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A B S T R A C T

In this study we investigate the influence of an array of miniature vortex generators (MVGs) in a zero-pressure-
gradient turbulent boundary layer (ZPG TBL) by means of a large-eddy simulation of rectangular MVGs in
a spatially evolving moderate Reynolds number ZPG TBL up to 𝑅𝑒𝜏 = 1350. The MVG array consists of
pairs of rectangular blades arranged in spanwise oriented arrays in the flow. The turbulent intensities and
streamwise inclination angles related to the large streamwise extent high-momentum regions (HMRs) and
low-momentum regions (LMRs) induced by the MVGs are presented. The instantaneous velocity fluctuation is
decomposed into a turbulent velocity component and a spatial velocity component based on the triple velocity
decomposition, where the spatial velocity component represents a spatial variation of the time-averaged flow
induced by the MVGs. The streamwise turbulent velocity fluctuation associated with the HMRs and the LMRs is
further investigated using proper orthogonal decomposition (POD), where we further examine a reduced-order
reconstruction of the HMRs and the LMRs, using two-dimensional data. POD has also been used to determine
the streamwise inclination angle of wall-attached structures in the HMRs and the LMRs. An examination of
the streamwise inclination angle associated with the POD modes has been performed. Results suggest that the
streamwise inclination angle of higher energy POD modes may be related to that of the relatively large wall-
attached structures reported in the literature. In addition, if the lower energy POD modes are also retained, the
value of the streamwise inclination angle tends to approach the value of mean streamwise inclination angle
of wall-attached structures. The results suggest that the decreasing trend in streamwise inclination angle may
be related to the contributions of the small-scale wall-attached motions.
. Introduction

The miniature vortex generator (MVG) is a passive flow control
evice that can generate streamwise-oriented vortices, leading to long
nd persistent streamwise streaks that evolve downstream in boundary
ayer flows. Due to its simplicity and cost-effectiveness, MVG continues
o be considered a promising solution for effective flow control. The
ffects of a MVG array on laminar boundary layers developing on flat
lates have been investigated experimentally and numerically and are
omprehensively understood (Lin, 2002; Fransson and Talamelli, 2012;
hahinfar et al., 2012). It is widely recognised that they can delay
low transition from laminar to turbulent by stabilising the growth
f Tollmien–Schlichting waves and oblique disturbances, leading to
ignificant skin friction reduction (Fransson et al., 2006; Fransson and
alamelli, 2012; Shahinfar et al., 2012, 2014; Sattarzadeh et al., 2014).

Recent experimental and numerical studies (Lögdberg et al., 2009;
han and Chin, 2021) were conducted to investigate the turbulent

low control by vortex generators in the zero-pressure-gradient tur-
ulent boundary layer (ZPG TBL). Although the same skin friction

∗ Corresponding author.
E-mail address: chiip.chan11@gmail.com (C.I. Chan).

reduction effects (laminar boundary layer flows) were not observed in
fully turbulent boundary layer flows, the studies demonstrated that the
induced high-momentum regions and low-momentum regions (HMRs
and LMRs) are able to persist for up to 300ℎ (where ℎ is the device
height) in moderate Reynolds number ZPG TBLs. We have adopted a
canonical case similar to Lögdberg et al. (2009) by simplifying the flow
geometry as a ZGP TBL over a flat plate (see Chan and Chin, 2021).
This simplified flow situation allows us to focus on the underlying flow
physics to a greater extent in comparison to more complex practical
flow scenarios (adverse pressure gradients). Nevertheless, it is crucial
to be aware of such differences and exercise caution when interpreting
the results based on the present ZPG investigation, as the findings may
be influenced to some extent by the pressure gradient.

The coherent motions in smooth-wall-bounded turbulent boundary
layer flows are well established to be related to turbulence generation
and energy transport (Robinson, 1991; Smits et al., 2011). The near-
wall turbulence is well understood to be related to the formation of
vailable online 21 June 2023
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quasi-streamwise vortices and streamwise streaks by the self-sustained
mechanisms (Hamilton et al., 1995; Jiménez and Pinelli, 1999; Panton,
2001; Guerrero et al., 2022). These naturally occurring streamwise-
elongated high- and low-momentum regions occupy the logarithmic
region of the turbulent boundary layer (Tomkins and Adrian, 2003;
Hutchins and Marusic, 2007a). Very-large-scale motions or large-scale
streamwise elongated modes have been found to exist far away from
the wall, and they influence the near-wall turbulence with increasing
Reynolds numbers (Hutchins and Marusic, 2007b; Mathis et al., 2009).
Previous studies have demonstrated that many of these coherent mo-
tions are inclined at an angle with respect to the mean flow direction.
The cross-correlation between the fluctuating wall-shear stress and the
fluctuating streamwise velocity in the logarithmic region has long been
used to infer the mean streamwise inclination angle (SIA) of the coher-
ent motions in this region. This angle is defined in the average sense,
where coherent motions with different length scales are assumed to be
convecting across the logarithmic region at the same time (Marusic and
Heuer, 2007; Deshpande et al., 2019; Cheng et al., 2022).

Compared to the previously mentioned characteristics regarding the
coherent motions in smooth-wall ZPG TBLs, ZPG TBLs with emerged
vortices, such as those generated by low-profile or miniature vortex
generators (with ratios ℎ∕𝛿 ≤ 0.2, where 𝛿 is the 99% boundary layer
thickness), exhibit organised HMRs and LMRs that propagate down-
stream up to 300ℎ (Lögdberg et al., 2009; Chan and Chin, 2021, 2022).
These organised HMRs and LMRs are distinct from those observed in
smooth-wall cases and are remarkably similar to the high-momentum
pathways and low-momentum pathways found in spanwise hetero-
geneous rough-wall bounded flows. The high- and low-momentum
pathways in spanwise heterogeneous rough-wall bounded flows, char-
acterised by the counter-rotating swirling motions, have been exten-
sively studied through numerous experimental and numerical inves-
tigations (e.g. Barros and Christensen, 2014; Anderson et al., 2015).
These pathways have been shown to be associated with the spanwise
alternating high- and low-wall-shear stress regions, where upwelling
and downwelling motions occur above the high- and low-wall-shear
stress regions, respectively. The occurrence of streamwise roll motions
has been attributed to the sharp gradient in the shear stress from the
high-shear stress region to the low-shear stress region in the spanwise
direction, which is controlled by the roughness spacings (Chung et al.,
2018). This phenomenon is similar to the behaviours observed in flows
with MVG arrays, where the sizes and spacings of the induced vortices
and the associated HMRs and LMRs are strongly influenced by the
MVG spacings (Chan and Chin, 2021, 2022). Therefore, studying the
streamwise evolution and behaviour of the HMRs and the LMRs in more
detail would be worthwhile.

