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A B S T R A C T   

Substantial night-to-night variability in obstructive sleep apnoea (OSA) severity has raised misdiagnosis and 
misdirected treatment concerns with the current prevailing single-night diagnostic approach. In-home, multi- 
night sleep monitoring technology may provide a feasible complimentary diagnostic pathway to improve both 
the speed and accuracy of OSA diagnosis and monitor treatment efficacy. This review describes the latest evi-
dence on night-to-night variability in OSA severity, and its impact on OSA diagnostic misclassification. Emerging 
evidence for the potential impact of night-to-night variability in OSA severity to influence important health risk 
outcomes associated with OSA is considered. This review also characterises emerging diagnostic applications of 
wearable and non-wearable technologies that may provide an alternative, or complimentary, approach to 
traditional OSA diagnostic pathways. The required evidence to translate these devices into clinical care is also 
discussed. Appropriately sized randomised controlled trials are needed to determine the most appropriate and 
effective technologies for OSA diagnosis, as well as the optimal number of nights needed for accurate diagnosis 
and management. Potential risks versus benefits, patient perspectives, and cost-effectiveness of these novel ap-
proaches should be carefully considered in future trials.   

1. Introduction 

Obstructive sleep apnoea (OSA) is the most common pathological 
respiratory sleep disorder. Globally, it is estimated that 936 million 
(95% CI 903–970) adults aged 30–69 years have at least mild OSA, with 
425 million (399–450) experiencing moderate to severe OSA [1]. Un-
treated OSA has been associated with a wide range of adverse health 
outcomes, including cancer [2,3], cardiovascular disease [4–6], 
increased motor vehicle accidents [7], decreased cognitive function [8], 
reduced quality of life [9,10], depression [11], and ultimately, all-cause 
mortality [5,12,13]. In 2015, the cost of undiagnosed OSA in the US was 
estimated to be nearly $150 billion, for reasons such as absenteeism and 
loss of productivity ($87 billion), increased risk of cardio-metabolic 
disorders, mental health conditions ($30 billion), and motor vehicle 
accidents ($26 billion) [14]. 

The severity of OSA can vary widely between nights in many people 
[15,16]. Night-to-night variability in OSA severity increases the 

likelihood of misdiagnosis [15,16]. This may increase the health burden 
and costs associated with overtreatment of patients demonstrating 
worse OSA severity on their clinical diagnostic study compared to their 
usual average on other nights. Conversely, missed or undertreatment of 
patients who exhibited low severity on their single diagnostic night 
compared to more significant OSA on other nights is also clearly prob-
lematic. This review summarises the current diagnostic and manage-
ment practices of OSA, the limitations of current practices in light of 
growing literature on the night-to-night variability of OSA, and how 
emerging sleep technologies may be useful for overcoming the chal-
lenges of assessing multi-night OSA severity. 

2. Current management of obstructive sleep apnoea 

2.1. Definition of OSA severity 

In patients with OSA the upper airway frequently collapses, either 
partially or completely, to cause hypopneas (a significant reduction in 
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airflow) and apnoeas (complete cessation of airflow), respectively. OSA 
severity classification and diagnosis are traditionally determined based 
on the total number of apnoea and hypopnoea events per hour of sleep - 
the apnoea hypopnoea index (AHI). The gold standard methodology to 
derive this metric and quantify OSA severity currently relies on over-
night polysomnographic recordings. Polysomnography incorporates 
concurrent electroencephalography, electrooculography, electromyog-
raphy, electrocardiography, body position and movement, and 
respiratory-related signals including airflow, chest and abdominal mo-
tion, and oximetry. These signals are then scored manually according to 
international guidelines to classify apnoea and hypopnoea events, from 
which the AHI is derived. The American Academy of Sleep Medicine’s 
(AASM) current recommended scoring guidelines classify hypopneas as 
a ≥30% reduction in airflow signals associated with a cortical arousal 
(at least 3 s of wake like-electroencephalography) or an oxygen desa-
turation ≥3%. OSA severity is based on predefined AHI cut-off scores, 
with an AHI between 5 and 15 classified as mild, 15–30 as moderate, and 
>30 events/h as severe OSA [17]. 

