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Abstract

Electric‐field stimulation of neuronal activity can be used to improve the
speed of regeneration for severed and damaged nerves. Most techniques,
however, require invasive electronic circuitry which can be uncomfortable
for the patient and can damage surrounding tissue. A recently suggested
technique uses a graft‐antenna—a metal ring wrapped around the damaged
nerve—powered by an external magnetic stimulation device. This technique
requires no electrodes and internal circuitry with leads across the skin
boundary or internal power, since all power is provided wirelessly. This
paper examines the microscopic basic mechanisms that allow the magnetic
stimulation device to cause neural activation via the graft‐antenna. A
computational model of the system was created and used to find that under
magnetic stimulation, diverging electric fields appear at the metal ring's
edges. If the magnetic stimulation is sufficient, the gradients of these fields
can trigger neural activation in the nerve. In‐vivo measurements were also
performed on rat sciatic nerves to support the modeling finding that direct
contact between the antenna and the nerve ensures neural activation given
sufficient magnetic stimulation. Simulations also showed that the presence
of a thin gap between the graft‐antenna and the nerve does not preclude
neural activation but does reduce its efficacy.

KEYWORDS

computational electromagnetics, electromagnetic stimulation, graft‐antenna, magnetostatics,
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1 | INTRODUCTION

Nerve damage and associated chronic pain are debili-
tating conditions which weigh heavily on the individual
and burden society. Chronic pain due to nerve damage,

by definition, does not resolve in the expected time-
frame for most injuries (<3 months). People with this
condition are at increased risk of depression and, for
want of more effective pain relief options, are often
prescribed opioids, adding serious side effects such as
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addiction and death to the burden of managing chronic
pain (Aamir et al., 2020; Bouhassira et al., 2008; Colloca
et al., 2017; Health Direct, 2018; Kawai et al., 2017;
Torrance et al., 2006; de Moraes Vieira et al., 2012). The
total cost of chronic pain for society, in the United
States during 2008, is over $600 billion, including $300
billion for health care and $335 billion for loss of
productivity (Gaskin & Richard, 2012; Howe &
Sullivan, 2014; Kawai et al., 2017).

A treatment for nerve damage and chronic pain
comes in the form of repeated electrical stimulation. It
helps accelerate nerve repair which used to be a time‐
critical activity with a low success rate (Borgens, 1999;
Lal et al., 2008; Patel & Poo, 1982). Transcutaneous
Electric Nerve Stimulation (TENS), for example, is an
electrical stimulation method noninvasive to the nerve,
however, there exists conflicting evidence surrounding
its efficacy in pain relief (Magrinelli et al., 2013).
Electrical stimulation can also be applied with implants
that require invasive intervention. A power source and
internal circuitry must be embedded near the site of
repair, a process that can damage and scar the
surrounding tissue, thus hampering recovery. More-
over, the risk of surgical complications is further raised
as the circuitry may eventually be removed from the
body. A novel minimally invasive treatment devised by
Lauto and coworkers used a suture‐less graft‐antenna
to reconnect the ends of a severed rat sciatic nerve
(Sliow et al., 2019).

Although it has been already experimentally dem-
onstrated that repeated electrical stimulation of nerves
improves their regenerative ability (Borgens, 1999; Lal
et al., 2008; Patel & Poo, 1982), the physical mechanism
is still unclear. Recent studies have modelled the TMS‐
induced electric field in rat brains (Koponen et al., 2020),
however how specifically the electromagnetic fields
interact with the metal ring in the graft‐antenna to
cause neural activation, needs also exploration. Fur-
thermore, when a loosely attached, copper toroidal ring
was used instead of the standard ribbon ring, an
interesting phenomenon was observed in graft‐
antennas. In fact, gaps of approximately 100 µm
between the ring and the nerve prevented neural
activation, even under the highest level of magnetic
stimulation intensity available to the magnetic stimula-
tion device (Sliow et al., 2019). From this, it was
postulated that close contact between the nerve and
the toroidal ring (and hence any graft‐antenna) was
necessary for neural activation. In this study, we
measured in vivo action potentials triggered in rat
sciatic nerves coupled to graft antenna to validate
previous findings (Sliow et al., 2019) and develop a
computational model (e.g. Sim4Life Application and
Support Team, 2020b) to fit the experimental data. We
focused in particular on the “contact effect” regarding
the cause, the level of acceptable separation, and the
effective choice of cross‐sectional geometry of the ring.
It was also determined that the electrical stimulation of
the nerve was not due to the fields induced by the
magnetic stimulation device alone or due to currents
flowing from the graft‐antenna into the nerve. These
investigations led to the hypothesis that the neural

