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A B S T R A C T

A new method for the analysis of plasticity-induced closure of finite cracks is developed based on the
distributed dislocation technique. The method is applied to analyse closure and opening processes for an
embedded fatigue crack propagating under constant amplitude cyclic loading. The obtained solution and
presented results can serve as a benchmark for numerical procedures utilising the same yield-strip methodology.
Comparison with past numerical studies reveals similar trends, though there are some differences in the crack
tip opening values, particularly for low and negative R-ratios. The latter may indicate the need for a better
approach to the discretisation of the contact, direct and reverse plasticity zones in the numerical procedures
which utilise the same methodology. The developed method is general, and it can be adapted to evaluate the
crack tip opening stress for other crack geometries and loading conditions.
1. Introduction

The discovery of the crack closure phenomenon by Elber in 1970 [1]
has had a significant impact on the understanding of fatigue phenom-
ena and fatigue crack growth evaluation techniques. Crack closure
implies that a fatigue crack remains closed for some portion of a tensile
load cycle. The crack closure phenomenon leads to a reduction of the
crack driving force, which is often considered to be a function of the
effective stress intensity factor range. Crack closure may occur due to
several mechanisms, though the present work focuses on plasticity-
induced crack closure, where closure occurs due to the formation
of a wake of plasticity behind the crack tip. Currently, almost all
advanced fatigue life evaluation procedures employ the crack closure
concept [2–5].

Though possible in principle, direct application of the 3D Finite
Element method to evaluate the crack tip opening loads is extremely
challenging, due to the complex nature of the problem, which re-
quires implementation of a crack advance scheme and 3D simulation
of contact between the crack surfaces in the presence of large plastic
deformations [6–8]. Additionally, it is computationally unfeasible to
conduct direct simulations for a very large number of fatigue cycles
(hundreds of thousands), which is typical in the high-cycle fatigue
regime. Therefore, the analysis is normally undertaken based on the
strip-yield model or Dugdale model [9,10]. This idealised model as-
sumes that all plastic deformation is confined to a strip ahead of the
crack tip; this assumption greatly simplifies the elastic–plastic analysis,
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yet still captures essential features, making the underlying framework
feasible for use in fatigue life evaluation procedures.

Analytical modelling of crack closure and opening mechanisms
using the plane strip-yield model was initiated by Budiansky and
Hutchinson [11], who evaluated the crack tip opening stress and other
associated parameters (lengths of the contact and reverse plasticity
zones, etc.) for non-propagating and propagating semi-infinite cracks
at different cyclic stress ratios (R-ratios) using the distributed dislo-
cation technique (DDT). Later, the strip-yield model was generalised
to take into account the plate thickness using the first-order (or Kane
and Mindlin) plate theory and the fundamental solution for an edge
dislocation in a finite thickness plate [12]. This allowed the solution
of the same problem but for a plate of finite thickness using the DDT
and the Chebyshev–Gauss quadrature method [13]. This technique was
subsequently used to investigate crack retardation phenomena caused
by an overload [14], local plastic collapse in a plate weakened by two
closely spaced collinear cracks [15], and extended to determine the
constraint factor for edge cracks with an approximate solution [16].

The solution for an embedded crack in plane stress growing under
constant amplitude loading in a self-similar plastic wake was addressed
by Rose & Wang [17] using the strip-yield model and the DDT in
conjunction with complex potential theory. Using this approach, the
boundary value problem for the minimum stress state was expressed as
a Riemann–Hilbert problem, and the solution derived in the form of a
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sum of singular integrals, requiring numerical methods to solve. How-
ever, a complete analysis of the opening and closing mechanisms was
not undertaken in that study. The same approach was later extended to
consider the case of plane strain, allowing the calculation of constraint
factors through comparison with a finite element model [18]. The DDT
has also been used to solve crack problems in piezoelectromagnetic
media [19], and for problems involving frictional contact between
crack faces [20].

Obtaining analytical results for more general geometries and load-
ing conditions poses significant challenges. Therefore, since the early
1980s the application of the strip-yield model has primarily been driven
by its implementation into various computational procedures and the
development of software packages such as FASTRAN and NASGRO [21,
22]. These packages have become very popular in the evaluation of the
life of structural components subject to variable amplitude loading in
the high-cycle fatigue regime. The existing computational procedures
normally discretise the crack and the plastic strip ahead of the crack tip
using finite elements to represent the free-from-stress, contact, direct
and reverse plasticity zones. Due to computational constraints, the
number of these finite elements is limited and the length is usually
described by an empirical function. The accuracy and convergence of
the numerical procedures have not been properly addressed in the
literature, in part due to the absence of analytical solutions for finite
crack geometries. Numerical predictions using software packages can
be affected by the 2D nature of the underlying methodology and
strip-yield assumption, the selection of the cycle counting algorithm
(in the case of variable amplitude loading), discretisation, and the
implementation of numerical schemes to identity crack opening and
closure. The current work can help to address the latter issues.

In this paper we present a general method to analyse fatigue cracks
with an arbitrary shape of the wake of plasticity. This method is based
on the DDT, which is used to formulate boundary value problems de-
scribing the opening and closing process. The resulting singular integral
equations feature a Cauchy kernel, and are solved using Chebyshev–
Gauss quadrature. This method is applied to obtain an exact solution for
an embedded fatigue crack of finite length propagating under constant
amplitude cyclic loading – a problem that is commonly observed in
practical applications. Exact values of the crack tip opening stress as
a function of the R-ratio and the ratio of the maximum stress to the
yield stress are reported for the first time. Similarly, the stress at
which the crack faces first make contact, as well as the location of
the contact point, is derived. The necessary modifications and consid-
erations needed to apply the method to a wake of plasticity that does
not satisfy the self-similarity condition are also briefly outlined. The
obtained solution can be used to calculate the effective stress intensity
factor and provide fatigue life estimates by correlation with the crack
growth rates. This solution, as mentioned above, can also be used to
validate the numerical procedures mentioned above, which also utilise
the strip-yield methodology.