2.2. Home-sleep apnoea testing 

While polysomnography captures rich sleep and respiratory data, it 
is costly, time-consuming, and can be inaccessible within a short time-
frame, and a substantial burden for patients. These limitations, coupled 
with the scale of OSA prevalence, lack of specialised clinical services, 
and the burden of disease associated with OSA in the community, make 
simplified home-based diagnostic tests for sleep apnoea more attractive 
than in-laboratory polysomnography. Home sleep apnoea tests (HSAT; 
or polygraphy) have been used for several decades as a complementary, 
more feasible tool to diagnose OSA in the home environment, which is 
more representative of the usual sleep environment compared to in 
laboratory PSG [18]. In polygraphy, electroencephalography, electro-
oculography and electromyography are not typically recorded, so 
recording time rather than sleep time is used to estimate the frequency 
of obstructed breathing events. The AASM defines a technically 
adequate HSAT as a “device [that] incorporates a minimum of the 
following sensors: nasal pressure, chest and abdominal respiratory 
inductance plethysmography, and oximetry; or else peripheral arterial 
tonometry with oximetry and actigraphy.” [19] These devices also need 
to fulfill technical specifications outlined in the AASM Manual for the 
Scoring of Sleep and Associated Events [20]. 

In 2017, the AASM commissioned a task force to review available 
evidence on the use and validation of HSATs [19]. The task force rec-
ommended that HSATs could be used for the diagnosis of OSA, but that if 
a single home-study was found to be negative, a second full poly-
somnography sleep study should be performed to help rule in or out 
OSA. Twenty-six validation studies comparing the diagnostic accuracy 
of single night HSAT against single night polysomnography were 
reviewed in the task force report and it was suggested that the accuracy 
to classify mild, moderate, and severe OSA using HSATs ranged between 
70 and 90% [19]. An earlier meta-analysis of 19 validation studies of 
HSATs suggested that the predictive performance of HSATs were rela-
tively good, with an estimated area under the receiver operating char-
acteristics curve between 0.85 and 0.99, sensitivity between 0.79 and 
0.97, and specificity between 0.60 and 0.93 across different 

apnoea–hypopnea cut-offs [21]. At least two studies since have reported 
that in participants with high pre-test probability of OSA, HSATs could 
result in a false negative in as many as 25–50% of cases [22,23]. Thus, 
these findings further suggest that polysomnography may be useful 
when an initial negative result is obtained using a HSAT [19]. Never-
theless, multiple randomised controlled trials have shown that diag-
nosis, management, and treatment decisions based on HSAT data is not 
inferior to gold-standard polysomnography [24–32]. Furthermore, the 
existing literature indicates that objective assessment of sleep-related 
respiratory disturbances, treatment adherence and acceptance, sleepi-
ness, and functional outcomes do not differ between HSAT and 
polysomnography-based management of OSA, demonstrating the clin-
ical utility of HSATs. 

