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Cooling the optical-spin driven limit cycle
oscillations of a levitated gyroscope
Yoshihiko Arita 1,2,7, Stephen H. Simpson3,7, Graham D. Bruce 1, Ewan M. Wright 1,4, Pavel Zemánek3 &

Kishan Dholakia 1,2,4,5,6✉

Birefringent microspheres, trapped in vacuum and set into rotation by circularly polarised

light, demonstrate remarkably stable translational motion. This is in marked contrast to

isotropic particles in similar conditions. Here we demonstrate that this stability is obtained

because the fast rotation of these birefringent spheres reduces the effect of azimuthal spin

forces created by the inhomogeneous optical spin of circularly polarised light. At reduced

pressures, the unique profile of these rotationally averaged, effective azimuthal forces results

in the formation of nano-scale limit cycles. We demonstrate feedback cooling of these non-

equilibrium oscillators, resulting in effective temperatures on the order of a milliKelvin. The

principles we elaborate here can inform the design of high-stability rotors carrying enhanced

centripetal loads or result in more efficient cooling schemes for autonomous limit cycle

oscillations. Ultimately, this latter development could provide experimental access to non-

equilibrium quantum effects within the mesoscopic regime.

https://doi.org/10.1038/s42005-023-01336-4 OPEN

1 SUPA, School of Physics & Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK. 2Molecular Chirality Research Centre, Chiba
University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi 263-0022, Japan. 3 Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147,
612 64 Brno, Czech Republic. 4Wyant College of Optical Sciences, The University of Arizona, 1630 East University Boulevard, Tucson, AZ 85721, USA.
5Department of Physics, College of Science, Yonsei University, Seoul 03722, South Korea. 6 School of Biological Sciences, The University of Adelaide,
Adelaide, SA, Australia. 7These authors contributed equally: Yoshihiko Arita, Stephen H. Simpson. ✉email: kd1@st-andrews.ac.uk

COMMUNICATIONS PHYSICS |           (2023) 6:238 | https://doi.org/10.1038/s42005-023-01336-4 | www.nature.com/commsphys 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01336-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01336-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01336-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01336-4&domain=pdf
http://orcid.org/0000-0002-8704-545X
http://orcid.org/0000-0002-8704-545X
http://orcid.org/0000-0002-8704-545X
http://orcid.org/0000-0002-8704-545X
http://orcid.org/0000-0002-8704-545X
http://orcid.org/0000-0003-3403-0614
http://orcid.org/0000-0003-3403-0614
http://orcid.org/0000-0003-3403-0614
http://orcid.org/0000-0003-3403-0614
http://orcid.org/0000-0003-3403-0614
http://orcid.org/0000-0002-4189-3269
http://orcid.org/0000-0002-4189-3269
http://orcid.org/0000-0002-4189-3269
http://orcid.org/0000-0002-4189-3269
http://orcid.org/0000-0002-4189-3269
http://orcid.org/0000-0001-6534-9009
http://orcid.org/0000-0001-6534-9009
http://orcid.org/0000-0001-6534-9009
http://orcid.org/0000-0001-6534-9009
http://orcid.org/0000-0001-6534-9009
mailto:kd1@st-andrews.ac.uk
www.nature.com/commsphys
www.nature.com/commsphys


Levitated optomechanics uses optical forces to suspend
mesoscopic particles in vacuum. The confinement and
translational motion of such trapped particles has seen

extensive study in the last decade with major advances including
parametric feedback cooling (FBC), zeptonewton force sensing
and the realisation of cooling to the ground state of motion1–6.
Hand-in-hand with these advances has been the study of the
rotational degree of freedom where the levitated particle’s trans-
verse motion is not only confined, but the particle is also free to
spin about its centre-of-mass. Circularly polarised light possesses
spin angular momentum. A beam of such polarisation can stably
trap and continuously rotate mesoscopic particles: by reducing
the ambient pressure in a levitated geometry in vacuum, extra-
ordinarily high spin rates may be available when operating
micron-sized birefringent particles in vacuum7. By extending to
smaller particles, rotation rates of several GHz have recently been
demonstrated8–11. These achievements provide access to a rela-
tively unexplored physical regime. This may allow experiment to
explore theoretically postulated quantum rotational effects,
including quantum friction12–15. To progress this field further
requires an understanding of the complex structure of the forces
and torques acting on rapidly rotating particles in optical vacuum
traps and the subsequent driven, stochastic motion.

