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Maintenance of optimal leaf tissue humidity is important for plant productivity

and food security. Leaf humidity is influenced by soil and atmospheric water

availability, by transpiration and by the coordination of water flux across cell

membranes throughout the plant. Flux of water and solutes across plant cell

membranes is influenced by the function of aquaporin proteins. Plants have

numerous aquaporin proteins required for a multitude of physiological roles in

various plant tissues and the membrane flux contribution of each aquaporin can

be regulated by changes in protein abundance, gating, localisation, post-

translational modifications, protein:protein interactions and aquaporin

stoichiometry. Resolving which aquaporins are candidates for influencing leaf

humidity and determining how their regulation impacts changes in leaf cell

solute flux and leaf cavity humidity is challenging. This challenge involves

resolving the dynamics of the cell membrane aquaporin abundance, aquaporin

sub-cellular localisation and location-specific post-translational regulation of

aquaporins inmembranes of leaf cells during plant responses to changes in water

availability and determining the influence of cell signalling on aquaporin

permeability to a range of relevant solutes, as well as determining aquaporin

influence on cell signalling. Here we review recent developments, current

challenges and suggest open opportunities for assessing the role of

aquaporins in leaf substomatal cavity humidity regulation.

KEYWORDS
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Introduction

Crop productivity is directly impacted by water availability which is influenced by the

climate (Cook et al., 2018; Tabari, 2020). Our climate is impacted by levels of carbon in

the atmosphere (412 ppm), which is now 47% higher than it was at the beginning of the

industrial age (280 ppm; Buis, 2019). The carbon in the atmosphere traps heat and with

every degree increase in heat the atmosphere can hold 7% more water (Trenberth, 2011).
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Water molecules tend to adhere to each other which means higher

atmospheric water holding capacity is problematic. Rather than

agricultural areas experiencing ideal conditions, such as fairly

evenly distributed and consistent moderate rainfall, we are instead

facing a future of increasingly frequent and extreme weather events,

like floods and droughts (Holden, 2019).

Both too much and too little rain limits crop productivity.

Crops submerged in water can become oxygen limited restricting

respiration and limiting productivity, and when water loss from

leaves exceeds root water uptake then plant net hydration decreases

which can lead to loss of turgor and hydraulic failure (Bailey-Serres

and Voesenek, 2010; Bartlett et al., 2012). Plant tissue hydration

needs to be carefully coordinated (Meinzer et al., 2009). Limited

water availability triggers leaf stomatal closure to reduce

transpiration and limit loss of hydration in plant tissues. In

addition to stomatal closure, changes in leaf cell membrane water

flux occur to regulate plant tissue hydration (Wong et al., 2022).

The progressive reduction in water flux through mesophyll cell

aquaporins was suggested by Wong et al. (2022) to be involved in

maintaining cytosolic water potential when leaves experience

declining humidity in the air. Aquaporins are tetrameric

membrane intrinsic proteins renowned for controlling membrane

water flux (Maurel et al., 2015). Both plasma membrane and

tonoplast localised aquaporins have been reported to influence

leaf hydration and hydraulic conductance in crops such as barley

(Hordeum vulgare) and Sorghum bicolor (Schley et al., 2022;

Sharipova et al., 2022).

Resolving how aquaporin functions influence leaf substomatal

cavity humidity is an important step towards investigating ways to

adapt crops to conditions with sub-optimal water availability

(Verslues et al., 2023). All plants have aquaporins, they are

abundant in cell membranes surrounding leaf veins, mesophyll

and stomata and they influence the flux of water into and out of

these cells and the leaf air space. The objective of this review is to

highlight recent developments in studying plant regulation of leaf

humidity and share examples of factors for consideration when

investigating the role of aquaporins in influencing solute flux in leaf

cells relevant to maintaining tissue humidity. We provide

information about key challenges relevant to studying aquaporin

functions and outline options for researchers who are working

towards progressing our knowledge of how aquaporins influence

leaf humidity regulation.
Water availability and leaf vapour
pressure variation

Soil and atmospheric aridity restrict plant productivity (Dietz

et al., 2021). Insufficient water in the environment can rapidly

translate to insufficient water inside plants (Hu et al., 2022). The

vapour pressure in plant leaves is not always saturated, instead the

intercellular relative humidity in leaves varies in response to

environmental changes and it can be regulated by the plant

(Cernusak et al., 2018). Plants can adjust the water potential in

their leaves to sustain a range of different levels of humidity in the
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intercellular mesophyll air space, for example from 80 to 97%

(Wong et al., 2022). As plants transpire water moves from leaf

cells to the air space within the leaf where it exits the leaf via

stomata. The humidity gradients in leaf mesophyll cells influence

the vapour flux to the stomatal pores. When there is maximum

possible humidity in the leaf it is considered to be saturated. The

relative level of saturation across the leaf can change and it can

respond to changes in the external humidity in the air outside

the leaf.