The effect of MVGs on the mean structural inclination angle of the
coherent motions, as observed in the high- and low-wall-shear stress
regions, in comparison to a smooth-wall ZPG TBL without MVGs, is
still uncertain. A better understanding of these parameters could help
in the development of efficient approaches for simulating turbulent
boundary layers with emerged vortex models. For instance, Lögdberg
et al. (2009) proposed the pseudo-viscous vortex model, which uses the
potential flow theory to explain the vortex evolution and development
generated by the MVGs. Mole et al. (2022), based on the Batchelor vor-
tex model, studied a computationally efficient approach for accurately
representing the downstream interaction between the vortex pairs and
the boundary layer without directly resolving the geometry of the
vortex generators (VGs).

The present study focuses on the HMRs and the LMRs in turbulent
boundary layers induced by MVGs. Our analysis is based on a large-
eddy simulation data set of a MVG array placed in a turbulent boundary
layer at a moderate Reynolds number. The velocity fluctuation fields of
the HMRs and the LMRs are analysed based on the triple decomposition
to investigate the coherent and turbulent velocity fluctuations. To
identify the most energetic coherent motions in these regions, we use
2

the proper orthogonal decomposition (POD) technique. This approach u
enables us to identify the dominant flow patterns (eigenvectors) and
the associated energy contents (eigenvalues) based on the streamwise
turbulent kinetic energy norm. Additionally, we will utilise POD to
investigate the inclination angles of large- and small-scale coherent
motions. The second objective of the present study is to investigate
the influence of a MVG array on the SIA of the large-scale motions
in the HMRs and the LMRs extracted by the POD. Assessing the SIA
of coherent motions in the logarithmic region is of great practical
importance for evaluating the attached-eddy framework and develop-
ing near-wall turbulence models (Marusic and Monty, 2019). In the
following, Section 2 describes the numerical procedure employed for
the simulation. In Section 3 and Section 3.1, the influence of the MVGs
on the HMRs and the LMRs is discussed, and a further analysis of the
HMRs and the LMRs based on the POD is presented. The influence of
the MVGs on the SIA is presented in Section 4, and the POD is then
extended to provide further discussion on the streamwise inclination
angles of the large- and small-scale motions in Section 5. Conclusions
are presented in Section 6.

2. Numerical procedure

In the following, the streamwise, wall-normal and spanwise coor-
dinates are denoted as 𝑥, 𝑦 and 𝑧, respectively. Their instantaneous
elocity components are denoted by 𝑢, 𝑣 and 𝑤, respectively. The time-

averaged velocity is denoted by the (⋅̄) or the capital letter e.g. 𝑢 = 𝑈 ,
and its (turbulent) fluctuation is denoted by the prime (⋅′). The symbol
⟨⋅⟩ denotes the spanwise and temporal average, i.e.

𝑞⟩(𝑥, 𝑦) = 1
𝐿𝑧 ∫𝐿𝑧

𝑞(𝑥, 𝑦, 𝑧) d𝑧, (1)

where 𝐿𝑧 denotes the total width of the MVG array. A large-eddy
simulation of an array of MVGs set up in a moderate Reynolds number
ZPG TBL was performed. The simulation setup was motivated by recent
experimental studies of Lögdberg et al. (2009), Sattarzadeh et al.
(2014) and Sattarzadeh and Fransson (2015). The configuration of
MVG pairs is shown in Fig. 1. The array of MVGs is positioned at
𝑥M = 950𝛿∗0 from the inlet (corresponding to 𝑅𝑒𝜏 = 𝛿+ ≃ 430, where
𝛿∗0 is the inlet displacement thickness). The parameters of a MVG when
scaled by the inlet displacement thickness, are respectively: ℎ = 4
is the blade height, 𝑡𝑚 = 1 is the blade thickness, 𝐿 = 10 is the
blade length, 𝑑 = 10 is the spanwise distance between the centroids
of blades in one pair. 𝛬𝑧 = 40 is the spanwise spacing between two
adjacent MVG pairs. 𝛼 = 15◦ denotes the angle of attack of the MVG
with respect to the inlet flow direction. The large-eddy simulation was
performed using a fully spectral numerical code (Chevalier et al., 2007).
A sub-grid-scale approximate deconvolution model (ADM-RT) has been
employed to compute approximations to the unfiltered solutions of the
incompressible continuity and Navier–Stokes equations by a repeated
filter operation, i.e.
𝜕𝑢̂𝑖
𝜕𝑥𝑖

= 0, (2)

