 
redevelopment or repurposing of existing reservoir systems, has been 
referred to as a wicked problem (Lund, 2012; Mamatova et al., 2016; 
Reed and Kasprzyk, 2009).) 

Given their far-reaching impacts on sustainability, their multiple and 
competing management objectives that are often associated with diverse 
societal values, risk appetite and politics (i.e. the wickedness of the 
problem), and the deeply uncertain future environmental processes (e.g. 
climate change) that affect their management, it is surprising that the 
majority of previous reviews on how to manage reservoir systems have 
been rather narrowly focused on solution techniques and models (Fay-
aed et al., 2013; Hossain and El-shafie, 2013; Milanović and Vasić, 2021; 
Simonovic, 1992; Wurbs, 1993; Yakowitz, 1982; Yeh, 1985), often tar-
geting the operation of reservoirs (Ahmad et al., 2014; Dobson et al., 
2019; Parvez et al., 2019). There are only limited reviews that have 
looked at other aspects of reservoir management, such as climate change 
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impact (Şen, 2021), problem formulation of reservoir optimization 
(Giuliani et al., 2021), and river ecological management (Barbour et al., 
2016). However, the full set of challenges associated with reservoir 
management due to its wicked nature has not been reviewed thus far. 
Consequently, the objectives of this paper are to 1) present an overview 
of the key challenges in reservoir management through the lens of 
wickedness, competing objectives and uncertainty; 2) provide a review 
of how these challenges have been addressed historically and at present; 
and 3) identify key areas where research efforts need to be directed in 
order to better manage reservoir systems to serve the needs of society 
and the environment into the future. 

The rest of this paper is organized as follows. The characteristics of 
wicked problems and the challenges to reservoir management arising 
from this wickedness are presented in section 2. Section 3 critically re-
views the various approaches that have been used to address these 
challenges. The next section discusses the direction of future research 
needed. Finally, conclusions are presented in section 5. 

2. What are the challenges in reservoir management? 

The management of reservoir systems is a very complex issue and is 
often considered a wicked problem (Mamatova et al., 2016). In order to 
understand the “wickedness of reservoir management”, one needs first 
to understand what a wicked problem is. The concept of wicked prob-
lems was first introduced in social planning by Churchman (1967) as “a 
class of social system problems that are ill-formulated, where the in-
formation is confusing, where there are many clients and decision 
makers with conflicting values, and where the ramifications in the whole 
system are thoroughly confusing”. Therefore, these problems are diffi-
cult to define and, arguably, can never be completely solved, as opposed 
to “tame” problems that can be solved using methods developed in the 
fields of engineering or the physical sciences (Rittel and Webber, 1973). 
Typically, wicked problems in any given area can be defined by several 
characteristics (Conklin, 2006), which include 1) they do not have a 
definitive formulation (e.g., definition of system boundary, management 
objectives and potential actions); 2) they do not have a final unique 
solution; 3) no solution is completely right or wrong; 4) there is no fixed 
number of alternative solutions; and 5) every problem is unique, and so 
is every solution. As a result, the solution to a wicked problem is often 
subject to significant uncertainty in environmental processes in the 
future (e.g., due to climate change) and dependent on the formulation of 
the problem. The latter can be highly variable due to the potentially 
drastically different views and values of the stakeholders involved (note, 
stakeholders in this study include analysts, decision makers, experts, and 
the public and other stakeholders following the definition by Wu et al. 
(2016), and therefore stakeholders are potentially involved in all aspects 
of a solution process) (Badham et al., 2019). The formulation of the 
problem (and therefore its possible solutions) can also change with time 
due to changes in both the physical system, the physical environment 
surrounding it and/or its social and political environment, such as 
stakeholder preferences and government policies. Consequently, a 
wicked problem is never solved definitively (Mamatova et al., 2016). 

To illustrate the “wickedness” and challenges associated with solving 
reservoir management problems, consider the 2021 Eastern Australia 
floods as an example. In late March 2021, the heaviest rain since 1961 
fell over a five-day period in the Nepean and Hawkesbury catchments in 
western New South Wales (NSW), Australia. The heavy rainfall caused 
the worst flooding in 60 years in Sydney, the largest city in Australia 
(Smith, 2021). Sydney’s main dam – the Warragamba Dam - spilled, 
releasing 450gigaliters (GL) of water a day downstream, which is nearly 
the capacity of Sydney Harbor (Gralow and Jose, 2021). Across the state 
of NSW, over 40,000 people were affected by evacuation orders (Nguyen 
and Stuart, 2021) and nearly $500 million in damages were reported 
(Dye, 2021). The flood caused heated debate between the NSW Emer-
gency Services Minister and the Water Minister on the operation of 
Warragamba dam, arguing whether or not the dam should have been 

drained to just 20–25% of its capacity based on weather forecasts before 
the floods (Smith, 2021). However, weather forecasts are largely un-
certain and if the dam had been drained and the rain did not come, 
Sydney could have run out of water. The flood also raised questions 
about what should be done to prepare for similar events in the future, 
which are becoming increasingly likely due to climate change. There is 
currently a proposal to increase the height of the dam wall by 14–17 m, 
which will create another 1000 GL storage on top of the current 2000 GL 
storage available for flood mitigation (9 NEWS, 2021). However, raising 
the dam wall will not only have significant environmental and cultural 
impacts upstream, but may also inflate the perception of flood immunity 
downstream, thereby encouraging further development in the flood-
plain and actually increasing flood risk. As an alternative extreme view, 
people have questioned whether there will be a day when the dam will 
need to be removed due to the high costs associated with maintaining 
the aging infrastructure or the need to restore the damaged river on 
which it is located. This dam removal trend has been observed in the 
USA (Ryan Bellmore et al., 2017), where more than 1700 dams have 
been removed since 1912 (Cherney, 2020). Although the Warragamba 
Dam example is from Australia, there are examples from all around the 
world that demonstrate similar challenges of reservoir management 
(Flecker et al., 2022; Hein et al., 2019; Holdren and Turner, 2010; Tran 
et al., 2019). 

As elucidated in the example above, the challenges of reservoir 
management, which includes the operation, maintenance, rehabilita-
tion, redevelopment, or repurposing of existing reservoir systems, can be 
grouped into four categories. The first three categories are defined based 
on the needs of reservoir management to consider 1) multiple uses and 
competing management objectives (e.g., water supply and flood miti-
gation in the Warragamba Dam example), 2) stochastic uncertainty (e. 
g., in weather forecasts in the Warragamba Dam example - also see BOX 
1) and 3) deep uncertainty (e.g., climate change and differences in 
stakeholders’ views in the Warragamba Dam example - also see BOX 1). 
Reservoir management problems can be further complicated by the in-
teractions between these three challenges, which is defined as the fourth 
category of challenges in this paper. Details of these four categories of 
challenges in reservoir management and the extent to which they have 
been considered in past studies are discussed in this section. 

2.1. Multiple purposes, management objectives and jurisdictions 

The first challenge is that reservoirs often serve multiple purposes, 
and that the management of reservoirs often requires the need to satisfy 
multiple, often competing, objectives that may change over the life of 
the reservoir system. In this context, it is important to clearly distinguish 
between multiple purposes and multiple objectives. Although, globally, 
the majority of dams are built for a single purpose, such as water supply 
(10.4% of large dams in the world), agricultural irrigation (27%) or 
hydro-electrical power generation (25%), close to a third of reservoirs 
cater to multiple design purposes, such as water supply and flood control 
or irrigation and hydropower generation (McMahon and Petheram, 
2020). In addition, many reservoirs are also used for recreation in 
addition to their primary design purpose(s) (Speirs, 2019). In general, 
management objectives are directly related to reservoir performance. 
For example, achieving water supply security is a typical management 
objective of a reservoir built for water supply. These reservoir man-
agement objectives are often related to different priorities regarding 
economic efficiency, equity and environmental sustainability, which are 
often conflicting (Jakeman et al., 2016; Molle, 2008). 

A further complicating factor is that many of the large river basins 
and reservoir systems in the world are multi-national (Beck et al., 2014). 
In this case, the objectives of each of the countries involved may be 
conflicting. The best way to deal with these problems is through inter-
national treaties or agreements for sharing water resources (Brochmann, 
2012). However, many large international river basins do not have such 
agreements in place (Song and Whittington, 2004). Consequently, the 
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remainder of this section deals with the management of reservoirs that 
are operated by a single country. 

Multi-purpose management of reservoirs can be evaluated in either a 
single or a multiple objective framework. For example, water supply, 
irrigation and power generation can all be included in an economic 
framework where all decisions are evaluated in terms of the single 
objective of maximizing net economic benefits (Hu et al., 2015). More 
commonly, reservoir management solutions are evaluated in terms of 
multiple and often competing objectives, such as increasing water sup-
ply security, reducing flood risk or maximizing hydroelectric power 
generation. For example, Hakimi-Asiabar et al. (2010) considered the 
operation of a three-reservoir system in Iran intended for the supply of 
water for domestic and agricultural purposes, hydropower generation 
and controlling river water quality. They undertook multi-objective 
optimization using the following three objectives: minimizing unsatis-
fied water demand, maximizing power generation, and minimizing the 
volume of diverted river flows and wastewater to control salinity in the 
river. 

Furthermore, reservoir management objectives can be much broader 
than those considered in the initial reservoir design. This is first because 
reservoir management objectives associated with operation, mainte-
nance, rehabilitation, or redevelopment often have to be considered, 
especially for older reservoir systems. For example, the minimization of 
dam failure risk needs to be considered through regular maintenance 
work (Mihnea et al., 2008) or recovery of storage volumes through 
reservoir rehabilitation processes (De Vincenzo et al., 2017). In addition, 
unexpected changes external to the reservoir system, such as climate 
change, may lead to degradation in the level of service (e.g. flood pro-
tection level) the reservoir system is intended to provide. Therefore, 
rehabilitation or redevelopment may be required to restore the service 
level (Jun et al., 2020). Other management objectives can come to the 
fore over time due to improved understanding in science or a changed 
social or political environment, which often manifests itself as changed 
stakeholders’ views. For example, the Hume Dam in Australia was 
initially constructed in 1936 for water supply and irrigation. However, it 
is now primarily used for regulating and conserving water for both 
human consumption and the environment, with secondary uses of hy-
droelectric power generation and flood mitigation. This change is 
mainly due to the increased awareness of environmental issues in the 
Murray Darling Basin (MDBA, 2021). As a result, the management ob-
jectives for Hume dam have evolved from simply increasing water 
supply security to pursuing multiple economic, environmental, and so-
cial objectives. 

