
royalsocietypublishing.org/journal/rsos
Research
Cite this article: Della Libera K, Strandburg-
Peshkin A, Griffith SC, Leu ST. 2023 Fission–

fusion dynamics in sheep: the influence of

resource distribution and temporal activity

patterns. R. Soc. Open Sci. 10: 230402.
https://doi.org/10.1098/rsos.230402
Received: 29 March 2023

Accepted: 3 July 2023
Subject Category:
Organismal and evolutionary biology

Subject Areas:
behaviour/computational biology/ecology

Keywords:
fission–fusion, movement, social behaviour,

sheep, clustering, spatial dynamics
Author for correspondence:
Katja Della Libera

e-mail: katjadellalibera@uchicago.edu
© 2023 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.c.

6742156.
Fission–fusion dynamics in
sheep: the influence of
resource distribution and
temporal activity patterns
Katja Della Libera1,2, Ariana Strandburg-Peshkin3,4,5,

Simon C. Griffith6,7 and Stephan T. Leu6,8

1Department of Natural Sciences, Minerva University, San Francisco, CA, USA
2Department of Ecology and Evolution, University of Chicago Biological Sciences Division,
Chicago, IL 60637-5416, USA
3Biology Department, University of Konstanz, Konstanz, Baden-Württemberg, Germany
4Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz,
Baden-Württemberg, Germany
5Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior,
Radolfzell, Baden-Württemberg Germany
6School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
7School of Biological, Earth and Environmental Sciences, University of New South Wales,
Sydney, New South Wales, Australia
8School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South
Australia, Australia

KDL, 0000-0001-7174-7986; AS-P, 0000-0003-2985-6788;
SCG, 0000-0001-7612-4999; STL, 0000-0003-2547-5056

Fission–fusion events, i.e. changes to the size and composition of
animal social groups, are a mechanism to adjust the social
environment in response to short-term changes in the cost–
benefit ratio of group living. Furthermore, the time and location
of fission–fusion events provide insight into the underlying
drivers of these dynamics. Here, we describe a method for
identifying group membership over time and for extracting
fission–fusion events from animal tracking data. We applied
this method to high-resolution GPS data of free-ranging sheep
(Ovis aries). Group size was highest during times when sheep
typically rest (midday and at night), and when anti-predator
benefits of grouping are high while costs of competition are
low. Consistent with this, fission and fusion frequencies were
highest during early morning and late evening, suggesting that
social restructuring occurs during periods of high activity.
However, fission and fusion events were not more frequent
near food patches and water resources when adjusted for
overall space use. This suggests a limited role of resource
competition. Our results elucidate the dynamics of grouping in
response to social and ecological drivers, and we provide a tool
for investigating these dynamics in other species.
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1. Introduction

Animal groups are common across taxa, yet vary in size, composition and temporal stability both within
and across species. Understanding the drivers of such variation requires the consideration of the cost–
benefit ratio of grouping [1]. Classic benefits of grouping include protection from predators and
information transmission, while costs include increased intra-group competition for food and
transmission of pathogens [2–5]. Social behaviour evolves when the fitness benefits of grouping
outweigh the costs. Importantly, the costs and benefits vary as a function of group size [6–10]. From this
it follows that an optimal, intermediate group size should exist which maximizes the net benefits [11,12].

In many species, group size and composition vary over time through large groups splitting and small
groups merging. Such fission–fusion dynamics can occur across multiple time scales—from seasonal
fluctuations to daily and even more frequent changes. Fission–fusion dynamics allow animals to
flexibly adjust their group size and composition in response to currently experienced environmental
conditions [11,12]. Studying fission–fusion dynamics and group size can thus give insight into the
ecological drivers of social behaviour. We expect smaller groups and increased rate of group fission
when the costs of grouping outweigh the benefits, for instance when within-group competition is
high. Whereas, when benefits are high, such as during periods of greater predation risk, we expect
larger groups. Fission–fusion behaviour has been linked to patchy resource distribution in monkeys
[13], mitigation of infection risk in bats [14], building of social relationships in elephants [15], and
responding to changes in food availability in ancient hunter–gatherer societies [16]. Fission–fusion
dynamics are also common in herding ungulates such as sheep, horses or giraffes, many of which
are of economic importance [17–19]. Furthermore, where and when fission–fusion events occur can
also provide some insight on potential drivers. For example, fission–fusion events happening
predominantly during grazing periods or at particular locations, such as clumped food resources,
would indicate a larger role of resource competition as a driver. Conversely, fission–fusion events that
occur during resting periods of the day when food competition is reduced, could indicate that
predation risk, and safety in numbers, plays a role.