response was due to electric fields generated tangen-
tially to the graft‐antenna at the interface with the
nerve (Sliow et al., 2019), which needs further verifica-
tion with the aid of electromagnetic modeling and full‐
wave simulation.

In this work, we aimed to investigate the most likely
mechanisms allowing the graft‐antenna system to
activate peripheral nerves and establish whether or
not contact between the nerve and the graft‐antenna is
necessary for triggering action potentials. If contact is
not necessary, we aim to further explore the effect that
separation distance has on neural activation and
determine at what range of distances activation stops.

2 | MATERIALS AND METHODS

The stimulation mechanism can be explored with the
broader concepts of the graft‐antenna's operation;
therefore, in view of the inherent variability of
biological systems, the considerations are qualitative
in nature. This makes the final statements robust to
scaling changes in the experiment, such as differences
in stimulation intensity, rat size, and relative positions
between the magnetic coil and the rat. The analysis was
performed in the electromagnetic simulation tool CST
2021 Studio Suite (Dassault Systemes, 2021), where the
finite integration technique (FIT) using adaptive hex-
ahedral meshing was adopted to create models of the
nerve and ribbon ring graft‐antenna and, on one
occasion, the nerve and a toroidal ring. All models
were stimulated by a model magnetic stimulation
device based on the one used in (Sliow et al., 2019),
and the electric field gradients generated under the
surface of the nerve were examined. Unless otherwise
stated, all graphs are generated using results collected
from the CST environment. A supplementary and more
complex nerve model created in the Sim4Life v5.0
environment (Sim4Life, 2020a) was used to cross‐
validate these results in a more realistic setting. From
these models, it was found that the strong electric
fields generated at the edges of the ribbon ring of the
graft‐antenna create electric gradients within the nerve

Highlights

• This newly accepted paper describes and
provides model insights regarding one of the
first examples of wireless stimulation and
repair of peripheral nerves. To outline the
relevance of this work it is important to state
that the wireless stimulation and repair of

peripheral nerves research performed by

some of the authors of this paper has also
been already discussed by the very prestigi-
ous MIT Technical Review (https://www.
technologyreview.com/2018/07/23/240392/
nerves-repaired-using-bioscaffold-fitted-with-
radio-antenna/) as very relevant.
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when under magnetic stimulation, triggering neural
activation.

The analysis was extended by adding a gap between
the ribbon ring and the nerve and observing the
changes to the electric fields and gradients within
the nerve. The graft‐antenna became unable to activate
the neurons if the separation implemented by a
dielectric layer of low relative permittivity (close to
air) is over 100 µm, which was a possible explanation
for the contact effect observed in (Sliow et al., 2019).
Our modeling showed nonetheless that contact was not
necessary for neural activation and microscopic gaps
still allowed activation to occur. To further address
these questions, we have also performed some mea-
surements in vivo on rats (n = 9) to assess the contact
effect on nerve stimulation. This paper concludes by
proposing pathways for future research.

2.1 | Equivalent modeling for magnetic
stimulation device

The magnetic stimulation device used was a Transcra-
nial Magnetic Stimulation (TMS) Device, which is a
common medical instrument that generates high‐
intensity electromagnetic pulses for non‐invasive stim-
ulation of nervous tissue. It is typically used for the
treatment of depression when standard treatments are
shown to have limited effectiveness. In this study, the
TMS was not used to stimulate the brain but was
instead used to stimulate peripheral nerves.