2.3. Wearables and non-wearables for OSA diagnosis 

With the growing use of HSATs to diagnose OSA, a plethora of 
technologies have concurrently emerged that claim to monitor sleep and 
breathing more easily than conventional HSAT and polysomnography 
[33]. In the context of this review, a wearable is defined as a sleep 
monitoring technology worn by the participant (e.g., a watch) whereas a 
non-wearable is placed near the user (e.g., under-mattress sensors). 
Some devices can record information on breathing patterns without the 
need to physically apply any monitoring equipment using techniques 
such as bedside Doppler [34], infrared video [35] and/or ballistography 
in instrumented mattresses [36–39]. Other devices, such as smart 
watches [40,41] or thoracic bands [42] use oximetry and movement of 
the thoracic cage to estimate OSA severity, respectively. One wearable 
device, Watch PAT (Itamar Medical, Israel), has been validated exten-
sively in the past 10 years, and has consistently shown good perfor-
mance against polysomnography in the diagnosis of sleep disordered 
breathing [43–46]. Several under-the-mattress devices, such as the 
Withings Sleep Analyzer (Withings, France [15,37]) [11,32], Earlysense 
(discontinued) [47] and Sleeptracker-AI Monitor (Fullpower Technolo-
gies, USA) [48] devices use ballistography-based algorithms to infer 
sleep and the AHI from body, respiratory and cardiac-related move-
ments studies. Some of these devices have recently been implemented in 
research trials to investigate potential night-to-night variability in OSA 
severity [15,49]. Measurement of mandibular movements through a 
device placed on the chin (Sunrise system; Sunrise, Belgium) has also 
been shown to reliably estimate OSA severity in adults [50,51] and 
children [52]. Respiratory effort has been reliably approximated from 
this device [53], which has recently been shown to better predict hy-
pertension prevalence compared to traditional polysomnography met-
rics [54]. This device is now being validated as an OSA diagnosis device 
vs PSG in a large (target N ~900), prospective, randomized, 
parallel-arm, open-label, multicenter, national (France), controlled 
study (ClinicalTrials.gov ID NCT04675268). Another device, the Dreem 
headband (Dreem, France), is the only consumer available wearable 
devices that measures electroencephalography in addition to breathing 
frequency, heart rate, and sound. The Dreem headband has been shown 
to provide relatively accurate estimates of sleep stages compared to 
polysomnography [55] and can reliably classify mild OSA (specificity 
84% and sensitivity 96%). However, these study findings have not yet 
undergone peer review [56]. 

Noting the promising findings for estimating sleep and OSA severity 
with emerging technologies, there are also significant limitations that 
are impacting the implementation of wearables/non-wearables in clin-
ical care. Firstly, most of these devices (including most HSATs) do not 
measure electroencephalography. Hence, the calculation of OSA 
severity is based on recording time or estimated total sleep time, rather 
than the gold standard measure of sleep duration. Hence quantification 
of OSA severity derived from these devices, sometimes referred as res-
piratory event indexes, may be a noisier estimate than gold-standard 
AHI. Secondly, while many devices have been validated against poly-
somnography, no randomised controlled trial has studied the potential 
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benefits to patient outcomes from implementing these technologies into 
clinical care for OSA. Thirdly, the commercial landscape of sleep 
monitoring technology is rapidly evolving, and many devices are 
introduced, refined, and discontinued every year. This makes the clin-
ical validation of devices challenging. Notwithstanding these limita-
tions, wearables and non-wearables allow longitudinal monitoring of 
OSA symptoms over months, as recently demonstrated [15], which is 
likely to provide greater insights and improve our understanding of the 
manifestation of OSA over time and open new pathways for disease 
management. 

3. Night to night variability of obstructive sleep apnoea severity 

3.1. OSA misdiagnosis: is one night enough for an accurate diagnosis? 

Since the advent of sleep studies, OSA diagnosis has relied upon 
single-night studies, despite multiple studies showing considerable 
night-to-night variability in key measures of OSA severity. In the context 
of this review, misclassification is defined as inaccurate classification of 
OSA severity, whereas misdiagnosis is defined as an invalid classifica-
tion of OSA status (yes, no) given a specific AHI threshold. 

A study of 10,340 adults undertaking 3 nights of HSAT suggested 
that approximately 20% of participants with mild or moderate sleep 
apnoea on the first night were misdiagnosed either as not having sleep 
apnoea or were misclassified as having a milder disease severity based 
on the composite AHI score derived from 3 nights of data as the refer-
ence (Fig. 1, right). Another study of >65,000 individuals undergoing 
~6 months of at-home monitoring of sleep apnoea using an under-the- 
mattress sensor also indicated that the probability of obtaining a 
misdiagnosis on any given night was as high as 20%–50% for partici-
pants with mild to moderate OSA [15]. Misclassification of OSA severity 
was also high (Fig. 1, left). These findings are in agreement with earlier 
reports with smaller sample sizes (up to 300 participants) which report 
misdiagnosis probability rates of up to 60% with single-night studies 
[16,49,57–59]. 