GPS tracking technology offers possibilities to investigate fission–fusion events through continuous
movement tracking of all group members. However, this approach is based on defining a social group
based on locational data of all group members over time. It further requires making some biologically
meaningful assumptions about interindividual interactions, particularly at which spatial distance they
occur [20] while accounting for characteristics of the used technology. When using GPS technology
this includes the precision of each location as well as potentially missing data points. Once groups
and their members are identified at each step in time, fission and fusion events can be deduced.

Here we fitted GPS collars to all members of sheep (Ovis aries) social groups in a paddock with known
resource distribution to monitor their movements continuously over 16 consecutive days. Domestic sheep
offer a uniquely tractable, and economically important, system for studying fission–fusion dynamics. They
are highly gregarious and show frequent changes in group composition, allowing for the observation of
many fission–fusion events on a practical time scale for experimentation. Understanding sheep flocking
and fission–fusion behaviour also has potential benefits for their management, for instance establishing
optimal group sizes in given paddock conditions.

Using the temporal and spatial information of the GPS tracking data, we identified group sizes and
fission–fusion events in free-ranging sheep for each time step and mapped them across space and time.
We hypothesized that group sizes and fission–fusion frequencies are variable in space and time,
reflecting resource distribution and sheep activity patterns. This provides important insight into the
factors that drive fission–fusion events in sheep and ultimately the dynamic cost–benefit trade-off that
drives social grouping and group size.
2. Methods
2.1. Study site and animals
The study was conducted at Fowler’s Gap Arid Zone Research Station in Australia, in 2018. Our study
tracked a herd of 50 female merino sheep (Ovis aries) interacting in a paddock over 16 days. The paddock
did not include any other conspecifics, and was approximately 6 km2 in size. It contained one water
trough and 10 food locations consisting of bales of hay. The region was severely affected by drought
and most of the annual vegetation that sheep would graze on was absent. Thus, the provided hay
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constituted the vast majority of food resources available to the study animals. The perennial vegetation in

the area consisted primarily of blue bush (Maireana sp.) and small trees (Acacia sp.) [21]. The area can be
subject to occasional sheep predation events by stray dogs. No predation occurred during our study and
dingos are excluded by the dingo fence [22]. We recorded the locations of all 50 sheep every 6 s for 24 h
each day using GPS collars. Every 4 days, sheep were captured to change GPS collar batteries. The data
from these capture time periods were excluded from the analysis. Sheep were undisturbed during the 4-
day tracking periods (86 to 88 h each). All sheep were born in 2016 and were approximately the same age.
In the weeks before the study, they were kept together as a small herd and had the opportunity to interact
with each other. One sheep died of natural causes at the end of the first 4-day period and was replaced by
a different sheep for the remaining 12 days. GPS collars (GPS, i-gotU GT-120 by MobileAction, with a
larger battery CE04381 by Core Electronics) weighed 700 g, approximately 1.9% of the sheep’s body
mass (mean = 36.5 kg, SE = 0.6 kg), falling well below the common 5% threshold for fitting scientific
devices [23]. Hobbs-Chell et al. [24] showed that carrying data loggers does not affect sheep
behaviour, and we therefore assume that this was also the case in our study group.

2.2. Processing the GPS data
We followed the data processing procedure described in Leu et al. [25] to increase overall data quality.
Briefly, we first plotted all GPS locations and removed obvious outlier locations outside the paddock
boundaries. We also removed all locations that were determined with fewer than three satellites,
which is the minimum required for triangulation. Second, we removed locations that could not have
been reached if the animal moved at maximum speed, taking the two previous and two following
locations into consideration. We used a maximum movement speed of 1.5 m s−1, which was
determined in a simulated predation event [26]. Lastly, because GPS units differed slightly in their
recording times for each fix, we linearly interpolated the data such that each sheep’s location was
estimated at exactly 6 s intervals. We also filled small gaps in the data using the data interpolation
(maximum of two consecutive missing locations). The processed data comprised 10 362 043 data
points, representing 97% of the possible maximum number of data points across all sheep and time steps.

