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ABSTRACT

Sequence-based analysis and prediction are funda-
mental bioinformatic tasks that facilitate understand-
ing of the sequence(-structure)-function paradigm
for DNAs, RNAs and proteins. Rapid accumulation
of sequences requires equally pervasive develop-
ment of new predictive models, which depends on
the availability of effective tools that support these
efforts. We introduce iLearnPlus, the first machine-
learning platform with graphical- and web-based in-
terfaces for the construction of machine-learning
pipelines for analysis and predictions using nu-
cleic acid and protein sequences. iLearnPlus pro-
vides a comprehensive set of algorithms and auto-
mates sequence-based feature extraction and anal-
ysis, construction and deployment of models, as-
sessment of predictive performance, statistical anal-
ysis, and data visualization; all without program-
ming. iLearnPlus includes a wide range of feature
sets which encode information from the input se-
quences and over twenty machine-learning algo-
rithms that cover several deep-learning approaches,

outnumbering the current solutions by a wide mar-
gin. Our solution caters to experienced bioinformati-
cians, given the broad range of options, and biol-
ogists with no programming background, given the
point-and-click interface and easy-to-follow design
process. We showcase iLearnPlus with two case
studies concerning prediction of long noncoding
RNAs (lncRNAs) from RNA transcripts and predic-
tion of crotonylation sites in protein chains. iLearn-
Plus is an open-source platform available at https:
//github.com/Superzchen/iLearnPlus/ with the web-
server at http://ilearnplus.erc.monash.edu/.

INTRODUCTION

High-throughput sequencing has significantly advanced
and experienced widespread use over the past few decades,
generating the unprecedented volume of the DNAs, RNAs
and protein sequence data. With the fast accumulation
of these data, effectively analyzing, mining and visualiz-
ing biological sequences have become a non-trivial task
(1). Among a variety of computational solutions, machine-
learning methods are a popular and efficient solution for
the accurate function prediction/analysis for biological se-
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quences (2–7). Many sequence-based machine-learning ap-
proaches have been proposed, contributing to a better
understanding of the functions and structures of DNAs,
RNAs and proteins (8–10), particularly in the context of
human disease (11–13). Despite the diversity of machine-
learning frameworks for the sequence analysis and predic-
tion, in general, they follow the same set of five major steps
after the sequence data was collected: feature extraction,
feature analysis, classifier construction, performance eval-
uation, and data/result visualization, as demonstrated in
Figure 1.

Bioinformatics-driven data analysis is an essential part
of biological studies. The sequence-based analysis and pre-
dictions often require complex processing steps, data sci-
ence expertise, and access to sophisticated software. These
requirements have become a significant hurdle, especially
for biologists with limited bioinformatics expertise. Sev-
eral web servers and standalone software packages for the
sequence-based analysis and prediction have been recently
developed to meet these needs. Representative tools include
iFeature (14), iLearn (15), Selene (16), Kipoi (17), Janggu
(18), BioSeq-Analysis (19) and BioSeq-Analysis2.0 (20). Se-
lene is PyTorch-based deep-learning library for rapid de-
velopment, training, and application of deep-learning mod-
els from biological sequences. Janggu is a python package
that similarly focuses on the deep learning models. Kipoi is
a collaborative initiative that defines standards and fosters
reuse of trained models. However, these three tools cover
only a portion of the complete pipeline outlined in Figure
1. We provide a detailed side-by-side comparison in Supple-
mentary Table S1. BioSeq-Analysis is regarded as the first
automated platform for machine learning-based bioinfor-
matics analysis and predictions at the sequence level (19).
Its subsequent version, BioSeq-Analysis2.0 covers residue-
level analysis, further improving the scope of this plat-
form (20). In 2018, we released the first computational
pipeline, iFeature, that generates features for both protein
and peptide sequences. Later, we extended iFeature to de-
sign and implement iLearn, which is an integrated plat-
form and meta-learner for feature engineering, machine-
learning analysis and modelling of DNA, RNA and pro-
tein sequence data. Both platforms, iFeature and iLearn,
have been applied in many areas of bioinformatics and com-
putational biology including but not limited to the predic-
tion and identification of mutational effects (21), protein-
protein interaction hotspots (22), drug-target interactions
(23), protein crystallization propensity (24), DNA-binding
sites (25) and DNA-binding proteins (26), protein families
(27,28), and DNA, RNA and protein modifications (29–
32). The breadth and number of these applications show a
substantial need for such solutions. However, further work
is needed. First, new platforms need to overcome limita-
tions of the current solutions in terms of streamlining and
easiness of use, so that they make a sophisticated machine-
learning based analysis of biological sequence accessible to
both experienced bioinformaticians and biologists with lim-
ited programming background. This means that the devel-
opment of the complex predictive and analytical pipelines
should be streamlined by providing one platform that han-
dles and offers support for the entire computational process.
Second, the current platforms offer limited facilities for fea-

ture extraction, feature analysis and classifier construction.
This calls for new approaches that provide a more com-
prehensive and molecule-specific (DNA veruss RNA versus
protein) set of feature descriptors, a broader range of tools
for feature analysis, and which should ideally cover state-of-
the-art machine-learning algorithms including deep learn-
ing.