Studies have also investigated the night-to-night variability of OSA 
severity via studies conducted in sleep laboratories. Under these con-
ditions, participants usually experience worse sleep on the first night, 
known as the ‘first-night effect’. The opposite can occur in people with 
insomnia, where sleep is improved in the laboratory versus the home 
environment. Given that insomnia symptoms are also common in many 
people with OSA [60], these variables first night effects may contribute 
to variable estimates of OSA severity. A study in 2008 (n = 20) found 
that the correlation between AHI values determined on 2 consecutive 

nights of in-laboratory sleep was relatively low (r = 0.44 [61]) [56]. 
Similar results have been reported in other studies [57,62,63]. A bias 
towards more first-night supine-time has also been noted in laboratory 
sleep studies [64]. While the overall group mean difference in AHI 
across two consecutive nights was relatively small in these studies, a 
substantial proportion (between 10 and 60%, depending on the defini-
tion) of participants had a ≥5 or ≥ 10 events per hour difference be-
tween nights. Furthermore, around 20–40% of participants in these 
studies were alternating between OSA severity categories across be-
tween nights. Two consecutive nights of at-home sleep testing instead of 
polysomnography suggest similar results and conclusions [16,59, 
65–68]. Furthermore, two alternating nights of polysomnography and 
HSAT have similar misdiagnosis probabilities 17,18,22,23,64,69, sup-
porting that misclassification and misdiagnosis rates are similar with 
polysomnography and HSAT and reflects AHI variability between nights 
rather than reliability effects. 

These reports were recently reviewed in a meta-analysis of 24 
studies, comprised of 3250 participants [70]. The mean difference in 
respiratory disturbances indices, including AHI and the oxygen desatu-
ration index (ODI; number of desaturation greater than 3 or 4%) be-
tween first and second night was relatively low (− 1.7 events per hours) 
at the population level. However, the proportions of participants who 
showed a difference of more than 10 events per hours in respiratory 
disturbances indices was as high as 41% (95% CI 27–57%; Fig. 2). More 
importantly, as many as 49% (95% CI 32–65%) of participants changed 
OSA severity category at least once in sequential sleep studies. Such a 
large misclassification probability in mild to moderate OSA may be 
particularly problematic given that some current clinical guidelines 
indicate that an AHI of >15 events/h, even in the absence of symptoms, 
is sufficient for the initiation of therapy. This may lead to almost 
one-third of patients being undertreated and 15% overtreated based on a 
single-night AHI value [71]. 

The relative contribution to differences in AHI and respiratory dis-
turbances indices between consecutive nights from first-night effects, 
changes in head and body position across the night, changes in sleep 
structure, behavioural (e.g. alcohol), physiological changes in OSA 
severity, or inter-scorer variability in apnoea and hypopnea scoring [72, 
73] remains to be determined. Nonetheless, the most up to date AASM 
guidelines recommend that a single night of polysomnography 
recording is sufficient for the diagnosis of sleep apnoea [19]. Given the 
consistent published evidence that night-to-night variability leads to 
high OSA misclassification rates, this recommendation needs to be 
revisited. 

3.2. What is the ideal number of nights for best practice assessment? 

If multi-night assessments of OSA severity are required to accurately 
classify disease severity, then an important consideration is how many 

Fig. 1. Obstructive sleep apnoea (OSA) severity category misclassification. 
Left) Average proportions of night per participant where the OSA severity 
category is different from the reference OSA severity category. Right) Propor-
tion of participants misclassified compared to the reference category. Adapted 
from Lechat, Naik [15] and Punjabi, Patil [16]. 

Fig. 2. Percentages of participants with an absolute change in obstructive sleep 
apnoea (OSA) severity parameter (apnea-hypopnea index [AHI] or oxygen 
desaturation index [ODI]) over sequential nights >10/hour for different de-
vices. Data from Roeder, Bradicich [70]. N represents the number of studies 
used in the meta-analysis. 
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nights are sufficient for an appropriate diagnosis. In Punjabi et al. [16], 
additional nights of diagnostic testing increased OSA classification 
performance. For participants that were misclassified as non-OSA using 
a 1-night diagnostic (20% of the study sample), increasing the number of 
diagnostic nights improved classification accuracy by 60%. It is possible 
that the misdiagnosis rate in Punjabi et al. [16] was underestimated 
given that the “reference” AHI was a composite index based on the three 
nights of data. Therefore, increased diagnostic confidence is to be ex-
pected for a 2-night averaged AHI. 