Azimuthal spin forces (ASFs) are non-conservative. They
derive from azimuthal components of (linear) optical momentum
induced by inhomogeneous optical spin16–18 and are an ever-
present feature of finite, circularly polarised optical beams. They
have been shown to induce trapping instabilities for an isotropic
particle in a circularly polarised trap19. For isotropic spheres the
ASFs are appreciable in magnitude and, as one would expect,
independent of orientation. They drive orbital rotations or limit
cycles of the particle about the beam axis, the orbital angular
momentum of which increases as viscous dissipation decreases,
ultimately destabilising the trap when centripetal forces overcome
gradient forces. For birefringent spheres the ASFs are also
appreciable in magnitude. However, they are also strongly
dependent on orientation. While isotropic spheres exhibit
strongly unstable trapping dynamics, a seemingly contradictory
observation is that a birefringent particle in a circularly polarised
vacuum trap exhibits high stability in its motion7.

In this work, we explain the underlying physics for the inherent
stability of motion for rotating birefringent particles in vacuum.
The circular polarisation causes the birefringent particles to spin
rapidly, resulting in an orientationally averaged effective ASF,
several orders of magnitude lower than that of an isotropic
sphere. Although greatly reduced, the residual ASF is sufficient to
push the centre-of-mass motion of the particle well beyond
equilibrium. The associated effects, which include stochastic
orbital rotation and the subsequent formation of noisy, nano-
scale limit cycles, become increasingly conspicuous with
decreasing pressure. A key result of this paper concerns the
application of FBC to these noisy limit cycles. Here, FBC involves
modulating the optical forces in time, in such a way as to syn-
thesise effective dissipative forces. This FBC-induced damping is
sufficient to preserve the limit cycle, without introducing addi-
tional thermal fluctuations. Decreasing the ambient pressure
reduces intrinsic thermal fluctuations, leaving a coherent, cooled
limit cycle with an effective temperature on the order of
milliKelvin.

Results and discussion
Overview of the experiment. Isotropic spheres in circularly
polarised vacuum traps are driven out of equilibrium and ulti-
mately destabilised by non-conservative azimuthal forces deriving
from optical spin momentum16,19. With decreasing pressure, the

stable trapping point undergoes a Hopf bifurcation20, giving way
to noisy limit cycles (or orbits) whose amplitude increases until
the particle is ultimately ejected from the trap. These limit cycles
consist of closed, roughly circular paths oriented normally with
respect to the beam axis, which are executed by the particle,
periodically, in a well defined time. In the experiment, these
features are subject to the transverse and radial fluctuations
caused by thermal fluctuations. Intriguingly, similar behaviour
has not been previously observed for birefringent, vaterite parti-
cles, whose centre of mass motion was assumed to be con-
servative, and which are known to remain stably trapped even in
high vacuum7.

Here we experimentally investigate this apparent discrepancy
by analysing the centre-of-mass motion of a spinning vaterite
particle in a circularly polarised trap under conditions of
decreasing pressure. An overview of the key results is given in
Fig. 1. In summary, we uncover behaviour analogous to that
observed for isotropic spheres, signifying the active role of
azimuthal spin forces. In comparison to isotropic spheres,
however, the pressure required to form noisy limit cycles is
about three orders of magnitude lower, and the dimensions of the
limit cycles are about one order of magnitude lower. Application
of FBC results in the formation of ultra-coherent, nano-scale limit
cycle oscillations, with effective temperatures on the scale of
milliKelivin.

Below, we provide more detailed analysis of the free running,
and feedback cooled systems.

Free running experiments. Figure 2 describes the key features of
the centre-of-mass motion of a spinning vaterite microsphere at
higher (0.3 mbar) and lower (0.003 mbar) pressures. A more
comprehensive set of results is provided in Supplementary
Note S3. The radius of the microsphere is a= 2.2 μm, and the
trap is a tightly focused circularly polarised beam of wavelength
1070 nm and numerical aperture 1.25. Details of the experimental
set-up and tracking method are provided in Methods. The

Fig. 1 Overview of the experiment. Scatter plots of the x–y coordinates of
the centre-of-mass of silica (blue) and vaterite (orange) microspheres
before and after the Hopf bifurcation, without and with feedback cooling.
The scale bar represents 200 nm and the centres of the distributions
(marked as crosses) are positioned above the corresponding gas pressure,
shown on the log scale below.
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viscosity (μ, in Pa s) varies linearly with pressure (P in mbar)
(Supplementary Note S4). For a sphere of the given radius,