While TMS devices come in many shapes, sizes, and
specifications, the basic design is a current pulse
generator connected to a conductive coil. When current
is pulsed through this coil (usually as a biphasic or
monophasic waveform (Hovey & Jalinous, 2006;
Nieminen et al., 2015)), a magnetic field is generated
of the order of approximately 0.1 T. This oscillating
magnetic field then induces an oscillating electric field
which, if correctly aligned, can trigger action potentials
within neurons. Usually, this occurs within shallow
brain tissue, but in this case, it is used in conjunction
with the graft‐antenna to trigger action potentials in
peripheral nerves and facilitate axon regeneration. In
the rest of this work, we will refer to the stimulation
device more generally as a magnetic coil or magnetic
stimulation device.

The magnetic coil used in previous reports (Sliow
et al., 2019) is a Figure 8 coil, consisting of two
connected coils wound in opposite directions. The
magnetic fields generated by these coils superimpose
directly below the centre of the device, creating a
strong magnetic field directed parallel to its long axis,
as seen in Figure 1. Depending on the shape and design
of the magnetic coil, it is possible to modify the
stimulation depth and focality of the produced fields.
Magnetic stimulation has the advantage of stimulating
superficial nerves to a significantly lesser degree than
electrical stimulation, avoiding or reducing the
uncomfortable tickling sensations in patients (Colella
et al., 2023). Another advantage of magnetic stimulation
devices is that non‐invasive stimulation methods are

inherently safer than their invasive counterparts,
reducing the risk of infection and further tissue damage
or inflammation. The graft‐antenna itself is less invasive
than sutured implants and is significantly better than
needing an internal power supply.

We created a model magnetic coil using the parame-
ters described in the Supporting Information Section:
Magnetic stimulation device characteristics. In order to
validate that the model was representative of a real
magnetic stimulation device, we performed an experi-
ment where we used a Hall effect probe to measure the
magnetic flux density component in the y‐axis, By,
generated along two different measurement axes: the z‐

(a)

(b)

(c)

FIGURE 1 Magnetic vector fields calculated by the model
magnetic coil compared against experimental measurements. (a)
Side‐on view of the magnetic vector field generated by the model coil
with a 1 kA current. The black line indicating the transverse magnetic
coil spans 180 mm through the centre as detailed in Figure 9. The red
arrow shows the measurement axis for (b), and the blue arrow 60mm
below the magnetic coil shows the measurement axis for (c); (b) The
absolute magnitudes of the magnetic flux density, By, measured along
the z‐axis. At around 30mm, near‐field effects and differences in the
magnetic coil structures cause the computational measurements to
vary from the experimental measurements (Salinas et al., 2007). The
blue dashed line highlights where (c) is measured; (c) The absolute
magnitudes of the magnetic flux density, By, measured along the y‐
axis, 60 mm below the magnetic coil. Measurements are taken from
the simulation software and by experimental verification using a Hall
effect probe. For the fields to match, a current of approximately 1 kA
was needed.
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axis through the centre of the magnetic coil, and the y‐
axis 60mm beneath the coil. The positions of these axes,
as well as the field distributions measured along them are
shown in Figure 1. These measurements were compared
with the magnetic fields calculated by the model coil
along these axes. As can be seen, the experimental and
computational measurements qualitatively agree with
each other with a few differences. Notably, in Figure 1b,
the computed and measured fields differ at around
30mm or less, a result of the approximated coil
geometries which strongly affect the near‐field (Salinas
et al., 2007). However, beyond a distance of 50mm from
the TMS, the computational and experimental models
agree strongly. In order for the magnitudes to be equal at
60 mm, the computational model needed a current of
1 kA.

2.2 | Nerve model

The most well‐accepted model for the internal ionic
behavior of neurons is described in the Hodgkin‐Huxley
model (Hodgkin & Huxley, 1952). It considers a node of
Ranvier on a neuron to be electrically equivalent to a
lumped circuit of parallel, nonlinear resistances and a
capacitance, representing the behaviors of the neuron
bilipid layer and its embedded ion channels. Under
normal conditions, the electrical potential of the neuron
remains at a resting level. However, if sufficient external
stimulation is provided, whether through an injected
current or induced electric potential gradient, then the
neuron will fire, creating an action potential.