To this end, we release a comprehensive and automated
sequence analysis and prediction platform, iLearnPlus,
implemented in Python/PyQt5. iLearnPlus works across
all major operating systems (i.e. Windows, macOS and
Linux). Our platform includes four modules: iLearnPlus-
Basic, iLearnPlus-Estimator, iLearnPlus-AutoML and
iLearnPlus-LoadModel. These modules support a wide
range of functionality, such as feature extraction, feature
analysis, construction of machine-learning framework,
training of machine-learning models/classifiers, assessment
of predictive performance for these models, statistical
analysis, and data/result visualization. iLearnPlus is geared
to be used by both experienced bioinformaticians and
biologists with limited bioinformatics expertise. When
compared to the currently available tools (Supplementary
Table S2), iLearnPlus offers the following key advantages:

(i) To the best of our knowledge, iLearnPlus is the
first GUI-based platform that facilitates machine
learning-based analysis and prediction of biological
sequences;

(ii) iLearnPlus outperforms the existing platforms in the
number of the available machine-learning algorithms
and the coverage of features produced from the input
sequences: 21 machine-learning algorithms (12 con-
ventional machine-learning methods, two ensemble-
learning frameworks and seven deep-learning ap-
proaches) and 19 classes of features that cover 147
feature sets;

(iii) iLearnPlus provides a variety of ways to visualize the
user-defined data and prediction performance includ-
ing scatter plots, ROC (Receiver Operating Charac-
teristic) curves, PRC (Precision-Recall Curves), his-
tograms, kernel density plots, heatmaps and boxplots;

(iv) iLearnPlus supports two popular statistical tests: the
Student’s t-test and bootstrap test (33), to assess the
statistical significance of differences and improve-
ments in the context of the model performance;

(v) iLearnPlus provides the iLearnPlus-AutoML module
for evaluating the prediction performance of differ-
ent machine-learning models and selecting the best-
performing model via automatic parameter optimiza-
tion, to support less data science-savvy users in max-
imizing the predictive capability of machine-learning
pipelines;

(vi) iLearnPlus facilitates the deployment of the devel-
oped models with the iLearnPlus-LoadModel mod-
ule. This module applies the already trained machine-
learning models on new data;

(vii) iLearnPlus provides more options for model integra-
tion by exploring possible combinations of the predic-
tion outcomes of separate models as the input, and re-
train another machine-learning model (excluding the
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Figure 1. A summary of the five major steps involved in the development of machine learning-based models for biological sequences analysis. These steps
include feature extraction, feature analysis, classifier construction, performance evaluation, and data/result visualization.

deep-learning approaches), to assess if the prediction
performance can be further improved; and

(viii) iLearnPlus provides auxiliary functionalities for data
preprocessing, such as file format transformations
and combination of multiple feature encodings into
one file.

iLearnPlus offers user-friendly interface and integrates
four functional modules that streamline the entire compu-
tational process related to analysis and sequence-based pre-
diction of the DNA, RNA and protein sequences. This ‘one-
stop’ solution facilitates generation of biological hypothe-
ses by supporting the design, testing and deployment of ac-
curate predictive models. Following, we describe the fea-
tures and capabilities of our platform for each of the five
major steps defined above. We also demonstrate its appli-
cation with two case studies that concern the development
and testing of novel machine-learning models for the pre-
dictions of long noncoding RNAs (lncRNAs) and crotony-
lation sites in protein chains.

MATERIALS AND METHODS

Feature extraction

The feature extraction functionality in the iLearnPlus-
Basic module generates numeric vectors from biological
sequences. These vectors encode biochemical, biophysical,
and compositional properties of the input sequences in the
format that is compatible with the subsequent machine-
learning tasks. iLearnPlus incorporates 19 major classes of
features for protein, RNA and DNA sequences (Tables 1
and 2). To compare, iLearnPlus outnumbers the current
platforms, including iLearn (15), iFeature (14) and BioSeq-
Analysis2.0 (20) by 50, 94 and 31 feature sets. Supple-

mentary Table S2 provides a detailed side-by-side compar-
ison of the feature set numbers that these platforms offer
for the DNA, RNA and protein sequences. The input se-
quences of iLearnPlus are required to be in the FASTA
format. We designed an extended version of the header
line (standard FASTA format is accepted; refer to the on-
line instructions for more detail) which is processed by
the graphical input data explorer. The biological sequence
type (i.e. DNA, RNA or protein) is detected automati-
cally based on the input sequences. The lists of the fea-
ture sets are provided in Table 1 (for protein sequences)
and Table 2 (for DNA and RNA sequences), and can be
customized by users. The selected subset of feature sets is
output with a convenient table widget, which includes the
molecule name, molecule label, feature (column) names and
the corresponding values. iLearnPlus supports four formats
for saving the calculated features, including LIBSVM for-
mat, Comma-Separated Values (CSV), Tab Separated Val-
ues (TSV), and Waikato Environment for Knowledge Anal-
ysis (WEKA) format. This variety of popular formats facil-
itates direct use of the features in third-party computational
tools, such as scikit-learn (34), WEKA (35) and its web
interface.

Besides the data tables, iLearnPlus provides advanced fa-
cilities to visualize the data. For instance, it generates hy-
brid plots that overlay kernel density curves and histograms
(Figure 2) that can be used to shed light on the statistical dis-
tributions of the extracted features. The histogram provides
a visual representation of feature values grouped into dis-
crete intervals, while the kernel density approach produces
a smooth curve that represents the probability density func-
tion for continuous variables (36) (Figure 2A). The visual-
ization can be conducted for a specific dataset as well as a
selected subset of features in that dataset.
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Table 1. Feature descriptors calculated by iLearnPlus for protein sequences

Descriptor group Descriptor (abbreviation) Reference

Amino acid composition Amino acid composition (AAC) (37)
Enhanced amino acid composition (EAAC) (14,15)
Composition of k-spaced amino acid pairs (CKSAAP) (38,39)
Kmer (dipeptides and tripeptides) composition (DPC and TPC) (37,40)
Dipeptide deviation from expected mean (DDE) (40)
Composition (CTDC) (41–45)
Transition (CTDT) (41–45)
Distribution (CTDD) (41–45)
Conjoint triad (CTriad) (46)
Conjoint k-spaced Triad (KSCTriad) (14,15)
Adaptive skip dipeptide composition (ASDC) (47)
PseAAC of distance-pairs and reduced alphabet (DistancePair) (20,48)

