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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Proof of concept for three model fitting 
techniques applied to DEM data of a 
coarse ore stockpile. 

• Model evaluates the effectiveness of 
RFID-based ore tracking technology. 

• Sensitivity study is performed on the 
influence of several simulation 
variables.  
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A B S T R A C T   

The ability to understand ore characteristics in real-time during mining processes is vital for ensuring product 
quality control. However, it is challenging to continuously track ore flow from the mine to the mill due to the 
blending of ore batches, especially within stockpiles. This paper presents a numerical study of copper ore 
tracking through a coarse ore stockpile. A discrete element model of a 3D stockpile was created using the EDEM 
software to evaluate the effectiveness of using RFID tags for ore tracking. To identify the primary variables and 
their effect on ore transport and tracking through the stockpile, a sensitivity study was conducted to investigate a 
range of process variables, such as ore size distribution, ore size range, RFID tag size, wall friction, the trajectory 
of charging particles and stockpile charging methods. The results show that the stockpile model is not sensitive to 
variables such as the ore size distribution, ore size range and RFID tag size, while wall friction, stockpile feed belt 
speed, segregation in the ore flow region and contact model have a significant effect on ore blending within the 
stockpile. It was found that the overall performance of RFID-based ore tracking through the stockpile is poor. For 
cases with only one or a few tags per ore batch the order in which the tags are read did not provide a good 
representation of the ore distribution for most scenarios This sensitivity study provides insights into new tracking 
strategies given the poor performance of RFID tracking shown by the simulation study.  

* Corresponding author. 
E-mail address: juan.chen@adelaide.edu.au (J. Chen).  

Contents lists available at ScienceDirect 

Powder Technology 

journal homepage: www.journals.elsevier.com/powder-technology 

https://doi.org/10.1016/j.powtec.2023.118939 
Received 9 March 2023; Received in revised form 16 August 2023; Accepted 23 August 2023   

mailto:juan.chen@adelaide.edu.au
www.sciencedirect.com/science/journal/00325910
https://www.journals.elsevier.com/powder-technology
https://doi.org/10.1016/j.powtec.2023.118939
https://doi.org/10.1016/j.powtec.2023.118939
https://doi.org/10.1016/j.powtec.2023.118939
http://crossmark.crossref.org/dialog/?doi=10.1016/j.powtec.2023.118939&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Powder Technology 429 (2023) 118939

2

1. Introduction 

Copper recovery and energy consumption in mineral processing 
depend on the characteristics of the ore sent for processing from up-
stream operations. Successful extraction of mineral resources requires a 
thorough understanding of the spatial distribution of ore grades and 
tonnages throughout the mining process. The quality of the produced 
copper ore concentrate needs to be controlled in order to meet the re-
quirements for sale. Therefore, it is vital to know the characteristics of 
ore being fed to the mill to control the operations in order to maximise 
economic benefit. Radio frequency identification (RFID) is one of the 
foundational technologies for tracking and integrating data sets in 
mining processes. RFID technology has been primarily employed in the 
mining sector for applications such as tracking the location of vehicles 
and miners' [1,2], access control, and safety management [3]. The 
concept of using RFID tags to track ore was first tested in 2007 at Vale 
Inco's copper‑nickel Frood-Stobie mine [4]. The experiment allowed the 
output of the mine to be estimated enabling the preparation of the 
necessary chemicals for processing the copper and nickel ore. RFID 
methodologies also provide the possibility of tracking granular material 
flows [5] and have the potential to link processed ore batches back to 
their underground source in real time [6]. For tracking bulk material, 
RFID tags can be used to mark the beginning and end of a copper ore 
batch. The accuracy of the ore tracking will depend on how represen-
tative the distribution of read RFID tags is of the ore flow. The general 
concept of RFID-based ore tracking includes the following procedures: 
analyse input ore characteristics, associate the information with the 
RFID tags, add the tags to the transported ore, transport ore together 
with the tags, read the information from the tags and use it to facilitate 
control of ore processing in the processing plant [7]. 

There are challenges to developing ore-tracking methods, resulting 
from the thorough blending of non-homogenous, bulk raw material 
flows in the dynamic context of a mine. The characteristics of the copper 
ore can be identified at mining faces, but blending may occur in various 
subsequent stages, such as blasting, transportation, conveying, stock-
piling, and reclaiming. Although this blending can smooth out differ-
ences in production qualities between ore sources, it increases the 
difficulty of providing accurate information of the processed ore in real- 
time. There are several methods for real-time tracking and monitoring 
the quantity and quality of excavated material during transportation, 
such as advanced imaging technologies, computer vision techniques, 
and RFID-based tracking systems. Advanced imaging technologies such 
as 3D laser scanners or structured light scanners can help determine ore 
quality by providing detailed information on ore characteristics, such as 
size distribution, shape and mineral composition [8]. Computer vision 
techniques can be employed to analyse images or videos of the exca-
vated material, enabling automated tracking and identification. Passive 
RFID tags have been used to track iron ore transportation [9]. RFID tags 
have also been used to investigate ore flows through process hold-ups 
such as bins, bunkers and stockpiles for metal accounting and process 
control [10,11]. RFID tag tracking can contribute to estimating the 
residence time for different ore batches that are delivered to coarse ore 
stockpiles (COS) and assist in monitoring the blending of ore batches in 
real time within the COS [12]. One of the key challenges for developing 
a reliable tracking system is the segregation and stratification of coarse 
and fine particles, which is common during material transport through 
process hold-ups [13]. As the stockpile is typically the last step in the ore 
transport system prior to milling, the quality of blended ore can directly 
affect the mill's performance. For most mining operations, the segrega-
tion and stratification of fine and coarse particles can also complicate the 
tracking of the RFID tags as the tags used are smaller than most particles 
[14,15]. However, for some cases, such as for iron ore pallet feed 
blending operations, this issue is not present due to differing particle 