These reservoir management objectives are often conflicting (Salas 
and Hall, 1983). For example, a limited drawdown level is required to 
increase water supply security, providing a higher probability of 
meeting demand in future droughts (e.g., for human consumption, 
irrigation, or environmental flow). However, this reduces the “free 
space” available to attenuate the peaks of incoming floods, thus 
increasing future flood risk (Cheng et al., 2017). Another example re-
lates to the potential conflict of providing water for human needs while 
maintaining environmental flows in the river system (Derepasko et al., 
2021). Prioritizing one objective over the other(s) without under-
standing the full impact may result in undesirable (or unintended) 
outcomes (Derepasko et al., 2021; Hwang and Masud, 1979; Perera 
et al., 2021; Razavi et al., 2020; Wu et al., 2010). Therefore, a 
multi-objective approach is often required to identify Pareto optimal 
solutions that characterize the tradeoffs between competing objectives 
of reservoir management (Barbour et al., 2016; Changchit and Terrell, 
1993; Giuliani et al., 2014a; Horne et al., 2016; Tsoukalas and Makro-
poulos, 2015; Wu et al., 2022). 

Many reservoir management objectives, especially those acquired 
over time after initial construction, can be difficult to quantify and 
therefore difficult to formulate using traditional engineering methods 
such as mathematical models. Examples of such objectives include cul-
tural conservation objectives (Davies et al., 2021), ecological 

management objectives (Barbour et al., 2016; Derepasko et al., 2021), as 
well as benefits sharing between different countries if reservoirs are 
located on international rivers (Mamatova et al., 2016). These objectives 
contribute to the wickedness of reservoir management problems and 
represent an important emerging challenge in reservoir management. 

2.2. Stochastic uncertainty 

Some reservoir management decisions, such as operational decisions 
about when to release water and by how much, are typically made on a 
sub-daily or daily basis. However, the impacts of these decisions may not 
eventuate until several days or months after the decisions are made 
(Cheng et al., 2017; Li et al., 2018; Wu et al., 2022). For example, it may 
take several days or weeks for water released to travel to downstream 
locations where the impact is realized. Therefore, these decisions are 
subject to uncertainty during the time between water release and impact 
realization. A similar situation arises when deciding to prerelease water 
from a reservoir in anticipation of a future flooding event as the actual 
volume and peak of the future flood is uncertain. This uncertainty is 
mainly due to natural variability in system inputs, such as rainfall, soil 
moisture, inflow, evaporation, and demand during the travel time of 
water and is referred to as stochastic uncertainty (see Box 1 for defini-
tion). Stochastic uncertainty is generally applied over a shorter time 
scale in the immediate future (e.g., from several days to several months), 
rather than the service life of reservoirs (e.g., 50–100 years). This is 
because most of the studies looking into uncertainty and its impact on 
system performance in the immediate future, such as reservoir operation 
studies, are more concerned with stochastic uncertainty. However, in 
some recent studies, stochastic uncertainty has also been used to char-
acterize natural variability in system inputs under given future condi-
tions due to long-term drivers such as climate change (Kiem et al., 
2021). 

Reservoir inflow (or input variables affecting inflow, such as rainfall) 
is undisputedly the most commonly considered source of stochastic 
uncertainty in reservoir management, and has been considered in all 
papers reviewed on this topic, including studies by Chaves et al. (2004), 
Mortazavi et al. (2012), Bekri et al. (2015), Tsoukalas and Makropoulos 
(2015), Pan et al. (2015), Cote and Leconte (2016), Sahu and 
McLaughlin (2018), Ramaswamy and Saleh (2020), Hooshyar et al. 
(2020), Celeste et al. (2021), Muronda et al. (2021) and Wu et al. (2022). 
Other sources of stochastic uncertainty, such as temperature (Bekri 
et al., 2015), evaporation (Ortiz-Partida et al., 2019), demand (Sol-
eimani et al., 2016), storage level and release (Huang et al., 2018), as 
well as model parameterization (Bekri et al., 2015), have also been 
considered in several studies. In contrast, soil moisture, which has 
recently been found to have a significant impact on the generation of 
stream flows and therefore reservoir management (Sharma et al., 2018), 
has not been considered as a source of stochastic uncertainty for reser-
voir management. 

Stochastic uncertainty can be quantified explicitly and therefore 
incorporated in mathematical models relatively easily (Cote and 
Leconte, 2016; Mujumdar and Nirmala, 2007; Wu et al., 2020a), facil-
itating its inclusion in solving reservoir management problems. How-
ever, in some studies the variability of system inputs due to stochastic 
uncertainty is generated based on short historical records, which cannot 
provide meaningful evaluation of extreme events, such as extreme 
floods or droughts. Failure to consider all important sources of stochastic 
uncertainty or the whole range of variability due to stochastic uncer-
tainty may lead to biased assessment of system performance and thus 
ill-informed decisions. 

2.3. Deep uncertainty 

The management of water infrastructure, including reservoirs, is also 
subject to deep uncertainty (see Box 1 for definition). These systems 
have traditionally been designed and operated under the assumption of 
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stationarity, typically climate stationarity. As a result, system states are 
often represented by exogeneous variables that fluctuate within a con-
stant envelope of variability (i.e., stochastic uncertainty due to natural 
variability, as discussed above), and therefore their plausible future 
states can be represented using past observations (Milly et al., 2008). 
While reservoir operation models based on historical observations help 
simulate past conditions, they may fail to simulate system performance 
in the distant future due to unknown values of these exogeneous vari-
ables (Giudici et al., 2021). These long-term unknowns due to long-term 
changes such as climate change, demographic change, technological 
development, intersectoral and global policy changes, and the com-
pound effects of their interactions, are the first source of deep uncer-
tainty (Maier et al., 2016; Wu et al., 2020b). Consequently, it is vital to 
understand which plausible future conditions have the biggest impact on 

system performance (Culley et al., 2021; Giudici et al., 2020). In addi-
tion, the cascading effects of these drivers of change need to be 
considered, such as the impact of climate change on wildfires (Part-
ington et al., 2022), which have an impact on catchment conditions and 
runoff, and hence on reservoir inflows and performance. 

Apart from the long-term unknowns in the future, deep uncertainty 
also arises from the inherent wickedness of reservoir management 
problems themselves. For example, in any analysis involving reservoir 
systems, the formulation of the problem that needs to be solved (e.g., the 
definition of system boundaries, management objectives and potential 
actions), and the outcomes of interest and their relative importance, are 
dependent on stakeholders’ (typically decision makers’) preferences. 
There are potentially radically different values and views of stake-
holders (including decision makers, analysts, brokers, experts and the 

BOX 1 
Stochastic and deep uncertainty 

In this paper, stochastic uncertainty refers to uncertainty that results from natural variability in inputs (e.g., rainfall due to climate variability) 
and uncertainty in model parameters and structures (Duan et al., 2019). This type of uncertainty can be quantified using traditional mathe-
matical methods such as probability distributions (Nair and Sasikumar, 2019), ensemble predictions (Ramaswamy and Saleh, 2020; Wu et al., 
2020a) or error models (Bennett et al., 2021). Stochastic uncertainty is associated with an uncertain, but single, plausible future (Maier et al., 
2016). 

Deep uncertainty refers to uncertainty due to the existence of multiple plausible futures (Lempert et al., 2003; Maier et al., 2016). It is widely 
recognized that deep uncertainty can result from long-term unknowns such as climate change, social-economic development, technological 
advances, and political reforms (Maier et al., 2016). Underpinned by the existence of multiple plausible futures, deep uncertainty can also arise 
from human involvement. This is mainly due to the radically different values and views various stakeholders may hold and the fact that only a 
limited number of stakeholders can be involved in problem formulation (e.g., the definition of system boundaries, management objectives and 
potential actions) and solution processes (Wu et al., 2016). Stakeholder values and views can also change with time (Mamatova et al., 2016). 
These multiple plausible futures often cannot be represented using a single model, and therefore are often evaluated using scenario-based 
approaches (BOX 2) (Maier et al., 2016). Stochastic and deep uncertainty often affect various stages of the systems approach, as illustrated 
in Fig. B1.

Fig. B1. Potential influence of stochastic and deep uncertainty on the systems approach for solving environmental engineering problems, with 
reservoir management as an example (Adapted from Biswas (1976)).   
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public (Wu et al., 2016)). As there can only be a limited number of 
stakeholders involved for each problem formulation, the level of 
agreement reached by stakeholders is deeply uncertain depending on 
the sample of stakeholders involved at different stages of the solution 
process (Di Matteo et al., 2019; Lempert et al., 2003). This leads to 
multiple alternative system boundaries, models, objectives and potential 
solutions, as well as alternative rankings of the solutions (Kwakkel et al., 
2016), and therefore multiple plausible futures. In addition, stake-
holders’ values and views can also change over time due to improved 
understanding in science and changed social or political environments, 
further contributing to deep uncertainty. For example, Mamatova et al. 
(2016) showed that the operating rules of reservoirs that were con-
structed during the Soviet Union period needed to be revisited after the 
independence of the Central Asian countries in order to cater to new 
socio-political conditions and transboundary water agreements. 

Under deep uncertainty, traditional “predict-and-plan” management 
strategies derived without considering the different plausible futures 
have become obsolete (Brown et al., 2012; Herman et al., 2016; Razavi 
et al., 2020; Weaver et al., 2013). In addition, consideration of deep 
uncertainty generally also requires the use of alternative system per-
formance metrics, primarily based on the concept of robustness 
(McPhail et al., 2018, 2021). Neglecting deep uncertainty due to 
long-term unknowns in exogeneous variables may have irreversible 
consequences for water-dependent sectors, for example leading to 
flooding of homes and irreversible damage to people’s lives, expensive 
infrastructure upgrades well before these upgrades are required, or even 
premature system failure (Culley et al., 2016). Such consequences can 
also extend to the rest of the economy through ripple effects (Eamen 
et al., 2021; Hall et al., 2014). In addition, solutions developed based on 
preferences and views of a single sample of stakeholders at a single 
snapshot in time may fail to cater to other stakeholders’ preferences and 
changing preferences with time, thereby causing possible conflicts. 

2.4. Interactions between management objectives, and stochastic and deep 
uncertainty 

The three challenges of reservoir management introduced above 
cannot be considered in isolation, as they often interact with each other 
in practice, which further increases the complexity of reservoir man-
agement problems. The interactions between the three challenges of 
reservoir management and examples of how they may impact the so-
lution process are illustrated in Fig. 1. 