To the best of our knowledge, only 4 studies have investigated night- 
to-night variability in more than 6 consecutive nights [11,15,53,58,61, 
66,68,74]. In Fietze, Dingli [74], 35 participants undertook home-based 
polysomnography sleep studies for 7 consecutive nights. In this study, 
the ODI was relatively stable across nights. However, the probability of 
misclassifying a participant on any given night as having normal, mild, 
or moderate-to-severe OSA was as high as 25%. Furthermore, only 9 
participants (26% of the population) remained in the same category 
throughout all seven recordings. Similar results were obtained in Prasad, 
Usmani [66], who studied night-to-night variability across 7 consecutive 
nights in participant with OSA (determined using a baseline poly-
somnography sleep study). In total, 62% of participants with mild OSA 
and 24% of participants with moderate-to-severe OSA changed classi-
fications across the 7-night monitoring period. Stoberl, Schwarz [58] 
examined ODI in 77 participants studied consecutively over 13 nights 
and found that over 80% of participants showed between-night differ-
ences in ODI >10 events per hour and ~78% participants changed sleep 
apnoea severity categories across the monitoring period. None of these 
three studies evaluated the number of nights necessary to reduce OSA 
misdiagnosis probability below a pre-specified level of diagnostic 
uncertainty. 

A study in ~65,000 individuals that recorded sleep and breathing 
using under-the-mattress sensors over 6 months suggested that 
increasing the number of monitoring nights (up to 14 days) markedly 
increased diagnostic confidence [15] (Fig. 3). When using a single-night 
diagnosis to classify OSA (AHI >15 events/h sleep), the false negative 
rate (diagnosis of “normal” instead of true OSA) was ~17%. However, 
using a 14-night period for diagnosis resulted in a low false negative rate 
of only ~2% compared to a diagnosis based on all available nights. 
Furthermore, the F1-score (a measure of overall predictive performance, 
where 1 indicates perfect prediction), was 0.77, 0.83, 0.91, 0.94 for a 1-, 
2-,7- and 14- night diagnosis, respectively. These findings suggest that a 
minimum of 7 nights was required in this study to provide a high con-
fidence estimate of OSA severity. Another recent study suggests that 
multi-night measurement of OSA severity also provide a much more 
reliable estimation of health consequences risk (such as hypertension) 

associated with OSA compared to single night assessment [75]. How-
ever, these studies were conducted using a clinically validated 
under-the-mattress sensor and could not record additional OSA key 
phenotype characteristics (e.g., hypoxemia, sleep fragmentation, sleep 
staging, body position) that could potentially help produce a more 
confident diagnosis using a reduced number of nights. There may also be 
currently unknown technical reasons that cause higher night-to-night 
variation with the new under mattress device compared to poly-
somnography and other sleep study systems. 

Collectively, these results support that multi-night monitoring of 
OSA can provide greater confidence in the diagnosis of OSA and its 
severity. However, only one study has investigated misdiagnosis prob-
ability over an extended (>14 days) recording period, and therefore the 
ideal number of nights for an accurate diagnosis remains unknown. 

