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Abstract: Wildfire has extensive and profound impacts on forest structure and function. Therefore, it
is important to study the spatial and temporal patterns of forest fire regimes and their drivers in order
to better understand the feedbacks between climate change, fire disturbance, and forest ecosystems.
Based on the Global Fire Atlas dataset, three forest fire regime components (fire occurrence density,
burned rate, and median fire size) were extracted for China from 2003 to 2016. Three statistical models
(Boosted Regression Tree, Random Forest, and Support Vector Machine) were used to systematically
analyze the relationships between patterns of forest fire disturbance and climate, human activities,
vegetation, and topography in China, as well as their spatial heterogeneity in different climatic
regions. The results indicate that the spatial distribution of forest fires is heterogeneous, and different
forest fire regime components are predicted by different factors. At the national level, the distribution
of forest fire regimes mainly corresponds to climatic factors, although the relationship between
median fire size and predictors is obscure. At the scale of each ecoregion, the main climate predictors
of forest fire occurrence density and burned rate change from temperature in the north to temperature
and precipitation in the south. Median fire size varies with elevation and temperature in the south.
These results demonstrate that the spatial heterogeneity of predictors and scaling effects must be
fully considered in the study of forest fire disturbance.

Keywords: forest fire; Boosted Regression Tree model; Random Forest model; Support Vector
Machine model

1. Introduction

Forest fire is a ubiquitous disturbance in forest ecosystems and profoundly changes
the species composition, ecological succession, and functions of the biome [1,2]. Earth
observational data have shown that forest fires burned about 1% of the global forests and
emitted 1.9–2.5 Pg of carbon © per year during the 1990s and 2000s, equivalent to 4% of
global terrestrial net primary productivity (approximately 58 Pg C year−1, 1997–2004) [3].
Recent climate warming has increased the frequency, size, and severity of forest fires in
many parts of the world, and such trends are expected to continue under a warmer climate
in the future. It is expected that an intensified forest fire regime will significantly change
the planet’s demography, carbon cycles, and forest ecosystems. Therefore, understanding
spatial controls of forest fire regimes is important for predicting future changes in fire
regimes and their consequences for ecological services [4]. Forest fires are expected to
intensify under future warmer climates, although human management may decrease fires
in other ecosystem types [5]. The Intergovernmental Panel on Climate Change (IPCC)
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has shown that we have already experienced a full 1 ◦C of temperature rise above pre-
industrial levels [6]. It is predicted that the climate in China will be warmer and drier in
the future, which could lead to increasing intensity and frequency of fire disturbance [7,8],
with profound impacts on the carbon sink potential of forest ecosystems.

The spatial controls on forest fire regimes are often depicted as a fire triangle, including
climate conditions, vegetation, and ignition agents (natural or anthropogenic). At large
spatial and temporal scales, climate is the dominant control of the interannual variability
of forest fires. Numerous studies have found a strong coupling between climate factors
and forest fires [9]. For example, Abatzoglou et al. [10] indicated that an increase in air
temperature and water deficit accounted for an approximately 75% increase in forest
flammability for the Western USA during the fire season from 2000 to 2015. In addition,
teleconnections, such as El Niño and drought, are also associated with forest fires in
Northeast China and California [11–13]. The climate also controls the fire regime indirectly
through its influences on regional forest species composition. Rogers et al. [14] found
differences in forest species from two distinct fire regime types in Siberia and North
America. For example, Siberian boreal forests are mainly occupied by fire resisters (Pinus
sylvestris), and therefore fire regimes are dominated by relatively frequent low-intensity
fires. In contrast, North American boreal forests are mainly occupied by fire embracers
(Picea mariana and Pinus banksiana); therefore, fire regimes are dominated by relatively
infrequent, high-intensity fires. Climate and vegetation also interact with landscape-scale
controls (e.g., terrain) to determine the spatial patterns of forest fires. For example, Su
et al. [15] used a negative binomial model and a geographically weighted negative binomial
regression model to find that forest fire in the Greater Khingan Range in China corresponds
to environmental factors. In contrast, they found that in Yunnan Province, forest fire relates
to both environmental and anthropogenic factors. Hence, the driving factors of forest fire
appear to vary with ecological region.