When the air outside a leaf becomes increasingly dry the

difference in vapour pressure between the outside air and the

inside of the leaf increases, and the saturated front retreats from

the substomatal cavity towards the intercellular space creating a

longer pathlength for the water flux and increasing the resistance

(Wong et al., 2022). The water potential in the cell walls or

intercellular space between the leaf cells may sit at equilibrium

with the relative humidity in the substomatal cavity whilst the

intracellular cell cytoplasm water potential can differ relative to the

humidity in the substomatal cavity creating a pressure difference

between the cytosol/intracellular space and cell wall/intercellular

space. Leaf cells control the flow of water from the intracellular to

the intercellular space (Figure 1), which is achieved by controlling

plasma membrane and tonoplast hydraulic conductivity. There are

of course many other factors that influence leaf humidity, such as

leaf anatomy and architecture, leaf size, opening of stomata, vein

arrangement and the influence of transpiration.
Membrane flux and leaf humidity

Cell membrane hydraulic conductivity is influenced by the lipid

composition of the membrane, the protein composition in the lipid

membrane and the regulation of membrane protein functions in the

lipid membrane (Mamode Cassim et al., 2019). There are a range of

factors that influence plant cell membrane permeability. For

instance, different plants, plant tissues and cell types can have

diverse cell membrane lipid compositions which can influence the

permeability of the membrane and the conformation of membrane

proteins (Schuler et al., 1991; Martıńez-Ballesta and Carvajal, 2016;

Mamode Cassim et al., 2019). Plant cell membranes are packed with

membrane proteins, and the abundance and type of membrane

proteins influences the permeability of the membrane (Chrispeels

et al., 1999).

Of the many types of proteins in cell membranes there are a

range of different mechanisms involved in diverse metabolic,

signaling and transport functions. The proteins involved in solute

transport functions can be regulated to dynamically influence the

cell membrane permeability. The regulation of aquaporins in

particular influences the hydraulic conductivity of cell membranes

(Maurel, 1997; Maurel et al., 2015). Recently the progressive

reduction of mesophyll cell aquaporin water flux was reported to

be a candidate mechanism involved in maintaining cytosolic water

potential when leaves experience declining humidity in the air

(Wong et al., 2022). Investigating the contribution of aquaporins

to the regulation of leaf airspace humidity is important because it is
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relevant to determining how to adapt crops for water

limited environments.
Aquaporin functional diversity
and regulation

Aquaporins are pore-forming membrane proteins that are part

of the Major Intrinsic Protein (MIP) family. Many but not all types

of aquaporins can function as water channels (Tyerman et al.,

2021). Aquaporin contributions to tissue hydraulics is known to

influence plant transpiration; they can influence solute uptake in

roots, root-to-shoot hydraulic conductance, cellular osmolarity

maintenance, cell-to-cell solute flux and stomatal regulation

(Vera-Estrella et al., 2004; Moshelion et al., 2015; Maurel et al.,

2016; Israel et al., 2021; Patel and Mishra, 2021). Aquaporin

function is important in relation to plant maintenance of

cytosolic osmolarity when adjusting to environmental stresses

(Liu et al., 2006), and it has been suggested that aquaporins may
Frontiers in Plant Science 03
be implicated in foliar water uptake to overcome drought stress

(Vignesh and Palanisamy, 2021).

The plant Kingdom has the greatest aquaporin diversity

compared to the animal, fungi, eubacterial, archeabacterial or

protista Kingdoms. For example, there are 121 aquaporin

isoforms in some Brassica species (Yuan et al., 2017), whereas

humans and many other mammals have 13 different aquaporins,

and many single-celled organisms have one or two different

aquaporins (Tanghe et al., 2006; Verkman, 2008; Tesan et al.,

2021). Arabidopsis has 35 aquaporins, and different aquaporins

are up or down regulated in response to varying environmental

conditions in different cells and tissues (Jang et al., 2004). In higher

plants, aquaporins fall into five subfamilies categorised as Plasma

membrane Intrinsic Proteins (PIPs), Tonoplast Intrinsic Proteins

(TIPs), NOD26-like intrinsic proteins (NIPs), small basic intrinsic

proteins (SIPs), and uncharacterised intrinsic proteins (XIPs)

(Danielson and Johanson, 2008). Presumably it was useful for

plants to duplicate and diverge the number and types of

aquaporin genes, respectively, as part of adapting to different
B

A

FIGURE 1

Representation of the potential for cell membrane water flux to be tuned at different cellular locations within the leaf to influence substomatal cavity
humidity. (A) Each cell, including cells forming the leaf epidermis, palisade mesophyll cells, spongy mesophyll cells or cells surrounding leaf veins, or
guard cells in the stomata can regulate the water flux across their plasma and tonoplast membranes, and other organelle membranes; (B) The
humidity within leaf air spaces changes in response to environmental conditions, and cell signaling influences membrane water flux, here lighter
shading represents lower humidity and darker shading represents higher humidity. Previous studies have reported values of relative humidity inside
leaves varying from as low as 70% up to saturated; plants can modify leaf air space humidity by regulating the flux of water that moves in and out of
veins and leaf mesophyll cells (following Wong et al., 2022).
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terrestrial environments. Major rearrangements were reported in

the aquaporin gene families in seagrasses relative to terrestrial

grasses which is indicative of the importance of aquaporins for

plant adaptation to environments where low humidity limits water

availability as distinct from the submerged aquatic environments

where seagrasses are found (Olsen et al., 2016).

Diverse functions have been attributed to the many different

types of plant aquaporin isoforms, and a single type of aquaporin

protein can have multiple functions such as transporting several

solutes (Tyerman et al., 2021; Groszmann et al., 2023). Aquaporins

can transport water, gasses like carbon dioxide and oxygen,

uncharged molecules such as urea and glycerol, nutrient/metal/

mineral ions, organic molecules (e.g. aluminum malate) and

signaling molecules (e.g. hydrogen peroxide, H2O2) (Maurel et al.,

2015; Wang et al., 2017b; Tyerman et al., 2021). Aquaporins are one

of the most abundant proteins observed in plant membranes, but

any given membrane can have multiple types of aquaporins present

and each aquaporin type can have different functions and can

potentially be regulated independently.

Plants evolved a multitude of processes to ensure coordinated

regulation of aquaporin functions and by extension there are many

levels of regulation of cell membrane permeability (Figure 2).

Consideration of aquaporin regulatory features is important when

deciphering their involvement in regulating tissue water content.