𝜕𝑢̂𝑖
𝜕𝑡

+ 𝑢̂𝑗
𝜕𝑢̂𝑖
𝜕𝑥𝑗

+
𝜕𝑝̂
𝜕𝑥𝑖

− 1
𝑅𝑒

𝜕2𝑢̂𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

= −𝜒𝐻𝑁 ⊛ 𝑢̂𝑖, (3)

with superscripts ∧ refer to a resolved-scale, and ⊛ denotes the convo-
lution and the relaxation term −𝜒𝐻𝑁 ⊛ 𝑢̂𝑖 : 𝜒 is the model coefficient;
and 𝐻𝑁⊛𝑢̂𝑖 is the high-pass approximately deconvolved quantities. The
ADM-RT model has been widely used for performing incompressible
transitional and turbulent flows simulations (Stolz et al., 2001; Schlat-
ter et al., 2004; Eitel-Amor et al., 2014; Schlatter et al., 2010). Spatial
discretisation is based on a Fourier series with 3/2 zero-padding for
de-aliasing in the streamwise (𝑥) and spanwise (𝑧) directions, and a

hebyshev polynomial is employed in the wall-normal direction (𝑦).
he computational domain in the streamwise, wall-normal and span-
ise directions are respectively: 𝑥𝐿×𝑦𝐿×𝑧𝐿 = 6000𝛿∗0 × 200𝛿∗0 × 360𝛿∗0
sing 6144 × 513 × 768 spectral modes. This give uniform grid spacings
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Fig. 1. Schematic of the MVG layouts considered in the present study. The parameters of a MVG are scaled by the inlet displacement thickness 𝛿∗0 : ℎ = 4 is the blade height,
𝑡𝑚 = 1 is the blade width, 𝐿 = 10 is the blade length, 𝛼 = 15◦ is the angle of attack of the MVG with respect to the flow direction, 𝑑 = 10 is the spanwise distance between the
centroids of blades in a MVG pair and 𝛬𝑧 = 40 is the spanwise spacing between two different MVG pairs.
Fig. 2. (𝑎) Instantaneous realisation of the streamwise velocity flow field, 𝑢∕𝑈∞, at 𝑦∗ = 0.25 past a MVG pair. Top view (𝑏) and cross-section views of the time-averaged streamwise
velocity flow field, 𝑈∕𝑈∞, at (𝑐) 𝑥∗ = −0.5, (𝑑) 𝑥∗ = 0 and (𝑒) 𝑥∗ = 0.5, where 𝑥∗ = (𝑥−𝑥𝑀 )∕ℎ, 𝑥𝑀 is defined at the centre of the MVG array and 𝑧∗ = 𝑧∕ℎ. Rectangular box outlines
the MVG cross section. In (𝑏), the dashed black lines mark the spanwise locations of the HMRs and the LMRs, with secondary flows of common flow down and common flow up
at 𝑥∗ = 25, respectively. The rectangular boxes are not to scale.
of 𝛥𝑥+ ≈ 16.9 and 𝛥𝑧+ ≈ 8.1 in the streamwise and spanwise directions
(the superscript + refers to scaling with the friction velocity 𝑢𝜏 =

√

𝜏𝑤∕𝜌
and kinematic viscosity 𝜈, where 𝜏𝑤 is the wall shear stress and 𝜌 is the
fluid density). In the wall-normal direction, there is a minimum of 15
Chebyshev collocation points within the region 𝑦+ < 10. The first grid
point away from the wall is at 𝑦+ ≈ 0.03, and the maximum spacing is
𝛥𝑦+max = 10.6. The time advancement is carried out by a second-order
Crank–Nicolson scheme for the viscous terms and a third-order four-
stage Runge–Kutta scheme for the non-linear terms (Chevalier et al.,
2007). Details on the numerical procedure for the simulation can be
found in Chan and Chin (2021) and Chan and Chin (2022).

3. High- and low-momentum regions

Fig. 2 illustrates the effects of the MVG array in a TBL with in-
stantaneous and time-averaged streamwise velocity fields obtained in
the streamwise–spanwise plane at 𝑦∕ℎ = 𝑦∗ = 0.25 (Figs. 2𝑎 and
2𝑏), and spanwise-wall-normal plane at 𝑥∗ = −0.5, 0 and 0.5 of the
time-averaged streamwise velocity field (Figs. 2𝑐, 2𝑑 and 2𝑒), where
𝑥∗ = (𝑥−𝑥𝑀 )∕ℎ is defined at the centre of a blade. Spanwise alternating
high- and low-speed patterns are clearly observed with HMRs formed
along the centrelines of the MVGs and LMRs formed in the regions
adjacent to the HMRs.
3

The mean and turbulent statistics of the HMRs and the LMRs are
first presented before we investigate the associated SIA based on the
POD. The mean flow and streamwise stresses of the HMRs and the
LMRs are shown in Fig. 3. Fig. 3(𝑎) shows the differences of the time-
averaged streamwise velocity between the HMRs and the LMRs. Here,
the global TBL is the spanwise and temporal average as defined in
(1). The velocity defect in the mean flow profile can be estimated by
comparing the downward or upward shift of the log-law constants with
the reference case without a MVG array, i.e. a smooth-wall DNS TBL
mean velocity profile is utilised as the reference case (Chan et al.,
2021), which is shown as the dashed black line with a constant of
𝐵 = 5.2. The vertical solid line denotes the wall-normal location 𝑦∗ ≃
0.5 (𝑦+ = 2ℎ+), which yields 𝛥𝑈+ = −1.5 at the LMRs (blue line) and
𝛥𝑈+ = 1.0 at the HMRs (red line), respectively. The velocity defect is
related to the local skin friction variation, where locally the skin friction
is modified over the HMRs and the LMRs along the spanwise direction.
The low-speed fluid is lifted from the wall and reduces the streamwise
wall shear stress 𝜏𝑤 and results in a substantial local skin friction drag
reduction (with respect to the case without a MVG array). On the other
hand, the downwash motion transports the high-speed fluid from the
outer region towards the wall and increases the local skin friction drag
at the centre of the MVG pair. Fig. 3(𝑏) shows the velocity perturbation
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Fig. 3. (𝑎) Comparison of the time-averaged streamwise velocity at 𝑥∗ = 25. The thick grey lines denote the linear and log-law regions 1∕𝜅 log 𝑦+ + 𝐵 with 𝜅 = 0.41 and 𝐵 = 3.7,
5.2 and 6.2 in the arrow direction. The smooth-wall DNS TBL mean velocity profile is utilised as the reference case and is shown as the dashed black line with a constant of
𝐵 = 5.2. (𝑏) The velocity excess (𝑈 − ⟨𝑈⟩)∕𝑈∞ > 0 associated with the high-speed region and the velocity deficit (𝑈 − ⟨𝑈⟩)∕𝑈∞ < 0 associated with the low-speed region at 𝑥∗ = 25.
Inset shows the local spanwise skin friction variation at 𝑥∗ = 25. (𝑐) Comparison of the (time-averaged) streamwise stresses: 𝑢′′2, 𝑢′2 and 𝑢̃2.
𝑢̃

