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A B S T R A C T   

This paper proposed a probabilistic framework of damage characterisation to detect and identify early-state 
cracks in pipe-like structures using ultrasonic guided waves. The crack location, crack sizes (e.g., depth and 
width of the crack), and Young’s modulus are considered as unknown parameters in the model updating using a 
Bayesian approach, by which their values and the associated uncertainties are quantified. The proposed 
framework is developed based on approximate Bayesian computation (ABC) by subset simulation, which is a 
likelihood-free Bayesian approach. This algorithm estimates the posterior distributions of unknown parameters 
by directly accessing the similarity between the measured signals from experiments and the simulated guided 
wave (GW) signals from the numerical model. In this case, the evaluation of likelihood functions can be smartly 
circumvented during Bayesian inference. A time-domain spectral finite element (SFE) method with a cracked 
finite element model is employed to model the pipes to enhance the computational efficiency of the simulation 
and model updating. Numerical and experimental case studies are carried out to evaluate the performance of the 
proposed likelihood-free approach. Numerical results show the accuracy and robustness of the proposed 
approach in identifying unknown parameters under different scenarios. The associated uncertainties of each 
parameter are also quantified by analysing the statistical properties of the sample set, such as mean and coef-
ficient of variation (COV) values. Experimental results show that the proposed method can accurately identify 
the unknown parameters, which further verifies the accuracy and practicability of the probabilistic damage 
characterisation framework.   

1. Introduction 

1.1. Structural health monitoring 

Damage detection is considered as one of the main components in 
structural health monitoring (SHM). Adequate and regular health in-
spection of structural integrity is essential to the safety, serviceability, 
and reliability of structures. Numerous sophisticated non-destructive 
testing (NDT) techniques were developed with the advancement of 
computers and sensors over the past few decades [1]. These techniques 
are generally typified by simple visual inspection, conventional A- or 
C-scan ultrasonic testing, eddy current, acoustic emission, 
vibration-based approaches utilising low-frequency vibration testing [2] 
and guided wave (GW) based approaches [3]. 

The vibration-based techniques are efficient in global monitoring by 
utilising modal parameters or dynamic responses of structures. How-
ever, some studies reported that they are insensitive to minor local 

defects, which may still be critical to the structural safety [4]. On the 
other hand, guided wave-based techniques have been proven to be 
sensitive in detecting various types of local defects because of the wave 
propagation characteristics of high-frequency waves and the waves have 
long propagation distance [5]. GW propagating in structures is 
commonly classified into one-dimensional (1D) waveguides and 
two-dimensional (2D) waveguides. Pipes and beams are some typical 
examples of 1D waveguides [6,7], while examples of 2D waveguides are 
shells and plates [8,9]. 

1.2. Guided wave based techniques in pipe-like structures 

Pipes-like structures have extensive applications in industries (e.g., 
chemical and oil industries) and in our daily life (e.g., water pipeline 
systems). Common defects in such thin-walled and hollow-cylindrical 
structures are pits, blockages, and corrosion [10–14]. Incipient defects 
in pipes, even a single crack, can lead to severe consequences and even 
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catastrophic failures or accidents without timely inspection and manual 
intervention. Guided wave based techniques have attracted much 
attention because the multimode-guided waves can propagate in both 
circumferential and axial directions of the pipe over a long distance 
[15]. GW presents the potential capacity to detect various flaws on the 
outside and inside surfaces of pipes in inaccessible areas. 

GW modes in circular waveguide can be named as T(0,n), L(0, n) and 
F(m, n), standing for torsional, longitudinal, and flexural modes, where 
m and n denotes the circumferential order and group order of the wave 
modes, respectively [15]. Each mode has its unique wave characteris-
tics, and the choice of wave mode mainly depends on the targeted 
damage type and the specific detection requirement. Axisymmetric 
wave modes, including longitudinal and torsional modes, are generally 
preferable because they are easier to be generated [6]. In particular, the 
fundamental torsional T(0,1) mode has demonstrated significant prac-
ticability in damage assessment recently because of its insensitivity to 
the presence of fluid and insulation materials, as well as its 
non-dispersive wave characteristic over the whole frequency range. 
Besides, no other torsional wave modes will be excited if the excitation 
frequency is below the cut-off frequency of T(0, 2) [6,15–17]. In the 
literature, some studies investigated the torsional waves propagation in 
pipes and the scattering phenomenon due to cracks. For instance, 
Løvstad and Cawley investigated the torsional wave reflection phe-
nomenon from multiple circular flaws in pipes [18]. Kwun et al. 
experimentally investigated the attenuation of the fundamental 
torsional waves in a coal-tar-coated pipe above ground and underground 
[19]. A quantitative study regarding the fundamental torsional wave 
reflection from axisymmetric and non-axisymmetric cracks in pipes was 
conducted using finite element simulations and further validated by 
conducting experimental studies [16]. Huan et al. measured the atten-
uation of the T(0,1) mode in embedded pipes with different coating 
materials [20]. The studies mentioned above generally detect damage 
by examining linear feature changes (e.g., time of flight, mode conver-
sion, and attenuation) in wave scattering induced by the interaction of 
incident waves and structural damage. Although some studies have 
investigated the GW based approaches for detecting cracks in pipes 
using torsional waves, there is still significant room for further exploring 
the quantification of damage characteristics, especially using an 
advanced model based approach. 

Various GW model based methods have been proposed to charac-
terise different types of defects in different types of structures [21,22]. 
Specifically, an analytical or numerical model is employed to describe 
the propagation of guided waves and the scattering at cracks. The crack 
characteristics of location and severity (e.g., width and depth) are 
considered unknown parameters in the model for updating. The damage 
quantification is conducted by optimising the crack parameters of the 
numerical model, in which the differences between the numerical 
guided wave signals and measured ones are minimised. GW model based 
approach can provide extra quantitative information on the damage 
detection [23,24]. Hence, this paper proposes a GW model based 
approach for crack characterisation in pipe-like structures. 

1.3. Bayesian probabilistic framework 

To enhance the reliability and robustness of structural damage 
characterisation, uncertainties in both numerical simulation and 
experimental observation, such as modelling simplification, measure-
ment error due to environmental noise and systematic error, as well as 
manufacturing and material variability, should be appropriately 
considered [25–27]. amongst the approaches for damage identification 
under uncertainty in engineering structures, the Bayesian statistical 
framework is one of the well-established approaches, which explicitly 
considers the uncertainty quantification in the procedure of damage 
characterisation by employing the Bayesian inference. Various Bayesian 
methods and illustrated examples can be found in the literature [27–29]. 