Examples of aquaporin regulatory processes include: regulation of

aquaporin gene transcription level and translation, and regulation

of the complexing of aquaporin monomers into tetramers, i.e.

aquaporin stoichiometry which influences tetramer function

(Zelazny et al., 2007; Fox et al., 2017). Aquaporins may also be

subject to a range of other post-translational regulatory
Frontiers in Plant Science 04
mechanisms such as oxidation and sulfonation, and the full

diversity of modifications of aquaporins that occurs post-

translation is yet to be resolved (Kamath et al., 2011; Nesverova

and Törnroth-Horsefield, 2019). Aquaporin localisation in cellular

membranes influences membrane permeability, with aquaporin

function and localisation being able to rapidly change in response

to cellular signals/environmental stresses (Hosy et al., 2015).

Examples of types of cell signals that are relevant to aquaporin

regulation include: abscisic acid, calcium, cyclic nucleotides,

ethylene, pH, reactive oxygen species, salicylic acid (Chen et al.,

2013; Kapilan et al., 2018; McGaughey et al., 2018). Recently the

jasmonic acid analog coronatine (COR) was also reported to

influence aquaporin function; COR induced Zea maize PIP2;5

expression and interacted with ZmPIP2;5 through binding

potentially influencing water uptake during stress (He et al., 2022).

Aquaporin permeability and conductance is regulated by

channel gating and by a range of post-translational modifications

(Törnroth-Horsefield et al., 2010). This means that aquaporins can

be turned on and off, somewhat like a tap, and plants have many

options for controlling when and where those taps are turned on

and off, and also for controlling which solutes flow through those

taps. Plant aquaporin regulation is a key part of adapting to

environmental stresses, such as changing humidity (Kapilan et al.,

2018). Plants tune aquaporin functions in different cells and tissues

to adjust diurnal leaf hydraulics, to adapt to water deficit and to

adjust growth towards surviving drought (Prado et al., 2019; Zhang

et al., 2019; Patel and Mishra, 2021). Leaf cells such as the vascular

bundle sheath and mesophyll cells have been reported to influence

leaf water balance (Attia et al., 2020), but the differential regulation

of aquaporin-facilitated membrane solute flux that occurs in the
FIGURE 2

Aquaporin localisation and gating influences solute flux across cell membranes. The magnitude of water flux through the aquaporins in cell
membranes can be controlled by changing the abundance of different aquaporins in the cell membrane, altering the localisation of aquaporins
within the cell, changing the stoichiometry of aquaporin tetramers, and gating of aquaporin channels via signaling and post-translational
modifications. The stoichiometry of the aquaporin refers to which types of monomers are present in the aquaporin tetramer. Aquaporins tetramers
have four monomeric channels and a central channel in the middle and all five of the channels can be gated independently. Note that differential
gating of individual monomers is not represented in this figure, for additional examples see Tyerman et al. (2021). For some types of aquaporins the
monomeric channels may be only permeable to water (represented by grey arrows), and the central channel may be permeable to other molecules
(represented by black arrows) (Yu et al., 2006).
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different cell types in plant leaves, such as in mesophyll relative to

bundle sheath cells, is yet to be fully resolved (Shatil-Cohen

et al., 2011).

In rice (Oryza sativa) cell-specific comparison of aquaporin

encoding gene expression levels in mesophyll cells, bundle sheath

cells and vascular tissue cells revealed that the sets of aquaporin PIP,

TIP, NIP and SIP isoforms that were most highly expressed in these

different cell types varied (see Figure 2 of Hua et al., 2021). For example,

transcript levels ofOsPIP2;7, OsTIP4;3 andOsTIP4;1were notably high

specifically in mesophyll cells, and the expression OsPIP2;6 and

OsPIP2;7 expression was higher in both mesophyll and bundle

sheath cells than in vascular cells; OsTIP1;1, OsTIP1;2, OsPIP2;3,

OsPIP1;2, OsPIP2;2, OsTIP2;2, OsPIP1;1 and OsPIP1;3 expression

was notably greater in bundle sheath cells than mesophyll and

vascular cells; and the four most highly expressed aquaporins in the

vasculature were OsPIP2;4, OsNIP2;2, OsSIP2;1 and OsNIP2;1 (Hua

et al., 2021). It is likely that coordination of solute flux across these

different cell types is achieved through interaction of these different

aquaporin isoforms with each other and interactions with other types

of proteins that influence aquaporin roles in solute flux. For example, a

zinc finger transcription factor called DROUGHT AND SALT

TOLERANCE (DST) regulates a leucine-rich repeat receptor-like

kinase named Leaf Panicle 2 which can interact with OsPIP1;1;

OsPIP1;3 and OsPIP2;3 and can influence drought sensitivity in rice

(Wu et al., 2015).

Plant aquaporins have multiple roles in guard cells, some

involve transport of water and other molecules (Maurel et al.,

2016; Figure 3). Aquaporin function was reported to influence

hydrogen peroxide (H2O2) entry into guard cells which then

impacts the influence of abscisic acid signaling triggering stomatal

closure through Open Stomata 1 (OST1) protein kinase mediated

phosphorylation (Grondin et al., 2015; Rodrigues et al., 2017; Cui

et al., 2021). In Arabidopsis differential phosphorylation of the C-

terminal of AtPIP2;1 was shown to affect light induced stomatal

opening (Huang et al., 2020), and in Zea maize PIP2;5 was shown to

be involved in the transpiration decrease observed under high

vapour pressure deficit (VPD) (Ding et al., 2022). There are sub-

sets of aquaporins that have both ion and water channel functions

and these aquaporins could potentially be involved in influencing

the guard cell membrane ion flux, such as K+
flux, that is part of

stomatal movement (MacRobbie, 2006; Byrt et al., 2017; Durand

et al., 2020; Qiu et al., 2020). It may be possible in the future to

optimise stomatal dynamics, transpiration and leaf humidity by

manipulating aquaporin water, ion and H2O2 transport functions

(Wang et al., 2017a; Ding and Chaumont, 2020).