sizes. The passive RFID technique has been previously tested to inves-
tigate potential improvements in traceability throughout the distribu-
tion chain [16,17]. In these studies, the authors investigated various 
shapes and sizes, and it was found that larger RFID tags were not 
significantly segregated from the iron ore pellets [18]. In cases where 
such segregation does occur, the RFID tag may not represent the ore 
batch it was originally associated with. Hence, it is vital to understand 
the blending behaviour of the COS, to enable reliable tracking of ore 
production. In addition, better knowledge of blending behaviour and 
residence time of ore batches and RFID tags through COSs are beneficial 
to process improvement and product quality control. 

Over the last few decades, the discrete element method (DEM) has 
emerged as one of the most versatile numerical modelling methods and 
has been widely used to model granular dynamics and to simulate 
equipment handling of mined material. The DEM method, developed by 
Cundall and Strack in 1979 [19,20], models particle-particle and 
particle-surface interactions as well as other dynamic behaviours over 
time. The DEM method has been extensively applied to analyse bulk 
material flows in mining equipment, including bunker charging and 
discharging [11,21], conveyor transfer [22], semi-autogenous grinding 
(SAG) mills [23], jaw crushers [24], and transfer chutes [25]. Dolman 
[26] used DEM to model material flow and size distribution of ore in a 
stockpile. Gomez et al. [27] found it was possible to use DEM to 
represent the natural segregation process of stockpiles of rock materials. 
Yu et al. [13] validated DEM as a viable option for investigating the 
process of stockpile formation. Zhang et al. [28] conducted a numerical 
study based on DEM to explore stockpile segregation. 

The reviewed literature reveals that research on the ore flow through 
COSs has been limited, and that the effectiveness of RFID-based ore 
tracking through COSs has not been investigated. Most of the reviewed 
DEM simulations consider laboratory-scale models, with a relatively low 
number of particles. Additionally, most stockpile models have limited 
utility for quality control applications as it is difficult to model the 
stockpile accurately so as to be as close as possible to reality [29]. The 
challenge of modelling COSs is the high number of particles, up to 
millions or even billions of particles. Usually the size of the stockpile 
model is scaled down or the 3D model is replaced by slices in order to 
reduce the computational time [26]. However, the material flow 
through a slice will be very different to a 3D COS due to the change in 
geometry. Hence, a full understanding of the dynamic blending behav-
iour of the 3D COS could not only contribute to developing an effective 
ore tracking model, but also to improve the productivity and profit-
ability of mineral processing. 

This paper presents a systematic sensitivity analysis of ore and tag 
blending behaviour applied to selected uncertain EDEM variables, such 
as particle size distribution and range, RFID tag size, wall friction, 
conveyor belt speed, stockpile charging and discharging methods, and 
the contact model used to generate the simulation predictions. The 
sensitivity analysis can quantify the impact of each input variable on the 
model output, enabling identification of the dominant variables for 
future applications. The results of the sensitivity study can assist in 
providing a better understanding of how RFID tag ore tracking performs 
during stockpile discharging and apron feeder reclaiming procedures. 
This information may lead to a better understanding of how to imple-
ment proper ore tracking procedures based on the site material prop-
erties and equipment conditions. 

The structure of this paper is as follows. Section 2 illustrates the 
methodology and variables used to simulate the COS system, followed 
by a sensitivity study of the DEM variables. Section 3 introduces the 
results of the simulation, including both qualitative images and quan-
titative data obtained from the EDEM software. Discussion is provided to 
accompany the results where necessary in Section 4. Section 5 draws 
some conclusions from this study. 
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2. Methodology 

2.1. The discrete element method (DEM) 

In the DEM, individual granular particles and the interactions be-
tween spherical particles are modelled. The position and orientation of a 
new particle in a granular system can be calculated by numerical inte-
gration of the following equations, derived from Newton's second law of 
motion [30]: 
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where mi and Ii are the mass and inertia of particle i and υiand ωi are the 
translational and angular velocity of particle i. The modelled forces 
include contact forces (Fcn

ij ,Fct
ij ), damping forces (Fdn

ij ,Fdt
ij ) and the gravi-

tational force Fg
i . The contact forces and damping forces are the sum of 

the forces in the normal and tangential directions. Mij is the sum of 
torques acting on the particle. 

Fig. 1 illustrates the contact model used in the DEM, using a spring 
and a dashpot to represent the elastic and plastic nature of particles in 
the normal direction. In the tangential direction, the model consists of a 
slider, a spring, and a dashpot. 

The normal contact force Fcn
ij and normal damping forces Fdn

ij are 
given by (3) and (4) [31–33]: 
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where Eeqv, meqv and Reqv are the equivalent Young's modulus, mass and 
radius of the DEM sphere [34,35], ȏn is the overlap in the normal di-
rection, nij is unit vector, υ is the Poisson ratio, e is the coefficient of 
restitution, υn

ij is the normal component of the relative velocity and kn is 
the normal stiffness. 