The Bayesian approach has been considered in GW based damage 

identification. For example, Ng and his coworkers employed a Bayesian 
statistical framework in isotropic and composite beam structures to 
identify single and multiple cracks with associated uncertainty quanti-
fication by incorporating different signal processing techniques and a 
spectral finite element (SFE) method [23,24]. Yan utilised the infor-
mation on the time-of-flight in the scattered lamb wave to characterise 
the unknown crack location and wave velocity parameters in beams 
[30]. Cantero-Chinchilla et al. proposed a multilevel Bayesian frame-
work using hybrid wave finite element (WFE) methods to classify, 
localise, and quantify damages in composite beam structures from the 
completed measured time-domain ultrasound signals [31]. Yan et al. 
proposed a Bayesian damage identification framework based on an 
analytical probabilistic model and an ultrafast wave scattering simula-
tion scheme [32]. Most of the studies focused on Bayesian damage 
identification using guided wave generally focused on beams and plates, 
while very limited applications were conducted in pipe-like structures 
[33]. 

In Bayesian inference, the prior is often a non-informative distribu-
tion, which tends to be determined by the user experience, and hence, 
the likelihood function is the key component to estimate the posterior. 
Nevertheless, situations can always happen whereby the model or 
problem is so complex that the full analytical likelihood function might 
be computationally expensive to evaluate or even intractable [34,35]. In 
addition, the selection of the likelihood function is related to the as-
sumptions of error between observation and model made on the un-
derlying unknown data-generating distribution. Different forms of 
likelihood function might lead to different subsequent posterior distri-
butions. In other words, no universal form of the likelihood can be used 
in any circumstances [34,35]. 

To make the Bayesian probabilistic framework for GW based damage 
detection more practical, a likelihood-free approach, approximate 
Bayesian computation (ABC), is employed as a more feasible and 
straightforward algorithm. ABC provides an alternative to solving the 
inverse problem that directly accesses the similarity between simulation 
and measurement using a distance function to identify the unknown 
posterior distribution without requiring explicit likelihood function 
evaluation [34,35]. Thereby, the difficulty of the likelihood function 
mentioned above is smartly overcome. It should be noted that the se-
lection of distance functions is one of the key concerns in ABC algo-
rithms. An inappropriate selection could impact inference accuracy and 
even introduce additional bias in estimation [35]. Final tolerance level 
selection is also crucial to simulation performance. A too-small 
threshold tends to require more simulation time, while a too-large 
value may lead to inaccurate prediction. In other words, there is al-
ways a trade-off between efficiency and accuracy in tolerance level se-
lection [36]. During the last decades, much effort has been devoted to 
overcoming these difficulties and improving ABC performance in both 
efficiency and accuracy. The reader can refer to the comprehensive re-
view in the literature [34–37]. Numerous variants of ABC have been 
successfully employed in vibration-based approaches for parameter 
estimation and model selection [38,39]. Chiachio et al. [40] combined 
the ABC framework into the subset simulation techniques [41,42] to 
estimate rare-event, and it has demonstrated good computational effi-
ciency as well as the same or better precision as other ABC algorithms, 
such as ABC Markov chain Monte Carlo (MCMC) [43] and ABC 
sequential Monte Carlo (SMC) [44]. Recently, Fakih et al. proposed a 
Bayesian probabilistic framework for damage characterisation in wel-
ded structures using Lamb-wave surrogate models training from Artifi-
cial Neural Network (ANN) and minimal sensing, incorporating an 
approximate Bayesian computation framework [45]. 

To summarise, torsional waves have been shown to be effective in 
detecting damage to pipe-like structures. It is worthwhile evaluating a 
procedure for locating the damage and also identifying the corre-
sponding properties. GW model based approaches have been proposed 
for damage characterisation by minimising the discrepancy between 
simulation and measurement. In particular, Bayesian approaches have 

Z. Zeng et al.                                                                                                                                                                                                                                     



Thin-Walled Structures 192 (2023) 111138

3

been commonly incorporated into the model based framework, which 
can explicitly take uncertainty quantification into account. Most 
Bayesian GW damage identification frameworks were established 
depending on different likelihood function assumptions. To make the 
framework more practical, ABC provides an alternative way to solve the 
inverse problem with the Bayesian approach. In this study, a likelihood- 
free probabilistic framework for damage characterisation in pipe-like 
structures using torsional guided waves is proposed. The likelihood- 
free probabilistic framework is developed based on approximate 
Bayesian computation by subset simulation (ABC_SubSim) to overcome 
the aforementioned challenges in evaluating the likelihood function. A 
time-domain SFE model is used to simulate the numerical signals of 
torsional guided wave propagation and the phenomenon of scattering in 
pipes. The time-domain SFE and the conventional finite element (FE) 
method have the same flexibility in model discretisation, while SFE 
method provides a more effective tool in GW propagation simulation by 
using high-order approximation polynomials that require fewer finite 
elements in model construction. A spectral crack element is embedded in 
SFE model to simulate the crack and also consider the effect of the 
torsional-flexural mode conversion due to the interaction of the GW 
propagation with the cracks [46]. The unknown parameters, such as 
crack location, crack size, and other material properties, and their 
associated uncertainties, can be quantified by minimising the discrep-
ancy between the numerical and measured guided wave signals. 

The arrangement of the paper is listed below. Section 2 presents the 
details of time-domain SFE method of pipe, incorporating a spectral 
cracked element. The algorithm of ABC-SubSim is presented in Section 
3. In Section 4, numerical studies are conducted to investigate the 
robustness and accuracy of the proposed framework. Experimental 
studies are also carried out to further verify the accuracy and practica-
bility of the likelihood-free framework. Finally, conclusions are drawn in 
Section 5. 

2. Time-domain spectral finite formulation of torsional guided 
wave in pipes 

2.1. Timoshenko beam theory and elementary rod theory 

The numerical model for the pipe is developed using the time- 
domain SFE method based on Timoshenko beam theory and elemen-
tary rod theory [47]. The elementary rod theory governs the torsional 
wave motion about u-axis, θ, based on the principle of Saint-Venant. The 
vertical displacement along v-axis, v, and the effect of shear deformation 
about w-axis, φ, are considered by the Timoshenko beam theory. Thus, 
three degrees-of-freedom (DoFs) were considered in the simulation of 
the pipe element, as shown in Fig.1. 