The paper is structured as follows: Section 2 provides a mathe-
matical problem formulation including the governing equations and
the appropriate boundary conditions associated with the various stages
of crack closure or opening. Section 3 briefly outlines the application
of the DDT to the formulated boundary-value problems. Section 4
describes a validation and convergence study using the exact solution
for the maximum stress state, and comparison with small-scale yielding
results for the minimum stress state. In Section 5, new results for the
crack tip opening stress and the contact stress are presented and com-
pared with past numerical studies. In particular, it is shown that crack
face contact precedes closure at the tip, similar to the semi-infinite
crack case considered by Budiansky and Hutchinson. It seems, that this
effect is beyond the modelling capabilities of the existing numerical
procedures as it has never been reported in numerical simulations. The
contact stress is also derived, and plots of the crack tip stretch during a
single load cycle are presented. Section 5.3 discusses the application
2

of the method to fatigue cracks for which the shape of the plastic
wake is nonlinear, and for cracks subjected to variable amplitude cyclic
loading. Finally, a summary of the outcomes of this work and a brief
demonstration of some the future applications of the developed method
are discussed.

2. Problem formulation

Consider an infinite plate containing a through-thickness embedded
crack of length 2𝑎, subjected to mode I cyclic loading with the stress
range 𝛥𝜎 = 𝜎max − 𝜎min and load ratio R = 𝜎min∕𝜎max. Plane stress
conditions are assumed, and the material has Young’s modulus 𝐸,
and yield stress 𝜎𝑌 . As discussed in the introduction, the strip-yield
model [9], which is appropriate for plane stress conditions, is employed
to model elastic–plastic effects. Due to the absence of any length scale
other than the size of the crack itself, the wake of plasticity may be
assumed to be self-similar [17,23], i.e. proportional to |𝑥|.

2.1. Maximum stress

In accordance with the crack closure phenomenon, the fatigue pro-
cess is associated with the formation of a wake of plasticity, represented
by the addition of plastically deformed material to the faces of the
crack [11], shown schematically in Fig. 1. For 𝜎𝑦𝑦 = 𝜎max, a zone
of direct plastic yielding exists ahead of the crack tips, as shown
in Fig. 1(a), and the corresponding boundary conditions are

𝜎𝑦𝑦(𝑥) =

{

0, |𝑥| < 𝑎,
𝜎𝑌 , 𝑎 < |𝑥| < 𝑏,

(1a)

𝜎𝑦𝑦 → 𝜎max, 𝑟 → ∞. (1b)

Combined with the equilibrium equations and the requirement that the
stresses remain bounded, Eq. (1) allows for the determination of the
ratio of the size of the crack to the extent of the plastic zone, 𝑎∕𝑏, and
he distribution of plastic stretch, 𝛿max, in terms of 𝜎max∕𝜎𝑌 , where the

plastic stretch is defined in terms of the displacement at the crack face,
𝑢𝑦, as 𝛿 = 𝑢𝑦(0+) − 𝑢𝑦(0−).

2.2. Minimum stress

For the minimum stress state, the extended crack consists of four
distinct intervals, shown in Fig. 1(b). The residual plastic wake closes
the crack in the interval 𝑙 < |𝑥| < 𝑎, while the central part of the
crack, |𝑥| < 𝑙, is assumed to remain open. Due to the self-similarity
assumption, the plastic stretch in 𝑙 < |𝑥| < 𝑎 is proportional to |𝑥|.
Ahead of the crack, for 𝑎 < |𝑥| < 𝑑, a zone of reverse plasticity is
formed, while the plastic stretch otherwise remains identical to the
conditions at the maximum stress.

Based on the above considerations, the boundary conditions appro-
priate for 𝜎min are

𝜎𝑦𝑦(𝑥) =

{

0, |𝑥| < 𝑙,
−𝜎𝑌 , 𝑎 < |𝑥| < 𝑑,

(2a)

𝜎𝑦𝑦 → 𝜎min, 𝑟 → ∞ (2b)

for the stress, and

𝛿min(𝑥) =

{

𝛿R |𝑥∕𝑎| , 𝑙 < |𝑥| < 𝑎,
𝛿max(𝑥), 𝑑 < |𝑥| < 𝑏

(2c)

for the plastic stretch, in addition to the requirement that the stress
be bounded. The parameters 𝑙, 𝑑 and 𝛿R are uniquely determined by
Eq. (2) as functions of 𝜎max∕𝜎𝑌 and R = 𝜎min∕𝜎max based on the solution
to Eq. (1).

As discussed in Ref. [17], the solution to the present problems
may be derived independently of the material properties 𝜎𝑌 and 𝐸,
provided that the results are presented in terms of appropriately chosen

nondimensional parameters.
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Fig. 1. Crack closure schematics based on the Dugdale model and assuming a linear plastic wake, showing (a) the maximum stress and (b) minimum stress states (the deformations
are exaggerated for clarity). The intervals for the boundary conditions are shown in the right half plane, and the corresponding prescribed values of the stress or plastic stretch in
the left half plane. The direct and reverse plasticity zones, as well as the plastic stretch are indicated using hatching and shading shown in the legend; the crack opening is the
blank region in the middle of the crack.
2.3. Crack closure process

If the stresses and displacements at maximum and minimum stress
are known, the intermediate stages of the crack opening and closing
process during cyclic loading may be studied in detail. Schematic
diagrams of each stage are shown in Fig. 2. This section formulates
boundary value problems to determine the opening stress, the contact
stress, and the variation in the crack-tip stretch during a stress cycle.