defined as (𝑈 − ⟨𝑈⟩)∕𝑈∞, indicating the locations of the HMRs and the
LMRs and showing the presence of the streamwise roll-modes induced
downstream of the MVG array. The inset in Fig. 3(𝑏) shows the local
spanwise skin friction variation at 𝑥∗ = 25, defined as 𝐷(𝑥, 𝑧∗) =
(𝜏𝑤 − 𝜏𝑤,0)∕𝜏𝑤,0, where 𝜏𝑤 = 𝜈 (𝑑𝑢̄∕𝑑𝑦) |𝑦=0 is the time-averaged wall
shear stress and 𝑧∗ = 𝑧∕ℎ. The 𝜏𝑤,0 refers to the smooth-wall reference
case. The 𝐷 > 0 denotes the local drag increase and 𝐷 < 0 denotes
the local drag reduction. The inset plot suggests that the HMRs are
associated with increases of skin friction up to 𝐷 ≃ 0.15 at 𝑧∗ = 0,
accompanied with similar skin friction reduction rates centred at the
LMRs (up to 𝐷 ≃ −0.14 at 𝑧∗ ≃ ±3).

The drag behaviour and the secondary flow patterns observed in the
Fig. 3(𝑎, 𝑏) demonstrate that MVGs are capable of providing sufficient
momentum transfer away and towards the wall over a downstream
region that is in the order of the device height, with a much lower
device drag compared to conventional VGs (Lin, 2002). This makes
MVGs suitable for flow control applications where a boundary layer
flow redistribution is required. MVG can generate pairs of counter-
rotating streamwise vortices that are just strong enough to redistribute
fluids without persisting unnecessarily within the boundary layer once
the flow control objective is achieved (Lin, 2002). Furthermore, the
MVGs create pairs of counter-rotating vortices that quickly merge to
form a single secondary flow pattern that remains close to the wall
in the thin region of the boundary layer. This induced secondary flow
pattern can be applied to reduce flow distortion, for example, inlet flow
distortion observed in compact S-ducts (Lin, 2002).
4

To further elucidate the physical modification of MVGs on the
turbulent statistics, we employed a triple decomposition of the velocity
components, which reads as:

𝑢𝑖(𝑥, 𝑦, 𝑧, 𝑡) = ⟨𝑈𝑖⟩(𝑥, 𝑦) + 𝑢′𝑖(𝑥, 𝑦, 𝑧, 𝑡) + 𝑢̃𝑖(𝑥, 𝑦, 𝑧), (4)

where the 𝑢′𝑖 and 𝑢̃𝑖 on the right-hand side of Eq. (4) are the turbulent
fluctuations and MVG-induced fluctuations, respectively. The MVG-
induced fluctuations, 𝑢̃𝑖 = 𝑈𝑖 − ⟨𝑈𝑖⟩, are the spatial variation of the
time-averaged flow due to MVG. The total fluctuations, 𝑢′′𝑖 = 𝑢′𝑖 + 𝑢̃𝑖,
equal to the turbulent fluctuations (𝑢′𝑖) for the smooth-wall case since
𝑖 = 0. The streamwise total stress (𝑢′′𝑢′′), the Reynolds stress (𝑢′𝑢′) and

the MVG-induced stress (𝑢̃𝑢̃) are presented in Fig. 3(𝑐) for the HMRs,
LMRs and global TBL. The comparison of the profiles of the MVG-
induced stress (represented by red and blue dotted-dash lines) over the
HMRs and the LMRs indicates that the modification of turbulent flow
intensities by the MVGs on the HMRs is distinct from that on the LMRs.
This is further evidenced by the differences observed in the turbulent
stress (red and blue dash lines) of these regions.

In the following section, we will delve into this observation in
greater detail. We will conduct further assessments of the HMRs and the
LMRs based on the POD, which will include a low-order reconstruction
of the turbulent fluctuations in the HMRs and the LMRs, as well as an
analysis of the SIA that is associated with the wall-attached structures
in the HMRs and the LMRs.
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3.1. POD analysis of HMRs and LMRs

The POD method with an energy-based norm is a useful tool for
decomposing the velocity fluctuation field into sets of POD modes and
expansion coefficients. This decomposition provides important spatial
and temporal information about the dominant coherent motions in the
flow (Rowley et al., 2004). POD is used in this section to investigate the
turbulent velocity fluctuations associated with the HMRs and the LMRs.
In this study, the number of spatial points in the numerical simulation
data set is larger than the number of snapshots available. Therefore,
the snapshot POD approach has been used and will be briefly described
here. Practically, the streamwise turbulent fluctuation is approximated
by a finite sum of expansion coefficients 𝑎𝑖 and spatial modes 𝜙𝑖 as:

𝑢′(𝒙, 𝑡) ≃
𝑁
∑

𝑖=1
𝑎𝑖(𝑡)𝝓𝑖(𝒙). (5)

The spatial modes 𝝓𝑖(𝒙) were obtained from solving an eigenvalue
problem of the correlation matrix of 𝑢′. The correlation matrix was
calculated between individual snapshots of streamwise velocity fluctu-
ation, 𝑢′(𝒙, 𝑡𝑖) = 𝑢′(𝒙, 𝑡1), 𝑢′(𝒙, 𝑡2), …, based on their temporal correla-
tions. The correlation (temporal) matrix is given by:

𝑴 =𝑀𝑖𝑗 =
1

𝑁𝑡 − 1
[

𝑢′(𝒙, 𝑡𝑖), 𝑢′(𝒙, 𝑡𝑗 )
]

𝐷, (6)

where 𝑁𝑡 denotes the total number of snapshots and [ ⋅ ]𝐷 defines the
inner product. The eigenvalue problem to be solved can be written as:

𝑴𝝍 𝑖 = 𝜆𝑖𝝍 𝑖. (7)

