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We report on a measurement of the Q0 lifetime using Q0 — Q7+ decays reconstructed in e*e™ — ¢
data collected by the Belle II experiment and corresponding to 207 fb~! of integrated luminosity.
The result, 7(Q2) = 243 4 48(stat) + 11(syst) fs, agrees with recent measurements indicating that the Q2
is not the shortest-lived weakly decaying charmed baryon.

DOI: 10.1103/PhysRevD.107.L031103

The lifetime hierarchy of beauty hadrons is accurately
predicted using the so-called heavy-quark expansion, which
expresses the decay rate of heavy hadrons as an expansion in
inverse powers of the heavy-quark mass m, [1-6]. An
accurate prediction of the hierarchy of charmed hadrons is
more challenging because higher-order terms in 1/m, and
contributions from spectator quarks cannot be neglected and
result in larger uncertainties. While the lifetimes of charmed
mesons are known to high precision, the lifetimes of charmed
baryons are less well measured [7].

Since its lifetime was first measured in 1995 [8,9], the Q¥
baryon was believed to be the shortest lived among the four
singly charmed baryons that decay weakly [10], in agree-
ment with theoretical expectations [11,12]. In 2018, using
QY - pK~K~z* decays originating from semileptonic
b-hadron decays, the LHCb collaboration measured the
QY lifetime to be 268 & 24 + 10 £ 2 fs, where the uncer-
tainties are statistical, systematic, and from the D™ lifetime
used as normalization [13]. This value is nearly four times
larger than, and inconsistent with, the previous world
average of 69 £ 12 fs [10], resulting in the new lifetime
hierarchy 7(22) < 7(A}) < 7(Q%) < 7(E/). Another recent
measurement from LHCb using promptly produced Q¥ —
pK~ K~z decays confirms their previous result with better
precision, 276.5 £ 13.44+4.44+0.7 fs, where the last
uncertainty is from the D° lifetime used as normalization
[14]. No independent experimental confirmation of the
LHCD results exists. Why the heavy-quark expansion failed
to predict the newly observed hierarchy has been debated
[15]. However, recently an updated calculation shows that
the heavy-quark expansion can satisfactorily describe the
measured lifetimes [16].

In this paper, we report on a measurement of the QY
lifetime using Q0 — Q 7" decays reconstructed in
ete” — cc events at Belle II. Charge-conjugated decays
are included throughout this paper. The e e~ collision data
used are collected at center-of-mass energies at or near the
Y (4S) mass and correspond to an integrated luminosity of
207 fb~!. Assuming a lifetime consistent with the LHCb
measurement, Q¥ baryons produced in ete™ — ¢ events
at Belle II have a Lorentz boost that, on average, displaces
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their decay vertices by 100 pm from the e*e™ interaction
point (IP), where they are produced. The decay time is

measured from the projection of the displacement L along
2

the direction of the momentum p, as ¢ = mL - p/ |p
where m is the known mass of the Q0 baryon [7]. The
decay-time uncertainty o, is calculated by propagating the
uncertainties in L and P, including their correlations. The
lifetime is determined using a fit to the (¢, ;) distributions
of the reconstructed Q0 candidates. To minimize bias, an
arbitrary and unknown lifetime offset is applied to the data.
The offset is revealed only after we finalized the entire
analysis procedure and determined all uncertainties.

The Belle IT detector [17] is built around the collision point
of the SuperKEKB asymmetric-energy e™ e~ collider [18]
and consists of subsystems arranged in a cylindrical geom-
etry around the beam pipe. The innermost is a tracking
subsystem consisting of a two-layer silicon-pixel detector
(PXD) surrounded by a four-layer double-sided silicon-strip
detector (SVD) and a 56-layer central drift chamber (CDC).
Only 15% of the azimuthal angle is covered by the second
PXD layer for the collection of these data. A time-of-
propagation counter in the barrel and an aerogel ring-imaging
Cherenkov detector in the forward end cap provide infor-
mation used for the identification of charged particles. An
electromagnetic calorimeter consisting of CsI(Tl) crystals
fills the remaining volume inside a 1.5 T superconducting
solenoid and provides energy and timing measurements for
photons and electrons. A K9 and muon detection subsystem
isinstalled in the iron flux return of the solenoid. The z axis of
the laboratory frame is defined as the central axis of the
solenoid, with its positive direction defined as the direction
opposite the positron beam.