The tangential contact force Fct
ij and the tangential damping force Fdt

ij 

are given by (5) and (6): 
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where kt is the tangential stiffness, ȏn is the tangential overlap vector, 
Geqv is the equivalent shear modulus and, υt

ij is the relative tangential 
velocity. 

A rolling friction must be included in order to properly model the 
rotational motion of particles and account for non-spherical properties 
of materials that are difficult to simulate such as sharp edges and edge 
roundness. The tangential forces are limited by a Coulomb friction 
model (7) and the rolling friction. The applied torque depends on the 
normal force, particle radius and angular velocity (8): 

Fct
ij +Fdt

ij ≤ μsF
cn
ij (7)  

τi = − μrF
cn
ij Riωi (8)  

where μr is the coefficient of rolling friction, Ri is the distance of the 
contact point from the centre of mass, and the ωi is the unit angular 
velocity vector [36]. 

During the simulation process, the interactions of particles are driven 
by the forces and torques defined in Eqs. (3–8). 

While DEM has proven to be a valuable tool for understanding the 
Fig. 1. Contact model of particles in the EDEM.  
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dynamics of granular systems, it has certain limitations in modelling the 
transport of crushed ore, especially for modelling of the coefficient of 
friction on the contact of different materials. DEM simulations require 
input parameters, such as particle properties, contact properties, and 
friction coefficients, to be specified. The values of these physical pa-
rameters of materials and physical models of particle interaction can 
have a significant impact on the simulation results [37]. However, 
determining the appropriate friction coefficients for different material 
combinations is often challenging, as they can vary depending on factors 
such as moisture content, particle size distribution, and surface 

conditions. In DEM, friction between particles is typically modelled 
using simplified contact models, such as the linear-spring-slider or 
linear-spring-dashpot models. These models assume a constant coeffi-
cient of friction between particles, irrespective of the material properties 
or surface roughness. However, the coefficient of friction can vary 
significantly between different materials and surfaces, leading to limi-
tations in accurately representing the true friction for all the interactions 
of the transported ore particles. Additionally, the constant coefficient of 
friction in DEM often primarily represents the static friction between 
particles in contact. However, in dynamic situations, such as during the 

Fig. 2. 3D geometry model of the COS system in EDEM.  

Fig. 3. Approximate modelling of real ore particles.  

Fig. 4. Showing realistic irregularity of RFID tag.  
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transport of crushed ore on conveyor belts, the coefficient of friction can 
change due to factors such as particle velocity, vibration, and surface 
roughness. Neglecting these dynamic changes in friction can result in 
inaccurate predictions of material flow and behaviour. 

2.2. The coarse ore stockpile model 

A 3D model of the geometry of a COS system, which includes a 
hopper, a stockpile feed conveyor, a COS, one apron feeder and a virtual 
RFID reader was created using Autodesk Inventor Professional 2021 as 
shown in Fig. 2. The geometry was integrated into a DEM model and the 
system was simulated with Altair EDEM 2021.1 primarily using the 
default Hertz–Mindlin no slip contact model [38]. The geometry of the 
COS system was simplified in the model to facilitate computational ef-
ficiency and ease of analysis. The 3D conical stockpile shown in Fig. 2 

was used to represent the stockpile live zone while the dead zone was 
approximated as the wall of the conical stockpile. The stockpile was 
assumed to have a wall angle of 45◦. While the model uses a smooth and 
flat plate for the conical section, the properties were chosen to represent 
ore particles following the technique used by Dolman [26]. The ore 
discharging rate was set to approximately 4680 t per hour (tph), rep-
resenting the realistic conditions of a mine. While some simplifications 
have been made for computational efficiency, the model was designed to 
accurately simulate the fundamental behaviour and dynamics of the 
COS system. It is worth noting that future studies could explore more 
detailed and accurate representations of the COS system by incorpo-
rating additional components and finer-scale geometry. However, for 
the objectives of this research and given current computational limita-
tions, the simplified model serves as a valuable tool for analysing the 

Table 1 
Design variables for the COS system.  

Design variables Value 

Stockpile (live capacity) bottom radius (mm) 700 
Stockpile (live capacity) top radius (mm) 4000 
Stockpile (live capacity) length (mm) 3300 
Stockpile wall withdrawal angle (degree) 45 
Feed conveyor speed (mm/s) 4000 
Feed conveyor belt length (mm) 10,000 
Feed conveyor belt width (mm) 1000 
Conveyor feed belt inclination angle (degree) 7 
Apron feeder belt length (mm) 8000 
Apron feeder belt width (mm) 1200 
Apron feeder belt speed (mm/s) 1000  

Table 2 
Value of material properties*.  