Environmental stresses such as high VPD can cause H2O2 to

accumulate within and outside of plant cells (Munné-Bosch et al., 2001;

Ding et al., 2022). H2O2 is required as a cellular signal in various plant

processes including stomatal closure, which is a rapid and direct

response to high VPD. However, over-accumulated H2O2 can be

damaging to the plant cell due to its high redox reactivity.

Consequently, the mechanism(s) by which H2O2 is transported

within and between cells for signalling and detoxification are of

significant interest for improving crop abiotic stress tolerance (Zhang

et al., 2023). Some aquaporins can transport H2O2 when expressed in

heterologous expression systems indicating that these aquaporins have
Frontiers in Plant Science 05
the potential to influence H2O2 transport in planta (Hooijmaijers et al.,

2012; Groszmann et al., 2023; Figure 3B). The plasma membrane-

localised PIP2;1 aquaporin facilitates movement of apoplastic H2O2

produced by NADPH oxidases across the plasma membrane into the

cytosol. PIP2;1-mediated H2O2 transport is actively regulated via

phosphorylation by multiple proteins including Open Stomata 1

(OST1) and Brassinosteroid insensitive 1-associated receptor kinase 1

(BAK1) (Grondin et al., 2015; Rodrigues et al., 2017). Perturbing

function or phosphorylation of pip2;1 and ost1 disrupts stomatal

closure and other whole-plant responses reliant on H2O2 movement

such as systemic acquired acclimation (Rodrigues et al., 2017; Fichman

et al., 2021). These results demonstrate the importance of aquaporin-

mediated H2O2 fluxes to plant acclimation to environmental stresses.

In contrast to movement of extracellular H2O2, relatively less is

known about intracellular H2O2 movement. It is possible that some

aquaporins could contribute to influencing sequestration of excess

H2O2 into the vacuole (Wudick et al., 2015). However, whilst this

hypothesis is attractive, testing and experimental evidence are still

needed (Smirnoff and Arnaud, 2019). H2O2 produced in chloroplasts

can be exported to the nucleus in response to high light stress or viral

infection, presumably to fulfil signalling functions (Caplan et al., 2015;

Exposito-Rodriguez et al., 2017; Mullineaux et al., 2020; Phua et al.,

2021). H2O2 export was detected from isolated chloroplasts exposed to

high light stress, and this export was blocked by the addition of the

aquaporin inhibitor acetazolamide (Borisova et al., 2012). Intriguingly,

three TIP aquaporins were recently localised to chloroplasts (Beebo

et al., 2020); one of which has been reported to transport H2O2 when

expressed heterologously in yeast (Hooijmaijers et al., 2012).

Collectively, these observations reveal the possibility for organellar

aquaporins to have roles in regulating and distributing H2O2 within

cells. Nevertheless, rigorous future investigation is required to validate

this speculative hypothesis. There are also several knowledge gaps

related to aquaporin involvement in transporting H2O2. For example,

mitochondria and peroxisomes are also sources of H2O2 (Phua et al.,

2021), and further research is required to elucidate potential aquaporin

functional roles in these organelles. Recent studies identified six

Arabidopsis PIP and TIP aquaporin isoforms in the inner

mitochondria membrane via proteomics (Møller et al., 2020), and

GFP-tagging of AtTIP5;1 revealed examples of localisation in the

mitochondria of pollen tubes (Soto et al., 2010), however there are

no confirmed aquaporins that are targeted specifically to the

peroxisome. Furthermore, the identity of cellular protein(s) targeted

by aquaporin-transport of H2O2 for signaling purposes is still unclear.

Nevertheless, since many H2O2-responsive proteins are involved in

major cellular processes such as RNAmetabolism (Huang et al., 2019),

manipulation of H2O2 movement within leaf cells during stresses such

as water deficit may be a promising approach for improving crop

productivity during drought.
Testing aquaporin roles in influencing
leaf humidity

Plant adaptation to different environmental conditions can

require adjustment to leaf water potential and transpiration.

When a change in leaf water potential is needed, changes in cell
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B

A

FIGURE 3

Aquaporins have multiple roles in guard cell (GC) membrane transport and signaling. (A) Modulation of the activity of aquaporins influences the
aperture of stomata (Hachez et al., 2017). Known (left, guard cell 1) and putative (right, guard cell 2) examples of aquaporin roles in GC are
represented, such as; (a) Aquaporin functions in regulating H2O flux across the plasma membrane (PM) (Bienert and Chaumont, 2014; Maurel et al.,
2016); (b) Some aquaporins, such as AtPIP2;1, influence hydrogen peroxide (H2O2) flux; (c) Some aquaporins have roles in carbon dioxide (CO2)
transport and can interact with carbonic anhydrase (CA; d), which converts between CO2 and HCO3