A common extension to this model is the cable
model which approximates an axon's process using a
number of these lumped circuits connected in series by
resistances (Basser & Roth, 1991; Roth & Basser, 1990).
Analysis and simulation of these models has identified
that in the case of magnetic stimulation, the initial
action potential occurred at the point where the
gradient of the electric field along the length of the
axon was the greatest. That is, for an axon aligned
along the y‐axis, the initial action potential will occur at
the point where dE

dx

x is maximum, provided that the
gradient surpasses a given activation threshold. From
the H.H. model, we adopt the activation threshold
concept and its approximate value of 2 mV/mm2 based
on experimental measurements (discussed later) and
previous literature (Kosta et al., 2020, 2019) which will
be used to qualitatively establish the ability for neural
activation to occur.

Modeling the nerve tissue and surrounding tissue is
another issue which needs to be addressed. Results from
Pisa et al. (2014). found that the best trade‐off between
accuracy and computational expense was achieved by
modeling surrounding tissue using an anatomically
correct model with heterogeneous but non‐dispersive
tissue characteristics. However, their goal was to model
an entire wrist containing bone, skin, fat, muscles, and
nerves; the nerve itself was modelled as a single
homogeneous tube. The purpose of this study was not
to create an anatomically detailed model of a nerve but
rather to identify why the presence of a graft‐antenna

would cause neural activation where an absence would
not. Therefore, as long as a qualitative approach is
maintained, it is valid to ignore inhomogeneity in the
nerve tissues for the sake of reducing computational
complexity and providing a clear look into the mechanics
of the graft‐antenna free from the clutter caused by
inhomogeneous tissue structures.

Three different versions of the nerve were created in
the two electromagnetic simulation software environ-
ments. These are shown in Figure 2a–c. The first version
was an almost direct copy of the histological nerve
images provided during rat dis‐section by Sliow et al.
(2019). and was computationally infeasible to work with
due to the prohibitively high mesh resolution required.
The second version of the nerve was a simplified version
of the histological cross‐section and contained blood
vessels and a nonuniform surface, created using the
Sim4Life software environment. The third version of the
nerve was a simple homogeneous cylinder. The difference
between the results from the second and third models
was negligible for our analysis and a more detailed
comparison is included in the Supporting Information
Section. To reduce computational complexity (a necessity
when analysing very small ring thicknesses), the fully
homogeneous cylinder model for the nerve was used
unless otherwise stated. At this point of our investigation,
we gathered in vivo experimental data stimulating the
sciatic nerve of rats to validate our model analysis.

2.3 | In vivo wireless nerve stimulation
without active electrodes

A total of nine female Wistar rats weighing 282 ± 8 g
were used for the experiments, in compliance with a

FIGURE 2 The three nerve models and rat sciatic nerve.
Perineurium is cyan, neurons are light blue, and blood vessels are
red. (a) The complex model derived directly from the histological
cross‐section; (b) Simplified histological model designed in Sim4Life
simulation environment; (c) Homogeneous nerve cylinder model; (d)
Image of the graft‐antenna bonded in vivo to the sciatic nerve of a rat.
The gold ribbon ring (R) that is embedded in the graft‐antenna (G), is
in direct contact with the nerve (N).
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protocol approved by the ethics committee of Western
Sydney University (A10622). The right sciatic nerve
(diameter ≈ 1mm) was exposed according to a standard
surgical procedure (See Supporting Information Sec-
tion: Surgical procedure) and then the animals were
randomly allocated to two groups. In the first group
(n = 3), a copper, toroidal ring with a circular cross
sectional‐diameter of 0.10 ± 0.01mm was wrapped
around the nerve, ensuring contact between metal
and tissue. In the second group (n = 6), a gold, ribbon
ring graft‐antenna was laser‐bonded to the sciatic nerve
accordingly to a procedure previously published (Sliow
et al., 2019) (see Supporting Information Section: Graft‐
Antenna Fabrication and Laser Tissue Bonding). The
gold, ribbon ring had a rectangular cross‐section
(width = 0.8 ± 0.01mm and thickness of ≈70 nm) which
was in direct contact with the nerve after laser bonding
(Figure 2d). For reference, the gold ring is always
referred to as the “ribbon ring” while the copper ring is
referred to as the “toroidal ring.”