Property Symbol Value 

Particle (fine) Diameter (mm) Df 80 
Particle (pebble) Diameter (mm) Dp 130 
Particle (coarse) Diameter (mm) Dc 230 
Particle density — ore (kg/m^3) ρo 2750 
Particle density — tag (kg/m^3) ρt 925 
Solid density — wall (kg/m^3) ρw 2750 
Solid density — steel (kg/m^3) ρs 7800 
Solid density — conveyor belt ρb 950 
Young's modulus — ore (N/m^2) Eo 1.25e+8 
Young's modulus — tag (N/m^2) Et 1e+8 
Young's modulus — wall (N/m^2) Ew 1.25e+8 
Young's modulus — steel (N/m^2) Es 1e+11 
Young's modulus — belt (N/m^2) Eb 5e+7 
Poisson's ratio — ore υo 0.25 
Poisson's ratio — tag υt 0.38 
Poisson's ratio — wall υw 0.25 
Poisson's ratio — steel υs 0.3 
Poisson's ratio — belt υb 0.45  

Table 3 
Interactions between ore and other simulated materials.   

ore - 
ore 

ore - 
tag 

ore - 
belt 

ore - 
steel 

tag - 
belt 

tag 
-steel 

Coefficient of 
Restitution* 

0.3 0.2 0.2 0.1 0.4 0.1 

Coefficient of Static 
Friction* 

0.25 0.2 0.2 0.3 0.7 0.3 

Coefficient of 
Rolling Friction 

0.1* 0.01 0.01 0.01 0.2* 0.01  

* Estimated value from the literature [11,26,39]. 

Table 4 
Variables investigated in the sensitivity study.  

Categories EDEM variables Baseline scenario 
(S1): value 

Scenario: values 

Bulk material 
size 
distribution 

ore size 
distribution 
(pebble 
percentages) 

S1: 80% (fine 
10%; coarse10%) 

S2: 70% (fine 15%; 
coarse15%) 
S3: 60% (fine 20%; 
coarse20%) 

ore size 
distribution (fine 
percentages) 

S1: 10% (pebble 
80%) 

S4: 5% (pebble 
80%) 
S5: 15% (pebble 
80%) 
S6: 10% (pebble 
70%) 
S7: 20% (pebble 
70%) 
S8: 25% (pebble 
60%) 
S9: 30% (pebble 
60%) 

Bulk material 
size range 

ore size range 
(mm) 

S1: 80 mm – 230 
mm 

S10: 40 mm – 270 
mm 
S11: 50 mm – 260 
mm 
S12: 60 mm – 250 
mm 
S13: 70 mm – 240 
mm 

RFID tag size RFID tag size (mm) S1: d = 60 mm S14: 70 
S15: 80 
S16: 90 
S17: 100 

Wall resistance coefficient of static 
friction 

S1: fs = 0.25 S18: fs = 0.5 
S19: fs = 0.75 
S20: fs = 1 

Trajectory of 
charging 
particles 

stockpile feed belt 
speed (m/s) 

S1: CVD = 4 m/s S21: CVD = 2 m/s 
S22: CVD = 3 m/s 
S23: CVD = 5 m/s 

Stockpile 
storage 
percentage 

stockpile storage 
percentage 

S1: 100% S24: 80% 
S25: 70% 
S26: 60% 

Contact model Contact model S1: Hertz-Mindlin 
no slip (default) 
contact model 

S27: linear spring- 
dashpot (LSD) 
contact model; 
characteristic 
velocity: 5 m/s 
S28: Hertz-Mindlin 
with JKR 
JKR-10 J-0.3SF- 
0.06RF 

Coefficient of 
rolling 
friction 

Coefficient of 
rolling friction 
between ore and 
tag 

S1: 0.01 S29: 0.03 
S30: 0.06 
S31: 0.1 

Coefficient of 
rolling friction 
between ore and 
belt 

S1: 0.01 S32: 0.03 
S33: 0.06 
S34: 0.1  
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Fig. 5. Variables investigated in the sensitivity study (a) bulk material size distribution, (b) bulk material size range, (c) RFID tag size, (d) stockpile wall resistance, 
(e) trajectory of charging particles, (f) stockpile storage percentage, (g) coefficient of rolling friction. 
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Fig. 6. Ore flow during the apron feeder reclaiming process in the EDEM software at (a)150 s, (b) 160 s, (c) 190 s, (d) 210 s.  
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Fig. 6. (continued). 
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performance of using RFID tags to track ore through the COS system 
under various operational scenarios. 

For a large number of particles of different types, the default model 
has the best performance. The default model simulates the particles as 
non-cohesive dry material and bonds were not required. Often for large- 
scale DEM simulations, variables are scaled to reduce the computational 
time [39]. To maintain proper bulk material behaviour, the particle size 
has not be increased for this study; instead, the size of the modelled 
stockpile is reduced in order to ensure a reasonable computational time. 
The Phoenix supercomputer at the University of Adelaide has a Lenovo 

NeXtScale system consisting of 260 nodes over 900 CPU and GPUs. It 
takes approximately 30 h for one simulation using 64 cores of the 
Phoenix HPC. The simulation represents a typical industrial coarse ore 
stockpile at a scale of approximately 1:6. 

Copper ore is fed to the COS via a feed conveyor with a capacity of 
approximately 500 kg/s. The approximately 45,000 simulated particles 
are separated into 15 equal ore batches, each represented by a different 
colour. The ore batches are continuously and serially fed into the feed 
conveyor belt in order from 1 to 15 with each batch being fed over an 
interval of 10 s. In this study, a simplified size distribution, consisting of 
three particle sizes representing fine, pebble and coarse particles was 
modelled. For the baseline scenario (Scenario 1), each modelled ore 
batch contains 5 t of ore which is composed of 10% fines, 80% pebbles 
and 10% coarse particles, with diameters of 80, 130 and 230 mm 
respectively (Fig. 3). RFID tags are placed at the beginning of each ore 
batch to demarcate the change in ore batches. The clump representa-
tions of the RFID tag particle shape used in the current study can be seen 
in Fig. 4. The elongated particles were represented by 8 equal-sized 
spheres clumped together. The RFID tags are modelled to be represen-
tative of the Metso smart tag with a diameter of 60 mm and a thickness 
of 30 mm [40]. The stockpile charging process (0–150 s) and apron 
feeder reclaiming process (150–213 s) are modelled in the simulation. 
Table 1 lists the COS system variables for the baseline scenario. The 
discharge of ore from a cylinder through an open gate in the base of the 
cylinder matching the gate in the stockpile model was simulated to 
determine the wall angle. The wall angle was measured from the repose 
angle of the remaining ore within the cylinder and was found to be 
approximately 45◦, which is consistent with the withdrawal angle 
measured by Dolman [26]. 