The eigenvalues might be sorted in a descending order to relate to
the energy content of the corresponding modes. Because we solve the
eigenvalue problem based on temporal correlations, we need to project
all the eigenmodes 𝝍 𝑖 to the velocity field 𝑢′(𝒙, 𝑡𝑖) to recover the first
𝑁𝑡 spatial POD modes as

𝝓𝑗 (𝒙) =
∑

𝑖 𝜓𝑗 (𝑡𝑖)𝑢′(𝒙, 𝑡𝑖)
√

𝜆𝑗
√

𝑁𝑡 − 1
, (8)

here the spatial POD modes are essentially orthonormal, i.e. [𝝓𝑖,𝝓𝑗 ]𝐷
𝛿𝑖𝑗 . Finally, the expansion coefficients 𝑎𝑖 can be obtained by projec-

ion of the velocity field on the spatial modes. In the following, we will
onsider the two-dimensional POD modes and examine the correlation
n the spanwise direction for 𝑢′(𝑦, |𝑧∗| ≤ 5, 𝑡)., i.e.

′(𝑦, 𝑧, 𝑡) ≃
𝑁
∑

𝑖=1
𝑎𝑖(𝑡)𝜙𝑖(𝑦, 𝑧). (9)

The first six POD modes 𝜙𝑖(𝑦, 𝑧) are presented in Fig. 4. The POD
modes are ranked according to the magnitudes of their eigenvalues.
The first POD mode appears to be anti-correlated in between the HMRs
and the LMRs, clearly reflecting the symmetrical streamwise vortices
pairs appearing downstream of the MVG array. A visual inspection
of the spanwise separation between the correlation regions of same
sign implies that 𝜆𝑧 ≃ 𝛬𝑧∕2. This is consistent with the spanwise
wavelength of the energy peak at the dominant spanwise mode as
observed in Chan and Chin (2021), even though the first POD mode
itself contributes to only 6% of the total energy (Fig. 5). The percentage
contributions to the total energy of the POD modes are plotted in Fig. 5.
It can be seen that the contribution of the first six POD modes to the
total energy is approximately 25% and is up to 80% for the first 102

POD modes. A low-order reconstruction has been commonly used to
provide an approximation of the dominant coherent motions in fluid
flows (Rowley et al., 2004; Mohammed-Taifour and Weiss, 2016). By
reconstructing the velocity fluctuation field from the low-order POD
modes, an approximation of the dominant motions in the HMRs and
the LMRs can be identified and a comparison between their turbulence
intensities can be performed. Fig. 6 shows the low-order reconstructions
5

of the streamwise turbulent intensity in the HMRs (𝑧∗ = 0) and the
LMRs (𝑧∗ ≃ −3) obtained using 2D POD modes,

𝑢′ ∼ 𝑢′𝑁𝑅 (𝒙, 𝑡) =
𝑁𝑅
∑

𝑖=1
𝑎𝑖(𝑡)𝝓𝑖(𝒙), (10)

here 𝑁𝑅 = 1, 2, …, denotes the number of POD modes for reconstruc-
ion. Results show that the first 102 modes reconstruction is a fairly
ood approximation of the intensity profile, where they contribute to
lmost 80% of the total energy (as shown in Fig. 5), and,

[𝑢′𝑁𝑅 (𝒙, 𝑡𝑖), 𝑢
′
𝑁𝑅

(𝒙, 𝑡𝑖)]𝐷
[𝑢′(𝒙, 𝑡𝑖), 𝑢′(𝒙, 𝑡𝑖)]𝐷

=
𝑁𝑅
∑

𝑖
𝜆𝑖∕

𝑁
∑

𝑖
𝜆𝑖, (11)

where 𝑎𝑖(𝑡)𝑎𝑗 (𝑡) = 𝜆𝑖𝛿𝑖𝑗 . Fig. 6 also demonstrates how the reconstructed
ntensity profiles vary with increasing number of modes, particularly at
he near-wall peak 𝑦+ ≃ 15 and outer region 𝑦∕𝛿 ≃ 0.2 (𝑦+ ≃ 120). It can
e seen that the outer peaks for both the HMRs and the LMRs are clearly
ssociated with the first few dominant POD modes. The inner peaks
eem to shift towards 𝑦+ ≃ 15 when higher modes are included in the
econstruction. The red dashed line in Fig. 6(𝑎) suggests that 𝑢′𝑁𝑅=1 ≃ 0.

This is attributed to 𝑅𝑒[𝜙1(𝑦, 𝑧∗ = 0)] ≃ 0 as shown in Fig. 4 (illustrated
as vertical dashed line in Fig. 4). On the other hand, the vertical
solid line in Fig. 4 represents the reconstruction of the LMRs based
on 𝜙1(𝑦, 𝑧∗ = −3), plotted as intensity profile in Fig. 6(𝑏) (red dashed
ine). The first few modes also exhibit alternating spatial patterns with
pposite sign spaced in the spanwise direction, where the HMRs and
he LMRs are localised at the interface between these patterns. This
ndicates that the reconstructed velocity fluctuations associated with
he HMRs and the LMRs are anti-correlated.

. Influence on the mean streamwise inclination angle

The influence of MVGs on the mean streamwise inclination angle,
IA, of the coherent motions in the HMRs and the LMRs is investigated
n this section. The SIA characterises the mean structure inclination an-
le of the wall-attached energy-containing motions, which are believed
o be populated in the logarithmic and outer regions where they are
ooted in the near-wall region and inclined at an angle to the mean
low direction (Marusic and Heuer, 2007; Deshpande et al., 2019). The
IA is typically obtained by deducing the local maximum value of the
treamwise cross-correlation function between the streamwise velocity
luctuation (𝑢′) at a wall-normal position in the log region (𝑦𝑜) and

the streamwise wall-shear stress fluctuation (𝜏′𝑤) (Marusic and Heuer,
2007; Deshpande et al., 2019; Cheng et al., 2022). The streamwise
cross-correlation function can be expressed as