Research on the causes of forest fires in China has mainly focused on the relationship
between one specific forest fire parameter, often forest fire frequency, and its driving factors.
For example, Wu et al. [16] used the Boosted Regression Tree method to study forest fire
in China, and found that forest fire frequency was mainly affected by climate and human
factors. Liu et al. [17] used the point pattern analysis method to study the Huzhong forest
region in the Greater Khingan Range, and showed that human activities, terrain, and
vegetation all played an important role in forest fire frequency. Ke et al. [18] analyzed the
correlation between forest fire burned area and climate in China, and showed that forest fire-
burned area is highly correlated with temperature and precipitation. Finally, Fu et al. [19]
analyzed forest fire intensity in the Greater Khingan Range through a Random Forest
Model, and concluded that altitude plays an important role. Forest burned area accounts
for 23.4–27.7% of the total annual burned area in China [3]. The large area affected makes it
important to strengthen research into the factors that drive forest fire in China. Research
on this topic is mostly regional and concentrated in the northeastern forests [19–21], while
research across a large geographic scale is still relatively scarce, and the differences between
the variables that influence forest fire in different climate regions are not clear.

To study the spatial distribution of forest fire and its potential driving factors, we
extracted three components of fire regimes (forest fire occurrence density, burned rate,
and median fire size) from the fire dataset for China (Global Fire Atlas: GFA, 2003–2016).
Through analysis of these regimes, we investigate the importance of the size of the region
studied according to the variables that influence forest fire and the differences between
climate regions. A better understanding of regionality in fire regimes will contribute
to the scientific basis for forest fire control and management and forest protection and
management.
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2. Data and Methods
2.1. Data Sources

Forest fire regime data were extracted from the GFA data product (https://www.glob
alfiredata.org/fireatlas.html, accessed on 31 December 2016). The GFA dataset is based on
the MODIS fire area product (spatial resolution is slightly below 500 m), and the size, time,
location, fire type, and spread speed of a single fire patch are extracted by the threshold
relationship of fire pixels in time and space. The minimum fire patch area extracted by
GFA is 21 hectares (1 pixel). For data verification, government records of fire in China were
obtained from the Fire Prevention Office of the China Forestry and Grass Bureau (CFPO).
The independent variables tested for their impact on fire include climate, anthropogenic
effects, topography, and vegetation. The definition, source, resolution, and unit of each
independent variable are shown in Table 1.

Table 1. Independent variables and sources.

Variable Group Variables Abbreviation Resolution Units

Climate 1

Annual Palmer Drought
Severity Index (PDSI) PDSIAnn

Monthly temporal and
4 km spatial

Index (−4–+4)
Mean PDSI in spring,

summer, fall, and winter
PDSISpr, PDSISum,
PDSIFal, PDSIWin

Annual precipitation
accumulation (PPT) PptAnn

mm
Mean PPT in spring, summer,

fall, and winter
PptSpr, PptSum,
PptFal, PptWin

Annual soil moisture SoilAnn

m3/m3
Mean soil moisture in spring,

summer, fall, and winter
SoilSpr, SoilSum,
SoilFal, SoilWin

Annual temperature (average
of maximum and minimum

temperatures)
TmeanAnn

◦C
Mean temperature in spring,

summer, fall, and winter
TmeanSpr, TmeanSum,
TmeanFal, TmeanWin

Anthropogenic

Population density 2 PopDen 30 arc-seconds (year 2010) Persons/km2

Road density 3 RdDen 5 arc-min m/km2

Distance to nearest road 3 Dist2Rd 1 km km

Topography 4

Digital elevation model Dem

1 km

m

Slope Slope ◦

Potential solar radiation Rad Index (0–1)

Vegetation 5

Annual integrated
Normalized Difference

Vegetation Index (NDVI)
ndvi_ANN

Monthly temporal and
0.05◦ spatial

Index (0–1)

Mean NDVI in spring,
summer, fall, winter

ndvi_spr, ndvi_sum, ndvi_fal,
ndvi_Win

Percent evergreen needleleaf
forests, percent evergreen
broadleaf forests, percent

deciduous needleleaf forests,
percent deciduous broadleaf
forests, percent mixed forests

PctLC1, PctLC2, PctLC3,
PctLC4, PctLC5 %

Percent forests PctLC

1 Terra climate: http://www.climatologylab.org/terraclimate.html, accessed on 31 December 2020; 2 https://
sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11, accessed on 31 December 2020; 3 https:
//www.globio.info/download-grip-dataset, accessed on 12 November 2010; 4 Global Land One-kilometer Base
Elevation (GLOBE) Digital Elevation Model: https://www.ngdc.noaa.gov/mgg/topo/gltiles.html, accessed on
12 November 2020; 5 MOD13C2.V006: https://lpdaac.usgs.gov/data/, accessed on 31 January 2023.

2.2. Processing Method
2.2.1. Extraction of Forest Fire Predictive Factors

Many studies show that climate, anthropogenic effects, vegetation, and topography
all impact fire regimes, e.g., [16,17,20]. Therefore, we extracted factors from these four
categories—a total of 37 factors—as independent variables (see Table 1). We then calculated

https://www.globalfiredata.org/fireatlas.html
https://www.globalfiredata.org/fireatlas.html
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https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11
https://www.globio.info/download-grip-dataset
https://www.globio.info/download-grip-dataset
https://www.ngdc.noaa.gov/mgg/topo/gltiles.html
https://lpdaac.usgs.gov/data/
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their average values across the 14 years, with all data scaled to the same resolution—a
0.5◦ grid.