The governing equations are defined as [48,49] 

GJ
∂2θ
∂x2 + Fθ(x, t) = ρIoθ̈ (1)  

KTim
1 GA

∂
∂x

(
∂v
∂x

− φ
)

= ρAv̈ − FV(x, t) (2)  

EI
∂2φ
∂x2 + KTim

1 GA
(

∂v
∂x

− φ
)

= KTim
2 ρIφ̈ (3)  

where A, J, ρ, E and G is the cross-section area, the polar moment of 
inertia, material mass density, Young’s modulus, and shear modulus, 
respectively. I and Io is the second moment of inertia about w-axis and 
u-axis, respectively. The external vertical and torsional excitation are 
represented by FV(x, t) and Fθ(x, t). The parameters KTim

1 and KTim
2 are 

adjustable factors introduced in Timoshenko beam theory for the fact 
that the actual distributed shear strain is not constant as assumed [48]. 
In this paper, KTim

1 = 0.28 is defined from the experimental results of the 
pipe model (described in Section 5), by which the SFE numerical 
simulation has the best fit to the measurement. KTim

2 = 45KTim
1 /π2 is 

applied to match the cut-off frequency of GW modes [48,49]. 

2.2. Time-domain spectral finite element method 

In the time-domain SFE method, the GW propagation simulation can 
be expressed by an ordinary differential equation: 

MÜ + CU̇ + KU = F(t) (4)  

where the displacement, velocity, and acceleration are denoted by U,

U̇ and Ü. M, C and K is the global mass matrix, global damping matrix, 
global stiffness matrix and the global load vector are illustrated by F(t), 
respectively. C is dependant on M with the relationship C = ηM, where η 
is the damping coefficient [50]. 

Me, Ke and Fe is the element mass matrix, element stiffness matrix 
and the element load vector, respectively. The expressions are presented 
as follows: 

Me ≈
∑n

i=1
wiNe(ξi)

TμNe(ξi)det(Je(ξi)) (5)  

Ke ≈
∑n

i=1
wiBe(ξi)

TDBe(ξi)det(Je(ξi)) (6)  

Fe ≈
∑n

i=1
wiNe(ξi)

Tf(ξi)det(Je(ξi)) (7)  

where n is the number of Gauss-Lobatto-Legendre (GLL) nodes at each 
spectral element. f(ξi) is the external excitation. D and μ is the stress- 
strain matrix and the mass density matrix. Je = ∂x

∂ξ is the Jacobian func-
tion used for coordinate transformation from the local matrix to the 
global matrix [51]. 

ξi is the local coordinate of the GLL point with domain from − 1 to 1, 
which can be calculated by the following equation: 

(
1 − ξ2

i

) dLn− 1(ξi)

dξi
= 0 for i ∈ 1,…, n (8)  

where Ln− 1 is the first derivative of Legendre polynomial of degree (n-1). 
The weight function wi of the corresponding GLL node ξi are determined 
as 

wi =
2

n(n − 1)(Ln− 1(ξi))
2 for i ∈ 1,…, n (9) 

Three DoFs are considered at each node, including vertical 
displacement v, the torsional motion θ and the shear deformation effect 
φ. The shape function matrix Ne is expressed as the Kronecker product of 
spectral shape function vector N = [N1(ξ),…,Nn(ξ)]T and a 3 × 3 
identity matrix I. 

Fig. 1. Spectral finite element with length L for the fundamental 
torsional wave. 
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Ne = N ⊗ I (10)  

with 

Ni(ξ) =
∏n

m=1,m∕=i

ξ − ξm

ξi − ξm
for i ∈ 1,…, n (11) 

The stress-strain matrix and the mass density matrix μ are expressed 
based on Timoshenko beam theory and elementary rod theory. 

D =

⎡

⎢
⎢
⎣

GJ 0 0
0 KTim

1 GA 0
0 0 EI

⎤

⎥
⎥
⎦ (12)  

μ =

⎡

⎢
⎢
⎣

ρIo 0 0
0 ρA 0
0 0 KTim

2 ρI

⎤

⎥
⎥
⎦ (13) 

The strain-displacement operator Be is expressed as 

Be =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂
∂x

0 0

0
∂
∂x

− 1

0 0
∂
∂x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ne =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
J

∂
∂ξ

0 0

0
1
J

∂
∂ξ

− 1

0 0
1
J

∂
∂ξ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ne (14) 

By substituting Be, D, μ and Ne into the Eqs. (5)–(7), the element 
matrix of stiffness and mass, as well as the element load vector are 
calculated. 

2.3. Cracked spectral element formulation 

A cracked SFE is developed to simulate the phenomenon of torsional 
GW scattering and the effect of torsional-flexural coupling mode con-
version when the wave interacts with the crack [46,52]. The proposed 
element has one node at each end with a small length, while each con-
tains three DoFs. A schematic diagram of the spectral cracked element 
cross-section and time-domain SFE model is shown in Fig.2. 

The cracked element stiffness matrix Ke,c is different from the un-
cracked element stiffness Ke due to the appearance of a crack and it is 
written as 

Ke,c = TQ− 1TT (15)  

T and G is the transformation matrix and flexibility matrix which are 
given by 

TT =

⎡

⎣
1 0 0 − 1 0 0
0 1 0 0 − 1 − l
0 0 1 0 0 − 1

⎤

⎦ (16)  

Q =

⎡

⎣
q11 q12 q13
q21 q22 q23
q31 q32 q33

⎤

⎦ (17) 

With 

q11 =
l

GIo
+ Ig1 + Ig2; q22 =

kl
GA

+
l3

3EI
+ Ig4 + s2Ig3; q33 =

l
EI

+ Ig3

q12 = q21 = Ig5; q13 = q31 = 0; q23 = q32 =
l2

2EI
+ sIg3

(18)  

where: 

Ig1 =

∫ .

A

8αβ2F2
II

πE
(
R4 − r4)2 dA; Ig2 =

∫ .

A

2mαh2F2
III

πE
(
R4 − r4)2 dA; Ig3 =

∫ .

A

32αβ2F2
1

πE
(
R4 − r4)2 dA

Ig4 =

∫ .

A

2mk2α
(
R2 + r2)2F2

III

πE
(
R4 − r4)2 dA; Ig5 =

∫ .

A

2mkαh
(
R2 + r2)F2

III

πE
(
R4 − r4)2 dA

(19)  

where l is the length of the cracked element. FI, FII and FIII are empirical 
boundary calibration factors, and they can be found in [46,52]. The 
global stiffness matrix K is thereby calculated via the assembly pro-
cedure of combining the element cracked stiffness matrix Ke,c and the 
element uncracked stiffness matrix Ke together. The global mass matrix 
M and the global load vector F(t) is also constructed by assembling the 
corresponding element matrices. The dynamic characteristics of 
displacement, velocity, and acceleration can then be estimated by 
applying explicit central difference method to the ordinary differential 
equation in Eq. (4) [23]. For damage identification, the proposed SFE 
crack model is employed to simulate the numerical GW time-domain 
signal. The crack properties in Fig.2, including damage location and 
damage size (i.e., width and depth), are treated as uncertain parameters 
for calibration. 