2.3. Defining groups from GPS data
We inferred group membership over time based on two steps: (i) spatial clustering of individuals into
groups at each time step and (ii) connecting groups across time steps by defining what we considered
to be the same group. We determined groups at each time step, using a modified version of the
density-based spatial clustering of applications with noise (DBSCAN) algorithm [27].

2.4. Defining groups at each time step
Groups are built through an iterative process, based on DBSCAN. We outline the original DBSCAN
before adding our modification. The algorithm starts with a randomly picked focal sheep and
connects all sheep within the given radius to the focal sheep and to each other. This approach reflects
the ‘gambit of the group’, an assumption that all individuals in a group are associated with each
other, thus ignoring internal group structure [28]. Then, the algorithm identifies and connects all
further individuals that are within the radius of any group member. This is repeated until no
additional sheep can be added to the group. Then, a new focal sheep, not yet a member of any
group, is chosen, and the iteration starts again. The process is repeated until all sheep are assigned to
a group or are identified as unconnected solitary individuals. The algorithm returns a list of the
groups for each time step. In its original form, the inputs to DBSCAN are (i) a radius that describes
the maximum Euclidean distance between two individuals considered associated with each other, and
(ii) an integer representing the minimum group size. In our study, we set the minimum group size to
1, thus considering groups of any size.

Different radii (interindividual distance thresholds) capture different interaction types and may result in
different group compositions. For instance, physical contact occurs at shorter distances than social
interactions through visual or auditory communication. One or two body lengths are often used to
determine social interactions in animals [29–31]. In sheep, 3 and 5 m have been used [30,32] to capture
social interactions at close proximity. However, the auditory and olfactory senses of sheep detect
conspecifics significantly farther apart than 5 m [20]. Hence, in other contexts, such as grazing, the
sheep are physically farther apart but are still able to perceive cues from other group members, for
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Figure 1. The ‘sticky DBSCAN’ algorithm uses the current location of the sheep relative to another sheep to determine group
membership. In this example, sheep A joins the stationary sheep when it passes the outer radius because it also passes the
inner radius. Sheep B leaves the stationary sheep when it reaches the outer radius, and sheep C never joins the stationary
sheep because it does not pass the inner radius. Sheep D passes the inner radius but not the outer radius so it is considered
to remain grouped with the stationary sheep. In this example we only consider the stationary sheep and sheep A through D
for illustrative purposes; however, the algorithm repeats the analysis for all combinations of sheep. Furthermore, though the
example here uses a stationary individual for simplicity, the algorithm operates based on distances between individuals and
therefore will also detect groups when all animals are moving.
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instance after detecting a predator, and display some cohesion by moving together. Even so, group
members rarely move in the average direction of the group but rather with large variation along a
common route [33] making the 3–5 m radius inappropriate to capture these dynamics. We were
interested in these larger groups providing benefits for the individual, rather than physical interactions
among group members and thus used an inner radius of 30 m. In addition, we conducted a robustness
check using radii between 5 and 60 m displayed in electronic supplementary material, figures S1–S6.

2.5. Double-radius (sticky) DBSCAN
Defining membership in a social group based on a spatial radius can result in group membership
fluctuating with small changes in the distance between individuals, although the social link is
probably still present. Such fluctuations can be problematic in the context of identifying fission–fusion
events, because they can lead to the detection of many small events that are not biologically/socially
meaningful. To limit the effect of such fluctuations, we applied a ‘sticky DBSCAN’ algorithm, which
uses two radii—an inner radius and an outer radius. An individual is considered to join another
individual in a group only if their dyadic distance is smaller than the inner radius. However, the time
at which the individual joins is identified as the moment when the dyadic distance falls below the
outer radius (figure 1). Similarly, an individual is considered to leave the group at the time it crosses
the outer radius of all group members after it has previously been within the inner radius. A dyadic
version of this algorithm has been used to identify fission–fusion events in hyenas [34]. Here, we
extend it to a group context. We assign group membership to all tracked animals, and determine
fission–fusion events between groups of variable sizes, rather than focusing on fission–fusion events
between pairs of individuals, only.