The interactions between stochastic uncertainty and the other two 
challenges (e.g., multiple managment objectives and deep uncertainty) 
are reasonably straightforward to address, given stochastic uncertainty 
mainly results from natural variability in system inputs and therefore 
can be quantified using existing mathematical methods such as proba-
bilistic distributions or ensemble forecasts, as mentioned previously. 
When the management objectives are also quantifiable using mathe-
matical models, the tradeoffs between different objectives are often 
represented as non-dominated solutions on a Pareto optimal front that 
can be obtained using the traditional engineering approach of simula-
tion and optimization modeling. The consideration of stochastic uncer-
tainty in addition to multi-objective tradeoffs means that the Pareto 
optimal front formed by the objective function values of management 
decisions is no longer deterministic (as shown in the top rectangular box 
in Fig. 1), but probabilistic (as shown in the top-left oval in Fig. 1). 
Consequently, a range of performance values (represented by the gray 
shaded area in Fig. 1), instead of a single value, is to be expected for any 
solution considering stochastic uncertainty. When the management 
objectives cannot be quantified using mathematical models (e.g., due to 
deep uncertainty as discussed above), new methods, for example 
methods based on qualitative assessments, are required to account for 
the joint impact of uncertainty and these objectives on potential solu-
tions. Similarly, the consideration of stochastic uncertainty, in addition 
to deep uncertainty, introduces probabilistic information into the sce-
narios representing plausible futures, as illustrated in the bottom oval in 
Fig. 1. 

Fig. 1. Examples of interactions between multiple and often competing management objectives and stochastic and deep uncertainty for reservoir management.  
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The interactions between management objectives and deep uncer-
tainty can lead to some of the most difficult challenges in solving 
reservoir management problems. When the objectives are quantifiable 
using mathematical models, these challenges are less acute, as intuitive 
solution methods can be used, such as considering either the tradeoffs 
between competing management objectives within each scenario rep-
resenting different plausible futures (as shown in the top right oval in 
Fig. 1) or across the scenarios using, for example, a scenario-neutral 
approach (Culley et al., 2016; Danner et al., 2017). However, this is 
often not the case for real-world reservoir management applications, the 
objectives of which can sometimes be difficult to quantify due to the 
wickedness of the problem arising from stakeholders’ involvement and 
their differing values. 

In addition, new management objectives may emerge over time as 
some of the long-term impacts of dams, such as land and coast erosion, 
water quality degradation and groundwater depletion (and thus drying 
out floodplains downstream of the dam), may only become apparent 
many years after the construction of the dams (McCully, 1996). Also, as 
science develops over time, new methods will be developed that enable 
the evaluation of management objectives that could not be quantified 
previously. Reservoir management problem formulation, especially 
formulation of objectives, may also evolve over time due to changed 
stakeholder views and values, typically influenced by changes in social 
and political environments. Consequently, the interactions between 
management objectives and deep uncertainty mean that each scenario 
representing a plausible future can no longer be formulated as a fixed (or 
static) pathway leading to a single destiny into the future, but as a dy-
namic pathway leading to a number of plausible futures. 

Finally, the interactions between all three challenges will further 
complicate reservoir management problems, as the tradeoffs between 
different management objectives need to be evaluated across different 
scenarios, as well as considering the fluctuation in system states within 
these scenarios; and the system states within these scenarios may also 
change with time. Thus, the solution process will become more complex, 
and the computational cost associated with the identification of suitable 
solutions is also likely to increase accordingly. 

3. How can challenges in reservoir management be addressed? 

3.1. Methods to incorporate multiple and competing objectives 

3.1.1. Methods to incorporate multiple competing objectives in optimization 
As mentioned in Section 2.1, most reservoir management problems 

are multi-objective. In those cases where a single objective can be clearly 
defined, and good models of the system are available, single objective 
optimization techniques can be applied to find the best solution. An 
example of this is when the reservoir is operated for a single purpose 
such as water supply for a local community and the objective is to 
minimize the probability of having to impose severe restrictions. 
Another example is when all objectives can be expressed in dollar terms 
(e.g., hydropower production and releases for agriculture) and the 
objective is to maximize the net economic benefits of system operation. 
However, reservoirs are typically managed for multiple purposes with 
competing objectives and the issue arises as to how to identify the best 
set of solutions. A number of potential classes of techniques for dealing 
with multi-objective problems are discussed below. 

One of the simplest techniques used is to reduce a multi-objective 
problem to a single objective problem, for example by using a 
weighted sum method (Ehteram et al., 2018; Zhu et al., 2018). This 
technique is easy to explain and easy for stakeholders to understand. 
Solving a single objective optimization problem is significantly easier 
than solving a multi-objective problem, although this depends on the 
degree of convexity of the constraints. The disadvantages of this 
approach, however, include the fact that weights need to be selected 
before the relative achievement of each objective is known, and the 
impact of the weights on the final solution obtained is often not 

considered. It is possible to carry out sensitivity analysis on these 
weights (Hyde and Maier, 2006), but this becomes more difficult when 
there are three or more objectives because of the large number of 
combinations involved. 

Another relatively simple technique for dealing with multiple ob-
jectives is to change all of the objectives except one into constraints and 
set minimum or maximum desired levels for each (Porse et al., 2015). 
Like the previous approach, this is easy to explain and easy for stake-
holders to understand. It reduces a multi-objective optimization prob-
lem to a single objective problem and so is relatively easy to solve. 
However, it suffers from similar disadvantages to the previous technique 
in that the target levels for all but one of the objectives need to be 
specified a priori and it is difficult to carry out sensitivity analysis on 
these targets for problems with three or more objectives. 

Goal programming is an alternative technique to reduce the 
complexity of multi-objective optimization problems. It has some simi-
larities with the constraint technique in that targets (or goals) need to be 
set for each objective (Xevi and Khan, 2005). A single objective opti-
mization model is then set up to minimize weighted deviations from 
these goals. Relative weights can be set for each goal and the penalties 
for each goal can be set for overachievement and/or underachievement. 
This technique is more difficult for stakeholders to understand than the 
previous two techniques and has the disadvantage that targets and 
weights both need to be set for all objectives, and it is, therefore, more 
difficult to implement in practice. It is also difficult to carry out sensi-
tivity analysis for all of the targets and weights for problems with three 
or more objectives. 

Another class of techniques that can be used to solve multi-objective 
reservoir management problems is based on choosing a solution that is 
the minimum distance from an ideal solution in objective space. Ex-
amples of these techniques include Compromise Programming (Wu 
et al., 2017) and TOPSIS (Shiau and Wu, 2013). The ideal solution is one 
that simultaneously achieves the best possible value of all objectives. As 
this can rarely be achieved in practice, compromises between the 
various objectives need to be made. In Compromise Programming, 
weights are put on the distance that each objective is from the ideal 
solution. The distance can be measured in various ways (e.g., Euclidean 
distance or city block distance). The multi-objective problem is therefore 
transformed into a series of single objective optimization problems. 
TOPSIS is similar to Compromise Programming, except that a solution is 
chosen based on the scaled distance between the ideal solution and the 
worst possible solution. Both methods can be difficult for stakeholders to 
understand, and both require the selection of weights for each objective. 

The final class of techniques is genuine multi-/many-objective opti-
mization, which involves identifying the full Pareto optimal surface 
between all objectives (Chakraei et al., 2021; Hakimi-Asiabar et al., 
2010). Many-objective optimization is a term applied to cases with four 
or more objectives. A set of techniques that is commonly used to identify 
Pareto optimal surface involves multi-objective evolutionary optimiza-
tion. This approach was used by Wu et al. (2017) for a water resources 
planning problem that included reservoir operations with four objec-
tives and Zatarain Salazar et al. (2016) for a reservoir operations 
problem with six objectives. This approach generally requires consid-
erable computing power, especially for cases with more than three ob-
jectives. In addition, the increased dimensionality of the resulting Pareto 
fronts presents new challenges in communicating the results to decision 
makers and other stakeholders. Therefore, results interpretation 
methods, such as the OpenMORDM developed by Hadka et al. (2015) 
and the many-objective visualization methods developed by Kasprzyk 
et al. (2013), have been adopted to assist with this task. 

3.1.2. Methods to account for environmental and social objectives 
A key motivation for using multiple objectives in reservoir man-

agement arises when environmental and social objectives compete with 
economic objectives. Valuing environmental and social outcomes in 
monetary terms is fraught with difficulty, as it can be highly subjective 
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and biased (Conklin, 2006). While working directly with environmental 
and social objectives avoids monetization, there remain fundamentally 
difficult challenges. 

3.1.2.1. Accounting for environmental objectives. The construction and 
operation of large reservoirs can have a significant impact on the local 
environment, which need to be considered (Best, 2019; Flecker et al., 
2022). Potential environmental objectives of reservoir management 
include a wide range of considerations, such as flow regimes and water 
quality, that have an impact on ecological outcomes of the river system. 
In their review of optimization in managing river ecosystems, Barbour 
et al. (2016) identified four challenges, two of which are of particular 
relevance here: specification of ecosystem objectives, and inclusion of 
ecosystem behavior in simulation models. Ecosystems represent a 
complex interacting web of organisms producing a diverse range of 
outcomes. However, the reviews of Barbour et al. (2016) and Horne 
et al. (2016) make it clear that there is no broad consensus on how to 
value a collection of diverse ecological outcomes. The response to this 
problem therefore involves implementation of a (possibly implicit) 
strategy that reduces the dimensionality of the valuation until it is 
deemed to be meaningful and manageable. This is a subjective process 
guided by the scientific knowledge and beliefs of experts and values of 
stakeholders. 

In the context of reservoir management, the focus of existing studies 
is often on flow-dependent ecosystems. Two broad approaches (Barbour 
et al., 2016) have been developed to make valuation meaningful and 
manageable for decision makers. The first uses an indirect (or proxy) 
approach, which relies on targeting system states that can be modeled 
and managed and that are associated with ecological outcomes. The 
flow-based approach (Poff et al., 2015) uses flow regime as the proxy. 
The target (or baseline) ecological outcome is associated with a natural 
(unimpaired) flow regime with ecological decline represented by de-
viations from the baseline. The primary advantage of this approach is 
that it does not require specific knowledge of the ecosystems in the 
reaches impacted by river regulation. However, for deviations from the 
baseline to be meaningful, there has to be an a priori corpus of scientific 
knowledge that documents the association between flow regime de-
viations and some measure of ecological decline in ecosystems similar to 
that under consideration. Characterizing a flow regime potentially in-
volves many metrics that have ecological significance such as duration, 
magnitude, flashiness, seasonality and so on. As a result, the problem of 
high dimensionality in valuation arises. There is a significant amount of 
literature on selection of metrics and their aggregation (e.g., IHA, RVA 
by Richter et al. (1997), and ELOAH by Poff et al. (2010)). 