Events are reconstructed using the Belle II software
framework [19,20] using selection requirements that ensure
large signal efficiency and avoid biases on decay time or
variation of the signal efficiency as a function of decay
time, as verified in simulation. The simulation uses KKMC
[21] to generate quark-antiquark pairs from e*e™ colli-
sions, PYTHIAS [22] to simulate the quark hadronization,
EVTGEN [23] to decay the hadrons, and GEANT4 [24] to
simulate the detector response.

Events enriched in signal Q- Q 7t decays, with
Q™ - A% pr)K~, are selected by rejecting events
consistent with Bhabha scattering and by requiring at least
three charged particles, with transverse momenta greater
than 200 MeV/c, that are consistent with originating from
the eTe™ interaction. These charged particles are not
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required to belong to the Q) — Q~z" decay. Candidate
A® — pn~ decays are formed using pairs of oppositely
charged particles, one of which must be identified as a
proton. The decay vertex of the A° candidate is required to
be more than 0.35 cm away from the IP. The A° candidates
are combined with negatively charged kaon candidates
having transverse momenta greater than 0.15 GeV/c to
form Q= — A°K~ decays. The Q~ decay vertex must lie
between the A° vertex and the IP and be at least 0.5 mm
from the IP. For both the A° and the Q™ candidates, the
angle between its momentum and its displacement from the
IP must be smaller than 90°. Candidate Q¥ — Q™7+ decays
are formed by combining the selected Q~ candidates with
positively charged particles that are consistent with origi-
nating from the e ™ e~ interaction and have momenta greater
than 0.5 GeV/c. We require the scaled momentum of the
Q0 candidate be larger than 0.6. The scaled momentum is

Pems/ \/8/4 — m(Q z+)?, where pp, is the momentum of
the Q¥ candidate in the e e~ center-of-mass system, s is the
squared center-of-mass energy, and m(Q~z") is the recon-
structed QY mass. The scaled momentum requirement
eliminates Q¥ candidates originating from decays of B
mesons and greatly suppresses combinatorial background.
A decay-chain vertex fit constrains the tracks according to
the decay topology and constrains the Q¥ candidate to
originate from the e'e™ interaction region [25]. The
interaction region has typical dimensions of 250 pm along
the z axis and of 10 pm and 03 pm in the two directions
transverse to the z axis. Its position and size vary over time
and are measured using ete™ — putu~ events. Only can-
didates with fit probabilities larger than 0.001 and with o,
values smaller than 1.0 ps are retained for further analysis.
The vertex fit updates the track parameters of the final-
state particles, and the updated parameters are used in
the subsequent analysis. The A and Q~ candidates are
required to have masses within approximately three units of
mass resolution (or standard deviations) of their known
values [7]. The mass of the Q¥ candidate must be in the
range [2.55,2.85] GeV/c?. After these requirements,
about 0.5% of events have multiple Q¥ candidates; for
these events, the candidate with the highest vertex-fit
probability is retained. An unbinned maximum likelihood
fit to the m(Q~z") distribution is used to determine the
signal purity in the signal region defined by 2.68 <
m(Q-z") < 2.71 GeV/c? (Fig. 1). In the fit, the Q¥ signal
is modeled with a Gaussian distribution, and the back-
ground is modeled with a straight line. The signal region
contains approximately 132 candidates with a signal purity
of (66.5+3.3)%.

The lifetime is determined using a maximum-likelihood
fit to the unbinned (7, 0,) distribution of the candidates
populating the signal region. The likelihood is defined as

L(f,.0) = G(£,]0.665.0.033)
< JUFePu(ts0410) + (1 = £ Py (11 0410).

where i runs over the candidates and 6 is a shorthand
notation for the set of fit parameters, which are specified in
the following. The signal fraction f is constrained to the
value measured in the m(Q~z") fit with the Gaussian
distribution G(f,|0.665,0.033). The signal probability
density function (PDF) is the convolution of an exponential
distribution in 7 with a Gaussian resolution function that
depends on ¢,, multiplied by the PDF of o,,