Climate and NDVI were calculated as the average of 14-year seasonality (spring: Mar-
May; summer: June-August; autumn: September-November; winter: December-February)
and annual mean values during the study period, 2003–2016. The percentage of five
vegetation types, classed by the International Geosphere-Biosphere Programme (IGBP),
within each grid cell was calculated. Excluding PopDen, RdDen, and Dem, which can be
directly downloaded, other factors were statistically derived. The slope was calculated in
ArcGIS through the “slope” function via DEM. Poten_rad was derived by calculating the
aspect from DEM in ArcGIS through the “aspect” function; then, the aspect was converted
into potential solar radiation, where Poten_rad = cos((θ − 225)/180 × π). Dist2Rd was
calculated using the “Euclidean distance” function in ArcGIS using the RdDen variable to
represent the distance to the nearest major road.

2.2.2. Extraction of Forest Fire Parameters

Based on the size, time, location, type, and other information for single fire patches in
the GFA data product, each forest fire regime component was calculated for the 2003 to
2016 period with a 0.5◦ grid as the spatial unit (Figure 1). The selected statistical forest fire
regime components in each 0.5◦ grid are as follows: (1) forest fire occurrence density—the
number of forest fires per 1000 km2 forest per year (fires/1000 km2 per year); (2) burned
rate—the burned area of fires per 1000 km2 forest per year (km2/1000 km2 per year); and
(3) median fire size—the median area of all forest fire patches in the 0.5◦ grid over the whole
time-span (km2). All fire regime components were masked by land cover to exclude fires in
non-forest areas, and the study area was divided into eight ecoregions according to climate
zone: (I) cold temperate deciduous coniferous forest area; (II) temperate coniferous and
broad-leaved mixed forest area; (III) warm temperate deciduous broad-leaved forest area;
(IV) subtropical evergreen broad-leaved forest area; (V) tropical seasonal rainforest and
rainforest area; (VI) temperate grassland area; (VII) temperate desert area; and (VIII) alpine
vegetation area of the Qinghai–Tibetan Plateau. The ecoregions with minimal forest are
(V, VI, VII, and VIII, in which only 4.2% of grid cells include forest) were not individually
studied but were included in the national analysis.

2.2.3. Fire Models

At present, many models are used to study the factors that drive fire, but the simulation
results have high uncertainty, e.g., [22,23]. In this paper, three commonly applied models
were fitted in R version 3.5.1 [24], namely Boosted Regression Tree (BRT), Random Forest
(RF), and Support Vector Machine (SVM), using the “gbm v2.1.5” [16,25], “random forest
v4.6-14” [26], and “kernlab v0.9-29” packages [27,28], respectively, in addition to custom
code written by J.S. These three models were separately used to simulate the four ecoregions
in China that experience significant forest fire, and forest fire across the whole country, for
each fire regime component (3 × (4 + 1) × 3 = 45).

BRT [29] has its origin in machine learning but has been developed as a method of
regression [16,30]. Boosting algorithms in BRT can combine many simple models to give
improved predictive performance [29,31]. To minimize predictive error, we tested several
combinations of key BRT fitting parameters (learning rate, lr, tree complexity, tc, and the
number of trees, nt). Considering the trade-off between computational time and robustness
of the model, the complexity of the tree was set at 1–3, and a Gaussian model was used.
The best combination of parameters was determined by 10-fold cross-validation [32], and
the best parameters were selected by maximizing the variance (mv) explained by the model.
The “bag fraction”, which specifies the proportion of data to be selected at each step, was
set to 75% for model training to reduce stochastic errors. The resulting BRT parameters
were as follows: for occurrence density (mv = 0.74), tc = 2, nt = 30, lr = 0.05; for burned
rate (mv = 0.79), tc = 2, nt = 30, lr = 0.05; for median fire size (mv = 0.53), tc = 2, nt = 5,
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lr = 0.001. The relative importance of each predictor variable in BRT is calculated based on
the number of times the variable is selected, and expressed as a percentage.
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Figure 1. Spatial distribution of forest fire in China by year. The roman letters in the map indicate the
eight ecoregions according to climate zone (see method): (I) cold temperate deciduous coniferous
forest area; (II) temperate coniferous and broad-leaved mixed forest area; (III) warm temperate
deciduous broad-leaved forest area; (IV) subtropical evergreen broad-leaved forest area; (V) tropical
seasonal rainforest and rainforest area; (VI) temperate grassland area; (VII) temperate desert area;
(VIII) alpine vegetation area of the Qinghai Tibetan Plateau.