The TMS coil used in experiments was positioned
60mm above the sciatic nerve with the toroidal ring or
the graft‐antenna wrapped around the nerve. The coil
delivered 1 pulse per second with a duration of ≈350 µs
and a current magnitude of ≈ 1.0 kA. In the first group,
the sciatic nerve was stimulated uninterruptedly 120
times and the nerve compound action potential (NCAP)
was recorded according to a standard protocol (see
Supporting Information Section: Electrophysiology
Measures). After this procedure, the rats were eutha-
nized. In the second group, the rats survived for
12 weeks to test the ability of the graft‐antenna to
effectively trigger action potentials while implanted for
a prolonged time interval. Every week the sciatic nerve
was stimulated with ten magnetic pulses and the
compound muscle action potential (CMAP) of the
plantaris muscle, innervated by this nerve, was
recorded. At the end of the 12 week‐period the rats of
the second group also received a total of 120 pulses. Of
note is the fact that magnetic pulses failed in triggering
action potentials if the toroidal ring or the ribbon ring
graft‐antenna were not positioned around the nerve.
These experiments confirmed that the graft‐antenna
could trigger neural activation as desired.

3 | RESULTS

3.1 | Geometry of baseline nerve
stimulation model

For reference purposes, we start with modeling
and analysing a baseline scenario of the nerve
under magnetic simulation without introducing the
graft‐antenna. In practice we are looking here at very
near‐field effect at a discontinuity, therefore the
performance will not be influenced by the nerve length.
The nerve is modelled as a 2.4 mm long cylinder with a
radius of 0.5 mm, which is homogeneously filled with a
material of effective conductivity 3.11 × 10−2 S/m. The
muscle tissue enveloping the nerve is modelled as a
sphere, of radius 2.5 mm and effective conductivity

3.33 × 10−1 S/m. To secure reasonably uniform stimula-
tion from the electric fields within the sphere, the
cylindrical nerve is offset by (0, 0.4, 1.2 mm) from the
centre of the spheric tissue. The long axis (see
Figure 3) of the magnetic coil is transversely oriented
to the nerve axis and 60mm above its centre. To
simulate the experimental conditions inherited from
the previous work (Sliow et al., 2019), the current peak
is 1 kA at an effective operating frequency of 3544 Hz in
the wire loop. The gradient of the electric field within
the nerve is observed in the simulations as it is the
source that initiates the action potential.

On such basis, a gold ribbon ring as the graft‐
antenna can be added to the model to investigate the
nerve activation. The ring is wrapped around the
central segment of the nerve with a thickness of 1 µm
and a length of 0.8 mm. The ribbon ring has a distinct
and finite layer of insulating material between itself and
the nerve with electric properties equivalent to those of
air. In practice, this layer could be intentionally
manufactured into the antenna design (if desired) or
will exist as the result of an imperfect attachment
process. The impact of this insulation layer against
effective neural activation can be explored by changing
the thickness of the insulating layer whilst observing
the corresponding electric field (E‐field) gradient
along the offset axis. Specifically, configured with
different insulation thicknesses of 0, 10, 50, 100, and
500 µm, the model can be simulated with a mesh of
approximately 0.5 million tetrahedrons to ensure
suitable resolution. The full geometry is shown in

(a) (b)

(c)

FIGURE 3 Modeling for wireless nerve stimulation. (a)
Zoomed‐out view of the nerve and its relative position within the
muscle tissue; (b) Relative position of the TMS coil to the tissue
sphere (not to scale); (c) Close‐up view of the nerve with bonded
graft‐antenna. The pink sphere represents muscle tissue, and the blue
tube is the sciatic nerve. The purple ring is the insulation layer
between the nerve and the outermost gold ribbon ring. All solids are
homogenised approximations of the respective materials.
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Figure 3 with the relevant dimensions contained in
Table 1. The material conductivities extracted from the
IT'IS database (IT'IS Foundation, 2021) are listed in
Table 2. The electric permittivities are irrelevant to the
quasi‐magnetostatic solver (see Equation 2 in supple-
mentry information) and are therefore not specified.