Fig. 7. EDEM simulation result of basic scenario (10% fine+80% 
pebble+10% coarse). 

Fig. 8. Repeat test results for baseline scenario.  
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2.3. COS model parameters and calibration 

The properties of the copper ore particles, tags and other components 
of the modelled baseline COS system are listed in Table 2. Our work is 
based on Dolman's [26] study described above, using the same material 
properties and parameter values except for the coefficient of rolling 
friction between ores, tags and steel. In the DEM model, bulk density is 
required to accurately model the bulk material behaviour. The bulk 
density is determined by particle density and the packing efficiency of 
the particles. A particle density of 2750 kg^m− 3 was chosen to be 
representative of a typical copper ore. The bulk density was assumed to 

be 60% of the particle density based upon the study by Schulze [41] and 
is therefore 1640 kg^m− 3. Irregularly shaped particles result in the for-
mation of larger open voids within the volume, leading to a decrease in 
the overall bulk density. A higher bulk density indicates a greater degree 
of particle compaction and reduced void space, which can influence the 
material flow and the resistance to movement. Conversely, material with 
lower bulk density have a higher propensity for segregation during 
transportation. 

An angle of repose test for qualitative calibration was performed in 
this study to calibrate the particle shape and sizes. According to Dol-
man's research, clusters of four or more spheres achieved a good 

Fig. 9. EDEM simulation slice showing ore flow at t = 150 s and t = 167 s.  

Fig. 10. Sensitivity analysis of ore tracking through COS with respect to ore size distribution (Scenarios 1 to 3).  
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approximation of a 37◦ angle of repose [26]. In this paper, clusters of 
five spheres were created to represent ores and repose angle test has 
been conducted for baseline scenario, where the angle of reposes settles 
around 37◦. In this study copper ore particles were modelled as a cluster 
of five spheres consisting of uniform material. This is an approximation 
of bulk material which is typically heterogenous in size, shape and 
material; the approximation was made because of the limitations of the 
EDEM software and computational requirements. In the EDEM software, 
irregular particles can be created by clustered spheres. As the bulk 
material is heterogeneous and not perfectly spherical, the Young's 
modulus and Poisson's ratio of the bulk material cannot be directly 
applied within the simulation and it requires the use of representative 
equivalent values for these variables [25]. An approximate size distri-
bution of distinct fine, pebble and coarse particles was used as it was not 
feasible to replicate the full range of particle sizes and shapes of a typical 
copper ore due to computational limitations [39]. A diameter of 130 mm 
was selected for the pebble ore particles to represent the P80 size of a 
typical primary gyratory crusher which processes the ore prior to the 
COS. The material properties of the wall are the same as the ore as the 
wall represents the boundary of the flow region within the stockpile. 

The interactions between the modelled copper ore and other simu-
lated materials are summarized in Table 3. The ore-tag, ore-belt, ore- 
steel, and tag-steel rolling friction coefficients are assumed to be 0.01. 
To determine the effects of coefficient of rolling friction between ore and 
tag, ore and belt on the blending behaviour of the COS system, a 
parameter sensitivity study is designed. 

2.4. Sensitivity analysis 

The input variables used in the simulation have a large impact on the 
modelled results as they are used to calculate the forces and torques 
within the contact model, which determine the position and orientation 
of particles within the model. Sensitivity analysis is a mathematical 
technique that can be performed to systemically investigate the effect of 
a range of input variables on the simulation results. To investigate the 
sensitivity of the DEM COS model on the simulation variables used, a 
series of DEM simulation scenarios were conducted to examine which 
variables affect the simulation results and to what extent. Table 4 and 
Fig. 5 presents all the variables which were investigated to determine 
which are crucial for accurately modelling the ore flow through the COS 
for ore tracking and how changes in the variables affect the ore flow. In 
total, 28 cases have been simulated to investigate a range of variables 
including the particle size distribution, particle size range, RFID tag size, 
stockpile wall friction, the trajectory of charging particles and the 
charging methods and contact model. 

The ranges of the seven variables summarized in Table 4 were chosen 
to represent typical conditions at a copper mine. Scenarios 1 to 9 
investigate the influence of the ore particle size distribution. For sce-
narios 1 to 3, the percentage of pebbles decreases from 80% to 60% with 
the same proportion of fine and coarse particles. This set of simulation 
scenarios provides a means of investigating how the proportion of 
pebble particles affects particle flow through the COS and the associa-
tion between ore batches and RFID tags. In Scenarios 4 to 9, the 

Fig. 11. Sensitivity analysis of ore tracking through COS with respect to ore size distribution (Scenarios 4 to 9).  
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percentage of fine particles increases from 5% to 15%, 10% to 20%, and 
25% to 30% while the proportion of pebble particles remains constant at 
80%, 70%, and 60% respectively. This set of simulation scenarios in-
vestigates how a large proportion of fine particles affects particle flow 
through the COS and the association between ore batches and RFID tags. 