- (Wang et al., 2016; Groszmann et al., 2017;
Zhang et al., 2018); (e) Water limitation can trigger increased abscisic acid (ABA) in plants, ABA influences Open Stomata 1 (OST1) kinase and the
regulation of multiple proteins, including AtPIP2;1 (Grondin et al., 2015; Maurel et al., 2016); (f) Subsets of aquaporins can transport monovalent ions
like potassium (K+; Byrt et al., 2017); (g)> Post-translational modifications (PTMs) such as phosphorylation/de-phosphorylation can switch some
aquaporins between functioning more as ion channels rather than water channels (Qiu et al., 2020); AtPIP2;1 C-terminal (serine 280/283) PTMs
influence water and transport, leaf hydraulics (involves 14-3-3 proteins, Prado et al., 2019) and light induced stomatal opening (Huang et al., 2020).
The complement of PTMs, kinases and phosphatases involved are yet to be reported; (h) Further research is needed to resolve the complement of
external signals, receptors and molecular components involved in signaling cascades that influence aquaporin function in GCs;(i) Knowledge gaps
remain in our understanding of how tonoplast and PM aquaporin fluxes are coordinated. (B) Subsets of aquaporins have roles in influencing H2O2

flux across various cell membranes (plasma membrane, chloroplast envelope, tonoplast), they can influence H2O2 flux from chloroplasts to the
cytosol and vacuole and they are likely to be part of more extensive signaling networks.
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chemical and hormonal signaling, membrane potential and

pressure can be detected (Davies et al., 2002; Osakabe et al.,

2014). Examples of the types of signaling changes include changes

in abscisic acid signaling, calcium signaling, cyclic nucleotide

signaling, reactive oxygen species signaling, and changes in pH

and regulation of kinases and phosphatases (Gilroy et al., 2014;

Sewelam et al., 2016). Each of these types of signaling changes can

influence the regulation of aquaporins at multiple levels (Li et al.,

2011; McGaughey et al., 2018). Signaling pathways can influence

the level of transcription of aquaporin genes, influence the

stoichiometry of aquaporin tetramers, change the abundance of

aquaporin proteins, change the localisation of aquaporin proteins,

change aquaporin interactions with other proteins and change the

gating of aquaporin proteins (Fetter et al., 2004; Maurel et al., 2015;

Fox et al., 2020). Changes in aquaporin gating can influence

whether the monomeric channels and central channel formed in

the middle of the aquaporin tetramer are open or closed and

influence their permeability to a range of different types of

molecules (Qiu et al., 2020).
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The dynamics of aquaporin regulation are tissue, cell and

organelle specific (Cui et al., 2021). Transcriptional and post-

translational levels of regulation of aquaporins and cell type-

specific regulatory features all need to be considered when

investigating aquaporin contribution to plant hydraulics. This

means that consideration needs to be given to multiple layers of

regulation such as mRNA levels, subcellular localisation of the

proteins and gating of the protein channels (Figure 4). Standard

approaches to studying membrane proteins, which are also relevant

to studying aquaporin roles in plant hydraulic regulation, were

previously summarised by Tang et al. (2020), these included: (1)

Identification of candidate proteins from omics data such as whole

genome sequencing, ionomic profiling, genome-wide association

studies and analyses based on transcriptomic and proteomic data

sets; (2) in silico analysis such as homology-based genomic analysis,

RNA-sequencing analysis and quantitative proteomic analysis for

predicting function; (3) Testing membrane protein function using

systems such as proteoliposomes, living cell-based heterologous

systems, electrophysiological approaches and use of fluorescent
FIGURE 4

Factors to consider when investigating aquaporin contributions to cell biology. Changes in the abundance of many different types of aquaporins may
occur following changes in environmental conditions. The localisation of aquaporins can change and the tetramer stoichiometry can change, for
example aquaporins can move around in small vesicles. Aquaporin tetramers have four monomeric channels and a central channel, and all five of
these changes can be gated. There is capacity for the different levels of aquaporin regulation to be regulated independently. Information about
aquaporin gene transcript abundance (represented in purple) is not a suitable proxy for assessing protein abundance, they are not equivalent
measures, and the total abundance of aquaporins in a sample extracted from plant tissues does not give any indication of the cellular or subcellular
localisation of the aquaporin or the aquaporin stoichiometry, or protein-protein interaction status or state of gating (Fox et al., 2017). This means that
it is insufficient to just test for aquaporin transcript levels, or only measure the total amount of aquaporin protein in the tissue, and it is important to
test for aquaporin subcellular localisation and determine aquaporin stoichiometry, protein interactions and state of gating when assessing the extent
to which aquaporins are contributing to cell membrane permeability (Maurel, 2007; Maurel et al., 2015).
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biosensors; and (4) functional assessment in planta using

expression pattern analysis, testing protein subcellular

localisation; phenotyping plants with loss of protein function like

T-DNA mutants or RNAi mutants or plants with either loss of

function or enhanced expression; for example approaches like

CRISPR-Cas9 (Miki et al., 2021) or TALENs (Beurdeley et al.,

2013) have been used to modify the plant genome to influence the

regulation of a given target mechanism of interest.

Aquaporin protein abundance does not always scale with

mRNA levels (Buccitelli and Selbach, 2020). The regulation of

aquaporin mRNA transcript levels and the abundance of the

proteins they encode has sometimes been observed to be linked,

but they have also been observed to be regulated independently

(Marulanda et al., 2010; Muries et al., 2011; Stanfield and Laur,

2019; Jiménez et al., 2022). This means there is not necessarily a

consistent relationship between transcript level changes and cell

membrane aquaporin protein abundance changes (Fox et al., 2017).

The following examples were derived from studies of aquaporin

regulation in roots rather than leaves but the principles and lessons

from these studies apply to all plant tissues: In response to salt stress

Arabidopsis roots upregulate and downregulate multiple different

aquaporin transcripts, and the trends in different root zones, cell

types, and times after stress application vary depending on growing

conditions (Luu and Maurel, 2013; McGaughey et al., 2018).

Arabidopsis roots alter the sub-cellular location of aquaporins in

root cell membranes in response to environmental change and

signals, such as salt stress and reactive oxygen species stress

signaling (Luu et al., 2012; Wudick et al., 2015; Ueda et al., 2016).