Grouped amino acid composition Grouped amino acid composition (GAAC) (14,15)
Grouped enhanced amino acid composition (GEAAC) (14,15)
Composition of k-spaced amino acid group pairs (CKSAAGP) (14,15)
Grouped dipeptide composition (GDPC) (14,15)
Grouped tripeptide composition (GTPC) (14,15)

Autocorrelation Moran (Moran) (49,50)
Geary (Geary) (51)
Normalized Moreau-Broto (NMBroto) (52)
Auto covariance (AC) (53–55)
Cross covariance (CC) (53–55)
Auto-cross covariance (ACC) (53–55)

Quasi-sequence-order Sequence-order-coupling number (SOCNumber) (56–58)
Quasi-sequence-order descriptors (QSOrder) (56–58)

Pseudo-amino acid composition Pseudo-amino acid composition (PAAC) (59,60)
Amphiphilic PAAC (APAAC) (59,60)
Pseudo K-tuple reduced amino acids composition (PseKRAAC type
1 to type 16)

(61)

Residue composition Binary - 20bit (binary) (62,63)
Binary - 6bit (binary 6bit) (20,64)
Binary - 5bit (binary 5bit type 1 and type 2) (20,65)
Binary - 3bit (binary 3bit type 1 to type 7) (47)
Learn from alignments (AESNN3) (20,66)
Overlapping property features - 10 bit (OPF 10bit) (47)
Overlapping property features - 7 bit (OPF 7bit type 1 to type 3) (47)

Physicochemical property AAIndex (AAIndex) (67)
BLOSUM matrix BLOSUM62 (BLOSUM62) (68)
Z-Scale index Z-Scale (Zscale) (69)
Similarity-based descriptor K-nearest neighbor (KNN) (70)

Feature analysis

Feature analysis is an optional but highly-recommended
step that helps to eliminate irrelevant, noisy, or redundant
features from the original feature set, with the overarching
goal to optimize the predictive performance of the subse-
quently used machine-learning algorithm(s) (32). iLearn-
Plus provides multiple options to facilitate feature analysis,
including ten feature clustering, three dimensionality reduc-
tion, two feature normalization and five feature selection
approaches (Table 3). Compared with iLearn, the currently
most comprehensive platform in the context of feature anal-
ysis (Supplementary Table S1), iLearnPlus provides four
additional clustering algorithms: the Mini Batch k-means
Clustering (85,86), Markov Clustering (MCL) (87), Ag-
glomerative Clustering (88), and Spectral Clustering (89).
The feature analysis supports the same comprehensive list
of the file formats as the feature extraction tools (i.e. LIB-
SVM format, CSV, TSV and WEKA format).

The clustering groups similar objects (molecules) in
a given dataset described by a specific set of features.
Upon completion of the clustering process, molecules are
grouped, and each group is assigned with a cluster ID. The
cluster IDs are displayed in the table widget. The feature

selection and dimensionality reduction approaches serve to
reduce the number of features, while potentially boosting
the prediction performance by eliminating irrelevant (to a
given predictive task) and redundant (mutually correlated)
features. Finally, feature normalization rescales the feature
values to a specific range, so different features can be used
together in the same dataset. We provide two widely used
normalization algorithms: Z-score normalization and Min-
Max normalization. In the Z-score normalization, features
are rescaled to the normal distribution with the mean of 0
and the standard deviation of 1. In the MinMax normaliza-
tion, features are scaled to the unit range between 0 and 1.
In iLearnPlus, the results produced by the feature selection
and normalization methods can be conveniently visualized
using the hybrid plots, while a scatter plot can be used to
display the outputs produced by the clustering and dimen-
sionality reduction tools (Figure 2B).

Classifier construction and integration

Many objectives related to the analysis of the
DNA/RNA/protein sequences can be formulated as
a classification problem. Examples include the prediction
of structures and functions of protein and nucleic acid
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Table 2. Feature descriptors calculated by iLearnPlus for DNA and RNA sequences

Descriptor group Descriptor (abbreviation) Sequence type Reference

Nucleic acid composition Nucleic acid composition (NAC) DNA/RNA (15)
Enhanced nucleic acid composition (ENAC) DNA/RNA (15)
k-spaced nucleic acid pairs (CKSNAP) DNA/RNA (15)
Basic kmer (Kmer) DNA/RNA (71)
Reverse compliment kmer (RCKmer) DNA (72,73)
Accumulated nucleotide frequency (ANF) DNA/RNA (74)
Nucleotide chemical property (NCP) DNA/RNA (74)
The occurrence of kmers, allowing at most m
mismatches (Mismatch)

DNA/RNA (20)

The occurrences of kmers, allowing non-contiguous
matches (Subsequence)

DNA/RNA (20)

Adaptive skip dinucleotide composition (ASDC) DNA/RNA (47)
Local position-specific dinucleotide frequency (LPDF) DNA/RNA (75)
The Z curve parameters for frequencies of
phase-specific mononucleotides (Z curve 9bit)

DNA/RNA (76)

The Z curve parameters for frequencies of
phase-independent dinucleotides (Z curve 12bit)

DNA/RNA (76)

The Z curve parameters for frequencies of
phase-specific dinucleotides (Z curve 36bit)

DNA/RNA (76)

The Z curve parameters for frequencies of
phase-independent trinucleotides (Z curve 48bit)

DNA/RNA (76)

The Z curve parameters for frequencies of
phase-specific trinucleotides (Z curve 144bit)

DNA/RNA (76)