The second approach to valuation directly targets a set of ecological 
outcomes. Once again, the dimensionality problem has to be managed, 
requiring for example, the number of locations and species, to be 
manageable. In principle, directly targeting ecological outcomes of 
importance to stakeholders appears superior to the proxy approach. 
However, this greater specificity comes at a cost. The direct approach 
requires inclusion of an ecological response model within the simulation 
of the river system. This model takes endogenous inputs from the river 
system model (which are controlled to some degree by operators) and 
exogenous inputs to simulate ecological outcomes of interest (e.g., the 
Murray flow assessment tool in Young et al. (2003) and the 
eco-hydrology model in Nichols et al. (2017)). An implicit assumption is 
made that the proxy or direct approach has sufficient skill to predict 
ecological outcomes meaningfully (Rigosi and Rueda, 2012). This is 
particularly important if optimization is used (Szemis et al., 2013, 
2014). If the optimization does not “see” the true uncertainty in the 
ecological response to control, it will be over-confident and lead to poor 
solutions (Ascough et al., 2008). Barbour et al. (2016) and Horne et al. 
(2016) commented on the lack of adoption of optimization methods in 
practice. As a result, there has been no opportunity to compare modeled 
and field outcomes to assess the credibility of the process. 

In addition to flow-depended ecological objectives, water quality is 
another environmental objective that is important for reservoir man-
agement and it is often considered in reservoir operation related studies 
(Chaves and Kojiri, 2007; Kerachian and Karamouz, 2006; Rieker and 
Labadie, 2012; Saadatpour et al., 2020). There is a large body of liter-
ature on reservoir operation optimization considering water quality 
objectives, where a number of water quality variables are considered. 
They include oxygen level related variables such as dissolved oxygen 
and biochemical oxygen demand (Chaves and Kojiri, 2007; Chaves et al., 
2004; Saadatpour et al., 2020), concentration of organic matter or 
nutrient loads using variables such as total nitrogen and total phos-
phorus (Chaves and Kojiri, 2007; Chaves et al., 2004), waste load 
discharge (Hakimi-Asiabar et al., 2010; Maeda et al., 2010), salinity 
(Galelli et al., 2015; Hakimi-Asiabar et al., 2010; Kerachian and Kar-
amouz, 2006), sediment transport (Flecker et al., 2022), and tempera-
ture (Galelli et al., 2015; He et al., 2022; Rieker and Labadie, 2012). 
These are all important indicators of ecological health of the water body. 
In the vast majority of these studies, a simulation-optimization-based 
framework is used to optimize reservoir operation, where either a 
process-based or surrogate water quality model is used to simulate the 
system and estimate the values of the water quality variables. 

3.1.2.2. Accounting for social objectives. Social objectives in water 
management can include a wide range of measures such as fairness and 
equity, political and legal feasibility and human health (Hajkowicz and 
Collins, 2007). The first challenge in incorporating social objectives in 
reservoir management is that they are difficult to quantify. Several 
studies have used surrogate measures as social objectives or constraints 
in optimization models. For example, Yu et al. (2021) used the deficit 
and excessive socio-economic water demand in the region as a social 
objective in a model for the optimal operation of the Three Gorges dam 
in China. Castelletti et al. (2008) included constraints to ensure that 
various water users each received an adequate share of the allocated 
water in a general model for the operation of a multiple reservoir 
system. 

The second challenge arises when fairness and equity need to be 
considered. For example, an important social objective is the equitable 
distribution of the benefits and costs resulting from reservoir operation. 
It is common to maximize the net economic benefits of reservoir oper-
ation regardless of who benefits and who incurs the costs (Emami et al., 
2021). When net economic benefits are maximized, it is assumed that 
these benefits and costs can be distributed among members of society via 
costless transfers. In fact, such transfers are not costless, and in practice, 
rarely, if ever take place (Dandy et al., 2018). For this reason, the 
equitable distribution of the benefits and costs of reservoir operation 
among members of society should be considered as an objective. This is 
demonstrated by Tiwari et al. (1999), where the distribution of the net 
present value of a reservoir system to the government, farmers and so-
ciety are considered as three separate objectives in an optimization 
model. 

3.1.3. Methods to deal with multi-national reservoir systems 
As mentioned in Section 2.1, where a river basin and/or reservoir 

system is multi-national, the objectives of the individual countries need 
to be taken into account. The best way to deal with sharing the benefits 
of an international water resources system is for the participating 
countries to develop a treaty or agreement that specifies how the water 
resources will be shared (Brochmann, 2012; Grey and Sadoff, 2003). 
Such agreements are aimed at ensuring that each country can meet their 
objectives while ensuring that the other countries can meet theirs. 
Obviously, this will usually involve some compromises on the part of 
each of the signatories to the agreement. It is outside of the scope of this 
paper to discuss how treaties and agreements are developed and con-
flicts are resolved in this process. 

Although qualitative approaches are often required to resolve issues 
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related to multi-national reservoir systems, a number of papers describe 
how optimization techniques can be applied to reservoir operation so as 
to optimize the objectives of several countries that share the water re-
sources. The techniques presented include stochastic dynamic pro-
gramming (Luchner et al., 2019; Serrat-Capdevila and Valdés, 2007), 
stochastic dual dynamic programming (Guan et al., 2018), genetic al-
gorithms (Digna et al., 2018), the epsilon dominance nondominated 
sorting genetic algorithm-II (Chen et al., 2020) and the analytic hier-
archy process (Srdjevic and Srdjevic, 2014). Approaches that combine 
formal optimization and negotiation could also be used (see Di Matteo 
et al. (2017)). 

3.2. Methods to incorporate stochastic uncertainty 

The simplest approach to investigate the impact of stochastic un-
certainty on reservoir management is to use simulation-based sensitivity 
or uncertainty analysis such as Monte Calo simulation (Labadie, 2004; 
Saltelli et al., 2021), where a simulation model of the reservoir system is 
used to assess the changes in objective function values and system 
constraints of existing management strategies across the range of values 
of input(s). This approach does not involve any optimization and is 
therefore easy to apply and the results obtained are easy to present to 
and understood by decision makers. Therefore, this approach has been 
used widely in reservoir management studies to understand the uncer-
tainty of current management strategies (Huang et al., 2018) or propose 
strategies for both single- and multi-objective reservoir management 
problems (Liu and Luo, 2019; Muronda et al., 2021; Zhao and Zhao, 
2014b). However, this approach does not account for stochastic uncer-
tainty in the development of management strategies and therefore the 
derived solutions may not be robust considering the variability in system 
inputs. 

Stochastic uncertainty has been incorporated into reservoir opera-
tion optimization using traditional optimization techniques, such as 
linear programming (Cai et al., 2001; Hu et al., 2015; Ortiz-Partida et al., 
2019), nonlinear programming (Wang et al., 2018), and dynamic pro-
gramming (Ramaswamy and Saleh, 2020; Zhao and Zhao, 2014a). These 
methods are often applied to a long period of input time series that 
captures the statistical attributes of the input(s) in historical observa-
tions (Haro-Monteagudo et al., 2017; Macian-Sorribes and 
Pulido-Velazquez, 2020). This approach is easy to implement; however, 
the solution obtained is only applicable to the unique input data used 
(Labadie, 2004). To address this limitation, stochastic optimization 
methods such as Stochastic Dynamic Programming (SDP) have been 
developed (Sahu and McLaughlin, 2018). In traditional SDP algorithms, 
uncertainty in system inputs, typically inflow, is often taken into ac-
count using probability distributions, which enables them to robustly 
estimate the probability of realization of the uncertain disturbances 
(Chaves et al., 2004; Loucks et al., 1981; Mujumdar and Nirmala, 2007; 
Soleimani et al., 2016; Tsoukalas and Makropoulos, 2015). Variations of 
SDP algorithms have also been developed to account for stochastic un-
certainty using scenarios or ensembles of input variables and have been 
found to outperform traditional SDP algorithms (Cote and Leconte, 
2016). However, SDP-based approaches suffer from several major lim-
itations when dealing with large systems (Bellman, 1957; Dobson et al., 
2019; Hooshyar et al., 2020; Sahu & McLaughlin, 2018), simulation 
models (Mortazavi et al., 2012; Tsitsiklis and van Roy, 1996) and mul-
tiple objectives (Powell, 2007). These limitations have been referred to 
as the three curses of dimensionality, modeling, and multiple objectives 
(Giuliani et al., 2021). 

Several improvements have been made to address some of the limi-
tations of SDP-based methods. Examples of such methods include the 
Stochastic Quasi-Gradient Method (Sechi et al., 2019), the multi-stage 
stochastic optimization method (Ortiz-Partida et al., 2019; Schwanen-
berg et al., 2015), the Iterative Linear Decision Rule (ILDR) method (Pan 
et al., 2015), the scenario tree-based stochastic optimization method 
(Sun et al., 2018) and the Aggregation-Decomposition Reinforcement 

Learning (ADRL) method (Hooshyar et al., 2020). However, similar to 
SDP-based methods, most of these stochastic optimization methods 
impose severe restrictions on either the form of the simulation models 
used and/or the formulation of the optimization problem (Mortazavi 
et al., 2012), which makes it difficult to cater to the variations in 
problem formulation or multiple competing objective functions (with 
the exception of Reinforced Learning (Castelletti et al., 2013), which 
approximates Pareto fronts). 

The advancement in evolutionary algorithms (EAs) has encouraged 
the development of new methods to account for stochastic uncertainty in 
reservoir management. Due to the independence of EAs from the 
simulation models used and the flexibility they allow for problem 
formulation, stochastic uncertainty can be incorporated into the opti-
mization process in various ways when EAs are used. For example, 
stochastic uncertainty can be accounted for as probability constraints 
(Ghimire and Reddy, 2014; Saadatpour et al., 2020; Tsoukalas and 
Makropoulos, 2015), or considering the worst-case scenario (Chen et al., 
2018; Zatarain-Salazar et al., 2017). Alternatively, the reliability of so-
lutions across the range of input values can be directly incorporated into 
objective functions, for example as an added penalty on low reliability 
solutions (Han et al., 2012; Mortazavi et al., 2012), or as an additional 
reliability objective to supplement management objectives (Mahootchi 
et al., 2010). Regardless of how stochastic uncertainty is incorporated in 
reservoir management when an EA is used, the most significant 
advantage of this approach is that multiple competing objective func-
tions can be incorporated via a genuine multi-objective optimization 
framework, where the tradeoffs between competing management ob-
jectives (or between management objectives and uncertainty measures) 
can be investigated. 