Regulation of aquaporin function has been reported to involve

changes in protein phosphorylation that influence aquaporin

localisation and function (Prak et al., 2008; Vialaret et al., 2014;

Pou et al., 2016; Qiu et al., 2020). Even within one single cell the

aquaporins can be regulated differently at different sites within the

membrane. For example, previous studies have shown that polar

localisation of aquaporins on a particular section of cell membrane

can be important for controlling hydraulics, such as where

aquaporin regulation is important for lateral root emergence

(Péret et al., 2012). When sampling plant tissues to investigate

aquaporin regulation it is important to note that even just the act of

cutting a plant can change aquaporin regulation and hydraulic

conductivity, and changes in light cause differential regulation of

aquaporins (Prado et al., 2013; Meng et al., 2016). With these and

other complexities in mind, a list of options for methodological

approaches that are relevant to further investigating aquaporin

contributions to influencing leaf substomatal cavity humidity

were collated (Figure 5).

There are likely to be many aquaporins involved in regulating

the flux of water in and out of leaf cells, and different aquaporins

would be expected to have different roles in different leaf cell types.

This means that leaf transcriptome analysis derived from data

where whole leaves were sampled is unlikely to reveal which

specific aquaporin transcript changes are relevant to regulating

leaf water potential. To narrow down which aquaporins may be

most of interest it would be applicable to use cell-specific RNA-seq

analysis involving laser dissected leaf epidermal, mesophyll,

vasculature and guard cells, similar to the approach taken by
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Berkowitz et al. (2021) except that instead of using chemical

stresses the treatment would involve changing the air VPD

(Figure 5A). The approach by Bellati et al. (2016) was focused on

analysis of aquaporin roles in roots in response to osmotic and

oxidative stress treatments, they used immuno-purification coupled

to protein identification and quantification by mass spectrometry.

This type of approach for aquaporin quantification is ideal because

it is difficult to get specific antibodies for different aquaporin

isoforms due to the high similarity in aquaporin amino acid

sequences, which limits options for using Western Blots to assess

protein abundance (Hachez et al., 2006). If a similar approach was

applied to assess aquaporin roles in leaves then ideally it would be

cell-specific and represent a time-course after changes in VPD were

applied (Figure 5B). Leaf cells would need to be harvested over a

time-course to account for the potential for aquaporin-encoding

gene transcript abundance trends to vary depending on the time

after treatment (Figure 5A). Capture of temporal transcriptomic

recordings of single leaf cells following VPD changes would assist in

identifying the number of different candidates likely to be

implicated in adapting to changes in VPD (Chen et al., 2022).

The methods and approach that were used by Uhrig et al. (2021) to

assess diurnal dynamics of the Arabidopsis rosette proteome and

phosphoproteome are also relevant because studying the

phosphorylation of aquaporin proteins is important for resolving

their function and influence on tissue hydraulics (Prado

et al., 2019).

The proteomics approach by Uhrig et al. (2021) enabled the

quantification of nearly 5000 proteins and 800 phosphoproteins, and

Yavari et al. (2022) recently quantified 9120 proteins in Arabidopsis

leaves in a study assessing responses to different light treatments. The

proteins quantified includedmany aquaporins such as PIP1;1, PIP1;3,

PIP1;4, PIP1;5, PIP2;1, PIP2;3, PIP2;6, PIP2;7, TIP1;1, TIP1;2, TIP2;2,

NIP6;1 and SIP1;1 (see supplemental File S2B of Yavari et al., 2022).

Previous studies reported data indicating that PIP1, PIP2 and TIP

type aquaporins can influence leaf hydraulic conductance and leaf

water content in model species and crops (Katsuhara et al., 2003; Da

Ines et al., 2010; Postaire et al., 2010; Prado et al., 2013; Schley et al.,

2022). The advancement in nanoscale phosphoproteomics

approaches may provide avenues in the future for determining

single-cell candidate aquaporin protein abundance and

phosphorylation state (Birnbaum et al., 2022; Tsai et al., 2023).

Tagging candidate aquaporins of interest using fluorescent

markers and expressing them in plants can enable assessment of

the localisation of the target aquaporins in different tissues and cells,

including assessment of whether the localisation is around the

entire cell membrane, internalised or in a polar pattern

(Figure 5C) (Tian et al., 2004; Li et al., 2011). The tagged proteins

need to be expressed using their native promoter to preserve native

targeting signals, and controls included to check whether the tag

influences the results. It is relevant to determine how post-

translational modifications of aquaporins influence both their

localisation and their osmotic permeability and permeability to

other molecules (see Wu et al., 2015) (Figure 5D). Examples of

phosphatases and kinases that have been reported to either interact

with or are candidates for influencing the function of plant

aquaporins are included in Tables 1, 2. To explore the function of
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different PTM states for specific candidates the candidates can be

expressed and tested in heterologous expression systems (Qiu et al.,

2020). If antibodies can be generated that detect aquaporins in

different phosphorylation states then these can be used to assess

relationships between aquaporin localisation and post-translational

regulations, such as phosphorylation state (Figure 5E); similar to the

approaches taken by Prak et al. (2008) and Prado et al. (2019). This

type of approach was used recently by Chen et al. (2021) to

demonstrate PIP2 regulatory changes related to drought

responses. External stimuli, like water limitation, often alters the
Frontiers in Plant Science 09
phosphorylation state of plasma membrane proteins such as