The sticky (double-radius) DBSCAN algorithm increases the detected group stability as illustrated in
figure 1. Compared with the traditional (single-radius) DBSCAN with radius 50 m, stability arises from
sheep C never being considered joining the group, and for radius 30 m, sheep D never being considered
leaving the group.

2.6. Identifying fission–fusion events
After identifying groups at each time step, we represent them as nodes in a directed graph. Edges in this
graph represent overlap in the members of groups in consecutive time steps. Arranging the groups on a
timeline as seen in figure 2 allows us to identify where unique groups start and end through fusion (red)
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Figure 2. An example network arranged on a timeline showing a fission (blue) and a fusion (red) event. Each node represents a
subgroup at a given time point. We use the larger group as a reference point to identify the time step of a fission or fusion event.
The time step in which the larger group still existed determines the fission time, and the time step the larger group formed
determines the time of the fusion event. Here the vertical arrangement is optimized for visibility.
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and fission (blue) events. When two or more edges converge on a single node in the next time step, this
indicates a fusion event. Conversely when a single node spawns two or more edges this represents a
fission event. Nodes connected by a single edge represent a group that has remained stable.

We define a fission and fusion event if one or more individuals left or joined the group, respectively. An
individual can temporarily leave one group and return to the same group without having joined another
group in between. The algorithm recognizes this as a fission event when the individual leaves the group, a
new ‘group’ of size 1, and finally a fusion event when the individual re-joins. In the rare cases of missing
data, missing individuals are not considered as having changed group membership, and individual
‘disappearances’ and ‘reappearances’ in the dataset are not considered as fission–fusion events.
2.7. Spatial and temporal patterns of fission–fusion events
We determined the spatial location of the fission or fusion event as the mean of the locations of all sheep
present in the group.

In addition to the events themselves, to investigate temporal patterns in group size, we computed the
average group size a sheep experienced using the equation

Pn
i¼1 Ni�Ni

� �

Pn
i¼1 Ni

� � ,

where Ni is the size of group i, and n is the number of groups. The term
Pn

i¼1 Ni is the total number of
sheep across all groups. This metric was chosen because it represents the average group size as
experienced by an individual in the population, as opposed to the average group size as seen from
the perspective of an observer. We chose to represent the typical group size experienced by
individuals because this perspective is more biologically relevant, as it captures the information that
individuals in a population might consider when making behavioural decisions. For example, if a
population of 4 individuals consisted of a group of size 3 and a group of size 1, the average
experienced group size would be computed as (3 × 3 + 1 × 1) / 4 = 2.5, because 3 sheep experienced a
group size of 3 (3 × 3) and 1 sheep experienced a group size of 1 (1 × 1). We then assessed temporal
patterns in average experienced group size as a function of time of day by calculating the mean across
the 16 days for each minute of the day. Next, we split the data into night (22.00–5.00), morning (5.00–
11.00), midday (11.00–16.00) and evening (16.00–22.00). This split is an approximation based on dawn
(approx. 5.00) and dusk (approx. 21.00), which also captures different activity levels of sheep [25]. We
looked at the distribution of average experienced group size in each time of day bin.

We investigated whether fission–fusion events were more likely at certain times of the day.
Furthermore, to explicitly relate fission–fusion frequencies to physical activity and motion, we
calculated the Euclidean distance every sheep moved during each 6 s measurement interval. Then for
each minute of the day, we calculated the mean motion per 6 s (m) by averaging across all measures
per minute, and across all sheep and 16 days, resulting in a metric that captures population-level
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activity for each time point. We then normalized the fission–fusion events by activity level. To this end,

we divided the number of fission–fusion events by the average motion for the same minute. Investigating
the temporal pattern of the normalized measure allowed us to determine whether fission–fusion events
are a linear function of activity level alone or still vary over time.

We also investigated whether fission–fusion events were more likely to occur close to known food
and water resources, to assess the role of resource competition as a driver of fission–fusion event
dynamics. First, we superimposed a 50 × 50 m grid over the paddock. We chose this grid cell size to
be consistent with the radius used in the modified DBSCAN algorithm. For each grid cell, we
determined the number of fission or fusion events that occurred within it during the 16-day study
period. We then calculated the distance from the cell’s central point to the nearest food or water source.
As a measure of propensity for fissions and fusions to occur in a given location, we counted the total
number of fission and fusion events that occurred in each 50 × 50 m grid cell and divided this number
by the number of time steps sheep spent within that cell. This normalized value represents the
frequency of fission or fusion events relative to the overall use of that particular cell. We only
considered grid cells that sheep used during at least 50 time steps to account for higher uncertainty at
lower sample sizes.