μ ’ 3:56 ´ 10�7P: ð1Þ

The rate at which the vaterite sphere spins is inversely propor-
tional to pressure and observed to be 100 kHz at a pressure of
0.01 mbar. For comparison, an analogous study, for a silica
microsphere, is provided in Supplementary Note S2. At higher
pressures ( ≈ 0.3 mbar), the centre-of-mass motion of spinning
vaterite appears conservative (see Fig. 2a) since the spatial
probability distribution is normal, (Fig. 2(c)) with kurtosis 2.9.
However, the cross correlation (Fig. 2(e)) shows weak coupling
between x and y coordinates, π/2 radians out of phase with the
auto-correlation, indicating a slight tendency towards stochastic
orbital motion of the centre-of-mass about the beam axis21. This
is an explicitly non-conservative effect, reliant on azimuthal for-
ces, demonstrating a departure from thermodynamic equilibrium.
As the pressure is reduced, the probability distribution remains
approximately normal (Supplementary Note S3) and the ten-
dency towards orbital circulation, expressed by the amplitude of
the cross correlation, grows. Further reduction of the pressure
below 0.03 mbar causes the trapping point to undergo a Hopf
bifurcation leaving a noisy limit cycle20, characterised by an
annular probability distribution (Fig. 2(b, d)), and a cross-
correlation with amplitude ~ 0.8 and a decay time, τD ≈ 170 ms,
equivalent to ≈ 85 × 103 time periods (Fig. 2(f)). This behaviour is
directly analogous to that observed for isotropic silica spheres of
similar dimensions (Supplementary Note S4), although the
pressures required for limit cycle formation are approximately
three orders of magnitude lower for spinning vaterite and the
dimensions of the limit cycles are one order of magnitude lower.

Theoretical model. To understand the dramatic quantitative dif-
ferences between the motion of vaterite and silica microspheres
we consider a simple numerical model (see Supplementary
Note S4). With reference to the schematic, Fig. 3(a), the particle is
at mechanical equilibrium when its symmetry axis, û, is parallel
to the transverse, x–y plane, and the centre-of-mass is down-
stream of the focal point, so that the weight of the particle is
balanced by the upward radiation pressure. An optical torque, τz,
causes it to spin with equilibrium angular frequency Ωs= τz/ξr for
rotational drag ξr= 6πμa. Figure 3(b) shows the azimuthal force,
fϕ(r, α), as a function of radial position, r, and orientation, α. This
component depends strongly on orientation, changing sign for
ranges of α, and can be well approximated by a low order Fourier
series, e.g. f ϕðr; αÞ � a0ðrÞ þ a2ðrÞ sinð2αÞ þ b2ðrÞ cosð2αÞ (where
a0 is much smaller than a2 or b2). As a consequence, the ASF
acting on the particle oscillates at the spinning frequency, Ωs. In
contrast, the gradient force is approximately independent of α,
and linear for r⪅ 1 μm with stiffness coefficient k.

The motion of the particle depends qualitatively on the relative
frequencies of the spinning (Ωs) and translational (Ωo ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
)

motions (see Supplementary Note S4). Here, we are primarily
interested in the low pressure regime where Ωs≫Ωo. Under
these conditions, conservation of angular momentum increas-
ingly confines the symmetry axis, û, to the transverse x–y plane
and oscillations of the azimuthal force, caused by the particle
spinning, are too rapid to couple with the motion of the centre-
of-mass (Supplementary Note S4). As a result, the dynamical
motion of the centre-of-mass is determined by rotationally
averaged, effective forces, h f r=ϕðrÞi ¼

R 2π
0 f r=ϕðr; αÞdα. The effec-

tive ASF, 〈 fϕ(r)〉, is strongly suppressed in comparison with
isotropic particles, contains non-linearities close to the beam axis
and changes sign at r ≈ 0.2 μm (see Fig. 3(c)).