Residue composition Binary (binary) DNA/RNA (62,63)
Dinucleotide binary encoding (DBE) DNA/RNA (75)
Position-specific of two nucleotides (PS2) DNA/RNA (20,77)
Position-specific of three nucleotides (PS3) DNA/RNA (20,77)
Position-specific of four nucleotides (PS4) DNA/RNA (20,77)

Position-specific tendencies of trinucleotides Position-specific trinucleotide propensity based on
single-strand (PSTNPss)

DNA/RNA (78,79)

Position-specific trinucleotide propensity based on
double-strand (PSTNPds)

DNA (78,79)

Electron-ion interaction pseudopotentials Electron-ion interaction pseudopotentials value (EIIP) DNA (80,81)
Electron-ion interaction pseudopotentials of
trinucleotide (PseEIIP)

DNA (80,81)

Autocorrelation and cross-covariance Dinucleotide-based auto covariance (DAC) DNA/RNA (53–55)
Dinucleotide-based cross covariance (DCC) DNA/RNA (53–55)
Dinucleotide-based auto-cross covariance (DACC) DNA/RNA (53–55)
Trinucleotide-based auto covariance (TAC) DNA (53)
Trinucleotide-based cross covariance (TCC) DNA (53)
Trinucleotide-based auto-cross covariance (TACC) DNA (53)
Moran (Moran) DNA/RNA (49,50)
Geary (Geary) DNA/RNA (51)
Normalized Moreau-Broto (NMBroto) DNA/RNA (52)

Physicochemical property Dinucleotide physicochemical properties (DPCP type
1 and type 2)

DNA/RNA (82)

Trinucleotide physicochemical properties (TPCP type
1 and type 2)

DNA (82)

Mutual information Multivariate mutual information (MMI) DNA/RNA (83)
Similarity-based descriptor K-nearest neighbor (KNN) DNA/RNA (83)
Pseudo nucleic acid composition Pseudo dinucleotide composition (PseDNC) DNA/RNA (53,84)

Pseudo k-tupler composition (PseKNC) DNA/RNA (53,84)
Parallel correlation pseudo dinucleotide composition
(PCPseDNC)

DNA/RNA (53,84)

Parallel correlation pseudo trinucleotide composition
(PCPseTNC)

DNA (53,84)

Series correlation pseudo dinucleotide composition
(SCPseDNC)

DNA/RNA (53,84)

Series correlation pseudo trinucleotide composition
(SCPseTNC)

DNA (53,84)
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Figure 2. An example of hybrid plots for the extracted features generated by iLearnPlus. The histogram and kernel density plot for visualization of data
distribution (A), and the scatter plot for dimension reduction result (B). The N1-methyladenosine dataset from (30) was used to display the example plots.

Table 3. The feature analysis approaches provided in iLearnPlus

Method Algorithm (abbreviation) Reference

Clustering k-means (kmeans) (85,86)
Mini-Batch K-means
(MiniBatchKMeans)

(85,86)

Gaussian mixture (GM) (85,86)
Agglomerative (Agglomerative) (88)
Spectral (Spectral) (89)
Markov clustering (MCL) (87)
Hierarchical clustering (hcluster) (85,90)
Affinity propagation clustering
(APC)

(91)

Mean shift (meanshift) (92)
DBSCAN (dbscan) (93)

Feature selection Chi-square test (CHI2) (38)
Information gain (IG) (38,39)
F-score value (FScore) (94)
Mutual information (MIC) (95)
Pearson’s correlation coefficient
(Pearson)

(96)

Dimensionality
reduction

Principal component analysis
(PCA)

(97)

Latent dirichlet allocation (LDA) (98)
t-distributed stochastic neighbor
embedding (t SNE)

(99)

Feature
normalization

Z-Score (ZScore) (15)

MinMax (MinMax) (15)

sequences (19,100,101). iLearnPlus supports both binary
classification (two outcomes) and multi-class classification
(multiple outcomes). It offers 12 conventional machine-
learning algorithms, two ensemble-learning frameworks,
and seven deep-learning approaches (Table 4). This broad
selection of algorithms is more comprehensive than what
the current platforms offer, i.e. 21 versus 5 in iLearn and
BioSeq-Analysis2.0 (Supplementary Table S2). We use the
implementation from four popular third-party machine-
learning platforms, including scikit-learn (34), XGBoost
(102), LightGBM (103) and PyTorch (104). Deep-learning
approaches are implemented using the PyTorch library,
while LightGBM and XGBoost algorithms are imple-

Table 4. The integrated machine-learning and deep-learning algorithms
in iLearnPlus

Algorithm
category Algorithm Reference

Conventional
machine-learning
algorithms

Random forest (RF) (105)

Decision tree (DecisionTree) (106)
Support vector machine (SVM) (107)
K-nearest neighbors (KNN) (108)
Logistic regression (LR) (109)
Gradient boosting decision tree
(GBDT)

(110)

Light gradient boosting machine
(LightBGM)

(111)

Extreme gradient boosting
(XGBoost)

(102)

Stochastic gradient descent (SGD) (34)
Naı̈ve Bayes (Naı̈veBayes) (112)
Linear discriminant analysis (LDA) (113)
Quadratic discriminant analysis
(QDA)

(113)

Ensemble-learning
frameworks

Bagging (Bagging) (114)

Adaptive boosting (AdaBoost) (115)
Deep-learning
algorithms

Convolutional neural network
(CNN)

(30)

Attention based convolutional
neural network (ABCNN)

(116)

Recurrent neural network (RNN) (117)
Bidirectional recurrent neural
network (BRNN)

(118,119)

Residual network (ResNet) (120)
Auto-encoder (AE) (121)
Multilayer perceptron (MLP) (122)

mented using the LightGBM and XGBoost package,
respectively. The scikit-learn library is used to implement
the remaining algorithms.