RF [19,33] uses a bootstrap sampling method to randomly extract 2/3 of the data from
the sample for modeling, with the remaining data, termed “out-of-bag” (OOB) data, used
for self-verification of the model. It is powerful for handling nonlinearity and interactions
among variables [34]. RF is different from the classical decision tree in that its “tree” does
not need pruning. Primarily, it aims to identify the appropriate model of the relationship
between the response variable and independent variables, but it can also be used in
unsupervised mode for assessing proximities among data points. Random Forest is widely
used in ecology for studying relationships between fire and their potential drivers [34–36].
Random Forest models determine the relationship between independent and dependent
variables over numerous iterations of decision trees, each using different combinations
of the variables, to assess the contribution of each independent variable. To maximize
accuracy, the number of trees (ntree) was set to 300, and the number of predictors sampled
for splitting at each node (mtry) was 2; these are the two main parameters to run RF. The
minimum size of terminal nodes in RF, which determines the length of the trees to be grown,
was set to 5. The data are sampled with replacement to construct the tree. A variable’s
importance is defined as the increase in the mean of squared OOB residuals (IncMSE) when
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the variable is permuted [33,34]; i.e., the variable of greatest importance gives the largest
IncMSE.

SVM [37], also known as Support Vector Network, is a supervised learning model
that uses classification and regression methods to analyze data. SVM is a nonlinear binary
classification process. It can solve nonlinear classification problems arising from limited
prior knowledge of the modeling conditions, and is commonly used in ecology [38,39]. SVM
finds an optimal hyper-plane separating the two classes, and optimizes the margin among
the classes. Within the kernlab package, we set ‘kpar’ to automatic to heuristically derive
a suitable sigma value for the Gaussian Radial Basis kernel function (RBF). Three-fold
cross-validation was then performed on the data. The number of support vectors (nSV) of
occurrence density is 781, and the hyper-parameter (HP) is sigma = 0.050. For burned rate,
nSV is 459 and HP is sigma = 0.043; for median fire size, nSV is 146 and HP is sigma = 0.047.
The relative importance in SVM is based on the “vip v0.2.2” package [40] in R 3.2.1; this
package constructs variable importance (VI) scores/plots for many types of supervised
learning algorithms, using model-specific and novel model-agnostic approaches. “vi” was
implemented in this study to calculate relative importance.

BRT, RF, and SVM do not require the removal of collinear variables [29,33,37]; all
variables were used despite the increased computation time, in contrast with Potter S [41].
The outputs include the relative contribution of each independent variable to the dependent
variable, and the relationship between the independent and dependent variable—namely,
the marginal effect or partial dependence. We calculated the coefficient of determination
(R2) of a linear model between observed and predicted values [36,41] for each fire regime
component in the three models. The marginal effect is based on the “pdp v0.7.0” pack-
age [42] in R 3.5.1, which adds a trend line based on LOESS smoothing. To evaluate spatial
differences in the forest fire predictors, we analyzed them at national and regional scales.

3. Results and Discussion
3.1. Validation of Fire Data

To verify the data available in the GFA, this paper compares the GFA data with
government records from the CFPO for fire sizes >21 ha, as that is the minimum spatial
resolution of the GFA. CFPO data included information about the forest fire, such as fire
area, locations, fire dates, and affected area. The original data are in CSV format, which
were transformed into a shapefile. In the CFPO records, fire patches with areas less than
21 ha accounted for 7.5% of the total number, and their area accounted for 0.02% of the
total burned area. Since the values from the CFPO are only available from 2003 to 2009,
they were compared with the GFA data of the same period.

The occurrence density, burned rate, and median fire size of the GFA from 2003 to 2016
for China (Figure 2) were 3.04 ± 140.6 fires/1000 km2 year−1, 3.67 ± 114.2 km2/1000 km2

year−1, and 0.43 ± 21.42 km2 (median ± standard deviation), respectively. There was a
consistent distribution of the fire regimes between the GFA and CFPO fire data (Figure S1),
which indicates that GFA data can represent the characteristics of forest fire disturbance
with adequate skill. This is in keeping with the findings of Wu et al. [13] that the CFPO
and MODIS data agree sufficiently that GFA represents patterns of fire across China. The
spatial and temporal benefits and free availability of the satellite data recommend it as a
tool for investigating fire regimes.
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Figure 2. Spatial distribution of forest fire regime components in China (GFA): (a) geographic distribu-
tion of occurrence density of fire across China (see bottom right for color scale; fires/1000 km2 year−1)
and density plot by ecozone (top right); (b) geographic distribution of burned rate across China
(details of panel as above; km2/1000 km2 year−1); (c) geographic distribution of median fire size
across China (details of panel as above; km2).
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3.2. Predictors of Disturbance by Forest Fire
3.2.1. Predictors of Forest Fire Occurrence Density