P(t,0,

7,b,s) = P(t|lo,,7,b,s)P(c,)
o< / e "Gt =1
0

The resolution function’s mean b is a free parameter of
the fit to account for a possible bias in the determination
of the decay time; its width is the per-candidate o, scaled
by a free parameter s to account for a possible mis-
estimation of the decay-time uncertainty. The back-
ground in the signal region is empirically modeled from
data with m(Q z") in the sideband [2.55,2.65]U
[2.75,2.85] GeV/c? (Fig. 1). The sideband is assumed
to contain exclusively background candidates and be
representative of the background in the signal region,
as verified in simulation. The background PDF is the
conditional PDF of ¢ given o, multiplied by the PDF
of o,, Py(t,0,0) = Py(tlo,,0)Py(c,). The distribution
in ¢ is the sum of a ¢ function at zero and an exponential
component with lifetime 7, both convolved with a
Gaussian resolution function having a free mean by
and a width corresponding to o, scaled by a free
parameter sy,

b, so,)dt P(o,).
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FIG. 1. Mass distribution for Q¥ — Q 7" candidates with fit

projections overlaid. The vertical dashed lines enclose the signal
region; the shaded area indicates the sideband.

L031103-3



F. ABUDINEN et al.

PHYS. REV. D 107, L031103 (2023)

Pb(t|6t71b7f‘rb’ bb’Sb) = (1 _fr,,)G(t|bb’Sb5t>
+fTbe(t|Gt?Tb7bb7sb)v

where f is the fraction of the exponential component
relative to the total background and

Pb(t|6t’7:b’ bb’ Sb) X / e_t’/TbG(t - t/|bb, SbGt)d[/.
0

To better constrain the background parameters, a simul-
taneous fit to the candidates in the signal region and the
sideband is performed. The PDFs of o,, which differ
between signal and background, are histogram templates
derived directly from the data. The signal template is
derived from the candidates in the signal region after
subtracting the scaled distribution of the sideband data.
The background template is obtained directly from the
sideband data. No direct input from simulation is used in
the fit.

The distributions of decay time and decay-time uncer-
tainty are shown in Figs. 2 and 3 with fit projections
overlaid. The 99 lifetime is measured to be 243 + 48 fs, the
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FIG. 2. Decay-time distributions for Q0 — Q 7+ candidates
populating (top) the signal region and (bottom) the sideband with
fit projections overlaid.

mean of the signal resolution function is b = —18 £ 41 fs,
and the scaling factor of the width is s = 1.35 £ 0.20,
where the uncertainties are statistical only.

The following sources of systematic uncertainties are
considered: fit bias, resolution model, treatment of back-
ground contamination, imperfect alignment of the tracking
detectors, and uncertainties in the momentum scale and in
the input Q¥ mass. Table I lists all contributions and their
total, calculated as the sum in quadrature of the individual
contributions.

The lifetime fit is tested on data generated by randomly
sampling the fit PDF with parameters fixed to the values
found in the fit to the data and with lifetime values varied
between 60 fs and 300 fs. One thousand pseudoexperi-
ments, each the same size as the data, are generated for each
tested lifetime value. A —3.4 fs bias is observed for lifetime
values close to the fit result of 243 fs. The bias is mostly
due to the small sample size and reduces when simulating
larger sizes. Its absolute value is assigned as a symmetric
systematic uncertainty.

Simulation shows that the resolution function has tails
that are inconsistent with a Gaussian model. The effect on
the measured lifetime due to using our imperfect resolution

B Belle I1
L ¢ Data (207 fb™)
10 = — Fit
| | O R T Background
- L
S
5 -
= N
g L
< -
'U -
ks C
=
< L
© N
10
3
¥ AT TR TUUTRTURUTSUURTE H T 41 | A A 1
0 0.1 02 03 04 05 0.6 0.7 0.
Decay-time uncertainty [ps]
FIG. 3. Decay-time-uncertainty distributions for Q0 — Q= 7"

candidates populating (top) the signal region and (bottom) the
sideband with fit projections overlaid.
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TABLE I. Systematic uncertainties.