When the applied stress is 𝜎min, the contact points are located at
𝑥 = ±𝑙. As the stress increases, the contact points advance towards
the crack tips through purely elastic deformation, reaching the crack
tips 𝑥 = ±𝑎 at the opening stress 𝜎op. Ahead of the crack, the plastic
stretch is unchanged from its value at 𝜎min. The opening stress is
used in crack closure models to predict 𝛥𝜎eff = 𝜎max − 𝜎op and the
effective stress intensity factor range, 𝛥𝐾eff, and as such is of critical
importance in predicting crack growth rates and hence estimating the
fatigue life [3]. The problem formulation may easily be adapted from
the equivalent problem for a semi-infinite crack [11] (a schematic is
shown in Fig. 2(c)). The boundary conditions corresponding to the
opening stress state are

𝜎𝑦𝑦(𝑥) = 0, |𝑥| < 𝑎 (3a)

𝛿op(𝑥) = 𝛿min(𝑥), 𝑎 < |𝑥| < 𝑏 (3b)

𝜎𝑦𝑦 → 𝜎op, 𝑟 → ∞. (3c)
3

Any subsequent increase in loading above 𝜎op is accompanied by the
spread of direct plastic yielding from the crack tips towards 𝑥 = ±𝑏,
eventually attaining the maximum stress state.

The unloading process is accompanied by the immediate removal
of the direct plasticity zone and the spread of a zone of reverse
plastic yielding from the crack tip, shown in Fig. 2(d). Budiansky &
Hutchinson [11] showed that, for a semi-infinite crack, the surfaces of
the crack first make contact at a small distance from the crack tips, and
the same holds for the finite length crack considered here. The point
of first contact is shown in Fig. 2(e); the stress at which contact first
occurs is denoted 𝜎cont, the location of contact by 𝑙c and the extent of
the plastic zone at contact by 𝑑c (see the schematic in Fig. 2(e)). The
corresponding boundary conditions are

𝜎𝑦𝑦(𝑥) =

{

0, |𝑥| < 𝑎,
−𝜎𝑌 , 𝑎 < |𝑥| < 𝑑c,

(4a)

𝛿cont(𝑥) = 𝛿max(𝑥), 𝑑c < |𝑥| < 𝑏, (4b)

𝜎𝑦𝑦 → 𝜎cont, 𝑟 → ∞ (4c)

combined with the requirement that 𝑑c be the minimum value for
which there exists a real root on the interval 𝑙 < 𝑥 < 𝑎 to the equation

𝛿cont(𝑥) − 𝛿R|𝑥∕𝑎| = 0. (4d)

Provided that such a root exists, it is 𝑙c, the point of contact between
the plastic wake attached to the faces of the crack.
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Fig. 2. Diagrams of the intermediate stages of the crack opening and closing processes between the maximum and minimum stress states shown in Fig. 1. The respective stress
ranges and all boundary conditions are displayed for each stage (only half the crack is shown, for compactness). Deformations are exaggerated for clarity.
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To avoid repetition, the boundary conditions for the states shown
in Fig. 2(a), (c) and (d) are omitted, as they are straightforward mod-
ifications of those given above. The state shown in (f), the behaviour
after unloading beyond the first contact between the faces of the crack,
i.e. for 𝜎min < 𝜎𝑦𝑦 < 𝜎cont is more complicated. Reduction in the load
elow 𝜎cont leads to the initial point of contact 𝑙c spreading in both
irections, accompanied by further increase in the extent of the reverse
ielding zone. Then, there are multiple contact-free zones, one at the
entre of the crack (|𝑥| < 𝑙′′), and one at each crack tip (𝑎′′ < |𝑥| < 𝑎).

The boundary conditions are

𝜎𝑦𝑦(𝑥) =

{

0, |𝑥| < 𝑙′′ and 𝑎′′ < |𝑥| < 𝑎
−𝜎𝑌 , 𝑎 < |𝑥| < 𝑑c,

(5a)

𝛿cont(𝑥) =

{

𝛿R |𝑥∕𝑎| , 𝑙′′ < |𝑥| < 𝑎′′,
𝛿max(𝑥), 𝑑′′ < |𝑥| < 𝑏,

(5b)

𝜎𝑦𝑦 → 𝜎cont, 𝑟 → ∞. (5c)

Eventually, when the minimum stress is attained, the central zone
reaches 𝑥 = ±𝑙, the crack tip zones reach 𝑥 = ±𝑎, and the reverse
yielding zone reaches 𝑥 = ±𝑑 simultaneously. Despite these additional
complications, the solution is undertaken in analogous manner to the
other solutions.