It is instructive to ignore thermal fluctuations and consider the
underlying deterministic motion of the particle. At higher
pressures, viscous damping prevents the centripetal forces
acquired by the particle, from the non-conservative ASFs, from
exceeding the optical gradient forces19. This ensures the stability
of the trapping point. At lower pressures, limit cycles (or orbits)
can form in which gradient and centripetal forces are balanced in
the radial direction and azimuthal forces are balanced by viscous
drag,

mrΩ2
o ¼ f rðrÞ � kr; ð2aÞ

ξtΩor ¼ f ϕðrÞ: ð2bÞ
In addition to these equilibrium conditions (Eq. (2)), stability
conditions (Supplementary Note S6) must also be satisfied. These
latter conditions define the curvature in the force field required to
ensure that perturbations from the limit cycle decay with time.
For spinning vaterite, this curvature appears close to the beam
axis, explaining the lower radius of the orbits in comparison to
those formed for silica (Fig. 3(c)). Application of the equilibrium
and stability conditions to the averaged force profiles predicts
stable, deterministic limit cycles, emerging for pressures below ≈
0.06 mbar, with radii in the range ro ≈ 0.1→ 0.15 μm, which
remain mechanically stable for arbitrarily low pressures.

The above considerations determine the stability of determi-
nistic trajectories. To understand the effect of thermal fluctua-
tions we integrate the stochastic, Langevin equations of motion,
Eq. (3),

hfðrÞi þ fLðtÞ �mgẑ� ξt _r ¼ m€r; ð3aÞ

hfLðtÞi ¼ 0; hfLðtÞ � fLðt0Þi ¼ 2kBTξtδðt � t0Þ; ð3bÞ
with rotationally averaged forces. Probability densities, similar to

Fig. 2 Experimentally measured centre-of-mass motion of spinning
vaterite particles at pressures of 0.3 mbar and 0.003mbar. Spatial
probability distributions in the x–y plane (a, b) are projected onto x (c, d)
together with the auto (orange) and cross (yellow) correlations, i.e.
Cxx= 〈x(t)x(t+ τ)〉 and Cxy= 〈x(t)y(t+ τ)〉 (e, f).
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those observed experimentally, are obtained Fig. 3(d, e). These
simulations suggest that the trap remains thermally stable to
pressures below ≈ 3 × 10−4 mbar (see also Supplementary
Note S5).

Parametric feedback cooling
Theoretical considerations. Conceptually, the aim of FBC is to
augment the intrinsic viscous forces in a stochastic system (e.g.
Eq. (4a)), without modifying the variance of the fluctuating for-
ces. Obviously, this modified system does not satisfy the
fluctuation-dissipation theorem (Eq. (3b)).

ξt ! ξ0t ¼ ðξt þ ξfbt Þ; ð4aÞ

T ! T 0 ¼ Tξt=ðξt þ ξfbt Þ; ð4bÞ
However, by applying the transformations, Eq. (4), to the Lan-
gevin equation, Eq. (3), (where ξfbt is a feedback-induced drag
coefficient), we see that the system with perfect feedback is
equivalent to a new, effectively autonomous, system which
satisfies the fluctuation-dissipation theorem with increased drag,
Eq. (4a), and a rescaled temperature, Eq. (4b).

Most commonly, FBC is applied to conservative systems which
satisfy the Boltzmann distribution at steady state. Since this
distribution is independent of viscosity, the only effect of FBC on
the steady state distribution is an effective reduction in
temperature, Eq. (4b). Here, we apply FBC to non-equilibrium
steady states (NESS), associated with a non-conservative system.
In this case, probability distributions generally depend on
viscosity20 as well as temperature. Thus, the influence of FBC
on steady state conditions can only be understood by combining
both Eqns. (4) with steady state probability distributions which,
for NESS, are seldom known a priori. For this reason, care must
be taken in estimating effective temperatures in such systems22.
In order to arrive at an internally consistent estimate we analyse
both radial fluctuations and phase diffusion about the cycle.

Our implementation of FBC is described in the Methods.
Additional damping is synthesised by modulating the optical
power in response to measurements of the particle position. The

magnitude of the feedback induced damping, ξfbt , depends on the
efficiency of the feedback loop. Initially, ξfbt increases as the
intrinsic Stokes drag and associated thermal fluctuations are
decreased. Thereafter it approaches a limit imposed by the time
delays and other imperfections in the system. This principle
determines the variation of the effective drag, ξ0t and temperature
T 0, Eq. (4) with viscosity and therefore pressure (Eq. (1). As
pressure is reduced, ξ0t initially increases as ξfbt increases.
Ultimately, the Stokes drag, ξt becomes negligible and ξfbt attains
its limiting value, so that the effective drag, ξ0t , saturates. The
variation of the effective temperature, T 0 in Eq. (4b), is dominated
by decreases in the Stokes drag, ξt, so that it decreases
continuously with decreasing pressure, approaching linearity i.e.
T 0 � Tξt=ξ

fb
t , for low pressure with constant ξfbt .