3.2 | Insulation effects: estimation of
stimulation threshold

To illustrate the modeling process, the two cases of no
insulation and 100 µm insulation layer are taken as
examples. For these two cases, the instantaneous
cross‐sectional E‐fields during magnetic stimulation
are shown in Figures 4a and 5a. As a result of the
spherical geometry, the E‐fields within the muscle
tissue tend to flow counter‐clockwise. The E‐fields
within the nerve travel along the left‐to‐right direction
with slight vertical variations caused by the surround-
ing tissue, the bounded metallic ring, and other
boundary conditions. To see the difference between
these two cases, we have to zoom in on the corner of
the interface between the ring and the nerve, as shown
in Figures 4b and 5b, respectively. Near the metallic
ribbon ring, both images demonstrate a significant
change (i.e., gradient) of the E‐fields, which could be
associated with neural activation. The E‐field vectors in
the case of direct contact (Figure 4) transition from
horizontal to vertical when approaching the ring's
domain from the outside. In contrast, the dynamics
for the case with insulation (Figure 5) are much more
varied since there is a critical position at which the E‐
fields diverge rapidly: some travelling to the left
directed parallel to the nerve's surface, whilst others

travelling slightly to the right directed perpendicular to
the nerve's surface.

Although Figures 4 and 5 provide a visual overview
of the instantaneous fields in space, these qualitative
representations need to be further investigated. For
qualitative considerations, the electric fields are probed
30 µm under the surface of the nerve to avoid
irregularities in meshing near boundaries and to
capture the thickness of the perineurium. The variation
of these fields along the central axis of the nerve is
insignificant for both the in‐contact and out‐of‐contact
cases.

Figure 6 shows both the absolute E‐fields (Figure 6a)
and the corresponding gradients (Figure 6b) for five
different insulation thicknesses, in comparison to the
baseline scenario. For the baseline case without a
ring, the magnetic stimulation device only produces an
electric field that is near constant along the nerve. In

TABLE 1 Dimensions for the simulation model.

Geometric parameter Size [mm]

Spherical muscle radius (rm) 2.5

Cylindrical nerve radius (rn) 0.5

Nerve length (Ln) 2.4

Nerve offset (Δx, Δy, Δz) (0, 0.4, 1.2)

Ribbon ring thickness (tr) 1 × 10−3

Ribbon ring length (Lr) 0.8

Distance from coil (zc) 60

TABLE 2 Conductivities for simulation model.

Material Conductivity σ [S/m]

Muscle 3.33 × 10−1

Nerve 3.11 × 10−2

Insulation 1 × 10−12

Ribbon ring 4.1 × 107

(a)

(b)

FIGURE 4 Electric fields distribution around the nerve with gold
ribbon ring in contact. (a) Electric fields generated in a broad region
of the nerve due to magnetic stimulation; (b) Close‐up view of E‐field
vectors within the red rectangular area in (a). The white dash line
indicates that the E‐fields are probed 30 µm under the surface of the
nerve.

(a)

(b)

FIGURE 5 Electric field distribution around the nerve with a
100 µm insulation against the gold ribbon ring. (a) Electric fields
generated in a broad region of the nerve due to magnetic stimulation;
(b) Close‐up view of E‐field vectors within the red rectangular area in
(a). The white dash line indicates that the E‐fields are probed 30 µm
under the surface of the nerve.
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contrast, the gold ribbon ring shields the middle
portion of the nerve from the E‐field whilst signifi-
cantly increasing the E‐field strength at its edges,
which translates into the appearance of strong
gradients near both ends of the ring. As the insulation
increases, the peak gradient decreases until, at the
largest featured thickness of 500 µm, the absolute
peak gradient falls below a value of 2 mV/mm2, which
is unlikely to activate the nerve and can be used as a
conservative threshold for nerve activation. This
threshold of electric gradient for effective stimulation
will be later experimentally justified. In practice, as
the ribbon ring without an insulation layer will not
become dislodged by more than 100 µm, neural
activation is likely to occur.