Finally, we investigated the relative importance of space and time in driving fission–fusion dynamics
by fitting a regression model to the number of fission–fusion events for each 50 × 50 m grid cell for
each hour of the day. We used the lmer function in the lme4 package in R for our analysis [35]. To
determine the importance of space we included the distance to the closest food or water source as one
explanatory variable in our model. As a proxy for the temporal pattern of sheep behaviour we
included the mean activity level per hour as the second explanatory variable. Sheep movement
activity varies over time, with periods of higher activity in the morning and evening, and with
ambient conditions [25]. Because fission–fusion events can vary with activity level [36], and because
activity level changes non-monotonically throughout the day (figure 6), we included activity level
directly as an explanatory variable instead of hour of the day. Here, we calculated the population
level activity for each hour of the day as the mean distance moved by each sheep per 6 s time step.
We also included the interaction term of distance and activity in our model. All independent variables
were scaled using the transform and scale function in R. We added the grid cell ID as a random
intercept to account for spatial characteristics that are not captured by distance to resources. Results
were extracted using the Anova function in the car package which uses the Wald test [37]. The model
took the form

fission�fusion events � distanceþ activityþ distance� activityþ ð1jgrid cell IDÞ:

We then ran the same model using the fission–fusion rate normalized by space use as the dependent
variable. Therefore, we divided the number of fission–fusion events per hour in each grid cell by the
overall use of the grid cell, i.e. across the 16 days. The rest of the model remained the same,

normalized fission�fusion events � distanceþ activityþ distance� activityþ ð1jgrid cell IDÞ:
3. Results
The clustering and group continuation algorithm together created a network whose nodes represent a
specific group at a specific time step (example in figure 3).

Using the sticky DBSCAN algorithm with an inner radius of 30 m and an outer radius of 50 m we
identified a total of 6831 fission–fusion events across all 50 sheep and over the course of 16 days. By
contrast, the original DBSCAN with a single radius of 50 m identified 18 783 fission–fusion events,
and 46 002 events with radius 30 m. As expected, the single radius method identified many more
fission and fusion events.

3.1. Temporal pattern of fission and fusion events
We found that sheep experienced larger group sizes during the night and midday period when averaging
across days (figure 4).

During periods of high activity (5.00–11.00 and 16.00–22.00, shaded yellow) the most commonly
experienced group size was 12 (mode) and the mean was 20.43 (95% confidence interval: 20.42 to
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20.44). However, during periods of low activity (22.00–5.00 and 11.00–16.00, shaded blue), the group size
distribution was bimodal with peaks at 12 and 50 (i.e. all) individuals (figure 5). The mean experienced
group size was 28.09 (95% confidence interval: 28.07–28.10).
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Overall, fission and fusion events occurred more frequently early and late during the day. The
frequency was lowest at night, with another low around midday (figure 6a). The pattern of fission–
fusion events over time closely follows the average activity level, measured as average distance of
motion (figure 6a). However, some spikes in activity did not immediately lead to fission–fusion
events, such as during the night and early morning a pattern that becomes more clear when looking
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at the rate of fission–fusion events per average motion (figure 6b). Activity levels increased during most
of the midday period (11.00–16.00), but fission–fusion events did not show the same increase. In addition,
while there is an increased level of fission–fusion events during the afternoon compared with the noon
rumination period, the level of movement is similar.

3.2. Spatial pattern of fission–fusion events
Fission and fusion events occurred more frequently closer to a food or water source (figure 7a and
electronic supplementary material, figure S1b). However, these locations were also used more
frequently. When we normalized the data by the frequency of use for a given grid cell, the rate of
fission or fusion was not influenced by the distance to food or water sources (figure 7b and electronic
supplementary material, figure S1c).