The accuracy of predicting forest fire occurrence density for China nationally was
high using RF (R2 = 0.91; p < 0.001; Figure 3a). Three of the ecoregions’ (Zones I, II, IV)
best models had very high coefficients of determination (BRT and RF R2 ≥ 0.90, p < 0.001;
Figures 4 and 5), and the RF model’s performance for predicting forest fire in Zone III was
still high (R2 = 0.58; p < 0.001; Figure 5a). On a national scale, the patterns of forest fire
regimes correspond strongly to those of climate variables as well as the percentage covered
by forests (Figure 3b). Within each region, there are differences in which variables are most
important. In the northern-most ecoregions, temperature appears to have a stronger effect
than precipitation (Figure 4b,d,f,h), while in the south, precipitation contributes more to
the models (Figure 5b,d).
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most important independent variables in the RF model.

On the national scale, spring and fall precipitation were important predictors of fire
occurrence density in the two best models, RF and BRT (R2 = 0.91), with increasing spring
precipitation and decreasing autumn precipitation correlated to higher occurrence density
(Figure S2). High spring rainfall may be associated with higher growth of fuels in the
forest. Regions with low fall precipitation, on the other hand, may experience an extended
summer fire season, or begin a dry-season fire regime earlier due to an earlier end to the
monsoon. The influence of mean summer temperature appears to have a threshold at
about 16 ◦C, with higher local temperatures relating to increased occurrence density. A
similar threshold (13.5 ◦C) has been found to predict fire in Alaska [30]. Comparison to the
mean summer temperature partial dependence plots for each zone suggests that this strong
increase in the national model is influenced by Zone I. Zone I is boreal, similar to Alaska,
but with a dominance of deciduous gymnosperms (Larix) rather than evergreens (e.g., Picea,
Pinus, or Thuja); this may influence the position of the threshold, though a study across a
greater geographic range of Larix-dominated forests, accounting for interannual variation
in temperature, should be conducted to confirm if it is a true signal. Outside the range
of mean summer temperatures of Zone I, there is a stepwise decrease at approximately
25 ◦C. This end of the pattern of dependence is very similar to that for the mean summer
temperature partial dependence plot for the burned area in Zone IV (discussed below).
Areas with low forest cover are less likely to have high occurrence density in a given period.
Elevation-related incidence is complex; the higher incidence at lower elevations seems
to be inflated by the signal of the northeast, with the relation otherwise following the
Zone IV trend.
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Figure 5. The observed vs. predicted values for the models that best predicted occurrence density, as
determined by the highest R2 and p < 0.05, for (a) Zone III (RF); (c) Zone IV (RF). These are paired
with the relative influence of the most important independent variables in the model for (b) Zone III
(RF); (d) Zone IV (RF).

In the models for Zone I (BRT and RF), a spring and fall mean temperature threshold at
approximately freezing increased fire occurrence density and may represent the importance
of an extended fire season (Figure S3). Elevation has a greater influence on RF than BRT.
Higher occurrence at lower elevations in RF may be related to human ignitions [20], and,
indeed, high occurrence densities are concentrated on the eastern side of the Greater
Khingan Mountains in this zone (Figure 2), where they descend to the more densely
inhabited plains. In the BRT model, road density is the next strongest influence on the
models, and elevation shows a step-decrease in response below ~400 m; this may be
explained by the interaction effects between these two factors, with distance to road
explaining much of the fire occurrence below 400 m. To further understand the impact of
human activities on forest fire, future studies could test the effect of distance to cropland or
pasture because burning crop residue is common [18] and may contribute to wildland fires
more directly than distance to roads or population density.

Zone II covers a greater latitudinal gradient than Zone I. The models (BRT and RF)
suggest that in Zone II’s colder northern regions, away from the population centers, fire is
more frequent in the deciduous broadleaf forests (Figure S4). There is a negative correlation
between winter temperature/population density and occurrence density in BRT and RF;
population density and extreme winter cold may be covarying. Greater occurrence is also
associated with lower slope and elevation; similar to Zone I, this may be due to distance to
agricultural land or burning forestry residue rather than a direct, mechanistic cause.

The lower sample of fire in Zone III seems to have contributed to less skillful models.
However, as this is also a highly populous region of China, unmeasured human impacts on
fire (active fire suppression, pre-emptive fire risk reduction, etc.) may have also increased
the noise in the data. Population density and summer precipitation were influential
variables common to all Zone III models. In general, locations with decreasing population
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density and decreasing precipitation had increased fire frequency (Figure S5). Low winter
NDVI may be linked with vegetation/fuel drying and forests more prone to ignition.