3. Distributed dislocation technique

The two problems formulated in Section 2 are boundary value prob-
lems in elasticity, and hence their solutions may be undertaken using
many well-established approaches. One of the most popular approaches
for the solution of plane crack problems is the DDT, described in detail
in refs. [24,25]. Using this method, the crack is represented by a dis-
tribution of edge dislocations along the faces of the crack. The density
of dislocations, 𝐵, is then related to the boundary conditions through
an integral equation, for which many efficient solution strategies have
4

been developed. 𝑊
The stress distribution associated with a distribution of disloca-
ions with density 𝐵 is obtained from the solution for a single edge
islocation in plane stress using the Green’s function method,

𝑦𝑦(𝑥, 𝑦) =
𝐸
4𝜋 ∫

𝑏

−𝑏
𝐵(𝜉)𝐺𝑦𝑦𝑦 𝑑𝜉 (6)

here 𝐺𝑦𝑦𝑦 denote the stress influence function associated with a single
dge dislocation located at 𝑥 = 𝜉, 𝑦 = 0. For an infinite medium the
tress influence function is

𝑦𝑦𝑦 =
𝑥1(𝑥21 + 3𝑦2)

𝑟4
(7)

where 𝑥1 = 𝑥 − 𝜉, 𝑟2 = (𝑥 − 𝜉)2 + 𝑦2. Hence, using superposition, the
normal stress along the crack line 𝑦 = 0 in the presence of a uniform
remote stress 𝜎∞𝑦𝑦 is

𝜎𝑦𝑦(𝑥, 0) = 𝜎∞𝑦𝑦 +
𝐸
4𝜋 ∫

𝑏

−𝑏

𝐵(𝜉)
𝑥 − 𝜉

𝑑𝜉. (8)

Similarly, the crack opening/plastic stretch is

𝛿(𝑥) = ∫

𝑏

𝑥
𝐵(𝜉) 𝑑𝜉. (9)

When applied to the boundary value problems formulated in Sec-
tion 2, Eq. (8) may be recognised as a singular integral equation
containing a Cauchy kernel for the unknown dislocation density 𝐵.
Such equations may be inverted using analytic function methods or
numerical methods. In the present work, a numerical solution is derived
using the Chebyshev–Gauss quadrature method: a brief background on
this approach is presented in Appendix A. The approach represents 𝐵
as the product of an appropriately chosen weight function and a series
in the Chebyshev polynomials of the second kind,

𝐵(𝑠) = 𝜙(𝑠)
√

1 − 𝑠2, 𝜙(𝑠) =
𝑁
∑

𝑗=0
𝛼𝑗𝑈𝑗 (𝑠) (10)

sing integration points 𝑠, collocation points 𝑡 and quadrature weights
given in the appendix. The Chebyshev–Gauss quadrature method
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applied to Eqs. (8) and (9) provides

𝜎(𝑡𝑘) = 𝜎∞𝑦𝑦 +
𝐸
4

𝑁
∑

𝑖=1

𝑊𝑖𝜙(𝑠𝑖)
𝑡𝑘 − 𝑠𝑖

(11)

𝛿(𝑡𝑘) = 𝑏𝜋
𝑁
∑

𝑖=1
𝑊𝑖𝜙(𝑠𝑖)𝜃(𝑠𝑖 − 𝑡𝑘) (12)

where 𝜃 denotes the unit step function, and 𝜎(𝑡𝑘) and 𝛿(𝑡𝑘) are the
prescribed values of the stress and crack opening/plastic stretch at the
integration points. All the boundary value problems in Section 2 may
be interpreted as a system of 𝑁 + 1 linear equations for the values of
𝜙 at the 𝑁 integration points. The requirement of bounded stresses at
all points provides an extra condition, and allows the solution of the
system in matrix form.

Specifically, a residual for the problem may be defined in terms of
the discontinuity in the dislocation density at the junction between two
boundary conditions. Physically this corresponds to removing the stress
singularity at each respective point. Denoting this set of points by 𝑝, the
residual for a particular problem may then be defined

𝑅(𝜙) =
∑

𝑝
[𝐵𝑝]2 =

∑

𝑝
[𝐵(𝑝+) − 𝐵(𝑝−)]2 (13)

where 𝐵(𝑝+) and 𝐵(𝑝−) are, respectively, the values of 𝐵 just ahead
of and just behind 𝑝, calculated using Eq. (10). The solution may then
be derived by iteration from an initial guess for 𝜙 using a numerical
optimisation method. If there is only one such point, then a root-
finding method may be used instead for more rapid convergence.
Detailed explanations of the methods used to solve these equations,
and validation of the results against previous studies, are presented
in Section 4, and application of those results to the analysis of the crack
opening and closing process is presented in Section 5.

4. Verification

Using the Chebyshev–Gauss method, the equations for the maxi-
mum stress state are
𝑁
∑

𝑖=1

𝑊𝑖𝜙(𝑠𝑖)
𝑡𝑘 − 𝑠𝑖

=

{

−4𝜎max∕𝐸, |

|

𝑡𝑘|| < 𝑎∕𝑏
4(𝜎𝑌 − 𝜎max)∕𝐸, 𝑎∕𝑏 < |

|

𝑡𝑘|| < 1
(14)

and for the minimum stress state are
𝑁
∑

𝑖=1

𝑊𝑖𝜙(𝑠𝑖)
𝑡𝑘 − 𝑠𝑖

=

{

−4𝜎min∕𝐸, |

|

𝑡𝑘|| < 𝑙∕𝑏
−4(𝜎𝑌 + 𝜎min)∕𝐸, 𝑎∕𝑏 < |

|

𝑡𝑘|| < 𝑑∕𝑏
(15a)

𝜋
𝑁
∑

𝑖=1
𝑊𝑖𝜙(𝑠𝑖)𝜃(𝑠𝑖 − 𝑡𝑘) =

{

𝛿R |

|

𝑡𝑘|| ∕𝑎, 𝑙∕𝑏 < |

|

𝑡𝑘|| < 𝑎∕𝑏
𝛿max(𝑏𝑡𝑘)∕𝑏, 𝑑∕𝑏 < |

|

𝑡𝑘|| < 1.
(15b)

Due to the use of Chebyshev–Gauss quadrature, the length param-
eters on the crack (e.g. 𝑎, 𝑙 and 𝑑) must be treated as a discrete
rather than continuous variables, taking the locations of the quadrature
points, while the applied stresses and 𝛿R are continuously varying
parameters. For numerical reasons, it is most convenient to approach
the problem by assigning the discrete variables and solving for the
corresponding values of the continuous variables.