Finally, stochastic uncertainty in the immediate future is most rele-
vant when it comes to real-time operation of reservoir systems. In such 
cases, stochastic model predictive control (MPC) has been a popular 
approach and is often combined with optimization algorithms 
mentioned earlier (Castelletti et al., 2023). MPC determines a sequence 
of operation decisions based on predicted system state over a future 
horizon, when stochastic uncertainty in system state is considered 
(Bertsekas, 2005; Scattolini, 2009). MPC mitigates the curse of dimen-
sionality of traditional SDP-based algorithms when deterministic opti-
mization is used for each forecast sequence in an ensemble. The use of 
real-time ensemble forecasts of system inputs such as inflow allows 
MPC to adapt to continuously evolving conditions of system state due to 
the knowledge of future system state provided by the feedback. Various 
variations of stochastic MPC have been developed to account for sto-
chastic uncertainty. They include the traditional Open-loop feedback 
control introduced by Bertsekas (1976), chance-constrained MPC 
(Mesbah, 2016), scenario-based MPC (Tian et al., 2019; Velarde et al., 
2019) and tree-based MPC (Raso et al., 2014). However, MPC currently 
can only deal with a single objective function; and when multiple 
objective functions need to be considered, they are often combined into 
a single objective function using the weighted sum method (Castelletti 
et al., 2023). 

3.3. Methods to incorporate deep uncertainty 

In the current literature, deep uncertainty is mainly incorporated 
into the management of water resources systems, including reservoir 
systems, using scenario-based modeling or analysis approaches (Box 2). 
Depending on how the scenarios are developed and used, these ap-
proaches can be divided into two conceptually different categories (see 
Fig. 2), namely (1) a static approach and (2) a dynamic approach (Maier 
et al., 2016). These approaches are mainly defined by the management 
outcomes obtained, for example to develop adaptive reservoir operation 
rules, reduce maximum allowed drawdown level or raise dam wall, as 
illustrated in Fig. 2. 

A static approach (see plot a in Fig. 2) identifies a single, fixed strategy 
that performs well under a number of plausible future scenarios (Maier 
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et al., 2016). Although in most studies a static approach is used in 
combination with endpoint scenarios that describe a snapshot in time in 
the future (Maier et al., 2016), this approach can also be used together 
with static or fixed time series scenarios that describe static changes 
from the present to different plausible futures (Beh et al., 2015b, 2017). 
Regardless of whether endpoint or fixed time series scenarios are used, 
the resulting management policies with this approach remain fixed 
during the planning horizon. The main difference between the two 
variations of the static approach is that due to the consideration of time 
series scenarios, the latter variation allows contingency actions to be 
taken along the pathways to stay on course (Walker et al., 2001) or 
occasionally provides opportunities to switch between strategies (Kang 
and Lansey, 2014). Most of the existing methods developed to account 
for deep uncertainty in reservoir management, such as robust optimi-
zation (Ben-Tal and Nemirovski, 1999; Cuvelier et al., 2018; Gauvin 
et al., 2017; Housh et al., 2011; Kim et al., 2021; Mulvey et al., 1995; Pan 
et al., 2015) or scenario-neutral approaches (Borgomeo et al., 2018; 
Brekke et al., 2009; Giuliani et al., 2014b; Gong et al., 2021; Huang 
et al., 2022; Prudhomme et al., 2010; Quinn et al., 2018; Ren et al., 
2019) belong to the static category. 

While the static approach is easy to implement and communicate to 

stakeholders, it has a tendency to favor more conservative strategies due 
to the fixed endpoint or time series scenarios used, typically resulting in 
costly overdesigns (Fletcher et al., 2019; Maier et al., 2016). For 
example, it may lead to a major infrastructure intervention option well 
before it is needed, as demonstrated in Fig. 2c. In highly uncertain 
systems, such as water resources systems including reservoirs, although 
being conservative, the fixed strategies developed using a static 
approach might still fail if the future unfolds differently from the 
assumed states of the world considered in the scenarios (Maier et al., 
2016). To address this issue, a dynamic approach can be used. 

A dynamic approach (see plot b in Fig. 2) leads to a collection of 
flexible strategies that are tailored to different future conditions and can 
also change over time as new information about the future state of the 
system becomes available (Maier et al., 2016). This approach requires 
the use of transient scenarios that describe dynamic changes of trends, 
events and interactions between system states and society with time 
during the planning horizon (Haasnoot et al., 2011, 2015). For this 
approach, it is crucial to identify alternative strategies and their adap-
tation tipping points (Kwadijk et al., 2010). An adaptation tipping point 
is a point in time when policy changes are required because a given 
strategy is no longer considered satisfactory and cannot meet the 

BOX 2 
Scenarios 

The most common approach for evaluating the impact of deep uncertainty (see BOX 1) associated with multiple plausible futures is to use 
scenarios (Bankes, 1993; Bankes et al., 2001, 2013; Maier et al., 2016; McPhail et al., 2020; Refsgaard et al., 2007). Scenarios have been referred 
to as the “possible“ or “a concise summary of” future “states of worlds” (Herman et al., 2015; IPCC, 2012; Lempert, 2013; Mahmoud et al., 2009) 
or “alternative hypothetical (or diverse) futures” (Groves and Lempert, 2007; van Notten et al., 2005). They are often derived from “alternative 
plausible conditions under different assumptions” (Mahmoud et al., 2009) or “different perspectives in past, present and future developments” 
(van Notten et al., 2005) including “decision makers’ view” (or sometimes stakeholders’ view) (Groves and Lempert, 2007). There are different 
types of scenarios, including predictive, explorative and normative, each aiming to answer different types of questions (Börjeson et al., 2006). In 
most deep uncertainty related studies, probabilities of occurrence are not assigned to scenarios (Maier et al., 2016; Porter, 1985). Therefore, in 
the context of model-based decision frameworks, scenarios can be defined based on either assumed values of exogenous variables that are 
external to the system under consideration and we have no control over, or different problem formulations (e.g., the definition of system 
boundaries, management objectives and potential actions) that are influenced by stakeholders’ (often decision makers’) views, as illustrated in 
Fig. B2. Natural variability in an exogenous variable contributes to stochastic uncertainty; and the non-stationarity of an exogenous variable 
contributes to long-term unknowns, which is a source of deep uncertainty.

Fig. B2. Illustration of several factors affecting scenarios, with reservoir management as an example.    
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management objectives (Haasnoot et al., 2019; Kwakkel et al., 2015). 
The timing of adaptation for a given strategy is scenario dependent. 
Analyzing the distribution of adaptation time for various strategies 
across a wide range of transient scenarios provides insight into the point 
in time where a new strategy needs to be activated because its prede-
cessor can no longer meet its objective (Beh et al., 2015a; Haasnoot 
et al., 2013). The timing of adaptation is also determined by the time it 
takes to implement a strategy (Haasnoot et al., 2013). If the imple-
mentation time is longer than the rate of the change of the system - as in 
water supply infrastructure augmentation - sufficient implementation 
time could be allowed by considering adaptation at fixed time intervals 
over the planning horizon (Beh et al., 2015a; Maier et al., 2016). 
Although this dynamic approach has been discussed in policy planning 
studies (Haasnoot et al., 2013; Kwakkel et al., 2015) and demonstrated 
for water resources management under climate change (Beh et al., 
2015a; Haasnoot et al., 2012, 2015; Lawrence and Haasnoot, 2017), 
there has been limited application of this approach in reservoir 
management. 

Regardless of whether a static or dynamic approach is used, these 
scenario-based approaches have been developed to account for deep 
uncertainty associated with long-term unknowns, especially climate 
change, which has been the biggest driver for researchers to develop 
adaptation plans as decision support tools (Kwakkel et al., 2016; 
Marchau et al., 2019). For example, different Representative Concen-
tration Pathways (RCP) of emissions defined by the Intergovernmental 
Panel on Climate Change are often used to account for the impact of 
climate change (Changchit and Terrell, 1993). Alternatively, hypothet-
ical scenarios from different historical or future time periods (e.g., 
1980–2010 and 2020–2050) have been adopted to provide insights into 
the potential impact of climate change (Li et al., 2018). In the majority of 
these studies, problem formulation (e.g., the definition of system 
boundaries, management objectives and potential actions) are consid-
ered known and deep uncertainty due to stakeholder involvement is not 
considered. However, underpinned by the existence of multiple plau-
sible futures, deep uncertainty due to human impact can also be 
accounted for using these approaches described above, as long as 
representative scenarios can be developed. 

3.4. Methods to account for interactions between competing objectives 
and stochastic and deep uncertainty 

The development of EAs enables the integration of stochastic un-
certainty and multi-objective tradeoffs using a genuine multi-objective 
optimization framework that identifies a set of Pareto solutions (Saa-
datpour et al., 2020; Tsoukalas and Makropoulos, 2015). Therefore, they 
have become popular for reservoir management considering multiple 
competing objective functions (Chen et al., 2018; Mortazavi et al., 2012; 
Saadatpour et al., 2020; Zatarain-Salazar et al., 2017; Tsoukalas and 
Makropoulos, 2015). Due to the flexibility provided by EAs, stochastic 
uncertainty has been incorporated using various methods in a 
multi-objective reservoir operation optimization framework, including 
through objective function evaluation (Chen et al., 2018; Zatar-
ain-Salazar et al., 2017), as constraints (Saadatpour et al., 2020; Tsou-
kalas and Makropoulos, 2015) or as an additional robustness 
optimization objective (Mortazavi-Naeini et al., 2015). However, the 
relative performance of these different methods is unknown. 

To deal with multiple competing objectives under deep uncertainty, 
different approaches have been adopted depending on data availability 
and the purpose and scale of the study. The simplest approach is to 
convert a multi-objective optimization problem into a single-objective 
one (see section 3.1.1) so it can be included in an existing framework 
accounting for deep uncertainty (e.g., Ren et al. (2019) and Kim et al. 
(2021)). Alternatively, a more comprehensive approach can be used 
where a multi-objective optimization model is developed as a part of a 
framework that accounts for deep uncertainty (e.g., Giuliani et al. 
(2014b) and Herman et al. (2014); Giuliani et al. (2018); Quinn et al. 
(2018); Geressu and Harou (2019)). The latter approach has become 
more popular due to developments in multi-objective EAs. 