The regression model shows that an increase in activity level and a decrease in distance to the closest
food or water source both led to a statistically significant increase in the number of fission–fusion events
( p < 0.001, table 1). Since both variables were scaled the estimated coefficients show that the effect of the
distance was much stronger. The interaction term between the two variables was also significant
( p < 0.001). When normalizing by the use of each square, distance to resources is only significant as an
interaction term with activity.
4. Discussion
Sheep experienced larger group sizes during the night and midday periods, which are both times of rest
[25]. During the midday period sheep often ruminate [38] or spend time at water points [25], and at night
they rest [39]. During these non-foraging periods the net benefit of grouping is higher because food
competition within the group is limited or absent, reducing grouping costs, while anti-predator
benefits such as shared vigilance and the dilution effect remain [40,41]. Sheep predation events are
rare on the dingo exclusion side of the dingo fence but even occasional predation events by stray dogs
and evolutionarily conserved predator avoidance can affect behaviour [22,42,43]. Mouflon (Ovis
orientalis), the wild ancestors of all domestic sheep (Ovis aries), experienced predation for example by
wolves in their natural mountain habitat in the Lesser Caucasus and Zagros Mountains [44,45].

During periods of activity, the most frequent behaviour is grazing, searching for food and moving to
known resource locations [46]. Hence, when food availability is limited, such as during drought
conditions, active periods are associated with increased resource competition [47]. This can explain the
lower experienced group sizes during periods of activity and the increase of fission–fusion events
when the sheep are active. When normalized by activity levels, the rate of fission–fusion was still high
at the start and end of the day with some additional higher rates at the start and end of the inactive
period in the middle of the day. This could suggest active decision-making during those times,
rather than an effect of activity levels alone. Nonetheless, our model showed that the number of
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fission–fusion events increased with the mean activity level of the study population. Maintaining

group cohesion during activity and when moving is more difficult and ultimately more costly than
when groups are inactive and stationary, which could result in higher fission–fusion frequencies when
active. Our results are consistent with studies of smaller groups of sheep which showed that
groups are most cohesive during periods of rest and that cohesion and thus group size decreased
when some of the sheep were active [36]. This pattern is found in other mammals as well, for
example baboons, which sleep in larger colonies and forage in smaller groups [48]. Interestingly, the
opposite has been found in some species of fish, which also show collective movement. Here, many
species display schooling during the daytime but not at night, potentially because of the inability to
coordinate movement without light [49,50]. By contrast, sheep rarely move at night [51], but
aggregating in larger groups may provide protection from nocturnal predators when visibility for the
sheep is reduced.

While sheep fission–fusion frequencies showed temporal patterns that can be explained by active and
inactive periods, their rate of occurrence was more evenly distributed across space when adjusted for
overall use. Food or water locations were local hubs of fission–fusion events in terms of raw
frequency, but when accounting for the higher use of these areas, fission–fusion events were not more
common than would be expected. During our robustness check with varying radii, we found that this
pattern of higher overall numbers of fission–fusion events near resources was consistent across
different radii used to define group membership (electronic supplementary material, figures S3–S6).
The linear model shown in table 1 also showed the effect of distance in reducing fission–fusion
events, as well as the positive effect of increased activity. The estimated coefficients for the scaled
activity level and scaled distance show that the effect of the distance was stronger. The interaction
term between the two variables was also significant ( p < 0.001). That is, near resources and at high
activity level fission–fusion events were more common, but at larger distances from the food or water
source the activity level had a reduced effect as generally fewer fission–fusion events occurred. When
normalizing by the use of each square, distance to resources is only significant as an interaction term
with activity, meaning that at larger distances to resources the effect of activity is still reduced, but
distance alone had no significant effect. Taken together, our results suggest that resources (food or
water) are important spatial drivers of the number of fission and fusion events because they result in
high use of these areas, but competition for those resources may not be an important social driver of
the fission–fusion rate when corrected for this space use. Whether this result can be generalized to
other food patch distributions or other species remains to be investigated and is an interesting future
direction for the study of fission–fusion behaviour. The overall tendency to merge or split at certain
times of the day, which coincides with shifts between activity and inactivity, suggests that shared
vigilance and safety in numbers, and hence anti-predatory benefits, are more important drivers of
sheep fission–fusion behaviour and group size than resource competition. Actual levels of predation
are low in our study area, hence we suggest that these behaviours mainly reflect evolutionarily
conserved predator avoidance [43]. Nevertheless, other unmeasured features of the environment, such
as vegetation that provides shade could still influence the rate of fission–fusion events. For instance,
Strauss et al. [34] showed, using a similar double radius method, that in spotted hyena (Crocuta
crocuta) fission–fusion events occur preferentially at communal den locations, where cubs are raised.
All group members visit these sites for social interactions even if they are not nursing cubs [34]. In
hamadryas baboons, there are specific sleeping sites on the top of cliffs from where groups fission in
the morning and congregate at night [48]. Although our study did not identify locations such as the
dens in hyenas or sleeping sites in baboons, we showed that fission–fusion events were most common
at the start and end of the daily activity (figure 6) which would be at or close to the locations of
overnight rest. This suggests that times when activity levels change such as in the morning and at
night, and the associated locations, are times and places of social reorganization. This could
potentially be further modulated by differential hunger levels among individuals after rest at night.