3.3. Predictors of night-to-night variability 

There are several factors that may influence night-to-night vari-
ability of OSA. These include body/head position during sleep, non- 
anatomical OSA endotypes (arousal threshold, loop gain and upper- 
airway muscle responsiveness), nasal resistance, and behavioural and 
lifestyle factors (nutrition, physical activity, alcohol, caffeine use, to-
bacco intake, and medication use) 70–74,76–80. With respect to 
sleeping positions, a study in 51 participants that measured AHI over 3 
consecutive nights using the Watch PAT device concluded that the 
average variation in nightly AHI of 57% could be partially explained by 
the amount of time spent in supine sleep, with more supine sleep leading 
to a higher AHI [49]. A case study of 1 participant undergoing HSAT for 
4 consecutive weeks found that the AHI observed during a supine 
sleeping position (~44 events per hour) was around 10 times higher 
than during other sleeping positions (~5 events per hours) [81]. Simi-
larly, another study of 25 participants found that the lateral position of 
the head compared to the trunk was associated with a decrease in AHI in 
27% of the sample [80]. In a study of 28 participants (median AHI: 17.2 
events/hr), head flexion was also associated with a worsening of OSA 
with ~13 events/hr increase in AHI, whereas head rotation was asso-
ciated with a ~11 events/hr decrease in AHI [82]. In another study of 26 
participants, variations in OSA severity were correlated with changes in 
evening leg fluid volume and overnight rostral fluid shift [79]. 

In addition to postural factors, there have been multiple de-
mographic and sleep factors associated with variable AHI, although the 
results have been less consistent [65,66]. For example, older age has 
been associated with a greater likelihood of having a false negative 
HSAT [22]. Furthermore, many of the in-laboratory studies of 
night-to-night variability in OSA also reported poorer sleep architecture 

Fig. 3. Percentages of participants classified correctly for a 1- (blue), 7- (orange) and 14- (green) night average apnea-hypopnea index (AHI) compared to reference 
Obstructive sleep apnoea (OSA) severity category determined on all available nights. Data adapted from Lechat, Naik [15]. 
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on the first night (e.g., reduced total and REM sleep duration) which 
may also affect OSA severity [63]. Some co-morbid health conditions 
may also be associated with higher night-to-night variability in OSA 
severity. For example, patients with heart failure have substantial 
night-to-night variability in sleep apnea severity markers [83]. Partici-
pants with co-morbid insomnia and OSA [84] may also have higher 
variability than patients with OSA alone, which could explain the higher 
health burden associated with COMISA compared to OSA [60,85], 
although the evidence supporting this is currently scarce and requires 
further investigation. 

Multiple studies have also found that OSA variability and misclas-
sification is generally higher in mild compared to more severe cases of 
OSA [15,16,58,66]. This may be, at least in part, because mild and 
moderate OSA are more likely to be close to clinical cut-offs used for 
diagnosis and are therefore more likely to be missclassified. However, it 
is also possible that OSA is inherently more variable in the 
mild-to-moderate versus severe severity ranges. 

3.4. OSA severity variability as a clinically relevant trait 

There is emerging evidence that the degree of night-to-night varia-
tion in OSA severity impacts cardiovascular health, including atrial 
fibrillation. Linz and colleagues [86] simultaneously monitored OSA and 
atrial fibrillation for a mean of 21 weeks and grouped the AHI values 
from each night into quartiles for each participant. Compared with the 
best sleep nights (in their lowest quartiles), nights with the highest AHI 
(in their highest quartile) conferred a 1.7-fold (p < 0.001), 2.3-fold (p <
0.001), and 10.2-fold (p < 0.001) increased risk of having atrial fibril-
lation during the next day for at least 5 min, 1 h, and 12 h durations, 
respectively [86]. These data suggest that even a few nights of elevated 
AHI may predispose an individual to atrial fibrillation the following day. 
Another study using an under-mattress sleep sensor and home blood 
pressure monitor cuff found that variability in OSA severity is associated 
with hypertension independent of average OSA severity [87]. 

The intriguing possibility of added risk for individuals with variable 
OSA is perhaps not surprising, given that variable disease severity for 
some diseases is associated with worse outcomes compared to “stable” 
disease severity. For example, blood pressure variability is associated 
with multiple adverse health outcomes independent of mean blood 
pressure values, including cardiovascular events, cerebrovascular 
events, and all-cause mortality [88–91]. Conversely, the impact of short- 
and long-term variability in OSA severity on important health remains 
largely unknown and warrants further investigation. Together, these 
results suggest the need to monitor OSA severity variability together 
with mean OSA severity for identification of which OSA patients are 
most at risk of cardiovascular harm. 