Finally, in Zone IV, warmer temperatures and higher precipitation in spring may lead
to increased fuel growth, contributing to higher fire occurrence (Figure S6). Low precipita-
tion in fall is also conducive to fire, possibly due to earlier initiation of the dry season in
those areas. Where there is a higher percentage of cover by broad-leafed evergreens, there
is a higher occurrence density of fires in Zone IV.

3.2.2. Predictors of Burned Rate

The accuracy of predicting forest fire burned rate for China nationally was high (RF
R2 = 0.81; p < 0.001; Figure 6a). This is within the skill range of the models for the individual
climate zones (R2 = 0.52–0.97; p < 0.001; Figure 7a,c,e,g). Nationally, the burned rate and
occurrence density of forest fire had many top predictive factors in common, which is
consistent with the correlation between these fire regime components (R2 = 0.60, p < 0.001,
Pearson test).
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important independent variables in the RF model for all of China (RF).

The models for predicting the burned rate at the national scale suggest that how the
variables influence the burned rate is complex and non-linear (Figure S7). This may indicate
interaction at regional and/or local levels. Despite this, some of the patterns were clear
and intuitive. For example, an increasing percentage of forest led to an increasing burned
area, with a rapid effect of up to about 20%. As seen in the occurrence density results, the
mean summer temperature seems to show a ~16 ◦C threshold for increased burned rate,
and a 25 ◦C dip that appears to primarily follow the mean summer temperature patterns of
Zones I and IV.

Within Zone I, all mean temperature variables showed a strong influence, particularly
mean spring temperatures, with threshold or step-wise patterns common in both the best
and second-best correlated models (BRT and RF; Figure S8). Increasing temperatures
corresponded to an increased burned rate. Although the impact of slope on the model was
apparently relatively high (Figure 7d), the range over which it influenced the model was
1–3◦, and may reflect interactions or covariations rather than a causative mechanism.

Within Zone II, areas with low population density and low elevation had higher
burned rates (Figure S9). The association between higher burned rate and low winter
temperature may suggest there is a covariance between low winter temperatures and
population density. Higher precipitation and higher NDVI (stepwise) in summer were
also correlated with burned rate, and we posit these variables may reflect long-term fuel
loads, as this region tends towards spring and fall fires, rather than summer fire [16]. Dry
spring conditions were also associated with increased burned rate, due to the percentage of
deciduous broad-leafed trees, which could both be related to dry and abundant fuels that
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carry low-severity, early-season fires in the north. Many relationships were complex and
non-linear, again suggesting interactions with other variables.
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Figure 7. The observed vs. predicted values for the model that best predicted burned rate, as
determined by the highest R2 and p < 0.05, for (a) Zone I (RF); (c) Zone II (BRT); (e) Zone III (RF);
(g) Zone IV (RF). These are paired with the relative influence of the most important independent
variables in the model for (b) Zone I (RF); (d) Zone II (BRT); (f) Zone III (RF); (h) Zone IV (RF).
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As with occurrence density, the models were less skillful in predicting the burned
rate in Zone III (RF R2 = 0.52; p < 0.001; Figure 7e). RF and the next best model (BRT
R2 = 0.29; p < 0.001) shared the influence of low precipitation in summer and winter and
spring and annual NDVI values, overall suggesting that a drier climate increases burned
rate (Figure S10). In addition, areas with lower population density had higher burned
rates, which could be due to the lower forest connectivity in more populated regions or
a higher likelihood of fire prevention and suppression strategies that limit fire spread.
Notably, the magnitudes of burned rates were much lower in this zone than in others; this
narrower range (and hence the statistical effect size) may substantially impair the training
of the models.

In Zone IV, localities with higher winter and fall temperatures, as well as lower fall
precipitation, exhibited a higher burned rate (Figure S11). Greater slope corresponded to
a higher burned rate, and when associated with the mountainous regions to the west, a
greater slope may interact with the mean summer temperatures, causing a higher burned
rate. This may have caused the unexpected and non-linear response with a dip at ~25 ◦C
and, similarly, a dip in annual precipitation.

3.2.3. Predictors of Median Fire Size

The accuracy of predicting forest fire mean area for China nationally was much lower
than for occurrence density and burned rate (RF R2 = 0.38; p < 0.001; Figure 8a). The
models each showed a lower coefficients of determination for predicting forest fire in Zones
I–III, with the Zone II models’ p-value indicating no significant relationship between the
observed and predicted data (Zone I SVM R2 = 0.21; Zone III RF R2 = 0.40; p < 0.001;
Figure 8c,e). Zone IV, however, was well predicted (R2 = 0.81; p < 0.001; Figure 8g). Why the
models appear so poor at predicting median fire size in Northeastern China is uncertain,
but potential contributing factors are discussed below.