The studies that account for both stochastic and deep uncertainty can 
be divided into two classes. The first class adopts a two-step approach: in 
the first step Pareto optimal solutions are identified in an optimization 
process for each plausible future scenario representing deep uncertainty 
where only stochastic uncertainty is considered; then in the second step 
the performance of these solutions is evaluated under a wide range of 
plausible future scenarios developed considering deep uncertainty. This 

Fig. 2. Static (plot a) versus dynamic (plot b) approaches to account for deep uncertainty, and example outcomes (plots c and d) for reservoir management.  
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approach is sometimes referred to as post-optimization robustness 
analysis and has been used in studies by Herman et al. (2014), Trindade 
et al. (2017), Quinn et al. (2018), Ren et al. (2019), Kim et al. (2021) and 
Huang et al. (2022). The second class consists of studies that apply 
stochastic methods to generate input variables, such as inflows, within 
future scenarios, to incorporate stochastic uncertainty and deep uncer-
tainty. This class of methods mainly includes, but is not limited to, 
robust optimization techniques, and has been used in a number of 
studies (e.g., Beh et al. (2015a); Mortazavi-Naeini et al. (2015); Pan 
et al. (2015); Gauvin et al. (2017); Giuliani et al. (2018); Geressu and 
Harou (2019); Kiem et al. (2021)). 

A number of existing methods can be used to account for interactions 
between competing management objectives and stochastic and deep 
uncertainty. The most prevalent approach is to use multi-objective EAs 
to obtain Pareto optimal tradeoffs between competing objectives for a 
number of scenarios representing different combinations of plausible 
future conditions, with stochastic uncertainty embedded in each sce-
nario using statistical methods such as probability distributions (e.g., 
Herman et al. (2014); Mortazavi-Naeini et al. (2015); Trindade et al. 
(2017); Quinn et al. (2018); Geressu and Harou (2019); Ren et al. 
(2019); Huang et al. (2022)). There are two major limitations of this 
approach. First, robustness is not considered as an explicit objective as 
part of the multi-objective optimization process but is assessed 
post-optimization. Beh et al. (2017) addressed this issue by including 
robustness as one of the objectives in a multi-objective optimization 
process explicitly, which was made possible by emulating the perfor-
mance of the computationally expensive simulation model of the water 
resources system under investigation with the aid of a computationally 
efficient artificial neural network metamodel. Second, deep uncertainty 
is catered to by developing a single, static solution for each of the sce-
narios considered. Beh et al. (2015a; b, 2017) overcame this limitation 
by developing solutions that change over time based on changes in 
future conditions. However, in Beh et al. (2015b; 2017), these adaptive 
solutions are static, as they correspond to assumed changes in future 
conditions for each of the scenarios considered. Only Beh et al. (2015a) 
presented an approach that enables adaptive solutions to be developed 
dynamically based on changes in actual future conditions. 

4. Future research needs 

As part of this review, a number of research needs have been iden-
tified. These have been summarized in Fig. 3. A detailed discussion of 
these research needs is included in the two sub-sections below. 

4.1. Research on deep uncertainty due to the wickedness of reservoir 
management 

Reservoir management has historically been viewed as an ‘engi-
neering problem,’ where every element of the problem can supposedly 
be quantified and accounted for in a quantitative manner. Perhaps, the 
view was born (and maintained) after the construction of the first res-
ervoirs in the modern era with primary objectives that could be directly 
monetized, such as hydropower generation or irrigation. However, there 
has been growing awareness in the past decades that there is a variety of 
interests or costs associated with reservoir management that can relate 
to various human dimensions of water resources and the environment, 
or the wickedness of reservoir management. Unlike engineering prob-
lems, which have foundational and universal rules, human related in-
terests or costs can change both spatially and temporally depending on 
local geography, demography, and social and cultural values, and 
therefore are (1) difficult, if not impossible, to quantify, and/or (2) often 
hidden or ignored at the time of decision-making. Future research needs 
related to these challenges are discussed below. 

First, novel approaches need to be developed to address two major 
challenges related to environmental objectives. Although environmental 
objectives have been the most widely researched and discussed indirect 
factors in reservoir management (Barbour et al., 2016), they have been 
considered primarily through the lens of an engineering problem by 
developing thresholds as problem constraints, typically based on limited 
empirical evidence, to maintain ecosystem function (Wang et al., 2013; 
Zolfagharpour et al., 2021). This traditional, and still mainstream, 
approach is now facing two major challenges. Challenge 1: it is now 
known that reservoirs, and in general human intervention with flow 
regimes, can have long-term and cascading impacts on both aquatic (e. 
g., fish habitat and algal blooms) and terrestrial (e.g., land cover change, 
wildlife, and land subsidence) ecosystems that are often difficult to 

Fig. 3. Summary of future research needs in reservoir management.  
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predict due the complexity of such systems and a lack of relevant 
empirical data. Challenge 2: economic valuation of environmental im-
pacts, even if they are known a priori, is very difficult as it depends on 
perceptions of associated risks and benefits in affected communities and 
their social and cultural values. 

Second, social objectives such as fairness and equity, political and 
legal feasibility and human health need to be considered, some of which 
have also been identified for general water resources management 
problems (Badham et al., 2019). Most studies on reservoir management 
totally ignore social objectives or else use metrics such as demand 
shortfall or reliability of supply as surrogate measures for social impacts. 
In particular, the distributions of benefits and costs among various 
groups in society should be considered in addition to total net economic 
benefits. Reservoir operations in the future can be improved by explic-
itly considering social objectives - studies by Tiwari et al. (1999), Yin 
et al. (1999), Mimi and Sawalhi (2003), Atwi and Chóliz (2011), and De 
Marinis and Sali (2020) suggest suitable measures and techniques to 
assist with this important endeavor. 

Third, a thorough consideration of any ‘unintended consequences’ is 
a grand challenge and generally missing in the current generation of 
approaches to reservoir management. The ‘unintended consequences’ 
around reservoir design and management are often initially hidden but 
realized years after commencement of reservoir operation. For example, 
building reservoirs in flood prone areas may boost economic activities 
downstream and human settlement in the floodplain, which, in turn, will 
quietly change factors controlling flood risk and its human perceptions, 
even possibly leading to a flood risk paradox (McCully, 1996; Razavi 
et al., 2020). As a result, a flood disaster may hit a community harder 
because of the existence of an upstream reservoir. In addition, the cost of 
public unrest in the wake of natural disasters such as flooding, or costs 
related to the health and wellbeing (physically and mentally) of the 
people affected, are typically excluded from the engineering problem of 
reservoir management. Such costs can be extensive and long-lasting, 
incurred by society in various ways depending on the existence of 
public or private health and social assistance systems in a region. 

Fourth, the view of reservoir management as an "engineering prob-
lem" and the subsequent development of mathematical methods to solve 
these engineering problems has led to abundant research on operation 
related reservoir management issues, while reservoir maintenance, 
rehabilitation and redevelopment related issues have received little 
attention from the research community. This is evident from the liter-
ature review process where the absolute majority of the papers found are 
on the topic of reservoir operation. This lack of attention to reservoir 
maintenance, rehabilitation and redevelopment in the current literature 
may also be attributed to the fact that these aspects of reservoir man-
agement are closely linked to the wickedness of reservoir management 
discussed above. As any infrastructure interventions as such will be 
more likely to lead to more visible impact and the "unintended conse-
quences" discussed above. Therefore, compared to operational in-
terventions such as changing operational policy, these infrastructure 
interventions will also draw more attention from stakeholders with 
various views, especially those on environmental and social issues. 
Therefore, these management options require solution methods that go 
beyond the existing and commonly used mathematical or engineering 
methods. 

Attempts to address this challenge are further complicated by the 
fact that there is often a power imbalance in the representation of 
different interests and views in the problem formulation (e.g., the defi-
nition of system boundaries, management objectives and potential ac-
tions), which is rarely considered in reservoir management studies. For 
example, there are instances where indigenous peoples felt their voice 
was not considered in reservoir management and valuation of cultural 
flows (e.g., Pearce (2021) and Gooley (2022)). We need more holistic 
approaches to water management that go beyond traditional engineer-
ing methods and are as inclusive as possible. This will require new ways 
of thinking on how to enhance our engineering models so they can 

accommodate a highly qualitative world, while being mindful of the 
limits to the collective comprehension of all stakeholders involved 
(Jakeman et al., 2016). This involvement of the human dimension has 
also been identified as a grand challenge in general environmental 
modeling (Elsawah et al., 2020) and can partially be addressed by 
monitoring and evaluating interdisciplinary team research (Zare et al., 
2021) and using participatory modeling approaches (Elsawah et al., 
2020). 

4.2. Research on interactions of multiple competing objectives and 
stochastic and deep uncertainty 

The need for research on the interactions of the three challenges of 
reservoir management can be best demonstrated by using interactions 
between multiple competing objectives and stochastic uncertainty. Both 
tradeoffs from competing management objectives and stochastic un-
certainty due to natural variability in system input (e.g., as a result of 
uncertainty in environmental processes) are important aspects to 
consider in reservoir management and have been considered in many 
studies on reservoir operation. However, multi-objective tradeoffs and 
stochastic uncertainty have been mostly considered in isolation, 
although their collective impact may affect the effectiveness of reservoir 
management decisions, especially those related to system operation, as 
explained in section 2.4. This is traditionally due to the increased 
complexity in problem representation when interactions are considered, 
and the lack of suitable methods to provide improved realism to reflect 
this increased problem complexity. Therefore, assumptions have been 
made to simplify problem representation, for example using the 
weighted sum method to convert a multi-objective optimization prob-
lem into a single-objective one, so that existing methods to deal with 
stochastic uncertainty, such as SDP and its variations, can be used to 
account for the increased number of objective functions. 

Advances in EA-based simulation-optimization modeling frame-
works in the past decades have provided a partial solution to the chal-
lenge of considering the interactions between competing objectives and 
stochastic uncertainty. The independence of the simulation model and 
optimization algorithm within the EA-based simulation-optimization 
modeling framework removes some of the required simplification as-
sumptions, as discussed in section 3.2. Although there is no agreed-upon 
approach in terms of how to integrate multi-objective tradeoffs and 
stochastic uncertainty considerations into reservoir optimization 
simultaneously, simulation-optimization frameworks provide the op-
portunity for analysts to increase the completeness and accuracy of 
system representation, as well as the evaluation of other quantitative 
measures such as objective functions and system constraints. 