Fig. 2. A schematic diagram of the spectral cracked element cross-section and time-domain SFE model.  
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It should be noted that the SFE pipe model can also incorporate any 
type of damage in any direction depending on the practical situation. 
Simulation of different types of damage in the SFE model can be ach-
ieved by creating a cracked stiffness element matrix between the un-
cracked ones, and then adopting the corresponding analytical 
formulation of the transformation matrix and flexibility matrix [52]. 
Multiple cracks simulation can also be done by inserting the cracked 
stiffness element matrices into the corresponding locations. Based on the 
modified global stiffness matrix K and global mass matrix M, the dy-
namic characteristics of the model are still estimated by solving the 
ordinary differential equation. Therefore, the overall computational 
efficiency of the SFE model is not affected if the model size and the time 
interval remain the same. In this paper, the type of crack is assumed as 
the axisymmetric crack along the longitudinal direction of the pipe for 
demonstrating the performance of the proposed Bayesian damage 
characterisation framework, which will be described in the following 
section. 

3. Guided wave-based identification by approximate Bayesian 
computation 

3.1. Approximate Bayesian computation 

Consider a set of observation Ym, let θ be the uncertain parameters of 
interest. The initial degree of relief about θ is expressed by the prior 
distribution P(θ). The prior probability density function (PDF) can be 
updated using the observed information in the dataset, based on Bayes’ 
theorem: 

P(θ|Ym) =
P(Ym|θ)P(θ)

P(Ym)
=

P(Ym|θ)P(θ)∫

θP(Ym|θ)P(θ)dθ
(20)  

where P(θ|Ym) is the posterior PDF of the unknown parameters consid-
ering the observed data. P(Ym|θ) is the likelihood function. P(Ym) is the 
evidence, which is known as a normalising constant, so-called marginal 
likelihood. 

Approximate Bayesian Computation (ABC) is an effective alternative 
for solving Bayesian inference. It directly uses the similarity between 
measured and numerical data to approximate the posterior distribution 
of the model parameters, thereby replacing the evaluation of the like-
lihood function [34–37]. Specifically, in terms of the generic procedures 
of the ABC methods, a candidate parameter θ is sampled from some 
distribution, such as the prior for the first candidate. A numerical dataset 
Xs with the same geometry as Ym is computed from the model f(θ, u), 
where u is some deterministic input required for model simulation. 

The simulated dataset Xs is then compared with Ym by computing a 
distance function ρ(Xs,Ym). For the convenience of computation, if the 
dimension of observation is large, the lower-dimensional vector of 
summary statistics S() (e.g., mean, and standard) is often used, so that 
the distance function can also be expressed as ρ(S(Xs), S(Ym)). The 
candidate parameter with nonzero probability is accepted if the distance 
function is less than desired tolerance ϵ, thereby the final output from 
ABC is a sample set of candidate parameters which is in the distribution 
of P(θ|ρ(Xs,Ym) ≤ ϵ). If ϵ is a sufficiently small value (ϵ→0), then Xs→Ym 
and hence the distribution P(θ|ρ(Xs,Ym) ≤ ϵ) can be considered as a 
good approximation for the desired posterior P(θ|Ym). 

A general expression of the posterior approximation using ABC can 
be written as follows [35]: 

P(θ|Ym) = P(θ|S(Ym) ≤ ϵ0) ≈ P(θ|ρ(S(Xs), S(Ym)) ≤ ϵ0) (21) 

The selection of desired tolerance reflects a trade-off between the 
computational cost of simulation and the approximation accuracy. The 
selections of distance function and summary statistics are also crucial to 
the posterior approximation accuracy and quality [34–37]. 

3.2. Subset simulation by approximate Bayesian computation 

To enhance the computational efficiency for sufficiently small tol-
erances, ABC-SubSim is an advanced sequential algorithm that it com-
bines the concepts of ABC with the subset simulation technique [40]. 
The basic idea of this algorithm is to make the simulated dataset from 
the numerical model closer and closer to the measured data and even-
tually estimate the posterior by employing a nested decreasing sequence 
region in the subset simulation [41,42]. 

Specifically, let z = (θ,Xs), so that P(z) = P(Xs|θ)P(θ). Let also D 
be the nested descending sequence regions, in which the region D of 
possible solutions can be considered as the intersection of m nested re-
gions: 

D1⊃…Dj⊃…⊃Dm = D = ∩m
j=1Dj for j = 1,…,m (22)  

with 

Dj =
{
(θ,Dm) : ρ(S(Xs), S(Ym)) ≤ ϵj

}
with ϵj+1 < ϵj (23)  

where ϵj is the intermediate tolerance at each region; m is the maximum 
simulation level. 

The tolerance levels are adaptively decreasing in a sequence that 
ϵ1 > ϵ2 > … > ϵm, where the last tolerance at the simulation level of m 
is equal to or less than the final desired tolerance ϵf . The maximum 
simulation level is chosen in case the desired tolerance is too small [40]. 

By the definition of conditional probability, the probability of final 
region Dm can be achieved by a product of P(D1) and sequence regions of 
P(Dj

⃒
⃒Dj− 1). 

P(Dm) = P(D1)
∏m

j=2
P
(
Dj
⃒
⃒Dj− 1

)
(24) 

In the proposed algorithm, the samples for the probability P(D1) in 
the first level are estimated by a direct Monte Carlo (MC) method from 
the initial prior distribution of each parameter. When j ≥ 2, the samples 
in the higher levels for probability P(Dj) are drawn using a modified 
Metropolis algorithm (MMA) [41,53]. Based on the aforementioned 
equations, the final stage is achieved when the maximum simulation 
level is reached, or the intermediate tolerance ϵm is within the desired 
threshold ϵf , and thereby the posterior of the observation P(θ,Ym|Dm)

can be obtained. 

3.3. Schematic framework for guided wave-based identification 

A simplified schematic framework of the ABC-SubSim algorithm for 
guided wave-based damage characterisation for pipe-like structures is 
shown in Fig.3 for a more obvious description. Firstly, N random sam-
ples θs of unknown damage characteristics are generated from the prior 
PDF. These samples are then input into the SFE model f(θ,u), which was 
presented in the previous section, to generate the corresponding simu-
lated GW. N distance functions between the simulated and the observed 
GW signals ρ(Xs,Ym) are computed. In this research, to access the sim-
ilarity between the simulated GW signals and the measurement, the 
cosine distance was chosen as the distance function [45]. 