Our study showed the importance of fission–fusion dynamics in adjusting group size to different
needs over the course of the day, driven by resource needs and predator vigilance.

Methodologically, our study contributes a simple and general approach to identifying subgroups
and fission–fusion events from continuous movement data of animal groups. Our approach can be
adapted to suit different questions about drivers of fission–fusion dynamics on different spatial and
temporal scales. For example, by choosing a smaller radius it would be possible to investigate
the biological drivers of closer social interactions involving physical contact, while choosing a larger
radius would enable investigation of social interactions over larger distances, such as vocal
communication in dense habitats that restrict visual contact. Furthermore, taking a similar approach
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across a longer observation periodwould allow investigation of additional questions, for instance seasonal

patterns, shedding light on how environmental changes shape the costs and benefits of grouping.
Compared with the original algorithm, the double radius (sticky) version of DBSCAN presented here

identifies fewer fission–fusion events resulting in a group stabilizing effect. This represents a conservative
approach as it only identifies fission–fusion events reflective of greater attraction to and greater repulsion
from the group because two radii have to be crossed. Focusing on events of greater attraction and
repulsion allows us to determine the fundamental drivers of fission–fusion events more robustly.
Nevertheless, the strength of social attraction and repulsion is probably heterogeneous among
individual sheep. The algorithm we developed here not only captures fission–fusion events in space
and time, but could also be used to collect information about the individual members of each group,
such as individual-level movement relative to group characteristics, which individuals are more likely
to join or leave subgroups, or whether certain subgroups repeatedly reoccur over time. These future
directions would provide important additional information on fission–fusion behaviour and its
relationship to individual-level decision-making and social relationships, complementing our
population level perspective in the current study.

Future improvements of the algorithm could also consider additional criteria in determining an
association between two individuals, such as their orientation to each other and speed of motion at
each time step. A potential alternative to the spatially sticky DBSCAN is a temporally sticky version.
For instance, an individual could be required to remain outside a single radius for a specific period of
time before being considered as having left the group. For example, Sankey et al. [52] discarded
fission–fusion events where an individual pigeon left the flock for less than 2 s.

Ultimately, spatial proximity over time is only a proxy for social interactions, and the types of
social interactions (affiliative, agonistic) captured by proximity-based methods remain unidentified.
With the further development of other observation methods (e.g. video drones, accelerometers) these
more detailed components of the social interaction could be integrated into the definition or
characterization of grouping patterns, providing further insight into social group formation and
fission–fusion dynamics.
5. Conclusion
In this study we used a double radius DBSCAN in a group context to identify (i) the experienced group
sizes and (ii) fission–fusion events of sheep, as well as where and when these events occurred. The spatial
and temporal investigation of the group size and fission–fusion events allowed us to deduce potential
drivers of those events. Experienced group size was largest during periods of inactivity, whereas
fission and fusion frequencies were higher during periods when sheep were active. In particular,
fission and fusion frequencies were highest early in the day and late in the afternoon, even when
scaled for activity. This finding suggests that the start and end of daily activity is a period of social
reorganization. Furthermore, fissions and fusions were not more frequent than expected near food or
water resources when accounting for the higher frequency of use of those locations. Hence, intra-
group competition is unlikely to be a driver of individual fission or fusion events at those locations.
Overall, our study provides an example of context-dependent changes in group size, leading to
fission–fusion events at certain times of the day. Mapping fission–fusion events in time and space
provides deep insights into the social dynamics of animal groups and importantly may indicate
potential drivers of social change.
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