Source Uncertainty (fs)
Fit bias 34
Resolution model 6.2
Background model 8.3
Detector alignment 1.6
Momentum scale 0.2
Input Q0 mass 0.2
Total 11.0

model is quantified using one thousand samples of signal-
only simulated decays, each the same size as the data. The
samples are obtained by resampling, with replacement,
from a sample of simulated e e~ collisions corresponding
to five times the data size. For each sample the fit is
performed and the measured lifetime is compared to the
true lifetime of the parent simulation sample. The average
difference between measured and true lifetimes, 2.8 fs, is
corrected for the known fit bias of —3.4 fs and the resulting
value, 6.2 fs, is assigned as a systematic uncertainty due to
the imperfect resolution model.

For signal decays, the decay-time resolution function has
a mean that depends nearly linearly on the candidate mass,
and is expected to average out for a symmetric range of
candidate masses. We check that the associated uncertainty
in the measured lifetime is negligible by varying the
boundaries of the signal region.

In simulation, the (¢, ,) distribution of the candidates in
the sideband describes the background candidates in the
signal region well. The same might not hold for the data
and this could bias the result. To quantify this bias, we
generate and fit to one thousand pseudoexperiments, each
the same size and with the same signal-to-background
proportion as that of the data. In the generation, signal and
background candidates populating the signal region are
sampled from the fit PDFs, using input parameters equal
to those determined from the fit to the data. Generated
background candidates in the signal region thus feature the
same (7, o,) distribution as the data. In contrast, candidates
in the sideband are sampled from simulated ee™ colli-
sions. In this manner, the pseudoexperiments feature side-
band data that differ from the background in the signal
region with the same level of disagreement as observed
between data and simulation. The averaged difference
between the measured and generated lifetimes, corrected
for the previously estimated biases due to the fit and to the
resolution model, is 6.2 £ 1.9 fs. Various definitions of
the sideband are tried: [2.55,2.64] U [2.76,2.85] GeV/c?,
[2.55,2.66] U [2.74,2.85] GeV/c?, [2.55,2.65] GeV/c?,
and [2.75,2.85] GeV/c?. The latter region shows a sig-
nificant deviation in fitted lifetime from the nominal result.
The deviation, 8.3 fs, is consistent with the pseudoexperi-
ments study and is assigned as a systematic uncertainty due
to the modeling of the background (¢, o,) distribution.

In the lifetime fit, the fraction of background candidates in
the signal region is constrained by the result of the fit to the
m(Q~z") distribution. When we change this background
fraction to values obtained from fitting to the m(Q z")
distribution with alternative signal and background PDFs,
the change in the measured lifetime is negligible.

In Belle II, track parameters are periodically calibrated to
correct for misalignment and deformation of internal
components of the PXD and SVD, and for the relative
alignments of the PXD, SVD, and CDC. Misalignment can
bias the measurement of the decay lengths and hence of the
decay times. To quantify the effect of possible residual
misalignment on the measured lifetime, large samples of
signal decays are simulated with various misalignment
configurations. Lifetime residuals with respect to perfectly
aligned simulation are estimated, and their root mean
square, 1.6 fs, is assigned as a systematic uncertainty
due to possible detector misalignment.

Uncertainties in the knowledge of the absolute momen-
tum scale and in the world-average value of the Q¥ mass [7]
each result in a 0.2 fs uncertainty in the lifetime.

Consistency of the results is tested by repeating the full
analysis in subsets of the data split according to data-taking
periods and conditions, Q0 momentum and flight direction,
charm flavor, and Q™ flight length. In all cases, the
variations of the results are consistent with statistical
fluctuations. To check that the best-candidate selection
in events with multiple candidates does not affect the result,
the measurement is repeated with randomly selecting a
single candidate, removing all events with multiple candi-
dates, or keeping all candidates. No significant variation in
the measured lifetime is observed. The measurement is also
repeated with the fit range varied to exclude candidates in
the tails of the (z,0,) distribution, with no significant
deviation in the resulting lifetime from the nominal result.

In conclusion, we report on a measurement of the Q¥
lifetime using e*e™ — c¢ data collected by the Belle 1I
experiment corresponding to an integrated luminosity of
207 fb~!. This measurement,

7(QQ) = 243 + 48(stat) + 11(syst) fs,

is consistent with the LHCb average of 274.5 £12.4 fs
[14], and inconsistent at 3.4 standard deviations with the
pre-LHCb world average of 69 + 12 fs [10]. The Belle 1T
result, therefore, confirms that the Q¥ is not the shortest-
lived weakly decaying charmed baryon.
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