Scenarios 10 to 13 investigate the influence of the ore size range. It is 
important to study this as the ore size range varies in real time 
depending on the mined material. These simulation scenarios examine 
how the material size range can affect the discharge of the materials and 
the association between ore batches and RFID tags. 

Scenarios 14 to 17 study the effect of the RFID tag size. The simulated 
RFID tag sizes are smaller than most of the particles in the model which 
can affect the transport of the tags relative to the ore particles. These 
scenarios investigate whether the tag size affects the link between ore 
batches and their associated tags. 

Scenarios 18 to 20 investigate the influence of wall friction. The 
modelled conical boundary approximates the live component of a 
stockpile implemented to reduce computational requirements. To 
determine the sensitivity of the simulation to this approximation, a 
range of different wall friction values were simulated. 

Scenarios 21 to 23 study the effect of particle trajectory. Varying the 
conveyor belt velocity from 2 to 5 m/s changes the trajectory of the 
charging ore flow and hence the fill location. A range of belt velocities 
were examined to evaluate the effect of the fill position and impact 
velocity and angle on the resulting stockpile shape, the discharging of 
material and the association between ore batches and RFID tags. 

Scenarios 24 to 26 investigate the effect of when stockpile 

reclamation commences within the simulation. Cases in which recla-
mation starts when filling is between 60% to 100% completion are 
simulated. These simulations provide information on how the combi-
nation of filling and reclamation methods affect the discharge of the 
material and the association of tags with their respective batches. 

Scenarios 27 and 28 consider the use of the linear spring dashpot and 
Hertz-Mindlin with JKR models to examine the influence of the contact 
model. The linear spring dashpot model is commonly used to model the 
interaction between particles. The Hertz-Mindlin with the JKR model 
takes the material moisture content into account, allowing the model-
ling of wet and sticky particles [42]. A surface energy of 10 J/m2, static 
friction of 0.3 and rolling friction of 0.06 were found to be the appro-
priate JKR model coefficients via repose angle testing as detailed by 
Roessler and Katterfeld [43]. 

Scenarios 29 to 34 investigate the effect of assumed values used in 
the simulation such as the ore-tag and ore-belt rolling friction co-
efficients. As the steel has limited contact with the ore and tag during the 
simulation, the effects of the assumed ore-steel and tag-steel rolling 
friction coefficients are not investigated. 

3. Results and discussion 

The typical ore flow observed over the feeding and reclamation 
processes is shown in Fig. 6. It was found that multiple ore batches, 
shown in different colours, are mixed during the ore reclamation 
process. 

Fig. 7 shows the percentage of each ore batch content reclaimed 

Fig. 12. Sensitivity analysis of ore tracking through COS with respect to ore size range.  
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during every second of the stockpile discharging process as well as the 
time that each RFID tag is scanned by the virtual reader for the baseline 
scenario. Due to the randomness inherent in particle motion, the time 
and order in which the RFID tags are read can vary significantly. As such, 
repeat tests of the baseline scenario (Fig. 8) have been conducted to test 
the range of potential results. 

In EDEM, the particle generation mechanism is configured as an 
unlimited number model in which particles are randomly generated on a 
plane. During the initial particle generation, the positions of the parti-
cles are determined using a random number generator. The random 
number generator is reset each time that a simulation is started so as to 
ensure different particle distributions in each run. To conduct a 
repeatability test, four identical simulations with the same parameter 
settings were performed. This ensures that the simulation parameters, 
such as particle properties, boundary conditions, and forces, were the 
same for each run. By running multiple simulations with identical pa-
rameters, the consistency and reproducibility of the results can be 
assessed. All the batches in each repeat test showed the same general 
trend, which confirms that the test is repeatable and that the results can 
be used with confidence. 

The results show that most RFID tags were reclaimed prior to their 
associated ore batch and that the tags were not reclaimed in the order 
that they were introduced. The time interval between tags varied be-
tween 1 and 9 s, with some tags closely clustered together and some tags 
well separated from the next. The tags being read before their respective 
batch indicates that the small RFID smart tags passed through the 
stockpile faster than the larger ore particles. This result is consistent 
with Jansen's findings that smaller stockpile retention tracers were 

reclaimed first while the coarsest were reclaimed last due to a general 
trend of longer average retention times for larger size fractions [44]. As 
RFID tags are generally reclaimed early and out of order, they are poorly 
representative of their original ore batches and quantitative information 
correlated to the ore batch is lost. Particle and tag segregation depends 
on the material interactions and may vary for different ore types and 
material characteristics; it is also affected by the calibration of the 
relevant parameters within the simulation. In this case, increased 
numbers of RFID tags would be required for each batch in order to 
ensure the association of the tags with their respective ore batches. 