As an analytical solution exists for the maximum stress state, this
condition is used to ensure the accuracy of the method and establish the
required number of integration points, 𝑁 , to achieve highly accurate
results. For later reference, the analytical solution for the Dugdale
model is
𝑎
𝑏
= cos

(

𝜋𝜎max
2𝜎𝑌

)

, 𝛿M =
8𝜎𝑌 𝑎
𝜋𝐸

𝛿M =
8𝜎𝑌 𝑎
𝜋𝐸

log 𝑏
𝑎
. (16)

For a given value of 𝑎, an initial guess for the maximum stress, 𝜎(0)max,
allows the system Eq. (14) to be solved in the least squares sense to
identify an approximate solution for the regular part of the dislocation
density, 𝜙0. Then, this solution may be used to calculate a value of
the residual using 𝑅 (𝜙) = [𝐵 ]. The solutions 𝜎 and 𝜙 may be
5

max 𝑎 max r
Fig. 3. Comparison between the present results for 𝑁 = 5000 (circles) and correspond-
ng analytical results (solid lines) for the ratio 𝑎∕𝑏 (blue, left y-scale) and the normalised
lastic stretch at the crack tip (red, right y-scale) in the maximum stress state for
ifferent values of 𝜎max∕𝜎𝑌 .

Table 1
Convergence of the maximum stress model for the nearest available value to 𝜎max∕𝜎𝑌 =
0.5. The estimate of the parameter 𝛿M found using the distributed dislocation technique
is compared to the corresponding analytical result (the results for 𝑎∕𝑏 are identical up
to twelve decimal places for all tabulated values of 𝑁).
𝑁 𝜎max∕𝜎𝑌 𝑎∕𝑏 Method 𝛿M

25 0.461538 0.748511 DDT 0.289726731
Exact 0.289669716

50 0.509804 0.696134 DDT 0.362228432
Exact 0.362213186

100 0.495050 0.712584 DDT 0.338861421
Exact 0.338857529

250 0.501992 0.704891 DDT 0.349713109
Exact 0.349712478

500 0.499002 0.708214 DDT 0.345008542
Exact 0.345008384

1000 0.499500 0.707661 DDT 0.345789632
Exact 0.345789592

2000 0.499750 0.707384 DDT 0.346181251
Exact 0.346181241

5000 0.499900 0.707218 DDT 0.346416568
Exact 0.346416567

found via iteration using a root-finding method subject to the bound
𝜎max < 𝜎𝑌 .

The results were compared to the analytical solution in Table 1
showing the rapid convergence of the quadrature method, even for low
values of 𝑁 ; the results match to 8 decimal places for 𝑁 = 5000. The
accuracy of the results for values of 𝜎max∕𝜎𝑌 not shown in the table is
demonstrated in Fig. 3, showing the results for 𝑎∕𝑏 and 𝛿M for 𝑁 = 5000.
t may be observed that the results are accurate across the full range of
dmissible values.

The minimum stress state is specified by four independent parame-
ers: the minimum stress 𝜎min, the contact-free length 𝑙, the maximum
xtent of the reverse yielding zone 𝑑 and the residual plastic stretch at
he crack tip 𝛿R.

The residual for the minimum stress state is

min(𝜙) = [𝐵𝑙]2 + [𝐵𝑎]2 + [𝐵𝑑 ]2 (17a)

ubject to the bounds on each parameter

< 𝑙 < 𝑎, 𝑎 < 𝑑 < 𝑏, 0 < 𝛿R < 𝛿M, 𝜎min < 𝜎max. (17b)

The solution is identified through the minimisation of Eq. (17a) via a
multidimensional optimisation algorithm. Due to the use of Chebyshev–
Gauss quadrature, 𝑙 and 𝑑 can only be placed at integration points,
and therefore accurate values are obtained by interpolation where
necessary. The value of 𝑁 chosen for the analysis affects the resolution
f the mesh at the crack. For low values of 𝑁 the Chebyshev–Gauss
uadrature points are coarsely spaced close to the centre of the crack,
hich has implications on the values of the contact-free length pa-
ameter, 𝑙, that can be obtained from the solution. As the present
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Fig. 4. Plots for the maximum stress (red) and minimum stress (blue) states of (a)
the crack opening/plastic stretch, and (b) the normal stress at the crack surfaces. The
dashed black lines show the intervals in Fig. 1. The data is plotted for the values given
in Eq. (18).

work is focused on providing accurate results over the widest possible
parameter ranges, 𝑁 = 5000 was selected. Having established accurate
values using 𝑁 = 5000, future studies may be based on lower values of