3.5. Incorporating multi-night measurement in clinical care 

Heterogeneity in clinical outcomes observed in trials of treatments 
for OSA [92–95] has motivated recent efforts towards redefining diag-
nostic approaches and OSA severity definitions. These efforts have 
included identification of different endo-phenotypes of OSA [78,96–98] 
novel markers of OSA severity, such as the hypoxic burden that are more 
strongly associated with cardiovascular outcomes than the AHI [99, 
100], and quantifying flow limitation [101] and OSA-related sleep 
fragmentation [102,103]. While some newer metrics may be amenable 
to multi-night sleep assessment (e.g., the hypoxic burden), the more 
invasive measurements needed for detailed OSA physiological endo-
typing may be too burdensome to administer over more than one 
occasion per patient. However, recent signal processing and machine 
learning approaches have shown considerable potential to estimate key 
OSA endotypes and predict treatment outcomes from standard sleep 
study recordings [104–107], which may also be feasible using 
multi-night assessment. 

Accordingly, this review highlights that, despite the greater burden 

of repeated assessments on patients and clinical resources, multi-night 
monitoring of OSA may be superior in terms of reducing OSA misdiag-
nosis and better defining health consequences associated with OSA 
severity compared to single-night OSA assessment. However, these two 
approaches are not mutually exclusive. Long-term monitoring of OSA 
severity using simplified technology may be sufficient to diagnose OSA 
in many cases. More in-depth assessment of hypoxemia, OSA endotypes, 
REM OSA, comorbid sleep disorders (e.g., insomnia), and sleep frag-
mentation are likely valuable in more complex manifestations of OSA 
[60,99,102,108,109]. Therefore, there is a need for appropriately 
designed randomised-controlled trials to 1) identify OSA patient char-
acteristics that suggest a need for in-depth OSA assessment versus those 
who may sufficiently benefit from a simplified diagnostic approach (e.g., 
severe OSA, Fig. 4 left) and 2) test the effectiveness of simplified 
monitoring of OSA severity and assess the potential benefits of this 
approach versus current diagnostic practices (Fig. 4, right) including 
cost effectiveness comparisons. There is also a need for empirical studies 
to compare different multi-night metrics (AHI, hypoxic burden, endo-
type), or combinations of thereof, to predict health outcomes and 
treatment response. Finally, there is also a need to determine which 
multi-night metrics (average, standard deviation, combination of met-
rics) are most useful for diagnosis, treatment, and assessment of health 
outcomes associated with OSA. These considerations could be tested in 
the trials outlined in Fig. 4. 

4. Consumer engagement 

To the best of our knowledge, many studies on this topic have not 
considered patient preference in the diagnostic process. Patient per-
spectives should be carefully considered in future trials, as there may be 
financial or personal dis-incentives to seek treatment if the diagnostic 
process is too burdensome for patients. Consultations with the consumer 
engagement group at the Flinders Health and Medical Research Institute 
(FHMRI): Sleep Health (8 members with sleep disorders from around 
Australia) indicate that consumers are very supportive of this non- 
invasive, simplified approach. Home based approaches have the po-
tential to reduce wait times and improve diagnostic accuracy, which 
were expressed as major advantages. 

5. Conclusions 

There is considerable night-to-night variability in OSA severity in 
many patients, which can lead to diagnostic misclassification. Misdi-
agnosis probability based on a single-night sleep study is estimated to be 
between 20 and 50%, with higher misdiagnosis rates for mild-to- 
moderate OSA severities closer to widely used clinical diagnostic cut- 
offs. In addition, high night-to-night variability in AHI may be an 
important independent predictor of poor health outcomes in OSA. Thus, 
multi-night, home-based sleep studies facilitated by emerging sleep 
technologies, used alongside in-laboratory confirmatory studies for 
complex cases where required, could help to improve diagnostic preci-
sion and clinical management (Table 1). 