Experimental results. With these considerations in mind, we
explore the effect of FBC on the non-equilibrium centre-of-mass
motion of our rapidly spinning vaterite particles. Figure 4
describes the effect of applying FBC simultaneously to the x, y
and z motions of optically trapped spinning vaterite
microspheres.

Figure 4(a–c) show spatial probability distributions at pressures
of 0.29, 0.03 and 0.003 mbar for feedback cooled vaterite particles.
Decreasing pressure results in dramatic clarification of the
underlying limit cycle, as indicated by the cross correlations,
Fig. 4(d), whose amplitudes approach unity with decay constants
equivalent to ≈ 2 × 105 orbital time periods at a pressure of
3.3 × 10−3 mbar. The underlying deterministic cycles are approxi-
mated by fitting general closed curves, ro(ϕ), to the noisy data
(Supplementary Note S7) allowing us to compute first the mean
radius of the cycle, �ro ¼ 1

2π

R π
�π roðϕÞdϕ, (Fig. 4(e)) and next the

variance of the fluctuations transverse to the cycle (Fig. 4(f)).
The parameters of these limit cycles can be used to quantify the

effective forces operating in the feedback cooled system.
Balancing radial forces, Eq. (2a), gives the limit cycle frequency,
Ωo �

ffiffiffiffiffiffiffiffiffiffiffiffi
kfb=m

p
, where kfb is the stiffness including any modifica-

tions caused by feedback. Since Ωo is unchanged, the influence of

Fig. 3 Theoretical model. (a) Schematic showing a birefringent microsphere held in a circularly polarised (CP) optical trap. The co-ordinate system
denotes the Cartesian co-ordinates by x, y and z and the polar co-ordinates by r and ϕ. û is the particle’s symmetry axis and α and β describe the particle’s
orientation relative to the trap centre. Calculated values of the (b) azimuthal force, fϕ(r, α) as a function of radial coordinate, r, and orientation, α, and (c)
orientationally averaged azimuthal forces for a birefringent vaterite sphere (biref), an equivalent isotropic sphere with the same mean index of refraction
(iso) and as silica (Si). Steady state spatial probability distributions simulated using rotationally averaged forces in (d) the x–y plane and (e) projected onto
the x coordinate.
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feedback on the trap stiffness is negligible (i.e. kfb ≈ k). Eq. (2b)
describes the relationship between the limit cycle dimensions and
the drag forces acting on the particle. Similarly, balancing
azimuthal forces, Eq. (2b), suggests that the limit cycle will
constrict with increasing drag, due to the form of the effective
ASF (Fig. 3(c)). This effect is shown in Fig. 4(e), consistent with
the previous assertion that the total drag, ðξt þ ξfbt Þ, increases
initially before approaching a limiting value as the pressure is
reduced. Figure 4(f) examines the cycle averaged variance in the

radial fluctuations, hðr � roÞ2i, with and without feedback (see
Supplementary Note S7 for details). We see that the cooled radial
fluctuations are proportional to P, and therefore to the effective
temperature, T 0. The notion of temperature in single particle
NESSs is controversial22 and cannot usually be directly related to

quantities such as hðr � roÞ2i. However, by necessity

hðr � roÞ2i= 0 for T= 0, and we expect hðr � roÞ2i / T

for small T19. These caveats notwithstanding, hðr � roÞ2i
decreases linearly with pressure, by ~ 4 orders of magnitude at a
pressure of 3.3 × 10−3 mbar, implying an effective temperature
Oð10ÞmilliKelvin.