Median fire size on the national level is predicted by a combination of terrain, dis-
tance to human features, and temperature variables. All display strong step or threshold
behaviors (Figure S12). In general, colder temperatures are related to the high median
area burned and may align with the high median fire sizes in the northernmost north-east,
and apparently in the mountainous southwestern Zone IV, which is also an area of low
population density. Seemingly counter to the population trend, large median fire sizes
appear close to roads and in areas of high road density. Nearness to roads could be an
artifact of large fires eventually becoming adjacent to roads, but the correlation between
high road density and median fire size is difficult to explain. In the northeast, distance
to the nearest road was associated with increased fire [20], but in that study, it was also
associated with increased population density and human-caused fires. It is noteworthy that
fire size is poorly predicted in the northern regions as well as nationally. It is possible that
the skill of the models in the north is poor and the result of the national model thus merely
indicates that the models are better at predicting median fire size in the south, where road
density is generally higher.

For Zone I, although the p-values suggest the models are predicting median fire size
non-randomly, all models had poor performance. This may indicate that median fire size is
primarily driven by factors not studied in this model (such as forest connectivity or fire
prevention and response efforts), is driven by interannual variability in the factors studied,
or that the impact of the factors is heterogeneous across the study area. The importance
of population and road density, along with the elevation, are in keeping with previous
studies in the region [43] and are suggestive of median fire size being either more likely
in terrain unsuited to human habitation or strongly affected by human intervention, such
as active fire suppression (Figure S13). For Zone III, the models performed better than in
Zones I and II, but there was still a generally low performance of the models and variation
between models as to which variables are important. Investigation of the relationships
between median fire size and each variable individually does not show a likely causal
link (Figure S14). Again, median fire size in Zone III may be determined by factors not
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investigated in this study, driven by the interannual variability in those factors or complex
interactions between variables. The RF model predicted fire in Zone IV with much higher
skill than for any other zones or the national models. In this region, elevated areas, which
are perhaps associated with lower moisture due to their higher slope, tended to have larger
median fire size (Figure S15).
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A striking feature of the models to simulate median fire size is it’s the higher coeffi-
cients of determination of the models in Zone IV, while the lower coefficients of determina-
tion of the models to simulate median fire size from the national and Zone I–III. In general,
although the ability of the models to predict median fire size will be affected by the resolu-
tion of the input data [44]; this impact is likely to affect all zones. One aspect that could
lead to additional noise and a lower ability to model the northernmost zones compared to
Zone IV is the changing scale of the grid square. A 0.5◦ grid square in northernmost China
may be ~7400 km2, while in southernmost China, it is ~11,400 km2: 1.5× the area. This
may introduce bias in multiple ways, for example, by increasing the chance that any one
fire’s area will be split across multiple grid squares in the north. Additionally, decreasing
the number of fires per grid square for which median fire size is calculated may result in
higher variability between grid squares in the north compared to the south, compounding
the existing tendency for fewer, larger fires in the north [16]. A future study to investigate
this scale-dependent effect of changing grid size with latitude could test either even-area
grids or calculate whole-fire areas with independent variables taken as the mean over
each fire area. The median area also more heavily weights in influencing more spatially
and temporally frequent fires, which are likely to be smaller. Again, this could result in a
“cleaner” measure of fire area in Zone IV than in the north. Temporal heterogeneity in fire
sizes within each grid square could contribute further noise to the data, with the potential
to vary between regions. Median fire size may also be more sensitive to variation in climate
factors temporally than the other fire regime components studied, for example, being more
responsive to a single dry season than may be captured by climate averages of multiple
years. Another possible explanation is that threshold effects in the influence of different
factors on fire spread, and thus median fire size, vary between ecoregions. In a study on
boreal forest of the northeast, Liu et al. [43] found that the most important factors changed
from fuel and topography to weather as fire size increased. It may be that Zones I–III have
strong threshold effects that affect the ability to model median fire size in these regions,
without implementing a sampling technique specific to the issue.

3.3. Comparison to Previous Studies

In agreement with previous studies [20,45,46], the models suggest that the factors
influencing forest fire vary between different metrics for modeling forest fire regimes. For
occurrence density, climate factors were the biggest overall influence on fire distribution, in
agreement with Wu et al. [16]. When comparing the order of importance for the categories
of variables, however, both our RF and BRT models subsequently ranked vegetation,
topography, and human factors, whereas Wu et al., ranked their importance as human
factors, vegetation, then topography. Differences in the topography and vegetation factors
between the two studies may have influenced this outcome, as well as the addition of
Zone V in Wu et al. [16]. The climate factors included in the studies also varied, making
direct comparison difficult. However, it is notable that temperatures were more commonly
important factors for predicting occurrence density in this study, especially in Zone I.