aquaporins (Orsburn et al., 2011). Regulation of environmental

stress responses, and plant development, in many cases relies on

phosphorylation-mediated regulation of membrane transport

protein functions (Lin et al., 2015; Hsu et al., 2018). Lots of work

lies ahead in determining the full complement of relevant

phosphoproteins such as kinases, phosphatases, receptor-like

kinases and other environmental stress-responsive interacting

proteins and signals relevant to aquaporin regulation (Mattei

et al., 2016; Figure 5E).
B

C

D

E

F

A

FIGURE 5

Investigation of aquaporin influence on substomatal cavity humidity requires study of many factors that can influence aquaporin function.
Investigation of each of these factors needs to be cell-type specific and over a time-course following changes in VPD, examples of approaches
include: (A) measuring aquaporin transcript abundance; (B) measuring aquaporin protein abundance; (C) checking for subcellular localisation of
aquaporin proteins; (D) checking what post translational modifications (PTMs) occur in planta and how PTMs influence aquaporin function; (E)
checking how relevant aquaporin PTMs influence localisation; and (F) studying leaf humidity in plant material with modified aquaporin function and
regulation, such as aquaporin loss-of-function lines, lines over-expressing aquaporins, and potentially lines where aquaporins are edited to alter their
potential for PTMs.
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TABLE 1 Examples of associations between phosphatase activity and aquaporin regulation.

Species, AQP Category
(name) Evidence Observations References

Camelina sativa,
PIP2;1 & PIP2;6

PPP
Okadaic acid treatment in

Xenopus oocytes a Reduces H2O transport (Jang et al., 2014)

Glycine max,
NOD26

PPP
Okadaic acid treatment in

Xenopus oocytes a
Reduces H2O transport; salinity-responsive changes in

phosphorylation
(Guenther et al., 2003)

Poplar
trichocarpa,
AQUA1

PPP
Okadaic acid treatment in
Arabidopsis protoplasts a

Increases the number and volume of AQUA1 cytosolic vesicles
under Zn stress; changes membrane localisation

(Ariani et al., 2019)

Solanum
lycopersicum, PIPs

PTP
Na3VO4 treatment on Solanum

roots b
Reduces root hydraulic conductivity under salt stress through

decreased water transport
(Jia et al., 2020)

Spinacia oleracea,
PM28a

PPP
Okadaic acid treatment in

Xenopus oocytes a Reduces H2O transport (Johansson et al., 1998)

Tulipa gesnerina,
putative PIP

PPP
(PP2A)

In vitro phosphorylation assay
Reduces H2O transport; involved in temperature-responsive flower

opening & closing
(Azad et al., 2004a;
Azad et al., 2004b)
F
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aOkadaic acid is commonly considered a selective inhibitor of members of the PPP family, showing greatest sensitivity to PP2A and PP1 (Soldovieri, 2009).
bNa3VO4 is a competitive inhibitor of PTPs, as well as some alkaline phosphatases (from New England Biolabs).
Phosphatases are enzymes involved in removing a phosphate group from a protein. PPP (protein serine/threonine phosphatase); PTP (protein tyrosine phosphatase).
TABLE 2 Examples of associations between kinase activity and aquaporin regulation.

Species, AQP Category
(name) Evidence Observations References

Arabidopsis
thaliana,
NIP1;1

CPK
(CPK31)

Subcellular localisation & BiFC
assay

Regulates arsenic tolerance (Ji et al., 2017)

Arabidopsis
thaliana,
PIP2;1

RLK
(Feronia)

Xenopus oocyte swelling assay Reduces H2O transport; regulates cell growth
(Bellati et al.,

2016)

Arabidopsis
thaliana,
PIP2;1

STK
(OST1/
SnRK2.6)

In vitro phosphorylation assay Increased H2O transport; ABA-induced stomatal closure
(Grondin et al.,

2015)

Arabidopsis
thaliana,
PIP2;1

RLK
(BAK1)

In vitro phosphorylation assay Increased H2O and H2O2 transport; flg22-induced stomatal closure
(Rodrigues et al.,

2017)

Arabidopsis
thaliana,
PIP2;4

RLK
(SIRK1)

Protoplast swelling assay Sucrose-responsive H2O transport (Wu et al., 2013)

Arabidopsis
thaliana,
PIP3

RLK
(BSK8)

Quantitative phosphoproteomics Uncertain (Wu et al., 2014)

Arabidopsis
thaliana,
PIP1;1 & PIP1;2

CPK
(CPK7)

qPCR in WT and cpk7 Arabidopsis
plants

Reduces cellular abundance of AQP protein (Li et al., 2015)

Arabidopsis
thaliana,
TIP3;1

STK (PKA) In vitro phosphorylation assay Increases H2O transport
(Maurel et al.,

1995)

Camelina sativa,
PIP2;1 & PIP2;6

STK
K252a treatment in Xenopus

oocytes
Reduces H2O transport (Jang et al., 2014)

Gentiana scabra,
PIP2;2 & PIP2;7

CPK
(CPK16)

In vitro kinase and cell
phosphorylation assays

Reversible flower opening
(Nemoto et al.,

2022)

Glycine max,
NOD26

CPK Immunochemical isolation
Increases H2O transport; salinity-responsive changes in

phosphorylation
(Weaver et al.,

1991)

(Continued)
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Expressing aquaporins of interest in forms that control for post-

translational modification effects in a range of genetic backgrounds can

help to tease out what signals regulate aquaporin influence on water

transport (Figure 4); similar to the approach used by Qing et al. (2016).

It is relevant to use genetic backgrounds where endogenous aquaporin

expression is restricted, and aquaporin candidates of interest are

instead expressed through introduction of transgenes, where

transgene expression is achieved in specific tissues and cell-types

through careful selection of promoters (Israel et al., 2021). Plant

material where candidate aquaporins of interest have been modified

to influence their abundance, localisation and regulation could be

subjected to changes in VPD, then leaf humidity measured over a time-

course following the measurement approaches reported by Wong et al.