Further insight into the stochastic dynamics can be obtained by
considering the phase diffusion about the limit cycle. Since limit
cycles are neutrally stable, diffusion along a limit cycle resembles
diffusion in a constant force field23,24. For an approximately
circular limit cycle with radius �ro, at long times, the variance of
the displacement of the phase satisfies Eq. (5a),

h ϕðΔtÞ � �ϕðΔtÞ� �2i �
2kBT
�ro
2ξt

Δt; No FB ð5aÞ
2kBTξt

�ro
2ðξfbt þξt Þ

2 Δt; FB ð5bÞ

8<
:

where we have defined the phase simply by the azimuthal coordinate,
accumulated continuously as the cycle is repeatedly traversed. The
expression for phase diffusion with feedback, Eq. (5b), can be
obtained either by applying the transformations, Eq. (4), or through
formal integration (Supplementary Note S8). In the low pressure
limit with feedback, we have h ϕðΔtÞ � �ϕðΔtÞ� �2i / ξtΔt. This
relationship is confirmed in Fig. 4(g), for time intervals t≲ 0.1 s, and
should be compared with the result for unperturbed limit cycles,
Eq. (5a), which has the inverse dependence on ξt. For larger intervals,

Δt≳ 0.1, phase diffusion saturates, suggesting that the particle
motion, along the limit cycle, synchronises with the time modulation
of the optical forces25. These observations support the notion that
the statistics of feedback cooled, non-equilibrium states can be
understood in terms of the effective temperature and modified drag
given in Eq. (4), given prior knowledge of the general form of the
statistics we are interested in (Eq. (5), for example).

Conclusions
As we have shown, the azimuthal forces acting on vaterite
particles, trapped in circularly polarised vacuum traps, depend
strongly on orientation and can even reverse their direction so
that they oppose the direction of the spin momentum16 in the
incident field. This counter-intuitive and seemingly paradoxical
behaviour has been observed in other systems18,26, and can
often be explained by considering the momentum in both the
incident and scattered optical fields. Rapid rotation of vaterite
microspheres results in effective azimuthal forces that are
strongly suppressed and highly non-linear. This combination of
properties explains the huge quantitative differences observed
for birefringent and isotropic microspheres. In both cases,
reductions in pressure (i.e. viscosity) destabilise the trap, which
undergoes a bifurcation leading to limit cycle formation. For
vaterite particles, however, the suppression of the effective ASF
means that the pressure at which this transition takes place is
four orders of magnitude lower than it is for silica, while the
non-linearity accounts for the reduction in size of the limit
cycles formed. Our results show that objects of intermediate
dimensions can be stabilised in circularly polarised traps by
selecting or designing particles with appropriate effective ASFs
(see Supplementary Note S10), allowing for the design of larger
rotors carrying greater centripetal loads required e.g. for testing
fundamental material properties27,28. To illustrate this point,
Supplementary Note S9 describes how dramatic improvements
in stability can be obtained by tuning the length of a silicon
microrod held in a circularly polarised counter-propagating
beam trap.

Crucially, the effective azimuthal force is non-linear close to
the beam axis, within the linear range of the gradient force. This
unique characteristic allows us to cool these limit cycles to
effective milliKelvin temperatures. FBC increases the effective

Fig. 4 Experimentally measured stochastic trajectories of a vaterite microsphere in a circularly polarised trap with feedback damping. Particle position
distribution in the x–y plane at different gas pressures of (a) 0.29mbar, (b) 0.03mbar, (c) 0.0033mbar. Envelope of the cross correlation 〈x(t)y(t+ τ)〉 at
different gas pressures with decay times of 13.8 s (0.29 mbar), 37 s (0.03mbar) and 416 s (0.0033mbar), compared with a orbital time period of 2 ms (d).
Mean orbital radius �r, (e), and (f) variance of radial fluctuations hðr � roÞ2i, where ‘FB’ (orange) denotes a feedback cooled particle and ‘no FB’ (blue)
denotes a particle without feedback cooling. Phase diffusion of feedback cooled limit cycles accrued over time intervals, Δt, normalised by gas pressure in
mbar (g). Results for three different pressures are shown, P= 0.01, 0.003, 0.001 mbar.
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drag acting on the particle, which shrinks the limit cycle towards
a limit. In addition, the reduction in effective temperature sup-
presses thermal fluctuations, exposing nano-scale limit cycles of
exceptional clarity. We analyse both the transverse fluctuations
and phase diffusion about the cycle to give estimates of the
effective temperature on the order of≳ 1 milliKelvin. Extensions
of this approach could enable cooling towards the quantum
regime, which could allow experimental realisation of quantum
synchronisation, macroscopic entanglement of mesoscopic bodies
or, more generally, the study of the non-equilibrium stochastic
thermodynamics of self-sustained oscillators29–32.