For the conventional classifiers, iLearnPlus supports au-
tomatic parameter optimization while still allowing users
to specify their own parameters. We adopt the grid search
strategy to automate the parametrization. For example,
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users can either directly specify the values of the penalty
and gamma parameters for the RBF (Radial Basis Func-
tion) kernel of the SVM classifier, or select the ‘Auto op-
timization’ option to optimize these two parameters auto-
matically. The default parameter search space, which for
the gamma values ranges from 2−10 to 25, can be modi-
fied to a user-defined range. iLearnPlus also provides two
classifier-dependent ensemble-learning frameworks: Bag-
ging and AdaBoost. These frameworks are typically used to
boost predictive performance. Importantly, iLearnPlus sup-
ports parallelization (via the use of multiple processors) to
improve the computational efficiency for parallelable algo-
rithms, such as RF, Bagging, XGBoost and LightGBM.

Another key advantage of iLearnPlus is the availabil-
ity of multiple modern deep-learning classifiers. The deep-
learning techniques rely on multi-layer (deep) neural net-
works (NNs) to train complex predictive models from high-
dimensional data that can be produced from the biologi-
cal sequences (123,124). To facilitate applications of deep-
learning techniques in the analysis of DNA, RNA and
protein sequences, iLearnPlus incorporates deep-learning
architectures including convolutional NN, attention-based
convolutional NN, recurrent NN, bidirectional recurrent
NN, residual NN, auto-encoder NN and the traditional
multilayer perceptron NN (Table 4). These frameworks rely
on a wide range of recent advancements including the con-
volution operation, attention mechanism, stacked residual
blocks, long short-term memory (LSTM) units, and gated
recurrent units (GRUs). Their inclusions are motivated by
recent successful applications to predict protein contact
maps (125,126), protein function (127), DNA-protein bind-
ing (128) and compound-protein affinity (129), to name but
a few examples. Details concerning the architectures and
parameters of these deep-learning networks can be found
in the iLearnPlus online manual. We highlight the fact that
iLearnPlus automatically detects and uses GPU devices to
optimize performance and reduce the computational bur-
den. When training deep-learning models, our platform uti-
lizes the following default parameters: cross-entropy as the
loss function, learning rate set as 10−3, maximum number of
epochs set as 1000, termination of training with no perfor-
mance improvement within 100 epochs, and parameter op-
timization utilizing the widely used Adam algorithm (130).
Alternatively, these parameters can also be configured man-
ually by users.

iLearnPlus also provides an option to perform meta-
learning (131), where results produced by multiple predic-
tive models (so called base models) are used in tandem to
train new machine-learning models; the deep-learning ap-
proaches are excluded from the meta-learning. The under-
lying objective is to improve predictive performance com-
pared to the performance of the base models. iLearnPlus
assesses the performance for the constructed meta-models
and identifies the best one (i.e. model producing the best
predictive performance).

Performance evaluation

iLearnPlus implements the K-fold cross-validation and in-
dependent test assessments to evaluate the performance of
the constructed classifiers. The K-fold cross-validation test

divides the dataset at random into K equally-sized subsets
of sequences (i.e. folds). One of these folds is used as the
validation dataset, and the remaining K – 1 folds are used
as the training dataset to train the machine-learning model
and optimize its parameters. After repeating this process K
times, each fold is used once as the validation dataset (132).
The independent test aims to evaluate and compare the
predictive performance of multiple classifiers using a non-
overlapping test dataset. This allows users to control the
level of similarity between the training and test sequences.
In iLearnPlus, the samples labeled as ‘training’ are used to
implement the K-fold cross-validation test, while the sam-
ples labeled as ‘testing’ are used as the test dataset.

For a binary classification task, we provide eight com-
monly employed measures that quantify the predictive per-
formance including sensitivity (Sn; Recall), specificity (Sp),
accuracy (Acc), Matthews correlation coefficient (MCC),
Precision, F1 score (F1), the area under ROC curve
(AUROC) and the area under the PRC curve (AUPRC)
(15,20,133,134), which are defined as:

Sn = T P
T P + F N

, (1)

Sp = TN
TN + F P

, (2)

Acc = T P + TN
T P + TN + F P + F N

, (3)

MCC = T P × TN − F P × F N
√

(T P + F P) (T P + F N) (TN + F P) (TN + F N)
, (4)

Precision = T P
T P + F P

, (5)

F1 = 2 × Precision × Recall
Precision + Recall

, (6)

where TP, FP, TN and FN represent the numbers of
true positives, false positives, true negatives and false neg-
atives, respectively. The AUROC and AUCPRC values,
which range between 0 and 1, are calculated based on
the receiver-operating-characteristic (ROC) curve and the
precision–recall curve, respectively. The higher the AUROC
and AUPRC values, the better predictive performance of
the underlying model.

For a multi-class classification task, we implement the
popular Acc measure, which is defined as (134,135):

Acc = T P (i ) + TN (i )
T P (i ) + TN (i ) + F P (i ) + F N (i )

, (7)

where TP(i), FP(i), TN(i) and FN(i) represent the numbers
of the samples (molecules) predicted correctly to be in the
ith class, the total number of the samples in the ith class that
are predicted as one of the other classes, the total number
of the samples predicted correctly not to be in the ith class,
and the total number of the samples not in the i-th class that
are predicted as the ith class, respectively.
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Table 5. Graphical display options and statistical analysis methods in
iLearnPlus

Category Types Purpose

Graphic display
options

Histogram Display data distribution

Kernel density
plot

Display data distribution

Heatmap Display P-value/correlation
matrix between different models

Scatter plot Display clustering and
dimensionality reduction result

Boxplot Depict the group values in the
K-fold cross-validation for each
of the eight metrics