ρ(Xs, Ym) = 1 −

⃒
⃒
⃒
⃒
⃒
⃒
⃒

Ym⋅X′
s̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

Ym⋅Y′
m

)(
Xs⋅X

′
s

)√

⃒
⃒
⃒
⃒
⃒
⃒
⃒

(25) 

Random samples θs are sorted by rearranging the distances ρ(Xs,Ym)

in an ascending order so that ρ(1) < … < ρ(N). The intermediate toler-
ance ϵj is obtained by the average distance values in the (NP0)th and the 
(NP0 +1)th order, where P0 is a fixed value of the conditional proba-
bility. The optimal value of P0 is chosen as 0.2 in ABC-SubSim to 
improve the simulation efficiency [40]. Another alternative way to 
adaptively choose P0 can be found in [54,55]. If the stopping criteria are 
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unsatisfied, which will describe later, NP0 samples are selected from the 
available samples as ‘seeds’ to generate NP0 Markov chains, while each 
chain has the same sampling length 1/P0, so that the total size of new 
samples set for the next step can be consistent as N. The new sample 
generation in each chain is based on the modified metropolis algorithm 
(MMA). The new sample set is used in the next iteration. 

Unlike the conventional Metropolis-Hasting using multi-dimensional 
proposal distribution, MMA uses a univariate proposal PDF for each 
parameter, and each candidate is then accepted or rejected separately. 
The performance of MMA significantly impacts the simulation efficiency 
and accuracy, in which the proposal PDF in MMA plays a vital role [41, 
42]. A good performance of the ABC-Subset simulation requires an 
acceptance rate of 30% to 50% at each level and the desired optimal 
value suggested in [48] is 0.44. The expected acceptance ratio is 
controlled by adaptively selecting the spread or variance σ in each 
univariate proposal PDF for each chain [53]. Nevertheless, selecting the 
optimal variance requires user experiences or even brute-force searches. 
Recently, a self-regulating proposal variance algorithm within the 
ABC-SubSim framework was developed by Vakilzadeh et al. [56]. It 
provides a more practical alternative to dynamically adjust the proposal 
variance in each simulation level, so that the mean acceptance rate of 
candidate samples can easily stay within the target value. The 
self-regulating ABC algorithm is hence considered in this research. 

In terms of the stopping criteria, the simulation is repeated until 
either the maximum simulation stage m is reached, or the intermediate 
tolerance ϵj is equal to or less than the desired final threshold ϵf . How-
ever, setting an appropriate final threshold ϵf is crucial for both 
approximation accuracy and computational efficiency. A good posterior 
distribution can be approximated when the intermediate tolerance is 
close to 0. Nevertheless, if a too-low value of ϵf is used, the simulation 
sometimes may have reached the convergence region even though the 
intermediate tolerance is still larger than the desired final threshold in 
practice. The simulation is still running and creating un-necessary 
computational costs until the maximum stage m is reached. Hence, a 
new stopping criterion can be added to justify the convergence of 
samples at each stage, by accessing the difference between the lowest 
and the highest distance function at each sample set [57]: 

Rj =
ρmax,j − ρmin,j

ρmin,j
≤ Rf (26)  

where Rf is the desired intermediate threshold with a relatively small 
value, e.g., 10− 4–10− 6. 

The posterior distributions of the damage parameters are finally 
obtained by evaluating the sample distribution at the final stage of 
simulation, and thereby, the unknown damage can be identified and 
characterised, as well as the associated uncertainties are quantified. 

4. Numerical case studies 

4.1. Numerical studies setup 

The performance of the proposed likelihood-free probabilistic 
framework is investigated in this section. An aluminium pipe with a 
length of 1000mm, an inner radius of 9.5mm and an outer radius of 
12.5mm was used. The Poisson’s ratio, mass density, and Young’s 
modulus are 0.3, 2700kg/m3, and 70GPa, respectively. Torsional guided 
wave T(0,1) was generated at the left end of pipe in the rotation of 
longitudinal direction. The excitation was chosen as a 50kHz narrow- 
band 5-cycle sinusoidal tone burst modulated by a Hann window. The 
measured location was assumed at the same point of the excitation in all 
numerical cases. The time duration of the measured signal allows the 
incident torsional wave propagates from the excitation location to the 
right end, and then travels back to the initial point. 

In time-domain SFE method, the time step was selected to guarantee 
convergence of the ordinary differential equation, which was solved by 
the central difference method [24]. Each uncracked SFE was simulated 
with a 10-mm length and 8 GLL nodes. The numerical dataset from SFE 
model was used for the Bayesian damage characterisation procedure. 

The aluminium pipe with the described crack was also simulated 
using a 3D explicit FE model. The simulated time-domain signal in the 
same calculated location as the time-domain SFE method was treated as 
the synthetic experimental dataset. In this study, the commercial soft-
ware, ABAQUS, was used. Brick elements C3D8R were used with a 
maximum element size of 0.8 mm. The thickness for the finite elements 
is 0.6 mm, so the pipe wall simulation has at least five elements in the 
thickness direction. The crack is 1 mm in width in the longitudinal di-
rection. Different damage severities were modelled by removing the 
elements at the corresponding location. Four different scenarios, i.e., i) 
standard case, ii) different measurement noise levels, iii) different 
cracked locations, and iv) crack severity analysis, as shown in Table 1, 

Fig. 3. A schematic flowchart for GW-based damage identification.  
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were used to investigate the performance of likelihood-free damage 
characterisation method comprehensively. 

In the probabilistic framework, it was assumed that the crack does 
not penetrate the pipe wall due to early-stage damage detection, and 
there is no available information regarding the pipe. Thereby, the prior 
PDF for each parameter was chosen as independently uniformly 
distributed over the ranges [0 mm 1000 mm], [0 mm 3 mm], and [0 mm 
8.124 mm] for damage location, width, and depth, respectively. 

In addition, the modelling error should be appropriately considered 
as the potential uncertainty. Considering that pipe geometry and density 
can be measured accurately, while Young’s modulus may vary 
depending on pressure and temperature. Thereby, Young’s modulus of 
aluminium pipe is assumed as an uncertain parameter for calibration, 
with a uniform distribution ranging from 67 GPa to 73 GPa. This study 
also considered measurement error by simulating different levels of 
signal-to-noise ratio to the synthetic experimental dataset from 3D finite 
element (FE) model. The number of samples N of the ABC-SubSim al-
gorithm was set at 500. The conditional probability P0 was 0.2. The 
desired final threshold ϵf and the desired intermediate threshold Rf were 
chosen as 10− 3 and 10− 5, respectively. The optimal acceptance rate was 
chosen as 0.44 for the self-regulating ABC algorithm in each stage [56]. 

4.2. Standard case 

Case A is used to investigate the performance of subset simulation 
with a self-regulating ABC algorithm. In the following numerical case 
studies, Case A is also the nominal case for comparison. If a crack exists, 
the mode conversion effect of the torsional-flexural (T-F) wave occurs 
when the incident torsional T(0,1) wave interacts with the crack. Both 
numerical and experimental validation has been conducted for the 
proposed time-domain SFE method [46]. For illustration, details of 
time-domain reflected signals measurements for Case A simulated by the 

proposed SFE model and 3D FE model are shown in Fig. 4. Figs. 4(a) and 
4(b) show the signal without noise and with artificial 2% signal-to-noise 
level. 