However, the development of more complicated engineering 
methods aiming to directly address the technical challenges of reservoir 
management may not lead to a more effective solution. This is mainly 
due to the complex and multidisciplinary nature of reservoir manage-
ment. While increasing complexity in the representation of processes 
and interactions improves realism, this comes at a cost, ultimately 
forcing decision makers to give less weight to rationality and to rely 
more on “intuitive, unconscious or implicit decision-making” (Rizzo and 
Dold, 2021). Consequently, it is not surprising to see that accounting for 
interactions between multi-objective tradeoffs and stochastic uncer-
tainty using a genuine multi-objective framework has received limited 
attention. Most existing studies employ some simplifying assumptions to 
incorporate stochastic uncertainty, while the assessment of robustness in 
multi-objective tradeoffs due to stochastic uncertainty is often not 
thoroughly investigated. 

Similarly, the consideration of the interactions between multi- 
objective tradeoffs and stochastic and deep uncertainty will further in-
crease the complexity of reservoir management problems. The devel-
opment of more advanced engineering techniques to push for increased 
realism in the problem formulation and/or solution process will not lead 
to a more effective solution without simultaneously improving the 
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collective comprehension of stakeholders. Consequently, the key in 
advancing reservoir management by considering all three categories of 
challenges lies in the development of tools for not only visualizing and 
communicating increased complexity in problem representation and 
results to stakeholders (such as those developed for interpreting many- 
objective optimization results (Hadka et al., 2015; Kasprzyk et al., 
2013)), but also for using the results effectively and efficiently in sub-
sequent decision-making processes (e.g., see Di Matteo et al. (2017) and 
McPhail et al. (2021)). 

5. Conclusions 

In this paper, we have provided a review of the ever-growing body of 
literature in the field of reservoir management, which includes not only 
operation but also maintenance, rehabilitation, redevelopment, or 
repurposing of existing reservoir systems in response to changing cir-
cumstances. In contrast with previous reviews, which mainly focused on 
solution techniques, particularly those involving simulation optimiza-
tion modeling, we considered a broader range of challenges related to 
reservoir management through the lens of wickedness, competing ob-
jectives and uncertainty. We analyzed the management objectives 
required, as well as the stochastic and deep uncertainty that affect 
reservoir management and their interactions. We have also reviewed 
current methods that have been used to address these challenges and 
discussed their advantages and limitations. 

We found that there are often well-developed methods to address the 
individual challenges related to multiple management objectives, sto-
chastic uncertainty, and deep uncertainty. However, the interactions 
between the individual challenges are often ignored or tackled with 
simplifying assumptions. This is likely due to the increase in complexity 
of the problem when more (categories of) challenges are considered in 
reservoir management, and thus the diminishing ability of analysts and 
stakeholders to not only formulate and solve the problems, but also to 
understand the results and make informed decisions. In addition, major 
research gaps exist in addressing the wickedness of reservoir manage-
ment problems, especially those involving human dimension. Although 
a final definitive solution that is accepted by all stakeholders may never 
be found for reservoir management due to its wickedness, we have 
highlighted steps that can be taken to improve the acceptability of so-
lutions that are supported by the best available science. Ultimately, we 
hope this review will inspire researchers to develop appropriate tools to 
address some of the issues identified, bridging the gap between scientific 
research and real-world applications. 
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Soleimani, S., Bozorg-Haddad, O., Loáiciga, H.A., 2016. Reservoir operation rules with 
uncertainties in reservoir inflow and agricultural demand derived with stochastic 
dynamic programming. J. Irrigat. Drain. Eng. 142 (11), 04016046 https://doi.org/ 
10.1061/(ASCE)IR.1943-4774.0001065. 

Song, J., Whittington, D., 2004. Why have some countries on international rivers been 
successful negotiating treaties? A global perspective. Water Resour. Res. 40 (5) 
https://doi.org/10.1029/2003WR002536. 

Speirs, D., 2019. Suburban Reservoirs to Be Opened up for Recreation. Government of 
South Australia, Adelaide, Australia.  

Srdjevic, Z., Srdjevic, B., 2014. Modelling multicriteria decision making process for 
sharing benefits from the reservoir at Serbia-Romania border. Water Resour. Manag. 
28 (12), 4001–4018. https://doi.org/10.1007/s11269-014-0723-y. 

Sun, Y.M., Zhu, F.L., Chen, J., Li, J.S., 2018. Risk analysis for reservoir real-time optimal 
operation using the scenario tree-based stochastic optimization method. Water 10 
(5). https://doi.org/10.3390/w10050606. 

Szemis, J.M., Dandy, G.C., Maier, H.R., 2013. A multiobjective ant colony optimization 
approach for scheduling environmental flow management alternatives with 
application to the River Murray, Australia. Water Resour. Res. 49 (10), 6393–6411. 
https://doi.org/10.1002/wrcr.20518. 

Szemis, J.M., Maier, H.R., Dandy, G.C., 2014. An adaptive ant colony optimization 
framework for scheduling environmental flow management alternatives under 
varied environmental water availability conditions. Water Resour. Res. 50 (10), 
7606–7625. https://doi.org/10.1002/2013WR015187. 

Tian, X., Guo, Y., Negenborn, R.R., Wei, L., Lin, N.M., Maestre, J.M., 2019. Multi- 
scenario model predictive control based on genetic algorithms for level regulation of 
open water systems under ensemble forecasts. Water Resour. Manag. 33 (9), 
3025–3040. https://doi.org/10.1007/s11269-019-02284-x. 

Tiwari, D.N., Loof, R., Paudyal, G.N., 1999. Environmental–economic decision-making in 
lowland irrigated agriculture using multi-criteria analysis techniques. Agric. Syst. 60 
(2), 99–112. https://doi.org/10.1016/S0308-521X(99)00021-9. 

Tran, D.D., van Halsema, G., Hellegers, P.J.G.J., Hoang, L.P., Ludwig, F., 2019. Long- 
term sustainability of the Vietnamese Mekong Delta in question: an economic 
assessment of water management alternatives. Agric. Water Manag. 223, 105703 
https://doi.org/10.1016/j.agwat.2019.105703. 

Trindade, B.C., Reed, P.M., Herman, J.D., Zeff, H.B., Characklis, G.W., 2017. Reducing 
regional drought vulnerabilities and multi-city robustness conflicts using many- 
objective optimization under deep uncertainty. Adv. Water Resour. 104, 195–209. 
https://doi.org/10.1016/j.advwatres.2017.03.023. 

Tsitsiklis, J.N., van Roy, B., 1996. Feature-based methods for large scale dynamic 
programming. Mach. Learn. 22 (1), 59–94. https://doi.org/10.1007/BF00114724. 

Tsoukalas, I., Makropoulos, C., 2015. Multiobjective optimisation on a budget: exploring 
surrogate modelling for robust multi-reservoir rules generation under hydrological 
uncertainty. Environ. Model. Software 69, 396–413. https://doi.org/10.1016/j. 
envsoft.2014.09.023. 

van Notten, P.W.F., Sleegers, A.M., van Asselt, M.B.A., 2005. The future shocks: on 
discontinuity and scenario development. Technol. Forecast. Soc. Change 72 (2), 
175–194. https://doi.org/10.1016/j.techfore.2003.12.003. 

Velarde, P., Tian, X., Sadowska, A.D., Maestre, J.M., 2019. Scenario-based hierarchical 
and distributed MPC for water resources management with dynamical uncertainty. 
Water Resour. Manag. 33 (2), 677–696. https://doi.org/10.1007/s11269-018-2130- 
2. 

Walker, W.E., Rahman, S.A., Cave, J., 2001. Adaptive policies, policy analysis, and 
policy-making. Eur. J. Oper. Res. 128 (2), 282–289. https://doi.org/10.1016/S0377- 
2217(00)00071-0. 

Wang, J., Dong, Z., Liao, W., Li, C., Feng, S., Luo, H., Peng, Q., 2013. An environmental 
flow assessment method based on the relationships between flow and ecological 
response: a case study of the Three Gorges Reservoir and its downstream reach. Sci. 
China Technol. Sci. 56 (6), 1471–1484. https://doi.org/10.1007/s11431-013-5193- 
6. 

Wang, J., Cheng, C., Shen, J., Cao, R., Yeh, W.W.-G., 2018. Optimization of large-scale 
daily hydrothermal system operations with multiple objectives. Water Resour. Res. 
54 (4), 2834–2850. https://doi.org/10.1002/2017WR021291. 

Weaver, C.P., Lempert, R.J., Brown, C., Hall, J.A., Revell, D., Sarewitz, D., 2013. 
Improving the contribution of climate model information to decision making: the 
value and demands of robust decision frameworks. Wiley Interdisciplinary Reviews: 
Clim. Change 4 (1), 39–60. https://doi.org/10.1002/wcc.202. 

World Bank, 2009. Directions in Hydropower : Scaling up for Development. World Bank, 
World Bank, Washington, DC.  

World Commission on Dams, 2000. Dams and Development A New Framework for 
Decision-Making: the Report of the World Commission on Dams. World Commission 
on Dams, Earthscan, London.  

Wu, W., Maier, H.R., Simpson, A.R., 2010. Single-objective versus MultiObjective 
optimization of water distribution systems accounting for greenhouse gas emissions 
by carbon pricing. J. Water Res. Pl. - ASCE 136 (5), 1–11. 

Wu, W., Maier, H.R., Dandy, G.C., Leonard, R., Bellette, K., Cuddy, S., Maheepala, S., 
2016. Including stakeholder input in formulating and solving real-world 
optimisation problems. Environ. Model. Software 79 (May), 197–213. https://doi. 
org/10.1016/j.envsoft.2016.02.012. 

Wu, W., Dandy, G.C., Maier, H.R., Maheepala, S., Marchi, A., Mirza, F., 2017. 
Identification of optimal water supply portfolios for a major city. J. Water Res. Pl. - 
ASCE 143 (9). https://doi.org/10.1061/(ASCE)WR.1943-5452.0000811. 

Wu, W., Emerton, R., Duan, Q., Wood, A.W., Wetterhall, F., Robertson, D.E., 2020a. 
Ensemble flood forecasting: current status and future opportunities. WIREs Water 7 
(3), e1432. https://doi.org/10.1002/wat2.1432. 