ROC curve Depict the overall performance of
a model for balanced data

PRC curve Depict the overall performance of
a model for un-balanced data

Statistical
analysis

Student’s
t-test

Compare the means of two
evaluate metric

Bootstrap test Evaluate the significance of
performance difference between
all pairs of ROC or PRC curves

Data visualization and statistical analysis

iLearnPlus provides a wide range of tools to support anal-
ysis and visualization of the prediction results. It offers
a variety of statistical plots including histograms, kernel
density curves, heatmaps, boxplots, ROC and PRC curves,
to assist users to interpret the prediction outcomes effec-
tively (Table 5). As discussed above, histograms and ker-
nel density plots are particularly suitable to visualize data
distributions while the scatter plots should be used to an-
alyze feature clustering and dimensionality reduction re-
sults. We supplement the predictive performance quantified
with AUROC and AUPRC with the corresponding ROC
and PRC curves. Users should employ boxplots to illustrate
the distribution of the evaluation metrics values from the
K-fold cross-validation experiments, allowing for compar-
ison of predictive quality across different models (e.g. the
performance based on different feature descriptors and/or
machine-learning algorithms). We use the matplotlib li-
brary (136) to generate plots in iLearnPlus. The correspond-
ing graphics can be saved using a variety of image formats
(e.g. PNG, JPG, PDF, TIFF etc.).

iLearnPlus supports two statistical tests that can be used
to compare the predictive performance across different
models or tests. The student’s t-test compares the means of
two sets of performance measures, typically obtained via the
K-fold cross-validation test. The bootstrap test (33) is typ-
ically used to assess the significance of differences between
data quantified with the ROC and PRC curves. For exam-
ple, to compare the AUROC values, we apply the following
formula:

D = AU ROC1 − AU ROC2
Sd (AU ROC1′ − AU ROC2′)

(8)

where AUROC1 and AUROC2 denote the two original AU-
ROC values, while AUROC1′ and AURCO2′ are the boot-
strap resampled values of AUROC1 and AUROC2, respec-
tively and Sd represents the standard deviation. By default,
we perform 500 bootstrap replicates. In each replicate, we

resample the original measurements with replacement to
produce new ROC curves. After resampling, we compute
AUROC1′, AUROC2′ and their difference (i.e. AUROC1′ –
AUROC2′) and use these values to calculate P-values. We
also visualize these results with a heatmap.

RESULTS AND DISCUSSION

The functions and modules in iLearnPlus

iLearnPlus covers the five major steps needed to build
effective models for analysis and prediction of nucleic
acid and proteins sequences: feature extraction, fea-
ture analysis, classifier construction, performance evalua-
tion and data/result visualization (Figure 1). We imple-
ment these steps by developing four modules in iLearn-
Plus: iLearnPlus-Basic, iLearnPlus-Estimator, iLearnPlus-
AutoML and iLearnPlus-LoadModel (Figure 3). The
iLearnPlus-Basic module facilitates analysis and prediction
using a selected feature-based representation of the input
protein/RNA/DNA sequences (sequence descriptors) and
a selected machine-learning classifier. This module is par-
ticularly instrumental when interrogating the impact of us-
ing different sequence feature descriptors and machine-
learning algorithms on the predictive performance. The
iLearnPlus-Estimator module provides a flexible way to per-
form feature extraction by allowing users to select multi-
ple feature descriptors. The iLearnPlus-AutoML module fo-
cuses on automated benchmarking and maximization of the
predictive performance across different machine-learning
classifiers that are applied on the same set or combined
sets of feature descriptors. In addition, by combining the
iLearnPlus-Estimator and iLearnPlus-AutoML modules,
users can conveniently and efficiently evaluate and compare
the predictive quality across different selected sequence de-
scriptors and different machine-learning algorithms. More-
over, models generated by iLearnPlus can be exported and
saved as model files with the ‘.pkl’ extension in both the
stand-alone software and using the web server. Using the
iLearnPlus-LoadModel module, users can upload, deploy
and test their models on new (test) data. Moreover, the
saved models that rely on conventional machine-learning
algorithms can be directly applied in the scikit-learn envi-
ronment, whereas the exported deep-learning models can
be applied using the PyTorch library. Section 8 of the user
manual provides detailed instructions.

Building and customizing machine-learning pipelines using
iLearnPlus

iLearnPlus makes it easy and straightforward to design and
optimize machine-learning pipelines to achieve a competi-
tive (if not the best) predictive performance. The design pro-
cess typically boils down to two key objectives: extraction
and selection of features, and selection and parametriza-
tion of machine-learning models, both of which are sup-
ported by iLearnPlus. Our platform tackles these objec-
tives via a simple example procedure summarized in Figure
4. Users should first apply the iLearnPlus-Estimator mod-
ule to generate multiple sequence descriptors (feature sets)
from the input sequences and test them by constructing
and evaluating a machine-learning model in a batch mode.
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Figure 3. The iLearnPlus architecture with four major built-in modules, including iLearnPlus-Basic, iLearnPlus-Estimator, iLearnPlus-AutoML, and
iLearnPlus-LoadModel.

This allows to establish a point of reference for subsequent
optimization/parameterization of the model. The corre-
sponding results and models can be saved for future ref-
erence. Subsequently, the iLearnPlus-Basic module should
be used to analyze and rank the feature descriptors. Based
on the ranking, users should select and evaluate a subset of
well-performing features (e.g. a subset of top N features).
Next, the evaluation should be performed with the help
of the iLearnPlus-AutoML module that optimizes differ-
ent machine-learning classifiers to the selected feature set.
This module also performs statistical comparative analy-

sis of the results and provides the option to save the best
model.