, which would be more feasible for practical calculation.
Example plots of the dislocation density, crack opening/plastic

tretch, and stress distribution at the minimum stress state for

𝑁 = 5000, 𝜎max∕𝜎𝑌 = 0.4999, 𝑎∕𝑏 = 0.707 22,

R = −0.531 39, 𝛿R∕𝛿M = 0.700 05, 𝑙∕𝑏 = 0.039 88, 𝑑∕𝑏 = 0.760 91

(18)

are presented in Fig. 4, indicating the locations 𝑥 = ±𝑙, ±𝑎, ±𝑑, showing
the shape of the plastic wake, and demonstrating that the boundary
conditions in Eq. (2) are satisfied. An excerpt of the numerical results
for several different values of 𝜎max∕𝜎𝑌 and R are provided in Ap-
pendix B. Though Rose & Wang [17] derived an analytical solution
for the minimum stress state, a full comparison with the results of
this study is not possible, as those results were only presented in
graphical form. However, based on a comparison of the trends and
observation of some specific values, those results appear in excellent
agreement with the present results. Budiansky & Hutchinson reported
the numerical values 𝛿R∕𝛿M = 0.8562 and (𝑑 − 𝑎)∕(𝑏 − 𝑎) = 0.092 86 for
R = 0 assuming small-scale yielding (i.e. in the limit 𝜎max∕𝜎𝑌 → 0).
For 𝜎max∕𝜎𝑌 = 0.1 and R = 0, the present results provide 0.849 81
and 0.097 798 respectively, which suggests that the small-scale yielding
results are recovered as 𝜎max∕𝜎𝑌 → 0.

5. Crack opening and closing process

After determination of the maximum and minimum stress states,
the opening and closing process may be studied using the boundary
conditions formulated in Section 2.3.
6

5.1. Opening and contact stresses

Eq. (3) depends on both the minimum and maximum stress states
through 𝑎 and 𝛿min, but otherwise contains only one unknown param-
eter, 𝜎op, and may be solved using the same Chebyshev–Gauss method
described above, by iterating through values of 𝜎op to remove the
singularity at the crack tips 𝑥 = ±𝑎, with the restriction 𝜎min < 𝜎op <
𝜎max.

Plots of the solution for the opening stress normalised to the maxi-
mum stress for different R-ratios and 𝜎max∕𝜎𝑌 are presented in Fig. 5,
showing that the crack opens earlier for lower values of R, and the
curves coalesce as R → 1. Fig. 5 also shows the results for the opening
stress presented by Newman [26], based on empirical equations fit
to numerical results for a centre crack tension specimen of arbitrary
plate thickness. The present results display a generally similar trend to
those of Newman for both R and 𝜎max∕𝜎𝑌 , though there is a significant
discrepancy between the predicted values, especially close to R = −1,
and for high values of 𝜎max∕𝜎𝑌 . Though an experimental study was
not undertaken in the present work, a limited comparison may be
made through Newman’s results, which have been used in experimental
studies to determine fatigue crack growth rates. One such study [3]
found that Newman’s model was highly accurate for several values of R.
However, the comparison in that work was limited to 𝜎max∕𝜎𝑌 = 0.33,
for which the present results and Newman’s results are very similar
(see Fig. 5). A more complete investigation of the accuracy of the
present results should focus on higher values of 𝜎max∕𝜎𝑌 , at which the
discrepancies are more pronounced.

The contact stress may be derived by applying the same method
described in Section 3 to Eq. (4), though now the additional condition
Eq. (4d) must be checked for each potential solution to ensure that
no interpenetration of the crack faces occurs. The correct solution, at
which contact first occurs, may be rapidly identified using a bisection
method. Plots of the contact stress normalised to the maximum stress
are presented in Fig. 6, also showing the normalised opening stress for
the same conditions.

The present results for 𝜎max∕𝜎𝑌 = 0.1, R = 0 provide 𝜎op∕𝜎max =
0.537 43 and 𝜎cont∕𝜎max = 0.469 54. Based on the tendencies shown
in Fig. 6, it is likely that in the small-scale yielding limit Budiansky
& Hutchinson’s results of 𝐾op∕𝐾max = 0.557 and 𝐾cont∕𝐾max = 0.483
are recovered. Numerical values of 𝜎op∕𝜎max, 𝜎cont∕𝜎max, 𝑙c∕𝑎 and 𝑑c∕𝑎
are presented the table in Appendix B. Note that the contact point is
typically extremely close to the crack tip for low values of 𝜎max∕𝜎𝑌 ,
though it is generally further away for low and negative values of R.

5.2. Cyclic crack tip stretch

Based on parameters derived above, the full details of each state of
the crack opening and closing processes may be derived. In this section,
we focus on the per cycle variation in the plastic stretch at the crack
tips 𝑥 = ±𝑎 during a single cycle. This part of the solution is among
the most laborious, as it requires analysis of several different problems
depending on the value of the applied stress, shown in Fig. 2(a), (c),
(d), (f). The part of the stress cycle with 𝜎min < 𝜎𝑦𝑦 < 𝜎cont is the most
problematic, as it requires iteration to determine the parameters 𝑙′′,
𝑎′′ and 𝑑′′ matching a given value of the applied stress. This part of
the solution was omitted by Budiansky & Hutchinson; however, it is
analysed in full here to identify the closure process at the crack tip.

Selected results for 𝜎max∕𝜎𝑌 = 0.5 are shown in Fig. 7 for R = −1,
0 and 0.4 with the maximum stress, minimum stress, opening stress,
and contact stress indicated. As expected, between 𝜎min and 𝜎op, when
the response is purely elastic, there is no change in the plastic stretch.
Subsequently it increases smoothly to a maximum of 𝛿M at 𝜎max, and
then decreases smoothly until 𝜎min. The unloading stage is identical for
all values of R until 𝜎cont, as the boundary conditions for this part of
the cycle only depend on the data at the maximum stress. The final

stage of unloading, for stresses below 𝜎cont, is characterised by a smooth
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Fig. 5. Opening stress normalised to the maximum stress plotted for (a) R and (b)
max∕𝜎𝑌 . The present results are shown with solid lines, the dashed lines show the
redictions from Ref. [26] for plane stress.

eduction in the crack tip stretch, attaining the minimum stress value,
R, at 𝜎min. It can also be observed that the stages before opening
nd after contact occupy proportionally more of the cycle for low and
egative values of R.