Three key factors contribute to the creation of large
E‐field gradients: (1) the electrical shielding provided
by the ring around the middle of the nerve, which is
most prominent in the scenario with no insulation; (2)
the edges of the ring, which create E‐field peaks that
become weaker when more separated from the nerve;
(3) the interfaces in‐between the ring, the insulating
layer, the nerve, and the surrounding tissue, which
direct E‐fields perpendicular to the nerve in a small
region, as seen in Figure 5.

3.3 | Insulation effects: Comparison
between modeling and experiments

To facilitate the fabrication and assembly process, we
performed another physical experiment to explore the
contact effects by stimulating the sciatic nerve with a
copper toroidal ring as described before (Sliow
et al., 2019). When the toroidal ring has a 100‐µm‐
thick plastic coating, action potentials are not triggered
upon magnetic stimulation. In contrast, removing the
coating from the ring and bringing it into contact with
the nerve allows neural activation to occur, eliciting
Compound Nerve Action Potentials (CNAPs) of
0.33 ± 0.05mV (n = 3). During the latter experiment,
the magnetic stimulation device delivers one pulse per
second to the ring and 39 times out of 120 pulses, the
action potential is not generated. This can be attributed
to the limb movement after a successful action
potential that displaces the ring. Usually, at least one
part of the ring will be in contact with the nerve, as
shown in Figure 7a, but the sudden movement of the
limb may create a temporary gap between the nerve
and the ring, causing misfiring of the subsequent action
potential.

To understand the fields being generated by the
copper toroidal ring, we emulated these in vivo
experiments in our computational simulations. The
rectangular cross‐section of the gold ribbon ring is
replaced by the circular cross‐section of a copper
toroidal ring, as defined by the parameters in Table 3.
The model reuses the same relative positions, dimen-
sions, properties of the nerve, and the surrounding
tissue sphere. As shown in Figure 7b,c, one configura-
tion comes with a toroidal ring in contact with the
nerve while the other has a 100 µm gap in‐between.
Both cases are investigated for comparison with

(a)

(b)

FIGURE 6 Simulated E‐field strengths and calculated gradients
of the ribbon ring along the offset nerve axis 30 µm under the surface
of the nerve for different insulation thicknesses. (a) Absolute E‐field
distribution; (b) Corresponding E‐field gradients, where a
conservative estimation for stimulation threshold can be obtained
from case with a 500 µm insulating layer. The range of the ribbon ring
is indicated by the grey area.

FIGURE 7 Experimental and modeled nerves wrapped by a
toroidal ring. (a) Image of the sciatic nerve inside a copper loop.
Graph paper with a 1mm grid is visible in the background. The wire
thickness is 100 ± 10 µm. A gap of 85–118 µm is visible between the
nerve and the top ring where the wire is twisted; (b) Model of the
nerve with toroidal ring in contact; (c) Model of nerve with a 100 µm
gap from the toroidal ring.
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experiments: when the toroidal ring is in contact with
the nerve and when it gets dislodged due to twitching.

The simulation results show that the E‐field gradi-
ents are significantly larger when the ring is in contact
with the nerve as illustrated in Figure 8. Since the
toroidal ring causes neural activation with no insula-
tion, but fails when a 100 µm gap exists, the calculated
gradients can be used to further justify the previously
estimated stimulation threshold. The midpoint between
the peak gradients of the two scenarios is 2.4 mVmm−2

and provides a ball‐park estimate for the lower bound
of thresholds. Thresholds of 4 and 5mVmm−2 were
calculated by Kosta et al. (2019, 2020) respectively
using axon diameters of 20 and 10 µm. In practice, rat
sciatic neurons are slightly larger (mean diameter of
29 µm) and are easier to stimulate (Swett et al., 1991).