Both calculated datasets are normalised by dividing by the maximum 
amplitude of the whole simulated GW signal. A good agreement of 
calculated reflected signals between FE model and SFE model is 
observed. The reflected wave signal contain the information of incident 
torsional T(0,1) wave, T-T(0,1) wave due to crack, as well as the mode 
converted T-F(0,1) wave due to crack. Time-of-arrival of waves is 
different because of different propagation velocities and distances. The 
incident T-T wave propagates back from the right pipe end is excluded 
from the measured signal to save computational costs. 

The mode-conversion effect of crack provides extra information 
about crack [24]. Hence it was also considered in the damage identifi-
cation. The damage location can usually be determined based on the 
scattered wave of time-of-flight from the defect to the measured point. 
The severity of the damage can be estimated by evaluating scattered 
wave amplitude. As shown in Table 2, both the mean and the corre-
sponding coefficient of variation (COV) value of Case A1 show low 
percentage values, which shows that the crack parameters are accu-
rately identified with only a low level of uncertainty. 

Young’s modulus is another unknown parameter for updating by 
considering the material modelling error. Changes in material property 
can be reflected in the variation of GW propagation velocity. As the 
updated results of Case A2 in Table 2, crack parameters can still be 
precisely identified under an acceptable noise condition, while E can be 
determined with only 0.03% errors. 

The scatter plots of 500 samples of the defect location and depth at 
different stages in Case A2 are shown in Fig. 5 for illustration. Stage 1 
was the initial stage of the proposed framework where the samples were 
randomly drawn from the prior distribution of the parameters. When the 

Table 1 
Summary of all numerical case studies.  

Numerical 
study Scenario 

Case Location, 
L (mm) 

Crack 
depth, 
d (mm) 

Crack 
width, 
w 
(mm) 

Young’s 
modulus, 
E (GPa) 

Noise 
level 
(%) 

Standard case A1 350.00 2.01 6.80 – 2.00 
A2 350.00 2.01 6.80 70.00 2.00 

Measurement 
noise level 
effect 

B1 350.00 2.01 6.80 70.00 1.00 
B2 350.00 2.01 6.80 70.00 3.00 
B3 350.00 2.01 6.80 70.00 5.00 

Different 
locations 

C1 500.00 2.01 6.80 70.00 2.00 
C2 700.00 2.01 6.80 70.00 2.00 

Different 
crack sizes 

D1 350.00 1.73 6.35 70.00 2.00 
D2 350.00 2.20 7.00 70.00 2.00 
D3 350.00 2.81 7.89 70.00 2.00  

Fig. 4. Calculated time-domain signals simulated by FE model and SFE model (a) noise-free and (b) with 2.0% artificial signal-to-noise level.  

Table 2 
Cases A1-A2: Identified results and corresponding COVs.  

Numerical Case Location, L 
(mm) 

Crack 
depth, 
d (mm) 

Crack 
width, w 
(mm) 

Young’s 
modulus, E 
(GPa) 

A1 Actual 350.00 2.01 6.80 – 
Sample 
mean [error 
%] 

350.02 
[0.01] 

2.01 [0.03] 6.80 [0.02] – 

Sample COV 
(%) 

0.01 0.52 0.25 – 

A2 Actual 350.00 2.01 6.80 70.00 
Sample 
mean [error 
%] 

350.03 
[0.01] 

2.01 [0.03] 6.80 [0.02] 69.98 [0.03] 

Sample COV 
(%) 

0.02 0.50 0.11 1.14  
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stage number increased, the scattering area of ABC-SubSim samples 
became smaller, indicating that the sample movements gradually 
converged together to the global optimal region. The intermediate 
tolerance level ϵj, which was determined based on the sample distance 
function set (see Fig.3), was also adaptively decreasing with the itera-
tion. The simulation was eventually stopped at Stage 9 as the desired 
final threshold was reached that ϵ9 ≤ ϵf . The final posterior distributions 
of the damage parameters were obtained. All 500 samples at Stage 9 
were accurately scattered around the actual value of the defect location 
and depth, the results indicate the accuracy and robustness of the pro-
posed Bayesian framework in crack identification. 

Fig.6 shows the histograms for each crack parameter at the final 
stage in Case A2. The estimated posterior distribution of each parameter 
is well-establish around the actual value. The results again indicate that 
the crack characteristics and Young’s modulus are accurately identified, 
while the corresponding uncertainties are also quantified with an ex-
pected level under the artificial measurement noise. 

4.3. Measurement noise levels 

This section investigates the performance of the likelihood-free 
probabilistic framework under different measurement noise condi-
tions. The noise level domain from 1% to 5% is determined under 

normal experimental laboratory conditions. As shown in Table 3, the 
updated values indicate that the model unknowns are still correctly 
identified. Both error percentages of the sample mean and COV showed 
an increasing tendency with the noise levels as expected. For example, 
the COV value of E increased from 0.68% to 4.45% with the increasing 
noise level. The crack depth and width error percentages also increased 
from 0.03 to 0.31 and from 0.02 to 0.18, respectively. The results also 
demonstrate that the measurement noise would cause different impacts 
on each individual parameter, which leads to different trends in the 
magnitude of the uncertainty quantification. 

4.4. Different locations of cracks 

The influence of crack location is also investigated. The damage 
severity is the same as the standard case, except for the damage location. 
In terms of the quantified uncertainty, both error percentages of sample 
mean and COV value is larger than in Case A, especially in Case C2. For 
example, the mean error of location L increased from 0.01% to 0.52% 
when the measurement distance was double the initial ones. The COV 
value of E also raised from 1.11 to 4.53%. The results illustrate that due 
to the longer propagation distance of the scattered GW wave from the 
defect to the measurement point, more noise errors would be accumu-
lated in the time-domain signal as expected, and hence, lead to more 

Fig. 5. Scatter plots of the samples for the location and depth of crack in Case A2.  
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uncertainty involve in the damage identification simulation. Neverthe-
less, as summarised in Table 4, the model parameters are still correctly 
identified which reflects the robustness of the proposed damage char-
acterisation framework. 

4.5. Different crack severity 

The severity of a damage is usually estimated based on the amplitude 
of the scattered waves from the defect. The reflection coefficient of 
guided wave is proportional to the radial cross-section area of the 
axisymmetric crack [46]. It is also expected that the difficulty of crack 
severity detection would increase with the measurement of noise levels. 
In this section, an axisymmetric crack is simulated with a constant 1 mm 
width in longitudinal direction. The effect of the crack severity in radial 
direction is examined from Cases D1 to D4 under 2% synthetised noise 
level. 