.3. Power law plastic wake

The results presented above were derived for a linear plastic wake,
ppropriate for the assumption of constant amplitude cyclic loading: for
ariable amplitude cyclic loading, on the other hand, it is not possible
o identify the specific form of the wake without recourse to experi-
ental data. However, if a reasonable shape of the plastic wake were

dentified, the present method would allow the solution to be easily
alculated. For example, the simplest generalisation would be a wake
ollowing a power law of degree 𝑛; the case 𝑛 = 1∕2, corresponding
o a square-root shape is considered here. The maximum stress state is
nchanged, and the boundary conditions for the minimum stress state
re almost identical, with the exception of the plastic stretch in the
7

Fig. 6. Contact stress normalised to the maximum stress plotted for (a) R and (b)
𝜎max∕𝜎𝑌 . The contact stress is shown with solid lines, the dashed lines show the
corresponding opening stress.

closed portion of the crack, which is replaced by 𝛿min(𝑥) = 𝛿R

√

|

|

𝑥∕𝑎0||,
here 𝑎0 is an additional length scale for the problem. Hence, the
roblem variables must be regarded as functions of R, 𝜎max∕𝜎𝑌 , and

𝑎∕𝑎0.
The solution procedure described above then allows the calculation

of the parameters 𝑙∕𝑎, 𝑑∕𝑎, 𝛿R and 𝜎min with no other changes. An
example plot of the crack opening/plastic stretch and stress distribution
at the crack faces for 𝜎max∕𝜎𝑌 = 0.5, R = −0.0404 and 𝑎0 = 𝑎 is shown
in Fig. 8. Though the computational time for the solution increases
considerably compared to the self-similar case due to the introduction
of an extra parameter, the present approach remains valid.

6. Conclusion

This paper describes a method for the analysis of the closure of
propagating cracks due to the presence of a wake of plasticity. New
analytical results are obtained for an embedded crack propagating
under constant amplitude cyclic loading. The present results are con-
sistent, in terms of the general trends, with past numerical simulations
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T
a

Fig. 7. Cyclic plastic stretch at the crack tip for 𝜎max∕𝜎𝑌 = 0.5 for three values of R.
he opening stress, contact stress and maximum and minimum stresses for each case
re marked.

Fig. 8. Example plots, for a power law plastic wake, of the maximum stress (red)
and minimum stress (blue) states of (a) the crack opening/plastic stretch, and (b) the
normal stress at the crack surfaces. The dashed black lines show the intervals in Eq. (2),
and the dashed line in (a) shows the shape of the plastic wake over the contact-free
length. The data is plotted for 𝜎max∕𝜎𝑌 = 0.5 and R = −0.0404.

utilising the same methodology and the plane stress assumption. The
results also recover analytical results in the small-scale yielding limit.
The finding that the first contact during unloading does not occur at
the crack tips, in agreement with Budiansky & Hutchinson’s result for
a semi-infinite crack, has to the best knowledge of the authors, not
8

been incorporated into numerical procedures or reported in published
outcomes of numerical simulations. It was also conclusively shown that
closure at the crack tip is not achieved until the minimum stress, via
solution of the post-contact response of the crack, an analysis that
was omitted from previous small-scale yielding analyses. Finally, the
extension of the present results to more general shapes of the plastic
wake was outlined and demonstrated using a simple example.

One advantage of the method developed in this work is that it
is straightforward to consider generalisations for other geometries or
loading states by changing the boundary conditions or the integral
kernel in Eq. (6). Unlike the methods employed in other analytical
studies, the present work is applicable to edge cracks, which are a
key contributor to the development of fatigue damage, particularly in
the high-cycle regime. The present work may be adapted to consider
edge cracks by modification of the kernel in the singular integral, and
the points employed in the Chebyshev–Gauss quadrature. Similarly, the
method could be extended beyond plane stress conditions to consider
the influence of plate thickness if the first-order plate theory were
employed [12], though the assumption of a linear plastic wake in this
case may only be approximately satisfied. A more general shape of
the plastic wake would also be necessary for other crack geometries,
such as a plane crack emanating from a stress concentration (e.g. a
cylindrical hole).

A comparison of the present solution for the opening stress with
numerical results available in the literature demonstrates the same
trends but some differences in the crack tip opening stress, particularly
at low R-ratios. These differences may reflect differing assumptions,
or limitations in existing numerical procedures. The obtained solution
could also provide computational methods with a guide for the discreti-
sation process, assisting in appropriately selecting the sizes of finite
elements for each of the characteristic crack regions. The results for
the stress values corresponding to crack face contact have not been re-
ported in numerical simulations. Therefore, in order to understand the
limitations of the existing numerical procedures, it would be necessary
to investigate the importance of this effect in future studies.
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Appendix A. Chebyshev–Gauss quadrature

Substituting 𝑥 = 𝑏𝑡 and 𝜉 = 𝑏𝑠 into Eq. (8),

𝜎𝑦𝑦(𝑥, 0) = 𝜎∞𝑦𝑦 +
𝐸
4𝜋 ∫

1

−1

𝐵(𝑠)
𝑡 − 𝑠

𝑑𝑠. (A.1)

The integral equation may be efficiently inverted by decomposing the
dislocation density into the product of a regular function, 𝜙, and a
weight function with appropriate asymptotic behaviour, 𝜔, i.e.