𝑅𝜏𝑢(𝑥, 𝑦, 𝛥𝑥) =
⟨𝜏′𝑤(𝑥, 𝑧)𝑢′(𝑥 + 𝛥𝑥, 𝑦, 𝑧)⟩
√

⟨𝜏′2𝑤 ⟩

√

⟨𝑢′(𝑥, 𝑦)2⟩
, (12)

here ⟨⋅⟩ denotes the temporal and spanwise ensemble average. The
SIA can be obtained by

𝜃𝑤𝑚 = arctan (
𝑦𝑜

𝛥𝑥p(𝑦𝑜)
), (13)

here 𝛥𝑥𝑝 is the streamwise delay at the local maximum value of 𝑅𝜏𝑢,

𝛥𝑥p(𝑦𝑜) =
|

|

|

|

|

arg max
𝛥𝑥

𝑅𝜏𝑢(𝑥, 𝑦𝑜, 𝛥𝑥)
|

|

|

|

|

, (14)

here 𝑦+𝑜 = 2.6
√

𝑅𝑒𝜏 is used in the present study as the wall-normal
position of log-region (Marusic et al., 2013). The SIA is typically in-
ferred as the mean structural inclination angle contributed by different
range of scales of energy-containing wall-attached motions (Deshpande
et al., 2019; Cheng et al., 2022). The reported range of the SIA in the
literature is approximately from 12◦ to 16◦ (Marusic and Heuer, 2007).
In addition to the mean structural inclination angle, Deshpande et al.
(2019) reported that the structure inclination angle for the large-scale
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Fig. 4. The first six two-dimensional POD modes 𝜙𝑖(𝑦, 𝑧) with their eigenvalues ranked by their percentage contributions. Re[⋅] denotes real part of the complex number.
Fig. 5. The percentage contribution of the eigenvalues (black ) and cumulative
sum of the eigenvalues (red ) for two-dimensional POD modes. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

wall-attached motions in the logarithmic region is approximately 45◦

to the wall, which is obtained by introducing spanwise offsets in the
probe measurements to separate the relatively small-scale wall-attached
motions.

Fig. 7 shows the streamwise cross-correlation function 𝑅𝜏𝑢 for
HMRs, LMRs and global TBL at 𝑥∗∕ℎ = 25, at 𝑥∗∕ℎ = 500 and the
respective SIA values at various downstream locations. From Figs. 7(𝑎)
and 7(𝑏), the correlation contour levels between the HMRs and the
LMRs appear distinguishable at 𝑥∗∕ℎ = 25 with little overlap of contour
levels between the HMRs and the LMRs, while at 𝑥∗∕ℎ = 500 where the
flow motions are expected to be spanwise homogeneous, the contour
levels between the HMRs and the LMRs are well overlapped. Overall,
the results indicate that the HMRs and the LMRs are similar in terms
of SIA, which is evident in Fig. 7(𝑐). From Fig. 7(𝑐), the difference in
the values of SIA between the HMRs and the LMRs is negligible, and
there is no significant variation in the SIA with increasing 𝑥∗∕ℎ or
Reynolds number. This suggests that a Reynolds number dependence
of the SIA is not observed. This is consistent with the Reynolds number
6

invariance of the SIA reported for smooth-wall ZPG TBLs at similar
Reynolds numbers (Marusic and Heuer, 2007).

5. POD modes-reconstructed inclination angle

To provide additional clarity on the influence of large- and small-
scale motions on the SIA obtained in the previous section, we perform
a calculation of the SIA utilising the POD technique. In Section 4,
the mean structure inclination angle, SIA, computed from (12)–(14) is
the mean angle based on a range of different scales of wall-attached
motions. The POD has been used as a tool of capturing energy (i.e. as
defined by the induced norm) in the velocity fluctuating fields by
expressing the velocity fluctuation with a superposition of POD modes,
and the average energy content of each mode is denoted by its cor-
responding eigenvalue (Rowley et al., 2004). Based on this idea, the
contribution of each POD mode to the cross-correlation function can
be assessed accordingly from (10). If we consider a time series data,
in this case we first redefine the cross-correlation function in the
form (Marusic and Heuer, 2007):

𝑅𝑢𝑟𝑢(𝑦, 𝑧, 𝛥𝑡) =
⟨𝑢′(𝑦𝑟, 𝑧, 𝑡)𝑢′(𝑦, 𝑧, 𝑡 + 𝛥𝑡)⟩
√

⟨𝑢′(𝑦𝑟)2⟩
√

⟨𝑢′(𝑦)2⟩
, (15)

where the near-wall location 𝑦+𝑟 ≃ 0.03 is used. Inserting Eq. (10) into
(15) gives

𝑅𝑢𝑟𝑢(𝑦, 𝑧, 𝛥𝑡) ≃
⟨𝑢′(𝑦𝑟, 𝑧, 𝑡)𝑢′𝑁𝑅 (𝑦, 𝑧, 𝑡 + 𝛥𝑡)⟩
√

⟨𝑢′(𝑦𝑟)2⟩
√

⟨𝑢′𝑁𝑅 (𝑦)
2
⟩

, (16)

where (16) may then be rewritten in terms of POD modes that are
ranked according to the eigenvalue in descending order: 𝜆1 > 𝜆2 >
𝜆3 >… :

𝑅𝑢𝑟𝑢(𝑦, 𝑧, 𝛥𝑡) ≃
𝑁𝑅
∑

𝑖=1
𝑖(𝑦, 𝑧, 𝛥𝑡) = 𝑁𝑅

1 (𝑦, 𝑧, 𝛥𝑡), (17)

i.e. the near-wall streamwise velocity fluctuation 𝑢𝑟 is correlated with
each of the POD mode. The methodology is different from where we
decompose both 𝑢𝑟 and 𝑢 and the correlation of each POD mode with
itself will only be considered in this case because of orthonormality.
Therefore, from (17), the 𝑁𝑅