Investigating burned area (comparable to burned rate), Ke et al. [18] contrasted regions
that roughly correlate with Zones I and II combined vs. Zone III, but used interannual vari-
ability data, not averages across all years. They found a strong positive correlation between
spring temperature and burned area in Zones I/II, where burning primarily occurs in the
spring and fall. In Zone III, where the burned area is largest in the summer, the strongest
correlations were still with spring and fall climate factors: a negative correlation with both
temperature and precipitation in spring, and a negative correlation with precipitation in
the fall [18].

Forest fires in Zone I are more likely to occur with increasing temperature, and are
more likely larger and less frequent [15,47]. In spring, if the temperature is high, the
phenological period starts earlier, increasing the fuel load and leading to drier and more
combustible fuel [15,48]; this was reflected in our results. Zone II was less clear, but the
negative relationship between precipitation and fire was among the top predictors of the
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burned rate. The fire regime components in Zone III were generally difficult for the models
to predict, perhaps due to the low sample size with only 0.5% of national fire occurrence
found in this zone [16]. Human population density is an important driving factor of fire in
this region [3,16,44,49,50]. The general pattern of low precipitation being associated with
high burned area held, but for different seasons than found by Ke et al. [18], with annual,
summer, and winter precipitation instead of spring and autumn precipitation being most
important. The difference in studying 14-year averages rather than interannual data may
have affected this outcome.

In contrast to the northern region, the southern regions of Zone IV generally have high
mean annual precipitation and high temperatures all year round [51], along with complex
terrain and low wind speed. The climate conditions in southern China are affected by
the southwest monsoon of the Indian Ocean and southeast monsoon of the Pacific Ocean.
When dry periods occur in zone IV, it is more likely that forest fires will occur [15], and they
are generally smaller and more frequent than before [52]. Therefore, the southern region of
China represents a system that is moisture-dominated [53,54], that is, driven by interactions
between temperature and precipitation on fuel dryness. Both temperature and precipitation
variables were important in our models for Zone IV. The burned rate sensitivity to high fall
temperatures and low fall precipitation in our models may be consistent with sensitivity
to dry conditions in the form of locally weaker monsoon conditions or an earlier end to
the monsoon rains. However, for occurrence, their influence was more consistent with
spring fuel growth rather than subsequent dryness. This is seemingly in contrast to Wu
et al.’s [16] finding that maximum summer temperature was a key factor, although we
note that maximum summer temperature was not a variable in this study, instead using
mean summer temperature. The difference in the relative importance of these two related
variables for their predictive capacity in fire models is an interesting area for future study.
Wu et al. [16] did, however, find that winter and fall (dry season) precipitation were also
important factors.

Finally, we emphasize that our approach reveals patterns of susceptibility correlated
with spatial variations in average climate, rather than causation. Atypical conditions, e.g.,
a failed monsoon, will be necessarily attenuated in terms of both fire regime and predictive
variables. If an area is usually wet and warm, it may sustain high vegetation loads such that,
in a drought, there is more fuel to burn. The predictors revealed in our models therefore
represent associations between fire regime components and the average conditions for each
locality. To tease apart the importance of long-term averages vs. variability and transient
departures from mean conditions, future studies should investigate the effect of variability
in the climate factors on the components of fire regimes in China and also determine the
fundamental reasons why the model performance is different between three fire regime
components.

4. Conclusions

There is large spatial heterogeneity in forest fire disturbance in China, and this study
shows that there is, likewise, spatial variation in which predictors most influence forest
fire between ecoregions. At the national level, climate factors are the main variables that
influence the spatial heterogeneity of disturbance in terms of fire occurrence density and
burned rate, while the relationship with median fire size is less clear. On the regional scale,
the patterns of occurrence density and burned rate of forest fires are mainly predicted by
temperature variations between cells in the north, with precipitation patterns having a
larger role in the south, as well as population density effects in the highly populous Zone
III. The median fire size is not well simulated in Zones I–III. Potential scale effects are one
avenue of future study to investigate this; another is to investigate whether median fire size
is more sensitive to interannual variability in climate variables than to averages. Burned
rate may be a better metric for the spatial extent of fire in this kind of study than median
fire size. In Zone IV, elevation and temperature variables were associated with greater
median fire size.
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In order to improve the accuracy of simulation results, future research must account
for both regional variation in the influence of the variables predicting forest fire patterns
and also variation in which variables impact each of the components of forest fire regimes.
The high correlation between climate and forest fire disturbance, in spite of human impacts
on the fire regimes, suggests that climate change will influence the frequency and affected
area of fire disturbance in China. Due to the heterogeneous impacts of variables between
ecoregions and the regional differences in how the climate is predicted to change between
regions, the response of China’s forested areas to climate change will be complex. The most
valuable scale on which to study the factors that influence fire in China should be further
investigated to best predict how climate change will influence future fire regimes.
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