𝐵(𝑠) = 𝜔(𝑠)𝜙(𝑠). (A.2)
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Table B.2
Selected numerical results for several values of 𝜎max∕𝜎𝑌 , showing the parameters associated with the maximum stress, minimum stress, opening stress and contact stress states (see
Section 2 for definitions of each parameter).
𝜎max∕𝜎𝑌 𝑎∕𝑏 𝛿M R 𝑙∕𝑎 𝑑∕𝑎 𝛿R∕𝛿M 𝜎op∕𝜎max 𝜎cont∕𝜎max 𝑙c∕𝑎 𝑑c∕𝑎

0.1 0.98769 0.01238

−0.24224 0.00223 1.00127 0.84396 0.53071 0.460257 0.99965 1.00108
−0.11041 0.05562 1.00124 0.84709 0.53431 0.465168 0.99965 1.00106

0.003242 0.58025 1.00122 0.84981 0.53733 0.46954 0.99965 1.00105
0.163263 0.97333 1.00113 0.85895 0.54906 0.484216 0.99974 1.001

0.3 0.89105 0.11536

−0.73553 0.00176 1.01952 0.76083 0.4333 0.33565 0.99204 1.01311
−0.24654 0.10875 1.01469 0.811 0.48611 0.40139 0.99532 1.01075

0.000743 0.57935 1.01268 0.83287 0.51174 0.433812 0.99662 1.00968
0.183543 0.89373 1.0108 0.85393 0.53828 0.467724 0.99727 1.00862
0.349399 0.97209 1.00837 0.88275 0.57896 0.519431 0.99824 1.00713

0.5 0.70722 0.34642

−0.98114 0.00222 1.11983 0.57434 0.255 0.117551 0.92624 1.06477
−0.53139 0.05728 1.0762 0.70005 0.35032 0.233372 0.96909 1.04865

0.001538 0.63111 1.04511 0.80339 0.45273 0.363175 0.98832 1.03362
0.229591 0.89258 1.03286 0.84919 0.50965 0.436198 0.99334 1.0265
0.41432 0.9707 1.02191 0.89391 0.57769 0.522169 0.99716 1.01929

0.7 0.45419 0.78925

−0.99210 0.00346 1.49762 0.36902 0.08975 −0.10644 0.71303 1.22177
−0.50641 0.16375 1.2442 0.60501 0.21569 0.063507 0.91721 1.15213

0.00714 0.7346 1.11968 0.76969 0.35932 0.257226 0.97714 1.09269
0.302103 0.94166 1.06638 0.85931 0.47601 0.408751 0.992 1.05822
In the problems under consideration the stresses are bounded at both
ends, and hence 𝜔(𝑠) =

√

1 − 𝑠2. Accordingly, 𝜙 is expanded as a series
n the Chebyshev polynomials of the second kind,

(𝑠) =
𝑁
∑

𝑗=0
𝛼𝑗𝑈𝑗 (𝑠) (A.3)

where 𝑁 is the number of discrete integration points to be used in the
quadrature scheme. For the purposes of the DDT, the integration points
𝑠𝑖 and collocation points 𝑡𝑘 are the roots of the Chebyshev polynomials
𝑁 and 𝑇𝑁+1 respectively,

𝑠𝑖 = cos 𝜋𝑖
𝑁 + 1

, 𝑖 = 1,… , 𝑁 (A.4)

𝑡𝑘 = cos
𝜋(2𝑘 − 1)
2(𝑁 + 1)

, 𝑘 = 1,… , 𝑁 + 1 (A.5)

and the quadrature weights are

𝑊𝑖 =
1 − 𝑠2𝑖
𝑁 + 1

. (A.6)

Using Eq. (A.1) and the identities

∫

1

−1

√

1 − 𝑠2
𝑡 − 𝑠

𝑈𝑗 (𝑠) 𝑑𝑠 = 𝜋𝑇𝑗+1(𝑡) (A.7)

𝑁
∑

𝑖=1

𝑊𝑖
𝑡𝑘 − 𝑠𝑖

𝑈𝑗
(

𝑠𝑖
)

= 𝑇𝑗+1
(

𝑡𝑘
)

, (A.8)

the normal traction on the faces of the crack at the collocation points,
𝜎(𝑡𝑘) is related to the values of 𝜙 at the integration points via

(𝑡𝑘) = 𝜎∞𝑦𝑦 +
𝐸
4

𝑁
∑

𝑖=1

𝑊𝑖𝜙(𝑠𝑖)
𝑡𝑘 − 𝑠𝑖

, 𝑘 = 1,… , 𝑁 + 1. (A.9)

Similarly, 𝛿 is calculated using an equivalent form of Eq. (9),

𝛿 = ∫

𝑏

−𝑏
𝐵(𝜉)𝜃(𝜉 − 𝑥) 𝑑𝜉, (A.10)

where 𝜃 is the unit step function

𝜃(𝑡) =

{

0, 𝑡 < 0
1, 𝑡 ≥ 0.

(A.11)

Then, the Chebyshev–Gauss quadrature formula for regular integrals,

∫

1

−1
𝑓 (𝑠)

√

1 − 𝑠2 𝑑𝑠 ≈
𝑁
∑

𝑖=1
𝑊𝑖𝑓 (𝑠𝑖), (A.12)

provides

𝛿(𝑡𝑘) = 𝑏𝜋
𝑁
∑

𝑊𝑖𝜙(𝑠𝑖)𝜃(𝑠𝑖 − 𝑡𝑘). (A.13)
9

𝑖=1
Using Eqs. (A.9) and (A.13) in combination with Eqs. (1) and (2) leads
to Eqs. (14) and (15) of the main text, the governing equations of
the maximum and minimum stress states appropriate for numerical
evaluation.

Appendix B. Tabulated numerical results

Selected numerical results for the minimum stress state and crack
opening and closing process are tabulated in Table B.2.
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