𝑖 (𝑦, 𝑧, 𝛥𝑡) can be interpreted as the recon-
struction to the cross-correlation function by the energy captured by
the POD modes 𝑖 to 𝑁 , at locations 𝑦, 𝑧 with time delay 𝛥𝑡.
𝑅
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Fig. 6. Low-order reconstructions of streamwise turbulent stress using the first 𝑁𝑅 two-dimensional POD modes: 𝑁𝑅 = 1 (red dashed line), 100 (blue dashed line), 2, 6, 10, 20, 60
(black dashed lines) in the arrow direction and using all modes (solid line)(𝑎) HMRs and (𝑏) LMRs. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
Fig. 7. Influence of MVGs on the mean streamwise inclination angles. (𝑎, 𝑏) The streamwise cross-correlation 𝑅𝜏𝑢, computed based on the streamwise velocity fluctuation 𝑢′ and
streamwise wall shear stress fluctuation 𝜏′𝑤 for different wall-normal locations. The dotted line in (𝑎, 𝑏) denotes the SIA and the symbol × intercepting with the inclination line
marks the wall-normal position in the log-region where 𝑦+𝑜 = 2.6

√

𝑅𝑒𝜏 and the corresponding streamwise delay. Iso-lines are: 0.05 (outermost dash line) and [0.1 ∶ 0.1 ∶ 1] (solid
line). The colour contour is at levels [0 ∶ 0.05 ∶ 1] for the global TBL. (𝑐) The evolution of SIA, 𝜃𝑤𝑚 at different streamwise locations downstream of the MVGs. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 8(𝑎, 𝑏) presents the normalised temporal correlation functions
reconstructed by different numbers of POD modes (normalised by their
maximum values, 𝑅𝑢𝑟𝑢,𝑚𝑎𝑥 and 𝑁𝑅

𝑖,𝑚𝑎𝑥, respectively). Here the spanwise
location is limited to |𝑧∗| ≤ 5. Fig. 8(𝑎) presents the normalised
temporal cross-correlation function when only the high-energy rank
POD modes are retained, i.e. the POD modes with high eigenvalues.
We observe that when we include the first 103 POD modes we can
reconstruct a very similar correlation function, i.e. 103

1 ≃ 𝑅𝑢𝑟𝑢. It is
not surprising because we have shown in Fig. 5(𝑏) that the first 102

POD modes have captured more than 80% of the energy, while the
first 103 POD modes have captured almost all the energy. Moreover,
from Fig. 8(𝑎) (from left to right), it is observed that the peak of the
7

correlation is gradually shifted away from the wall when excluding
more and more low-energy rank POD modes, exhibiting a roughly
constant time shift from the near-wall region. The peak is reflecting the
first and second POD modes in Fig. 4, which are peaked at 𝑦+ ≃ 1.5ℎ+ =
120 away from the wall. This confirms that the high-energy rank POD
modes not only contribute to the correlation function in the logarithmic
region, but also with non-negligible contributions to the wall. We also
look into the contribution from the low-energy rank POD modes. From
(17), it can be computed as the subtraction: 𝑁𝑅

𝑗 (𝛥𝑡) = 𝑁𝑅
1 − 𝑗−1

1
for 𝑗 > 1, which eliminates the POD modes from 𝑖 = 1 to 𝑖 = 𝑗 − 1.
Fig. 8(𝑏) is evident that the low-energy rank POD modes reassemble the
near wall contribution to the correlation function. The inset in Fig. 8(𝑏)
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Fig. 8. Normalised temporal cross-correlation functions 𝑅𝑢𝑟𝑢(𝛥𝑡
+) and normalised POD-mode dependent cross-correlation functions 𝑁𝑅

𝑖 (𝛥𝑡+) (normalised by their respective maximum
alues, 𝑅𝑢𝑟𝑢,𝑚𝑎𝑥 and 𝑁𝑅

𝑖,𝑚𝑎𝑥, normalised contour levels are at [0.1 ∶ 0.2 ∶ 1]). (𝑎, 𝑏) Temporal delay (𝛥𝑡+) is estimated based on the time series data at 𝑥∗∕ℎ = 25. Inset in (𝑏) is the
omparison of the actual values (without normalisation with their maximum values) of the temporal cross-correlation functions 𝑅𝑢𝑟𝑢(𝛥𝑡

+) (black), 103
2 (𝛥𝑡+) (red) and 103

6 (𝛥𝑡+)
blue). The contours are at levels [0.05, 0.1, 0.2 ∶ 0.2 ∶ 1]. (𝑐) The corresponding streamwise delay of (𝑎). The streamwise delay is constructed based on the Taylor’s hypothesis
𝛥𝑥+ = 𝑈+

𝑐 𝛥𝑡
+). Here the local mean velocity is used as the convection velocity 𝑈+

𝑐 (𝑦
+) = 𝑈+(𝑦+). The SIA is marked by black dash line. The PIA is marked by blue dash line. The

ed (×) symbols mark the wall-normal locations: 𝑦+𝑜 = 2.6
√

𝑅𝑒𝜏 . The blue filled circles mark the global peak locations. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 9. Summary of two streamwise inclination angles with number of POD modes
mployed. The mean streamwise inclination angle (SIA, 𝜃𝑤𝑚,𝑡, black coloured symbols)
nd POD modes-dependent inclination angle (PIA, 𝜃𝑖1, blue coloured symbols). Reference
all-normal locations of logarithmic region: 𝑦+𝑜 = 2.6

√

𝑅𝑒𝜏 ≃ 0.12𝑅𝑒𝜏 (square), 𝑦+𝑜 =
.15𝑅𝑒𝜏 (circle). (For interpretation of the references to colour in this figure legend,
he reader is referred to the web version of this article.)

hows the comparison of the actual values (without normalisation with
heir maximum values) of the temporal cross-correlation functions 𝑅
8

𝑢𝑟𝑢 s
black), 103
2 (red) and 103

6 (blue). It is seen that when the first few
OD modes are removed (first mode in 103

2 and first five modes in
103
6 ), the correlation contour in the outer part of the plot decreases

onsiderably, while the near-wall correlation is slightly affected. The
bservations suggest that the near-wall correlation is mainly ascribed
o the contributions of the low-energy rank POD modes and they have
elatively small time delays from inspecting the correlation maps in
ig. 8(𝑎, 𝑏) (or streamwise delays as 𝛥𝑡 ∝ 𝛥𝑥 at particular 𝑦). On the
ther hand, the high-energy rank POD modes mainly contribute to the
uter correlation and they have relatively large time and streamwise
elays.