Although ASFs decrease rapidly for particle sizes approaching
the dipole limit33 (see Supplementary Note S10), the effects we
describe are otherwise generic, and will necessarily manifest
themselves in other systems e.g. nanodumbells or microrods10,34

(see Supplementary Note S9). We also note that all circularly
polarised beams carry azimuthal components of momentum,
while the corresponding forces may be small or suppressed
depending on the particle’s size, shape and material, they can
never be perfectly negated. The effects reported here are therefore
generic, and are guaranteed to appear for sufficiently low
damping.

Methods
Sample preparation. Vaterite is a positive uniaxial birefringent material in a
spherical morphology. The synthesis of vaterite microspheres with a mean radius
of 2.20 μm± 0.02 μm (2σ) is reported elsewhere7. NIST-traceable size standards of
silica with a diameter of 5.1 ± 0.5 μm (Thermo Scientific 9005) are used to compare
their dynamics with birefringent microspheres.

Sample loading. We use a small vacuum chamber with a volume of 27.7 μℓ and an
annular piezoelectric transducer (APC International Ltd., Cat. no.70-2221)
attached to the chamber to load microspheres into the optical trap. Before con-
ducting the trapping experiments, dried microspheres are applied to the surface of
optical glass windows (Harvard Apparatus Ltd., CS-8R: 8 mm in diameter, 150 μm
in thickness) of the chamber. Once sealed, the chamber pressure is reduced to ~
100 mbar. The piezoelectric transducer is operated at 140 kHz to detach micro-
spheres from the glass surface, while a high numerical aperture microscope
objective (Nikon Ltd., E Plan 100 × , NA= 1.25/oil) focuses a circularly polarised
trapping beam (continuous wave 1070 nm) in the vacuum chamber. When a single
particle is trapped, the piezoelectric transducer is switched off, and the chamber
pressure is further reduced to < 1 mbar to provide parametric feedback control. The
optical power can be adjusted to 10−25 mW to obtain the desired trap frequency
from 0.4 kHz to 1.1 kHz.

Particle position detection. The particle motion is tracked by a quadrant pho-
todiode (QPD) array (First Sensor, QP50-6SD2, −3dB at 150 kHz). To calibrate the
QPD response to nanometer displacements, we used a nano-positioning stage (PI,
P-733.3 XYZ) with an orientated vaterite microsphere adhered to the surface of the
glass coverslip. First, the trapping beam is focused onto the centre of the stuck
microsphere. Next, the forward scattered light from the microsphere is directed
onto the QPD, and its voltage reading is recorded at ten-nanometer increments
along the x and y directions. Then, the measurement is repeated at different
orientations from 0 to π with a π/8 step. As a result, we obtain eight different values
of the QPD voltage dependence with respect to displacement (see Supplementary
Note S1). Because the vaterite microsphere rotates at a rate (≫ 10 kHz) that is
orders of magnitude larger than the trap frequencies ( ~ 0.5 kHz) for gas pres-
sures < 0.1 mbar, the QPD voltage response can be averaged over the angles. As a
result, we obtain a mean dependence of 5.59 mV nm−1 with a position sensitivity
of 2.0 nm in its linear range (see Fig. S1(b)).

Feedback control and phase-locked loop. In order to perform FBC experiments,
the interference pattern of the forward scattered light from a trapped microsphere
is projected at the back focal plane of an imaging objective onto the QPD, yielding
three voltage signals corresponding to the microsphere’s x, y and z motion (see
calibration of QPD above).

The QPD signals are processed by a lock-in-amplifier (Zurich Instruments,
HF2LI, 210MSa/s, DC− 50MHz) to extract the oscillation frequencies (ωx, ωy, ωz)
and their phases (ϕx, ϕy, ϕz) of the particle oscillation. A frequency-doubled
waveform with an adjusted phase shift relative to the particle oscillation for each
direction is superimposed as ΣAi sinð2ωit þ ϕi þ δϕiÞ, where i= x, y, z to the
voltage waveform driving an acousto-optic modulator (IntraAction, DTD-
274HD6M) to modulate the trap intensity (≤ ± 5%). For limit cycle oscillations,

ωx= ωy≡Ωo and the modulation in response to transverse motions is simply
A sinð2Ωot þ ϕo þ δϕoÞ.

Data availability
The underlying data is available at https://doi.org/10.17630/54fd540e-dad6-450d-80a2-
f436af2cc631.

Code availability
Code available on request from the authors.
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