Table 5 summarises all updated results with the corresponding mean 
errors and sample COV values. The model parameters for Cases D1 to D3 
are correctly identified when the crack size is over half of the pipe wall. 
The results illustrate that the accuracy of crack identification is 
improved under the same measurement noise level when the reflected 
energy of the scattering wave from the defect is higher due to the larger 
size of the crack. 

In this numerical study, three different scenarios were carried out to 
investigate the GW based damage characterisation framework in pipes 
using torsional waves. In terms of accuracy, the uncertain parameters of 
the SFE pipe model were correctly identified and characterised in each 
case study. In particular, the accuracy is improved with a larger crack 
size as discussed in Section 4.5. These results reflect the robustness and 
feasibility of the proposed likelihood-free approach in identifying the 
cracks. In addition, the associated uncertainty of each parameter was 
quantified by calculating the mean and COV values, which provided 
additional information regarding the reliability of the results. It was also 
found that under different scenarios, the quantified uncertainty is 

Fig. 6. Histograms of the final samples for each parameter in Case A2.  

Table 3 
Cases B1-B3: Identified results and corresponding COVs.  

Numerical Case Location, L 
(mm) 

Crack 
depth, 
d (mm) 

Crack 
width, w 
(mm) 

Young’s 
modulus, E 
(GPa) 

Actual 350.00 2.01 6.80 70.00 
B1 Sample 

mean [error 
%] 

349.93 
[0.02] 

2.01 [0.03] 6.80 [0.02] 69.99 [0.01] 

Sample COV 
(%) 

0.01 0.34 0.08 0.68 

B2 Sample 
mean [error 
%] 

349.58 
[0.12] 

2.01 [0.17] 6.80 [0.05] 70.23 [0.33] 

Sample COV 
(%) 

0.06 0.47 0.11 3.47 

B3 Sample 
mean [error 
%] 

349.68 
[0.09] 

2.00 [0.31] 6.79 [0.18] 70.24 [0.33] 

Sample COV 
(%) 

0.08 0.67 0.15 4.45  

Table 4 
Cases C1-C2: Identified results and corresponding COVs.  

Numerical Case Location, L 
(mm) 

Crack 
depth, 
d (mm) 

Crack 
width, w 
(mm) 

Young’s 
modulus, E 
(GPa) 

C1 Actual 500.00 2.01 6.80 70.00 
Sample 
mean [error 
%] 

500.00 
[0.01] 

2.01 [0.16] 6.80 [0.04] 70.00 [0.01] 

Sample COV 
(%) 

0.01 1.35 0.31 1.11 

C2 Actual 700.00 2.01 6.80 70.00 
Sample 
mean [error 
%] 

703.67 
[0.52] 

2.02 [0.39] 6.81 [0.15] 70.05 [0.07] 

Sample COV 
(%) 

0.10 0.96 0.22 4.53  
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increased with the noise level, different parameters have different sen-
sitivities to the noise effect, which results in different levels of quanti-
tative uncertainty. 

5. Experimental case studies 

5.1. Experimental setup 

One-metre-long 6060 aluminium pipes with identical geometric and 
material properties as the numerical study were used to further inves-
tigate the performance of the likelihood-free probabilistic framework in 
practice. Material properties are summarised in Table 6. 

Four evenly spaced piezoceramic shear plates were bonded to the 
outer surface of the pipe at the left end using conductive adhesive epoxy. 
The dimensions of each shear plate are 6× 5× 0.5 mm3. The shear 
orientation of the PZTs is along the circumferential direction to generate 
the incident torsional wave. 

The same excitation signal as the numerical case, a 50 kHz narrow- 
band 5-cycle sinusoidal tone burst modulated by a Hann window, was 
synthesised by a signal generator NI PXIE-5122. The signal was fed into 
the PZTs after being amplified by the high-voltage power amplifier 
Ciprian. The measurement location was 200 mm away from the location 
of PZTs. To improve the observation quality, the 3D laser Doppler 
vibrometer is employed to measure the GW displacement signal. The 
reflected spray was also coated on the outer surface of the pipe around 
the measurement point to enhance laser reflection. In addition, 1000 
times signal-average and low-pass filters were set further to minimise 
the noise impact from the experimental environment. A 1mm-width 
notch was created on a pipe using a tiny fine pull-cut saw blade. A 
specific flowchart of the experiment is summarised in Fig.7 and details 
of the pipe is shown in Fig.8. The detailed information of crack pa-
rameters is summarised in Table 7. 

5.2. Experimental results and discussions 

Three cases, Cases E1 to E3, were carried out to experimentally 
investigate the proposed probabilistic framework. The same set-up of 

framework used in the numerical case study. 500 samples N was used at 
each iteration in the ABC-SubSim algorithm. The conditional probability 
P0 and the optimal acceptance rate was 0.2 and 0.44, respectively. The 
desired final threshold ϵf and the desired intermediate threshold Rf were 
selected as 10− 3 and 10− 5, respectively. The same setting of prior dis-
tribution as the numerical case setting was used for each unknown 
parameter. 

The identified results with the corresponding quantified un-
certainties are summarised in Table 8. The results show that each un-
known parameter is accurately detected around the actual value with 
low error percentages in both Sample means and COVs. This proves that 
the unknown damage location, severity, and material property E can be 
identified in practice situation using the proposed probabilistic 
framework. 

For illustration, the scatterplot of 500 samples of crack location and 
depth in experimental case E2 is shown in Fig. 9. Different stages are 
chosen to show how the samples move from the prior distribution of the 
damage parameters to the posterior distribution. Firstly, at initial stage 
1, 500 samples were randomly drawn from the prior distribution of the 
parameters using the direct Monte Carlo method. After that, the ABC- 
SubSim samples moved efficiently from the large scattering area to 
several local optimum regions as shown at Stage 5. The samples then 
converged to the region of global optimum at Stage 7. The area of global 
optimum region shown at Stage 7 was gradually minimised to the region 
shown at stage 10, indicating that the differences between simulated GW 
signals and measurement were reducing. In this experimental case, 
although the intermediate tolerance ϵ10 is still larger than the desired 
final threshold ϵf , the simulation was stopped at the Stage 10 based on 
the desired intermediate threshold Rf in the proposed framework (i.e., 
R10 ≤ Rf ), so that the computational efficiency was maximised. The 
updated values of damage parameters were obtained by evaluating the 
posterior distributions at the final Stage 10 and the results were correctly 
identified with acceptable uncertainty. 