The iLearnPlus web server and source code

The full version of iLearnPlus that covers the four mod-
ules (iLearnPlus-Basic, iLearnPlus-Estimator, iLearnPlus-
AutoML, and iLearnPlus-LoadModel) and a graphical user-
interface is available on the GitHub repository at https://
github.com/Superzchen/iLearnPlus/. The GUI for the four
modules is shown in Figure 5.

https://github.com/Superzchen/iLearnPlus/


e60 Nucleic Acids Research, 2021, Vol. 49, No. 10 PAGE 10 OF 19

Figure 4. An example of building and customizing machine-learning pipelines using iLearnPlus. First, the iLearnPlus-Estimator module is used to evaluate
the performance of multiple feature descriptors based on the input sequences. Next, the feature descriptors with satisfactory performance are selected and
the iLearnPlus-Basic module is then used to select the top N important features and save the top N features into a file. Finally, users can upload the feature
selection results to the iLearnPlus-AutoML module to evaluate the performance of the machine-learning algorithms of interests in an automated manner.

iLearnPlus is also freely available as a web server at
http://ilearnplus.erc.monash.edu/. In this case, the calcula-
tions are performed on the server side, freeing the users
from engaging their own computational resources. This
server relies on the Nectar (The National eResearch Col-
laboration Tools and Resources, which is an online in-
frastructure that supports researchers to connect with col-
leagues in Australia and around the world) cloud comput-
ing infrastructure, which is managed by the eResearch Cen-
tre at Monash University. The iLearnPlus web server was
implemented using the open-source web platform LAMP
(Linux-Apache-MySQL-PHP) and is equipped with 16
cores, 64GB memory and 2TB hard disk. The server sup-
ports five popular web browsers including the Internet Ex-
plorer (≥v.7.0), Microsoft Edge, Mozilla Firefox, Google
Chrome and Safari. Given the high computational cost,
the web server runs only the iLearnPlus-Basic module
that supports basic analysis and machine-learning model-
ing of DNA, RNA and protein sequence data. Figure 6
shows a screenshot of the main page of the iLearnPlus web
server, where the inputs and parameters of the analysis are
entered.

Case studies

We showcase real-world applications of iLearnPlus with
two bioinformatic scenarios: identification of the long non-
coding RNAs (lncRNAs) and prediction of the protein
crotonylation sites. We emphasize that the underlying ob-
jective is to illustrate how to use our platform for two such
diverse applications, rather than securing the top predictive
performance compared to the state-of-the-art.

The lncRNAs are the transcripts that are over 200 bp
long which do not code for proteins (137). Approximately
70% of the noncoding sequences are transcribed into lncR-
NAs. They regulate a variety of biological processes and
are linked to several human diseases (138,139). We applied
the iLearnPlus-Basic module to extract the feature sets and
train a classifier that accurately differentiated between lncR-
NAs and mRNA sequences. We used the datasets from a re-
cent study by Han et al. (137). The training and validation
datasets contain 4200 lncRNA and 4200 mRNA sequences,
while the test dataset includes 1,800 lncRNA and 1,800
mRNA chains from Mus musculus. Several studies demon-
strate that the distribution of adjoining bases is different
for lncRNAs and mRNAs (140,141). Thus, we selected the

http://ilearnplus.erc.monash.edu/
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Figure 5. The screenshot showing the GUI version of iLearnPlus modules, including iLearnPlus-Basic module (A), iLearnPlus-Estimator module (B),
iLearnPlus-AutoML module (C) and iLearnPlus-LoadModel module (D).

‘Kmer’ (size = 3) feature descriptor to extract the features.
We applied the random forest algorithm (number of trees
= 1000) to train the classifier using these features and opti-
mized the classifier based on the 5-fold cross-validation test.
This simple design secured AUC = 0.897, Acc = 81.89%
and MCC = 0.642 on the test dataset. The entire process
took about 10 mins to complete with the iLearnPlus web
server using one CPU. Figures 6 and 7 show the parame-
ter configurations and prediction results that we obtained
using the online version of the iLearnPlus-Basic model. We
note that the kernel density curves and histograms for dis-
tribution visualization of the extracted features that are in-
cluded in Figure 7 are the new features of iLearnPlus that
are not available in the other current tools. This case study
demonstrates that the entire process that produces a simple
and well-performing model can be conveniently completed
in a matter of minutes. We used the entire datasets (a total
of 12 000 sequences) with the iLearnPlus web server. How-
ever, considering the computational burden on the server
side, we set the maximum number of sequences that can be
submitted to the server to 2000. In cases where users need
to process larger amount of sequence data, we encourage to
use the GUI version of iLearnPlus which does not limit the
number of input sequences.

Lysine crotonylation (Kcr) is a post-translational mod-
ification (PTM) that was originally found in the histone
proteins (142). Recently, this PTM was discovered in non-
histone proteins and was found to be involved in the regula-
tion of cell cycle progression and DNA replication cell cycle
(143,144). Here, we used the iLearnPlus-Estimator module
to comparatively assess the performance of different feature
sets using a dataset retrieved from (145,146). We used the