To characterise the inclination angle for the correlation functions
econstructed by the POD modes, we will use two definitions: the first
efinition of the streamwise inclination angle is defined similar to the
IA, where

𝑤
𝑚,𝑡 = arctan (

𝑦+𝑜
𝛥𝑥+p

), (18)

𝛥𝑡p =
|

|

|

|

|

arg max
𝛥𝑡

𝑁𝑅
𝑖 (𝑦𝑜, 𝛥𝑡)

|

|

|

|

|

, (19)

here Taylor’s frozen turbulence hypothesis is used here to construct a
+ + + +
treamwise delay 𝛥𝑥𝑝 = 𝑈𝑐 (𝑦𝑜 )𝛥𝑡𝑝 from the temporal cross-correlation
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function. In this approximation, the convection velocity is assumed to
be the local mean velocity, i.e. 𝑈+

𝑐 (𝑦
+
𝑜 ) = 𝑈+(𝑦+𝑜 ). The second definition

of the streamwise inclination angle is obtained by locating the best-
fitted line of local maximum value at the assumed logarithmic region
(𝑦+𝑜 = 2.6

√

𝑅𝑒𝜏 ) to the global peak at 𝑦𝑔 and 𝛥𝑡𝑔 where

(𝑦𝑔 , 𝛥𝑡𝑔) =
|

|

|

|

|

arg max
𝑦,𝛥𝑡

𝑁𝑅
𝑖 (𝑦, 𝛥𝑡)

|

|

|

|

|

, (20)

𝜃𝑖1 = arctan (
|

|

|

|

|

𝑦+𝑜 − 𝑦+𝑔
𝛥𝑥+𝑔

|

|

|

|

|

), (21)

where 𝛥𝑥+𝑔 = 𝑈+
𝑐 (𝑦

+
𝑜 )𝛥𝑡

+
𝑝 − 𝑈+

𝑐 (𝑦
+
𝑔 )𝛥𝑡

+
𝑔 . This angle can be interpreted as

how the streamwise delay at the local maximum is varied with respect
to the change in the number of POD modes involved in the logarithmic
region (where we assumed at 𝑦+𝑜 ). Therefore, we denote the second
streamwise inclination angle as POD modes-dependent inclination an-
gle (PIA). It can also be seen that by definition, the PIA is essentially
the SIA when the global peak is attached at the wall (i.e. 𝑦+𝑔 ≃ 0,
𝛥𝑡+𝑔 ≃ 0). Fig. 8(𝑐) shows the reconstruction of streamwise delays of
Fig. 8(𝑎) using the Taylor’s hypothesis. The two different inclination
angles, SIA and PIA, are illustrated in Fig. 8(𝑐), plotted as black and
blue dash lines, respectively.

Fig. 9 summarises the PIA and the SIA versus the number of POD
modes as shown in Fig. 8(𝑐). The figure shows that SIA and PIA exhibit
very different trends when fewer high-energy rank POD modes are
retained (square symbols). The PIA of the first two POD modes is about
38◦. This value is similar to the reported value of the SIA of large
wall-attached structures in the literature (e.g. Deshpande et al., 2019;
Cheng et al., 2022). As the number of POD modes increases, the PIA
decreases gradually from 38◦ and agrees better with the SIA. When
all the modes are considered, the PIA and SIA agrees well with the
results in the literature, i.e. 𝜃𝑤𝑚,𝑡 ≃ 12◦ − 14◦, where a small variation
as shown here is likely attributed to the choice of 𝑦+𝑜 and the choice of
convection velocity employed in the Taylor’s hypothesis. For example,
a limitation of the present definition of PIA is that when the value of 𝑦+𝑜
is very similar to the value of 𝑦+𝑔 as illustrated in Fig. 8(𝑐) (the 10

1 ), the
assessed PIA appears as a outlier point as shown in Fig. 9 (blue filled
square at 𝑖 = 10). We have checked the sensitivity of the presented
results to the reference wall-normal location of logarithmic region (𝑦+𝑜 ).
Fig. 9 suggests that a similar trend is observed with a different choice
of 𝑦+𝑜 , but for this 𝑦+𝑜 , the outlier point disappears. Therefore, a careful
selection of 𝑦𝑜 is needed.

6. Conclusion

In this study we focused on the flow behaviour of the long stream-
wise extended and spanwise periodic HMRs and LMRs induced by
a MVG array. A large-eddy simulation data set of rectangular MVGs
positioned in a spatially evolving moderate Reynolds number ZPG
TBL up to 𝑅𝑒𝜏 = 1350 was utilised (Chan and Chin, 2021). The
fluctuating velocity fields associated with the HMRs and the LMRs are
first extracted by a triple velocity decomposition, and the streamwise
velocity fluctuation is analysed using POD in the spanwise and wall-
normal directions. The POD analysis showed that spanwise correlation
characterises the main difference between the HMRs and the LMRs in
the low-order velocity reconstruction. Results showed that the first few
2D POD modes have similar alternating spatial patterns with opposite
sign spaced in the spanwise direction, where the HMRs and the LMRs
are localised at the interface between these regions, suggesting that
their streamwise velocity fluctuations are anti-correlated. POD analy-
sis has also been incorporated in the examination of the streamwise
inclination angles of wall-attached structures. The streamwise incli-
nation angle associated with the POD modes, PIA, has been assessed
(Figs. 8 and 9). When fewer high-energy POD modes are retained,
the PIA tends to approach the value of streamwise inclination angle
9

of relatively large wall-attached structures reported in the literature,
i.e. ∼45◦, whilst when more POD modes are retained, the PIA tends
to decrease to the value of SIA of the wall-attached structures, i,e.
∼14◦. The decreasing trend of the PIA is thus believed to be related to
the contributions of low-energy POD modes capturing the small-scale
wall-attached motions.
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