The comparison between SFE model using identified results and 
experimental data in Case E2 is also presented in Fig.10. to illustrate 
how well the damage identification is in a practical situation. A good 
agreement has been presented between the measured guided wave 
signal and the numerical signal. The T-T wave reflected from the left end 
of the pipe was mixed with the T-F wave from a crack in the experiment, 
while the numerical signal using updated results also showed the same 
phenomenon. It should be noted that a small magnitude of flexural wave 
package F(1, 1) was also generated following the incident T(0, 1) in 
experimental data due to the imperfect PZTs installation. Nonetheless, it 
can be treated as noise uncertainty in the Bayesian probability frame-
work because of its low incident amplitude and negligible reflection 
from the crack. It is also observed that the noise level of measurement 
was well-controlled outside of the small wave package, allowing accu-
rate damage characteristics identification for each parameter. 

The histogram of 500 samples at the final stage for each parameter in 
case E2 are also presented in Fig.11. Although the actual value of each 
parameter is not within the posterior distribution, the identified results 
are still very close to the actual values with minor errors. Hence this can 
prove that the crack characteristics and Young’s modulus are correctly 
identified using the proposed likelihood-free framework. The corre-
sponding uncertainties are also quantified with an expected low level, 
which is consistent with the calculated sample mean and samples COVs 
in Table 8 and also the observation from Fig.9. and Fig.10. 

Table 5 
Cases D1-D3: Identified results and corresponding COVs.  

Numerical Case Location, L 
(mm) 

Crack 
depth, 
d (mm) 

Crack 
width, w 
(mm) 

Young’s 
modulus, E 
(GPa) 

D1 Actual 350.00 1.73 6.35 70.00 
Sample 
mean [error 
%] 

349.98 
[0.01] 

1.73 [0.29] 6.34 [0.16] 69.99 [0.01] 

Sample COV 
(%) 

0.02 0.47 0.09 2.63 

D2 Actual 350.00 2.20 7.08 70.00 
Sample 
mean [error 
%] 

349.96 
[0.01] 

2.21 [0.21] 7.09 [0.13] 69.98 [0.02] 

Sample COV 
(%) 

0.04 0.37 0.09 2.54 

D3 Actual 350.00 2.81 7.89 70.00 
Sample 
mean [error 
%] 

349.96 
[0.01] 

2.81 [0.04] 7.88 [0.16] 70.01 [0.01] 

Sample COV 
(%) 

0.04 0.05 0.01 2.87  

Table 6 
Properties of the 1-metre length aluminium pipe.  

Properties Outer radius (mm) Inner radius (mm) Young’s modulus (GPa) Poisson’s Ratio Shear Modulus (GPa) Density (kg/m3) 

Value 12.50 9.50 70.00 0.30 26.92 2700.00  
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6. Conclusions 

In this paper, a likelihood-free probabilistic framework for guided 
wave-based damage characterisation in pipes has been presented. The 
proposed damage identification framework is based on subset simula-
tion by approximate Bayesian computation, a likelihood-free Bayesian 
approach. This algorithm provides an alternative way to estimate the 
posterior distributions of damage parameters by directly assessing the 
discrepancy between the simulated GW signals from the numerical 
model and the measured data. In this case, the evaluation of likelihood 
functions can be smartly bypassed during Bayesian inference. The time- 
domain SFE method was used for pipes to improve the computational 
efficiency of numerical simulation. The SFE model is developed based on 
Timoshenko beam theory and elementary rod theory. In addition, a 
cracked spectral finite element is embedded into the SFE method, which 
considers the mode-conversion effect of torsional-flexural mode due to 
the scattering wave interacting with the crack. 

Numerical studies have been used to investigate the performance of 
the proposed framework in damage identification. The influences of 
material and measurement uncertainties have been examined in detail. 
The numerical results have demonstrated that the proposed likelihood- 

Fig. 7. A specific flowchart of the experiment.  

Fig. 8. PZTs for generating Torsional wave and laser measurement region, and location of the slot cut in E2&E3.  

Table 7 
Summary of all of the cases in the experimental case studies.  

Experimental 
case 

Location, L 
(mm) 

Crack 
depth, 
d (mm) 

Crack 
width, w 
(mm) 

Young’s 
modulus, E 
(GPa) 

E1 500±10 1.9 6.60 70.00 
E2 600±10 1.9 6.60 70.00 
E3 600±10 2.9 8.01 70.00  

Table 8 
Identified results and corresponding COVs for Cases E1-E3.  

Numerical Case Location, L 
(mm) 

Crack 
depth, 
d (mm) 

Crack 
width, w 
(mm) 

Young’s 
modulus, E 
(GPa) 

E1 Actual 500±10 1.9 6.60 70.00 
Sample 
mean [error 
%] 

489.82 
[2.04] 

1.97 [3.68] 6.73 [1.97] 69.93 [0.10] 

Sample COV 
(%) 

0.04 0.98 0.22 1.75 

E2 Actual 600±10 1.9 6.60 70.00 
Sample 
mean [error 
%] 

606.14 
[1.02] 

1.86 [2.34] 6.56 [0.68] 69.80 [0.28] 

Sample COV 
(%) 

0.03 0.37 0.07 1.71 

E3 Actual 600±10 2.9 8.01 70.00 
Sample 
mean [error 
%] 

608.12 
[1.35] 

2.91 [0.30] 8.02 [0.12] 70.23 [0.33] 

Sample COV 
(%) 

0.04 0.32 0.09 1.64  

Z. Zeng et al.                                                                                                                                                                                                                                     



Thin-Walled Structures 192 (2023) 111138

12

Fig. 9. Scatter plots of the samples for the location and depth of crack in Case E2.  

Fig. 10. Comparison of the measured and simulated time-domain GW signal for Case E2.  
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free Bayesian framework is able to identify damage characteristics and 
Young’s modulus of the pipe under an acceptable noise condition. 
Finally, experimental studies have also conducted, and the experimental 
results have further verified the capability and practicability of the 
proposed damage identification algorithm in a laboratory application. 

The present framework has a great potential for detecting and 
identifying damages in thin-walled and hollow-cylindrical structures, 
such as transportation pipes of fluid or gas, and columns. However, the 
current study is only based on an isotropic pipe model. For real-life 
structures, more complicated simulation models are expected. The 
proposed ABC technique can be used with any simulation models, but 
further research is required to investigate the performance of the pro-
posed likelihood-free framework in real applications to extend its 
practicability. Further research can also extend the current study to 
damage identification and classification by employing other types of 
damage model to the SFE pipe model. The findings of this study have 
provided insights into the development of GW based damage charac-
terisation techniques using a Bayesian likelihood-free approach. The 
presented framework can be used for other types of materials or struc-
tures, such as composite structures, material interfaces, or connections. 
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