data preprocessing strategy from Chen et al. (32) which was
developed for a similar prediction problem. Inspired by a re-
cent study by Chen et al. (147), we collected 6687 Kcr sites
(positives) and 67 240 non-Kcr sites (negatives) using the
sequence segments of 29 residues. We used the iLearnPlus-
Estimator module in the standalone GUI version (Figure
8A) to load the data, produced seven feature sets (AAC,
EAAC, EGAAC, DDE, binary, ZScale and BLOSUM) and
selected a machine-learning algorithm. Similar to the other
case study, we used the random forest algorithm (with the
default setting of 1000 trees) to construct the classifier via
10-fold cross-validation. We show the corresponding setup
in Figure 8A. Figure 8B summarizes the predictive per-
formance quantified with AUROC and AUPRC for mod-
els that used each of the seven selected feature sets as in-
puts. This analysis reveals that the model built utilizing the
EGAAC feature descriptors achieved the best performance.
This also shows how easy it is to use iLearnPlus to rationally
select a well-performing feature encoding for the input se-
quences. Next, we used the iLearnPlus-AutoML module to
comparatively evaluate the predictive performance across
seven machine-learning algorithms: SGD, LR, XGBoost,
LightGBM, RF, MLP and CNN. We used the bootstrap
tests to assess statistical significance of the differences be-
tween the ROC curves produced by these algorithms. Figure
9 summarizes the corresponding performance evaluation.
More specifically, it shows the evaluation metrics in terms of
Sn, Sp, Pre, Acc, MCC and F1 (panel A) whose calculations
were based on the default threshold values, correlation ma-
trix that quantifies mutual correlations between classifiers
(panel B), ROC (panel C) and PRC (panel D) curves, and
boxplots that are used to compare results between classifiers



e60 Nucleic Acids Research, 2021, Vol. 49, No. 10 PAGE 12 OF 19

Figure 6. A screenshot showing the web server version of iLearnPlus for analyzing DNA (A), RNA (B) and protein (C) sequences. For each sub-server,
user can generate their desired analysis pipelines via the major panels marked with (i), (ii), (iii) and (iv). The example input sequences were extracted from
the lncRNA dataset prepared by Han et al. (137). The training and validation datasets contain 4,200 lncRNA and 4200 mRNA sequences, while the test
dataset includes 1800 lncRNA and 1800 mRNA chains from Mus musculus. The category ‘0’ refers to mRNA sequences, while the category ‘1’ denotes
the lncRNA sequences.
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Figure 7. A screenshot demonstrating the result page of iLearnPlus for lncRNA prediction using the iLearnPlus web server. The result page includes the
summary of basic information (A), including the input sequence type, number of sequences used for training and test, respectively, and the selected feature
descriptor type, the generated features and feature analysis result (B), the selected machine-learning algorithm and the evaluation metrics listed for each
fold and independent test (C), the ROC and PRC for demonstrating the prediction performance (D) and the hyperlink for downloading all the generated
files including the generated feature encoding files, feature analysis result and plots, evaluation metrics matrix file, prediction scores, ROC and PRC curves,
and the constructed models (E). The category ‘0’ refers to mRNA sequences, while the category ‘1’ denotes the lncRNA sequences.
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Figure 8. The prediction results for protein crotonylation sites using the selected feature descriptors and the local GUI version of iLearnPlus, including a
screenshot of the parameter setup using iLearnPlus-Estimator module (A), and the ROC and PRC curves of the seven RF models using different feature
descriptors (B).

(panel E) directly. We found that the deep-learning model,
CNN, achieved the best predictive performance among all
the seven machine-learning algorithms, with Acc = 85.4%
and AUC = 0.823. Overall, this case study demonstrates
how to effectively and efficiently address the two key ob-
jectives that lead to designing accurate models: extraction
and selection of useful features and selection of the best-
performing machine-learning models. We considered seven
different feature sets, selected the best set and comparatively
evaluated seven machine-learning models using a broad
and informative set of metrics. This ultimately led to an

informed selection of an accurate solution. We emphasize
that four of the seven selected algorithms (i.e. CNN, SGD,
XGBoost and LightBGM), ability to run statistical tests,
and key methods for visualization of results (i.e. boxplots
and heatmaps of the correlations between the models) are
among the new features offered by iLearnPlus that are not
available in the current platforms.

These case studies demonstrate that iLearnPlus is a com-
prehensive platform for the design, evaluation and analysis
of the predictive models for both nucleic acid and protein
sequences. It can be used to produce an accurate model ef-
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Figure 9. An illustration of the prediction results generated by different machine-learning algorithms using the iLearnPlus-AutoML module for identi-
fication of protein crotonylation sites, including the evaluation metrics showing the predictive performance in terms of eight evaluation metrics (A), the
correlation matrix of seven selected classifiers (B), ROC curves (C), PRC curves (D) and the boxplots (E) of eight metrics for comparative performance
assessment of all the seven selected machine-learning algorithms.

fectively and, at the same time, to run a fully-fledged de-
sign protocol that encompasses feature extraction, feature
selection, model selection, comprehensive comparative as-
sessment, and result visualization. Moreover, the trained
models can be exported and deployed on new data using
the iLearnPlus-LoadModel module.

CONCLUSION

Massive accumulation of sequence data calls for the equally
aggressive efforts to develop computational models that can
analyze and make an inference from these data. In this ar-

ticle, we addressed this need by delivering a comprehen-
sive automated pipeline, iLearnPlus, which provides ‘one-
stop’ services for machine learning-based predictions from
the DNA, RNA and protein sequence data. iLearnPlus in-
cludes four built-in modules, calculates a variety of feature
set and provides 21 machine-learning algorithms includ-
ing seven popular and modern deep-learning methods. Our
platform offers a diverse collection of strategies to concep-
tualize, design, test, comparatively assess and deploy predic-
tive models. iLearnPlus caters to a broad range of users, in-
cluding biologists with limited bioinformatics expertise who
can benefit from the easy-to-use web server. We provide two
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case studies using iLearnPlus: predictions of lncRNAs and
protein crotonylation sites. The first highlights the fact that
our platform supports rapid development of accurate mod-
els, while the second demonstrates a sophisticated process
that performs feature and classifier selection to maximize
the predictive performance of the constructed model. We
conclude that iLearnPlus is an effective tool for the design,
testing and deployment of machine-learning pipelines for
analysis and prediction of the rapidly increasing volume of
sequence data for biologists and bioinformaticians.
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