Such a readily available alternative – if successful and when com-
bined with appropriate clinical triage management – has the potential to 
improve the efficiency, speed (reduce waiting times) and accuracy of 
OSA diagnosis and severity assessment. Such a simplified diagnostic 
strategy, if shown to be cost effective, has considerable potential to 
reduce wait-times and the time to diagnosis, and increase access to care 
for patients who need it the most. This could reduce the community 
burden of OSA by reducing daytime sleepiness, motor vehicle accident 
risk, and potentially cardio-metabolic risks in patients with previously 
undiagnosed or misdiagnosed OSA.  
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Fig. 4. Concept outline for a trial design to test the potential added benefit of the implementation of simplified monitoring of Obstructive sleep apnoea (OSA) into 
clinical care. 

Table 1 
Polysomnography (PSG), home sleep apnoea test (HSAT) and wearables/non-wearables pros and cons for diagnosis and management of obstructive sleep apnoea 
(OSA). AASM = American Academy of Sleep Medicine.  

Device Monitoring period Pros Cons 

PSG 1 night  • In-depth assessment of OSA severity (hypoxemia, sleep 
fragmentation, airflow limitation, potential for endo-phenotyping)  

• Controlled environment  
• AASM endorsed  

• Expensive  
• Requires trained technician  
• High misclassification rates (up to 

50%)  
• Unrealistic environment  
• Cumbersome for participants  
• Long waiting times  
• Variability in manual scoring  
• Inefficient – many signals collected 

but low information is derived 
HSAT 1 to 3 nights  • Can be done at home  

• Shown to be as reliable as PSG  
• Signal quality may vary  
• High misclassification rates  
• Variability in manual scoring 

Wearables and 
non-wearables 

>3 nights* 
*Ideal monitoring time should be 
determined empirically and consider 
patient preference  

• Multi-night assessment of OSA severity reduces misclassification.  
• Potential to assess treatment adherence and response.  
• May provide cheap alternative diagnosis pathway for a subgroup of 

the population.  
• Night-to-night variability may be an important marker of OSA that 

is currently neglected using PSG or HSAT  
• Devices can be developed and used for targeted measurement 

(rather than a measure all) – e.g. specific device can be developed 
to assess snoring.  

• Automated algorithms are not prone to inter-scorer variability  

• Clinical validation is challenging  
• No study has shown benefits 

compared/in addition to traditional 
care  

• Device accuracy may differ for some 
population groups  

Practice points  

• Single-night sleep studies are estimated to misdiagnose and misclassify obstructive sleep apnoea severity in 20–50% of patients due to high 
night-night variability in the apnea hypopnea index.  

• Patients with high night-to-night variability in OSA severity may have greater risk of poorer health outcomes such as hypertension compared 
to patients with low variability, highlighting the need for multi-night measurement.  

• Multi-night assessment of OSA severity using novel, inexpensive and non-invasive technologies may allow for a more reliable estimation of 
OSA severity and the ability to quantify night-to-night variability as a potentially important clinical phenotype.  

• There is a lack of research to assess the cost-effectiveness and potential added benefits of wearable and nearable technologies in clinical care  
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Research agenda  

• With the recent advance of reliable and validated metrics to accurately estimate OSA severity over multiple nights in the home, appropriately 
designed, randomised-controlled trials are now urgently required to:  
o Identify OSA patient characteristics that suggest a need for in-depth OSA assessment versus those who may sufficiently benefit from a 

simplified diagnostic approach and  
o Test the effectiveness of simplified monitoring of OSA severity versus current diagnostic practices including cost effectiveness comparisons.  

• Given the developing evidence of an association between night-to-night variability of OSA severity and health outcomes, there is a need to 
investigate:  
o Patient characteristics and OSA endotypes/phenotypes associated with higher night-to-night variability of OSA. This may help reduce 

diagnostic misclassification and identify treatments more suitable for patients with high night-to-night variability in OSA severity and,  
o Identify how different characteristics of OSA (hypoxia, sleep fragmentation, flow limitation, endotypes) vary night-to-night, and establish 

which multi-night metrics (or combination of metrics) best predict health outcomes and treatment response.  
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