As well as providing information on the association of tags with their 
ore batches, Fig. 7 also provides information on how each batch was 
reclaimed. This information is vital for understanding how ore and RFID 
tags move and interact within the stockpile. The reclamation of the first 
ore batch reaches a peak of about 23% at a time of 2 s. The second, third 
and fourth ore batches reach peaks of 10%, 7% and 5% at 3, 4 and 5 s 
respectively. The total stockpile discharging and apron feeder reclaim-
ing process occurs over approximately 60 s and, except for the first 10 s 
and the last 5 s, ore batches (excluding batch 15) are reasonably evenly 
blended with about 2–4% of each ore batch being reclaimed each sec-
ond. The overall retention time of batch 15, the last ore batch repre-
sented by the light grey line in Fig. 7, is shorter than most of the other 
batches. These results compare well to the findings of Parker [45] who 
found that ore batches closer to the centre of the stockpile, located 
directly above the discharge point, tend to travel faster through the 
stockpile than batches further down the outer slopes of the stockpile. 
The cross-section of the discharging process presented in Fig. 9 shows 
that a steep inner discharge cone forms at the top of the stockpile which 

Fig. 13. Sensitivity analysis of ore tracking through COS with respect to RFID tag size.  
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Fig. 14. Sensitivity analysis of ore tracking through COS with respect to wall friction.  

Fig. 15. Sensitivity analysis of ore tracking through COS with respect to stockpile feed belt speed.  
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Fig. 16. Stockpile shape for different feed belt speeds.  

Fig. 17. Sensitivity analysis of ore tracking through COS with respect to stockpile storage percentage.  
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eventually widens outwards to produce a discharge cone with a lateral 
shape. This result is consistent with Parker's findings that ores closer to 
the stockpile withdrawal wall remain motionless and are less affected by 
other ore flows following the opening of the discharge point [45]. The 
formation of this discharge cone is significant because it influences the 
flow of ore particles during the extraction process. As the discharge 
point is opened, ore particles start to move and flow downwards. 
Parker's findings suggest that the behaviour of ore particles in the 
discharge cone is not uniform throughout the cone's shape. Closer to the 
withdrawal wall of the stockpile, where the discharge point is located, 
the ore particles tend to remain motionless or experience minimal 
movement. This is because these particles are shielded by other particles 
around them, forming a more stable region. They are less affected by the 
flows of ore occurring in other parts of the discharge cone. In contrast, 
the ore particles located further away from the withdrawal wall expe-
rience greater interaction with other flowing particles. These particles 
are more influenced by the bulk flow and movement of the ore as it 
cascades down the discharge cone. This results in a wider lateral shape 
of the discharge cone, as the particles closer to the withdrawal wall have 
limited lateral movement. 

The effect of a change in the particle size distribution on the ore 
batch and tag discharge is shown in Figs. 10 and 11. It was found that as 
the proportion of the ore consisting of fine and coarse particles is varied, 
there was only a minimal effect on the batch mixing and discharging. 
This indicates that the COS is not sensitive to the change in the coarse 
and fine balance. 

The effect of the ore particle size range on ore and tag reclamation is 
shown in Fig. 12. It was found that the ore size range has only a very 

small effect on the batch blending behaviour as it passes through the 
stockpile. This indicates that, as for the particle size distribution, the 
COS simulation is not sensitive to changes in the particle size range. 

The effect of the tag size on the reclamation of the tags and their 
corresponding batches is shown in Fig. 13. As expected, given the small 
number of tags relative to particles there was no impact on the ore batch 
mixing within the COS. There was no discernible effect of the tag size on 
the association between ore batches and their RFID tag. However, 
smaller effects would be hard to identify due to the uncertainty of the tag 
distribution. A small effect of the tag size is reasonable as the size range 
considered, which is representative of typical RFID tags, is smaller than 
most of the simulated ore particles. 

Fig. 14 shows the effect of the simulated wall friction on the transport 
of the ore batches and tags through the COS. It was found that as the wall 
friction increases the last ore batch is reclaimed earlier. It was also 
observed that the initial peaks of the first batch were reduced while the 
peaks of the last three batches increased with increasing friction. These 
results indicate that the ore close to the wall moves more slowly with 
increased friction resulting in the ore close to the centre of the stockpile 
flowing faster and being reclaimed earlier. 

The effect of the feed belt velocity on ore batch blending and the 
distribution of the RFID tag readings is shown in Fig. 15. It was observed 
that reclamation of the last ore batch occurred later as the conveyor belt 
speed increased. Fig. 16 shows the effect of the feed belt speed on the 
distribution of the ore filling the stockpile. The fill point and resulting 
peak of the stockpile is further from the belt as the velocity is increased. 
As the tip of the stockpile moves further away from the centreline of the 
stockpile, for low feed velocities, the total stockpile charging and apron 

Fig. 18. Sensitivity analysis of ore tracking through COS with respect to contact model.  
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feeder reclaiming time is reduced and the peak reclamation for the first 
and last batch is increased to 29% and 16% respectively. 

Fig. 17 shows the effect of the time at which the filling process 
reclamation is begun on the ore batch blending and tag association. It 
was found that when reclamation was begun earlier in the simulation, a 
majority of the COS stockpile was reclaimed prior to the later batches 
being fed into the COS. This resulted in a reduction in the segregation of 
the later ore batches, resulting in a good association between the batches 
and their respective ore tags. 