Wu, W., Maier, H.R., Dandy, G.C., Arora, M., Castelletti, A., 2020b. The changing nature 
of the water–energy nexus in urban water supply systems: a critical review of 
changes and responses. Journal of Water and Climate Change. https://doi.org/ 
10.2166/wcc.2020.276. 

Wu, W., Zhou, Y., Leonard, M., 2022. Evolutionary algorithm-based multiobjective 
reservoir operation policy optimisation under uncertainty. Environmental Research 
Communications 4 (12), 121001. https://doi.org/10.1088/2515-7620/aca1fc. 

Wurbs, R.A., 1993. Reservoir-system simulation and optimization models. J. Water 
Resour. Plann. Manag. 119 (4), 455–472. https://doi.org/10.1061/(ASCE)0733- 
9496(1993)119:4(455). 

Xevi, E., Khan, S., 2005. A multi-objective optimisation approach to water management. 
J. Environ. Manag. 77 (4), 269–277. https://doi.org/10.1016/j. 
jenvman.2005.06.013. 

Yakowitz, S., 1982. Dynamic programming applications in water resources. Water 
Resour. Res. 18 (4), 673–696. https://doi.org/10.1029/WR018i004p00673. 

Yeh, W.W.G., 1985. Reservoir management and operations models - a state-of-the-art 
review. Water Resour. Res. 21 (12), 1797–1818. https://doi.org/10.1029/ 
WR021i012p01797. 

Yin, Y.Y., Huang, G.H., Hipel, K.W., 1999. Fuzzy relation analysis for multicriteria water 
resources management. J. Water Resour. Plann. Manag. 125 (1), 41–47. https://doi. 
org/10.1061/(ASCE)0733-9496(1999)125:1(41). 

Young, W., Scott, A.C., Cuddy, S., Rennie, B.A., 2003. Murray Flow Assessment Tool: A 
Technical Description. Client Report, CSIRO Land and Water, Canberra.  

Yu, Y., Zhao, R., Zhang, J., Yang, D., Zhou, T., 2021. Multi-objective game theory 
optimization for balancing economic, social and ecological benefits in the Three 
Gorges Reservoir operation. Environ. Res. Lett. 16 (8), 085007 https://doi.org/ 
10.1088/1748-9326/ac0b69. 

Zare, F., Guillaume, J.H.A., ElSawah, S., Croke, B., Fu, B., Iwanaga, T., Merritt, W., 
Partington, D., Ticehurst, J., Jakeman, A.J., 2021. A formative and self-reflective 
approach to monitoring and evaluation of interdisciplinary team research: an 
integrated water resource modelling application in Australia. J. Hydrol. 596, 126070 
https://doi.org/10.1016/j.jhydrol.2021.126070. 

Zatarain-Salazar, J., Reed, P.M., Herman, J.D., Giuliani, M., Castelletti, A., 2016. 
A diagnostic assessment of evolutionary algorithms for multi-objective surface water 
reservoir control. Adv. Water Resour. 92, 172–185. https://doi.org/10.1016/j. 
advwatres.2016.04.006. 

Zatarain-Salazar, J., Reed, P.M., Quinn, J.D., Giuliani, M., Castelletti, A., 2017. Balancing 
exploration, uncertainty and computational demands in many objective reservoir 
optimization. Adv. Water Resour. 109, 196–210. https://doi.org/10.1016/j. 
advwatres.2017.09.014. 

Zhao, T., Zhao, J., 2014a. Improved multiple-objective dynamic programming model for 
reservoir operation optimization. J. Hydroinf. 16 (5), 1142–1157. https://doi.org/ 
10.2166/hydro.2014.004. 

Zhao, T.T.G., Zhao, J.S., 2014b. Optimizing operation of water supply reservoir: the role 
of constraints. Math. Probl Eng. https://doi.org/10.1155/2014/853186, 2014.  

Zhu, F., Zhong, P.-a., Sun, Y., 2018. Multi-criteria group decision making under 
uncertainty: application in reservoir flood control operation. Environ. Model. 
Software 100, 236–251. https://doi.org/10.1016/j.envsoft.2017.11.032. 

Zolfagharpour, F., Saghafian, B., Delavar, M., 2021. Adapting reservoir operation rules to 
hydrological drought state and environmental flow requirements. J. Hydrol. 600, 
126581. https://doi.org/10.1016/j.jhydrol.2021.126581. 

W. Wu et al.                                                                                                                                                                                                                                     

https://doi.org/10.1007/s11269-014-0899-1
https://doi.org/10.1007/s11269-019-02219-6
https://doi.org/10.1007/s11269-019-02219-6
https://doi.org/10.1007/s11269-021-02925-0
https://doi.org/10.1007/s11269-006-9035-1
https://doi.org/10.1007/s11269-006-9035-1
https://doi.org/10.1029/2018WR023749
https://doi.org/10.1029/2018WR023749
https://doi.org/10.1029/2012WR012638
https://doi.org/10.1029/2012WR012638
https://doi.org/10.1061/(ASCE)0733-9496(1992)118:3(262)
https://doi.org/10.1061/(ASCE)0733-9496(1992)118:3(262)
http://refhub.elsevier.com/S1364-8152(23)00163-9/sref190
http://refhub.elsevier.com/S1364-8152(23)00163-9/sref190
https://doi.org/10.1061/(ASCE)IR.1943-4774.0001065
https://doi.org/10.1061/(ASCE)IR.1943-4774.0001065
https://doi.org/10.1029/2003WR002536
http://refhub.elsevier.com/S1364-8152(23)00163-9/sref193
http://refhub.elsevier.com/S1364-8152(23)00163-9/sref193
https://doi.org/10.1007/s11269-014-0723-y
https://doi.org/10.3390/w10050606
https://doi.org/10.1002/wrcr.20518
https://doi.org/10.1002/2013WR015187
https://doi.org/10.1007/s11269-019-02284-x
https://doi.org/10.1016/S0308-521X(99)00021-9
https://doi.org/10.1016/j.agwat.2019.105703
https://doi.org/10.1016/j.advwatres.2017.03.023
https://doi.org/10.1007/BF00114724
https://doi.org/10.1016/j.envsoft.2014.09.023
https://doi.org/10.1016/j.envsoft.2014.09.023
https://doi.org/10.1016/j.techfore.2003.12.003
https://doi.org/10.1007/s11269-018-2130-2
https://doi.org/10.1007/s11269-018-2130-2
https://doi.org/10.1016/S0377-2217(00)00071-0
https://doi.org/10.1016/S0377-2217(00)00071-0
https://doi.org/10.1007/s11431-013-5193-6
https://doi.org/10.1007/s11431-013-5193-6
https://doi.org/10.1002/2017WR021291
https://doi.org/10.1002/wcc.202
http://refhub.elsevier.com/S1364-8152(23)00163-9/sref210
http://refhub.elsevier.com/S1364-8152(23)00163-9/sref210
http://refhub.elsevier.com/S1364-8152(23)00163-9/sref211
http://refhub.elsevier.com/S1364-8152(23)00163-9/sref211
http://refhub.elsevier.com/S1364-8152(23)00163-9/sref211
http://refhub.elsevier.com/S1364-8152(23)00163-9/sref212
http://refhub.elsevier.com/S1364-8152(23)00163-9/sref212
http://refhub.elsevier.com/S1364-8152(23)00163-9/sref212
https://doi.org/10.1016/j.envsoft.2016.02.012
https://doi.org/10.1016/j.envsoft.2016.02.012
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000811
https://doi.org/10.1002/wat2.1432
https://doi.org/10.2166/wcc.2020.276
https://doi.org/10.2166/wcc.2020.276
https://doi.org/10.1088/2515-7620/aca1fc
https://doi.org/10.1061/(ASCE)0733-9496(1993)119:4(455)
https://doi.org/10.1061/(ASCE)0733-9496(1993)119:4(455)
https://doi.org/10.1016/j.jenvman.2005.06.013
https://doi.org/10.1016/j.jenvman.2005.06.013
https://doi.org/10.1029/WR018i004p00673
https://doi.org/10.1029/WR021i012p01797
https://doi.org/10.1029/WR021i012p01797
https://doi.org/10.1061/(ASCE)0733-9496(1999)125:1(41)
https://doi.org/10.1061/(ASCE)0733-9496(1999)125:1(41)
http://refhub.elsevier.com/S1364-8152(23)00163-9/sref223
http://refhub.elsevier.com/S1364-8152(23)00163-9/sref223
https://doi.org/10.1088/1748-9326/ac0b69
https://doi.org/10.1088/1748-9326/ac0b69
https://doi.org/10.1016/j.jhydrol.2021.126070
https://doi.org/10.1016/j.advwatres.2016.04.006
https://doi.org/10.1016/j.advwatres.2016.04.006
https://doi.org/10.1016/j.advwatres.2017.09.014
https://doi.org/10.1016/j.advwatres.2017.09.014
https://doi.org/10.2166/hydro.2014.004
https://doi.org/10.2166/hydro.2014.004
https://doi.org/10.1155/2014/853186
https://doi.org/10.1016/j.envsoft.2017.11.032
https://doi.org/10.1016/j.jhydrol.2021.126581

	Beyond engineering: A review of reservoir management through the lens of wickedness, competing objectives and uncertainty
	1 Introduction
	2 What are the challenges in reservoir management?
	2.1 Multiple purposes, management objectives and jurisdictions
	2.2 Stochastic uncertainty
	2.3 Deep uncertainty
	2.4 Interactions between management objectives, and stochastic and deep uncertainty

	3 How can challenges in reservoir management be addressed?
	3.1 Methods to incorporate multiple and competing objectives
	3.1.1 Methods to incorporate multiple competing objectives in optimization
	3.1.2 Methods to account for environmental and social objectives
	3.1.2.1 Accounting for environmental objectives
	3.1.2.2 Accounting for social objectives

	3.1.3 Methods to deal with multi-national reservoir systems

	3.2 Methods to incorporate stochastic uncertainty
	3.3 Methods to incorporate deep uncertainty
	3.4 Methods to account for interactions between competing objectives and stochastic and deep uncertainty

	4 Future research needs
	4.1 Research on deep uncertainty due to the wickedness of reservoir management
	4.2 Research on interactions of multiple competing objectives and stochastic and deep uncertainty

	5 Conclusions
	Funding information
	Declaration of competing interest
	Data availability
	References