(2022). To distinguish between root-associated aquaporin influence on

transpiration and leaf water content versus shoot-associated aquaporin

influence on leaf water content it may be relevant to use a grafting

approach, or use cell-type-specific or inducible promoters (Christmann

et al., 2007; Andersen et al., 2014; Reeves et al., 2022). For example,

grafting root and shoot material from aquaporin loss-of-function

mutants paired with loss-of-function mutants where the aquaporin

function has been complemented by introduction of gene fragments

enabling the expression of candidate aquaporins and testing whether

different root genetic backgrounds influence leaf humidity regulation.

In previous studies, inducible and mesophyll cell-specific promoters

were used to investigate aquaporin roles in carbon dioxide transport in

leaves (Flexas et al., 2006; Ermakova et al., 2021). In any approach it is

necessary to factor in the influence of PTMs in regulating aquaporin

function. These combinations of experimental approaches (Figure 5)

would be expected to reveal which key aquaporins influence leaf

humidity (Figures 5A, B), where they are located (Figure 5C), how

they may be regulated (Figures 5D, E) and how manipulation of their

function could influence plant regulation of leaf humidity (Figure 5F).
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In summary, key opportunities for future research

include (Figure 5):
• Narrowing down on the number of aquaporin candidates that

might be involved in influencing changes in leaf humidity.

This could involvemeasuring cell-specific aquaporin transcript

abundance over a time-course following changes in VPD

(Berkowitz et al., 2021; Chen et al., 2022), checking whether

changes in respective aquaporin protein abundance do or do

not correspond to transcript levels (Bellati et al., 2016; Prado

et al., 2019; Uhrig et al., 2021; Yavari et al., 2022), and testing

the sub-cellular localisation of the aquaporins (Tian et al., 2004;

Li et al., 2011).

• Exploring whether PTMs influence the function of the

aquaporin candidates in heterologous systems and in

planta, and investigating the associated impact on cell

signaling pathways and aquaporin permeability (Prak

et al., 2008; Wu et al., 2015; Prado et al., 2019; Qiu et al.,

2020; Chen et al., 2021).

• Resolving whether leaf humidity differs in plant material

where candidate aquaporin function has been lost,

increased or modified. This will involve factoring in the

potential for the aquaporin candidates to be subject to

PTMs influencing their function (Qing et al., 2016; Wong

et al., 2022; Zhang et al., 2023).
Concluding remarks and perspectives

Agricultural productivity loss due to insufficient soil and

atmospheric water availability is a major threat to food security
TABLE 2 Continued

Species, AQP Category
(name) Evidence Observations References

Lens culinaris,
a-TIP

CPK In vitro phosphorylation assay Speculative involvement in seed germination
(Harvengt et al.,

2000)

Oryza sativa,
PIP1;1, PIP1;3 &
PIP2;3

RLK (LP2)
Firefly luciferase complementation

imaging assay
Regulation of drought tolerance (Wu et al., 2015)

Poplar trichocarpa,
AQUA1

PI3K
Wortmannin treatment in
Arabidopsis protoplasts a

Increases the number of AQUA1 cytosolic vesicles under Zn stress;
changes membrane localisation

(Ariani et al.,
2019)

Solanum
lycopersicum, PIPs

PI3K
Wortmannin treatment in
Arabidopsis protoplasts a

Reduces root hydraulic conductivity under salt stress through
decreased water transport

(Jia et al., 2020)

Spinacia oleracea,
PM28a

STK
K252a treatment in Xenopus

oocytes
Increases H2O transport

(Johansson et al.,
1998)

Spinacia oleracea,
PIP2;1

CPK In vitro phosphorylation assay Increases H2O transport
(Sjövall-Larsen
et al., 2006)
aWortmannin is a specific inhibitor of PI3Ks but may also be involved in inhibiting other kinases.
Protein kinases are key regulatory enzymes involved in attaching a phosphate group to a protein. CPK (Ca2+ dependent protein kinase); RLK (receptor-like kinase); STK (serine/threonine protein
kinase); PI3K (phosphatidylinositol 3-kinase). Previous studies have reported kinases and phosphorylation sites relevant to the regulation of mammalian aquaporins (see Nesverova and
Törnroth-Horsefield, 2019). There are types of kinases, like protein kinase A (PKA), that are relevant to regulation of both mammalian and plant aquaporins. PKAs activity is dependent on
cellular levels of cyclic adenosine monophosphate (cAMP). cAMP is a derivative of adenosine triphosphate (ATP), many different organisms use cAMP as part of intracellular signal transduction
and interplay between potassium, cAMP signaling, PKA, aquaporin regulation and cell water permeability has been reported in mammalian astrocyte cells (Song and Gunnarson, 2012).
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(Zhou et al., 2019; Qing et al., 2022). Manipulation of aquaporin

function is an example of one key target, among many options, for

engineering crops to improve their tolerance to growing environments

with sub-optimal water availability (Bowerman et al., 2023; De Rosa

et al., 2023).

Studying and engineering aquaporin function in crops is

challenging due to the large numbers of aquaporin isoforms

present and because aquaporin function and regulation is

complex. Aquaporins can transport many different molecules, and

influence signaling pathways, and their localisation, gating and

permeability are dynamic. However, optimising the regulation of

aquaporins can contribute to adapting crop plants to environmental

conditions where water availability is sub-optimal by enabling crops

to have enhanced control of the flux of water, osmolytes and

signaling molecules relevant to rapidly adjusting tissue hydration.

Resolving how different aquaporins contribute to different

hydraulic features in plants such as leaf humidity regulation,

stomatal function, root-to-shoot solute transport, root solute uptake,

cell and tissue osmoregulation, and stress signaling is expected to

position the field with key information needed to devise strategies for

improving crop productivity in challenging environmental conditions.
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