Therefore, to calibrate our model with our experimen-
tal results, and to match previous literature, we will
consider a range of thresholds between 2 and 4mV
mm−2 for being required for neural activation. Gradi-
ents in this range may be able to stimulate neurons but
will be less reliable. To be specific, the peak gradients
of the in‐contact case are above the upper of the
threshold range whilst the peak gradients of the
isolated case are below the lower boundary. Referring
to the level of peak gradients in Figure 6, the observed
difference in level with Figure 8 suggests that the
geometry of the ring, likely the presence and sharpness
of edges, is an important consideration in how reliably
and efficiently neural activation will be achieved.

4 | DISCUSSION

This paper suggests that the cause for the electrical
stimulation of nerves through the use of the graft‐
antenna system that was first proposed by Sliow et al
(Sliow et al., 2019), is due primarily to the electric fields
created at the edge of the ring which sets up high‐
intensity field gradients in a small region around it. Our
computational model demonstrated that direct contact
between the ring and nerve ensures neural activation,
in agreement with the experimental in vivo data.

A large gap of 500 µm was assumed to prevent
neural activation when the gold ribbon ring of the graft‐
antenna is considered, and a conservative stimulation
threshold can be estimated accordingly. In another
experimental validation, a gap of approximately 100 µm
prevented neural activation for the toroidal ring. The
simulation model is robust to variations of the
surrounding tissue shape or ribbon ring thickness.

The model has assumed that activation of neurons
0.03mm deep under the surface of the nerve was a
measure of whether or not the entire nerve would elicit
a response. However, the nerve bundle actually
contains thousands of axons (Figure 1a) which have
been subjected to E‐fields of varying magnitudes, as
can be seen in Figures 4 and 5. The deeper axons may
or may not be activated by the graft‐antenna, and due
to heterogeneities in surrounding axons, tissue, and
blood vessels, the activation distribution is unlikely to
be cylindrically symmetric. If they are not activated
beyond a certain depth, there is a possibility that some
induced bundle effect allows the surface neurons to
synchronise and induce activations in deeper neurons,
though further modeling and experimentation are
needed to investigate this hypothesis. The curvature
of the nerve or neuronal undulations also cannot be
fully captured with the simplified model.

Additionally, a finite strip of nervous tissue in a
sphere of muscular tissue is an approximation of the rat
sciatic nerve and surrounding tissue. In the Supple-
mentary Section, we demonstrate that the shape of
surrounding tissue and basic heterogeneities in the
nerve did not qualitatively change the results of using a
graft‐antenna for neural activation. However, they did
cause quantitative changes which will need to be
accounted for since they contribute to stimulation

TABLE 3 Properties of toroidal ring.

Parameter Size (contact/noncontact) Units

Inner radius 0.5/0.6 mm

Outer radius 0.6/0.7 mm

Cross‐section diameter 0.1 mm

Conductivity 5.8 × 107 S/m

(a)

(b)

FIGURE 8 Plots of the simulated E‐field strengths and
calculated gradients along the offset nerve axis 30 µm under the
surface of the nerve when the toroidal ring is in‐contact and isolated.
(a) Absolute E‐field distribution; (b) Corresponding E‐field gradients,
where the estimated conservative stimulation threshold is indicated
by the grey area.
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depth. The magnetic stimulation device was also
assumed to be exactly 60mm away from the graft
antenna and directed transverse to the nerve's length.
In practice, these will not be perfectly controlled since
the graft‐antenna will be concealed within the subject's
body and, as a result, there will be further quantitative
differences between the model and experimental
results.

Finally, experimental validation for the effect of
insulation layers between the gold ribbon ring and the
nerve is needed. Repeating the insulation experiments
described in this paper with built‐in insulation layers
under the ribbon ring could provide more insight into the
point at which neural activation starts failing experimen-
tally and also into the behavior of very thin (<10 µm)
insulation layers where slightly stronger peak gradient is
generated compared to the in‐contact case. These insights
could motivate further design improvements.
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