The effect of the EDEM contact model used on the ore batch blending 
and tag association is shown in Fig. 18. The variety of particle sizes and 
modelled ore batches combined with the presence of the tags results in a 
wide range of potential particle interaction pairs. This, together with the 
large number of particles modelled, causes the Hertz-Mindlin models to 
be computed faster than the linear spring dashpot model. For the linear 
spring dashpot contact model, the last ore batch shown in light grey in 
Fig. 18 was extracted earlier than most of the other ore batches. The 
extraction of this batch occurred at a later point in the Hertz-Mindlin 
models. Evaluation of the discharge showed that, for the linear spring 
dashpot model, an extremely steep discharge cone developed causing 
the rapid discharge of the final batch which is not representative of the 
discharge of a real stockpile. This shows that the Hertz-Mindlin models 
were better able to represent realistic stockpile discharges as well as 

being less computationally expensive. The Hertz-Mindlin with JKR 
contact model simulates the effect of the moisture between particles. It 
was found that, apart from reducing the initial extraction of the first 
batch from 22% to 17%, the JKR moisture model has only a small effect 
on the batch blending behaviour as it passes through the stockpile 
compared to the default Hertz-Mindlin model. 

Figs. 19 and 20 show the effect of the ore-tag and ore-belt rolling 
friction coefficients used in the simulation on the blending of ore batches 
within the COS. The effects of the assumed coefficients are explored with 
the variables from the references. As the ore-tag rolling friction coeffi-
cient increases, there is no discernible impact on the ore batch mixing 
within the COS. This is likely due to the small number of tags relative to 
particles within the simulation. There was only a minimal effect on the 
batch mixing and discharging as the ore-belt rolling friction coefficient 
increases. This indicates that the COS is not sensitive to the change in the 
coefficient of rolling friction between ore and the belt. 

The results of the sensitivity study are summarized in Table 5. The 
DEM COS model results show that variables such as ore size distribution, 
ore size range, RFID tag size, rolling friction coefficient between ore and 
tag do not have a significant impact on the transport of ore through a 
COS while variables such as wall resistance, the trajectory of charging 
particles (stockpile feed belt speed), stockpile storage percentage and 
EDEM contact model do have a significant impact. 

Fig. 19. Sensitivity analysis of ore tracking through COS with respect to rolling friction coefficient between ore and tag.  
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4. Conclusions 

The DEM modelling of the transport of ore and RFID tags through a 
coarse ore stockpile and apron feeder presented in this paper provides 
for the first time information on the association of tags with their ore 
batches through a 3D COS. Additionally, a sensitivity analysis of the 
DEM input variables was conducted to provide information on which 
variables affect the transport through the COS. This sensitivity study 

suggests that DEM may be an excellent tool to investigate the correlation 
between RFID tags and discharging materials under different scenarios, 
which is difficult to obtain experimentally. 

The proposed modelling framework fills the gaps in previous models 
by using a three-dimensional modelling approach. The results of the 
sensitivity study provided critical information on the blending behav-
iour of tags and ore batches within the stockpile, showing that:  

(1) Ore batches closer to the centre of the stockpile, directly above 
the discharge point, flow faster through the stockpile than the ore 
batches close to the wall. In particular, when the wall friction 
increases, ore batches closer to the centre of the stockpile (last 
batch) travelled faster through the COS.  

(2) The overall performance of RFID-based ore tracking through the 
stockpile is poor. Most RFID tags were reclaimed prior to their 
associated ore batch. This indicates that the tags, being smaller 
than even the fine ore particles, pass through the stockpile faster 
than the ore. It was also observed that the interval between tags 
varied from 1 to 9 s.  

(3) The RFID tags scanned by the virtual reader were out of order. 
This unexpected phenomenon may be due to flow-induced 
segregation within the apron feeder. Segregation of materials in 
the ore flow region could increase the uncertainty of the associ-
ation between ore batches and RFID tags. If such segregation 
occurs, the variability of particle transport within the COS system 
will increase. The number of RFID tags used for each batch to 
ensure association between the tags and ore batches needs to be 
determined. 

Fig. 20. Sensitivity analysis of ore tracking through COS with respect to rolling friction coefficient between ore and belt.  

Table 5 
Summary of sensitivity study results.  

Categories EDEM parameters Scenarios Sensitivity 

Bulk material size 
distribution 

ore size distribution (pebble 
percentages) 

1–3 Low 

ore size distribution (fine 
percentages) 

4–9 Low 

Bulk material size 
range 

ore size range 10–13 Low 

RFID tag size RFID tag size 14–17 Low 
Wall resistance coefficient of static friction 18–20 High 
Trajectory of charging 

particles 
stockpile feed belt speed 21–23 High 

Stockpile storage 
percentage 

stockpile storage percentage 24–26 High 

Contact model contact model 27–28 High 
Rolling friction 

coefficient 
rolling friction coefficient ore 
-tag 

29–31 Low 

rolling friction coefficient ore 
-belt 

32–34 Low  
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(4) The particle size distribution, particle size range, RFID tag size, 
and ore-tag and ore-belt rolling friction coefficients were found to 
have limited impact on the stockpile batch blending behaviour. 
The percentages of ore from each batch during the discharging 
process have similar trends for all evaluated values of these 
variables. 

The DEM COS model demonstrated high sensitivity to changes in 
wall friction, stockpile storage percentage, stockpile feed belt speed and 
contact model, while it showed low sensitivity to variables such as the 
ore size distribution, ore size range, RFID tag size and ore-tag and ore- 
belt rolling friction coefficients. Simulations of the COS including a 
sensitivity analysis can be useful to model ore transport through a COS 
and to provide an improved understanding of batch and tag transport to 
help track ore through a COS. 
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